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ABSTRACT OF THE THESIS 

IN SITU AFM IMAGING OF NANOPARTICLE-CELLULAR MEMBRANE 

INTERACTION FOR A DRUG DELIVERY STUDY 

by 

Rakesh Guduru 

Florida International University, 2010 

Miami, Florida 

Professor Chenzhong Li, Major Professor 

Nanoparticles (NPs) play a crucial role in delivering therapeutic drugs to cancer cells. 

Understanding the interaction of NPs with cell surfaces and their internalization is 

imperative to develop a fully efficient drug delivery vehicle. In this study, atomic force 

microscopy (AFM) was used to evaluate the dynamic interactions of non-targeted and 

targeted poly (lactic-co-glycolic acid) (PLGA) NPs with ovarian cancer cells in native 

environmental conditions. Results demonstrated that the cells incubated in targeted NPs 

solution for 3 hours showed a 112% increase in cell surface roughness, whereas cells 

incubated in non-targeted NPs showed only a 38% increase. Cell surface roughness, when 

incubated for 6 hours, was higher for non-targeted NPs.  The changes in cell membrane 

surface roughness were also monitored for NPs encapsulated with a doxorubicin drug. 

Based on the results it was concluded that the targeted NPs will attach to the cell 

membrane and internalize faster than the non-targeted NPs.  
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1. INTRODUCTION 

Nanoparticles (NPs) are currently employed as vehicles to deliver therapeutic 

payloads such as drugs, genes, and stem cells to the diseased sites [1,2,3].  NP based 

delivery provides key advantages such as targeting, and time-controlled release of agents.  

Targeted NPs aim to provide an effective dose to the disease site while minimizing the 

effect on healthy tissues.  Thus, using targeted therapies, a lower concentration of the 

therapeutic agent can prove effective while minimizing the side-effects.  Understanding 

interactions and the internalization of NPs with cell membranes could be instrumental in 

developing efficient drug carriers.  NPs can be synthesized with different physical 

properties and chemical functionalities depending on biomedical/nanomedicinal 

applications.  The changes in characteristics of nanomaterials may influence its 

interaction with biological membranes.  However, there is no practical approach to 

estimate this effect in native environmental conditions of the cell.  Atomic force 

microscopy (AFM) has proven to be a powerful tool in studying a wide variety of 

biological samples such as cells [4,5] tissues [5,6] and biomaterial [7,8] living in native 

environmental conditions.  More recently, AFM has been used to study the dynamics of 

gold NP interaction with cancerous cell surface membranes [9].  AFM has a significant 

edge over other imaging techniques such as scanning electron microscopy (SEM), 

transmission electron microscopy (TEM) and fluorescence imaging, in evaluating NP 

interaction with biological samples [10].  AFM can perform imaging in native cellular 

conditions, allowing for a true evaluation of the dynamics of NP interaction with living 

cells which is not possible with SEM or TEM.  AFM image data can be represented in 

three dimensions (3D) which assists in measuring height variations due to the interaction 
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of NPs on the cell surface.  Image data obtained from SEM or TEM is in two dimensions 

(2D) and lacks the ability to provide this information.  Imaging the NPs cell membrane 

interactions using a fluorescence microscope, demands NPs to be fluorescently labeled.  

Data obtained using this approach cannot differentiate internal particles from particles 

attached on the surface and thus, cannot be used to study internalization dynamics.  

However, time-based cell surface membrane studies using AFM have demonstrated the 

capability to show internalization phenomenon of various NPs [11,12,13].  

This research is focused on monitoring the dynamic topographical changes within 

the cell membrane of ovarian cancer cells (SKOV-3) over a period of 24 hours due to the 

interaction of non-targeted, targeted, and drug loaded PLGA poly (lactic-co-glycolic 

acid) (PLGA) NPs.  PLGA NPs were selected as the model system due to their 

biocompatible and biodegradable nature and their ability to carry both hydrophilic and 

hydrophobic therapeutics agents [14,15]. Doxorubicin (DOX) was selected for this study 

due to its high anti-cancer therapeutic potential. In the United States, ovarian cancer is the 

seventh most common type of cancer that occurs in women between the ages 40-65.  

SKOV-3 cells are known to compromise their sensitivity towards doxorubicin drug, due 

to improper activity of apoptotic protease activating factor 1 long with inactive caspase 3 

or caspase 9 (protease which initiates cell apoptosis) [16,17].  This resistance cannot be 

overcome by increasing the dosage of doxorubicin because of toxic dose dependent side 

effects.  Target specific drug loaded NPs carry the drug to only target specific sites, 

thereby increasing the local concentration of the drug at diseased areas and  thereby, 

achieving similar results with a lower drug dosage and with reduced side effects [18]. 
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2. BACKGROUND 

2.1 NPs in drug delivery 

Success of designing a drug delivery system for cancer treatment demands high 

local drug concentration at the target site while minimizing toxic side effects.  Nano-

carriers (nanometer sized) loaded with chemotherapeutic agents have shown to improve 

the cancer treatment [19,20,21].  NPs contain a therapeutic agent dispersed in a polymer 

matrix or encapsulated inside a polymer shell, adsorbed or covalently bonded to the 

surface.  Different types of nanoparticle based drug delivery systems have been designed 

in order to achieve therapeutic efficiency in reaching the targeted diseased tissue.  These 

include dendrimers [22,23], polymeric micelles [24,25], liposomes [26,27], hollow 

microcapsules [28], solid lipid NPs [29], and solid core shell NPs [30,31].  There are 

numerous methods for preparing these NPs [32,33,34].  Most of these methods use either 

harsh organic solvents or unstable emulsion for their production. This may account for 

inefficient drug delivery causing toxic side effects to the body. Fabricating the NPs for 

effective time release at targeted locations while decreasing the harmful side effects will 

mitigate the problems associated with the traditional chemotherapy. 

2.2 Interaction of NPs with cell membrane 

The success of NPs in drug delivery processes depends on the extensive 

understanding of their interaction with cell membrane and their intricate components.  

The plasma membrane is the primary site of contact between the NPs and the cell.  

Nanoparticle-membrane interactions are widely affected by the surface properties of the 
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NPs such as size, shape and charge [35].  Hong et al, showed the disruption of the plasma 

membrane when treated with NPs bearing positively charged groups (such as polymer: 

polyethylenimine and polyamidoamine) on their surfaces [36,37].  This disruption is 

distinguished by the formation of nanoscale holes which in turn enhances the membrane 

permeability.  The nanoscale hole formation was proposed by the Mecke et al, using 

atomic force microscopy [38].  The NPs which induced nanoscale hole formations could 

further internalize through endocytosis.  In addition to the hole formation, NPs also 

aggregate at the cell surface.  This aggregation causes cell impair by not communicating 

with its surrounding environment [39]. 

2.2.1 Effect of surface properties of NPs with cell membrane 

All NPs will be immediately absorbed on the surface of cells/tissues and will be 

later internalized depending upon the surface characteristics of the NPs such as a) size 

and shape, b) charge, and c) surface chemistry [40].  The molecules present on the 

surface of the NPs helps in targeting specific cell type or cell populations.  The molecules 

present on the surface will also play a major role in defining the size, structure and 

flexibility of the NPs. 

a) Size and shape of the NPs: The size and shape of the NPs are amongst the primary 

properties which greatly influence cellular internalization. Hela cells showed a 

maximum uptake of gold NPs of 50nm size when compared with 14 nm and 74 

nm sized particles [41,42].  This suggests that there might be an optimal size for 

an efficient uptake by cells.  The effect of shapes of NPs on internalization was 
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also studied. Spherical shaped NPs showed five times more uptake than rod 

shaped NPs indicating that elongated particles require more time for cellular 

endocytosis [42].  Studies have shown that the size of NPs also affects the binding 

and activation of several membrane receptor proteins expression [43]. For 

example larger NPs can hold more antibodies on their surface (higher protein to 

NPs ration) there by increasing the binding sites on the surface of NPs [44]. The 

size characterization of NPs will also depend on the medium in which the 

measurements are carried out (i.e, physiological conditions).  For example, 

alkylation of the media changes the hydrodynamic size (from 15.3 nm to 13 nm) 

of polyesthyleneimine (PEI) conjugated with quantum dots (QDs) [45]. 

b) Charge of the NPs:  The charge of the NPs will have an influence on their 

interaction with the cell membrane and will further affect cellular internalization.  

A positively charged NP will bind to the negatively charged glycocalyx present 

on the cell membranes and the negatively charged NP will bind to the positively 

charged proteins on the cell membrane. This type of interaction is called as an 

electrostatic interaction [46].  Charge on the particles could be exploited to carry 

cargo inside the cell.  For example, a negatively charged DNA strand can be 

carried by a positively charged particle [47]. 

c) Surface chemistry: Size, shape and charge of NPs will significantly affect their 

interaction with cells; but the properties such as stability, cell membrane 

interaction and targeted specificity are primarily determined by the type of 

molecules (functional groups) present on the surface of the NPs.  Tagging the NPs 

with functional groups will not only deliver therapeutic agents to the desired site 
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efficiently but also prevent nonspecific interactions thereby minimizing the side 

effects. Figure 1 explains that the positively charged particles had a higher 

interaction with a negatively charged membrane and consequently showed higher 

internalization. Neutral and negatively charged particles showed significantly less 

adsorption and cellular internalization.  Negatively charged NPs are believed to 

internalize through cationic sites (few in number when compared with anionic 

sites) on the plasma membrane [48,49].  

 
Figure 1: Breast cancer cells (SK-BR-3) and gold NPs carrying different surface charge.  A) PVA-coated 

and citrate-coated NPs showing low interaction affinity towards the cell membrane while B) poly 

(allyanime hydrochloride)-coated NPs showing high affinity [50]. 
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2.3 Atomic force microscopy 

2.3.1 Introduction 

AFM is a powerful tool used in characterizing a surface at nanometer scale spatial 

resolution.  It is perhaps the precursor of the scanning probe microscope (SPM).  SPM 

was first developed at an IBM research facility (Zurich) by Binning and Rohrer in 1980.  

Later in 1986, Binning and his colleagues introduced the AFM.  Conventional light 

microscopes are limited by their wavelength of radiation that is approximately 200 nm.  

High resolution images are obtained using high energy electrons in the electron 

microscope.  Imaging the sample in an electron microscope demands a thin conductive 

layer on the surface of the specimen and should be performed under vacuum.  This 

sample preparation procedure may restrict its application to biological samples.  

However, AFM does not require conductive coating for imaging the specimen and can 

perform imaging in any environment.  In AFM, the image is generated by monitoring the 

interaction force between the probe and the specimen as the probe raster scans over the 

sample specimen.  The resolution of the image depends on several parameters ranging 

from the sharpness of the probe to the environment in which the scanning is performed.  

Additional information can be obtained from the book titled, “Atomic Force Microscopy 

for Biologists” [51]. 

