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by 
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Optical imaging is an emerging technology towards non-invasive breast cancer diagnostics.  

In recent years, portable and patient comfortable hand-held optical imagers are developed 

towards two-dimensional (2D) tumor detections.  However, these imagers are not capable of 

three-dimensional (3D) tomography because they cannot register the positional information 

of the hand-held probe onto the imaged tissue.  A hand-held optical imager has been 

developed in our Optical Imaging Laboratory with 3D tomography capabilities, as 

demonstrated from tissue phantom studies.  The overall goal of my dissertation is towards 

the translation of our imager to the clinical setting for 3D tomographic imaging in human 

breast tissues.  A systematic experimental approach was designed and executed as follows: (i) 

fast 2D imaging, (ii) coregistered imaging, and (iii) 3D tomographic imaging studies.  (i) Fast 

2D imaging was initially demonstrated in tissue phantoms (1% Liposyn solution) and in vitro 

(minced chicken breast and 1% Liposyn).  A 0.45 cm3 fluorescent target at 1:0 contrast ratio 

was detectable up to 2.5 cm deep.  Fast 2D imaging experiments performed in vivo with 

healthy female subjects also detected a 0.45 cm3 fluorescent target superficially placed ~2.5 
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cm under the breast tissue.  (ii) Coregistered imaging was automated and validated in 

phantoms with ~0.19 cm error in the probe’s positional information. Coregistration also 

improved the target depth detection to 3.5 cm, from multi-location imaging approach.  

Coregistered imaging was further validated in-vivo, although the error in probe’s positional 

information increased to ~0.9 cm (subject to soft tissue deformation and movement). (iii) 

Three-dimensional tomography studies were successfully demonstrated in vitro using 0.45 

cm3 fluorescence targets.  The feasibility of 3D tomography was demonstrated for the first 

time in breast tissues using the hand-held optical imager, wherein a 0.45 cm3 fluorescent 

target (superficially placed) was recovered along with artifacts.  Diffuse optical imaging 

studies were performed in two breast cancer patients with invasive ductal carcinoma.  The 

images showed greater absorption at the tumor cites (as observed from x-ray mammography, 

ultrasound, and/or MRI). In summary, my dissertation demonstrated the potential of a 

hand-held optical imager towards 2D breast tumor detection and 3D breast tomography, 

holding a promise for extensive clinical translational efforts. 
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CHAPTER 1                                                                                 

Introduction 

 
 Clinical imaging of breast tissue holds an essential role in cancer detection, staging1, 

treatment monitoring, and surgical guidance.  Early diagnosis of breast cancer by medical 

imaging technology is integral for reducing the mortality2 and morbidity3 of the disease.  

Breast cancer is the second leading cause of death in women in the U.S. and one out of every 

eight women are diagnosed with the disease each year.[1]  Figure 1.1 shows the mortality rate 

by year per 100,000 women with breast cancer from different regions of the world.  The 

figure shows that the mortality rate due to breast cancer has declined since the early 1990s 

(shaded yellow region), and this is largely due to early diagnosis with improved imaging 

technology. 

 Current screening and diagnostic modalities used in the clinical setting include x-ray 

mammography, breast ultrasound, nuclear imaging, and magnetic resonance imaging (MRI).  

Combinations of these modalities are used complementarily to noninvasively detect the 

presence of lesions and determine if they are benign or malignant.  However, these methods 

are neither comprehensive nor infallible leading to unnecessary biopsies and undetected 

cancers.  X-ray mammography has good resolution, however it requires painful compression 

of the breast tissue, it uses harmful ionizing radiation, and the sensitivity decreases in women 

with denser breast tissue.  Breast ultrasound is nonionizing, portable, and inexpensive, but it 

has poor imaging quality and contrast.  MRI is nonionizing, has good resolution and good 

                                                
1 Determination of the degree to which a cancer has spread 

2 The rate of death due to a disease 

3 The rate of incidence of a disease 
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sensitivity in dense breast tissue, however it requires expensive, bulky instrumentation and 

strong magnetic fields.  Nuclear imaging methods, including positron emission 

mammography (PEM) and breast specific gamma imaging (BSGI) provide functional 

information and can detect small tumors, but they require harmful nuclear radiation.   

 
Figure 1.1  Mortality rate by year per 100,000 women with breast cancer. (Adapted from American 
Cancer Society, Breast Cancer Facts and Figures, 2009)  

Currently, x-ray mammography is the gold standard for breast cancer detection.  

There are two types of x-ray mammograms: (i) screening mammograms are performed annually 

in women over age 40 or 50 in order to detect the presence of any suspicious mass; (ii) 

diagnostic mammograms are performed once a mass is detected during the screening process in 

order to try to gain more information of the size and location, and determine if the lesion is 

benign or malignant.  Diagnostic mammograms are typically followed by breast ultrasound 

and then MRI and/or nuclear imaging methods.  These clinical imaging methods are used to

noninvasively determine if a suspicious mass is benign or malignant prior to invasive surgical 
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biopsy.  However, 80% of biopsies performed turn out to be negative, resulting in 

unnecessary physical and psychological trauma for the patient.[2]  Hence, there is a clear 

need for improved breast imaging technology to obviate the number of unnecessary invasive 

biopsies.   

 Diffuse optical imaging using near-infrared (NIR) light is a promising technology 

which has been developed over the past three decades towards applications such as 

functional brain mapping and breast cancer diagnosis.  The method is noninvasive, uses 

nonionizing radiation, requires relatively inexpensive instrumentation, and provides 

functional information from in vivo biological tissues.  Diffuse optical imaging measures the 

endogenous optical property difference between normal and diseased tissue (e.g. cancer).  

External fluorescent contrast agents can be used towards imaging tumors at the molecular 

stage (fluorescence-enhanced diffuse optical imaging).  Diffuse optical imaging has a 

potential role in the clinical setting as a complementary diagnostic tool for breast cancer.  X-

ray mammography has a 10% false negative rate [2] (and increases in women with denser 

breast tissue) which means many cancers go undetected, especially in younger women with 

denser breasts.  Hence, additional imaging tools are required for improved diagnosis.  

 Several research groups are developing diffuse optical imaging as a complementary 

imaging modality towards breast cancer diagnosis.  Most of the optical imaging systems 

require bulky instrumentation and/or compression of the breast tissue.  To overcome these 

limitations, hand-held based optical imaging devices are developed, which are portable and 

patient-comfortable, towards clinical translation of the technology.  However, the hand-held 

devices developed to date have not demonstrated three dimensional (3D) tomography.4    

                                                
4 A method of producing a three-dimensional image of the internal structures of an object by the observation and recording 
of the differences in the effects on the passage of waves of energy impinging on those structures 
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 Currently, a hand-held based optical imaging device has been developed in our 

Optical Imaging Laboratory, which is capable of 3D tomography, and has been tested in 

homogeneous5 tissue phantoms6 [3].  The challenge now is to translate the device to the 

clinical setting in order to perform 3D tomography on human breast tissue.  The overall 

objective of the dissertation is the clinical translation of our hand-held optical imager toward 

bedside imaging and 3D tomography of breast cancer.  The results will demonstrate for the 

first time the feasibility of performing 3D tomography in complex human tissues using a 

hand-held optical imager.  

 In order to facilitate clinical translation of the hand-held optical imager, a systematic 

series of experimental studies was designed and executed to demonstrate and evaluate the 

implementation of (i) two-dimensional (2D) imaging in near-real time (i.e. fast imaging), (ii) 

coregistered imaging7, and (iii) 3D tomography in a clinical setting.  To this end, experiments 

were performed initially in homogeneous tissue phantoms to begin with a simplistic case.  

Subsequent experiments were then performed in vitro8 to better mimic the heterogeneous9 

nature of biological tissues.  The bench-top10 imaging set-up was modified into a pseudo-

bedside imaging set-up, and experiments were performed in vivo11 with healthy human 

subjects to determine the performance on actual breast tissues.  Finally, preliminary studies 

                                                
5 Uniform distribution of scattering properties 

6 A physical model designed to mimic the body or part of the body 

7 The process of accurately positioning the acquired data at the probe location relative to the breast tissue geometry, which 
is necessary to perform 3D tomography (details of our coregistered imaging approach are given in subsequent chapters) 

8 Located outside the organism in a laboratory environment 

9 Non-uniform distribution of scattering properties 

10 Suitable in size or configuration for use on a laboratory workbench 

11 Located within the whole, living organism 
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were performed with cancer patients to test the ability of the device to image breast cancer in 

vivo.  The experimental design is summarized in Figure 1.2. 

 

Figure 1.2 Diagram summarizing the systematic experimental study design.  

The dissertation is organized as follows:  Chapter 2 provides background on near-

infrared optical imaging; Chapter 3 gives a review of the hand-held optical imaging devices 

developed by different research groups; Chapters 4 and 5 summarize the recent work 

performed in fluorescence tomography (in phantoms and small animals) and clinical breast 

imaging studies (in human subjects), respectively; Chapter 6 provides the details of the 

instrumentation of the hand-held optical imager and describes the procedures for data 

acquisition, processing, and analysis; Chapter 7 describes the reconstruction method used to 

perform 3D tomography; Chapters 8-14 detail the experimental studies described above and 

summarized in Figure 1.2; Chapter 15 gives an overall discussion of the significant results of 

the studies and Chapter 16 describes ongoing and future work.  A flow diagram of the 

dissertation structure is given in Figure 1.3.   
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 The various studies are performed using both diffuse optical (i.e. using endogenous12 

tissue contrast) and fluorescence-enhanced optical imaging (i.e. using an exogenous13 

contrast agent) towards clinical translation of the hand-held optical imager.  The work 

presented herein will demonstrate the potential role of the hand-held optical imager as a safe 

and patient-comfortable method to provide complementary physiological14, diagnostic and 

prognostic15 information about human breast tissues.    

                                                
12 Originating from inside an organism 

13 Originating from outside an organism 

14 Relating to the biological function of tissue 

15 Predicting the likely outcome or progression of a disease 
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Figure 1.3:  Flow diagram showing the organization of the dissertation. 
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CHAPTER 2                                                                                                    

Background:  NIR Optical Imaging 

2.1  INTRODUCTION 

Optical imaging is an emerging technique for observing internal functionality of the human 

body.  Three major biomedical applications of optical imaging that have been investigated 

are brain imaging for functional monitoring, breast imaging for cancer diagnosis and 

monitoring response to neoadjuvant chemotherapy16, and muscle imaging for physiology 

monitoring [4].  For these applications, diffusing light fields are used to measure blood 

hemodynamics17 and to detect the presence of tissue inhomogeneities [5].  Biological tissues 

have specific optical properties that become altered in diseased tissue.  These altered 

properties can be discerned by NIR imaging for the application of cancer diagnosis.  This 

chapter will describe tissue characterization using NIR imaging, fluorescence enhanced 

optical imaging, different measurement techniques and configurations used in optical 

imaging, and different types of instrumentation used to perform optical imaging.   

2.2  NIR IMAGING FOR TISSUE CHARACTERIZATION 

When light travels through biological tissue, it becomes scattered and absorbed.  Biological 

tissues are characterized by their absorption coefficient, !a, and scattering coefficient, !s, 

which represent the number of absorption or scattering events per unit length, respectively, 

and are wavelength dependent properties intrinsic to the tissue.  These properties govern 

how the light will propagate within that tissue.  The major biological chromophores (light 

absorbers) are water (H2O), oxy-hemoglobin (HbO2), and deoxy-hemoglobin (Hb).  The 

                                                
16 Preliminary cancer therapy that precedes surgery or a second modality of treatment 

17 The branch of physiology that studies the movement of blood 
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major source of scattering is lipids (fatty tissue).  Light is minimally absorbed by the 

chromophores and preferentially scattered at wavelengths in the near-infrared (NIR) region, 

700-900 nanometers (nm) as shown in Figure 2.1.  This region is termed the diagnostic or 

therapeutic window because it is at these wavelengths that light can penetrate deep into the 

tissue before being absorbed.  

Figure 2.1  Absorption coefficient at various wavelengths for water, oxy-hemoglobin, and deoxy-
hemoglobin (adapted from R. Weissleder 2001 [6]). 

NIR light can be used to detect the presence of inhomogeneities (such as a cyst or 

tumor) within biological tissue because the optical properties (!a and !s) differ in normal and 

diseased tissue.  The functional information provided by NIR imaging enables differentiation 

between benign and malignant lesions, whereas modalities such as x-ray mammography and 

computed tomography (CT) only provide anatomical information requiring a needle biopsy

to identify the inhomogeneity. The endogenous contrast between normal and diseased tissue 

can be measured by diffuse optical imaging systems to detect the presence of a tumor.   
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2.3  FLUORESCENCE-ENHANCED OPTICAL IMAGING 

An exogenous contrast agent can be introduced into the tissue to produce a stronger signal 

towards detection of smaller lesions (<0.5 cm diameter).  Indocyanine green (ICG) is a 

fluorescing dye typically used for fluorescence-enhanced optical imaging and tomography 

because it is nontoxic at low concentrations and is approved by the Food and Drug 

Administration (FDA) for use in humans.  Fluorescence occurs when incident light causes a 

fluorescent molecule to excite.  It remains excited for a period of time (the fluorescence 

lifetime, �) and then relaxes to the ground state by emitting a photon of lower energy 

(higher wavelength) than the energy of the incident light.  The principle of fluorescence is 

illustrated using a Jablonski diagram in Figure 2.2.  The fraction of excited fluorescent 

molecules that relax radiatively is known as the quantum efficiency.   

 

 
Figure 2.2  Jablonski diagram showing the principle of fluorescence. 

 
The principle of fluorescence enhanced optical imaging is illustrated in Figure 2.3 for 

continuous-wave based imaging.  When the fluorescent dye is injected into the tissue, it 

tends to accumulate close to the tumor site depending on its specificity.  NIR light excited at 

the tissue surface propagates into the tissue and becomes attenuated due to absorption of 
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the light by the tissue chromophores.  Upon encountering a fluorescent molecule (or 

fluorophore), the molecule becomes excited (Figure 2.2).  As the molecule relaxes back to 

the ground state, the energy is emitted at a higher wavelength (the fluorescent signal).  The 

fluorescent signal propagates through the tissue becoming further attenuated by absorption.  

The emitted fluorescent light from the fluorophore combined with the original attenuated 

excitation light from the incident source is collected at the tissue surface using NIR sensitive 

detectors and appropriate filters to select the weak fluorescent signal. 

 

Figure 2.3  Principle of fluorescence enhanced optical imaging using continuous-wave based 
measurements. 

2.4  MEASUREMENT TECHNIQUES IN OPTICAL IMAGING 

Different measurements techniques are used in optical imaging which are time-

independent or time-dependent.  The three types of measurement techniques used in optical 

imaging are continuous wave (which is time-independent), frequency-domain photon 

migration, and time-domain photon migration (which are time-dependent).  Figure 2.4 
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shows the basic principle of the three methods.  The continuous wave (CW) technique uses 

light intensity that is constant in time.  The amplitude of the incident light attenuates as it 

passes through tissue and the amount that it attenuates is related to the optical properties of 

that tissue (Figure 2.4A).  CW imaging is relatively simple, fast and inexpensive; however, 

one major drawback is that the absorption (!a) and scattering (!s) properties cannot be 

determined independently since information is collected as a single combined measurement.   

Frequency-domain photon migration (FDPM) uses intensity-modulated light waves that 

experience amplitude modulation decay and phase shift with respect to the incident wave 

(Figure 2.4B).  The amplitude decay measures the absorption properties and the phase shift 

measures the scattering properties enabling each property to be measured independently.  

Time-domain photon migration (TDPM) uses nano- or pico-second laser pulses of incident 

light that broaden and attenuate according to the optical properties as they pass through the 

tissue (Figure 2.4C).  The photon times-of-flight are recorded to acquire a photon 

distribution as a function of time.  TDPM has good temporal resolution and is capable of 

measuring absorption and scattering properties independently.  However, the 

instrumentation is more expensive and complex because it requires detectors with 

picoseconds or better resolution,  and the method requires longer imaging time due to low 

signal-to-noise ratio (SNR) than CW or FDPM.     
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Figure 2.4  Diagram of the three measurement techniques for optical imaging: (A) continuous wave, 
(B) time domain photon migration, and (C) frequency domain photon migration  (adapted from 
http://www.medphys.ucl.ac.uk/) 

2.5  MEASURMENT CONFIGURATIONS IN OPTICAL IMAGING 

Imaging systems can be designed for reflection and/or transillumination measurements.  For 

reflection measurements, light that has passed through the tissue is diffusely reflected from 

the same side upon which the incident light was launched.  For transillumination 

measurements, light that has passed though the tissue is diffusely transmitted from the side 

of the tissue opposite from which it was launched. 

Different measurement configurations are used to perform optical imaging which 

determine the type of signal that will be collected from the tissue (reflectance and/or 

transillumination).  The measurement geometries used in breast imaging are typically 

governed by the instrumentation, i.e. bulky instrumentation or hand-held device based 

instrumentation.  Additionally, different combinations of point and area illumination are 
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used.  These different imaging geometries are described in detail in the following 

subsections. 

Most three-dimensional (3D) optical imaging studies towards breast cancer diagnosis 

employ either compressed tissue based imaging configuration [7-12] (Fig 2.5A) or circular-

based imaging configuration [13-28] (Fig 2.5B).   The compressed tissue based configuration 

is analogous to x-ray mammography, and is disadvantageous due to patient discomfort from 

tissue compression and limited information obtained around the complete breast tissue.  The 

circular-based configuration has minimal patient discomfort, but is limited by the bulky and 

non-portable instrumentation.   The sub-surface based imaging configuration (Fig 2.5C) is a 

relatively new method that requires no tissue compression, and can be designed to mimic a 

portable and flexible imaging probe [27, 29-71].  In recent years, hand-held based optical 

imaging devices employing the sub-surface imaging configuration are developed in an 

attempt to translate the technology to the clinic, with maximum patient comfort and 

portability (compared to the available bulky optical imagers).   A literature review of hand-

held based optical imaging devices developed to date is given in Chapter 3. 

 
Figure 2.5   Different imaging configurations: (A) compressed tissue, (B) circular, and (C) sub-
surface  Adapted from B. Jayachandran, 2007.[27] 
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2.7  IMAGING GEOMETRIES 

2.7.1  Point source vs. area illumination and collection 

Different imaging geometries include the use of point source versus area illumination and 

collection.  In area illumination and collection, the incident laser light from a single source is 

expanded to cover the entire tissue region being imaged at one time.  The light is collected 

from the tissue over the same region by typically using a CCD camera based detector.  This 

method has the advantages of rapid data acquisition and large volume interrogation, but 

requires bulky instrumentation and cannot be made to conform to the geometry of the tissue 

surface.  Point source and detection based imaging uses optical fibers to illuminate and 

collect the light from the tissue surface.  This method has the advantage of placing the fibers 

in direct contact with the tissue surface and can be made into a portable hand-held device 

based imaging system. 

2.7.2  Simultaneous illumination using point sources to approximate area 
illumination 
Point source and detector based imaging systems typically illuminate the source points 

sequentially, via optical fibers.  An alternative approach involves simultaneous illumination 

of multiple source points.  Simultaneous illumination enables rapid data acquisition and 

better approximates a more ideal case of area illumination since a large volume of tissue is 

interrogated in a single measurement.  The hand-held device described herein employs 

simultaneous illumination of six source points in order to facilitate rapid data acquisition and 

larger volume interrogation as in area illumination.  More details will be given in Chapter 6. 
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2.8  INSTRUMENTATION 

Instrumentation for optical imaging is chosen based on the application.  The basic 

components of any optical imaging system are a light source and a detector.  A single source 

and detector pair are used for measuring single-point locations in the tissue which is termed 

optical spectroscopy.  Multiple sources and detectors are required to collect measurements 

over an area of tissue which is termed optical imaging.  The process of collecting 

measurements over an area and reconstructing the spatial optical property maps in 2D or 3D 

is termed optical tomography.   

 

2.8.1  Bulky instrumentation vs. hand-held devices 

Different research groups typically develop or use optical imaging instrumentation either in 

the form of an optical bed using the circular or compressed-tissue imaging configuration, or 

a hand-held probe using the subsurface based imaging configuration.  Several research 

groups have developed optical imaging methods for breast imaging which use a bed upon 

which the subject lies prone while the breast is either suspended in a ring or cup, or 

compressed between two plates.  An example of this type of instrumentation is shown in 

Figure 2.6A.  This type of instrumentation allows for transillumination based imaging and 

control of the tissue geometry for ease in 3D image reconstruction.  However, the 

instrumentation is bulky and non-portable and can be uncomfortable for the subject.  

Additionally, many systems use a matching fluid to compensate for lack of direct contact 

with the tissue.  In order to overcome these limitations, several research groups have 

developed hand-held based optical imaging devices.  Examples of these hand-held devices 

are shown in Figure 2.6B and a complete literature review of the hand-held devices 
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developed to date is given in Chapter 3.  Hand-held devices have the advantages of being 

portable and patient-comfortable, and achieve full contact with various-shaped tissues.  The 

devices developed to date are typically used to collect spectroscopic measurements of tissue 

optical properties and/or to estimate the 2D location of a tumor.  The devices use point 

illumination/detection and reflectance based imaging geometry.  None of the hand-held 

optical devices developed to date have attempted 3D tomography (without the addition of a 

second imaging modality) since they are unable to coregister the image to the tissue 

geometry.  The device described herein is unique in its ability to perform 3D tomographic 

imaging using a hand-held NIR imaging device.   

 

Figure 2.6  Different types of instrumentation used for breast include: (A) bulky optical bed based 
imaging, and (B) hand-held device based imaging. Adapted from S. Erickson, 2009.[29] 
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2.8.1  Sources 

The most common types of sources used in diffuse optical imaging are laser diodes, light 

emitting diodes, halogen lamps, Ti:sapphire lasers, and helium-neon (He-Ne) long coherence 

lasers.  An example of each type of source is shown in Figure 2.7.  Laser diodes (Figure 

2.7A) and light emitting diodes (Figure 2.7B) are semiconductors usually formed by a p-n 

junction powered by an electrical current.  Laser diodes of different NIR wavelengths are 

used according to the measured parameter of interest (e.g. oxyhemoglobin, 

deoxyhemoglobin, water, lipids, etc.).  A halogen lamp (Figure 2.7C) uses a tungsten filament 

combined with halogen gas to produce white light of all wavelengths.  Different filters can 

be used to select particular wavelengths appropriate to the imaging application.  Ti:sapphire 

lasers (Figure 2.7D) are tunable lasers which can emit light in the NIR range between 650-

1100 nm.  A He-Ne laser contains a mixture of helium and neon gas in a small bore capillary 

tube and is usually excited by a direct-current (DC) electrical discharge. 

 

Figure 2.7  Types of sources commonly used in diffuse optical imaging: (A) laser diode 
http://fr.digikey.com/1/3/indexb31.html; (B) light emitting diode http://energyboomer.typepad.com; (C) 
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halogen lamp http://shopzlot.biz/products/abco-halogen-lamp-50w-04423; (D) Ti:sapphire tunable laser  
http://www.dmphotonics.com/DPSS/DPSS_CWlasers_TiSa_pumping.htm; (E) helium-neon He-Ne long 
coherence laser http://www.newport.com 

2.8.2  Detectors 

The most common types of detectors used in diffuse optical imaging are charge-coupled 

device (CCD) cameras, avalanche photodiodes (APD), and photomultiplier tubes (PMT).  

An example of each type of detector is shown in Figure 2.8.  A CCD camera (Figure 2.8A) 

converts optical light signal into electrical amplitude signals using multiple charge-coupled 

devices and reproduces the image of the subject.  An avalanche photodiode (Figure 2.8B) is 

a highly sensitive semiconductor electronic photodetector device that converts light into 

electricity via the photoelectric effect.  Photomultiplier tube detectors (Figure 2.8C) are 

designed to amplify the current of incident light up to 100 million times using multiple 

dynodes in order to detect very low intensity light signals. 

 

Figure 2.8 Types of detectors commonly used in diffuse optical imaging: (A) CCD camera 
http://www.aegis-elec.com/products/hitachi-KP-M3AN.html; (B) avalanche photodiode
http://www.newport.com; (C) photomultiplier tube http://www.prizmatix.com/docs/OptiBlocks.cfm. 

Diffuse optical imaging is an emerging modality which noninvasively measures the 

optical properties (absorption and scattering) of near-infrared light in biological tissues.  

External contrast agents can be used to perform fluorescence-enhanced optical imaging 

toward detection of smaller tumors.  Instrumentation is selected based on the different 
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measurement techniques and imaging configurations for different applications of optical 

imaging in human tissues.  The next three chapters give a review of past work performed by 

different research groups using optical imaging technology for breast tissue imaging. 
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CHAPTER 3                                                                                                      

Past Work:  Hand-held Optical Imaging Devices 

3.1  INTRODUCTION 

Different hand-held based optical devices have been developed by several research groups 

[27,29-71] with differences in the instrumentation, capabilities, and their specific 

applications.  The current review will focus on all the hand-held based devices (termed hand-

held imagers, probes, devices, and imaging systems by various researchers) developed to date 

towards optical imaging of biological tissues using NIR light.  Table 3.1 provides a 

condensed summary of the different NIR hand-held devices developed to date in terms of 

the measurement technique, source and detector type, source wavelengths and input 

intensity, number of sources and detectors, target depth, and the number and type of subject 

studies (see Appendix I for extensive version of the table).  Herein, the different hand-held 

devices are primarily discussed in terms of: (i) the measurement technique employed; (ii) 

imaging methods implemented; and (iii) their specific applications, along with the advantages 

and disadvantages of the different systems available to date.  

3.2  MEASUREMENT TECHNIQUES IN DIFFERENT HAND-HELD 
DEVICES 

 Optical imaging is typically carried out using one of the three measurement 

techniques, namely, continuous wave (CW), frequency domain photon migration (FDPM), 

or time domain photon migration (TDPM).  These measurement techniques are described in 

detail in section 2.4.  Different research groups developing hand-held based optical devices 

employed different measurement techniques based on their specific application and focus of 

research.   
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Table 3.1  Summary of different hand-held devices developed towards optical imaging (extensive 
table provided in Appendix I). 
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3.2  MEASUREMENT TECHNIQUES IN DIFFERENT HAND-HELD 
DEVICES 

Optical imaging is typically carried out using one of the three measurement techniques, 

namely, continuous wave (CW), frequency domain photon migration (FDPM), or time 

domain photon migration (TDPM).  These measurement techniques are described in detail 

in section 2.4.  Different research groups developing hand-held based optical devices 

employed different measurement techniques based on their specific application and focus of 

research.   

 

3.2.1  Continuous Wave (CW) Based Devices  

The CW measurement technique (which measures the attenuated light intensity that remains 

constant with time) has been employed by several of the devices developed for breast 

imaging, although using different sources and detectors.  A CW-based device developed at 

the University of Pennsylvania (Device #3, Table 3.1) employed light emitting diode sources 

(at three wavelengths) and silicon diode detectors [50-51].  Parallely, a different CW-based 

device (Device #7, Table 3.1) was developed by another research group at the University of 

Pennsylvania [60,71], employing a long coherence laser source (4 sources) and fast photon-

counting avalanche photodiodes as detectors (four of them) coupled via detector fibers.  In 

contrast, a hand-held device (termed as a tissue oximeter) developed at the Ohio State 

University (Device #6, Table 3.1) contained embedded laser diode and photodiode modules 

for CW-based NIR imaging [57-58,71].  

Typically CW-based techniques are preferred over the time-dependent FDPM or 

TDPM measurement techniques, since the instrumentation is simple, inexpensive, and can 
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be made portable towards developing hand-held based imaging devices.  However, the CW 

technique provides limited depth information in comparison to the FDPM and TDPM 

techniques.  This is because the technique only measures the changes in intensity, reflected 

from the combined effect of absorption and scattering (and not individually) [72-75] .  In 

addition, if the CW-based hand-held devices were applied towards fluorescence-enhanced 

optical imaging studies, it would limit the technique from differentiating the changes in 

fluorescence intensity arising from the fluorophore concentration or its decay kinetics (i.e. 

fluorescence lifetime and quantum efficiency). 

3.2.2  Frequency-Domain Photon Migration (FDPM) Based Devices  
 
Most of the hand-held devices developed towards breast imaging employ FDPM technique 

due to the advantage of measuring amplitude and phase shift of the modulated signal 

separately.  The following hand-held devices employ the FDPM measurement technique and 

are described in chronological order of device numbers in Table 3.1.  

�   A multi-wavelength FDPM-based hand-held device (Device #1a, Table 3.1) was 

developed at the University of California, Irvine [33-39].  The device is capable of 

working between 300 kHz to 1 GHz frequencies.  Modulated light source is 

generated using laser diodes and a network analyzer (generates radiofrequency 

signals) and avalanche photodiodes (APD) are used as detectors, since they are 

capable of detecting the collected signals at such high frequency.   A second 

generation of the device (Device #1b, Table 3.1) was developed, which combines 

CW and FDPM methods into a single CW/FD probe [40-46].  The CW component 

was added for broad continuous wavelength coverage resulting in better 
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chromophore identification and improved concentration quantification than that 

achieved using FD alone.   

�   More recently, researchers from the University of California, Irvine miniaturized an 

entire FD imaging instrumentation into a single hand-held device (Device #2, Table 

3.1) [47-49] .  Modulated light source is generated using a signal generator (10 MHz 

to 1GHz) and a laser diode.  A homodyne and heterodyne based imaging version of 

the device were developed and tested on homogeneous phantoms.  The homodyne 

device was simpler, but the accuracy was compromised by noise, while the 

heterodyne device was more complex but the filtering of noise enabled greater 

accuracy [47] .  The homodyne based device used a single frequency at the source 

and detector end, thus contaminating the detected signal with noise from the 

ambient light and harmonic frequency.  Hence, a heterodyne based version of the 

mini-imaging device was developed, wherein two different frequencies were 

employed at the source and detector end (here +45 MHz difference between 

frequencies) in order to generate a new lower-frequency detected signal.  The 

heterodyne approach (along with the use of a sharp crystal filter) filtered the noise 

due to ambient light and harmonic frequency, thus improving the sensitivity of signal 

detection.  This first heterodyne version of the device used one detector for 

amplitude measurements of the 45 MHz heterodyne signal alone, and a second 

detector for the regular phase measurements.  Another version of the above device 

was developed into a full-heterodyne laser breast scanner, which used heterodyne 

technique for both amplitude and phase measurements [49].    The amplitude and 

phase results from a breast phantom using full-heterodyne matched those predicted 
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by diffusion theory better than the results from the homodyne and the first 

heterodyne version of the devices [47].   

�   Two multi-modality based imaging devices (Devices #10a, #10b, #11, Table 3.1) 

were developed at the University of Connecticut that combined FDPM-based optical 

imaging and ultrasound into a single hand-held device [66-71].  The optical part of 

each system used 12 pairs of dual wavelength laser diodes (780 nm and 830 nm) and 

8 photomultiplier tube (PMT) detectors.  The two devices differ in the source-

detector configuration as described in Section 3.3.  

�  A device was developed at the University of Pennsylvania (Device #4, Table 3.1) that 

used two simultaneous light sources, in contrast to the various frequency-domain 

based imaging devices developed by all researchers to date using sequential point 

source illumination.  The device was based on an ac circuit that acquired low 

frequency (3 kHz) measurements at a single wavelength from a pair of anti-phased 

(i.e. out of phase by 1800) light emitting diodes, using a silicon diode detector [53].  

The device collected only amplitude changes, which are independent of frequencies, 

unlike the phase measurements that are optimal at higher frequencies of 100-200 

MHz.  Hence, even a low frequency based device was sufficient to provide an 

optimal signal to noise ratio (SNR) for this device [53], apart from reducing the 

instrumentation costs in comparison to a high frequency based device.  The 

simultaneous anti-phased source illumination caused destructive interference of the 

photon density waves (PDW), which in turn was used to determine the 2-D spatial 

target localization of an absorbing (or fluorescing) target in a 3-D phantom(s) [76-

80]. 
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�  A hand-held device was developed at the Huazhong University of Science and 

Technology (Device #5, Table 3.1), which also uses the same principle of 

simultaneous anti-phased source illumination.  The device used two pairs of light 

emitting diodes (LEDs) that produced 3 kHz signals to form a low frequency phased 

array 2D fluorescence system [54].  One pair of LEDs was in-phase and the other 

was out-of-phase to produce two null planes, which in turn indicated the 2D location 

of a fluorescent target.  The device was designed to provide real time detection and 

2D localization of small fluorescent objects within a highly scattering medium.   

 

The advantages of time-dependent (FDPM and TDPM) over time-independent 

(CW) measurement techniques were described in section 2.4.  In addition, FDPM is often 

preferable over TDPM due to improved signal-to-noise ratio (SNR).  Steady-state FDPM 

measurements in terms of amplitude and phase are minimally corrupted by the ambient light, 

since the instrument detects only modulated signals.  Thus the FDPM instrument 

automatically acts as a filter for ambient light rejection, which is not only an advantage for 

FDPM over CW or TDPM techniques, but favored for clinical application in a non light-

proof environment.  Since hand-held optical devices are designed toward clinical translation, 

they typically employ the FDPM technique due to this advantage.   

3.2.3  Time-Domain Photon Migration (TDPM) Based Devices  

Time domain photon migration (TDPM) is not a favorable measurement technique for 

hand-held optical devices due to its expensive and complex instrumentation (as described in 

section 2.4).  To date, only one TDPM-based hand-held device (Device #8, Table 3.1) has 

been developed at Physikalisch-Technische Bundesanstalt in Berlin, Germany [60] for 
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bedside assessment of cerebral perfusion in stroke patients.  The device measured diffuse 

reflectance of 803 and 807 nm light from two picosecond diode lasers with pulse width of 

~100 ps and 60 MHz repetition rate.  Detecting fiber bundles were used to collect the light 

and deliver it to photomultiplier tubes.  The TDPM technique was chosen in this application 

because the measurement of variance in distributions of time of flight of photons can be 

used to monitor changes of absorption in the cortex as opposed to the skin or the skull.  

3.3  IMAGING METHODS OF DIFFERENT HAND-HELD DEVICES  

The hand-held imaging devices employing any one of the three measurement techniques use 

appropriate source-detector configurations to allow spectroscopic, tomographic, or 

interference-based imaging studies. The source-detector configuration governs the type and 

quality of information obtained using the imaging device (as described in section 2.8).  

Spectroscopic and tomographic imaging were described in section 2.8.  In addition, the 

principle of interference can be used toward tumor localization.  This method requires at 

least two sources that simultaneously illuminate in-phase (constructive interference) or out-

of phase (destructive interference), and typically detected using a single detector.  The hand-

held optical devices developed can thus be categorized in terms of the method of imaging as: 

(i) spectroscopic imaging-based, (ii) tomographic imaging-based, and (iii) interference 

imaging-based.  Schematics of the different source-detector configurations employed by the 

hand-held devices using the different imaging methods are shown in Figures 3.1, 3.2, and 3.3 

for spectroscopy-based, tomography-based, and interference-based devices, respectively.   
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3.3.1  Spectroscopic Imaging-based Devices  

Spectroscopic imaging-based devices utilize the simplest source-detector configuration of a 

single source and single detector, in order to obtain spectroscopic information.  The 

spectroscopic imaging-devices developed by a research group at the University of California, 

Irvine used the single source-detector design for characterization of breast tissue [33-46].  

The Device #1a in Figure 3.1 developed by this research group has a single source-detector 

pair to measure photon density wave phase and amplitude from which physiological 

properties of normal and tumor tissue are extracted [33].  The second generation of the same 

device (Device #1b, Figure 3.1) used two source-detector pairs, of which one pair obtained 

FD measurements and the second pair obtained CW measurements [40].  The mini-FDPM 

device developed by researchers at the University of California, Irvine (Device #2, Figure 

3.1) also employed a single source (laser diode) and single detector (APD) that were housed 

within the device in order to make direct contact with the tissue surface [44-49].   

The use of multiple sources and detectors enables measurements from several 

locations and tissue depths and provides more information for the reconstruction of the 

tissue optical  
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Figure 3.1  Schematics of spectroscopic imaging-based devices. (a) Device #1a developed by 
researchers at the University of California, Irvine, which contains a single FD source-detector pair, 
(b) Device #1b developed by the same group, which contains a single FD source-detector pair and a 
single CW source-detector pair, and (c) Device #2 developed by other researchers at the same 
university, which contains a single source and detector embedded within the probe, (d) Device #3 
developed by researchers at the University of Pennsylvania, which contains a single source 
surrounded by 8 detectors, (e) Device #6a developed by researchers at Ohio State University and 
ViOptix, Inc., which contains 8 sources and 8 detectors, (e) Device #7 developed at the University of 
Pennsylvania, which contains 4 sources and 4 detectors, (f) Device #8 developed at Physikalisch-
Technische Bundesanstalt, which contains 2 sources and 4 detectors, (g) Device #9a developed at 
the University of Pennsylvania, which contains 2 sources and 4 detectors, and (h) Device #9b 
developed by the same group, which contains 4 sources and 2 detectors. 
 

properties.  Most of the spectroscopic imaging-based devices developed to date employ 

multiple sources and detectors in their probe design.  The hand-held devices which used 

multiple sources and detectors are described below.  

�   One of the research groups at the University of Pennsylvania [50], developed a device 

for breast imaging (Device #3, Figure 3.1) consisting of a single LED source centered on 

the device that is surrounded by eight silicon diode detectors, each of which were located 

4 cm from the source.  This configuration enables the device to interrogate a larger tissue 

area than the use of a single detector would allow.  Another research group in the same 
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university [58-59] developed a device containing 4 sources lined up parallel to 4 detectors 

(Device #7, Figure 3.1).  The line of sources and line of detectors were separated by 2.5 

cm.    

�   A breast imaging device developed at Ohio State University and ViOptix, Inc. (Device 

#6a, Figure 3.1) contained 8 sources and 8 detectors arranged in a 2.5 cm x 2.5 cm 

matrix [55-59] in order to image even larger areas.  A second generation of the device 

was later developed (Device #6b, Table 3.1) that contained 16 sources and 8 detectors to 

form a 3 ! 3 cm2 matrix [57].  In these devices the photodiode detectors collected the 

light simultaneously at a sampling rate of 100 kHz while the 16 source fibers were 

illuminated sequentially. 

• Several hand-held devices with multiple sources and detectors have also been developed 

towards brain imaging studies.  The device developed at Physikalisch-Technische 

Bundesanstalt in Berlin, Germany (Device #8, Figure 3.1) to measure cerebral perfusion 

in stroke patients contains 2 sources and 4 detectors [60].  One source and two detectors 

are positioned on each hemisphere of the head and four distributions of times of flight 

of photons were measured simultaneously at the 4 detector positions.  Two other 

devices were developed at the University of Pennsylvania to monitor radiation therapy in 

patients with head and neck tumors [61].  One device contains 2 sources and 4 detectors 

with layout as shown in Figure 3.1 (Device #9a) and the second device contains 4 

sources and 2 detectors (Device #9b, Figure 3.1).  Both devices use NIR spectroscopic 

tools, but the former device is used to measure tumor blood flow before and during 

radiation therapy (method termed as diffuse correlation spectroscopy), and the latter 
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device is used for quantification of the concentration of tissue chromophores in the head 

and neck regions (method termed as diffuse reflectance spectroscopy).  

3.3.2  Tomographic Imaging-based Devices  

The tomography imaging-based devices employ multiple sources and detectors in order to 

obtain 2D surface images as well as employ the measurements towards tomographic 

reconstructions.  One group from the University of Connecticut developed hand-held NIR 

devices with multiple source-detector configurations combined with an ultrasound array [62-

71] as shown in Figure 3.2 (Devices #10a, #10b and #11).  The use of multiple sources and 

detectors enabled area imaging using the NIR component, and a priori information from the 

ultrasound component enabled 3D tomography, thus determining the target location. 

  

  
Figure 3.2 Schematics of tomographic imaging-based devices. (a) Device #10a  developed by 
researchers at the University of Pennsylvania and University of Connecticut, which contains a central 
ultrasound component surrounded by 12 sources and 4 detectors, (b) Device #10b developed at the 
University of Connecticut, which contains an additional 4 detectors, and (c) Device #11 developed 
by the same group, which contains an ultrasound component with 12 sources and 8 detectors. 
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3.3.3  Interference Imaging-based Devices  

All of the devices containing multiple sources are sequentially illuminated during imaging 

studies.  In contrast, the interference imaging-based devices are designed and developed to 

perform simultaneous illumination of multiple sources for tumor location studies.  The 

interference imaging-based device developed at the University of Pennsylvania [53] for 

breast  

 

 
Figure 3.3  Schematics of interference imaging-based devices. (a) Device #4 developed at the 
University of Pennsylvania, which contains a detector centered between two anti-phase sources for 
phase cancellation technique, (b) Device #5 developed by researchers at the Huazhong University of 
Science and Technology, which contains a detector centered between a pair of in-phase sources and a 
pair of anti-phase which also uses the phase cancellation technique. 
 

imaging employed two 800 nm LED sources that are illuminated simultaneously, but anti-

phase (i.e. out-of-phase) with respect to each other (Device #4, Figure 3.3).  A single silicon 

diode detector was placed mid-way (and in the same plane) between two sources, in order to 

detect and locate breast tumors based on the principles of destructive interference signals (as 

described in Section 3.3).  A different breast imaging device developed at the Huazhong 

University of Science and Technology (Device #5, Figure 3.3) employed two pairs of 

simultaneous light sources, wherein one pair was in-phase (to generate constructive 

interference pattern of the PDW) and the second pair was anti-phase (to generate destructive 

interference pattern of the PDW).  The emitted optical signals were detected using a single 
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fiber located at the center of the four sources in the probe that was connected to a 

photomultiplier tube (PMT) [54].  The in-phase and anti-phase sources interfere to create a 

null plane which was used to locate a target within the turbid medium.  The target location 

was determined by the constructive or destructive interference pattern of the photon density 

waves (PDWs) in the presence of a tumor.  This is a different approach towards real time 

localization of absorbing fluorescent objects within a highly scattering medium (in turn 

applicable for breast cancer localization).  

3.4  CLINICAL APPLICATIONS OF DIFFERENT HAND-HELD DEVICES  

The selection of measurement technique and source-detector layout is influenced by the 

application to which the hand-held optical imaging device will be used.  Hand-held devices 

for NIR spectroscopy/imaging are used for several different applications related to the 

breast tissue (primarily), including measurement of normal and abnormal tissue physiological 

properties, tumor localization, and monitoring tumor changes during neoadjuvant 

chemotherapy treatment. 

3.4.1  Measurement of Normal and Abnormal Tissue Physiological Properties  

NIR spectroscopy has been used to show that the optical properties of normal breast tissue 

vary under different circumstances.  Studies were conducted at the University of California, 

Irvine using the single source-detector device to demonstrate the differences in tissue 

physiological properties in pre- and post-menopausal subjects [35,40], as well as during 

different time periods of the menstrual cycle [38].  The results showed the ability of the NIR 

device to demonstrate wavelength-dependent differences in absorption and scattering 

properties between pre- and post-menopausal normal breast tissues as well as differences in 

the same breast tissue during different time periods in the menstrual cycle.  It was also 
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shown that the tissue properties vary both amongst different normal subjects, and also with 

respect to the different locations within the same breast of a normal subject [39].   

One of the primary objectives of NIR spectroscopic imaging is to detect the 

presence of a tumor, based on the differences in the optical properties of normal versus 

diseased (tumor-bearing) tissue.  Several hand-held devices have been developed toward 

detection of tumors within breast tissue: 

�  Device #1a in Table 3.1 was used to obtain measurements from normal and tumor-

containing human breast tissue [33].  Measurements were performed on two human 

subjects using a FDPM-based device, wherein one subject had fibroadenoma with 

ductal hyperplasia and the other had a benign fluid-filled cyst.  The FDPM-based 

device was able to measure changes in absorption and scattering due to the presence 

of a small (1 cm diameter) lesion in the human breast.  The data demonstrated 

differences in the concentrations of oxy- and deoxy-hemoglobin, and water in the 

normal versus tumor-bearing breast.  A second detector was added to the above 

probe for a clinical study involving four human subjects with palpable lesions [34].  

The second detector enabled two different source-detector distances (1.3 and 2.5 

cm) to be applied with each measurement, which provided information from 

different tissue depths.  The results showed the differences in tissue optical 

properties between tumor and normal tissue, as well as between different types of 

lesions.   

�   The combined continuous wave and frequency-domain (CW/FD) based device 

(Device #1b, Table 3.1) developed at the University of California, Irvine was used to 

measure tissue properties in human subjects.  The CW/FD based device was 
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compared to a system that used only FD (Device #1a, Table 3.1) in a study involving 

a total of 31 normal and abnormal human subjects [41].  The FD component used 

only a few discrete wavelengths within the range of 650-1000 nm, whereas the CW 

component measured continuously across the entire range.  The added bandwidth of 

imaged frequencies due to the CW measurements resulted in better chromophore 

identification and improved concentration quantification than using FD component 

alone.  Another study was performed using the CW/FD based device in order to 

identify functional contrast in normal and abnormal breast tissue within a statistically 

relevant population of human subjects [45].  The spectra from tumor and normal 

tissue measured with the CW/FD based device were compared in 57 patients.  The 

results showed differences in the optical properties of the tissue based on subject 

age, tumor size, and tumor pathology.  Optical measurements obtained towards 

differentiating normal from diseased tissues were from lesions as small as 1 cm, 

whose locations were determined a priori from standard x-ray mammography.  

�   The full-heterodyne hand-held broadband breast scanning device developed at the 

University of California, Irvine (Device #2, Table 3.1) was tested on breast and 

muscle phantoms [47] and an abnormal human subject [49].  The device was used to 

extract the optical properties (absorption and scattering coefficients) from 

phantom(s) and human tissue(s).  Based on the measured differences in the 

absorption coefficients between the diseased (i.e. tumor) and normal breast tissue, 

the device detected the presence of a 6.36 ! 4.09 cm2 lesion in-vivo, located at a tissue 

depth of 0.5 cm.  The lesion size detected was relatively large compared to those 

detected by other hand-held devices, yet this device is relatively simple, compact, and 
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an inexpensive design that is capable of extracting optical properties within a tissue 

volume [49].    

�   The multi-detector hand-held device developed at the University of Pennsylvania 

(Device #3, Table 3.1) was used in an extensive study to show the differences in the 

biochemical and physiological properties of breast tissue containing growing cancers, 

compared to corresponding normal tissue in the contralateral breast [50].  The use of 

multiple detectors increases the area and volume that can be interrogated with each 

scan, apart from increasing the overall data acquisition rates.  Also, a source-detector 

separation of 4 cm has a significant probability of detecting a target at a depth of 4 

cm or more [50].  In a study involving 116 subjects recruited over six years, CW 

measurements were obtained on both the normal and tumor-bearing breast tissues of 

human subjects.  The smallest lesion detected was 0.8 cm and the greatest tissue 

depth reached was 4 cm.  The results demonstrated the ability of the device to detect 

the presence of lesions based on measured values of angiogenesis and 

hypermetabolism.  The difference in these values between the normal and the tumor 

bearing breast indicated the presence of cancer.  All the subjects involved in the 

above study were patients undergoing biopsy, and hence the lesion location was 

known a priori using a different imaging modality.  

�   The hand-held device (termed as tissue oximeter by the researchers) designed by Xu, 

et al (Device #6, Table 3.1) was used for real time imaging of tissue oxygen saturation 

and hemoglobin concentrations [55-57].  Simulation experiments and sensitivity 

analysis were performed with respect to tumor size, tumor depth, tumor lateral 

location, and optical contrast [55].  The maximum measurement depth was 1.5 cm 
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with absorption sensitivity of 0.1 cm.  The device was used in a study in conjunction 

with ultrasound to image an abnormal breast in a human subject [56].  The results 

from combining NIR spectroscopy and ultrasound modalities demonstrated 3D 

tomographic imaging (towards 3D target localization) of functional parameters of a 

breast lesion and the surrounding normal tissue.  3D reconstruction was performed 

after the added information of a second imaging modality (ultrasound).  The actual 

lesion size imaged for this study was 0.58 ! 0.41 ! 0.51 cm3.  In another study, the 

same device was used (without ultrasound) to test the effect of compression on 

human calf muscle and human breast tissue in vivo [57].  The homogeneous optical 

property in terms of absorption coefficients was determined for these tissues, using 

analytical solution of the diffusion equation in semi-infinite/infinite medium along 

with the 2D and 3D experimental images.   

�  A hand-held device (Device #7, Table 3.1) was designed to measure blood flow 

heterogeneity [58-59] in order to show that blood flow in a breast containing a 

palpable tumor is different than that in a normal breast.  The device was used to 

obtain measurements from a 2.0 cm diameter lesion located at a depth of 1.0 cm.  

The results showed that blood flow was greater in the tumor region than in the 

normal tissue. 

3.4.2  Tumor Localization and Characterization  

Several hand-held devices have been designed not only to detect the presence of a tumor, 

but also to determine the 2D location of the lesion within a breast using NIR optical 

imaging. 
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�   The ac circuit based device developed at the University of Pennsylvania (Device #4, 

Table 3.1) was used in phantom(s) and in-vivo human studies as well [53].  As 

described in Section 3.2, the device worked by phase cancellation from the two light 

sources.  The device was scanned across the breast or phantom and when the 

presence of a target was detected, a change in sound or light on the device indicated 

the 2D location of the lesion.  The device was able to detect the presence and 2D 

location of phantom targets as small as 1.0 cm3, which were located up to a depth of 

5 cm.   

�  The only hand-held device that was used for fluorescence measurements has been 

developed at the Huazhong University of Science and Technology (Device #5, Table 

3.1).   A study was performed with a phantom containing a 1.0 cm3 target with 0.8 

!M ICG, located at a depth of 0.8 cm [54].  The device uses the phase cancellation 

technique (as described in Section 3.2) with a combination of constructive and 

destructive interference patterns in order to locate the fluorescent target. 

These hand-held devices demonstrate the ability to indicate the 2D location of a target from 

surface measurements based on phase cancellation of PDWs.  They have the advantage of 

being simple and compact and give 2D target locations even prior to any tomographic 

imaging.   

 One major goal of optical imaging is to not only localize a lesion, but also to 

differentiate if the lesion is benign or malignant.  Conventional imaging techniques such as 

x-ray mammography and breast ultrasound have limited ability to differentiate benign and 

malignant lesions leading to large numbers of benign biopsies [67].  Optical imaging using a 

single wavelength can measure optical absorption, which is related to tumor vasculature.  
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When multiple wavelengths are used, oxyhemoglobin and deoxyhemoglobin can be 

measured and give information regarding tumor malignancy [69].     

Several versions of a multi-modal hand-held device (Devices #10a, #10b, #11, Table 

3.1) have been developed at the University of Connecticut [62-71] which combine NIR 

optical imaging and ultrasound into a single hand-held device.  The optical information using 

multiple wavelengths can better determine the tumor malignancy [67,69] and the ultrasound 

component provides a priori information which enables tumor localization by 3D 

reconstruction [65].  The device was used to image and differentiate benign and malignant 

lesions in human subjects.  The lesions were successfully reconstructed using the a priori 

information from the ultrasound component and it was found that malignant lesions had a 

much higher maximum total hemoglobin concentration due to increased angiogenesis 

[67,69].  

3.4.3  Monitoring Tumor Changes during Neoadjuvant Chemotherapy  

Another important application of optical hand-held devices is to monitor the progression of 

a tumor over time as chemotherapy treatment is administered.  Neoadjuvant chemotherapy 

treatment is administered to a cancer patient prior to surgery in an attempt to decrease the 

size of the tumor.  Several studies have been conducted toward this application. 

�   The CW/FD based device developed at the University of California, Irvine (Device 

#1b, Table 3.1) was used in several studies conducted in order to monitor tumor 

response to neoadjuvant chemotherapy in patients [42-43,46].  The tumor locations 

were known a priori from mammography, ultrasound, or palpation.  The device was 

used to measure the physiological characteristics of the tumor prior to 

chemotherapy.  This was followed by monitoring the changes in tissue optical 
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properties over several months, due to changes in the tumor with neoadjuvant 

chemotherapy treatment.    

�  In a different study, NIR spectroscopic imaging using the same CW/FD device was 

performed along with MRI in order to monitor the response to neoadjuvant 

chemotherapy in a human subject [43].  The initial lesion size was 3.8 ! 4.3 ! 4.3 cm3 

before treatment and 3.0 ! 2.4 ! 2.3 cm3 after treatment. The NIR spectroscopy 

measurements provided functional information in terms of absolute hemoglobin 

concentrations and tumor hemoglobin oxygen saturation, while the MRI provided 

anatomical information.   The final images were a combination of the functional 

information from NIR spectroscopy and the structural information from MRI.   

�   Researchers from the University of Connecticut used their multi-modal hand-held 

device (Device #11, Table 3.1) to image heterogeneous hemoglobin distributions in 

large cancers, which are used to monitor tumor vascular responses to neoadjuvant 

chemotherapy [70].  Tumors ranging from 2.5 to 4 cm were monitored in six 

patients.  The studies showed that after several cycles of neoadjuvant chemotherapy 

the measured values of total hemoglobin concentration and spatial extension were 

much smaller in comparison to those prior to chemotherapy. 

Most of the applications using the different hand-held devices were involved with the breast 

tissue and hence described in detail above.  In addition, there has been applications of hand-

held based NIR devices towards cerebral perfusion in stroke patients (Device #8, Figure 

3.1), and monitoring radiation therapy in patients with head and neck tumors (Devices #9a, 

9b, Figure 3.1). 
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3.5  DISCUSSION AND CONCLUSION 

Many hand-held based NIR devices have been developed for optical spectroscopy and 

imaging applications.  Apart from being non-invasive and non-ionizing, the advantages of 

hand-held optical imaging devices are that they are also portable, relatively inexpensive, and 

patient-comfortable because they do not require tissue compression.  However, optical 

measurements can be easily contaminated by motion artifacts caused by patient or operator 

as well as relative motion of the probe and soft tissue during contact imaging, similar to 1D 

ultrasound probes scanned in 2D to perform 3D imaging.   Careful operation procedure and 

operator training are required to obtain good quality images using hand-held based optical 

devices over using bulky optical systems employing compression plates or circular geometry.     

The optimal design of a hand-held device is determined by the parameter(s) to be 

measured and the specific applications it is implemented towards.  The hand-held devices 

developed to date primarily use CW and/or FDPM measurement techniques.  FDPM has 

the added advantage over CW of collecting both amplitude and phase information separately 

and thus provides improved optical contrast and greater depth information [77].  The hand-

held devices also differ in the source-detector configuration, which is primarily governed by 

the desired applications they are developed towards.  A single source and detector design has 

been used for spectroscopic measurements of physiological properties.  Dual sources 

illuminated simultaneously and out-of-phase have been used for target location by detection 

of phase cancellation.  Multiple sources and detectors have been configured towards imaging 

a given area of the tissue.       

The overall goal of any hand-held based optical device is to accelerate the clinical 

translation of the technology, with maximum patient comfort and portability (compared to 
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the many bulky optical imagers available).  However, all of the hand-held optical devices 

available to date have only flat probe heads, which limit them from contouring to tissue 

curvatures with good surface contact.  The flat probe head design also limits the devices to 

collecting only diffuse reflectance measurements, and not transilluminated measurements.  

Independent of the measurement technique (CW, FDPM, or TDPM) employed, reflectance-

based measurements provide limited depth information and depth recovery of tumors in 

comparison to transillumination-based measurements [3] (wherein the light is allowed to 

propagate through tissue depths and NIR signals are collected on opposite surfaces with 

respect to the illuminating surface).     

In addition, most of the applications of these hand-held based optical devices are 

limited to spectroscopic measurements of physiological properties and 2D target localization 

(without tomographic analysis).  To date, these hand-held optical devices (or imagers) have 

not been successful in demonstrating 3D tomographic imaging of tissue phantoms or real 

tissues using NIR imaging alone (with or without fluorescence), since the source and 

detector points are not co-registered onto the tissue contours.  In order to successfully 

reconstruct a lesion size and location in three dimensions, a priori information from another 

imaging modality (e.g. ultrasound) was required [65-70]. 

The hand-held optical imager developed in our laboratory is unique from other 

devices in that it is capable of performing 3D tomography (using NIR imaging alone) via 

implementation of self-coregistration facilities.  The features and instrumentation of the 

device are described in detail in Chapter 6.  
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CHAPTER 4                                                                                                       

Past Work:  Fluorescence Tomography Experimental Studies 

4.1  INTRODUCTION 

Fluorescence-enhanced diffuse optical tomography (FDOT) has been explored by many 

research groups in the past three decades.[3,81-133]  This chapter gives a review of the 

recent literature from 2008 to the present.  A literature review of image reconstruction using 

experimental data from fluorescence tomography (FT) studies up to the year 2007 is 

provided in Appendix B.  Table 4.1 provides a summary of the experimental research 

performed in fluorescence tomography from 2008 to the present.  The work performed by 

different research groups is summarized here in terms of (i) efforts to improve the 

reconstruction algorithm for fluorescence tomography, (ii) efforts to develop and/or 

improve instrumentation for fluorescence tomography, and (iii) efforts to improve 

experimental methods of fluorescence tomography.  

4.2  RECONSTRUCTION ALGORITHM FOR FLUORESCENCE 
TOMOGRAPHY 

Reconstruction of fluorescent optical data is mathematically challenging due to the ill-

posed18 nature of the inversion problem.  Several research groups are currently working to 

improve the computational aspect of fluorescence tomography.   

 

 

 

 

                                                
18 Having more than one solution. 
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Table 4.1   Summary of the experimental research performed in fluorescence tomography 
from 2008 to the present 
 
 Phantom / Animal Measure

ment 
Method 

Instrumentation 2D 
or 
3D 

  

Reference Backgroun
d 

Target Contrast Source Detector Forward 
Method 

Inverse 
Method 

Agent Ratio (geometry) (geometry) 

(Davis, et 
al, 2008) 
[121] 

DPBS, 1% 
intralipid, 
ICG, & 
India ink 

Plastic 
cylinder 
R=1 cm   

ICG 3.3:1 CW (w/ 
MRI) 

690 nm laser 
diode (point) 

CCD (point) 3D Diff. 
Approx. 

Laplacian 
& 
Jacobian 

(Kepshire, 
et al, 2008) 
[115] 

Water, 2% 
India ink, 
5% Tween-
20, 1% 
intralipid 

Cylinder 
R=4 mm 

Pp-IX 3.5:1 - 
10:1 

CW 635 nm laser 
diode (area) 

CCD (area) 2D  Diff. 
Approx. 

FluoroFAS
T 
(software 
package) 

(Ge, et al, 
2008) 
[3] 

1% Liposyn 
(10x10x6.5 
cm) 

Plastic 
sphere 
R=0.475 
cm 

ICG 1:0 FDPM 785 nm laser 
diode (point) 

ICCD 
(point) 

3D FEM AEKF 

(Mohajerani
, et al, 
2009) 
[122] 

Nu/Nu mice   4T-1 
murine 
breast 
adenocarci
noma cells 

ProSen
se 

in-vivo CW -- -- 3D Diff. 
Approx. 

MSE & 
coincidenc
e mask 

(Davis, et 
al, 2009) 
[123] 

Liquid 
(water, 1% 
intralipid)          
Solid 
(gelatin, 
TiO2, blood) 

2 small 
heterogenei
ties 

LuTex 2.5:1, 
3:1 

CW 690 nm laser 
diode (point) 

CCD (point) 2D FEM diffusion-
based 
optimizatio
n 

(Ziegler, et 
al, 2009) 
[124] 

rectangular 
cuvette 
(25x25x6 
cm3) 

delrin twin 
cones 

Omocy
anine 

5:1 TDPM Ti:sapphire 
laser (point) 

GaAs-PMT 
(point) 

3D Diff. 
Approx. 

Rytov 
approx. 

(Deliolanis, 
et al, 2009) 
[125] 

Nude mice Lewis lung 
carcinoma 
cells 

mCherr
y 
fluores
cent 
protein 

in-vivo CW 593 nm, 750 
nm laser 
diode (area) 

CCD (area) 3D none ART 

(Kepshire, 
et al, 2009) 
[126] 

Phantom 
from ART, 
Inc. 

Sphere 
R=4 mm 

Pp-IX 1:0 CW 
(noncont
act) 

635 nm laser 
diode (point) 

4 PMTs 
(point) 

2D none NIRFAST 

(Ge, et al, 
2009) 
[127] 

1% Liposyn 
(10x10x6.5 
cm) 

R=0.29-
0.475 cm 

ICG 5:1 - 
1:0 

FDPM 785 nm laser 
diode (point) 

ICCD 
(point) 

3D FEM AEKF 

(Lin, et al, 
2010) 
[128] 

Agarose 
powder, 
India ink, 
intralipid 
(25 mm 
diameter) 

Glass tube 
R=1.2 mm 

ICG 1:1-
25:1 

CW (w/ 
DOT & 
XCT) 

785 nm, 830 
nm laser 
(point) 

CCD (area) 2D Coupled 
Diff. Eq. 