Many biologists have shown that AFM is an excellent tool for imaging as well as 

studying the dynamic processes at the biological membrane in their natural physiological 

conditions [52].  Morphological studies of cell membrane structures at nanometer scale 

spatial resolution in their native states by light microscopy are limited by their 
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wavelength.  Although in recent years electron microscopy was able to image biological 

samples at angstrom level, the sample preparation techniques involve freezing, fixing and 

a special conductive coating prior to imaging. These sample preparation techniques may 

cause morphological changes on the surface making it difficult to identify the structures 

at nanometer resolution.  Recently, new structures (porosomes) were identified at the 

plasma membrane of pancreatic acinar cells and their real time dynamics were monitored 

during exocytosis process using AFM [53]. In recent years AFM is being used 

extensively in studying the cellular surfaces, biomolecules, organelles, and intra-cellular 

structures, revealing the cellular and sub-cellular structures at nanometer spatial 

resolution.  The most important and major contribution of AFM in biology is its ability to 

study the real time cellular dynamics under native physiological conditions of cells with 

high resolution.  

2.3.2 AFM working principle 

Like all other SPMs, AFM uses a sharp tip to raster scan across the sample 

surface to generate an image.  Typically the probe tip is made of silicon or silicon nitride 

which is mounted on a cantilever spring and is used to scan the surface of the sample 

with a constant force [54].  To monitor the tip movements, a laser beam is focused on to 

the back of the cantilever (tip is present at the edge of the cantilever) and it is reflected to 

a position sensitive photo detector (PSPD), this is depicted in Figure 2.  The topography 

image is measured by the up and down motion of the cantilever.  Monitoring the phase 

shift in amplitude of cantilever’s oscillation generates the phase image. 
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Figure 2: AFM working principle. 

To image biological samples, scanning should be performed at the lowest possible 

imaging force (~1 nN) as elastic properties play a significant role in imaging soft 

biological samples.  A 1 nN loading force was found to have an influence in imaging 

biological samples [55,56].  A sub-angstrom resolution image can only be obtained at a 

loading force of piconewtons which is not possible with the current state of technology.  

A recently developed photonic force microscopy requires only a few piconewtons of 

loading force for imaging biological samples at the cost of image resolution [57].  Hence, 

generating a sub-angstrom image resolution is currently impossible. 

2.3.3 Operation modes of the AFM 

AFM can be operated in three different modes: a) contact mode b) non-contact 

mode and c) tapping mode. 
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Figure 3: Path of the AFM cantilever raster scanning the tip across a sample surface in (A) contact mode,, 

(B) non-contact mode and (C) tapping mode.  

a) Contact mode: This mode is the most commonly used in force microscopy. In this 

mode, the tip is raster scanned over a sample surface in close contact (1-2 nm) and 

the deflection of the tip is constantly measured by the PSPD.  The direct current 

(DC) feedback amplifier compares the measured values of deflection with the 

desired value of deflection (set by the user).  If the measured value is different 

from the desired value, the DC amplifier applies voltage to the piezo which 

further raises or lowers the sample position relative to the cantilever position to 

obtain the desired value of deflection.  A height image (topography) is generated 

from the voltage applied to the piezo during raster scan over a specific scan area.  

Contact mode can be operated in any environmental condition (liquid, gaseous, 

vacuum). Performing AFM in contact mode under ambient conditions may 

sometimes be difficult because of the presence of humidity.  Humidity causes 

capillary condensation on the sample surface which increases the interaction force 

between the tip and the sample surface and hinders the scanning process. The 

effect can be mitigated by decreasing the tracking force between the tip and the 

sample; this can be achieved by performing scanning in ultrahigh vacuum (UHV) 
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or in liquids. Figure 3a. shows the interaction of the probe tip with the sample 

surface in contact mode. 

b) Non-contact mode:  In this mode, the tip is raster scanned over the sample surface 

at 5-15 nm range.  Operating AFM in this mode under ambient conditions is 

easier because the tip is tracking the surface at a higher distance from the surface 

when compared to the contact mode. This will essentially decrease the effect 

caused by capillary condensation.  In this mode, the tip oscillates over a small 

range to detect sample surface forces by measuring the change in oscillating 

frequency, amplitude and phase of the cantilever. 

c) Tapping mode: In this mode, the tip oscillates over a sample surface at a very high 

distance (> 20 nm) to overcome the problems associated with capillary 

condensation, adhesion, friction, electrostatic forces and thereby decreases the 

drag between the tip and the sample.  This is a powerful AFM technique which 

generates high resolution topographical images for a wide variety of samples.  In 

this technique a piezoelectric crystal oscillates the cantilever at the resonance 

frequency of the cantilever at amplitude as high as 20 nm.  During scanning, the 

piezo drives the vertically oscillating tip towards the surface of the sample until it 

barely taps the surface.  Tip oscillation decreases due to the intermittent contact of 

the tip with the surface. Reduction in amplitude of oscillation is used to identify 

and measure surface features of the sample.  The amplitude of oscillation of the 

tip is measured by the detector to generate high-resolution topography, amplitude 

and phase images. Tapping mode prevents the tip from sticking to the surface, 

scratching the sample surface, and breakage of tips which is very common in 
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contact and non-contact modes of operation.  Also, shear forces are greatly 

reduced since the applied force is always vertical.  Tapping mode operation in 

liquid is used to scan biological samples which are usually very soft in their living 

conditions, whereas other modes (contact and non-contact) will disrupt the cell 

surface. 

2.3.4 Types of AFM images 

Using AFM, one can gather a wide variety of information depending upon the 

modes of operation and the sample type.  Below is a list of information generated using 

the AFM: 

a) Topographical image: Topography images provide height information of the 

sample surface.  These images can be obtained in all the modes of operation. 

b) Phase imaging: Phase images are generated by the contrast caused by the material 

differences including adhesion and visco-elasticity.  These images can be 

obtained only in tapping mode. 

c) Magnetic force image: This image provides information about the gradient 

distribution of the magnetic force over a sample surface.  It can be obtained by 

operating the AFM in a special mode called LiftModeTM (an additional electronic 

module called Extender is required for this mode). 

d) Electric force image: This image provides information about the gradient 

distribution of the electric field over a sample surface and is also performed in 

LiftModeTM (Extender is required). 
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e)  Surface potential image: This image provides information about the surface 

potential difference over the sample surface and is performed in LiftModeTM 

(Extender is required). 

f) Force volume image: A force volume image contains a series of force curves 

obtained over an entire desired sample surface area.  Each force curve is measured 

at unique x-y coordinate and is combined into a 3 dimensional array or volume of 

force curves. 

g) Frictional image: This image provides information regarding the chemical 

variation across the sample surface.  The image is generated by monitoring the 

lateral deflection of the tip.   

NOTE: LiftMode™ is a two-pass technique that generates two types of images 

separately. One is a topography image using Tapping mode and another is the magnetic 

or electric force image using information generated from the topographical image 

(patented by Veeco Metrology). 

2.3.5 Advantages of AFM 

Below are several advantages of using AFM over other imaging techniques such 

as SEM, TEM and immunofluorescence. 

1) Ability to perform in vivo analysis of the cellular membrane dynamics of living 

cells, tissues, viruses and bacteria in their native physiological conditions 

[58,59,60,61,62,63,64,65]. 

2) No special coating is required to make the sample conductive. 
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3) Provides 3D mapping of the sample. 

4) Biological sample does not require fixation.  

5) Analysis can be conducted in a gas and liquid environment or in a vacuum. 

6) Less expensive. 

2.3.6 Disadvantages of AFM 

      1)  Complex setup 

      2)  Requires skilled labor 

      3)  Requires sample to be properly attach to the surface 

      4) Time consuming 

 

2.3.7 AFM studies on live cells 

In recent years, AFM was successfully employed in studying the morphology of 

various kinds of living cells.  Using AFM, a systematic rearrangement of cytoplasm was 

observed (lamellipodia formation) in MDCK and live carcinoma cells [66].  Ongoing 

filament dynamics were determined underneath the cell membrane in living glia cells and 

hipocampal neurons [67,68].  Recently, AFM was employed in studying membrane 

spreading and granula motions of activated human platelets [69].  4% paraformaldehyde-

fixed astrocytes showed a fibrillar network of medial midbrain astrocytes which is a 

neuritic growth preventer using AFM [70]. AFM imaging of soft samples can be very 

difficult to perform.  These types of samples need to be hardened prior to imaging which 

can be achieved by several sample fixation techniques [71].  AFM was used in studying 

fine structural changes in live neurons obtained from pond snail (from central ganglia) 
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[72].  AFM was also the first research tool to reveal structural and mechanical properties 

of isolated stereocilia of living sensory cells.  This study showed typical V-shaped ciliary 

bundles at the tips of isolated stereocilia [73].  Using AFM, morphological and growth 

dynamical changes were examined in NIH 3T3 and PC12 cells [74,75].  In this study, 

PC12 cells were examined over a long period of time to determine the neuritic process, 

bead like growth cone formation and deformation (50 to 700 nm wide).  Force 

modulation was also performed at the cone formation to determine its mechanical 

properties over time.  Growth and budding dynamics of saccaromyces cerevisiae (yeast) 

were determined by using AFM on 3% agar immobilized cells.  A permanent budding 

scar was observed for the first time using AFM.  Further, the AFM based real time yeast 

budding dynamics also showed that daughter cells take longer to dissociate from the 

mother cell [76]. 

AFM performed on the stimulated rat leukemia cell surface (basophiles) 

demonstrated the appearance of pits (1.5μm diameter) on the plasma membrane.  The 

authors suggest that the intensive stimulation of these cells and membrane retrieval 

mechanism result in formation of pit like structures. Thus, AFM enabled the study of 

dynamics of stimulation of plasma membrane and identification of pits in live rat 

leukemia cells [77].  Using AFM, mechanical properties (elasticity) of osteoblasts 

cultured on various surfaces such as metal, glass and polystyrene were compared [78].  

This study demonstrated the use of AFM’s force modulation technique in determining the 

adhesion of live cells with various substrates.  This information may be useful in 

developing new medical implants.  
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3.  STATEMENT OF PURPOSE 

Developing fully efficient drug delivery vehicles could potentially improve the 

bioavailability of drugs to the targeted regions thereby curing the diseased tissue 

efficiently and simultaneously minimizing the side effects.  Recent developments in their 

surface functionalization to target them to specific sites on cancer cells  is tremendously 

increasing, which demands development of new and more specific tools to evaluate their 

efficiency in interaction and distribution on cell surface (in-situ).  As a result, it is 

important to evaluate the efficiency of these NPs in reaching the targeted sites. 

Interaction of NPs with the surface of the cell membrane will affect the cell surface 

roughness.  In this work, NP-membrane interaction was monitored by measuring the cell 

surface roughness.  Three different types of NPs were used for this study: 1) bare PLGA 

NPs (b-PLGA), 2) PLGA NPs encapsulated with a doxorubicin drug (d-PLGA), and 3) 

PLGA NPs conjugated with anti-HER-2 antibodies (ab-PLGA).  PLGA NPs were 

selected as the model system due to their biocompatible and biodegradable nature and 

their ability to carry both hydrophilic and hydrophobic therapeutics agents [79,80]. 

Doxorubicin was selected as our model drug as it is widely used anthracycline antibiotic 

used against solid tumors, such as ovarian cancers [81]. 

3.1 Research objective 

The primary objective of this research is to evaluate the dynamic cellular 

membrane changes using AFM when SKOV-3 cells are treated with non-targeted PLGA 
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NPs (bare PLGA NPs without any surface functionalization), targeted PLGA NPs 

(functionalized with anti HER2 antibodies to target the receptors present on ovarian 

cancer cells) and PLGA NPs encapsulated with a therapeutic drug.  

3.2 Hypothesis  

It is hypothesized that the interaction of NPs with the surface of the cell 

membrane will affect its roughness. Using phase imaging, roughness analysis, power 

spectral density (PSD) and particle analysis, it is possible to visualize the NP-membrane 

interaction phenomenon and also measure the dynamic change in NP size on the surface 

of the living cell throughout the internalization process. 

3.3 Experimental hypothesis  

It is hypothesized that:  

1. The change in surface chemistry (presence and absence of ligands) of the NPs 

will affect their interaction with the cell membrane and will further affect the 

roughness measurements. 

2. Drug encapsulated NPs will significantly affect interactions with the cell surface 

as well as cell viability and will further affect the roughness of the cell membrane. 

3. The incubation time will significantly affect the interaction with the cell 

membrane and will further affect the roughness of the cell membrane. 



18 
 

4.  MATERIALS AND METHODS 

In this research, NPs and their interaction with the surface of the cell membrane 

were characterized using qualitative and quantitative AFM analysis. We used particle 

analysis to characterize the true hydrodynamic size of the b-PLGA, ab-PLGA and d-

PLGA NPs in the McCoy’s 5A media. To determine the change in surface roughness of 

the NPs before and after antibody conjugation, we performed the roughness analysis of 

the NPs. To visualize interaction of NPs with the cell membrane at different incubation 

periods (t=1, 3, 6 & 24 hours) we performed qualitative analysis i.e. amplitude image, 

height imaging and phase imaging. We also performed roughness analysis, power 

spectral density and particle analysis to quantitatively measure the interaction and 

dynamic size change of NPs throughout the internalization process.  

4.1 Chemicals 

Fibronectin (Mw: 220kDa; Sigma- Aldrich), Hanks balanced salt solution (Sigma-

Aldrich), PLGA (L:G molar ratio: 50:50, Mw: 40000–75000; Sigma-Aldrich) and IgG 

(Anti HER-2 monoclonal antibody; Sigma Aldrich), Polyvinyl alcohol (PVA, 87 - 89% 

hydrolyzed; 13kDa-23kDa; Sigma-Aldrich). 5-Minute Epoxy (Devcon) 

4.2 Cell culture Materials 

Ovarian carcinoma cell lines (SKOV-3) were obtained from ATCC, McCoy’s 5A 

medium, fetal bovine serum (FBS), Dulbecco's Phosphate-Buffered Saline (DPBS), 
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Penicillin-Streptomycin were obtained from Sigma Aldrich.  Coverslips (12 mm, 

diameter) were purchased from SPI Supplies.  Pipettes and pipette tips were purchased 

from Fisher Scientific.  

4.3 Preparation of NPs 

4.3.1 Preparation of DOX loaded and void PLGA NPs (d-PLGA and b-PLGA)  

 (DOX) loaded PLGA NPs were prepared by using single emulsion oil in water 

solvent evaporation method described previously [82].  Briefly, the organic phase 

comprised of PLGA (40 mg), DOX HCl (2 mg) and triethylamine (20 μl) was dissolved 

in a mixture of methanol and dichloromethane (1:3 v/v, 4 ml).  This organic phase was 

emulsified with aqueous phase containing 3% polyvinyl alcohol (PVA) (surfactant).  The 

emulsion was sonicated at 29W power intensity for 2 minutes (Cole Palmer, Vernon 

Hills, Illinois).  Organic solvents used for emulsion preparation were removed through 

solvent evaporation in a Rotavapor (Buchi, New Castle, Delaware) at 40°C.  The NPs 

were centrifuged at 12,200 rpm for 30 minutes.  The free drug (i.e., DOX) in the 

supernatant was removed; the pellets were washed with deionized water and centrifuged 

again for 30 minutes.  The washing procedure was carried out four times to remove the 

excess surfactant and drug.  After centrifugation, the pellets were freeze dried and 

lyophilized for 48 hours.  Void PLGA NPs were prepared by a method similar to the one 

stated above without using the drug. 
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4.3.2 Preparation of antibody conjugated NPs (ab-PLGA) 

ab-PLGA NPs were prepared using a method previously reported [82].  The 

lyophilized NPs were re-suspended in PBS buffer (pH 7.4).  The particles were incubated 

with 1 ml of 2 mM N-(3-dimethylaminopropyl)- N’-ethylcarbodiimide hydrochloride 

(EDC) and 2.0 mM N-hydroxysuccinimide (NHS) at 4°C.  The particles were then 

centrifuged at 12,200 rpm at 6°C for 30 minutes.  The pellets were washed with PBS 

buffer (pH 7.4) and centrifuged again.  This procedure was repeated twice to remove 

excess free antibody and reagents used.  The pellets were then freeze-dried and 

lyophilized. 

4.4 Characterization of NPs 

NPs were characterized for hydrodynamic size, charge, roughness, DOX loading 

efficiency and antibody conjugation efficiency.  

4.4.1 Size characterization 

4.4.1.1 Size characterization using AFM 

In order to determine the true size of the b-PLGA, d-PLGA and ab-PLGA NPs, 

AFM sectional analysis was performed in McCoy’s 5A media at room temperature.  For 

imaging NPs in a liquid media, it is very important to attach NPs to the substrate to avoid 

accidental attachment of NPs to the AFM probe tip (note: particles must have greater 

affinity towards the sample surface than to AFM tip. This will assist in obtaining high 

resolution images).  In this study, we used poly-L-lysine coated glass surfaces (coating 
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procedure is listed in Section 4.5.3) for enhancing the particle attachment to the surface 

and obtaining high resolution images.  

4.4.1.2 Size characterization using Malvern Zetasizer 

Size of NPs was also measured by dynamic light scattering (DLS) using a 

Malvern Zetasizer (Malvern Instruments, Worcestershire, UK).  All size measurements 

were conducted at 25°C in distilled water.  Each sizing measurement was performed in 

triplicate (n = 3). 

4.4.2 Charge characterization 

Zeta potential was measured again by DLS using the Malvern Zetasizer. All size 

measurements were conducted at 25°C in distilled water.  Each charge measurement was 

performed in triplicate (n = 3). 

4.4.3 Estimation of doxorubicin loading efficiency  

The lyophilized NPs (d-PLGA) were dissolved in dimethly sulfoxide (DMSO) 

and the fluorescence spectrum of DOX was evaluated using a Fluorolog-3 

spectrofluorometer (Horiba Jobin Yvon, Edison, New Jersey).  Samples were serially 

diluted (1:2, 1:4, 1:8, 1:16, 1:32 dilutions) until linearity in the fluorescence intensity of 

DOX was achieved.  The maximum fluorescence intensities were blank subtracted from 

DMSO and were fitted to a linear model.  The concentration of DOX was estimated from 

the calibration curve of DOX prepared previously using the same instrument. The percent 
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NP yield and the percent drug loading efficiency were calculated using equation (1) and 

(2). 

	%	݈݀݁݅ݕ	݈݁ܿ݅ݐݎܽ݌݋݊ܽܰ ൌ ெ௔௦௦	௢௙	௡௔௡௢௣௔௥௧௜௖௟௘௦	௥௘௖௢௩௘௥௘ௗெ௔௦௦	௢௙	௉௅ீ஺	௔௡ௗ	஽ை௑	௨௦௘ௗ	௙௢௥	௣௥௘௣௔௥௔௧௜௢௡ 	ൈ 100        (1) 

	%	݃݊݅݀ܽ݋݈	݃ݑݎܦ  ൌ ௔௠௢௨௡௧	௢௙	஽ை௑	௜௡	௡௔௡௢௣௔௥௧௜௖௟௘௦௔௠௢௨௡௧	௢௙	௡௔௡௢௣௔௥௧௜௖௟௘௦	௢௕௧௔௜௡௘ௗ	௕௬	௧௛௘	௣௥௢௖௘௦௦ ൈ 100 (2) 

4.4.4 Antibody conjugation efficiency estimation 

Antibody conjugation efficiency was estimated using the method explained by 

Mo and Lim [83].  1 mg of lyophilized particles was dissolved in 0.5 ml DMSO and 1ml 

of 0.5% (v/v) SDS/ NaOH.  The mixture was incubated for 4 hours.  Further, 1 ml of the 

aforementioned solution (sample) was mixed with 1 ml of Bicinchonic acid working 

reagent and used for estimating protein content in the lyophilized particles.  Briefly, the 

mixture of the sample and working reagent was incubated at 60°C for 60 minutes.  The 

absorbance of this mixture was measured using a Cary spectrophotometer (Varian, Palo 

Alto, California) at 562 nm.  The calibration curve was prepared for a Bovine Serum 

Albumin standard in concentrations of 0-40 µg/ml in the same proportion of DMSO and 

salinated SDS.  Unconjugated NPs were used as the control.  The conjugation efficiency 

was estimated as micrograms of protein (antibody) per milligram NPs. 
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4.5 Coating the glass coverslips using Fibronectin and Poly-L-Lysine 

4.5.1 Sterilization of coverslips 

Coverslips were completely submerged in nitric acid solution (~50 ml) for 

approximately 1 hour.  After incubation, nitric acid was quickly removed from the beaker 

without removing the coverslips.  The beaker containing coverslips was placed under 

running distilled water for approximately 15 minutes.  Once thoroughly rinsed, coverslips 

were stored in centrifugal tubes containing 95% ethanol solution under a sterile hood.  

NOTE: Two 50 ml centrifugal tubes can hold a case of coverslips. Centrifugal tubes 

containing the coverslips were stored at room temperature and shaken for 30 minutes 

before use. 

4.5.2 Fibronectin coating 

In a biosafety hood, the sterilized coverslips were  transferred into six-well plate 

one by one from the 50 ml centrifugal tube using sterilized forceps (Note: Proper care 

was taken to ensure that there were no scratches on the coverslips while placing in the 

well and only one glass coverslip was placed in the well at a time). The six-well plate 

containing coverslips was kept under the hood overnight without covering to ensure that 

the coverslips were completely dry.  100 µl of fibronectin solution (1 mg/ml in Hanks 

balanced salt solution) was added to each coverslip and the coverslips were completely 

covered by the fibronectin solution.  
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Figure 4: Incubation of coverslips with fibronection solution in a Six-well plate under atmospheric hood at 

37°C. 

Coverslips were incubated with fibronectin solution at 37ºC for at least 45 minutes but 

incubating overnight gave better results (shown in Figure 4).  Cells were placed on the 

coverslips for growth and to enhance primary cell attachment for AFM imaging. Note: 

Thawing and freezing of diluted fibronectin is not preferred as break down of protein 

may occur.  The coverslips coated with the fibronectin can be stored at 2-8ºC for 2-4 

weeks in sterile sealable bags. 

4.5.3 Poly-L-Lysine coating 

Preparation of poly-L-lysine solution: 0.1-1 mg of poly-l-lysine (MW of 30,000- 

70,000) must be diluted in 1ml of borate buffer (0.15 M and pH 8.3). 100 µl of poly-l-

lysine solution must be pooled over the sterile glass coverslip and incubated for 24 hrs at 

room temperature.  Once incubated, the excess solution must be aspirated using 
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micropipette and the glass coverslip should be washed using PBS buffer three times.  

Poly-L-lysine coated coverslips can be stored up to 2 weeks at 4º C. 