Laplacian  

(Hyde, et al, 
2010) 
[129] 

Transgenic 
mice 

Amyloid-
beta 
plaques 

Oxazin
e 
derivati
ve 
probe 

in-vivo CW 650 nm laser 
diode (area) 

CCD (area) 3D Diff. 
Approx. 

Tikhonov 
w/ 
structural 
priors 
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(Schultz, et 
al, 2010) 
[130] 

Euthenized 
nude mice 

Artificial 
brain lesion 

Alexa 
750 
fluoroc
hrome 

in-vivo CW (w/ 
XCT) 

670 nm, 750 
nm laser 
diodes 
(point) 

CCD (area) 3D Diff. 
Approx. 

Tikhonov, 
Laplace 
prior, 
diagonal 
weighting 
prior 

(Liu, et al, 
2010) 
[131] 

Cylinder 
phantom 
R=1.5 cm 
(1% 
intralipid) 

2 glass 
tubes 
R=0.15 & 
0.3 cm 

ICG 1:0 CW Halogen 
lamp (area) 

CCD (area) 3D Coupled 
Diff. Eq. 

ART 

(Baritaux, et 
al, 2010) 
[132] 

Cylinder 
R=12.5 mm 
(India ink, 
titanium 
oxide) 

Cylinder 
R=2 mm 

Alexa 
Fluor 
680 

1:0 CW 655 nm laser 
diode (area) 

CCD (area) 2D Diff. 
Approx. 

Lp 
regularizat
ion 

(Biswal, et 
al, 2010) 
[133] 

Intralipid 
solution & 
SCID/Ncr 
mice 

Glass tube 
R=0.5 cm; 
MDA231luc 
cells 

Cy7 5:1 - 
50:1 

FDPM 690 nm laser 
diode (point) 

PMT (point) 3D none Born 
approxima
tion 

 

A research group from the University of Berlin used an algebraic reconstruction 

technique (ART) method to analyze DOT data and incorporated a noise-weighted back 

projection method.[124]  This method has the advantages of:  (i) allowing high cutoff 

frequencies to be chosen due to the algorithm’s avoidance of significant distortions of the 

reconstructed image, and (ii) the ART algorithm uses a normalized image vector which 

improves the separation of absorption and scattering by rescaling to a dimensionless image 

vector with comparable size of the norm of both images. The algorithm was tested with 

experimental data from a breast phantom using measured time-domain diffuse reflectance 

and transmittance of excitation and fluorescence radiation.  Images were collected with a 

fluorescent target embedded in the phantom with compressed-tissue geometry using three 

different source-detector geometries: (i) projection-shadow geometry; (ii) slab fan-beam 

geometry; (iii) slab reflection and transmission geometry.  The results showed that collecting 

reflectance data at the excitation and fluorescent wavelength in addition to the transmitted 

data greatly improved the depth resolution.  They concluded that scanning time-domain 
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fluorescence mammography will be improved by the use of both reflectance and 

transmittance measurements from both sides of the compressed breast. 

 A group from Georgia Institute of Technology developed a reconstruction approach 

that uses a mean-square error algorithm and accounts for what they term as “tunneled light”, 

i.e. the portion of light that passes through parts of the tissue which have lower absorption 

and hence has higher intensity than the portion of light that passes through the other parts 

of the tissue.[122]  The reconstruction approach uses the strong spatial correlation between 

the excitation and emission images to estimate the tunneled components and gain a resulting 

image containing mostly signal due to the fluorescence.  The resulting image is further 

refined using a coincidence mask (i.e. a map of the ‘hot spots’ that occur in both emission 

and excitation images).  The algorithm was tested on experimental data from in vivo studies 

performed on a human colon adenocarcinoma xenograft tumor model.  The results showed 

much stronger fluorescent signal from deeper tissues using this method.  They concluded 

that identification, estimation, and correction of signal from tunneled light can improve 

image reconstruction in fluorescence tomography.   

 The research group from Harvard Medical School presented a Tikhonov based 

method for reconstruction of multimodal FMT-XCT or FMT-MRI images which uses 

information from within the data to get data-driven priors rather than the typical user-

defined priors.[129]  The first step compensates for the resolution differences between XCT 

(high resolution) and FMT (low resolution) by labeling each FMT voxel as a linear mixture 

of the different tissue types identified in the high-resolution image.  The segment labels were 

used to construct a low dimensional inverse problem that gives a single intensity value for 

each anatomic area, and the values were used as parameters to define a spatially varying 
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regularization term for the full resolution FMT problem.  The algorithm was tested on 

experimental data collected from APP23 transgenic mice exhibiting amyloid-� plaques in 

the cortical region.  The results showed that the method of using data driven priors 

generated improved reconstruction of the fluorescence in the cortical region. 

 A research group from Tsinghua University developed a method that uses principal 

component analysis (PCA) on a time-series of FDOT images in order to detect and visualize 

organs with different kinetics.[131]  PCA is a method used to extract relevant features of a 

correlation matrix based on principal components, which express different kinetic behavior 

with high inter-correlations.  PCA was performed on 6 frames from tomographic images 

(with zero mean) from dynamic FDOT images at the same slice.  The principal component 

elements were used as weight factors to generate images containing different colors to 

represent regions with different kinetic behavior.  The method was tested on simulated 

mouse data and experimental data from phantom studies.  The results using the PCA 

method showed images that illustrated organs and functional structures that had different 

kinetic patterns.  They concluded that the PCA method (i) provides a non-invasive method 

for measuring changes in organ function, (ii) enhances the resolution and specificity of 

FDOT through emphasis of differences in kinetic behavior, (iii) provides additional 

anatomical information without the use of multiple modalities, and (iv) is not subject to 

model-based restrictions since it is independent of any kinetic model. 

 A research group from the Swiss Federal Institute of Technology developed a 

reconstruction approach that uses what they term as Lp regularization (p ! 1) to reconstruct 

fluorescence data using a matrix-free strategy in order to reduce computational costs.[132]  

They tested the sparsifying effect of using L1 regularization and compared it to L2 
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regularization (Tikhonov method).  2D reconstructions were performed using experimental 

phantom data.  The results showed that the method improved the computation time and 

memory requirements since it does not require calculation of a system matrix, and the 

reconstructions obtained using the L1-regularization displayed fewer artifacts and improved 

localization than those using a linear algorithm.   

 A research group from the University of Connecticut developed a Born 

approximation based reconstruction approach  which separately estimates the structural 

parameters of a target such as target center (depth and spatial x and y locations) and size, as 

well as reconstructs the functional information using only optical based measurements.[133]  

The method was tested on data from phantoms and mice injected with VEGF/Cy7 (an 

angiogenesis tracer).  The results showed the ability to reconstruct fluorescent targets with 

less than 25 nM of contrast agent up to 2 cm deep in both homogeneous and heterogeneous 

backgrounds. 

4.3  INSTRUMENTATION FOR FLUORESCENCE TOMOGRAPHY 

One major challenge of fluorescence tomography from an instrument perspective is poor 

spatial resolution due to the highly scattering nature of biological tissue.  Several research 

groups are currently developing instrumentation designed to improve the imaging ability of 

fluorescence tomography by combining the method with spatial prior information from 

other methods such as x-ray CT.   

The research group from Dartmouth College developed a multi-channel spectrally 

resolved fluorescence optical tomography system within a clinical MRI for imaging of 

molecular targets in small animals.[121]  The fiber-optic based NIR system was composed of 

16 fiber bundles which each contain six detection fibers and one source fiber used to obtain 
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transmission and emission NIR spectra.  The emission light was spectrally fitted to separate 

the fluorescent signal from the background improving the accuracy and sensitivity of images 

with small concentration of fluorophores.  The tissue morphology acquired from MRI was 

used as an imaging guide for the optical reconstruction.  Results from phantom and small 

animal studies demonstrated the capability to image low fluorescent contrast (3.3:1) in 70 

mm diameter tissue volumes using the spatial prior information from the MR images.   

  Another group from Dartmouth College designed a small animal imaging system 

which couples fluorescence tomography (FT) and x-ray microcomputed tomography 

(microCT).[126]  The information from microCT was used as spatial prior information and 

overlays the FT image on the microCT image.  The FT system uses a rotating gantry with a 

single source and and a fan-beam of detectors which rotate around the surface of the object 

for non-contact excitation and detection.  Results from phantom studies demonstrated the 

ability of the system: (i) to allow maximum sensitivity in optical tomography with single 

photon counting, (ii) use a noncontact imaging configuration to accompany microCT, (iii) 

obtain fluorescence and transmission data in parallel, (iv) require only several minutes total 

for imaging time, and (v) perform imaging with multiple detectors in parallel.   

 A research group from the University of California, Irvine developed a unique, fully 

integrated tri-modality gantry-based system that combines FT, DOT, and x-ray CT (XCT).  

XCT was used to provide anatomical prior information and DOT was used to provide 

functional prior information of the heterogeneous optical background for the FT 

reconstructed images.[128]  The optical system used point source (3 optical fibers) and area 

detection configuration for transmission based imaging.  Results using the DOT prior 

information only demonstrated accurate localization of a fluorescent target within a 
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heterogeneous phantom background; however, the concentration of the fluorophore was 

recovered with 70% error.  Results using both the DOT and XCT prior information 

recovered the fluorophore with only 8% error. 

 A research group from the Technical University Munich designed a hybrid small 

animal imaging system which combines fluorescence tomography and x-ray computed 

tomography.[130]  The 360º-projection free-space FT system uses point source (two optical 

fibers) and area detection configuration for transmission based imaging.  Structural priors 

from the XCT images were incorporated into the optical reconstruction to allow improved 

imaging performance.  Results demonstrated the ability of the system to reconstruct an 

artificial brain lesion within a euthanized nude mouse.   

 Most of the instrumentation for fluorescence tomography studies has been focused 

toward small animal imaging (especially multimodality imaging).  In our Optical Imaging 

Laboratory we have developed a hand-held probe based optical imaging system and 

demonstrated 3D fluorescence tomography in clinically relevant sized tissue phantoms.[3]   

Extensive phantom studies demonstrated the ability of the device to reconstruct a 

fluorescent target (0.45 cm3) up to a depth of 2.5 cm under perfect uptake conditions.[127]  

A 1.0 cm deep fluorescent target was recovered under a target to background contrast as low 

as 25:1.  The sensitivity and specificity of the device was estimated at 43% and 95%, 

respectively, based on phantom studies.  In vivo fluorescence tomography performed in 

human subjects using the hand-held optical imager is demonstrated in Chapter 13 below.   
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4.4  EXPERIMENTAL METHODS OF FLUORESCENCE TOMOGRAPHY 

 
Fluorescence tomography imaging methods face several challenges such as strong excitation 

light leakage which masks the weak fluorescent signal, limited depth recovery when using 

reflectance-based measurements, and limited spatial resolution.  Several research groups have 

performed studies designed to improve the results obtained from fluorescence tomography 

by optimizing the experimental imaging methods.   

A research group from Dartmouth College performed a study to optimize 

fluorescence tomography for sub-surface imaging of protoporphirin IX.[115]   Phantom 

experiments were performed using a noncontact based imaging system to compare 

fluorescence remittance imaging (FRI) and sub-surface fluorescence diffuse optical 

tomography (FDOT) with the contrast agent protoporphirin IX.  They found that 

tomographic imaging was able to produce a better contrast ratio, while simple planar 

fluorescence imaging produced better signal to noise ratio.  They concluded that an optimal 

system for localizing embedded fluorescent regions should combine fluorescence reflectance 

imaging and sub-surface tomography in order to increase sensitivity and improve depth 

detection. 

 The same group performed another study to investigate the influence of tissue 

optical properties on the shape of near-infrared (NIR) fluorescence emission spectra 

propagating through centimeters of tissue-mimicking material.[123]  Experimental studies 

were performed using liquid and gelatin-based phantoms and Lutetium Texaphyrin (LuTex) 

contrast agent.  The NIRFAST model platform was used to calculate spectrally resolved 

emission spectra at discrete wavelengths and compared to experimentally measured spectra.  

The phantom results showed spectral distortion resulting in emission peak shifts of up to 60 
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nm in wavelength which is analogous to beam hardening and softening in x-ray tomography 

which causes image artifacts.  They concluded that spectrally resolved detection strategies 

should be implemented in order to account for these effects and reduce error. 

 A group from Harvard University tested the ability of a small animal imaging system 

to perform complete-angle projection (360º) fluorescence tomography  in vivo in mouse lung 

and brain tumors.[125]  In both tumor models, the fluorescence was positively identified 

close to the tumor location with noncontact FT in all imaging experiments.  They also 

applied fluorescence dataset normalization in order to correct for dynamic range variation in 

the resulting illumination through the tissue and inhomogeneity.   

4.5  CONCLUSION 

Fluorescence tomography is a promising technique for noninvasive functional imaging.  

However, there are several challenges that are currently being addressed by researchers.  The 

challenges include strong excitation light leakage which masks the weak fluorescent signal, 

poor spatial resolution due to high scattering of the light in biological tissues, and 

mathematical complexity of image reconstruction due to the ill-posed nature of the inversion 

problem.  This chapter reviewed the current (2008-present) efforts of different research 

groups to improve the experimental methods, reconstruction algorithm, and instrumentation 

used in performing fluorescence tomography. 
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CHAPTER 5                                                                                                         

Past Work:  Clinical Diffuse Optical Imaging in Human Subjects 

 
Testing of diffuse optical imaging technology in human tissues is integral for translation of 

the technology into the clinical setting.  In the past decade, several research groups have 

evaluated the performance of diffuse optical imaging in human breast tissue using different 

methods and instrumentation.[134-152]  A systematic review of diffuse optical imaging of 

the healthy and diseased breast was performed by Leff, et al in 2008.[134]    This chapter 

summarizes the major findings by Leff et al and then describes significant clinical studies 

performed in 2008-2010.   

 Leff et al systematically reviewed clinical studies involving close to 2,000 females 

who underwent diffuse optical imaging of healthy and diseased breast tissue.  The review 

focused on summarizing the studies to determine the ability of diffuse optical imaging to (i) 

provide information on the tissue composition of healthy breast tissue, (ii) detect breast 

lesions/abnormalities, and (iii) differentiate benign from malignant disease. 

 Several articles reported the use of diffuse optical methods for measuring the optical 

properties of healthy breast tissue, namely the absorption coefficient (!a) and reduced 

scattering coefficient19 (!s’).  A summary of the experimentally determined absorption and 

scattering properties at near-infrared wavelengths is given in Table 5.1.  The global averages 

(highlighted in pink in Table 5.1) determined the absorption coefficient (!a) to be 0.04 ± 0.02 

cm-1 at wavelengths between 600 and 800 nm and 0.05 ± 0.03 cm-1 at wavelengths between 

800 and 900 nm.  The global average reduced scattering coefficient (!s’) was determined to 

be 10 ± 5 cm-1 at wavelengths between 600 and 700 nm and 8 ± 4 cm-1 at wavelengths 

                                                
19 The effective scattering coefficient which accounts for the anisotropy factor (cosine of the angle of scattering). 
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between 700 and 900 nm.  The remarkable consistency in absorption and scattering 

properties between studies using various methods and instrumentation supports the ability 

of diffuse optical methods in providing information on the composition of healthy breast 

tissue. 

Table 5.1:  Summary of optical properties of healthy breast tissue from the 
literature.  Adapted from Leff, 2008 [134] 

 

Several research studies were reported which involved optical imaging of breast 

tissue containing a lesion or abnormality (either benign or malignant).  In a total of 212 

cases, 179 lesions were detectable by different diffuse optical methods.  This data suggests a 

lesion detection rate of 85% for optical mammography based approaches.  In order to detect 

the presence of abnormal tissue by diffuse optical methods, there must be a detectable
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difference in the tissue optical properties of healthy and abnormal tissue.  Several studies 

focused on comparing total hemoglobin concentration (HbT) and oxygen saturation (SO2) in 

healthy and abnormal tissue.  The results showed that healthy breast tissue had an average 

HbT of 21 ± 6 !M/l and average SO2 of 68 ± 5%.  The average HbT and SO2 of 

fibroadenoma was 54 ± 13 !M/l and 69 ± 3% respectively.  The average HbT and SO2 of 

malignant disease was 65 ± 34 !M/l and 66 ± 24% respectively.  The findings show that 

there is significant difference in the HbT of healthy and abnormal breast tissue, while there 

is no obvious difference in SO2 between healthy and abnormal breast tissue.  The review 

pointed out that only one study reported on the sensitivity and specificity for detecting 

malignancy using spectroscopic information.  Chance et al used a multiwavelength hand-held 

device to acquire data over six years from 166 patients with 44 confirmed malignancies.  

They reported the ability to distinguish cancerous from noncancerous breast tissue with a 

sensitivity of 96% and specificity of 93%.  Overall, the results reported from different 

research groups demonstrate potential of using diffuse optical methods to differentiate 

healthy and abnormal breast tissue. 

 Several research groups reported studies to distinguish benign and malignant breast 

lesions based on diffuse optical measurements of blood volume, saturation, or both.  Several 

of the studies showed that the maximum and average HbT were significantly higher in 

malignant lesions than benign lesions.  However, the results were from a relatively small pool 

of data and more extensive trials will be required to demonstrate conclusive results. 

 Overall, the reports summarized by Leff et al suggest that diffuse optical studies of 

healthy breast tissue show the breast to be nonuniform, and the composition of healthy 

breast tissue is modified due to physiological changes during the life of the female.  Diffuse 
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optical methods seem capable of distinguishing lesions from healthy tissue and demonstrated 

detection of 85% of lesions in breast tissue.  Results suggest that diffuse optical methods 

have potential to distinguish benign and malignant lesions, but further studies and 

improvements in the technology are needed.   

 A summary of reported studies in clinical imaging of breast tissue using diffuse 

optical methods between the years 2008 and 2010 is given in Table 5.2.   

Table 5.2:  Summary of clinical diffuse optical imaging studies between 2008 and 2010. 

   Measurement 
Geometry 

  Measurem
ent 
Technique 

Measurem
ent 
Parameter 

   

Refere
nce 

Instrum
entation 

Met
hod 

Point/Ar
ea 

Reflect/     
Trans 

Source Dete
ctor 

Subject Sens
. 

Spec
. 

                        
You, 
et. al., 
2010 
[146] 

Hand-
held 
imager 
(NIR & 
US) 

DO
T & 
US 

Point -- 
Subsurf
ace 

Reflection   Laser 
diode (785, 
830 nm) 

APD FDPM THC 198 
patients 
(benign & 
malignant) 

83.9
% 

66.7
% 

Solim
an, et. 
al., 
2010 
[147] 

Optical 
bed w/ 
parallel 
plates & 
matchin
g fluid 

DO
S 

Point -- 
Compre
ssed 

Transillumi
nation 

Laser 
diodes 
(690, 730, 
780, 830 
nm) 

PMT TDPM HbO2, Hb, 
%water, 
SP 

10 breast 
cancer 
patients  

-- -- 

Choe, 
et. al., 
2010 
[148] 

Optical 
bed w/ 
parallel 
plates & 
matchin
g fluid 

DO
T 

Point -- 
Compre
ssed 

Transillumi
nation 

Laser 
diodes 
(650, 690, 
750, 786, 
830, 905 
nm) 

CCD 
came
ra 

FDPM & 
CW 

HbO2, Hb, 
THC, SC 

47 patients 
(benign & 
malignant) 

98% 90% 

Jiang, 
et. al., 
2009 
[149] 

Optical 
bed w/ 
ring 

DO
S 

Point -- 
Circular 

Reflection 
& 
transillumin
ation 

Laser 
diodes 
(660-850 
nm) 

-- FDPM   HbT, SO2, 
%water, 
SP 

16 cancer 
patients 

-- -- 

Kukret
i, et. 
al., 
2010 
[150] 

Hand-
held 
imager  

DO
S 

Point -- 
Subsurf
ace 

Reflection   Laser 
diodes 
(660, 690, 
780, 808, 
830 nm)  & 
tungsten-
halogen 
lamp 

APD FDPM & 
CW 

specific 
tumor 
component
s (STC) 

60 subjects 
w/ 22 
malignant, 
18 benign, 
21 control  

91% 94% 

Stahel
, et. 
al., 
2009 
[151] 

Hand-
held 
imager  

DO
S 

Point -- 
Subsurf
ace 

Reflection   Laser 
diodes 
(690, 730, 
750, 808, 
870, 920, 
970 nm) 

APD FDPM HbO2, Hb, 
%water, 
SP 

20 healthy 
subjects 

-- -- 
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van de 
Ven, 
et. al., 
2009 
[152] 

Optical 
bed 

FD
OT 

Point -- 
Circular 

Transillumi
nation  

lasers 
(690, 730, 
780, 830 
nm) 

 CW Omocyanin
e (external 
contrast 
agent) 

12 cancer 
patients 

-- -- 

  

 Stahel et al performed a study to compare the optical properties of breast tissue 

between females who use oral contraceptives to regulate their menstrual cycles and those 

who had spontaneous menstrual cycles.[151] The study was performed using a 

multiwavelength frequency-domain hand-held optical imager containing a single source and 

detector fiber pair.  The results of blood volume and oxygenation measurements showed 

that the breast perfusion, water content, and scattering power in females using oral 

contraceptives was nearly constant during the menstrual cycle and tended to vary in females 

with spontaneous menstrual cycles, while oxygen saturation tended to remain stable in both 

groups.  This study further confirms the ability of diffuse optical methods to be used to gain 

information about healthy breast tissue. 

 Three groups reported studies using diffuse optical methods to distinguish benign 

and malignant breast lesions.  Choe et al used an optical bed with parallel-plate imaging 

geometry to measure oxy-, deoxy-, and total hemoglobin concentration, along with blood 

oxygen saturation and tissue scattering in 47 subjects with 51 lesions.[148]  95% of the 

malignant lesions were invasive ductal carcinoma; of the non-malignant lesions, 40% were 

fibroadenoma, 30% were cysts, 30% were lobular carcinoma in situ, and 10% were fibrocystic 

disease.  The results showed higher total hemoglobin concentration (THC) and scattering in 

malignant lesions than in the surrounding tissue.  Cysts showed lower scattering than the 

background.  Fibroadenomas showed weak contrast in THC and scattering.  The tumor-to-

normal ratios of all parameters were close to unity in the benign lesions, whereas they were 
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significantly different from unity in the malignant cases.  Kukreti et al used data collected 

with a combined FD-CW hand-held optical imager with dual source and detector pairs.[150]  

They used data from 22 malignant and 18 benign lesions to retrospectively determine if 

benign and malignant lesions could be distinguished using near-infrared spectroscopy.  

Results showed a sensitivity of 91% and specificity of 94%.  You et al used a combined near-

infrared and ultrasound based hand-held imager to measure THC in 198 females with 214 

lesions (96 benign and 118 malignant).[146]  The average THC in benign lesions was 125.5 ± 

83.4 !M/l while in malignant lesions it increased to 222.2 ± 87.2 !M/l.  Using a cutoff of 

140 !M/l they were able to detect malignant lesions with a sensitivity of 83% and specificity 

of 66.7%.  The results from these three studies show continued promise of the ability of 

diffuse optical methods to distinguish benign and malignant lesions which has potential to 

reduce the number of surgical biopsies in women with breast lesions. 

 An additional aspect where diffuse optical methods have been applied for breast 

imaging is to monitor the response to neoadjuvant chemotherapy.  Jiang et al performed a 

study to evaluate two methods used to summarize diffuse optical data by region of interest 

analysis to compare complete and incomplete response to neoadjuvant chemotherapy in 

patients with locally advanced breast cancer.[149]  In seven cases of subject data, diffuse 

optical spectroscopy (DOS) measurements of total hemoglobin concentration, blood oxygen 

saturation, water fraction, optical scattering amplitude, and scattering power were analyzed 

using both fixed- and variable-size region of interest (ROI).  Results showed that only the 

measurements of total hemoglobin demonstrated significant difference in the complete and 

incomplete response outcomes.  Soliman et al used diffuse optical methods to measure tissue 

concentration of deoxyhemoglobin (Hb), oxyhemoglobin (HBO2), percent water (%water), 
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and scattering power (SP) in ten patients undergoing neoadjuvant chemotherapy for locally 

advanced breast cancer.[147]  The results showed significant difference in all four parameters 

between responders and nonresponders to the the therapy.  The studies performed by these 

two groups demonstrate the potential role of diffuse optical imaging in monitoring response 

to neoadjuvant chemotherapy in breast cancer patients. 

 External contrast agents can be used in order to improve the detection and 

characterization of breast lesions by diffuse optical methods, especially for smaller-size 

tumors.  Van de Ven et al performed a study to evaluate a novel fluorescent imaging agent, 

Omocianine, in 11 women suspected of breast cancer.[152]  Four different dosage levels 

were used, the smallest and medium doses were each used in three cases and the two highest 

doses were used in five cases.  The results showed the ability to detect two out of three 

tumors using the lowest dose and three out of three tumors using the medium dose.  None 

of the five tumors were detected using the two highest doses.  These results demonstrate the 

potential of using Omocianine as a fluorescent contrast agent to detect lesions using low 

doses of the agent. 

 Diffuse optical imaging of breast tissues has been explored by several research 

groups in the clinical setting using various methods and instrumentation.  Studies show the 

potential of diffuse optical methods to gain information in healthy breast tissue, distinguish 

abnormal tissue from healthy background tissue, distinguish benign and malignant tumors, 

and monitor response to neoadjuvant chemotherapy.  Additionally, use of external contrast 

agents can improve imaging ability of diffuse optical methods by increasing the contrast.   

 Clinical trial in human subjects is an essential and defining stage in the development 

of new imaging technology.  Hand-held optical imagers provide a promising avenue toward 
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rapid translation of the optical imaging technology to the clinical setting.  The overall 

objective of the dissertation is toward the clinical translation of our hand-held optical imager, 

which is unique in its ability to perform 3D tomography.  Various studies were performed in 

tissue phantoms, in vitro, and in vivo toward this objective.  The next chapter describes the 

instrumentation and data analysis procedures for the studies performed toward clinical 

translation of the hand-held optical imager developed in our Optical Imaging Laboratory. 
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CHAPTER 6                                                                                    

Instrumentation and Data Analysis 

6.1  INTRODUCTION 

A hand-held optical imaging device has been designed and developed in our Optical Imaging 

Laboratory with the following unique features: (i) flexibility to image different tissue 

curvatures (0o - 45o) via a geometrically adaptive probe head; (ii) ability to simultaneously 

illuminate (at 6 point locations) and collect NIR signals (at 165 point locations) towards 

rapid data acquisition; (iii) portability and comfort from the hand-held design with maximal 

patient comfort [3]; and (iv) coregistration facilities to enable 3D tomographic imaging in 

complex tissue geometries [153].   

 Previously, experiments were performed to demonstrate 3D fluorescence 

tomography using the hand-held based optical device in slab tissue phantoms [3].  In order 

to perform 3D tomography, the image collected with the hand-held device must be 

coregistered to the geometry of the phantom being imaged.  For the past studies, the images 

collected using the probe were manually coregistered to the simple slab phantom geometry 

at the known location on the phantom surface.  In the current research, automated 

coregistration capabilities are implemented to facilitate translation of the device towards 

clinical studies in order to perform 3D tomography in curved (in vivo) tissue geometries.  

Experimental studies are performed using the hand-held based optical imaging system on 

tissue phantoms, in vitro, and in vivo with human subjects.  This chapter describes the 

instrumentation used to collect continuous-wave and frequency-domain based 

measurements (Section 6.2), the principle of continuous-wave and frequency-domain based 
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optical imaging (Section 6.3), the experimental protocol for data acquisition in phantom and 

in vitro studies (Section 6.4), and the automated coregistered imaging process (Section 6.5). 

6.2  OPTICAL IMAGING SYSTEM 

The three major components of the imaging system are the hand-held probe, the laser diode 

source, and the intensified charge-coupled device (ICCD) detector.  The instrumentation is 

developed such that it can acquire both continuous wave (CW) based and frequency-domain 

photon migration (FDPM) based optical measurements as required.   

 The hand-held probe head is designed with unique features in that it is flexible to 

contour to different tissue curvatures, it has a large imaging area (4 x 9 cm2) for large volume 

interrogation, and it uses simultaneous illumination and detection for rapid data acquisition.  

The hand-held probe head is shown in Figure 6.1.  The six red dots show the location of six 

source fibers and the black dots are the 165 detector fibers.  The probe is divided into three 

sections and each of the side sections is capable of curving up to 45°.   

 

 
Figure 6.1  The actual hand-held probe face showing the source-detector configuration.  The large 
red dots represent the six source fiber locations and all other small holes are the 165 detector fiber 
locations. 
 

 At the source end, a single 785-nm laser diode source (530 mW, HPD1005-9MM, 

Intense Ltd., North Brunswick, NJ) is split into six illuminating fibers using a custom-built 
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collimator-diffuser package.  The laser source is coupled to the handheld probe as shown in 

Figure 6.2.  For FDPM measurements, the source end is modulated using a frequency 

synthesizer (HP 8656B, Hayward, CA) and RF amplifier (ENI500L, ENI Inc., Rochester, 

NY) as shown in Figure 6.3.   

 
Figure 6.2  Hand-held probe based optical imaging system showing the hand-held probe is fiber-
optically coupled to the laser source and ICCD camera (left).  The probe face is flexible to contour to 
different tissue curvatures (right).   
 

 At the detector end, a gain modulated image intensifier (FS9910, ITT Night Vision, 

VA) is optically coupled to the CCD camera (PI-SCX 7495-0002, Roper Scientific, Trenton, 

NJ).  For FDPM measurements, the image intensifier is modulated using a frequency 

synthesizer (PTS 310, Programmed Test Sources Inc., Littleton, MA) and RF amplifier 

(ENI503L, ENI Inc., Rochester, NY) as shown in Figure 6.3.  The two frequency 

synthesizers at the source and detector end are phase locked and operated at the same 

frequency (100 MHz).  The output intensity from the ICCD camera is sensitive to the phase 

delay and upon introducing a phase shift from 0 to 2�, phase-sensitive images are collected 

from which measurements can be extracted in terms of amplitude (AC) and phase (�) of the 

modulated signal.  
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Figure 6.3 Schematic of the instrumentation for the hand-held optical imager.  The CW based 
imaging system is shown in white and the additional components for FDPM based imaging are 
highlighted in blue. 