4.6 Cell cultures 

SKOV-3 cell lines were cultured in tissue culture flasks maintained at 37ºC in a 

humidified atmosphere with 5% CO2 (in air).  These were grown in McCoy’s 5A media 

with 10% FBS and 1% Penicillin-Streptomycin as shown in Figure 5.  The cells were 

grown until they reached confluence and were later treated with trypsinase (3 ml) for 

about 5 minutes till all of them detached from the surface.  Later, McCoy’s media (4.5 

ml) was added to the flask to neutralize any further effect of trypsin.  The neutralized 

media was subjected to centrifugation for about 4 minutes at 1500 RMP. The pellet was 

discarded leaving the precipitate inside the centrifugal tubes.   

 

Figure 5: The cell culture flask containing the SKOV-3 cells in Mc’Coys 5A media. 
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A 6 ml of McCoys 5A media was added to the precipitate and mixed well for proper 

distribution of cells in the media.  The media containing cells was further plated for AFM 

imaging.  The process was repeated several times throughout the experimental analysis. 

4.7 Cell plating for AFM imaging 

A 6 ml solution (from section 4.6) containing the SKOV-3 cells was now 

distributed equally (1 ml in each well) in a six-well plate containing the fibronectin 

coated glass coverslips. Precautions were taken to ensure that the cells were plated 

directly on the coverslips. The plated cells were incubated for 1 or 2 days depending upon 

the cell confluence. Further, treatment of cells was carried out after the cells had reached 

confluence. 

4.8 Incubation of NPs with SKOV-3 cells 

Once the glass coverslips were fully confluent with SKOV-3 cells in the six-well 

plate, the media in each well was replaced by 1ml McCoy’s 5A media containing desired 

PLGA particles at 200 µg/ml concentration.  The concentration of particles was kept low 

intending not to saturate the cellular uptake [84].  Cells were incubated with NPs for 

specific periods of time (1 hr, 3 hr, 6 hr, and 24 hr) in an incubator.  After completing the 

incubation time, coverslips with SKOV-3 cells and NPs were washed thrice with DPBS 

buffer to ensure through removal of dead cells and loosely attached NPs.  Note: Dead 

cells and loosely attached particles could possibly interfere with the tip and may hinder 

the AFM scanning. 
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4.9 AFM instrument and analysis 

Qualitative and quantitative image analysis was performed using Multimode 

AFM with Nanoscope IIIa controller (Veeco Metrology, CA).  Offline image analysis 

was performed using Nanoscope offline image analysis software version 5.13r1.  Glass 

cover slips with fully confluent SKOV-3 were glued to a magnetic stainless disk and 

mounted on the AFM stage for imaging.  Imaging was performed under tapping mode 

using a nonconductive, short and narrow silicon nitride (Si3N4) probes highly 

recommended for imaging soft samples. Figure 6 shows cantilever ‘C’ for DNPS probe 

with spring constant 0.32 N/m that was used for AFM imaging.  

 

Figure 6: DNPS AFM probe with all four cantilevers. 

4.9.1 AFM liquid cell 

Drying of biological samples is the biggest concern in performing AFM imaging.  

This problem is not only restricted to AFM but even for other imaging techniques such as 

SEM, TEM, etc.   
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Figure 7: Veeco’s specialized fluid cell module designed for multimode AFM [85]. 

Many techniques have been developed to overcome this effect but most of them are  

complicated and have poor outcome.  With AFM the solution for this problem becomes 

much simpler by performing AFM imaging in fluid.  Performing AFM imaging in 

tapping mode has proved to give better results than other imaging modes (i.e. contact 

mode and noncontact) [86].  Imaging biological samples using AFM tapping mode in 

liquid is growing tremendously with constant improvements in image resolution. The 

AFM liquid cell consists of a glass piece with a wire clip to hold the AFM probe tip 

(shown in Figure 7) and the piezo element to create acoustic waves which causes the 

fluid medium to oscillate the cantilever.  The glass piece helps pass the laser without any 

disturbance through the unstable liquid surface.  

4.9.1.1 Liquid cell setup 

AFM liquid cell setup is a very crucial step in obtaining a good image.  Performing 

AFM in liquid is more challenging and more difficult compared to AFM in air.  Proper 

precautions must be taken to ensure that there is no spill or leakage of liquid on to the 
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scanner.  O-ring minimizes the chance of liquid spill or leakage and further helps in 

containing the sample without evaporation.  Steps listed below are recommended for 

obtaining a good AFM image. 

a) An O-ring is installed into the liquid cell glass piece recessed groove.  This will 

ensure that scanner is protected from spillage.  

b) Pre-wet the liquid cell before placing into the AFM head. A syringe filled with 

McCoy’s 5A medium is pumped through the ports (on the glass assembly). The 

syringe must be pumped just enough to flood the liquid cell ports with medium, 

allowing liquid to ooze from the bottom of the liquid cell.  A small portion of 

liquid is held at the bottom as shown in the Figure 8.  This step gets rid of the air 

bubbles from the media and allows laser light to pass through the media without 

causing interference.  Note: Presences of air bubbles between the tip and the 

surface will never engage the AFM to scan the surface.  

 

Figure 8: Liquid drop held by the surface tension at the bottom of tip holder[85]. 
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c) Place the metallic disc with SKOV-3 cells (from section 4.7) inside the head of 

AFM. 

d) Carefully insert the liquid cell inside the head and lower the cell until it reaches 

the proximity of sample surface.  Adjust the sample surface so that the O-ring is 

exactly on top of the sample surface.  This minimizes the spill of the liquid. 

e) Secure the liquid cell to the AFM head and carefully inject the McCoy’s medium 

into the liquid cell (100 µl).  Check if there is any spill on the scanner with a filter 

paper.  Small amount of medium is frequently supplied to the SKOV-3 cells to 

keep them alive.  Cells maintained in this fashion will be in a good condition for 

at least six hours.  By supplying 5% CO2 and by maintaining optimal growth 

temperature some of the researchers performed AFM analysis for more than 48 

hours. 

f) Align the laser deflection and engage the AFM to scan and record qualitative and 

quantitative data.  
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Figure 9: liquid-AFM setup. 

4.9.1.2 Procedure for AFM imaging in fluids 

AFM was performed under tapping mode in fluid to image the SKOV-3 cells under 

their native environmental conditions.  Performing tapping mode in fluids eliminates 

lateral forces that could potentially damage the soft and fragile samples. The steps 

involved in obtaining a high resolution image are listed below: 

a) The laser was aligned on the cantilever ‘C’ of DNPS probe; this cantilever gives 

best results in imaging soft samples in liquid tapping mode.  

b) Before engaging the AFM, the scan size of sample was set to 1 nm to minimize 

the sample damage and ‘sweep control’ function was used to tune the cantilever 

to a resonating peak between 7 to 12 kHz.  Good results were produced when 

cantilever frequency was set around ~9 kHz.  Note: The auto tune function should 
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not be used for tuning the cantilever as its resonance is largely damped under 

liquid. Setting the scan size more than 10 nm may damage the sample due to very 

low amplitude engage set point (~0.0V).   

c) Once the tip was engaged to scan the surface, it’s resonating frequency was 

readjusted to the peak value using ‘real time cantilever tuning’ function as inter 

molecular forces change the resonating frequency of the probe.  

d) The amplitude setpoint was adjusted.  It is one of the key steps in obtaining a high 

resolution image.  This was done by slowly increasing the setpoint until the probe 

tip retracted from the surface which was also monitored by observing Z position 

indicator.  At this point, in ‘scope-view’ window both trace and retrace curves 

became unstable and widely separated.  Once the probe tip retracted from the 

surface, the setpoint was reduced in small decrements.  A stable Z position was 

observed and the trace and retrace curves were very close when setpoint value 

was slightly less than the free amplitude.  When the probe was barely tracking the 

surface, the setpoint was slightly decreased further (5-10%) in order to apply a 

perfect loading force to scan the surface sample. 

e) Image quality was improved by adjusting the integral gain. The integral gain was 

increased in small increments until noise was observed in amplitude feedback 

oscillations.  Then a perfect integral gain was set by reducing the integral gain by 

10-15% which significantly reduced the noise and also improved the quality of 

the image. 

Once all the parameters were properly adjusted according to the above listed 

procedure, DNPS probe tips produced excellent images of soft biological samples in 
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liquids. The parameters shown in Table 1 produced best topography and amplitude 

images of SKOV-3 cells using liquid tapping mode AFM. 

Table 1: Typical Parameter Settings for DNPS Probes in Liquid Tapping Mode 

Imaging 

Parameter Value Parameter Value 

Scan rate 0.6 (µm/s) Drive frequency 9.17 kHz 

Scan size (initial) 1nm Drive phase 30.61º 

Resolution 256 Drive amplitude 300mV 

Integral gain (I) 0.5 Free amplitude (RMS) 0.49V 

Amplitude 
Setpoint 

0.478V Proportional gain (P) 0 

 

4.9.2 Qualitative analysis using AFM 

To confirm the interaction of NPs with cell membrane visually, we captured a 

series of images of SKOV-3 cells before and after incubating in NPs solution. 

Throughout the experiments amplitude and height image data was gathered by capturing 

a series of 50 µm × 50 µm topographical and amplitude images until SKOV-3 cells were 

located on a sample surface (glass coverslip) in McCoy’s 5A media. Once the cells were 

located, AFM cantilever was positioned on the cell surface. Two different regions of 5 

µm × 5 µm regions were selected on the cell surface to capture topographical, phase and 

amplitude images. The acquired topographical, phase and amplitude images are a 

representation of 256 × 256 pixel points, with each pixel point corresponding to the 

distinct height value, material properties, and surface information of the sample.  
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Qualitative visualization of interaction of NPs was determined by comparing the 

amplitude, phase and topographical image data captured on SKOV-3 cell surface before 

and after incubating in NPs solution (t = 1, t = 3, t = 6 and t = 24 hours).  

4.9.2.1 Amplitude image 

From Section 2.3.3 it is clear that in tapping mode, the height image is generated 

based on the z-actuator movement which is in turn guided by the feedback signal.  The 

input to the feedback system is the error signal (error signal is the difference between the 

measured amplitude and the setpoint value) generated while probe is scanning the sample 

surface.  The amplitude image is generated directly from the error signal.  This image is 

simultaneously captured side by side along with the height image. The schematic of 

amplitude image generation is shown in Figure 10. On soft samples, (such as cells and 

tissues) the amplitude image often distinguishes the sub-surface features much better than 

the topography image; whereas on hard samples, the amplitude image just highlights the 

edges of the sub-surface features. Thus, using amplitude imaging one can clearly 

distinguish the NPs on the soft biological cells or tissues. 
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Figure 10: Schematic representation of AFM amplitude image generation.  

4.9.2.2 Phase image 

Phase imaging is the extension of tapping mode imaging, which provides atomic 

scale resolution of the sample surface.  Phase imaging gives additional information like 

viscoelasticity, composition, adhesion and frictional properties of the sample rather than 

topographical image of the sample surface.  The applications of phase imaging include 

differentiating the regions with high and low hardness (elasticity) of the sample surface, 

identifying contaminants and differentiating components of composite surfaces.  The 

pimage is generated by measuring the phase-lag of cantilever oscillation.  When the AFM 

tip is scanning across the sample surface, variation on sample surface properties such as 

viscoelasticity and adhesion forces (electrostatic, van der waal’s forces, etc) will 

influence the oscillations of the cantilever, thus changing the phase of oscillation.  The 
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extender electronics module determines the phase lag by measuring cantilever oscillation 

relative to the piezo drive. 

 

Figure 11: Phase lag created while raster scanning the AFM tip from region A to region B of sample 

surface. 

4.9.3 Quantitative analysis using AFM 

To confirm the interaction of NPs with the cellular membrane, we also obtained 

quantitative information of the cell surface by performing offline image analysis. We 

chose three most suitable surface characterization methods for quantifying AFM image 

data: 1) average roughness (Ra), 2) PSD and 3) particle analysis, before and after treating 

the cells with NPs.  

4.9.3.1 Roughness analysis of cell surface membrane using AFM 

Determining average roughness is the most suitable method for quantifying 

sample surfaces using topographical images.  Roughness values of the cell surface were 

calculated from the topographical image in an offline mode using Nanoscope Image 

Analysis software (Version 5.13r1; Veeco Metrology).  The roughness value of the 
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topographical image was calculated from the statistical mean of the relative height of 

each pixel.  The statistical mean is defined such that an equal number of height pixels lie 

above and below it.  Over a selected region, Ra (average roughness) values were obtained 

by taking the average of the absolute values of the perpendicular height deviation (±z) 

from the statistical mean. 

܉܀  ൌ ૚ۼ∑ หܒ܈หܒۼୀ૚  (3) 

For this equation, N is the number of scan points and Z is the vertical distance between 

the lowest and the highest data points. 

4.9.3.2 Power spectral density  

Power spectral density of the sample surface is calculated from the height image. 

Two different surfaces may have same average roughness values because average 

roughness of a surface is affected by variations in vertical structures and not the 

horizontal structures [87,88].  Average surface roughness is a simple and reliable 

parameter; but its information is restricted to vertical plane only.  Therefore, to fully 

characterize the surface in both horizontal and vertical plane, power spectral density 

(PSD) function is used.  The PSD function is useful in analyzing amplitude of surface 

roughness as a function of spatial frequency of the roughness.  Spatial frequency is the 

inverse of the wavelength of the roughness features.  The two dimensional power spectral 

density analysis (2D-PSD) is performed in both X and Y direction of the data.  It is 

directly calculated by the Nanoscope software from the AFM image data over the desired 

scan area. 
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The frequency distribution for a digitized profile of length L, consisting of N 

points sampled at intervals of d0 is approximated by:  

PSD(f)=
૛d૙
N
ቚ∑ ۼ૛ૈܑ܍ ሺିܖ૚ሻሺିܕ૚ሻ܈ሺܖሻܖۼୀ૚ ቚ૛                 for            f=

m-1

Nd0
                       (4)                            

where i =  √െ1, and f is the frequency range from 
ଵ୐ to 

୒/ଶ୐ .  Practically speaking, the 

algorithm used to obtain the PSD depends upon squaring the Fast Fourier Transformation 

of the image to derive the power.  Detailed description of PSD calculations can be found 

in the literature [89,90].  

4.9.3.2 Particle size analysis on cell surface membrane using AFM 

Particle Analysis defines the particles based on the height of pixel data over a 

desired scan area.  This analysis was designated for analyzing well-isolated particles and 

gives the histogram of particle size with the standard deviation, which in turn can be 

useful in identifying the particles based on specific size. 
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5.  RESULTS 

In order to determine true hydrodynamic size of NPs in McCoy’s media, AFM 

particle analysis was performed. A surface roughness characteristic of ab-PLGA and b-

PLGA NPs was also determined by performing roughness measurements on the particle 

surface. A series of qualitative and quantitative tests were performed in order to 

determine the dynamic cell membrane interactions of targeted, non-targeted and drug 

loaded NPs. 

5.1 Characterization of NPs 

NPs were characterized for hydrodynamic size, charge, antibody conjugation 

efficiency and drug loading efficiency.  

5.1.1 Nanoparticle size characterization  

5.1.1.2 Size characterization using AFM  

 The mean diameter of the d-PLGA, b-PLGA and ab-PLGA NPs is determined by 

averaging the particle size measurements performed on three individual particles (n=3) in 

McCoy’s media. From the measurements we determined the average size of d-PLGA, b-

PLGA and ab-PLGA NPs as 168.1 nm ± 9.6, 176.92 nm ± 3.24 and 231.53 nm ± 5.24, 

respectively.  It should be noted that the antibody conjugated NPs showed a small 

increase in diameter (approximately 25 nm) compared to bare NPs and this may be due to 

the conjugation of antibodies on the outer surface of NPs.  
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Figure 12: ab-PLGA nanoparticle size characterization using AFM particle analysis. 

5.1.1.2 Size characterization using Malvern Zetasizer 

The average size measurements were performed triplicates (n=3), were found to 

be 164.7 nm ± 2.1, 167 nm ± 3.0 and 217.2 nm ± 3.2 for d-PLGA, b-PLGA and ab-

PLGA respectively. All size measurements were done at 25°C in distilled water.  

5.1.2 Charge characterization 

The zeta potential of d-PLGA, b-PLGA and ab-PLGA NPs was found to be -13.2 

mV ± 2.3, -14.7 mV ± 2.5 and – 1.2 mV ± 2.8 respectively.  It should be noted that the 

conjugation of antibodies on the outer surface of PLGA NPs resulted in increase in the 

zeta potential from -14.7 mV ± 2.5 to -1.2 mV ± 2.8. The charge of d-PLGA and b-PLGA 

is almost the same because of the same surface. 
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5.1.3 Estimation of doxorubicin loading efficiency 

The weight/weight (w/w) doxorubicin loading percentage was estimated as 2.7% 

± 0.1 using equation (2) (from Section 4.4.3). 

5.1.4 Estimation of antibody conjugation efficiency 

 The conjugation efficiency of antibodies with the NPs was determined using the 

method described in Section 4.4.4.  The average efficiency of the antibody conjugated to 

the NPs was determined as 10.00 ± 0.66 µg per mg NP (n=3). 

Table 2: Average Size and Charge, Drug Loading Percentage and Antibody 

Conjugation Efficiency of NPs. Note: All the Data Represented as Mean ± SD 

Formulation Size (nm) 
Zeta  potential 

(mV) 

Drug 
loading 

(w/ w %) 

Ab-
conjugation 
efficiency 

(µg / mg NPs) 
Void NPs 
(b-PLGA) 

167.0 ± 3.0 –14.7 ± 2 .5 N/A N/A 

Antibody NPs 
(ab- PLGA) 

217.2 ± 3.2 –1.2 ± 2.8 N/A 10.00 ± 0.7 

Dox NPs 
(d- PLGA) 

164.7 ± 2.1 -13.2 ± 2.3 2.7 ± 0.1 N/A 

 

Note: NPs were synthesized by Dr. McGoron’s staff. 

5.1.5 NPs surface roughness characterization 

AFM surface roughness characterization results show that anti HER2 antibodies 

conjugated PLGA NP (ab-PLGA) showed average roughness (Ra) value  5.240 nm ± 1.87 

(n=5) which is approximately twice the average roughness value of the b-PLGA NP (Ra= 
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2.718 ±0.79) for n=5 NPs prepared in one batch. This increase in roughness suggests that 

the surface of the b-PLGA NPs was successfully covered by the anti HER2 antibodies. 

The average roughness values of d-PLGA NPs were found to be similar to b-PLGA, 

indicating that the drug is encapsulated inside the PLGA NPs rather than on the surface.    

The average surface roughness values of NPs are represented in the Table 3. 

 

Figure 13: Box statistics roughness analysis of the b-PLGA nanoparticle. 

Table 3: The Mean NP Surface Roughness and Standard Deviation 

Type of NPs Mean of Ra (nm) 
Standard 
Deviation 

b-PLGA 2.718 0.79 
ab-PLGA 5.240 1.87 
d-PLGA 2.374 1.51 
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5.2 Qualitative analysis using AFM 

Qualitative visualization of NPs with the cell membrane was evaluated by 

performing amplitude imaging on the cell surface after treating the cells for specific time 

period. Phase imaging was performed in order to confirm that the surface height 

variations were due to the attachment of NPs. 

5.2.1 Phase imaging 

Phase imaging was performed on SKOV-3 cells before and after incubating the 

cells in NPs solution in order to clearly distinguish the NPs from the cell surface. Height 

image can only show a height variation on the sample surface but cannot distinguish 

chemical or physical property variations. The image on the left in Figure 14 clearly 

shows two different surfaces i.e. one is the glass substrate and the other is the cell 

surface. As the cell surface is more elastic, the phase image created appears darker (due 

to less positive phase change) compared to harder samples i.e. glass substrate which 

appears brighter (confirming more positive phase change). Figure 14 also shows that the 

cell surface is uniform without any discrepancies (in left image) unlike the image on right 

where the SKOV-3 cells incubated in b-PLGA NPs solution for six hours shows darker 

spots (shown by red arrow in the right image) on the cell surface which confirms that the 

NPs are attached to the cell membrane. A similar trend was also observed when SKOV-3 

cells were incubated in ab-PLGA and d-PLGA NPs solution. Note: Phase imaging was 

done in four trails along with amplitude imaging. 
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Figure 14: Phase image of untreated SKOV-3 cell surface on left and b-PLGA NPs treated (6 hours) 

SKOV-3 cell surface on right. Red arrow points the b-PLGA NPs on cell surface. 

5.2.2 Amplitude imaging 

Time lapsed (24 hours) AFM amplitude imaging is performed in order to monitor 

the dynamic cell membrane changes as a result of interaction of NPs.  AFM imaging in 

liquid allows one to scan the sample surface in native cell conditions and helps in 

visualizing the interaction phenomenon on the nanometer scale in three dimensions 

[91,4,92,93].  Figure 15 shows a uniform cell surface without NPs in amplitude images 

obtained on living SKOV-3 cells before incubating them in the NPs solution (t = 0). 

Figure 16 to Figure 23 show the SKOV-3 cell surface membrane with NPs after being  

incubated in NPs solution (d-PLGA, b-PLGA and ab-PLGA) for four specific incubation 

times (t=1, 3, 6 & 24 hours) obtained using liquid AFM (the procedure for obtaining 

amplitude images is explained in the Section 4.9.2.1 and the procedure for incubation of 

NPs with cells is explained in the Section 4.8). Figure 16 clearly demonstrates that the 

ab-PLGA NPs are attached to SKOV-3 cell membrane after three hours of incubation 
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time. This figure also shows that the number of particles that attach on the cell surface 

was higher as compared to the cells incubated in d-PLGA and b-PLGA for same time 

period (Figure 17 & Figure 18 respectively). It is to be noted that the d-PLGA treated cell 

surface showed wrinkles; this may be due to the toxic effect of DOX. These amplitude 

images obtained at three hour incubation times indicate the importance of receptor 

mediated targeted delivery of NPs. Amplitude images obtained at 6 hour incubation 

showed only a few ab-PLGA NPs on the cell surface (Figure 19) compared to the counter 

particles (Figure 20 & Figure 21).  This indicates that the ab-PLGA NPs were rapidly 

internalized and thus showed only few particles on the cell surface, whereas cells 

incubated with d-PLGA and b-PLGA NPs showed the accumulation of NPs on the 

surface of the cells without being internalized.  We also observed that SKOV-3 cells 

when incubated in the d-PLGA NP solution for 6 hours showed a contracted morphology 

(Figure 21) and no significant particles on the cell surface (Figure 22); which may be due 

to the effect of doxorubicin drug on the cell viability (82).  The amplitude images 

obtained at 24 hour incubation period showed one or two particles on the SKOV-3 cell 

surface after incubating in ab-PLGA NPs solution (Figure 23, right side image) and 

showed that large number of particles still remained on the cell surface after incubating in 

b-PLGA NPs solution (Figure 23 left side image). This indicates a complete 

internalization of ab-PLGA NPs and partial internalization of b-PLGA NPs. NOTE: 

SKOV-3 cells incubated in d-PLGA solution for 24 hours were not viable to perform 

AFM studies. This may be due to the toxic effects of drug (doxorubicin) leaching out 

from the NPs. 
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Figure 15: Amplitude image of SKOV-3 cell surface without NPs (incubation time zero). The size of the 

image on left is 20µm × 20µm and on right is 5µm × 5µm. The above images were taken in data scale 0.3V 

and color table 7. 