The CCD camera acquires steady-state phase sensitive images at 32 phase delays 

between 0 and 2�.  The exposure time for the CCD camera is 0.2 seconds (s) for a single 

image (in all experiments) and each collected image represents the average signal from 5 

repetitions.  The exposure time was kept small enough to allow rapid image acquisition and 

using more than 5 repetitions was previously determined not to improve the result.[154]  

The image is acquired in 1024 " 1024 pixels and is hardware binned to 128 " 128 pixels for 

improved signal to noise ratio and faster imaging time.  The raw image is post-processed in 

MATLAB software developed in house to get the DC values (for CW imaging) at each 

detector location on the probe and displayed as a 2D contour plot.  For FDPM imaging, the 
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amplitude (AC) and phase (�) information is extracted using fast Fourier transforms (FFT), 

and the final image is presented as a 2D surface contour plot of the AC or phase values at 

each of the 165 detector points of the probe. 

 When operated in continuous wave mode (Figure 6.3, white portion), the laser light 

is emitted at a constant intensity and travels to the tissue via optical fibers connected at the 

probe face.  The light passes from the probe into the phantom or tissue and becomes 

attenuated due to the effect of the absorption and scattering properties of the medium.  The 

reflected light is collected at the tissue surface by the optical fibers in the probe and carried 

to the detector.  Different types of filters are used depending on the type of study.  For 

absorption based studies a neutral density filter is used to uniformly attenuate the collected 

signal.  For fluorescence based studies two band pass interference filters of blocking OD 4 

and 6 (HRF-830.0, blocking OD 6 and F-830.0, blocking OD 4, CVILaser, Albuquerque, 

NM) are used to select the weak 830nm fluorescent signal and reject the 785 nm excitation 

signal.  The filtered signal reaches the image intensifier at the photocathode and is converted 

into electrons.  The electrical signal is amplified at the micro-channel plate (MCP) according 

to the manual gain setting on the power supply of the image intensifier.  The amplified signal 

then encounters the phosphor screen where it is converted back to a light signal and imaged 

onto the CCD camera.  The raw image is a 1024 " 1024 distribution of intensity signal from 

each of the 165 detector fibers in the bundle.  The 1024 " 1024 image is hardware-binned to 

128 " 128 to reduce noise and processing time.  Post-processing MATLAB software 

developed in house is then used to back calculate the location of each detection point on the 

hand-held probe face and interpolated to generate a 2D surface contour plot.  Frequency-

domain based optical imaging involves the use of a modulated laser signal.  In our hand-held 
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based optical imaging system, the incident light is continuously produced and the intensity is 

sinusoidally modulated via a frequency synthesizer at 100 MHz.  As the intensity-modulated 

light passes from the hand-held probe into the tissue, the intensity of the signal becomes 

attenuated and the phase of the modulation altered according to the optical properties of the 

tissue.  The attenuated and phase-shifted signal is then collected from the tissue surface and 

the detected signal is modulated at the same frequency.  The fast Fourier transform is used 

to extract the intensity and phase information to generate separate 2D contour plots which 

in turn provide information about the optical properties within the tissue. 

6.3.  ACQUISITION OF OPTICAL DATA WITH THE HAND-HELD IMAGER 

Two-dimensional (2D) diffuse optical and fluorescence-enhanced imaging was performed, 

using the hand-held device operated in the CW-mode, on tissue phantoms, and in vitro.  

Spherical acrylic targets (of different sizes) filled with 0.02-0.08% India ink as an absorbing 

contrast agent (for diffuse optical studies) or 1 !M ICG fluorescent contrast agent (for 

fluorescence-enhanced studies) were used to mimic a tumor in experiments with tissue 

phantoms, in vitro, and healthy human subjects.    The probe was placed in full contact with 

the phantom or tissue surface as shown in Figure 6.4 and CW images of the absorption or 

fluorescent intensity were acquired in close to real-time (~2 sec delay).  The raw intensity 

images at the ICCD camera end were acquired in 1-sec (0.2 sec exposure time " 5 

repetitions).  These images were post-processed (~1 sec) using in-house developed Matlab 

codes (Section 6.4) in order to acquire the final 2D surface contour plots of fluorescence 

intensity distribution of the imaged surface.  The entire data acquisition and post-processing 

was automated such that close to real-time (~2 sec delay) imaging is possible.  For 

frequency-domain imaging, phase-sensitive images were collected with a ~2-minute imaging 
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time.  The 2D surface contour plots of fluorescence intensity signal may or may not 

differentiate the target from the tissue phantom background, based on the target and 

background optical properties.   

 

 
Figure 6.4  Experimental set-up for tissue phantom, in vitro, and in vivo studies: (A) empty phantom 
showing target inclusion and placement of probe, (B) tissue slab phantom with 1% Liposyn solution 
for uniform scattering in the background, and (C) in vitro slab phantom with heterogeneous scattering 
in the background.  
 

6.4.  ELIMINATION OF EXCITATION LIGHT LEAKAGE (SUBTRACTION 
BASED POST-PROCESSING) 

During fluorescence optical imaging, the output signal at the tissue surface is a mixture of 

fluorescence signal and the attenuated incident NIR (i.e. excitation) signal.  This fluorescence 

signal is filtered from the strong excitation signal (3-4 orders of magnitude higher) using 

appropriate optical (bandpass) filters and imaged by the detector.  However, the filters are 

not capable of 100% rejection of the excitation light, causing excitation leakage and 

contamination of the fluorescent signal. Hence, a second-level of post-processing is carried 

out to subtract a background non-fluorescing image from the final fluorescence image plots 

for each experimental case, in order to account for the excitation leakage.  Initially, optical 

measurements were acquired prior to placing the fluorescent target in the phantom, in an 

attempt to represent the excitation leakage (or background noise).  These (background noise) 

measurements were subtracted from the fluorescence optical measurements obtained from 
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experimental cases that included fluorescent targets, in order to effectively eliminate the 

signal from the excitation source light.  In the clinical setting involving actual diseased tissues 

(unlike the simulated fluorescent targets in the current study), this could be accomplished by 

acquiring image(s) of the tissue before and after the contrast agent (e.g. ICG) injection.  The 

non-fluorescent image(s) acquired prior to ICG injection will in turn be subtracted from the 

fluorescent images acquired after ICG injection, in order to account for the background 

noise.  Another method is to collect an image from both breasts and subtract the image of 

the ipsilateral (tumor-containing) breast from the image of the contralateral (non-tumor-

containing) breast.  This was the method applied in the human subject studies with breast 

cancer patients (Chapter 14). 

A single image acquisition consists of collecting an image with target (~ 2 sec), 

collecting a background image (~ 2 sec) and subtracting the two images (~ 1 sec).  The 

subtracted 2D optical images are generated rapidly (< 5 sec), making the entire process a fast 

2D surface imaging technique.   

6.5.  AUTOMATED COREGISTERED IMAGING PROCESS 

In order to perform 3D tomography using a hand-held optical imager, it is necessary to 

coregister the 2D image at the appropriate location on the tissue geometry.  For the past 

tomography studies with cubical tissue phantoms, the images were manually coregistered at 

the known locations on the simple cubicle geometries. In order to perform 3D tomography 

in human tissue with varied complex geometries, it is necessary to track the probe location in 

real time and automatically coregister the image at the tissue location.  To this end, 

coregistered imaging facilities developed by a master’s student in our lab have been 

implemented with our hand-held based optical imaging device.   
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 Coregistered imaging involves the alignment of two or more images (planar or 

volumetric) in a single coordinate space.  Herein, an intramodality20 coregistration method 

(similar to 3D ultrasound imaging) is used to acquire 3D coregistered surface images from 

2D surface data collected using the hand-held device.  These 3D surface images will in turn 

be used towards 3D tomographic analysis.  In coregistered imaging, the position and 

orientation of the probe is tracked with respect to the tissue or phantom surface being 

imaged.  This tracked 3D positional information is then used to accurately position the 

acquired optical images onto the tissue geometry.   

Tracking of the probe position is achieved using an acoustic-based 3D tracker 

(Logitech Inc., Fremont, CA) which consists of a transmitter (positioned ~2 feet above the 

hand-held probe), receiver (implemented onto the probe head), and a processing unit.  The 

position and orientation of the receiver (probe head) is tracked in real-time in reference to 

the transmitter.  The probe’s position is acquired by the computer with six degrees of 

freedom (x, y, z, pitch, yaw, and roll21) using MATLAB software developed in house and 

interfaced to the processing unit tracking software.  The tracked probe’s position and 

orientation are displayed on the computer screen as position coordinates angles of rotation.  

Coregistered imaging of tissue/phantoms is implemented as a three-stage process 

(see Figure 6.5).   

Stage 1:  The special 3D location of the probe is determined and the probe’s position and 

orientation is tracked in real-time with respect to a discretized mesh of the phantom or tissue 

geometry (steps 1-4 in Figure 6.5).  

                                                
20 Two types of coregistration techniques that exist include intermodality and intramodality.  Intermodality coregistration 
combines images of different modalities (e.g. CT/MRI, SPECT/MRI, optical/MRI, etc.), whereas intramodality 
coregistration combines images from the same modality (e.g. 3D ultrasound imaging). 

21 Pitch, yaw, and roll refer to the tracked object’s rotational orientation in reference to the x-, y-, and z-axis respectively. 
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Figure 6.5 Flowchart of the coregistered imaging process, implemented as automated coregistration 
software during optical imaging studies. 
 

 

Stage 2: The hand-held probe based imaging system is used to acquire raw data, i.e. 

optical signals of intensity (step 5 of Figure 6.5).   The raw data is post-processed (step 6 of 

Figure 6.5) using MATLAB software developed in house as described in section 4.1 to 

generate and display the image as a 2D surface contour plot (step 7 of Figure 6.5).  The 

average time to acquire the raw data and display the post-processed images (2D contour 

plots) is ~2 sec (0.2 sec exposure time for each of the 5 repeated measurements, and ~1 sec 

for data post-processing to obtain 2D surface contour plots). 
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Stage 3:  Image coregistration is performed using tracking/coregistration interfacing 

software developed in house in MATLAB/LabVIEW.  The optical data from the 2D surface 

contour plot is coregistered onto the 3D discretized phantom at the probe location using the 

positional information of the entire probe head (i.e. all source and detector point locations) 

during each scan.  The entire coregistered imaging process is described in detail in reference 

[153]. 

The current version of the coregistration software is designed to work with 

phantoms with known position/orientation, and does not take into account any motion of 

the phantom or tissue being imaged.  In the future, this can be remedied by adding tracking 

abilities to the phantom (or subject) being imaged, thereby allowing location and orientation 

of the phantom/tissue to be automatically known and updated in real-time.  The use of 

additional trackers is currently being implemented by a master’s student in our laboratory.  

6.6.  CONCLUSION 

A CW and FDPM based hand-held optical imaging system has been developed in our 

laboratory for coregistered imaging and 3D tomography of breast tissue.  This chapter 

detailed the instrumentation and data analysis procedure for the experimental studies to 

perform fast 2D imaging.  The next chapter will describe the AEKF based reconstruction 

algorithm used to perform diffuse optical and fluorescence-enhanced diffuse optical 

tomography using our hand-held based optical imaging device. 
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CHAPTER 7                                                                                          

Fluorescence-enhanced Diffuse Optical Tomography 

7.1  INTRODUCTION 

Three dimensional (3D) optical tomography is used to reconstruct the 3D volume and 

location of the tumor within the tissue.  Measurements collected at the surface of the tissue 

are used to mathematically reconstruct the optical property distribution at discrete points 

within the tissue volume.  The optical properties of interest in biological tissue are 

absorption and scattering.  There are two types of mathematical problems addressed in 

tomography: the forward problem and the inverse problem.  The forward problem is used to 

simulate light propagation in tissue of known optical property distribution.  The inverse 

problem is used to reconstruct the optical properties within the tissue given a set of 

experimentally measured values (fluence) at the tissue surface.  In each mathematical 

formulation, the tissue volume is discretized and the optical properties are calculated at each 

discrete location.  This chapter will describe the mathematical model of light propagation in 

tissue, the forward and inverse problems, and the AEKF reconstruction algorithm used to 

perform 3D tomography. 

7.2  LIGHT PROPAGATION IN BIOLOGICAL TISSUES 

The propagation of light through a highly scattering medium is often modeled using the 

diffusion approximation of the radiative transport equation.  The coupled diffusion 

equations for the case of fluorescence-enhanced imaging in the frequency domain are [104] 
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where the subscripts x and m are used to represent the excitation and emission wavelengths 

of light respectively.  In these equations, � is used to represent the amplitude of the fluence 

signal  "a and "s represent the absorption and scattering coefficients, q and � are the 

quantum efficiency and fluorescent lifetime of the fluorophore, c is the velocity of light, � is 

the modulation frequency, and r is the positional vector.  D is the diffusion coefficient given 

by: 

                                              ( ))1(3
1

,,
, g

D
msxmax

mx !+
=

µµ
                                               (3) 

where g is the anisotropy factor.  The partial current boundary condition is applied which 

assumes that once a photon leaves the tissue it does not return.  It is expressed by 

                                               02 ,
,, =!

"

#
$
%

& '
+'

dn
d

D mx
mxmx (                                                  (4) 

where � is the index-mismatch parameter, which is a function of the effective refractive 

index, and n is the normal to the surface. 

 The diffusion approximation of the radiative transport equation is applied in the 

forward and inverse problems to model light propagation in tissue and to reconstruct the 

internal distribution of tissue optical properties using surface measurements. 

7.3  FORWARD PROBLEM 

The forward problem in optical imaging is used to predict light transport in biological tissue 

during simulations.  The problem is stated as follows:  Given a distribution of light sources 
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on the boundary of an object and a distribution of tissue parameters within the object, find 

the resulting measurements that would occur at the surface.  Figure 7.1 illustrates the 

forward and inverse problems.   In the forward problem (left), the parameters !a and !s’ are 

known within the tissue and the propagation of light to the boundaries is predicted.  In 

biomedical optical imaging, the forward problem is typically solved using the diffusion 

approximation to the radiative transport equation described in section 7.2.  The diffusion 

equation is solved numerically using a finite difference or finite element based approach.  

For the studies described herein, a Galerkin based finite element approach was used to solve 

the forward problem. 

 
 

Figure 7.1  Illustration of the forward and inverse problem in optical tomography.  In the forward 
problem, the optical property distribution is known and used to predict the measurements that would 
occur at the surface of the tissue.  In the inverse problem, the measurements obtained experimentally 
at the surface are used to reconstruct the unknown optical property distribution within the tissue. 
 

7.4  INVERSE PROBLEM 

The inverse problem in optical imaging is to reconstruct the unknown optical properties 

within a tissue given a set of measurements at the boundary.  The problem is stated as 

follows:  Given a distribution of light sources and a distribution of measurements on the 
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surface, calculate the tissue parameter distribution within the tissue.  The inverse problem is 

illustrated in Figure 7.1 (right) where a set of measurements of fluence (�i) is collected at the 

boundary, and the unknown internal properties of the given tissue are mathematically 

reconstructed (in this case, !a and !s’).  In the case of the inverse problem, the number of 

unknowns is much greater than the total number of surface measurements acquired and the 

problem is to solve an underdetermined system of linear equations.  The solutions are non-

unique and inconsistent making the problem ‘ill-posed’ 

7.5  APPROXIMATE EXTENDED KALMAN FILTER (AEKF) BASED 
RECONSTRUCTION ALGORITHM 

Optical tomography has been performed using different algorithms such as Algebraic 

Reconstruction Techniques (ART) [125], NIRFAST [126], and Born approximation [133].  

For the tomography studies performed herein, a Bayesian reconstruction technique was used 

which is an approximate extended Kalman filter (AEKF).[104]  The Kalman filter is a linear 

state Bayesian estimator that is used in process control in order to estimate a state 

recursively, using the previous observations.  The filter yields estimates of true measurement 

values and the corresponding calculated values by the following process: (i) predict a value, 

(ii) estimate the uncertainty of the predicted value, (iii) compute a weighted average of the 

predicted value and the measured value.  The estimator determines the mean value of the 

conditional probability function of the unknown parameters using given measurements, 

assuming that the state variables and observations are normally distributed random variables.  

This Bayesian estimator was chosen due to the following advantages:  (i) the updates in each 

iteration are weighted and the matrix inversion is regularized using measurement error 

(between repeated measurements) and model error (which results from simplifications of the 
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diffusion approximation), and (ii) the parameter error values are estimated separately from 

the parameter value itself and used to damp and regularize the inversions.  The method of 

the AEKF algorithm is given by the following pseudocode[104]: 

 
iterate 

1: x = f(y) 
for i = 1 to # source illuminations 

2: y
xJ
!
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= i
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end 
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until convergence 
 
where the definitions of each term is given in Table 7.1. 

Table 7.1.  Definitions of terms used in AEKF pseudocode. 

x distribution of  predicted measurements

z corresponding experimental measurements

y unknown parameter (updated recursively)

J Jacobian matrix

K gain matrix

Q model error covariance

R measurement error covariance

P parameter error covariance

f forward solver
 

 
The parameter x represents the distributed predictions of the referenced measurements (the 

logarithm of AC and the phase shift for the case of frequency-domain measurements), which 
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are generated by the forward simulator f.  The parameter y represents the vector of current 

estimates of the unknown optical property, which is an inverse pseudo-� transform of the 

optical absorption coefficient !axi (in the case of fluorescence imaging, it is the absorption 

coefficient due to the fluorophore, !axf).  The measurement error covariance was assumed 

uncorrelated, and repeated observations (in this case, five) at each detector location were 

used to experimentally determine the variance for each source-detector pair.  The model 

error covariance Q is difficult to estimate for unknown domains, and was empirically chosen 

to be one-fourth the mean of the measurement error variance.  The discrepancies between 

measurements and predictions (z - x) are weighted by a gain matrix K in order to update the 

uncertain parameters y and the parameter error covariance P.  The gain matrix K is used to 

update the unknown optical parameter y and the parameter error covariance P.  An initial 

variance estimate was set (typically 0.01, however 0.1 was used for some in vitro cases due to 

inhomogeneous background) and the parameter error was assumed uncorrelated with the 

initial estimate.   

 A flow diagram of the AEKF based reconstruction algorithm used herein is 

illustrated in Figure 7.2.  In fluorescence studies the reconstructed parameter is the 

absorption coefficient at the excitation wavelength (!axf).  The algorithm starts with an initial 

guess of uniform distribution (herein, arbitrarily set to 0.003 cm-1), and uses the experimental 

data from the hand-held probe along with simulated measurements using the forward model 

(diffusion approximation) to get an updated distribution of the parameter of interest (!axf).  

Each updated distribution is then used in the algorithm until the convergence criteria is met 

and the reconstruction is complete.  The AEKF algorithm is carried out recursively, i.e  each 

set of measurements is used to continuously update the unknown parameter y and the 
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parameter error covariance P, without storing the set of measurements from each loop. This 

recursive AEKF algorithm is carried out iteratively until the reconstructions converge.  The 

convergence criteria was met when the root mean square output error RMSE was less than 

1%, or the total number of iterations exceeded 50. 

The AEKF reconstruction algorithm was developed for frequency-domain based 

fluorescence tomography.  Modifications were made to the algorithm during the various 

tomography studies presented herein to adapt for continuous-wave based measurements, 

multiple-scan studies, and in vivo studies.  The modification details will be given in the 

materials and methods for each tomography study appropriately. 

 

Figure 7.2  Flow diagram of the AEKF based reconstruction algorithm. 
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7.6 CONCLUSION 

This chapter detailed the reconstruction approach used in the tomography studies performed 

herein.  The diffusion approximation of the radiative transport equation is used to model 

light propagation in biological tissue (forward problem).  An approximate extended Kalman 

filter (AEKF) based reconstruction algorithm is used to reconstruct the unknown optical 

property distribution within tissue given experimental measurements at the tissue surface 

(inverse problem).  The next chapters detail the experimental studies performed toward the 

goals of fast 2D imaging, coregistration, and 3D tomography in tissue phantoms, in vitro, and 

in vivo with human subjects. 
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CHAPTER 8                                                                                                  

Study I:  2D Imaging in Tissue Phantoms and IInn  VViittrroo  in Near-Real 

Time 

8.1 INTRODUCTION 

Real-time imaging is a useful tool for on-site cancer diagnosis in the clinical setting.  Prior to 

performing 3D tomography studies using our hand-held optical imager, studies were 

performed to determine the ability of the device to detect a target via 2D imaging in near 

real-time.  This chapter describes experimental studies that were performed in tissue 

phantoms and in vitro designed to detect the presence and estimate the 2D location of a 

fluorescent target using continuous wave based imaging. 

8.2  MATERIALS AND METHODS 

Fast 2D imaging was facilitated by the use of simultaneous multiple-point illumination and 

collection and CW based measurements.  Studies were performed using slab tissue phantoms 

composed of 10"10"10 cm3 acrylic cubes filled with 650 ml of 1% Liposyn solution 

(Liposyn II, 20%, Henry Schein, Melville, NJ) in order to mimic the optical properties of a 

typical breast tissue.  The fluorescent target was placed at different depths (1.5-2.5 cm) from 

the imaging surface and real-time as well as fast (subtracted) images of fluorescence intensity 

were acquired.  The different experimental cases are summarized in Table 8.1. 

 Prior to in vivo studies with human subjects, experiments were performed using in 

vitro phantoms, which were composed of minced chicken breast combined with 1% Liposyn 

solution, in order to introduce a non-uniform scattering background.  The in vitro mixture of 

minced chicken breast (480 ml) and 1% Liposyn (260 ml) was placed inside a 10"10"10 cm3 

acrylic cube.  Real-time as well as fast (subtracted) images of fluorescence intensity were 
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acquired under different experimental conditions using either a 0.23 cc or 0.45 cc fluorescent 

target located at various depths between 1-2 cm (see Table 8.1).   

Table 8.1  Summary of experimental cases for slab tissue phantom and in vitro studies. 

 

8.3  RESULTS 

8.3.1 Tissue Phantom Studies 

Real-time images using the slab phantom with uniform scattering in the background are 

shown in Figure 8.1 as 2D surface contour plots of the fluorescence intensity data with a 

target placed at different depths (1.5-2.5 cm) from the imaging surface.  The non-uniform 

intensity distribution in Figure 8.1 is possibly due to the residual excitation leakage around 



  

 83 

the six source fibers (after the implementation of the subtraction technique).  Additionally, 

the input laser source signal is not evenly distributed amongst the six source fibers, possibly 

causing a variation or non-uniformity in the output fluorescence intensity distribution.   

 
Figure 8.1  Near real-time images of fluorescence intensity obtained as 2D surface contour plots, 
acquired from slab phantoms (with uniform background scattering). The fluorescent target was 
placed at different locations and depths: (A) target location: (x,y,z) = (2.0, 2.7. 1.5), and (B) target 
location (x,y,z) = (2.0, 2.7, 2.0) and (C) target location: (x,y,z) = (3.0, 2.2, 2.5).  The black hollow 
circle in each sub-plot is the true target location. 

 

 The images show the feasibility of performing (close to) real-time 2D imaging using 

the hand-held device in tissue phantoms.  The actual target location in the images is 

indicated in the figures by the black open circle in the x-y plane for different target depths in 

the ‘z’ direction.  The fast 2D image estimates the 2D target location (instantly) in the x-y 

plane.  This information can then be further used towards 3D tomography (in the future) in 

order to determine the tumor volume, location, and depth [3].  

 From these plots, it is obvious that the real-time images are capable of differentiating 

the target from the background when the 0.45 cc target was 1.5 cm deep.  At greater tissue 

depths, the target was not distinctly differentiable due to the strong excitation leakage from 

the background.  Upon applying the subtraction technique (as described in Section 6.4), the 

target is clearly differentiable from the background in all the experimental cases (see Figure 

8.2).  These subtracted images also have potential to obtain 3D target localization via 
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tomographic imaging, as long as the probe’s location on the tissue surface is coregistered 

with respect to the surface fluorescence images.   

 
Figure 8.2  Fast subtracted images of fluorescence intensity obtained as 2D surface contour plots, 
acquired from slab phantoms (with uniform background scattering).  The 0.45 cc fluorescent target 
was placed at different locations and depths: (A) target location: (x,y,z) = (2.0, 2.7. 1.5), and (B) target 
location (x,y,z) = (2.0, 2.7, 2.0) and (C) target location: (x,y,z) = (3.0, 2.2, 2.5).  The black hollow 
circle in each sub-plot is the true target location. 
 

8.3.2 IInn  VViittrroo  Studies 

The results for the in vitro phantom experiments are shown in Figures 8.3 (real-time images) 

and 8.4 (fast subtracted images) for different target depths (1-2 cm) under T:B contrast ratio 

of 1:0.  The true target location in the images is given as x,y,z coordinates where ‘x’ is the 

lateral position, ‘y’ is the height and ‘z’ is the depth (distance from the imaging surface) 

which vary among the images.  Due to heterogeneous scattering of the background 

phantom, only the subtracted images were capable of clearly differentiating the target from 

the background for targets deeper than 1.0 cm.  These studies show the ability of the hand-

held device to perform fast 2D surface imaging and target localization within a non-uniform 

scattering tissue-mimicking background.    
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Figure 8.3  Near-real time images of fluorescence intensity obtained as 2D surface contour plots, 
acquired from in-vitro slab phantoms (with non-uniform background scattering). The 0.45 cc 
fluorescent target was located at a depth of (A) 1.0 cm, and (B) 1.5 cm, from the imaging surface.  
The black hollow circle in each sub-plot is the true target location.   
 

 

 
Figure 8.4  Fast subtracted images of fluorescence intensity obtained as 2D surface contour plots, 
acquired from in-vitro slab phantoms (with non-uniform background scattering).  Images were 
collected for different target sizes and depths.  Images (A)-(C) contain a target size of 0.45 cc at 
depths of 1.0, 1.5, and 2.0 cm respectively.  Images (D)-(F) contain a target size of 0.23 cc at depths 
of 1.0, 1.5, and 2.0 cm respectively.  The black hollow circle in each sub-plot is the true target 
location. 
 
  

8.4  DISCUSSION 

The fluorescence imaging studies described here demonstrate for the first time the 

acquisition of fast 2D surface images (in < 5 sec) of a fluorescent target in uniform tissue 

phantoms and in vitro using a hand-held based optical imaging device.  The subtracted images 

have a potential to clearly differentiate target(s) from the background (under various 

experimental conditions), demonstrating the potential to translate the technology towards 

on-site breast imaging in a clinical environment.  Additional experiments were performed 

with the target located at greater depths in the tissue phantoms, but the target was not 

detected at a depth of 2.5 cm.  At 2.5 cm deep, the detected signal from the target is close to 
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the noise floor, and hence not differentiable from the background.  A multi-location 

scanning approach is currently developed for differentiating deeply located or small volume 

targets from homogenous or heterogeneous background (details in Chapter 9).  In short, this 

approach will incorporate the use of coregistered images obtained at multiple locations on 

the tissue surface, such that the targets can be differentiated from artifacts22 as well as the 

background [80].  When comparing Figures 8.2 and 8.4, it can be seen that the images from 

the in vitro phantom contain more noise than those from the uniform tissue phantom.  This 

can possibly be attributed to the heterogeneous distribution of scattering properties or 

shifting of the chicken breast as the target is removed (which can cause a change in the signal 

distribution when the background image is collected).  Experiments were also performed 

using the in vitro phantoms with a T:B contrast ratio of 100:1.  However, the noise from the 

background signal dominated the image and a target was not detected even after subtracting 

the excitation background signal.  Upon applying our multi-location scanning approach, the 

targets were differentiable under imperfect uptake conditions (i.e. T:B = 100:1).  In addition 

to fast 2D imaging, the hand-held device described here has demonstrated 3D tomography 

of fluorescent targets with tissue phantoms using frequency-domain based measurements in 

order to estimate the 3D location and volume of the target within the tissue. [3].  Additional 

efforts involve the implementation of fast and automated coregistration facilities in order to 

enable precise 2D target localization (instantaneously) as well as 3D tomography studies in 

vitro as well as in vivo (Chapter 10 and 13, respectively). 

                                                
22 Any signal that occurs in the image which is not from the target or tumor. 
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8.5  SUMMARY AND CONCLUSION 

Preclinical testing of a hand-held optical imager was performed to demonstrate the ability of 

the device to perform fast 2D imaging toward tumor detection in near real-time.  

Experimental studies show the ability of the device to detect and estimate the 2D location of 

a 0.45 cm3 fluorescent target up to 2.5 cm deep in a tissue phantom with homogeneous 

background and fluorescent targets of 0.23 or 0.45 cm3 volume up to 2.0 cm deep in vitro 

with heterogeneous background (more like a true tissue case). The goal of these studies was 

to determine if it was possible to detect a signal from the target using only fast 2D imaging.  

Target localization can be performed subsequently using 2D or 3D tomography.  The results 

presented herein demonstrate the potential of the device toward target detection and 

estimation of 2D target location even prior to 3D tomographic analysis. 
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CHAPTER 9                                                                                                       

Study II: Coregistered Imaging towards Improved Target Depth 

Detection (using Multiple-scan Coregistered Imaging) 

9.1  INTRODUCTION 

The feasibility of 2D target detection and 3D tomographic analysis using this hand-held 

optical imager has been demonstrated from tissue phantom and in vitro fluorescence imaging 

studies.  During these studies, a single scan in the region of interest was acquired to detect 

and recover the embedded target(s) tomographically (using manually coregistered optical 

images).  However, it was observed that as the target depth was increased and/or its volume 

decreased, the target was not detectable from 2D images, nor was it recovered from 3D 

tomography studies.  Experimental studies using single fast 2D images showed the ability to 

detect a target (0.45 cm3) up to 2.5 cm deep in tissue phantoms and up to 2.0 cm deep in vitro 

(details in section 8.3).  Herein, an alternate imaging approach of using multiple-scans from 

various locations of the tissue surface is developed (using automatically coregistered optical 

images) and its feasibility to detect deeper targets is assessed [155]. 

In the current work, the recently developed multi-scan imaging approach is 

extensively assessed to determine the target detection limits of our hand-held optical imager.  

Studies were performed using the liquid tissue phantoms in order to determine the extent of 

improvement upon the previous studies using single-scan.  Studies were also extended to in 

vitro tissue models in order to assess the performance of the device in a non-uniform (or 

heterogeneous) scattering background, in order to better mimic human tissue.  
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9.2  MATERIALS AND METHODS 

9.2.1 Phantom and In Vitro Studies 

Experimental studies were performed initially using the simple case of the uniform liquid 

tissue phantom and were then extended to more realistic in vitro models.  Phantom 

experiments were performed using tissue phantoms composed of 1% Liposyn (800 mL) in a 

10"10"10 cm3 acrylic cube.  Acrylic sphere targets of sizes 0.23 - 0.45 cm3 filled with 1 !M 

indocyanine green (ICG) were placed at different depths (2.5-4.0 cm) from the imaging 

surface to represent a tumor.  Experiments were performed increasing the depth by 0.5 cm 

until the target was no longer detected.  The experimental set-up is shown in Figure 9.1.  The 

probe was placed in full contact with the phantom surface and multiple scans (2D 

coregistered images) were collected using the method described in section 2.5 below.   