 

Figure 16: Amplitude image of SKOV-3 cell surface with ab-PLGA NPs (incubation time 3 hours). The size 

of the image on left is 20µm × 20µm and on right is 5µm × 5µm. The images were taken in data scale 0.3V 

and color table 7. 
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Figure 17: Amplitude image of SKOV-3 cell surface with d-PLGA NPs (incubation time 3 hours). The size 

of the image on left is 20µm × 20µm and on right is 7µm × 7µm. All the images were taken in data scale 

0.3V. Note: image on right shows that cell surface is wrinkled 

 

Figure 18: Amplitude image of SKOV-3 cell surface with b-PLGA NPs (incubation time 3 hours). The size 

of the image on left is 30µm × 30µm and on right is 5µm × 5µm. The above images were taken in data 

scale 0.3V and color table 2. 
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Figure 19: Amplitude image of SKOV-3 cell surface with ab-PLGA NPs (incubation time 6 hours). The size 

of the image on left is 20µm × 20µm and on right is 5µm × 5µm. The above images were taken in data 

scale 0.3V and color Table 2. 

 

Figure 20: Amplitude image of SKOV-3 cell surface with b-PLGA NPs (incubation time 6 hours). The size 

of the image on left is 20µm × 20µm and on right is 5µm × 5µm. The above images were taken in data 

scale 0.3V and color Table 2. 
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Figure 21: Amplitude image of SKOV-3 cell surface with d-PLGA NPs (incubation time 6 hours). The size 

of the image on left is 10µm × 10µm and on right is 5µm × 5µm. The above images were taken in data 

scale 0.3V and color table 2. Note: Cells incubated in d-PLGA NPs solution appeared small and 

contracted. 

 

Figure 22: Phase image of SKOV-3 cell surface with d-PLGA NPs (incubation time 6 hours). The size of 

the image on left is 7µm × 7µm. Note: cell membrane surface showing no particles on the surface. 
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Figure 23: Amplitude image of SKOV-3 cell surface with b-PLGA NPs solution on left and ab-PLGA NPs 

solution on right (incubation time 24 hours). The size of the image on left and right is 5µm × 5µm and 4µm 

× 4µm on right. The above images were taken in data scale 0.3V and color table 2. Note: SKOV-3 cells 

incubated in d-PLGA nanoparticle solution were not alive to perform AFM imaging. 

5.3 Quantitative analysis using AFM 

Quantitative analysis was performed on the cells treated with NPs for specific 

time periods in order to quantify the interaction of NPs with the cell surface. We used 

three reliable surface characterization methods to quantify the surface data. These 

methods include 1) roughness analysis, 2) power spectral density and 3) particle analysis. 

5.3.1 Roughness analysis 

 To study the cellular dynamics of the interaction of NPs with the cell membrane, 

AFM analysis was performed by incubating the SKOV-3 cells with the desired NP 

solution at a low concentration (400 µg/ml) in order to prohibit saturation of the surface 
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of the cell membrane (94).   The results from the roughness data showed that the average 

cell surface roughness (Ra) changes when cells are incubated in NPs solution, and it 

increases during the attachment of particles and decreases during internalization. The 

procedure for roughness measurements is clearly explained in Section 4.9.3.1. The Ra for 

cells incubated in a no NPs solution (i.e. t = 0) is found to be 9.22 nm ± 1.66 (Table 4). 

The cell surface showed a higher Ra (11.56 nm ± 3.26 at 1 hr and 19.61 nm ± 3.27 at 3 

hr) for the cells incubated with targeted NPs (ab-PLGA) solution compared to the Ra of 

cells incubated in non-targeted (b-PLGA) solution (10.06 nm ± 0.75 at 1 hr and Ra 12.75 

nm ± 2.04 at 3 hr) as shown in  

 

 

 
 

Table 5 and Table 6. Cells incubated for 6 hours showed a higher Ra when 

incubated in d-PLGA particle solution compared to b-PLGA particle solution (Table 7).  

Cells incubated in the d-PLGA particles solution showed a much higher Ra i.e. 

and 34.95 nm ± 5.48 (at 6 hours) as compared to other particle solutions (cells incubated 

in ab-PLGA and b-PLGA). Cells incubated in ab-PLGA particles solution for six or more 

hours showed a lower Ra due to faster internalization and the corresponding amplitude 

image showed few particles on the cell surface (Figure 23) compared to cells incubated in 

b-PLGA particles solution.   It should be noted that cells were not viable when incubated 

in the d-PLGA particle solution for a 24 hour incubation period. Fluorescence images of 
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SKOV-3 cells showed a higher uptake of the antibody conjugated PLGA particles 

through over expressed receptors on the cancer cell surface (82).  Histogram of roughness 

values and standard deviation of SKOV-3 cells incubated in NPs solution for different 

incubation periods is shown in Figure 26. The percentage change in Ra of individual 

SKOV-3 cells treated with NPs when compared to the untreated cells with P-value 

significance is shown in Table 9. 

 

Figure 24: SKOV-3 cell surface average roughness histogram when incubated with b-PLGA, ab-PLGA and 

doxorubicin loaded PLGA plotted against incubation time. Note: cells incubated in the b-PLGA NPs 

solution for 24 hours were not alive to perform A. 

Table 4: Surface Roughness Values for SKOV-3 Cells without NP Treatment 

(incubation t=0) 

Surface Roughness of SKOV-3 at t= 0 hours 
AVG SD trial 1 trial 2 trial 3 trial 4 

R1 R2 R1 R2 R1 R2 R1 R2 
7.79 9.98 10.79 12.01 8.69 8.85 6.78 8.9 9.22 1.66
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Table 5: Average Surface Roughness Values for SKOV-3 Cells with NPs Treatment 

(incubation t=1 hours) 

Type of NPs 
Surface Roughness of SKOV-3 at t= 1 hours 

AVG SD trial 1 trial 2 trial 3 trial 4 
R1 R2 R1 R2 R1 R2 R1 R2 

ab-PLGA 16.4 9.10 12.33 13.59 8.43 15.2 8.27 9.11 11.56 3.26 
b-PLGA 10.1 10.24 9.67 11.41 10.77 9.36 9.72 9.16 10.06 0.75 
d-PLGA 7.64 8.65 9.60 7.28 10.13 9.51 13.8 9.04 9.45 4.53 

 

Table 6: Average Surface Roughness Values for SKOV-3 Cells with NPs Treatment 

(incubation t=3 hours) 

Type  
of NPs 

Surface Roughness of SKOV-3 at t= 3 hours 
AVG SD trial 1 trial 2 trial 3 trial 4 

R1 R2 R1 R2 R1 R2 R1 R2 
ab-PLGA 21.62 17.11 20.45 24.98 22.27 14.95 18.19 17.33 19.61 3.29 

b-PLGA 16.11 14.56 10.94 9.81 11.77 13.68 11.93 13.25 12.75 2.04
d-PLGA 19.29 11.88 24.68 11.85 23.71 17.56 19.54 24.50 19.12 5.19

 
Table 7: Average Surface Roughness Values for SKOV-3 Cells with NPs Treatment 

(incubation t=6 hours) 

Type of NPs 
Surface Roughness of SKOV-3 at t= 6 hours 

AVG SD trial 1 trial 2 trial 3 trial 4 
R1 R2 R1 R2 R1 R2 R1 R2 

ab-PLGA 14.90 17.56 12.23 19.59 13.58 14.73 18.63 20.87 16.52 3.08

b-PLGA 22.47 26.99 26.37 29.09 26.91 22.15 28.78 31.65 26.80 3.23
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d-PLGA 31.56 40.89 31.21 29.45 28.44 37.62 42.90 37.58 34.95 5.48

 

Table 8: Average Surface Roughness Values for SKOV-3 Cells with NPs Treatment 

(incubation t=24 hours)  

Type of NPs Surface Roughness of SKOV-3 at t= 24 hours 
AVG SD trial 1 trial 2 trial 3 trial 4 

R1 R2 R1 R2 R1 R2 R1 R2 
ab-PLGA 8.95 9.18 10.09 9.21 12.21 13.52 11.39 11.36 10.74 1.65
b-PLGA 16.62 18.5 14.23 21.48 27.34 17.54 16.35 18.99 18.88 4.02
 

NOTE: Roughness analysis was performed in four trials choosing one cell at two 

different regions (R1 and R2) under similar experimental condition (AVG= average and 

SD= standard deviation). SKOV-3 cells treated with d-PLGA particles solution were not 

viable to perform roughness analysis. 

 
Table 9: Percentage Change in Roughness Values of SKOV-3 Cells Before and After 

Incubating in NPs Solution and Their Corresponding P-value Significance 

(compared with untreated cells) is calculated From Student’s t-test. 

Type of 
NPs 

 

t=1 hour t=3 hour t=6 hour t=24 hour 

Ra 
change 

(%) 

P-
value 

Ra 
change 

(%) 

P-
value 

Ra 
change 

(%) 
P-value 

Ra 
change 

(%) 

P-
value 

ab-PLGA 25.37 0.091 112.68 <0.001 79.26 0.001 16.48 0.165 

b-PLGA 9.11 0.151 38.28 0.018 158.13 <0.001 99.06 <0.001

d-PLGA 2.49 0.848 107.37 0.002 279.06 <0.001 NA NA 
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5.3.2 Time based 2D power spectral density 

Besides the roughness measurements, two dimensional power spectral density 

(2D-PSD) calculations were performed on a part of SKOV-3 cells (7 µm ×7 µm) treated 

with b-PLGA, ab-PLGA, and d-PLGA NPs.  The total power is calculated from 

individual amplitude image and tabulated in (Table 10). The results indicate that the 

SKOV-3 cells treated with b-PLGA NPs showed approximately four fold and fifteen fold 

increase in total power i.e. from 1.06e-004 (t = 0 hour) (Figure 26) to 16.13e-004 (t = 6 

hours) respectively. This indicates that b-PLGA NPs are accumulated on the surface of 

the cell before being significantly internalized. The total power at 24 hour incubation is 

approximately six times (68.5e-004) indicating inefficient internalization of b-PLGA NPs 

through the SKOV-3 cell membrane.   