 

Figure 9.1  Experimental set-up for phantom studies.  (A) A spherical target filled with 1 !M 
indocyanine green is enclosed within the cubical phantom to represent a tumor.  (B) The phantom is 
composed of a 1% Liposyn solution to mimic the optical properties of human breast tissue.  

To represent the heterogeneous nature of human tissue, studies were also performed 

in vitro using minced chicken breast (480 mL) combined with 1% Liposyn (260 mL) in a 

10"10"10 cm3 acrylic cube in order to introduce a background of non-uniform scattering.   

The 0.45 cm3 fluorescent target was placed at different depths between 2.0-4.0 cm, until the 

target was no longer detected.  The experiments were performed for the perfect uptake case 
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with tumor-to-background ratio (T:B) of 1:0 and imperfect uptake case with T:B of ~100:1.  

Table 9.1 summarizes the different experimental studies performed in which a target was 

detected.  For each image collected, a subtraction-based post-processing technique was used 

to eliminate excitation light leakage (as described in Section 6.4). 

 
Table 9.1  Summary of experimental studies in which a target was detected in tissue phantoms and in 
vitro.  The cases where the deepest target was detected for phantom or in vitro, and perfect or 
imperfect uptake are highlighted in red. 
 

Experimental 
Case 

Experiment 
# 

Target     
Volume 
(cm3) 

Target 
Depth 
(cm) 

 
T:B 

 
 
 
Tissue 
Phantom 

1 0.45 3.0 1:0 
2 0.45 3.5 1:0 
3 0.23 2.5 1:0 
4 0.23 3.0 1:0 
5 0.23 3.5 1:0 
6 0.45 2.5 100:1 
7 0.45 3.0 100:1 
8 0.23 2.0 100:1 
9 0.23 2.5 100:1 
10 0.23 3.0 100:1 

 
 
In Vitro 

11 0.45 2.5 1:0 
12 0.45 3.0 1:0 
13 0.45 3.5 1:0 
14 0.45 2.0 100:1 
15 0.45 2.5 100:1 

 
 

 

9.2.2  Validation of Coregistered Imaging in Phantoms 

In order to quantitatively determine the accuracy of the tracked position and coregistered 

image compared to the true location on the phantom, the probe was placed at five different 

reference points of known locations (moving 0.5 cm vertically) and five measured values 

were recorded from the tracking software at each position.  The average, standard deviation, 
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and discrepancy of these measured values for each position are given in Table 9.2.  It can be 

seen from the standard deviation of the measured values that the tracked probe position 

fluctuates between 0.013-0.094 cm.  The average total distance off represents the accuracy of 

the tracked position compared to the true location.  The average total distance off is ~0.19 

cm.  The deviation and discrepancy of the measured values can be attributed to 

instrumentation error such as fluctuation in the tracked position of the probe.  Currently, 

efforts are made to overcome these limitations and improve the stability of the tracking 

system (Chapter 16). 

Table 9.2  Average and standard deviation of x,y,z coordinates as displayed in tracking software and 
total distance off  between true and measured values.  Values are in units of centimeters and each 
measured value represents an average of 5 measurements while probe was at each of the 5 positions. 

9.2.3 Multiple Scan Technique 

The multiple scan technique involves collecting a series of scans at different probe positions 

and coregistering each image to its appropriate location.  A scan is defined as a 2D surface 

contour plot of fluorescence intensity data collected from a CW image (the mean of 5 

repeated images at the same location) using the ICCD based detection system.  Each image 

is immediately coregistered to the discretized phantom mesh.  By scanning at multiple 

locations, the weak fluorescence signal from the target (which appears at the same location 
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on the tissue geometry during each scan) can possibly dominate the strong excitation light 

leakage (which tends to appear at different locations on the tissue geometry during each 

scan).   

 Different combinations of image positions were used to determine the optimal 

multi-scan method.   Initially 4-5 scans were collected moving the probe 0.5 cm in the 

vertical direction between each scan.  For the same experimental case, 9 scans were collected 

moving the probe in 0.25 cm increments in the vertical direction.  Additionally, repeated 

scans were collected at each probe location.  It was determined that collecting 2-3 repeated 

scans (i.e. 2-3 " 5 repeated images or 10-15 repeated images) at each probe location for 4-5 

positions 0.5 cm apart resulted in better target detectability with fewer artifacts than 

collecting single scans (i.e. 1 " 5 repeated images) at each probe location for 9 positions 0.25 

cm apart.  This can possibly be attributed to two reasons: (i) the inaccuracy (from instability) 

of the positional tracking system (described in section 2.3) has greater impact at smaller 

positional increments (e.g. 0.25 cm), leading to increased artifacts; and (ii) the variability in 

the instrument’s response is minimized by increasing the number of repeated scans (or 

images) at the same location.   The number of repeated scans (or images) can be increased 

for the case where the probe locations were 0.25 cm apart.  However, this further increases 

the overall imaging time and hence was not attempted.  In the future, for an in vivo case, 

multiple images can be collected and summed from arbitrary probe positions and the 

number of scans can be optimized to minimize the overall imaging time and number of 

artifacts.  The position will be known since the image is immediately coregistered at its 

location.  
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9.3  RESULTS 

 
Figure 9.2 shows four single images (2D contour plots of fluorescence intensity) for 

experimental case # 12 where a 0.45 cm3 fluorescent target was placed 3.0 cm deep in vitro 

under perfect uptake condition (T:B=1:0).  Multiple scans were collected as described in 

section 2.5.  In each image, the true target location is indicated by a black open circle.  The 

images show that the target is not detected in a single scan, and only random distributions of 

artifacts (high intensity signals that appear in the image which do not originate from the 

target) are visible.   

 

 
 

Figure 9.2  Coregistered images from single scans (2D contour plots of fluorescence intensity data) 
at four probe positions for experimental case #12 (a 0.45 cm3 fluorescent target placed 3.0 cm deep, 
x-dimension in-vitro phantom under T:B=1:0).  In each image, the white dotted line represents the 
probe position with respect to the phantom and the black open circle represents the true target 
location. 
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Upon summation of eight scans, the fluorescent signal is detected at the target location 

(Figure 9.3).  This can be attributed to the random distribution of artifacts that appear in 

different locations for each single scan, while the signal from the target remains in the same 

location relative to its coregistered position on the phantom.  Upon summation of the 

coregistered images, the random signals from the artifacts tend to diminish compared to the 

consistent signal from the target, which tends to intensify. 

 
Figure 9.3  Summated image of multiple scans shown in Figure 9.2 (experimental case #12).  The 
summed image represents summation of 8 single scans, where 2 scans were collected at each of the 4 
probe positions shown in Figure 9.3,  The black open circle represents the true target location. 

 
 

Figure 9.4 shows the result for summated multi-scan images for experimental cases 

5, 10, 13, and 15 (Table 9.1, bold).  Case 5 represents a 0.23 cm3 target placed 3.5 cm deep in 

the tissue phantom under perfect uptake conditions (T:B=1:0).   The target was detected 

close to the true location and no artifacts were present.  Case 10 represents a 0.23 cm3 target 

placed 3.0 cm deep in the tissue phantom under imperfect uptake condition (T:B=100:1).  

The target was detected at the true location with some diffused signal around it.  Case 13 

represents a 0.45 cm3 target placed 3.5 cm deep in vitro under perfect uptake conditions 

(T:B=1:0).    The target was detected at the true location with artifacts also visible far from 
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the target location.  These artifacts can be attributable to the heterogeneous nature of the in 

vitro phantom.   

 
 

 
Figure 9.4  Summed images of multiple coregistered scans from the four best experimental cases 
listed in Table 1.  The black open circle indicates the true target location for each case. 
 
 
Case 15 represents a 0.45 cm3 target placed 2.5 cm deep in-vitro under imperfect uptake 

conditions (T:B=100:1).  The target was detected close to the true location along with 

minimal artifacts around it.   

The initial experiments designed to detect deeper targets consisted of performing a single 

scan at 4-5 positions moving the probe 0.5 cm in the vertical (z) direction.  For deeper 

targets (>3.0 cm), heterogeneous (in vitro) phantoms, and/or imperfect uptake cases, the 

target was not detected upon summation of four or five scans.   However, it was observed 

that when multiple repeated scans were collected at the same location for each probe 

position, the targets were detectable.  In other words, increasing the number of repeated 

scans is as important as increasing the number of scan locations towards deep target 

detection under heterogeneous and/or imperfect uptake conditions.   

The results presented here demonstrate that deeper and smaller targets can be detected using 

the multiple-scan approach than using a single-scan alone.  The impact of these results 

extend beyond target detection in 2D in that the information can be used as a priori 
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information to aid 3D reconstruction using a single frequency-domain image (or scan) 

towards deeper target recovery (future work). 

9.4  DISCUSSION 

The prime hypothesis for the current study is that a single scan (of a large area, 4 x 9 cm2) 

can fail in detecting deeper targets during a near real-time optical imaging study.  Upon 

scanning at multiple locations on the surface of a tissue geometry, the possibility to detect 

deeper targets and differentiating them from artifacts tends to improve upon summing all 

these multiple scans.  The detection limits of our hand-held optical imager, the first of its 

kind that can scan large areas in near real-time, has been 2.5 cm for a 0.45 cm3 target under 

T:B=1:0 from the past studies (Chapter 8) involving a single scan from the region of interest 

on the tissue geometry.  In the current study, it was clearly observed that upon summation of 

the intensity signals from multiple scans of the tissue surface, targets of smaller volume and 

as deep as 3.5 cm were detectable.  However, artifacts start appearing when the target depth 

is increased, the target volume is decreased, and/or heterogeneity of the background 

increased.  The reasons for these artifacts are two-fold: (i) The uneven source strength 

distribution of the 6 simultaneous sources affects the ability to detect the target depending 

on the proximity of the target to the stronger sources.  As multiple scans are collected the 

strong source may move away from the target resulting in a more diffused signal which 

produces a greater number of artifacts upon subtraction of the background.  (ii) The 

positional information of the hand-held probe is not accurately coregistered due to the 

instability of the motion tracking device, which can lead to misalignment of the target signal 

in the multiple images.  As a result, some signals which originated from the target can be 

mistaken as artifacts due to their improper location in the image.  Currently, work is carried 
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out to homogenize the source strength distribution by altering the instrumentation set-up at 

the source end, and also developing alternate motion tracking approaches that are stable and 

more accurate in comparison to the current device.   

 Researchers in the past have demonstrated detection of targets as deep as 5 cm using 

their hand-held optical devices [50].  However, the detection was typically a point location 

that was spectroscopically obtained from the tissue surface.  In addition, the specificity of 

getting a negative result (not detecting any target) in the absence of the target (i.e. in the 

surrounding tissues) is not described.  In other words, unlike the current hand-held optical 

imager that can produce 2D images over large areas in near real-time, the other hand-held 

imagers have a limited imaging area (mostly point-based imaging) and typically produce only 

spectroscopic measurements from a few sources/detectors.   

 The advantage of the current hand-held imager’s optical data is that it can be applied 

towards 3D tomography studies, since the positional location of the optical data with respect 

to the 3D tissue geometry is coregistered during imaging studies.  Hence, the 

implementation of the multi-scan imaging approach and using the summated images towards 

immediate 2D deep target detection and future 3D tomographic analysis is feasible.  

Although the present study is focused on fluorescence-enhanced optical imaging, the multi-

scan summation and imaging approach is applicable for absorption-based diffuse optical 

imaging studies as well. 

 In the area of fluorescence tomographic imaging, Sevick’s research group was one of 

the first groups to demonstrate 3D fluorescence optical tomography in clinically relevant 

sized tissue phantoms, using large bulky optical imaging instrumentation [24].  Fluorescent 

targets of 1 cm3 volume were recovered at a depth up to 2.8 cm under perfect uptake 
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conditions.  The first in vivo 3D fluorescence optical tomography of breast cancer in human 

subjects was demonstrated by Corlu et. al. where tumors were recovered in vivo up to 2.0 cm 

deep in human breast tissue [110].  From our past 3D tomography studies using the hand-

held imager on large tissue phantoms, 0.45 cm3 targets as deep as 2.5 cm were recovered in 

uniform tissue phantoms under perfect uptake conditions [3].   

In a recent in vivo study using a simulated fluorescent target, a single scan using our 

hand-held optical imager was able to detect a 0.23 cm3 target ~ 2.5 cm deep in human breast 

tissue (Chapter 11).  These studies demonstrate the potential that upon using multiple scans 

and applying the summation approach, deeper and smaller targets can become detectable 

from the tissue surface.  In addition, these summated images can also assist in 

tomographically recovering deeper targets beyond what is demonstrated to date in the area 

of fluorescence optical tomography.  However, the developed hand-held optical imager is 

limited to reflectance based imaging, which tends to limit the recovery of the target’s true 

depth during 3D tomography.  Currently, research is carried out to develop alternate imaging 

approaches using the hand-held device such that trans-illumination measurements can also 

be acquired in an attempt to improve the target depth recovery (during 3D tomography). 

9.5  CONCLUSION 

Herein we have demonstrated improved detection limits via application of a multiple-scan 

technique.  The multi-scan imaging approach is facilitated by the use of fast 2D coregistered 

imaging in CW mode.  Previous results using single-scan imaging showed that the greatest 

target depth detected was 2.5 cm and 1.5 cm for a 0.45 cm3 target in a (liquid) tissue 

phantom under perfect and imperfect uptake conditions, respectively.  By using the multi-

scan technique, this depth was improved to 3.5 cm for a smaller target (0.23 cm3) under the 
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T:B=1:0 condition.  Under imperfect uptake conditions (T:B=100:1), the detectable target 

depth was increased from 1.5 cm to 3.0 cm.  Since these results were promising, studies were 

extended to in vitro models, which better represent the non-uniformity of human tissue.  

From these in vitro studies the target was detected at depths of 3.5 cm and 2.5 cm for perfect 

(1:0) and imperfect uptake (100:1) cases, respectively.  These studies demonstrate that 

summation of multiple coregistered images can be used towards deeper target detection than 

is capable from single scans alone.  In a clinical setting, this technique can be used to acquire 

multiple images quickly in order to detect the presence of a tumor, determine its 2D location 

within the tissue, and also perform 3D tomography studies (as a follow-up).  Thus, the hand-

held optical imager has potential for fast 2D imaging and 3D tomography in the clinical 

setting for breast cancer diagnosis.   
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CHAPTER 10                                                                                                     

Study III: 3D Tomography Studies in Tissue Phantoms and IInn  VViittrroo  

10.1  INTRODUCTION 

Parallel to the coregistered imaging studies described in Chapter 9, 3D tomography studies 

were carried out in tissue phantoms and in vitro with simple geometries using manual 

coregisteration.  This chapter describes FDPM tomography studies using a single image and 

CW tomography studies using multiple summated images towards recovery of targets at 

greater depths.  

10.2  MATERIALS AND METHODS 

10.2.1  FDPM Based Reconstructions IInn  VViittrroo  

Three-dimensional fluorescence tomography studies were performed from FDPM 

measurements collected using the hand-held device with in vitro phantoms.  The phantoms 

were composed of minced chicken breast (480 mL) and 1% Liposyn (260 mL) for a total 

volume of 800 mL within a 10x10x10 cm3 acrylic cube.  A 0.45 cc acrylic sphere target was 

filled with 1 !M ICG and placed at different locations and depths within the phantom.  A 

FDPM image was collected with the target followed by a background image with the target 

removed to use to subtract the excitation signal.  In all cases the laser power was set to 217 

mA, the frequency synthesizer was set to 2.7 dB, and the exposure time was 200 msec.  The 

gain setting on the image intensifier was adjusted for each data set and held constant 

between images with and without a target.  The optical properties of the phantom (!ax, !sx’, 

!am, and !sm’) were measured at both the excitation (‘x’) and emission (‘m’) wavelengths (785 

and 830 nm, respectively) using a single pixel homodyne FDPM optical property 

measurement system.  Multiple repetitions (5-10) of the optical property measurements were 
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collected and averaged for each in vitro phantom.  The phantom was stirred between each 

measurement in order to acquire values that are an average representation of the mixture as a 

whole.  An example optical property measurement set including mean and standard 

deviation of the optical properties at each wavelength is shown in Table 10.1.  The table 

shows large standard deviations due to the heterogeneous nature of the phantom material, 

and hence ten measurements were collected and averaged for each wavelength.  The output 

intensity of the six source points at the probe face were measured using a digital optical 

power meter (PM121 w/ S121 sensor, 500nW-500mW, Thorlabs, NJ) and average values 

were used as input parameters in the reconstruction algorithm.  The initial guess of the 

reconstructed parameter (!axf) was arbitrarily set to a uniform distribution of 0.003 cm-1 and 

an initial p-value of 0.01 was used in all cases.  Table 10.2 provides a summary of the 

experiment parameters for various experimental cases including the average measured source 

intensities, the gain setting on the image intensifier, the actual target location in cm, the 

actual target volume, the measured optical property values of the phantom at the excitation 

and emission wavelengths, the target to background ratio (T:B), the recovered target location 

in cm, the recovered !axf values in cm-1, the recovered target volume, the number of 

iterations executed before convergence, and the breakpoint (cutoff value selected on the first 

breakpoint of a histogram plot of the recovered !axf values).  The total distance off between 

the true and recovered target locations was calculated using the following equation: 

                  (1)
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Table 10.1  Sample optical property measurements of the in vitro phantom.  All optical property 
values are in units of cm-1.  

 

The results from two example cases (highlighted in yellow in Table 10.2) are given in Section 

10.3.1.  

10.2.2  CW Based Reconstructions using Summed Multiple-scan Data 

Three-dimensional (3D) reconstructions were performed using the CW based data from all 

the multiple-scan experimental cases detailed in Chapter 9 (summarized in Table 9.1).  For 

the CW based reconstructions, the modulation was set to zero in the reconstruction 

algorithm for continuous amplitude.  Each experimental set encompassed a series of 8 scans, 
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2 repetitions at 4 different probe locations moving vertically in 0.5 cm increments (see 

Section 9.2.2 for more details on the multiple-scan acquisition).  The 2D images of the 

summed multiple-scan data were presented in Section 9.3.  Herein, 3D reconstructions were 

performed using two methods: (i) individual reconstructions were performed using the data 

from each single scan and the recovered !axf values were then summed; (ii) the initial raw 

data from the 8 scans was summed together into a single data set which was then used to 

perform 3D reconstructions.  A separate mesh was generated to input in the reconstruction 

algorithm for the different data sets, with different nodes assigned to the source and detector 

coordinates according to the coregistered location of the probe with respect to the phantom. 

10.3  RESULTS AND DISCUSSION 

10.3.1  FDPM Based Reconstructions IInn  VViittrroo  

Figure 10.1 shows the result for experimental case #26 (Table 10.2) with a target located 2.0 

cm deep from the imaging surface under perfect uptake conditions.  The 2D contour plot 

represents the subtracted fluorescence intensity data collected in the frequency domain and 

the three isosurface contour plots show three different views of the 3D reconstruction of the 

target.  These plots show a recovered target; however the absorption coefficient values of 

the fluorophores (labeled as V1 in Figure 10.1) are low (close to the initial distribution of 

0.003).  The total distance off between the true and recovered target location was 1.9 cm.  

This large value is mostly attributable to the z-coordinate which represents the depth of the 

target from the imaging surface.  

 

 

  



104 

Table 10.2  Summary of the experiment parameters for two sample experimental cases including the 
average measured source intensities, the gain setting on the image intensifier, the actual target 
location in cm, the actual target volume, the measured optical property values of the phantom at the 
excitation and emission wavelengths, the target to background ratio (T:B), the recovered target 
location in cm, the recovered !axf values in cm-1, the recovered target volume, the number of 
iterations executed before convergence, and the breakpoint (cutoff value selected on the first 
breakpoint of a histogram plot of the recovered !axf values).  A full table of all experimental cases 
performed is given in Appendix C. p   g   pp  

 

The true z-coordinate was 2 cm, while the recovered z-coordinate was only 0.2 cm (Table 

10.2).  The limited depth recovery is due to the physics of reflectance based measurements 

and has been reported by other research groups in the literature.[23,105,114] 

Figure 10.2 shows the 3D reconstruction result for experimental case #27 (Table 

10.2) with a target located 2.5 cm deep under perfect uptake conditions.  The 2D contour 

plot shows the presence of more artifacts at this deeper target location; however the 

isosurface plots of the 3D reconstructions show that the target was recovered at this depth.  

Similar to the previous result, the recovered absorption coefficient values of the 

fluorophores (labeled as V1 in Figure 10.2) are low (close to the initial distribution of 0.003), 

the reconstructed location was close to the true location in the x-y plane, and the recovered 

depth is shallow compared to the true depth.  The total distance off between the true and 

recovered target location was 2.0 cm, which is mostly attributable to the depth (z-

coordinate). 
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Figure 10.1.  Reconstruction of 2.0 cm deep target within heterogeneous in vitro phantom under 
perfect uptake case.  (A) 2D image collected using hand-held device, (B) 3D view of isosurface plot 
of reconstructed target, (C) three views of reconstructed target (solid open circle represents true 
target location; dotted line encircles recovered target).  The term V1 in the legend represents the scale 
for the recovered !axf values in cm-1. 
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Figure 10.2  Reconstruction of 2.5 cm deep target within heterogeneous in vitro phantom under 
perfect uptake case.  (A) 2D image collected using hand-held device, (B) 3D view of isosurface plot 
of reconstructed target, (C) three views of reconstructed target (solid open circle represents true 
target location; dotted line encircles recovered target).  The term V1 in the legend represents the scale 
for the recovered !axf values in cm-1. 

10.3.2  3D CW Based Reconstructions using Summed Multiple-scan Data 

Figure 10.3 shows an initial result from the heterogeneous in vitro phantom with the target 

located at 2.5 cm depth from the imaging surface under imperfect (100:1) uptake.   
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Figure 10.3  3D reconstruction using summed coregistered data.  (A) 2D contour plot of summed 
images collected using hand-held probe.  (B) Coregistered image of summed data with phantom 
mesh.  (C) Isosurface plot of 3D reconstruction.  (D)  Contour slices showing intensity data of 3D 
reconstruction.  The true target location is indicated by a black circle (A-B) or a dark red sphere (C-
D). 

Figure 10.3A shows the 2D contour plot of fluorescence intensity of the summed image 

with the true target location indicated by the black open circle.  Figure 10.3B shows the 

coregistered image of the summed data.  Figure 10.3C and 10.3D shows the isosurface and 

contour slices of the 3D reconstruction respectively.  From the contour slices it can be seen 

that a high signal is reconstructed in the region where the target is located and the 

reconstructed location is closer to the true depth than previous reconstructions using single-

scan FDPM data.  There is also noise signal reconstructed close to the imaging surface.  This 

is a result of reflectance-based measurements and in future the first centimeter can be cut off 

during deep target imaging.   
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 These preliminary results demonstrated the potential for deeper target recovery upon 

3D fluorescence reconstructions using summed multiscan coregistered images.    In previous 

reconstructions using a single image, the target was recovered shallower than the true depth 

(~ 1 cm deep).  This is due to the use of reflectance based measurements and the same result 

was found by other researchers as well.[23,105,114]  Figure 10.3D shows that the 

reconstructed signal from the 3.0 cm deep target is located at a depth greater than 2 cm.  In 

the case of deep target imaging, the first cm of the image can be cut off to minimize this 

noise.    

 Sample results from four of the experimental cases that were reconstructed are 

presented herein and the details are summarized in Table 10.3.  Figure 10.4 shows the 

reconstruction results (shown as contour slices) from experimental case A where the 8 single 

scans were reconstructed individually.  The true target location is indicated by a grey sphere.  

It can be seen that the 3.0 cm deep target was not recovered upon 3D reconstruction using 

single scans. 

 

Table 10.3  Summary of selected experimental cases for summated image reconstructions. 

Experimental Case 
Target 
Volume 

Target 
Depth T:B 

Target 
(x,y,z) 

Tissue 
Phantom 

A 0.45 cm3 3.0 cm 100:1 (4.5, 2.5, 3.0) 

B 0.23 cm3 2.0 cm 100:1 (6.0, 2.5, 2.0) 

In Vitro C 0.45 cm3 3.0 cm 1:0 (4.5, 2.5, 3.0) 

D 0.45 cm3 3.5 cm 1:0 (4.5, 2.5, 3.5) 
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Figure 10.4  Individual 3D reconstructions (shown as contour slices) of the 8 single scans from 
experimental case A in Table 10.3.  The grey sphere represents the true target location. 

Figure 10.5 shows results for the first method of CW based summated multiple-scan 

reconstructions where the recovered !axf values from the individual reconstructed scans were 

summed together.  The results show contour slice plots for the four experimental cases 

summarized in Table 10.3.  In each case, the plots in the left column represent the 

summation of four scans from four probe locations (i.e. scans 1,3,5,7) and the plots in the 

right column represent the summation of the repeated set of four scans at the same probe 

locations (i.e. scans 2,4,6,8). 
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Figure 10.5  Results for the first method of CW based summated multiple-scan reconstruction 
(shown as contour slices) where the recovered !axf values from the individual reconstructed scans 
were summed together.  The true target location in each plot is indicated by a grey sphere.  

Plots B1, C1, and C2 in Figure 10.5 show recovered signal close to the true target location 

without surrounding artifacts.  However, there is no discernible target recovered in the other 
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five plots.  Hence, it cannot be concluded that a target is recoverable using this method of 

summation towards 3D tomography. 

 The results from the second reconstruction method where the 2D image containing 

the summed raw data from the entire set of eight scans was used in the 3D reconstruction 

are given in Figure 10.6.  Figure 10.6A shows the result for a 0.45 cm3 target with 1 !M ICG 

placed 3.0 cm deep in a tissue phantom under imperfect uptake (T:B=100:1).  Figure 10.6B 

shows the result for a smaller target (0.23 cm3) with 1 !M ICG placed 2.0 cm deep in a tissue 

phantom under imperfect uptake (T:B=100:1).  Both cases show a region of higher signal 

close to the true target location (indicated by the yellow dotted circles).  In each case, the 

recovered signal is located vertically higher than the true target location, and there are many 

surrounding artifacts.  Figure 10.6C shows the result for a 0.45 cm3 target with 1 !M ICG 

placed 3.0 cm deep in vitro under perfect uptake (T:B=1:0).  Figure 10.6D shows the result 

for a 0.45 cm3 target with 1 !M ICG placed 3.5 cm deep in vitro under perfect uptake 

(T:B=1:0).  In both cases, there is no significant signal recovered close to the true target 

location.   
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Figure 10.6:  Results for 3D reconstructions performed using multiple summated coregistered 
images.  Details of each experimental case are given in Table 10.3.  The yellow dotted circles indicate 
possible recovered signal from the fluorescent targets.  The true target locations are indicated by grey 
spheres circled in black for emphasis. 

Overall, the results did not show that reconstruction of summated images enables 

deeper target recovery.  This could be due to several factors.  The summed images were 

treated as a single image at the initial probe location with six source locations and 165 

detector locations.  An alternate approach would be to incorporate additional source and 

detector positions at the additional probe locations.  However, this would misrepresent the 

experimental procedure by treating the sequentially collected scans as though they were 

collected simultaneously with additional sources and detectors.  A parallel study was 

performed where the individual data sets were reconstructed prior to summation and then 

the recovered !axf values were summed.  However, the results did not show reconstruction 

of the deeper targets upon summation.  This was likely due to the high amount of noise and 

lack of signal at the true target location in each of the individual reconstructed images.  In 
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the future, some filtration techniques might be applied to reduce the noise in the images 

possibly enabling reconstruction of the targets using the summated images. 

10.4  SUMMARY AND CONCLUSION 

Studies were performed to demonstrate 3D tomography in tissue phantoms and in vitro to 

recover a fluorescent target within a heterogeneous scattering background.  FDPM based 

reconstructions were performed in vitro and fluorescent targets were recovered up to a depth 

of 2.5 cm.   CW based multiple-scan reconstructions were performed in tissue phantoms and 

in vitro toward deeper target recovery using two methods: (i) summation of the recovered !axf 

values from the individually reconstructed single scans; (ii) performing 3D reconstruction 

using the summed raw data from the entire set of scans.    The results from the CW based 

multiple-scan reconstructions did not conclusively show the reconstruction of deeper targets 

upon using the summated images.  Possible filtration techniques can be applied in the future 

to reduce the noise in the summed images. 

 



114 

CHAPTER 11                                                                                                  

Study IV :  2D Imaging IInn  VViivvoo  with Healthy Human Subjects in Near-

Real Time towards Target Detection 

11.1  INTRODUCTION 

Thus far, fast 2D imaging, coregistered imaging, and 3D tomography have been 

demonstrated in tissue phantoms and in vitro.  Herein, in vivo studies are performed on 

healthy human subjects to demonstrate the feasibility of using the hand-held device to image 

a fluorescent target with a background of real human breast tissue.[156]   

11.2  MATERIALS AND METHODS 

All human subject studies were approved by the Florida International University 

Institutional Review Board.  Healthy female volunteers age 21 and above were recruited for 

the studies.  A spherical fluorescent target was used to simulate a tumor (the same target 

used in phantom and in vitro studies) and was placed underneath the flap of the breast tissue 

(i.e. between breast tissue and chest wall, underneath the tissue) as shown in Figure 11.1.  

Table 11.1 gives a summary of the in vivo experimental cases performed.   

 

Figure 11.1  Schematic showing the location of an absorbing target placed superficially underneath 
the breast tissue and the location of the probe during imaging. 
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Table 11.1  Summary of experimental cases performed for in vivo fast 2D imaging studies. 

 

In the first study, a 0.23 cc sphere with 1 !M ICG was placed under the right breast 

in the 4 o’clock position.  The flat probe face was placed against the breast tissue (centered 

at the 6 o’clock location) with gentle compression to achieve full contact with the tissue and 

a near-real time CW fluorescent intensity image was acquired (around the target region).  The

depth of the target within the tissue was approximately 2.5 cm as measured with a Vernier 

caliper.  The experiment set-up for in vivo human subject studies is shown in Figure 11.1 

(with mannequin for demonstration only). 

 

Figure 11.2  Experimental set-up for in vivo studies with human subject (mannequin shown here for 
demonstration only).  The hand-held probe is placed in full contact with the breast tissue.  The raw 
image and the 2D contour plot are displayed on the computer screen. 
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 A second study was performed using a single target with the probe in the maximum 

curved position (i.e. 45° curvature of the two side plates of the 3-plate based probe face).  

The images collected with the probe in the curved position possibly include trans-illuminated 

measurements in addition to reflectance based measurements.  This study was performed to 

demonstrate the feasibility of using the probe in its curved position, such that it can contour 

along the tissue and also provide fluorescent images that can aid in target detection.   Herein, 

a 0.45 cc fluorescent target containing 1 !M ICG was placed under the right breast in the 8 

o’clock position.  A real-time as well as fast (subtracted) image of fluorescence intensity was 

acquired.    

 A third study was performed to demonstrate the feasibility of imaging multiple 

targets within real human breast tissue.  Two targets were placed under the fold of the left 

breast tissue, with a 0.23 cc target at the 6 o’clock position, and a 0.45 cc target was placed at 

the eight o’clock position of the same breast.  A real-time as well as fast (subtracted) image 

of fluorescence intensity was acquired by applying gentle compression on the left breast 

tissue.   

 During the studies, the probe was placed visually over the breast tissue and centered 

with respect to the nipple region.  For future in vivo studies with human subjects, a more 

systematic protocol is currently being developed.  The method uses a clear plastic sheet with 

holes placed on a grid at premeasured locations.  The plastic will be placed over the tissue 

and a pen will be used to mark the probe locations on the tissue.  The grid is shown in figure 

11.2.   
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Figure 11.3  Systematic grid developed for future imaging studies.  The positions are measured with 
reference to the center (nipple) region which is indicated by the red dotted circle.   

The positions are measured and numbered from the nipple region and the number of 

locations used will be determined by the volume of tissue to be imaged.  For the first set of 

images, the probe will be centered over the marks in the middle region with the bottom of 

the probe aligned with each mark.  For the second set the probe will be centered over the 

marks in the outer region, and for the third set the probe will be centered over the marks in 

the inner region.  The positions are labeled with U or L to indicate “upper” and “lower” 

region, respectively, and O, M, or I to indicate “outer”, “middle”, or “inner” region, 

respectively.  The entire set will be repeated on the other breast at the corresponding 

locations.  For the studies described here, the probe location in all cases roughly corresponds 

to the LM4 location in Figure 11.2. 
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11.3  RESULTS 

 
 Figure 30 shows the fast 2D subtracted images of fluorescence intensity obtained in 

vivo (from a normal human subject using a simulated target) with the probe in the flat 

position (Figure 30A) and in the curved position (Figure 30B).  These subtracted image 

results demonstrate the feasibility of fast 2D surface imaging and 2D target localization in a 

clinical environment.  The real-time (non-subtracted) images of fluorescence intensity were 

unable to differentiate the target from the heterogeneous background, and hence only the 

fast 2D subtracted images are shown in Figure 11.3. 

 
Figure 11.4  Fast subtracted images of fluorescence intensity obtained as 2D surface contour 
plots, acquired in vivo from a human subject using a spherical fluorescent target, for two 
experimental cases: (A) the probe was in the flat position and a 0.23 cc target was placed at the 4 
o’clock position, and (B) the probe was in the curved position and a 0.45 cc target was placed at 
8 o’clock position.  The images acquired using the probe in the curved position are illustrated as 
projected as a flat 2D image, in order to be consistent with the images presented in case (A) (i.e. 
using the probe in flat position).  
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Figure 11.5  Fast subtracted image of fluorescence intensity obtained as 2D surface contour plot, 
acquired in vivo from a human subject using two spherical fluorescent targets (0.23 and 0.45cc). 
 
 

 The 2D subtracted images of fluorescent intensity from multiple simulated targets in 

a human subject are shown in Figure 11.4.  The 0.23 cc target is detected in the center of the 

image and the 0.45 cc target is detected towards the left side in the image, which are very 

close to the true locations of these targets.  This study demonstrates the potential to image 

and localize multiple fluorescent targets (of different sizes) within human breast tissue.    

11.4  DISCUSSION AND CONCLUSION 

The fluorescence imaging studies described here demonstrate for the first time the 

acquisition of fast 2D surface images (in < 5 sec) of a fluorescent target in vivo using a hand-

held based optical imaging device.  The subtracted images have a potential to clearly 

differentiate target(s) from the background of human breast tissue at a depth of ~2.5 cm 

either with the probe in the flat position using gentle compression or with the probe in the 

curved position to contour around the tissue curvature.  The results demonstrate the 

potential to translate the technology towards on-site breast imaging in a clinical environment.  
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CHAPTER 12                                                                                                   

Study V: Coregistered Imaging IInn  VViivvoo  with Healthy Subjects 

12.1  INTRODUCTION 

In order to perform 3D tomography in complex geometries such as human breast tissues, it 

is necessary to accurately coregister the image to the tissue geometry.  In the phantom 

studies described above, the simple cubical geometries were generated manually using 

Gambit software.  In the case of human subjects, the geometry shape and volume varies for 

each subject and thus must be acquired individually.  This chapter describes the process of 

acquiring the breast tissue geometry for each human subject, generating the surface mesh of 

the tissue geometry, and demonstrating coregistered imaging on normal human subjects.  

12.2  MATERIALS AND METHODS 

12.2.1  Initial coregistered imaging approach (motorized 3D scanner & sitting 
position) 
 
A commercially available hand-held 3D scanner (Polhemus, Inc.) was employed to acquire 

the breast tissue geometry.  Use of the scanner on human subjects was approved by the FIU 

Institutional Review Board.  A motorized system was implemented with scanner to 

automatically acquire the scan without requiring an operator to hold the scanner.  This 

method was designed to enable the scanning procedure to be independent of the operator as 

well as to allow more privacy for the subject since the scanner would be operated by 

computer from outside a curtained room.  The automated scanning system set-up is shown 

in Figure 12.1A where the subject was seated in an upright position during the scan 

(mannequin is shown for demonstration only).  Each scan was composed of a series of four 
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sweeps of the scanner which would cover both sides of the breast tissue as well as part of 

the chest wall and ribcage area.  The acquired geometry was displayed by the  

 

Figure 12.1  Initial set-up for acquiring 3D breast tissue geometry for coregistered imaging. 

Polhemus software (Figure 12.1B) and then exported as a .MAT file and discretized using 

MATLAB software developed in house to generate the surface mesh geometry to be loaded 

into the coregistration software (Figure12.1C).  The automated coregistered imaging process 

using MATLAB/LabVIEW software developed in house was detailed in Chapter 6. 

12.2.2  Validation of coregistered imaging in human subjects  

Automated coregistered imaging has been demonstrated in phantoms which have rigid 

structure and simple geometry.  Translation of this procedure to human tissue is a much 

more complex case since human tissue is not rigid and has irregular shapes.  Prior to in vivo 

studies on human subjects, it is necessary to validate the automated coregistered imaging 

process on actual human tissue. 
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Coregistered imaging in human breast tissue is validated by the following procedure.  

In step one the breast tissue geometry is acquired by using a 3D scanner to scan the breast 

tissue (Figure 12.2A).  In step two, the 3D geometry is transformed into a discretized surface 

mesh (Figure 12.2B).  In step three, an initial reference point is automatically inserted into 

the mesh at the center region of the tissue which is marked correspondingly at the same 

location on the subject (Figure 12.2C).  Four additional reference points are generated 

automatically and the x-y-z positions are given quantitatively relative to the initial reference 

point (Figure 12.2D).   

 

Figure 12.2  Automated input of reference points within any 3D scanned geometry. 

In step four, the locations of the additional reference points are measured on the subject and 

marked with surgical tape (Figure 12.3A).  In step five the probe is positioned such that the 

origin is located at the initial reference point on the subject (Figure 12.3B-C) and the 
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coregistration software is initialized (Figure 12.3D).  In step six, the probe is moved to other 

positions marked by the additional reference points and the coordinates of the probe 

location given in the tracking software are compared to the known coordinates of the 

reference points marked on the subject to validate that the image is coregistered onto the 

true location of the tissue.   

 

Figure 12.3  Placement of reference points on the subject and initialization of coregistration 
software. 

In order to quantitatively determine the accuracy of the tracked position and 

coregistered image compared to the true location on the tissue, the probe was placed at the 

four different reference points of known coordinates and ten measured values were recorded 

from the tracking software at each position.  The average, standard deviation, and 
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discrepancy of these measured values for each position are given in Table 12.1.  The average 

measured value and standard deviation represent the precision of the tracking software.   

 

Table 12.1  Average and standard deviation of x,y,z coordinates as displayed in tracking software and 
total distance off  between true and measured values.  Values are in units of centimeters and each 
measured value represents an average of 10 measurements while probe was at each of the 4 
positions. 

 
 

It can be seen from the standard deviation of the measured values that the tracked probe 

position fluctuates between 0.1-0.4 cm.  The average total distance off represents the 

accuracy of the tracked position compared to the true location.  The average total distance 

off is 0.99 cm.  The deviation and discrepancy of the measured values can be attributed to 

several factors:  (i) The inherent fluctuation within the tracking instrumentation;  (ii) Slight 

movements of the operator while holding the hand-held probe in position;  (iii) Small errors 

in the measuring and placement of the physical reference points marked on the human 

subject.  In future, efforts will be made to overcome these limitations and improve the 

accuracy of the tracking coordinates. 

 A study was performed with a normal human subject to demonstrate self-

coregistered imaging on actual human tissue.  Figure 12.4 shows the front panel for the 

coregistration software and the image of the meshed tissue geometry with the reference 
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points (probe position is not shown here).  Once the reference points are added to the mesh, 

a text file is generated and saved which contains the x,y,z coordinates of the reference points 

and the relative distance of each reference point from the initial reference point which is 

used to place the markers at the corresponding location on the subject. 

 

 
Figure 12.4  Screen capture of coregistration software showing meshed geometry of breast tissue 
with reference points (probe location inactive in this view). 
 

 The probe was placed at the initial reference point location and the coregistration 

software was initialized.  Figure 12.5 shows the tracked probe position at the initial point 

(the origin) and at two additional reference points as it was moved to the corresponding 

Distance in cm of each 
reference point from 
initial reference point 

Image of meshed 
geometry with 
reference points 

xyz locations of 
reference points 
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positions marked on the subject.  Images are shown in profile view from the subject’s left 

side. 

 

 
Figure 12.5  Images from coregistration showing probe position tracked in real-time at different 
reference locations. 
 

 In order to perform coregistered imaging, a 0.45 cc spherical target filled with 2 !M 

ICG was placed underneath the flap of the breast tissue (as described in section 11.2) in the 

center.  The probe was placed in full contact with the tissue without applying pressure and 

an image was collected.  The target was then removed while keeping the probe in the same 

position and a background image was collected.  The background image was subtracted from 

the target image and the subtracted image was coregistered to the meshed geometry of the 

breast tissue at the probe location.  The resulting coregistered image is shown in Figure 12.6.   
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Figure 12.6  Coregistered image of simulated target behind human breast tissue.  White dotted line 
represents the probe position. 

 
 

 This initial study demonstrates the ability to track and coregister an image to the 

location within the tissue geometry.  Some limitations include slight movements of the 

subject which are not measured or accounted for in the tracking software and could affect 

the accuracy of the coregistered position, and slight conformation of the tissue upon contact 

by the hand-held probe face.  These limitations were addressed by modifying the imaging 

set-up as described in the next section. 

12.2.3.  Modification of coregistered imaging iinn  vviivvoo  to improve accuracy (hand-held 
3D scanning and imaging in supine position) 
 
The initial set-up for coregistered imaging in vivo with human subjects had several limitations 

which resulted in inaccuracy of tracking and coregistration at the true probe location.  The 

following limitations and proposed solutions were presented: 

(1)  Limitation #1:  Movement of subject during imaging process which is not 

accounted for in coregistration software.   
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Proposed Solution:  A chair will be acquired for the human studies, which has the 

ability to recline to a 45-90 degree angle to prevent subject from leaning.  Once 

positioned in the chair in a relaxed posture, the subject will be scanned with the 3D 

scanner and then they will remain in same position to be imaged with the hand-held 

probe.                                                                                              

(2) Limitation #2:  Deformation of the breast tissue upon contact with the hand-held 

probe causing the geometry of the tissue to be changed from the 3D scanned 

geometry. 

Proposed Solution:  When the subject is lying at a 45-90 degree reclined positioned, 

the breast tissue will naturally flatten against the chest wall.  Additionally, surgical 

tape will be used to tape the breast tissue in a flattened conformation similar to the 

procedure used during ultrasound-guided biopsy.  This will enable the probe to be in 

contact with the tissue with minimal deformation since the tissue will remain 

generally flat. 

(3)  Limitation #3:  Operator error in measurement and placement of markers on the 

subject at the reference points. 

Proposed Solution:  An optically clear plastic covering can be placed over the breast 

tissue.  The coronal-view coordinates of the reference points can be more accurately 

marked on the plastic before it is placed over the tissue surface at the appropriate 

position. 

The following steps were implemented in the modified experimental study set-up in 

order to address the limitations listed above: 
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Solution for Limitation #1:  A massage chair capable of reclining 45-90º with arm rests was 

acquired for the imaging studies (Figure 12.7).  The subjects rested in supine position on the 

chair with the back reclined at 45º and arms resting at the sides or on the armrests.  This 

position was chosen such that it would be reclined enough to minimize movement of the 

subject (as opposed to the upright position with no armrests in the initial set-up which 

allowed movement of the subject) as well as maintain line-of-sight between the probe and 

the tracker which would be inhibited if the chair was reclined to greater angles.  In order to 

acquire the 3D geometry with the subject in the reclined position, the Fastscan was taken 

back as a hand-held scanner and used to scan the tissue by hand (the motorized system will 

be used in future applications described in Chapter 16).   

 

Figure 12.7  Modified human subject imaging set-up.  Subject lies supine in recliner chair (45º) 
during acquisition of tissue geometry with 3D scanner and imaging using handheld imager. 

Solution for Limitation #2:  The reclined position of the subject also helped to overcome 

limitation #2 since the position caused the breast tissue to flatten against the chest wall 
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resulting in minimal conformation of the tissue by the probe during imaging.  However, the 

amount of tissue curvature and deformation depended on the volume and density of the 

tissue, thus the amount of deformation varied among subjects.  (This issue will be addressed 

in future by use of a custom-built garment described in Chapter 16). 

Solution for Limitation #3:  For the initial studies with normal human subjects, the 

subjects were recruited by advertisement and hence the size and shape of the tissues imaged 

varied greatly.  Hence, it was not feasible at that stage to use a prepared plastic with the 

reference points marked.  Instead, a more accurate approach of choosing reference points 

was implemented in which the center (nipple) was used as the initial reference point and 

other reference points were measured and marked at specific distances from the center using 

the ‘clock’ notation.  This method treats the breast as the face of a clock and locations are 

determined by their respective location on the clock (Figure 12.8 left) and the distance from 

the nipple is measured in centimeters (Figure 12.8 right).  This method is typically used in 

the clinical setting during breast ultrasound imaging. 

 

Figure 12.8  ‘Clock’ method for referencing locations on the breast tissue.  The relative section of 
the tissue is determined by the position on the ‘clock’ (shown on left side) and the distance from the 
nipple is measured in centimeters (shown on right side).  
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The imaging process using the modified set-up is shown in Figure 12.9, where the 

imaging room is closed off from the instrumentation room by a curtain and only the probe is 

visible in the room.  The probe was placed against the breast tissue while the location was 

recorded by the acoustic tracker and the images were automatically coregistered at the probe 

location relative to the tissue geometry.  The resulting images were immediately displayed on 

a monitor in the imaging room that was linked to the computer operated from the 

instrumentation room. 

 

Figure 12.9  Modified imaging set-up.  The subject lies in supine position in recliner chair while 
breast tissue is imaged using hand-held optical imager.  Mannequin shown for demonstration only. 

12.2.4  Experimental Study I: Automated Coregistered Imaging using Initial Imaging 
Set-up 

Experiments were performed using the initial coregistered imaging approach where 

the subject was seated upright at a 90º angle.  A 0.45 cm3 spherical target filled with 1 

!M ICG was placed underneath the flap of the breast tissue as illustrated in Figure 
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11.1.  Images were collected with the target at 3 different locations corresponding to 

the 4 o’clock, 6 o’clock, and 8 o’clock positions.  In each case, the probe was centered 

over the target location and placed in full contact with the breast tissue.  CW images 

were collected with the target in place and background images were collected (with 

the target removed) for subtraction based post-processing.  The post-processed 

images were automatically coregistered during live imaging at the probe location with 

respect to the tissue. 

12.2.4  Experimental Study II Automated Coregistered Imaging using the Modified 
Imaging Set-up  
 
Experimental studies were performed with healthy human subjects using the 

modified coregistered imaging set-up.  The subject lay in the supine position in the 

recliner chair at a 45º angle.  The chest region including both breast tissues and the 

ribcage was scanned by hand using the 3D scanner.  Figure 12.10 shows the 3D scanned 

geometry of a normal human subject using the modified set-up where the subject was lying 

in supine position in a recliner chair at a 45º angle.  The reclined position caused the tissue to 

flatten against the ribcage in order to minimize deformation of the tissue during imaging.  A 

default image was used in this study since the purpose of the study was to demonstrate 

coregistered imaging using the modified approach and not to detect a target.  The probe was 

placed in contact with the breast tissue and the default image was coregistered to the tissue 

geometry at the probe location. 
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Figure 12.10  Geometry acquired using the modified imaging set-up with a healthy subject lying 
supine in recliner chair with 45º angle.  The white dotted line represents the probe location during 
imaging. (A) Frontal view. (B) Side view. 

12.2.5  Experimental Study III Manual Coregistered Imaging using the Modified 
Imaging Set-up

Absorption based coregistered imaging studies were performed using a target 

containing India ink as an absorbing contrast agent.  Manual coregistered imaging was 

performed since the instability of the acoustic based tracker had increased in time to 

the point where it was no longer usable for coregistration purposes.  For these studies, 

the probe position was measured on the breast tissue and marked using surgical tape.  The 

image was then manually coregistered at the measured position using post-processing 

coregistration software.  Two experiments were performed using 0.45 cm3 spherical targets 

filled with different concentrations of India ink (0.08% and 0.02%) placed underneath the 

flap of the breast tissue at the 6 o’clock location.  
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12.3.  RESULTS 

12.3.1  Experimental Study I: Automated Coregistered Imaging using Initial Imaging 
Set-up 
 
Figure 12.11 shows results for coregistered imaging studies with healthy subjects using the 

initial set-up.  Figure 12.11A shows the position of the probe and the discretized geometry 

relative to the subject.  Figure 12.11B shows the resulting coregistered image for case #1 

where a 0.45 cm3 target was placed at the 6 o’clock position.  A zoomed image of the same 

result is shown in Figure 12.11C.  Figures 12.11D and 12.11E show zoomed images of the 

results for cases #2 (0.45 cm3 target at the 8 o’clock position) and #3 (0.23 cm3 target at the 

4 o’clock position) respectively.  In each case, the probe was placed such that the strongest 

source was close to the target location and subtraction based postprocessing was applied to 

eliminate excitation leakage (as described in Section 6.4 above).  The results show that a 

0.23-0.45 cm3 fluorescent target was detected through ~2.5 cm of human breast tissue and 

coregistered to the appropriate location on the tissue geometry. 
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Figure 12.11  Coregistered images of fluorescence intensity data collected from a normal subject with 
an ICG-filled target using the initial set-up (subject seated in upright position).  (A) Location of 
probe and image relative to the subject.  (B) Case #1 image:  0.45 cm3 target at the 6 o’clock position.  
(C) Zoomed image of Case #1.  (D) Case #2 image:  0.45 cm3 target at the 4 o’clock position.  (E) 
Case #3 image: 0.23 cm3 target at the 8 o’clock position.  All targets contain 1 !M indocyanine green. 

12.3.2  Experimental Study II Automated Coregistered Imaging using the Modified 
Imaging Set-up 

Figure 12.12 shows automated coregistered images from a normal human subject 

using the modified imaging set-up with the acoustic tracker.  The geometry was rotated to a 

45º angle over the y-axis in the coregistration software to correspond to the 45º reclined 

position of the subject.  The probe location was coregistered to the tissue at two different 

locations: the first location was centered over the breast tissue with the bottom of the probe 

positioned 2 cm beneath the nipple region (Figure 12.12A-C) and the second location was 

above the breast in the chest wall region with the bottom of the probe positioned 3 cm 

above the nipple region (Figure 12.12D-F).  
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Figure 12.12  Automated coregistered images in a healthy subject (no target) using the modified 
imaging set-up.  (A) Probe position #1.  (B) Frontal view of coregistered image at probe position #1.  
(C) Side view of coregistered image at probe position #1.  (D) Probe position #2.  (E) Frontal view 
of coregistered image at probe position #2.  (F) Side view of coregistered image at probe position 
#2.  

12.3.3  Experimental Study III Manual Coregistered Imaging using the Modified 
Imaging Set-up 

Figure 12.13 shows results from absorption-based studies in a normal subject with a 0.45 

cm3 target filled with 0.08% India ink located at the 6 o’ clock position.    Figure 12.13A 

shows the location of the probe relative to the subject.  Figure 12.13B shows the probe 

location placed manually in the post-process coregistration software, and Figure 12.13C 

shows the resulting coregistered image.  It can be seen that the target is detected as a lower 

intensity (blue) signal indicating higher absorption at the location of the target.  A 
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background image was also collected (without target) and subtracted to eliminate 

background noise. 

 

Figure 12.13  Manually coregistered images from a healthy subject with 0.45 cm3 target with 
0.08% India ink placed under the breast tissue at the 6 o’clock position. 

Figure 12.14 shows the results for the case of the lower concentration target (0.02% India 

ink) placed at the 6 o’ clock position.  Figure 12.14A shows the location of the probe relative 

to the subject.  Figure 12.14B shows the probe location placed manually in the post-process 

coregistration software, and Figure 12.14C shows the resulting coregistered image.  The 

resulting contrast is lower due to the lower concentration of the absorbing agent, but the 

lower signal (blue) from the target can be seen at the target location in the 2D image (Figure 

12.14B) and the coregistered image (Figure 12.14C). 
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Figure 12.14  Manually coregistered images from a healthy subject with 0.45 cm3 target with 0.02% 
India ink placed under the breast tissue at the 6 o’clock position. 

12.4  DISCUSSION 

The modified imaging set-up was designed to overcome the limitations of the initial set-

up and improve the accuracy of automated coregistered imaging using the acoustic 

tracker.  However, during implementation of the modified set-up, there were some 

difficulties encountered.  The acoustic based tracker operates most effectively when the 

transmitter is placed level with the floor and the receiver is parallel to it.  When the 

subject was reclined at a 45º angle, the tracker lost line of sight on many areas of the 

tissue.  To overcome this issue, the transmitter was mounted at a 45º angle above the 

subject’s head to enable it to be parallel with the receiver on the probe as it was placed on 

the breast tissue.  However, with this set-up, the tracker would lose line of sight when the 

receiver was blocked by the subject’s head.  In addition, the tracker experienced 

significant fluctuations and losing/gaining of line-of-sight even when the probe was held 

at a constant location.  This demonstrates that the accuracy of the tracker is poor even 

apart from any error on the part of the operator or movement of the subject or tissue.  
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Hence, it was determined that an alternate method of automated tracking must be 

pursued.  We are currently developing an optical based automated tracking method that 

will have much greater accuracy than the acoustic tracker (described in Chapter 16).  

Once the alternate tracking method is implemented, quantitative studies will be 

performed to determine the improvement in the accuracy of coregistered imaging in 

human subjects due to improvements in the imaging set-up and stability of the tracker. 

 Images can be manually coregistered to the tissue geometry if the probe location 

is accurately measured relative to the tissue.  The MATLAB software (developed in-

house) that was used to generate the discretized mesh of the scanned geometry was 

modified to automatically find the initial reference point (at the nipple region) and lock it 

to the origin in the coregsitration software.  The imaging locations were measured in 

centimeters and marked on the tissue for accurate positioning of the probe with reference 

to the origin (nipple).  The images were collected with the hand-held imager at the 

predetermined locations and manually coregistered using post-process coregistration 

software.  This method is valid as long as the tissue is relatively flat against the chest wall 

making the imaging surface close to planar.  For tissues with greater curvature, it would 

be more difficult to manually coregister with accuracy due to rotation of the probe with 

respect to the origin.  For efficient real-time tracking and imaging, a more accurate 

tracking system will be implemented. 
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12.5  SUMMARY AND CONCLUSION 

An automated coregistered imaging approach was implemented and validated in vivo on 

human breast tissue.  A 3D scanner was used to acquire the breast tissue geometry from 

each individual subject and an acoustic based tracking system was used to track the probe 

location in real-time.  The initial imaging set-up had several limitations which led to 

inaccuracy in the coregistered imaging.  The set-up was modified to overcome these 

limitations; however, the tracking system was unstable.  Results demonstrate the ability 

to detect an absorbing target through breast tissue of a healthy human subject and images 

were manually coregistered at the measured probe locations.  These studies demonstrate 

that manual coregistered imaging can be performed in human subjects under simple 

conditions and automated coregistered imaging is feasible.  The coregistered images will 

be used to perform 3D tomography in human breast tissue as described in the following 

chapter. 
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CHAPTER 13                                                                                                  

Study VI:  3D Tomography iinn  vv iivvoo  with a Healthy Human Subject 

13.1  INTRODUCTION 

Previous tomography studies performed using our hand-held optical imager involved 

phantoms with simple geometries and structured 3D mesh, and the experimental image data 

was manually coregistered at the known probe location with respect to the phantom.  The 

major challenge in performing 3D tomography in human tissue as opposed to simple 

phantoms is to generate the discretized volume geometry (or mesh) for the human breast 

tissue.  For simple cubicle phantoms, the geometry and mesh were generated within a single 

software (Gambit) and the same mesh was used for each phantom reconstruction.  In the 

case of human subject studies, the various breast tissue geometries must be acquired for each 

subject and discretized into tetrahedral volume mesh.  This chapter describes the procedure 

developed herein for acquiring a tetrahedral volume mesh of the various breast tissues of 

different human subjects and extracting the experimental information corresponding to each 

coregistered data set, which is needed to input into the reconstruction algorithm to perform 

3D reconstructions. 3D fluorescence tomography is performed using a coregistered image 

from a healthy human subject with a superficially placed target.  The results presented herein 

demonstrate for the first time the feasibility of performing 3D tomography in human breast 

tissue in vivo using a hand-held optical imager. 

13.2  MATERIALS AND METHODS 

13.2.1  Procedure for 3D Mesh Acquisition and Reconstruction IInn  VViivvoo  

A commercially available 3D surface scanner was employed to scan the breast tissue of each 

subject.  The subject was seated upright in a 90 degree position and the motorized system 
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was used to scan both sides of the breast tissue, chestwall, and ribcage.  The resulting surface 

scan is shown in Figure 13.1 (left).  The scanner software was used to cut the surface 

geometry to extract only the left breast in order to reduce computation time when 

performing the reconstruction.  

 

Figure 13.1  Scanned surface geometry of breast tissue.  The imaged section was cut from the full 
geometry and used in the reconstruction. 

The acquired surface scan was then imported into a software (GiD) and a volume was 

generated from the surface scan.  Meshing softwares are typically designed such that a 

geometry is both generated and meshed within that same software.  However, our 

application presented a unique complication in that we required an externally acquired 

complex geometry to be imported into the software and used to generate a 3D volume and 

mesh.  After many trials and much troubleshooting it was determined that the method to 

acquire the mesh was to import the scanned surface into GiD and use the software to 

generate a volume.  The volume generated in the GiD software is shown in Figure 13.2.  The 

generated volume was then imported into Gambit which was used to generate the 

tetrahedral volume mesh.   
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Figure 13.2  Volume geometry of scanned breast tissue. 

After acquiring the tetrahedral volume mesh from Gambit, there were several steps 

required to prepare the mesh for importing into the reconstruction algorithm.  The first step 

was to determine the coordinates of the optical data image (collected by the hand-held 

device) with respect to the volume mesh (since the original coregistered image used only a 

surface mesh to reduce the imaging time and the coordinates are different in the volume 

mesh generated for reconstruction).  A post-processing version of the coregistered imaging 

software was used to coregister the image to the new volume mesh using the positional 

information stored from the original surface coregistered image acquired during live imaging.  

A code was developed in MATLAB to then extract the coordinates and intensity data for use 

in the reconstruction algorithm.   

Another piece needed for the reconstruction algorithm was the coordinates of the 

sources and detectors relative to the volume mesh.  In the case of cubical phantoms, the 
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coordinates on the simple geometry were manually entered since the 0.5 cm spaced grid of 

detectors aligned perfectly with the 0.25 cm spaced grid of the cubical mesh.  In the case of 

human breast tissue, the mesh is unstructured and the probe location is not perfectly aligned 

with the mesh coordinates.  Hence, a method was developed to determine the source and 

detector coordinates of any random probe position on the various unstructured volume 

meshes.  A grid was generated corresponding to the source and detector locations of the 

hand-held probe image.  The source locations in the grid were assigned a high value and the 

detector locations were assigned a low value.  The grid was then coregistered to the volume 

mesh using the same positional information from the original surface coregistered image.  A 

code was developed in MATLAB to extract the coordinate locations of the sources and 

detectors from the volume coregistered image according to the relative intensity values.   

 Since at this point the coordinates now correspond to the coordinate system in the 

coregistration software (which is different from the original coordinate system assigned by 

the Gambit software), the volume mesh from the coregistration software was exported to be 

used in the reconstruction algorithm.  However, a complication existed in the mesh exported 

from the coregistration software.  The coregistration software assigned nodes and elements 

of the mesh using a different method than the Gambit software.  In the Gambit software, 

the nodes are assigned first and then connected to form the elements, resulting in more 

elements than nodes.  The coregistration software (using the MATLAB ‘patch’ function) 

first generates the elements and then assigns the node numbers individually within each 

element (Figure 13.3).  Hence, adjacent elements assign multiple numbers to the same node.   

This resulted in a very large number of nodes compared to elements which greatly and 
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unnecessarily increases the computational time, and the mesh was incompatible with the 

reconstruction algorithm.   

 

Figure 13.3  Illustration of the two methods of assigning node numbers.  (A) The mesh generated by 
MATLAB and exported from the coregistration software assigns the elements first and then gives 
each node in the element number assignments independent of the adjacent elements resulting in 
multiple numbers assigned to the same node.  (B) The preferred method is where the node numbers 
are assigned first and then elements are constructed among those nodes such that each node is 
shared by multiple elements and only assigned a single number resulting in much fewer nodes than 
elements.   

To overcome this complication, a code was developed in MATLAB to eliminate the 

repeated nodes and reassign the node numbers within the elements correspondingly.  

Additionally, a code was generated in MATLAB to reassign the node numbers 

corresponding to the source and detector locations and the image intensity data according to 

the corrected numbers.  The final mesh and all the extracted information were then 

imported into the reconstruction algorithm to perform 3D tomography. 