Total power of SKOV-3 cells treated with ab-PLGA NPs was approximately 

eightfold in three hours incubation indicating that more number of ab-PLGA NPs 

attached to the cell surface than the b-PLGA NPs.  Incubating cells further (for 6 hours, 

in ab-PLGA NPs solution) showed only a 19 % increase in total power which may be 

either due to the insignificant attachment of NPs or due to the efficient internalization of 

NPs. Total power of SKOV-3 cells incubated in the d-PLGA NPs solution for 3 hours 

and 6 hours showed 28.54e-0004 nm2and 2430e-0004 nm2 (Figure 27) respectively which 

is very high; this indicates that the surface of the cells is completely changed.  Note that 

SKOV-3 cells incubated in the d-PLGA NPs solution for 24 hours were not alive to 

conduct AFM analysis.  Power spectral density trend with respect to the incubation time 

is shown in the Figure 25. 
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Figure 25:  Change in power spectral density of SKOV-3 cells without (t = 0) and with NPs with respect to 
time. 

 
Table 10: Total Power of SKOV-3 Cell Surface at Various Incubation Time Periods  

Incubation 
Time (t) 

Total Power 
b-PLGA ab-PLGA d-PLGA 

0 0.000106 nm2 0.000106 nm2 0.000106 nm2 
1 0.000148 nm2 0.000189 nm2 0.000111 nm2 
3 0.000487 nm2 0.00827 nm2 0.002854 nm2 
6 0.001613 nm2 0.00989 nm2 0.243 nm2 
24 0.000685 nm2 0.000163 nm2 N/A 

 

Figure 26: 2D PSD on entire scanned area of SKOV-3 cell without any NPs (incubation t=0). Note: PSD is 

plotted on X- axis (scale 10 -3 to 102) Vs wavelength on Y-axis (scale 10 to 10-2). 

0 1 3 6 24



57 
 

 

Figure 27: 2D PSD on entire scanned area of SKOV-3 cell incubated in d-PLGA NPs solution (incubation 

t=6 hours).  Note: PSD is plotted on X- axis (scale 10 4 to 108) Vs wavelength on Y-axis (scale 102 to 10-1). 

 

5.3.3 Particle analysis 

Particle analysis was performed on the height images obtained on five SKOV-3 cells 

incubated in NPs solution at four different incubation periods (t = 1, t = 3, t = 6 and t = 24 

hours) to determine the dynamic change in the particle height throughout the 

internalization process. Amplitude images obtained on cells incubated for 1 hour in NPs 

solutions showed that only ab-PLGA NPs attach to the surface (cells incubated in b-

PLGA and d-PLGA particles solution did not show any particles on the surface), thus 

particle analysis was performed only on cells showing ab-PLGA NPs. From the analysis 

we determined that the size of ab-PLGA NPs on the cell surface is 154.4 nm ± 21.01 

(Table 11). Our results indicate that the average size of b-PLGA, ab-PLGA and d-PLGA 

NPs on the SKOV-3 cell surface after 3 hours of incubation was determined as 138.24 

nm ± 7.39, 112.46 nm ± 30.88, and 133.22 nm ± 20.59 (Table 12). After incubating 
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further, (6 hours) the height of the ab-PLGA NPs on the surface of the cell was reduced 

to 57.44 nm ± 13.03 whereas that of b-PLGA and d-PLGA did not change significantly 

for more than six hours (Table 13).Particle analysis performed on NPs on the surface of 

SKOV-3 cells after 24 hour incubation showed the size of the NPs as 71.39 nm ± 35.34 

whereas SKOV-3 cells incubated for 24 hours in ab-PLGA NPs solution showed no 

particles on the surface of the cell (Table 10). Hence, particle analysis was not performed.  

A similar trend was also observed in time based average surface roughness. Figure 28 & 

Figure 29 show a typical particle analysis performed on SKOV-3 cells surface incubated 

in d-PLGA NPs solution for 3 hours and b-PLGA NPs for 24 hours, respectively.  The 

particle height variation throughout the internalization process is shown in Figure 30.  

Note: Particle analysis was also not performed on SKOV-3 cells incubated in d-PLGA 

NPs solution for 24 hours as cells were not viable.   

 

Figure 28: Particle analysis performed on SKOV-3 cells incubated in d-PLGA nanoparticle solution for 3 

hour. Size of the image is 1µm × 1 µm. Note: the particle analysis region was selected based on the 

corresponding phase contrast image. 



59 
 

 

Figure 29: Particle analysis performed on SKOV-3 cells incubated in b-PLGA nanoparticle solution for 24 

hour. Note that the particle height of d-PLGA nanoparticle on the cell surface is around 40.37nm. 

Table 11: NPs height Obtained Using Particle Analysis Performed on SKOV-3 Cells 

after 1 Hour Incubation Time (Note: particle analysis) 

Type of particles 
NPs height in nm after 1 hour incubation 

Average SD 
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

ab-PLGA 177.3 135.8 160.7 169.7 169.3 154.46 21.01
 

Table 12: NPs height Obtained Using Particle Analysis Performed on SKOV-3 Cells 

after 3 Hour Incubation Time 

Type of particles 
NPs height in nm after 3 hour incubation 

Average SD 
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 

ab-PLGA 127.3 132.8 90.7 69.3 139.2 112.46 30.88
b-PLGA 139.2 141.7 129.3 132.9 148.1 138.24 7.39
d-PLGA 106.2 142.6 161.4 124.2 131.7 133.22 20.59
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Table 13: NPs height Obtained Using Particle Analysis Performed on SKOV-3 Cells 

after 6 Hour Incubation Time 

Type of particles 
NPs height in nm after 6 hour incubation 

Average SD 
cell 1 cell 2 cell 3 cell 4 cell 5 

ab-PLGA 59.9 45.5 68.2 71.2 42.4 57.44 13.03
b-PLGA 152.1 122.7 169.3 129.2 138.3 142.32 18.68
d-PLGA 132.5 145.1 95.4 133.7 117.2 124.78 19.18

 

Table 14: NPs height Obtained Using Particle Analysis Performed on SKOV-3 Cells 

after 24 Hour Incubation Time 

Type of particles  

NPs height in nm after 24 hour incubation Average 
 

SD 
 cell 1 cell 2 cell 3 cell 4 cell 5 

b-PLGA 40.37 97.1 81.3 28.7 109.5 71.39 35.34 
 

NOTE: Table 11 to Table 14 represent data that was obtained by performing analysis on 

five different cells under similar experimental conditions.  It is also noted that the 

particles analysis was not performed on SKOV-3 cells treated with ab-PLGA NPs 

solution for 24 hours because cells surface did not show any significant particles and 

particle analysis was also not performed on cells treated with d-PLGA NPs solution for 

24 hours as they were not viable. 
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Figure 30: NPs height variation on the SKOV-3 cells with respect to incubation time. 
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6.  DISCUSSION 

As NPs are widely used as drug delivery vehicles, it is essential to understand 

their interactions, distribution and internalization through the cell surface membrane. 

Several imaging techniques have been developed to understand these phenomena; 

however, these imaging techniques are limited by one or more disadvantages. It is 

impossible to study the interaction of NPs with cellular components by light microscopy 

because its resolution is limited by the wave length of light (400 nm). 

Immunofluorescence microscopy has been used to study the gene delivery process in rat 

cochlear cells via liposome NPs [95]. However, cells have to be fixed before staining, 

making it difficult to study the real time gene delivery process. Further these NPs have to 

have fluorescent properties or have to be tagged with special fluorescent dye. SEM is 

extensively used in providing insight to the NPs-membrane interactions in fixed cells 

[96]. However, it cannot be used as a model system for addressing the effect of (patho-) 

physiological conditions of the cell.  

A method which helps in directly quantifying and characterizing this interaction 

phenomenon in cells native physiological conditions will provide a thorough 

understanding of cellular uptake.  In this research, we presented two ways to characterize 

the interaction of NPs with cancer cells using AFM.  Firstly, qualitative imaging was 

performed in order to track the dynamic changes on the cell membrane as a result of 

attachment of NPs. AFM lets one to qualitatively visualize the surface dependent 

molecular event in 3D on a nanometer spatial resolution in aqueous environmental 

conditions [97]. AFM has been extensively used in imaging cells in both fixed and living 
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states [98,99 ]. Imaging fixed cells in air is comparatively easier than imaging living cells 

in liquid. However, fixed cells cannot be used to study dynamic cell topographical 

changes as fixation introduces image artifacts (membrane cross linkage). Thus, to 

monitor the real time dynamic cell surface changes when treated with NPs, qualitative 

analysis was performed by monitoring 1) Height: represents the topographical data of the 

cell surface; 2) Phase:  provides detailed information about the surface structure and its 

properties beyond the simple topography and 3) Amplitude images: is a derivative of 

height image, used for better visualization of surface.  All the image data is obtained by 

performing AFM in McCoy’s 5A media in order to maintain cell’s natural environmental 

conditions.  Secondly, in order to quantify the cell surface information we used three 

standard image analysis techniques: 1) Average cell surface roughness change; 2) Power 

spectral density for better understanding of surface roughness and 3) Particle analysis to 

monitor the dynamic height change of NPs throughout the internalization process.  

6.1 Qualitative analysis using AFM 

6.1.1 Phase imaging 

Phase image provides the surface information beyond the simple topographical 

features to detect the variation in friction, elasticity, composition, adhesion and other 

properties by monitoring the phase-lag of the cantilever with respect to the piezo drive 

(refer section 4.9.2.2 for more detailed explanation). Monitoring the amplitude image 

alone cannot confirm the presence of foreign bodies (NPs) on the cell surface. Thus, it is 

important to perform phase imaging over a desired region in order to differentiate foreign 
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bodies from the cell surface. The relation between the surface stiffness and the phase 

angle change in tapping mode AFM image is: brighter regions correspond to larger phase 

shifts and can be attributed to the region with higher Young’s Modulus (stiffer surface). 

Similarly, the darker region represents lower Young’s Modulus (softer surface). The 

results obtained using phase imaging on SKOV-3 cells incubated with no NPs show that 

the cell surface is homogeneous with no phase lag suggesting that the surface is not 

carrying NPs and the height variation on the surface is solely due to the membrane itself. 

However, phase images obtained on the SKOV-3 cells incubated in NPs solution showed 

dark spots on the surface of cells which confirms less positive phase corresponding to the 

soft or more elastic surface (i.e. PLGA NPs). This trend was observed on all SKOV-3 

cells treated with all three types of PLGA NPs (ab-PLGA, b-PLGA and d-PLGA). 

Similar results were observed while characterizing thiolated gold NPs on solid surface 

using the phase imaging [100]. 

6.1.2 Amplitude imaging 

Time based in vivo AFM imaging of SKOV-3 cells incubated in NPs solution 

suggests that the cellular uptake of NPs is a time dependent process and this time varies 

with the type of nanoparticle interacting with the cell. Amplitude images of SKOV-3 

obtained at 3 hour incubation periods suggest that functionalized NPs (ab-PLGA) attach 

more compared to the other two types (b-PLGA & d-PLGA). The reason for an increase 

in attachment is attributed to the surface charge properties of the cell. As functionalized 

NPs are less negatively charged (-1.2 ± 2.8 mV) when compared to the b-PLGA (-14.7 ± 

2.5 mV) and d-PLGA (-13.2 ± 2.3 mV) they tend to attach to the complimentary 
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receptors present on the surface of the tumor cell. This incorporation of moiety makes the 

ab-PLGA NPs positive which further enhances the interaction of NPs with the cancer 

cells (electrostatic interaction) (58). Amplitude images of SKOV-3 cells when incubated 

in NPs solution for 6 hours showed an accumulation of b-PLGA NPs on the surface of 

the cells before being significantly internalized whereas ab-PLGA NPs showed relatively 

less number of particles attached to the surface when compared to b-PLGA NPs. This 

may be due to the rapid internalization of ab-PLGA NPs. 