The entire procedure developed herein for acquiring the tetrahedral volume mesh, extracting 

the experimental information, and performing 3D tomography in vivo in order to reconstruct 
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a target within the breast tissue geometry of a human subject is outlined in the following ten 

major steps:   

Step 1:  Acquire the coregistered image of optical intensity data from the breast tissue 

(detailed in Chapter 12 above).   

Step 2:  Use the 3D surface geometry from the Fastscan to generate a 3D volume.  

The 3D surface geometry that was scanned from the breast tissue was imported in IGES 

format into the GiD software which was used to generate a 3D volume from the surface.  

Figure 13.1 shows the volume geometry generated in the GiD software.   

Step 3:  Generate a 3D tetrahedral volume mesh and corresponding triangular surface 

(or boundary) mesh for the volume breast geometry.  The 3D volume from the GiD 

software was loaded into Gambit software which was used to generate the unstructured 

triangular and tetrahedral mesh.   

Step 4:  Adjust the coordinates of the Gambit mesh to correspond to the coregistered 

image.  The coordinate system of the mesh generated in Gambit is independent of the 

coordinate system of the coregistered image.  The Gambit mesh was imported into the post-

process coregistration software and locked to the location of the geometry during imaging.  

The positional information preserved in the coregistered data that was acquired during live 

imaging was used to coregister the image at the same location in the Gambit mesh.   

Step 5:  Determine the nodes and coordinates of the breast mesh that correspond to 

the source and detector positions in the coregistered probe location.  The positional 

information of the coregistered probe location was used to find the closest nodes in the 

unstructured breast mesh to each source and detector in the probe, and the coordinates of 
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those nodes were assigned as the coordinates of the sources and detectors.  The procedure 

developed for performing this step ensures that the source and detector positions assigned 

to the mesh correspond to the data collected with the probe and coregistered to the tissue 

during live imaging.    

Step 6:  Eliminate duplicate nodes from the breast mesh (as exported from the 

coregistration software) and assign the adjusted node numbers appropriately to each 

element.   

Step 7:  Convert text files and source/detector positional information into data files 

that will be used in the reconstruction code.  This step must be performed for each new 

mesh geometry and each different probe position within the same geometry.   

Step 8:  Acquire the intensity data for each detector position in the 3D breast mesh 

from the coregistered image data.  A code was written in MATLAB to extract the 

intensity data from the coregistered mesh at the detector nodes located in Step 5 and 6 and 

generate a data file containing the coordinates of the detector nodes and the corresponding 

intensity values from the breast data.  

Step 9:  Use the intensity data acquired from Step 8 to generate the data files used in 

the AEKF algorithm.  These data files contain the AC, DC, phase, and modulation depth 

information (or DC only for CW data) along with the optical properties of the background 

tissue.  In this case, average optical property values of human breast tissue acquired from the 

literature [134] were used in the reconstruction.   
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Step 10:  Use the AEKF based algorithm to reconstruct the fluorescent/absorption 

intensity values within the 3D discretized geometry of the breast tissue.  The AEKF 

algorithm is detailed in Chapter 7. 

13.2.2  Fluorescence Tomography in a Healthy Human Subject 

A 3D reconstruction was performed using data acquired from a healthy human subject with 

a 0.45 cm3 spherical target containing 1 !M ICG placed underneath the flap of the breast 

tissue at the 6 o’clock position (Case #1 in Section 12.3).  The data was acquired by 

automated self-coregistered imaging with the acoustic tracker using the initial imaging set-up 

where the subject sat in a vertical upright position and the geometry was acquired by the 

motorized 3D scanning technique.  The geometry consisted of both sides of the breast tissue 

and part of the chest wall and ribcage.  In order to reduce computational time, the geometry 

was cut to include only the breast tissue region in the vicinity where the data was acquired 

with the optical imager (as described in Section 13.2.1).  The reduced geometry was manually 

placed at the appropriate location within the coordinate system using the post-process 

coregistration software.  The ten steps described in Section 13.2.1 were executed in order to 

acquire the 3D meshed geometry and perform 3D tomography in human breast tissue.  The 

initial p-value in the AEKF reconstruction algorithm was set to 0.01.  The input optical 

property values were 0.05 cm-1 for !ax and !am, and 8.0 cm-1 for !sx’ and !sm’ (average values 

of breast tissue optical properties obtained from the literature [134].  The initial guess for the 

optical property distribution (in this case, !axf) was uniformly set to 0.003 cm-1.  The 

modulation frequency (�) was set to zero for CW based reconstruction and only the real 

part of the equations were used. 
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13.3  RESULTS 

The experimental data used for the reconstruction is shown in Figure 13.4, where the yellow 

dashed line shows the probe location with respect to the disctretized tissue geometry.  The 

fluorescent signal from the target was detected close to the target location (6 o’clock 

position).   

 
Figure 13.4:  Automated coregistered image of a fluorescent target placed beneath the breast tissue 
in a normal subject which was used to perform the 3D reconstruction. 

Figure 13.5 shows the experimental result of the reconstruction plotted in Tecplot.  Figure 

13.5A shows the 3D tetrahedral unstructured mesh of the breast tissue geometry and Figure 

13.5B shows the recovered fluorescence intensity as a series of slices in the x-plane.  The 

slices are plotted in profile view to show their location within the tissue geometry.  

Individual detailed slices are shown in frontal view in Figure 13.6.   
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Figure 13.5:  (A) Plot of the 3D tetrahedral unstructured mesh used in the reconstruction.  (B) Side 
view of contour slices in the x-plane.  

The coronal slices in Figure 13.6 begin at the tissue surface close to the central (nipple) 

region and progress depth-wise toward the chest wall.  The initial slices at depths below 1.0 

cm (slices 1-3) show signal from the 2D target location although the depth of the signal is 

less than the true target depth (~2.5 cm).  At a depth of 1.0 cm and greater (slices 4-12), 

additional signal appears to the left side of the breast tissue away from the target location. 
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Figure 13.6:  Contour slices in the x-plane at 0.25 cm intervals.  Slice depth is indicated as depth 
from the tissue surface at the center (nipple) region. 

Figure 13.7 shows slices in y-plane representing the sagittal view.  Slice 4 in the 

center gives the sagittal slice at the y=0 location which is the central part of the tissue.  The 

other slices represent the locations in 0.25 cm increments to the left (slices 1-3) and right 

(slices 5-7) of the center.  The images show that within this central region, there is a 

maximum signal intensity at the central location of the tissue which corresponds to the 6 
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o’clock position of the fluorescent target, and the signal diminishes in either direction away 

from the center.   

 
Figure 13.7  Contour slices in the y-plane at 0.25 cm intervals. 

The quantitative results for the in vivo 3D reconstruction are provided in Table 13.1.  The 

recovered !axf value (9.17) is much larger than expected, which is due to the presence of 

signals from artifacts which are all included in the total !axf value.  The true target location 

was approximated at (x,y,z)=(2.5,0,0) since the target was placed in the center underneath 

the flap of the tissue and the approximate tissue depth (x-dimension) was 2.5 cm (as 

measured by a Vernier caliper).  The recovered target location was (x,y,z)=(3.0,-3.3,-1.8) and 

the total distance off was 3.75 cm.  The distance off can be due to two factors: (i) inaccuracy 

in the estimation of the true target location, and (ii) the artifacts that appear toward the left 

side of the reconstruction (as shown in Figure 13.6) which can be mistaken as the true 

location due to the high intensity of the signal.  Reduction in artifacts and better estimation 

of the true target location will likely improve the quantitative results. 



153 

Table 13.1  Quantitative results for the in vivo 3D reconstruction: recovered !axf, true target 
volume, recovered target volume, approximate true target location, recovered target location, 
total distance off. 

 

13.4  DISCUSSION 

Three-dimensional tomography of breast tissue in a human subject using a hand-held based 

optical imager was demonstrated for the first time.  The reconstructed result shows 

recovered signal at the true target location but at a shallower depth than the true target 

location.  This depth recovery limitation is a common phenomenon when reflectance based 

measurements are used.  More accurate depth recovery may be achieved by using a 

combination of transilluminated and reflected measurements or by using multiple 

projections in reflectance mode.  

Additional signal away from the target location was also present on the left side of 

the tissue.  This artifact signal might be the result of poor contact with the tissue on one side 

of the probe causing detection of excitation light that was reflected off the tissue surface.  

The subtraction based post-processing technique was applied to eliminate excitation leakage; 

however, the probe might have shifted during removal of the target causing the background 

image to have a different noise distribution from the image with the target.  
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For this initial preliminary tomography study, a coarse mesh was used in order to 

reduce computational time and effort while the reconstruction procedure was developed.  

Use of a finer mesh could produce a more accurate reconstruction result.  In addition, a 

varied mesh might be used which is more refined close to the target location and more 

coarse away from the target location which would further reduce the noise away from the 

target.  This would be applicable in a clinical setting since FDOT is not currently used for 

screening and hence the region of tissue suspected of containing a tumor would be known. 

This study used data from a normal human subject with a fluorescent target placed 

noninvasively beneath the flap of breast tissue, between the breast tissue and the ribcage.  

Hence the light passed through two layers of skin and a full layer of breast tissue during both 

the incident and returning path which would produce a different result than an actual tumor 

embedded within the breast itself under a few centimeters of tissue.   

This preliminary study demonstrates the feasibility of performing 3D tomography in 

human breast tissue using the ten step procedure developed herein.  In the case presented 

here, the true target location was roughly estimated and the results analyzed qualitatively.  

Future work will involve extensive tomography studies in healthy subjects and breast cancer 

patients to improve the accuracy of the quantitative results.   

13.5  SUMMARY AND CONCLUSION 

A procedure for performing 3D tomography in human tissue using automated self-

coregistered experimental data was developed.  A preliminary reconstruction study was 

performed using the self-coregistered data from a normal human subject with a fluorescent 

target placed underneath the breast tissue.  The result shows fluorescent intensity signal 

reconstruction close to the true target location along with artifact signal away from the target 
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location.  This study demonstrates the feasibility of performing 3D tomographic imaging in 

human breast tissue using a hand-held based optical imaging system. 
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CHAPTER 14                                                                                                   

Study VII:  IInn  vv iivvoo  Imaging of Breast Cancer Subjects 

14.1  INTRODUCTION 

The studies described in the previous chapters involved preclinical testing of a hand-held 

optical imaging system for breast cancer diagnosis.  The final stage of this dissertation 

involves testing the performance of the device in actual breast cancer subjects.  This chapter 

describes preliminary studies designed to demonstrate the feasibility of imaging breast 

tumors in human subjects using our hand-held optical imager. 

14.2  MATERIALS AND METHODS 

Diffuse optical imaging studies were performed with two subjects (age 64 and 51) with 

breast cancers masses confirmed by prior image modalities (i.e. x-ray mammography, 

ultrasound, MRI).  The studies were approved by the FIU Institutional Review Board and 

the subjects signed a consent form prior to the study and a HIPAA authorization form (for 

release of the medical records).  For the diffuse optical studies (non-fluorescent) one neutral 

density filter (OD 4) was used to uniformly attenuate the collected laser light.  Continuous 

wave based images were collected (average of 5 frames) using an exposure time of 200 msec.  

The gain on the image intensifier was set while the probe was placed at the initial probe 

location and held constant during the entire study performed at various probe locations.      

 The studies were performed using the modified imaging set-up described in Chapter 

12, where the subject lay in the supine position in a recliner chair at a 45º angle.  The probe 

was placed at different locations on the ipsilateral (tumor-containing) and contralateral (non-

tumor-containing) breast and images of continuous-wave absorption-based measurements 

were collected.  The probe positions were determined visually to cover the entire breast 
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tissue.  Initially the probe was centered over the 12 o’clock position covering the upper 

region of the breast tissue and part of the chest wall (probe location #1 in Figure 14.1), then 

moved vertically down toward the 6 o’clock position (probe location #4 in Figure 14.1).    

The four imaging locations relative to the subject are shown in Figure 14.1 (not to scale).   

 

Figure 14.1:  Schematic showing the probe locations during the imaging studies.  The probe was 
placed at four different locations on the left breast tissue followed by the same four locations on the 
right breast tissue.  All probe positions were estimated with reference to the nipple location and are 
not drawn to scale in the schematic. 

Currently, a more structured and accurate approach is developed for measuring and marking 

the probe locations using the same method in all subjects (described in detail in Section 11.2 

and Figure 11.2).  For the studies describe herein, the positions were estimated at the 

following locations corresponding to Figure 11.2:  UM4 (location 1), UM2 (location 2), LM2 

(location 3), and LM4 (location 4).  In each case, both the left and right breast tissues were 

imaged at the same symmetrical probe locations and the images from the contralateral breast 

were normalized and used in subtraction based post-processing.  In every case, the 
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normalized intensity data from the ipsilateral breast was subtracted from the normalized 

intensity data from the contralateral breast so that the signal due to higher absorption shows 

as a higher (more red) signal in the 2D contour plot.    

For subject #1 a second set of images were collected from the outer side of the 

breast tissue under the arm because the medical records indicated lymphatic spread to the 

axillary lymph nodes.    The subject was asked to lie on the right side while resting the left 

arm above the head and the probe was placed under the arm for location #1.  The probe 

was then moved down toward the ribcage and images were collected at four different 

locations as shown in Figure 14.2.  The axillary lymph nodes are located in the outer chest 

wall region under the arm as indicated in Figure 14.2.  The entire set of images was repeated. 

 

Figure 14.2  Probe locations for second set of images in subject #2.  The subject was asked to lie on 
the right side and rest the left arm above the head while the probe was placed at four different 
locations on the outer side of the left breast starting under the arm and moving down toward the 
ribcage.  The procedure was repeated on the right breast at symmetric locations.  All probe positions 
were estimated with reference to the nipple location and are not drawn to scale in the schematic. 
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14.3  RESULTS 

The optical images from both subjects were compared to the medical records provided.  For 

subject #1, a palpable mass in the left breast produced a negative result in x-ray 

mammography.  However, MRI images showed a region of abnormal tissue behind the 

nipple in the left breast which was determined by needle biopsy to be invasive ductal 

carcinoma with lymphatic spread.  Figure 14.3 shows slices from an MRI scan.  The yellow 

arrows indicate the abnormal tissue located in the periariolar region (i.e. near the nipple 

area).   

 

Figure 14.3:  Three slices of an MRI scan from 64 year-old breast cancer patient.  The yellow arrows 
indicate the location of abnormal tissue behind the nipple region. 

Figure 14.4 shows the first set of continuous-wave absorption-based images collected from 

subject #1 using the hand-held optical imager (repetition #1).  For each of the four probe 

locations (indicated in Figure 14.1), an image was collected from the left breast (on left) and 

right breast (center) and the data were subtracted to yield the post-processed images (on 

right).  The optical signal due to absorption is indicated by the dashed yellow line.  The 

location of the signal corresponds to the location of abnormal tissue indicated in the MRI 

images (Figure 14.3).  The probe locations began at the top part of the breast and moved 

down toward the bottom of the breast tissue (as described in the previous section).  Since 
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the region of abnormal tissue was located in the central part of the breast tissue behind the 

nipple, the optical signal from that region of tissue would be visible in the lower part of the 

image for probe position #1, in the center of image for probe positions #2 and #3, and 

toward the top of the image for probe position #4.  These areas are indicated in the images 

by a yellow dotted circle.  Additional signal appears in the lower right corner of each post-

processed image which is likely due to incomplete contact of the outer edge of probe with 

the tissue.  Figure 14.5 shows the results from the second repetition of images collected at 

the same locations and post-processed.  The images show similar result to Figure 14.4 which 

demonstrates repeatability of the data collected. 

 

Figure 14.4:  Continuous-wave absorption-based optical images collected from subject #1 at four 
probe locations (first repetition of images).  The images on the left were collected from the left breast 
tissue and the images in the center were collected from the right breast tissue.  The post-processed  
images on the right represent the normalized intensity data from the ipsilateral (left) breast subtracted 
from the normalized intensity data from the contralateral (right) breast showing the optical signal due 
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to absorption as a higher (red) signal in the images.  The yellow dotted circle was hand-drawn to 
represent the region of interest in each image. 

 

Figure 14.5  Continuous-wave absorption-based optical images collected from subject #1 at four 
probe locations (second repetition of images).  The images on the left were collected from the left 
breast tissue and the images in the center were collected from the right breast tissue.  The post-
processed  images on the right represent the normalized intensity data from the ipsilateral (left) breast 
subtracted from the normalized intensity data from the contralateral (right) breast showing the 
optical signal due to absorption as a higher (red) signal in the images.  The yellow dotted circle was 
hand-drawn to represent the region of interest in each image. 

Figure 14.6 shows ultrasound images from subject #1 of suspicious enlarged lymph nodes in 

the axillary region (indicated in Figure 14.2).  Needle biopsy confirmed that at least three 

lymph nodes in the axillary region contained lymphatic spread of carcinoma.   
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Figure 14.6   Ultrasound images from subject #1 of suspicious enlarged axillary lymph nodes.  (The 
axillary region is indicated in Figure 14.2.) 

The second set of four optical images collected from the outer part of the tissue under the 

arm in the axillary region and the side of the breast tissue (probe locations indicated in 

Figure 14.2) are shown in Figure 14.7.  The first image from probe location #1 shows a 

strong absorption signal (indicated by the dashed yellow circle) which might be from an 

enlarged axillary lymph node.  Additional (weaker) absorption signals in images from probe 

locations #2 and #3 might also indicate regions of affected lymph nodes.  The fourth image 

from probe location #4 no longer covered the axillary region and was located over the 

breast tissue.  The diffused signal in the fourth image is likely from the abnormal tissue 

located behind the nipple (similar to the signal in Figure 14.4).  Figure 14.8 shows the results 

from the second repetition of images collected at the same locations and post-processed.  

The images show similar result to Figure 14.7, however there is also the presence of artifacts 

because the probe was not in full contact with the tissue. 
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Figure 14.7 Continuous-wave absorption-based optical images collected from subject #1 at the 
second set of four probe locations (repetition #1).  The images on the left were collected from the 
left breast tissue and the images in the center were collected from the right breast tissue.  The post-
processed (subtracted) images on the right show the optical signal due to absorption.  The yellow 
dotted circle was hand-drawn to represent the region of interest in each image. 
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Figure 14.8  Continuous-wave absorption-based optical images collected from subject #1 at the 
second set of four probe locations (repetition #2).  The images on the left were collected from the 
left breast tissue and the images in the center were collected from the right breast tissue.  The post-
processed (subtracted) images on the right show the optical signal due to absorption.  The yellow 
dotted circle was hand-drawn to represent the region of interest in each image. 

Figure 14.9 shows x-ray mammography images from the left breast of a 51 year-old 

breast cancer patient (subject #2).  Figure 14.9A is the axial view where the top of the image 

is toward the left side of the breast and the bottom of the image is toward the right side of 

the breast.  Figure 14.9B is the oblique view where the top of the image is toward the 

patient’s head and left side and the bottom of the image is toward the patient’s feet and right 

side.  The images show the presence of 3 masses in the outer quadrant of the tissue 

(indicated by the yellow arrows).  The medical reports indicated that two of the masses were 

cancerous with regions of abnormal tissue between the three masses.   



165 

 

Figure 14.9  X-ray mammography images of the left breast from a 51 year-old breast cancer patient.  
(A) The top of the image is the left side and the bottom of the image is the right side of the breast 
tissue.  (B)  Oblique image where the top of the image is toward the patient’s head and left side and 
the bottom of the image is toward the patient’s feet and right side.  The yellow arrows indicate 3 
lesions (labeled as L1, L2, and L3) located in the 1 o’clock to 2 o’clock region of the breast. 

Figure 14.10 shows ultrasound images from the left breast of the same subject.  The image in 

Figure 14.10A was collected from the 1 to 2 o’clock position at 2-3 cm from the nipple and 

the image in Figure 14.10B was collected from the 1 to 2 o’clock position at 6 cm from the 

nipple.  The three tumor masses in the outer quadrant of the tissue are indicated by the 

yellow arrows. 



166 

 

Figure 14.10  Ultrasound images of the left breast from a 51 year-old breast cancer patient.  Both 
images were collected in the 1 to 2 o’clock location where image (A) was 2-3 cm from the nipple and 
image (B) was 6 cm from the nipple.  The yellow arrows indicate 3 lesions (labeled as L1, L2, ans L3 
corresponding to Figure 14.7) located in the 1 o’clock to 2 o’clock region of the breast. 

Figure 14.11 shows the continuous-wave absorption-based images collected using 

the hand-held optical imager.  The images on the left were collected from the ipsilateral 

breast and the images in the center were collected from the contralateral breast.  The images 

on the left were subtracted from the images in the center to yield the resulting postprocessed 

images on the right.  In the post-processed images, the area of higher absorption shows as a 

higher (or more red) signal.  The post-processed images from locations 1-3 show high 

intensity signal (greater absorption) in the outer quadrant of the left breast tissue which 

corresponds to the location of the 3 tumor masses indicated in the x-ray mammogram and 

ultrasound images.  The image from location 4 which is from the lowest part of the tissue 

does not show higher absorption.  
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Figure 14.11  Optical images collected from the breast tissue of a 51 year-old breast cancer patient.  
The images in Set #1 were collected from the ipsilateral breast and the images in Set #2 were 
collected from the contralateral breast.  The images from Set #1 were subtracted from Set #2 so that 
the area of higher absorption shows as a higher (or more red) signal in the post-processed images.   
The yellow dotted circle was hand-drawn to indicate the region of interest. 

The subject returned for a second study 42 days following the initial study.  The 

same set of images was collected at the same locations on the breast tissue and the post-

processed images from the two studies are compared in Figure 14.12.  The images from 

study #2 show intensity signal (absorption) located in the outer quadrant of the left breast 

tissue; however, the signal is reduced and diffused compared to the images from study #1.  

The subject had been undergoing treatment therapy during the time that the images were 
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collected and the results in Figure 14.12 might be indicative of reduction of the tumor 

masses due to the treatment.  

 

Figure 14.12  Comparison of the results from two different image sets collected on different dates 
from subject #2.  Study #2 was performed 42 days after Study #1 in the same breast cancer subject.  
Four images were collected at the same probe locations (see Figure 14.1).  For each study, images 
were collected from both the right and left breast tissues and used to subtract the excitation leakage.  
All images are the final post-processed images.  The probe locations were estimated with respect to 
the nipple location. 

14.4  DISCUSSION 

This chapter presented preliminary data from the first studies performed using our hand-

held optical imager with actual breast cancer subjects.  Subject #1 had invasive ductal 

carcinoma with lymphatic spread which was not detected by x-ray mammography.  The first 
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set of optical images show absorption signal corresponding to the region of abnormal breast 

tissue indicated in the MRI images.  The second set of optical images show absorption signal 

corresponding to the location of axillary lymph nodes in the region where needle biopsy 

confirmed lymphatic spread of carcinoma.  This study shows the potential of the hand-held 

device to image cancerous tissues that are undetectable by MRI as well as affected lymph 

nodes in the axillary region. 

 The images from subject #2 show absorption signal corresponding to the location of 

tumors in a subject undergoing chemotherapy treatment for invasive ductal carcinoma.  In a 

subsequent study with the same subject 42 days following the first study, the signal in the 

same region was weaker and more diffused.  This possibly indicates shrinkage of the tumor 

masses due to the chemotherapy treatment.  These results show the potential of the device 

in monitoring of response to treatment. 

 All of the images show artifacts located outside the region of interest.  These artifacts 

might be due to improper contact of the probe with the tissue or the uneven source intensity 

distribution among the six sources.  Additionally, the subtraction post-processing to 

eliminate excitation leakage was performed using images from two different breast tissues.  

Hence, differences in the signal distribution due the different composition of the tissue 

would produce artifacts after subtraction.  Filtration methods will be applied in the future to 

reduce the number of artifacts (Chapter 16). 

The hand-held optical imager described herein has potential as a complementary 

imaging modality for breast cancer imaging in the clinical setting.  Currently most breast 

masses are found by x-ray mammography and/or breast ultrasound and then diagnosed as 

malignant or benign by surgical biopsy.  Since 80% of biopsies turn out to be negative [2] 
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there is a clear need for a method of noninvasively imaging breast tumors to gain more 

information.  Optical imaging provides functional information without any additional harm 

or discomfort to the patient. 

 In addition to breast cancer diagnosis, another potential application for optical 

imaging is for monitoring the progression of tumor response to treatment therapy.  Since 

optical imaging does not use harmful radiation like x-ray and nuclear techniques, the patient 

can be imaged more frequently.  This will reduce the distress of the patients who currently 

have to wait several months between imaging scans to determine if the treatment therapy is 

effective.  The results shown in the previous section show potential of our hand-held optical 

imager for use in this application. 

14.5  SUMMARY AND CONCLUSION 

The performance of our hand-held based optical imager was tested in the clinical setting for 

the first time on actual breast cancer patients.  These preliminary results indicate the ability 

of the device to detect tumors via continuous-wave absorption-based imaging.  In addition, 

multiple studies during treatment therapy demonstrate the potential application of the device 

to be used to monitor tumor progression at different stages of therapy.  Extensive studies 

will be performed in the future to demonstrate coregistered imaging and 3D tomography in 

cancer subjects as well as determine the sensitivity and specificity of the device. 
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CHAPTER 15                                                                                               

Summary and Conclusion:  Overall Discussion and Significance of the 

Work 

 

A hand-held probe based optical imaging device has been developed in our Optical Imaging 

Laboratory towards breast cancer imaging.  It is distinctive from other hand-held optical 

devices in its ability to perform 3D tomography in complex human breast tissues via unique 

self-coregistration capabilities.  In the past, our device has demonstrated 3D tomography 

using manual coregistration in simple cubicle phantoms.  The overall goal of this dissertation 

was towards translation of our device to the clinical setting for 3D tomographic imaging in 

human breast tissues with complex geometries.  A systematic experimental approach was 

designed and executed to evaluate the performance of the device at each stage of clinical 

translation.  The major objectives of the studies were to demonstrate fast 2D imaging, 

coregistered imaging, and 3D tomography in tissue phantoms, in vitro, and in vivo with human 

subjects.   

 The first major goal was to perform fast 2D imaging in order to determine if the 

device could detect and estimate the 2D location of a target even prior to 3D tomographic 

analysis.  In the clinical setting, fast 2D imaging is useful to quickly gain a visual picture of 

the entire breast tissue and determine the specific “areas of interest” to which more in-depth 

analysis will be applied.  For the phantom, in vitro, and in vivo studies performed herein, the 

term “fast imaging” is used to describe the acquisition and initial post-processing to visualize 

the target or tumor in a 2D contour plot.  Each image was acquired in near-real time (~5 

seconds).   
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 Fast 2D imaging was initially demonstrated in the simple case of homogeneous tissue 

phantoms composed of 1% Liposyn solution.  A 0.45 cm3 spherical target filled with 1 !M 

Indocyanine green (ICG) fluorescent contrast agent was detectable up to a depth of 2.5 cm 

under perfect uptake conditions (Section 8.3.1).  The next step was to introduce a 

heterogeneous background which better mimicked the properties of actual human tissue.  

Studies were performed in vitro using minced chicken breast combined with 1% Liposyn.  

Spherical targets of 0.45 and 0.23 cm3 volume filled with 1 !M ICG were detectable up to 

2.0 cm deep under perfect uptake conditions (Section 8.3.2).  The final step was to see if a 

target could be detected through actual human breast tissue.  Healthy female subjects above 

age 21 were recruited for the IRB-approved study.  Spherical targets of 0.45 and 0.23 cm3 

filled with 1 !M ICG were noninvasively placed underneath the flap of the breast tissue and 

were detected through ~ 2.5 cm of human breast tissue (Section 11.3).   

 The fast 2D imaging studies demonstrated that small targets (0.23-0.45 cm3) could be 

detected in near-real time using our hand-held optical imager in tissue phantoms, in vitro, and 

in vivo.  It is interesting to note that the deepest target detected for in vitro studies was at a 

depth of 2.0 cm, whereas in the more complex human subject case, the target was detected 

through ~2.5 cm of tissue.  Chicken breast tissue is composed primarily of muscle whereas 

human breast tissue has various components such as mammary glands, milk ducts, and fatty 

tissue.  Hence, while phantom and in vitro experiments are useful for preliminary 

investigations of the capabilities of a device and optimization, they do not accurately predict 

what result will occur in a true human subject case.  The scattering coefficient of the in vitro 

phantom ranged between 6 and 12 cm-1 which is close to the average value of human breast 

tissue (~ 8 cm-1).[134]  Extensive clinical studies are required to fully define the performance 
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of the device in order to account for the wide variability between subjects.  The research 

performed for this dissertation has effectively translated the device from the laboratory 

testing stage to the clinical studies phase and the imaging set-up and protocol have been 

methodically structured to be conducive now for a continuous flow of human subject 

studies.    

 Fast 2D imaging in near-real time is useful to gain an initial estimation of the area of 

interest to be interrogated in more detail.  In order to proceed with further analysis, it is 

necessary to determine the location of the probe image with reference to the geometry of the 

tissue (i.e. coregister the images).  The second major goal was to demonstrate automated 

coregistered imaging which is necessary to perform 3D tomography.  The optical 

tomography studies performed by other research groups typically used bulky 

instrumentation with the breast placed within a fixed geometry (between two compression 

plates or in a ring).[22,110]  The fixed location and geometry enables the image location 

relative to the breast geometry to be known, allowing for tomography.  Only one research 

group has demonstrated 3D tomography using a dual optical/ultrasound hand-held 

device.[66]  The additional data from the ultrasound was used as structural a priori 

information for tomography.  Our device is unique in that is has self-coregistration 

capabilities enabling 3D tomography to be performed using a hand-held optical-only device, 

without requiring a second imaging modality.   

 An acoustic based tracking system was implemented with the hand-held device and 

automated coregistration software (developed in-house using MATLAB/LabVIEW) was 

used to perform self-coregistered imaging.  Automated coregistered imaging was 

quantitatively validated in tissue phantoms and the average distance off between the 
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measured location and true location of the probe with respect to the phantom was ~0.19 

cm.  The discrepancy was attributed to instability of the tracking system.  Coregistered 

imaging was performed in tissue phantoms and in vitro where multiple coregistered images 

were summed in order to increase the signal from the target while relatively reducing the 

random artifacts enabling deeper target detection.  The depth of detection for tissue 

phantoms was improved from 2.5 to 3.5 cm in tissue phantoms under perfect uptake and 3.0 

cm under imperfect (T:B=100:1) uptake.  The depth of detection in vitro was improved from 

2.0 cm to 3.5 cm under perfect uptake and 2.5 cm under imperfect (T:B=100:1) uptake for 

target volumes of 0.23 – 0.45 cm3 (Section 9.3). 