The amplitude images of SKOV-3 cells incubated in d-PLGA NPs solution for 6 hours 

showed that the cells were contracted and appeared smaller compared to the healthy cells, 

probably due to the effect of drug leaching from the PLGA NPs. The amplitude images 

obtained at 24 hour incubation indicate that SKOV-3 cells incubated in ab-PLGA NPs 

showed no particles on the cell surface explaining complete internalization of ab-PLGA 

NPs in 24 hours. In contrast, the cells incubated in b-PLGA NPs solution showed large 

number of particles remained on the surface of the cells without being internalized. 

Unsuccessful internalization of b-PLGA NPs through cell surface membrane is associated 

with the huge size of the NPs (> 120 nm). As b-PLGA NPs are too large to internalize 

passively through the cell membrane, most of the particles remained on the cell surface 

even after 24 hour incubation. 

6.2 Quantitative Analysis using AFM 

Quantitative information of cell surface was obtained to confirm the interaction of 

NPs with the cellular membrane other than qualitative visual representation by analyzing 
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three of the most suitable measuring methods for AFM image analysis: 1) average 

roughness (Ra); 2) power spectral density (PSD) and 3) particle analysis, performed 

before and after treating the cells with NPs.  

6.2.1 Average roughness (Ra) 

As the interaction of NPs with the cell surface is a surface phenomenon, the 

average cell surface roughness is affected by this interaction. Monitoring the change in 

surface roughness of a cell for a period of time (24 hours), one can correlate the process 

of attachment and internalization of NPs. Keeping this in mind, we performed roughness 

analysis on SKOV-3 cells before and after incubating in NPs solution for various 

incubation times (0, 1, 3, 6, 24 hours). Results from the roughness analysis performed on 

SKOV-3 cells without any NPs treatment (i.e. t = 0 hour) showed an average roughness 

of 9 .22 nm ±1.66. Average cell surface roughness when SKOV-3 cells were incubated in 

NPs solution for 1 hour did not show any significant change when the cells were treated 

with d-PLGA and b-PLGA NPs. That is 9.11% increase in Ra for cells treated with b-

PLGA NPs solution (P=0.15; student’s t-test), 2.49% increase for b-PLGA NPs (P= 

0.84). This suggests that the 1 hour incubation time for non-functionalized NPs may not 

be sufficient for firm attachment; as a result, particles might be washed away while the 

cells were subjected to DPBS treatment (washed thrice) before performing roughness 

analysis.  The cells treated with ab-PLGA NPs showed a 25.37% (P=0.091) increase in 

Ra, suggesting the ab-PLGA NPs tend to attach faster to the cell surface than other types 

of particles. Please refer to Table 9 for detailed information on time based percentage 

change in cell surface roughness. 
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SKOV-3 cells treated with NPs solution for 3 hours showed a significant 

roughness change for all three types of NPs. That is increase in average roughness (from t 

= 0) for b-PLGA NPs is 38.28% (P = 0.018), increase for d-PLGA NPs is 107.37% 

(P=0.002) and the increase for ab-PLGA NPs is 112.68% (P < 0.001). Note: These results 

indicate that the ab-PLGA NPs incubated for 3 hours attach more in number than the b-

PLGA NPs for the same reason as explained previously in Section 6.1.2 and the cells 

incubated in d-PLGA NPs solution showed a maximum roughness change; that may be 

due to the wrinkled surface (effect of doxorubicin drug on cell morphology) shown in 

Figure 17 rather than due to NPs attachment. This roughness data indicates that the cells 

incubated in targeted particle solution showed higher roughness in the first three hours of 

incubation compared to the non-targeted NPs solution, indicating that the ab-PLGA 

particles bind to SKOV-3 cells through over expressed HER-2 receptors on the cell 

surface.  This idea is conceptualized in the schematic shown in Figure 31.   

Roughness analysis performed on SKOV-3 cells for 6 hour NPs incubation 

showed a very high increase (from t = 0 to 6 hours) in roughness, i.e. 158% for cells 

treated with b-PLGA NPs solution due to the accumulation of NPs on the cell surface 

membrane as a result of poor internalization (shown in amplitude image Figure 20). 

However, cells incubated in ab-PLGA NPs showed a decrease from 112.68% at 3 hours 

to 79.26% (P = 0.001) at 6 hours. The small decrease in cell roughness may be due to the 

combined effect of internalization of attached particles. The average surface roughness of 

SKOV-3 cells incubated in d-PLGA NPs solution was higher than any other counter 

particles, due to the change in cell morphology and not due to the NP attachment to the 

cell surface. This can be explained by the visualizing phase images of SKOV-3 cell 
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incubated in NPs solution for 6 hours. Figure 22 shows no particles attached on the 

surface which suggests that the increase in Ra is due to morphological change of cell. 

The average roughness analysis performed on SKOV-3 cells incubated in NPs 

solution for 24 hours, showed 10.74 nm ± 1.65 (Ra) for cells treated with ab-PLGA NPs  

which is only 16.48% (P = 0.165) more than the untreated cells (t = 0). The higher P-

value (> 0.01) suggests that the increase is insignificant; thus indicating a complete 

internalization of ab-PLGA NPs. The cells incubated in b-PLGA NPs solution showed Ra 

of 18.88 nm ± 4.02 which is 99.06% (P < 0.001) increase from the untreated cell (t = 0), 

indicating that the cell surface roughness is not similar to the untreated cells and b-PLGA 

NPs still remained on the cell surface without being internalized. Note: Roughness 

analysis was not performed on the SKOV-3 cells incubated in d-PLGA NPs because cells 

were not viable to perform the analysis, probably due to the leaching of doxorubicin drug 

from the NPs which is toxic to the cells.  

The roughness data shown in  

 
 
 
 

Table 5 to Table 8 also suggest that the distribution of NPs on the cell surface is 

uniform for all three types of NPs. This can be confirmed by low standard deviation 

values from region 1 to region 2.   
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Figure 31: (a) b-PLGA NPs binding to the cell surface membrane randomly and (b) ab-PLGA particles 

attached to the receptors present on the cell surface membrane. 

6.2.2 Power spectral density 

The surface texture of the sample is characterized by the heights and depths of its 

peaks and valleys respectively. Besides, peaks and valleys it is also determined by the 

distances that separates the peaks and valleys. Power spectral density is primarily 

concerned with those distances.  This can be further simplified to our situation (that is 

presence of NPs on the surface of the cell). Average roughness deals with the height 

variations of the particles rather than the horizontal variation (which corresponds to 

density of the particles) whereas; 2D-power spectral density deals with both the vertical 

and horizontal variations.  

Following the roughness analysis, we also performed power spectral density 

analysis to characterize the surface to account for both horizontal and vertical variations. 

Our results showed an exponential increase in total power of SKOV-3 cells surface after 

incubating in NPs solution for 1 to 6 hours corresponding to the attachment and for 6 to 



70 
 

24 hours showed an exponential decrease corresponding to internalization of NPs. This 

exponential increase and decrease was much higher for ab-PLGA NPs representing 

significance of receptor mediated endocytosis whereas wells treated with b-PLGA 

showed a very slow increase in PSD. This may be due to the very slow attachment of 

particles to the surface because b-PLGA NPs are more electronegative which thereby 

affects their interaction with the cells. Cells treated with d-PLGA NPs for 24 hours 

showed a very high total power (0.843 nm2) which indicates that the cell surface 

roughness were significantly changed. This may be more due to the toxic effect of drug 

on the cell rather than the particles’ attachment to the surface. 

6.2.3 Particle analysis 

Performing particle analysis on the cell surface at various incubation periods can 

give better understanding of dynamic change of the NPs height as a result of particle 

internalization.  Our data from particle analysis shows that the internalization of ab-

PLGA NPs begins as early as three hours which is indicated by the drop in particle height 

from 154.4 nm ± 21.01 (at 1 hour) to 112.46 nm ± 30.88 (at 3 hours). The height of b-

PLGA and d-PLGA NPs did not decrease significantly for at least six hours. Particle 

analysis performed at 24 hour incubation showed that the height of b-PLGA NPs on the 

cell surface was 71.39 nm ± 35.34 which indicates a partial internalization of remaining 

particles on the cell surface.  
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However, SKOV-3 cells did not show significant amount of NPs on the cells 

surface and hence we did not perform particle analysis. We also did not perform particle 

analysis for cells incubated in d-PLGA NPs solution for 24 hours as cells were not viable. 
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7.  CONCLUSION AND FUTURE WORK 

The AFM technology was aimed at studying the NPs-membrane interactions on 

living tumor cells in order to account for internalization of targeted (functionalized), non-

targeted (non-functionalized), and drug loaded NPs, both qualitatively and quantitatively. 

The following conclusions were reached: 

• The attachment of NPs to the cell membrane causes a change in the average 

roughness of the cells. Therefore by monitoring the cells average roughness, one 

can monitor the NPs interaction and internalization phenomena.  

• The amount of NPs that attach to the cell membrane depends on time as well as 

particle surface chemistry dependent process. The amount of NPs attaching to the 

cell membrane increases with increase in time. Surface functionalized 

(functionalized to target specific receptor of the cell surface) NPs attach more to 

the cell surface than the non-functionalized NPs. 

• Surface functionalized NPs attach faster to the cell membrane than the non-

functionalized NPs. That is, cells incubated in ab-PLGA NPs solution for 1 hour 

showed 25.37% (P=0.091) increase in Ra, whereas, cells incubated in b-PLGA 

and d-PLGA NPs solution showed only 9.11% (P=0.15) and 2.49% increase. This 

suggests ab-PLGA NPs attach faster than their counterparts. 

• Surface functionalized NPs (ab-PLGA) tend to internalize more rapidly than the 

non-functional NPs (b-PLGA). Amplitude images of SKOV-3 cells incubated in 

ab-PLGA NPs solution for 24 hours showed either no particles or only a few 

particles on the cell surface; The corresponding roughness analysis values of cell 
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surface were very close to untreated cell surface (Ra for untreated cells is 9.22nm 

± 1.66; Ra for ab-treated cells is 10.74nm ± 1.65). 

• It is difficult to monitor the process of internalization by monitoring the cell 

surface roughness change due to interaction of NPs if the particles exhibit the 

toxic effects. Amplitude images obtained on SKOV-3 cells incubated in drug 

encapsulated PLGA NPs (d-PLGA) solution show wrinkled cell surface and the 

corresponding cell roughness was found to be very high, in such cases it is 

difficult to interpret the internalization process by monitoring the roughness 

change at various incubation periods.  

The conclusions presented in this work will be useful in monitoring the dynamic 

changes in the cell surface membrane when the cells are subjected to various kinds of 

NPs using atomic force microscopy. The qualitative and quantitative results obtained will 

be very useful in understanding the efficiency and biophysical interactions of the NPs 

with the cell surface membrane and therefore be critical for developing effective drug 

delivery vehicles. 

As NPs play a crucial role in delivering drugs to the cancer cells, it is important to 

understand their interactions and internalization process in order to efficiently target to 

the specific sites of the cells. Understanding their efficiency and biophysical interactions 

with cell surface membranes will be critical in developing such effective drug carriers. In 

our future work we would like to test various physical properties of NPs such as size, 

charge, shape, etc in order to develop an ideal drug carrying vehicle based on the 

qualitative and quantitative AFM analysis.   
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