 Coregistered imaging was performed in vivo in healthy human subjects.  Tracking of 

the probe was quantitatively validated by automatically inserting reference points into the 3D 

meshed geometry via code developed in MATLAB.  The average total distance off between 

the measured location and true location was ~1 cm.  The much larger discrepancy 

(compared to the discrepancy in phantoms) was attributed to movement of the subject, 

deformation of the breast tissue, and probe-operator error.  The imaging set-up was 

modified to minimize human error during in vivo imaging (by scanning and imaging the 

subject in supine position at a 45º degree angle, Section 12.2.3).  Currently efforts are made 

by others in our lab to develop an optical tracking system to reduce the error due instability.  

Future work will involve testing the total reduction in error using the new tracking method 

(as described in Chapter 16).  Automated coregistered imaging was performed on a healthy 

human subject with a spherical target (0.45 cm3) filled with 1 !M ICG placed noninvasively 

underneath the flap of the breast tissue.  Due to increased instability of the acoustic tracking 

system, a manual coregistration approach was temporarily implemented and performed in a 
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healthy human subject with a 0.45 cm3 spherical target filled with 0.08% and 0.04% India ink 

placed underneath the flap of the breast tissue.  The results demonstrated the ability to 

detect both fluorescent and absorption based targets through human breast tissue and 

coregister the image at the appropriate tissue location using both automated and manual 

coregistered imaging (Section 12.3). 

 Coregistered images provide the appropriate positional information to enable 3D 

tomographic analysis.  The third major goal was to perform 3D tomography in tissue 

phantoms, in vitro, and in vivo using our hand-held optical imager.  Initially, 3D tomography 

was performed using manual coregistration of the fast 2D images of fluorescent targets in 

vitro with the simple cubicle geometries.  The targets were recovered close to the true 

location; however, the recovered optical property (!axf) values were very low which could be 

due to the highly diffused signal from depths of 2-2.5 cm in a heterogeneous background 

(Section 10.3.1).  Subsequent tomography studies were performed using the summated 

coregistered data.  The reconstruction results showed many artifacts and it could not be 

conclusively determined that the target was recovered (Section 10.3.2).  Future work will be 

performed to apply some filtration techniques and to use frequency-domain data for the 

reconstructions which provides additional phase information that is not present in CW 

imaging employed in the current research studies (as described in Chapter 16).   

 The major challenge in performing 3D tomography in human tissue as opposed to 

simple phantoms is to generate the discretized volume geometry (or mesh) for the human 

breast tissue.  For simple cubicle phantoms, the geometry and mesh were generated within a 

single software (Gambit) and the same mesh was used for each phantom reconstruction.  In 

the case of human subject studies, the various breast tissue geometries must be acquired for 
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each subject and discretized into tetrahedral volume mesh.  Complications occurred in the 

process of trying to import an acquired surface scan into appropriate software to generate 

the 3D volume and mesh.  Meshing softwares are typically designed such that a geometry is 

both generated and meshed within that same software.  However, our application presented 

a unique complication in that we required an externally acquired complex geometry to be 

imported into the software and used to generate a 3D volume and mesh.  A ten-step 

procedure was developed to acquire the tetrahedral volume mesh of the breast tissue and 

extract the experimental information corresponding to the individual volume breast mesh 

needed to input into the reconstruction algorithm (Section 13.2.1).   

 Three-dimensional (3D) tomography was performed using the data from a healthy 

human subject with a fluorescent target placed underneath the flap of the breast tissue.  The 

signal from the target was recovered close to the true location along with artifacts (Section 

13.3).  The artifacts could be caused by improper contact of the probe with the tissue 

surface, uneven intensity distribution among the six sources in the probe face, or noise in the 

experimental data.  Efforts will be made to reduce the artifacts as part of the future work 

(Chapter 16).  The result demonstrates for the first time the feasibility of performing 3D 

tomography in breast tissue of a human subject using a hand-held optical imager. 

 The final stage of the dissertation involved preliminary studies using the hand-held 

optical imager on actual breast cancer subjects.  Diffuse optical imaging studies were 

performed in two female patients with invasive ductal carcinoma.  The images showed 

higher absorption signals in the regions of the tumor locations along with artifacts (Section 

14.3).  The results demonstrate the potential of the device to detect the presence of cancer 

within a known region of interest which has clinical application towards prognostic imaging 
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since the location of the tumor versus surrounding artifacts will be known.  In order for the 

device to be used for diagnostic purposes, the artifacts that have occurred in the images must 

be minimized.  Future work will involve efforts to improve the instrumentation as well as 

the imaging procedure in order to reduce the artifacts.  

 There are several unique advantages of our hand-held optical imager.  The probe 

contains six illumination points and 165 detection points (distributed over a 4x9 cm) area 

which illuminate and collect the signal simultaneously to enable rapid data acquisition in 

large volumes of tissue.  The probe is designed with a flexible face to contour to the 

curvature of the breast tissue allowing maximum patient comfort.  Self-coregistration 

facilities are implemented with the probe to accurately position the image on the complex 

3D breast tissue geometry.  The hand-held optical imager is the only one of its kind that is 

capable of performing 3D tomography in human breast tissue. 

 There are also several limitations of the hand-held device.  The probe uses a sub-

surface based imaging configuration which limits the collected signal to reflectance 

measurements only.  The physics of reflectance based imaging leads to recovery of targets 

closer to the imaging surface limiting the ability to accurately recover the true target depth.  

The acoustic tracking system proved unstable causing error in image coregistration.  The 

bulky design of the bench-top hand-held imaging device is not portable and operator-

friendly for efficient bedside imaging.  The next chapter will describe the efforts to 

overcome these limitations as part of our ongoing and future work.   

 The significance of the work presented in this dissertation is towards the clinical 

translation of a hand-held optical imager for bedside imaging and 3D tomography of human 

breast tissue.  The process of clinical translation of our hand-held optical imager involved 
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modification of the experimental set-up and method from bench-top phantom studies to 

bedside human subject imaging.  The performance of the device was evaluated using 

progressively more complex subjects, beginning with the simple case of homogeneous tissue 

phantoms, then using more complex heterogeneous in vitro phantoms, and finally testing in 

actual human breast tissue.  While phantom and in vitro studies are useful for gaining some 

insight into how the device will perform, extensive human subject studies are integral to 

gaining a true assessment of the device performance in the clinical setting.  The hand-held 

optical imager has potential impact for women with breast cancer by providing a safe and 

patient comfortable method for functional imaging of breast tissue towards cancer diagnosis 

and prognosis.  
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CHAPTER 16                                                                                            

Ongoing and Future Work 

 
 The work performed for this dissertation has brought the development of our hand-

held optical imager from the stage of bench-top testing in simple cubical phantoms to the 

stage of performing extensive bedside human subject studies.  Through collaboration with a 

breast surgeon and a cancer center, we are continuously recruiting breast cancer patients to 

participate in our research studies.  Parallely, we will continue to perform studies in healthy 

subjects as a control group, and in the future we will recruit subjects with various types of 

non-cancerous breast lesions (e.g. cysts, fibroadenoma, etc.)  Our imager must be tested on 

many subjects over a wide range of demographics in order to determine the sensitivity, 

specificity, positive predictive value, and negative predictive value of the device. 

 The three major aspects that the ongoing and future work will focus on to improve 

the imaging results are (i) instrumentation, (ii) data acquisition, and (iii) post-processing.  The 

current limitations in the instrumentation are the bulky bench-top design of the optical 

imaging system, the heavy and awkward hand-held probe, and the unstable tracking system.  

In order to address the limitations in the bulky bench-top system and probe design, a second 

generation of the hand-held optical imager is being developed which has a more sleek and 

portable design.  The instrumentation is more compact and fits on a portable cart for ease of 

bedside imaging.  The hand-held-probe has a two-piece design which is smaller and lighter 

for comfort and better control of operation as well as the addition of transillumination based 

measurements to improve target depth recovery.  Another limitation of the first generation 

device is the uneven source intensity distribution which causes artifacts in the images.  The 
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second generation device will contain six independent laser diodes to enable a uniform 

source intensity distribution.  This second generation device will be tested extensively in 

healthy human subjects and breast cancer patients.     

 Another limitation in the instrumentation is the instability of the tracking system,. An 

alternate optical-based tracking system is being developed to enable more accurate image 

coregistration.  Once the optical-based tracking system is developed, coregistered imaging in 

human subjects will be reevaluated quantitatively to determine how much the discrepancy 

between true and measured probe locations was reduced by the combined efforts of (i) 

improving the stability of the tracking system and (ii) modifying the imaging set-up to reduce 

human error.   

 Efforts will be made to improve the methods of data acquisition in order to 

systemize the imaging approach across multiple human subjects. To this end, a structured 

imaging approach will be implemented which uses a template of predefined locations of the 

probe which are marked on each breast tissue to ensure continuity of imaging among 

repetitions with each subject and across multiple subjects.  In order to reduce the movement 

and conformation of the breast tissue, an optically clear custom-built garment will be used 

with the Generation II system to confine the breast tissue.  The hand-held 3D scanner will 

be used as the motorized system with the subject seated in an upright position. 

 Post-processing techniques will also be applied as part of the future work in order to 

minimize the presence of artifacts.  Filtration will be applied to the data to try to remove 

noisy data points that contribute to artifacts.   Since each image represents an average of 5-

10 repetitions, there may be noisy data in one of the repetitions which can be identified by 

the magnitude of the standard deviation and removed.[157] 
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 Several challenges were encountered and lessons were learned throughout the 

dissertation process.  One lesson is the importance of maintaining a systematic experimental 

approach at every stage in the research.  If a new method or idea is applied that produces an 

improved result it can be tempting to immediately try it to the most extreme case to see the 

improvement.  However, any new method must be systematically applied at each 

incremental stage in order to see the effect on the experimental results.  During preparation 

for human subject studies, experience was gained while assisting in writing the IRB proposal.  

It can be a strenuous process and it is important to think ahead and cover every possible 

aspect of the experimental procedure.  The procedure will naturally be altered as limitations 

are discovered and more effective methods are implemented and every detail must be 

documented in the IRB protocol.  There is also the challenge of collaborating with other 

institutions requiring an additional IRB approval from the other institutions which can be a 

lengthy process.   

 Several major lessons were learned during this process occurred during the transition 

from phantom and in vitro studies to human subject studies.  During the experience acquired 

throughout the dissertation research, many things have been discovered that must be taken 

into consideration when performing human subject studies as opposed to phantom studies.  

In phantom studies there is much more control over the experiment in that the phantom is 

made the same way each time, and once it is set in place it remains fixed for the extent that is 

required during data collection and troubleshooting.  With a human subject, there is much 

more variability and many more unknowns.  The tissues of human subjects differ widely in 

size and density.  The imaging procedure must be generalized enough to account for the 

differences. Although the subject is asked to remain still during the imaging procedure, there 
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inevitably will be some movement which can impact the results.  Human subject studies 

must be performed in a limited amount of time, so if problems occur, troubleshooting must 

be done quickly on the spot or the data cannot be collected at that time.  Another lesson is 

that the behavioral conduct of the researchers performing the experiment must be much 

more formal than during phantom studies.  Problems inevitably occur and it is important not 

to cause tension or panic in subject who does not understand the operation of the 

instrumentation and might worry that the problem would affect them.  It is also important 

to maintain awareness of the demographics in the area where the subjects will be recruited.  

The studies described here were performed in an area that has a high Hispanic population 

and some of the subjects spoke very limited English.  It was necessary to have the consent 

forms prepared in both English and Spanish so the subject could be informed in their 

preferred language.  Another aspect that is required for human subject studies is the 

confidentiality of sensitive information.  The identity of the subject is never associated with 

the data collected, and the medical records must be kept locked to protect the privacy of the 

subject. 

 The lessons learned during the dissertation process will be incorporated in the 

ongoing and future work with the hand-held optical imager.  Clinical studies with patient 

trials are integral to the translation of any device.  Extensive clinical trials will provide a 

broader scope of the device capabilities and expected performance in a true clinical setting. 
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APPENDIX A  --  Complete Table of Hand-held Based Optical Imaging 
Devices 
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NIR 
Spectrosc

opy 
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modulated 
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849, 956 

nm 
APD 1.0 cm 
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abnormal 

human 
subjects 
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tissue) 
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Lannin
g, 
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Spectrosc

opy 
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Tromb
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modulated 
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CW - fiber-

coupled 
spectrogra

ph w/ 
linear 
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detector 

 N/A 

phantom 
& 2 

normal 
human 
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2,2             
(sequenti

al 
illuminatio

n) 
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Spectrosc

opy 

CW & 
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(300 kHz 
- 1 GHz)   

[2 
separate 
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FD - 7 diode 
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CW - 150 W 
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coupled 
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linear 
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detector 
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(averag

e) 
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& 1 
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1,1                 

Jakubo
wski, 
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[35] 

NIR 
Spectrosc

opy 

CW & 
FDPM                

(50-1000 
MHz) 

FD - amplitude 
modulated 
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CW - high-

intensity 
tungsten 
halogen  

660, 685, 
786, 809, 
822, 852, 
898, 911, 
946, 973 

nm 

FD - APD                  
CW - fiber-

coupled 
spectrogra

ph w/ 
linear 
CCD 

detector 

 N/A 

1 
abnormal 

human 
subject 
(breast 
tissue) 

2,2             
(sequenti

al 
illuminatio

n) 

Shah, 
2005                
[36]  

NIR 
Spectrosc

opy 

CW & 
FDPM         

(50-600 
MHz) 

FD - amplitude 
modulated 

diode lasers                        
CW - high-

intensity 
tungsten 
halogen  

658, 682, 
785, 810, 
830, 850 

nm 

FD - APD                  
CW - fiber-

coupled 
spectrogra

ph w/ 
linear 
CCD 

detector 

0.5 cm   
(averag
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1 
abnormal 
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subject 
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2,2             
(sequenti

al 
illuminatio

n) 

Hsiang
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NIR 
Spectrosc
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(w/ MRI 

coregistra
tion) 

CW & 
FDPM          
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MHz) 

FD - amplitude 
modulated 
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CW - high-

intensity 
tungsten 
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nm 
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CW - fiber-

coupled 
spectrogra

ph w/ 
linear 
CCD 

detector 

4.2 cm 

6 
abnormal 

human 
subjects 
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tissue) 

2,2             
(sequenti

al 
illuminatio

n) 

Ceruss
i, 2006             

[38] 

NIR 
Spectrosc

opy 

CW & 
FDPM                

(50-500 
MHz) 

FD - amplitude 
modulated 

diode lasers   
(<20 mW)                     

CW - 150 W 
halogen lamp 

661, 686, 
786, 808, 
822, 852 

nm 
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CW - fiber-

coupled 
spectrogra

ph w/ 
linear 
CCD 

detector 

 N/A 

57 
abnormal 

human 
subjects 
(breast 
tissue) 

2,2             
(sequenti

al 
illuminatio

n) 
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i, 2007              
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NIR 
Spectrosc

opy 
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CW - fiber-
coupled 

broadband 
white-light 

source 
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nm 
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CW - fiber-

coupled 
spectrogra

ph w/ 
linear 
CCD 

detector 

 N/A 

11 
abnormal 

human 
subjects 
(breast 
tissue) 

2,2             
(sequenti

al 
illuminatio

n) 

                      

D
ev

ic
e 

# 
2 

No, 
2005               
[40] 

NIR 
Spectrosc

opy 

FDPM                   
(10 MHz 
- 1 GHz)          

8 laser diodes                  
(50 mW) 783 nm photodete

ctor  N/A Phantom 1,1 

 
 

No, 
2006            
[41]  

NIR 
Spectrosc

opy 

FDPM                        
(50-300 
MHz)          

4 laser drivers                    
(20 mW) 

681, 783, 
806, 823 

nm 
APD  N/A 

breast 
phantom 
& muscle 
phantom 

4,1      
(sequenti

al 
illuminatio

n)               

No, 
2007             
[42] 

NIR 
Spectrosc

opy 

FDPM                        
(50-300 
MHz)          

4 laser diodes                    
(20 mW) 

681, 783, 
823, 850 

nm 
APD  N/A N/A  

4,1     
(sequenti

al 
illuminatio

n) 
                      

D
ev

ic
e 

# 
3 

Chanc
e, 

2005               
[43] 

NIR 
Spectrosc

opy 
CW 

light emitting 
diodes                 

(10-15 mA) 
760, 805, 
850 nm 

8 silicon 
diode 

detectors 
4.0 cm 

116 
abnormal 

human 
subjects 
(breast 
tissue) 

1,8 

 
 

Nioka, 
2005                
[44] 

NIR 
Spectrosc

opy 
CW 

light emitting 
diodes                   

(10-15 mA) 
735, 805, 
850 nm 

8 silicon 
diode 

detectors 
4.0 cm 

116 
abnormal 

human 
subjects 
(breast 
tissue) 

1,8 

Sao, 
2003               
[45]  

NIR 
Spectrosc

opy 
CW 2 light emitting 

diodes 
730, 850 

nm 

8 
photodete

ctors 
 N/A Phantom 2,8 
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D
ev

ic
e 

# 
4 

Chanc
e, 

2006           
[46]  

NIR 
Spectrosc

opy 

FDPM                        
(3 kHz) 

2 light emitting 
diodes                     

(20 mA) 
800 nm 

silicon 
diode 

detector 
5.0 cm Phantom 

& Human 

2,1     
(simultan

eous 
illuminatio

n) 

 

                      

D
ev

ic
e 

# 
5 

Liu, 
2004             
[47]  

NIR 
Fluoresce

nce 
Spectrosc

opy 

FDPM                        
(3 kHz) 

4 light emitting 
diodes      (infrared) PMT  N/A Phantom 

4,1     
(simultan

eous 
illuminatio

n) 

 

                      

D
ev

ic
e 

# 
6a

 Xu, 
2005           
[48]   

NIR 
Spectrosc

opy 
CW laser diodes                    

(100 mW) 
690, 830 

nm 

silicon-
based 

photodiod
es 

1.5 cm Simulatio
n 8,8 

 
 

Xu, 
2005              
[49]   

NIR 
Spectrosc

opy (w/ 
ultrasoun

d) 

CW laser diode 690, 830 
nm 

photo 
diode  N/A 

abnormal 
human 

subjects    
(breast 
tissue) 

8,8 

D
ev

ic
e 

# 
6b

 

Xu, 
2007             
[50]   

NIR 
Spectros

copy 
CW laser diodes            

(0.15 W/cm2) 
690, 830 

nm 

silicon-
based 

photodiod
es 

 N/A 

phantom 
& 2 

normal 
human 

subjects        
(calf 

muscle & 
breast 
tissue) 

16,8 

 

                      

D
ev

ic
e 

# 
7 

Choe, 
2005              
[51] 

NIR 
Spectrosc

opy 
CW 

long coherence 
laser coupled 
to 1x4 optical 

switch 

785 nm 

4 fast 
photon-
counting 

avalanche 
photodiod

es 

 N/A 

5 
abnormal 

& 2 
normal 
human 

subjects         
(breast 
tissue) 

4,4 
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Durdur
an, 

2005            
[52] 

NIR 
Spectrosc

opy 
CW 

long coherence 
laser coupled 
to 1x4 optical 

switch 

785 nm 

4 fast 
photon-
counting 

avalanche 
photodiod

es 

1.0 cm Human 4,4 

                      

D
ev

ic
e 

# 
8 

Liebert
, 2005            

[53] 

NIR 
Spectrosc

opy 
TDPM 2 picosecond 

diode lasers 
803, 807 

nm PMTs  N/A 

2 normal 
& 2 

abnormal 
human 

subjects          
(brain 
tissue) 

2,4 

 
 

                      

D
ev

ic
e 

# 
9a

,b
 

Sunar, 
2006             
[54]   

Diffuse 
Correlatio

n 
Spectrosc

opy* 
(DCS)  & 
Diffuse 

Reflectanc
e 

Spectrosc
opy** 
(DRS) 

DCS - 
CW          

DRS - 
FDPM       

(70 MHz)   

DCS - long 
coherence 

laser                          
DRS - laser 

diodes 

CW - 785 
nm  FDPM - 

690, 785, 
830 nm 

CW - 4 
fast 

photon-
counting 

avalanche 
photodiod

es        
FDPM - 2 
avalanche 
photodete

ctors 

1.5 cm 

8 
abnormal 

human 
subjects            
(head & 

neck 
tissue) 

CW - 2,4             
FDPM - 

2,4 

 

                      

D
ev

ic
e 

# 
10

a 

Zhu, 
1999            
[55]  

NIR & 
Ultrasoun

d 

FDPM                  
(200 
MHz) 

12 light 
sources from 
single diode 

laser  

776, 834 
nm 4 APDs 2.6 cm Breast 

Phantom 12,4 

 

D
ev

ic
e 

# 
10

b 

Guo, 
2000          
[56]  

NIR & 
Ultrasoun

d 

FDPM                     
(140 
MHz) 

12 dual 
wavelength 
laser diodes 

780, 830 
nm 8 PMTs  N/A Breast 

Phantom 12,8 
 
 

Zhu, 
2000             
[57] 

NIR & 
Ultrasoun

d 

FDPM                 
(140 
MHz) 

12 dual 
wavelength 
laser diodes 

780, 830 
nm 8 PMTs 2.5 cm Breast 

Phantom 12,8 

Chen, 
2001           
[58] 

NIR & 
Ultrasoun

d 

FDPM                
(140 
MHz) 

12 pairs of dual 
wavelength 
laser diodes 

760, 830 
nm  8 PMTs 2.5 cm Breast 

Phantom 12,8 
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D

ev
ic

e 
# 

11
 

Zhu, 
2003           
[59] 

NIR & 
Ultrasoun

d 

FDPM                
(140 
MHz) 

12 pairs of dual 
wavelength 
laser diodes 

780, 830 
nm 8 PMTs  N/A 

abnormal 
human 

subjects    
(breast 
tissue) 

12,8 

 
 

Zhu, 
2003                
[60] 

NIR & 
Ultrasoun

d 

FDPM                
(140 
MHz) 

12 pairs of dual 
wavelength 
laser diodes 

780, 830 
nm 8 PMTs  N/A 

abnormal 
human 

subjects    
(breast 
tissue) 

12,8 

Chen, 
2004            
[61] 

NIR & 
Ultrasoun

d 

FDPM                     
(140 
MHz) 

laser diodes          
(~10 mW) 

660, 780, 
830 nm 

silicon 
avalanche 
photodiod

es 

3.7 cm 

abnormal 
human 

subjects    
(breast 
tissue) 

9,10 

Zhu, 
2005              
[62] 

NIR & 
Ultrasoun

d 

FDPM                  
(140 
MHz) 

12 pairs of dual 
wavelength 
laser diodes 

780, 830 
nm 8 PMTs  N/A 

64 
abnormal 

human 
subjects    
(breast 
tissue) 

12,8 

Zhu, 
2005              
[63] 

NIR & 
Ultrasoun

d 

FDPM                  
(140 
MHz) 

12 pairs of dual 
wavelength 
laser diodes 

780, 830 
nm 8 PMTs  N/A 

6 
abnormal 

human 
subjects       
(breast 
tissue) 

12,8 

Xu, 
2007                
[64]  

NIR & 
Ultrasoun

d 
FDPM 

9 pairs of triple 
wavelength 

sources 

690, 780, 
830 nm 8 PMTs 1.5 cm 

Simulatio
n & 

Breast 
Phantom 

9,8 

                      

D
ev

ic
e 

# 
12

 

Jayach
andran, 

2007                      
[21] 

NIR 
fluoresce

nce 
tomograp

hy 

FDPM laser diode 785 nm ICCD 
Camera  N/A 

Simulatio
n & 

Breast 
Phantom 

6,165          
(simultan

eous      
illuminatio

n) 
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APPENDIX B  Fluorescence-enhanced Diffuse Optical Tomography; Experimental Studies 
(Adapted from Ge, 2008 [154]) 

 

 
 

Refer
ence 

 
Phantom/Animal Measur

e 
method 

 
Instrument  

2D 
or 
3D 

 
Forward 
Method 

 
Inverse 
Method Backgrou

nd 
Target 

 

Contrast Source 
(geometr

y) 

Detector 
(geometry) Agent Ratio 

(Wu et 
al., 

1995) 

Cylinder 
R = 3. 5 
cm  glass 

beaker 

Sphere 
R = 1.5 

mm 

Diethylthi
atricarboc

yanine 
1:0 TDPM 

Ti: 
Sapphire 

laser 
(point ) 

Streak 
camera 

(sim point) 
3D None Localizatio

n 

(Wu et 
al., 

1997) 

Cylinder 
R = 3.2 
cm glass 
beaker 

Glass 
cell 

HITCI 
Iodide dye 1:0 TDPM 

Ti: 
Sapphire 

laser 
(point) 

Streak 
camera 

(sim.  point) 
2D Analytical Laplace 

transform 

(Chan
g et 
al., 

1997) 

Cylinder 
R = 4 cm 

H = 50 cm 

Balloon 
V = 

0.5mL 

Rhodamin
e 6G dye 500:1 CW 

Argon ion 
laser 
(area) 

CCD camera 
(area) 2D NS 

POCS, 
CGD, 
SART 

(Hull 
et al., 
1998) 

Slab 
14.5 cm 
!29.5 cm 
! 15.5 cm 

Spheric
al glass 

bulb 
R = 3.0 

mm 

Nile blue 
A 1:0 CW Dye laser 

(area) 
CCD camera 
(sim. point) 2D Monte carlo Localizatio

n 

(Chern
omord
ik et 
al., 

1999) 

Delrin 
phantom 
NS for 

size 

V = 1 
mm3 

Rhodamin
e 1:0 CW 

Argon 
laser 
(area) 

CCD camera 
(area) 

2D/
3D NS 

Random 
walk 

theory 

(Hawr
ysz et 

al., 
2001; 
Eppste
in et 
al., 

Slab 
S = 82 cm2 

H = 4 cm 

Cube 
1 cm3 ICG 

1:0 &  
imper
fect 

uptak
e 

FDPM 

Laser 
diode 
(seq. 
point) 

PMT 
(seq. point) 3D MFD AEKF 
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2002) 

(Ntzia
christo
s and 

Weissl
eder, 
2001) 

Cylinder 
R = 1.25 

cm 
H = 15 cm 

Cylinde
r 

R = 
1.75mm 

H = 
1,:3.5 

cm 

ICG in 
backgroun

d and 
Cy5.5 as 
contrast 
tumor 

1:0 CW 
Laser 
diode 

(seq.point) 

CCD camera 
(sim. Point) 3D FD SIRT 

(Ntzia
christo

s et 
al., 

2002) 

In vivo 
(rat) 

Tumor 
NS for 

size 

Enzyme 
activatabl

e 
fluorochro

mes 

1:0 CW 

Laser 
diode 
(seq. 
point/ 
area) 

CCD camera 
(area) 3D FD Constraine

d ART 

(Lee 
and 

Sevick
-

Murac
a, 

2001; 
2002) 

Slab 
V = 

8!8!8 
cm3 
V = 

8!4!8 
cm3 

Cube 
V = 

1cm3 
ICG 100:1 FDPM 

Laser 
diode 
(seq. 
point) 

PMT 
(seq.point) 3D MFD Leverberg-

Marquardt 

(Grave
s et 
al., 

2003) 

In vivo 
(rat) 

Tumor 
R = 1.5 

mm 

Cy5.5 
based 

activatabl
e 

fluorescen
t probe 

1:0 CW 

Laser 
diode 
(seq. 

point/area
) 

CCD camera 
(area) 3D FD SVD 

(Goda
varty 
et al., 
2003; 
Godav
arty et 

al., 
2004b; 
Godav
arty et 

al., 

Breast 
phantom 
V = 1087 

cm3 
& Semi-
infinite 

phantom 

Target 
V = 

1cm3 
ICG 

100:1
, 

1:0 
FDPM 

Modulate
d laser 
diode 

(seq./sim. 
Point) 

CCD camera 
(sim.point) 3D FEM AEKF 
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2004a) 

(Klose 
et al., 
2005) 

Slab 
S = 42  
cm2 

H = 1.3 
cm 

Tube 
R = 

0.1cm 
H = 4 

cm 

Cy5.5 1:0 CW 

Laser 
diode 
(seq. 
point/ 
area) 

CCD camera 
(area) 3D FD based on 

ERT 

Nonlinear 
optimizatio

n 

(Wu et 
al., 

2005b; 
Wu et 

al., 
2005a) 

Cylinder 
R = 25mm 

H = 
100mm 

Tube 
R = 7 
mm 

Metal 
nanoshell; 

Hybrid 
virus-dye 
nanopartic

le 

1:0 CW 
Laser 
diode 

(seq.point) 

PMT 
(seq. point) 2D FEM 

Newton’s 
iterative 
method 

(Roy, 
2005) 

Cube 
V=83cm3 

Cube 
V=1cm3 ICG 

Perfe
ct and 
100:1 

 

FDPM 
Laser 
diode 
(area) 

CCD camera 
(area) 3D Experimenta

l method 

PMBF/CO
NTN 

 

(Goda
varty 
et al., 
2005) 

Breast 
phantom 

V = 
1087cm3 

V = 1 
cm3 

ICG; 
3-3’-

Diethylthi
atricarboc

yanine 
iodide 

 

70:1 
100:1 
Lifeti

me 
1:1 

2.1:1 

FDPM 
Laser 
diode 
(area) 

CCD camera 
(area) 3D FEM AEKF 

(Chen 
et al., 
2005) 

Slab 
phantom 
V = 12 ! 

5 ! 12 
cm3 

In vivo 
 

Cube 
V = 

1cm3 

NIR804-
2-D 

Glucosam
ide 

1:0 FDPM 

Laser 
diode 
(sim. 
Point) 

PMT 
(seq. point) 2D Analytical Back-

projection 

(Patwa
rdhan 
et al., 
2005) 

In vivo 
(mice) 

Tumor 
up to 5 

mm 
ICG N/A CW 

Laser 
diode 
(seq. 

point0 

CCD camera 
(area) 3D NS ART 

(Zacha
rakis 
et al., 
2005) 

In vivo 
(mice) 

A thin 
glass 

capillar
y tube 

fluorescei
n 

isothiocya
nate 

1:0 CW 

Laser 
diode 
(seq. 
point/ 

CCD camera 
(area) 3D FD ART 
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 area) 

(Fedel
e et 
al., 

2005) 

Breast 
phantom 
1087 cm3 

Cube 
1cc ICG 100:1 FDPM 

Modulate
d laser 
diode 
(seq. 
point) 

CCD camera 
(sim. Point) 3D BEM AEKF 

(Joshi 
et al, 
2006) 

Cube 
phantom 

V=8x8x8c
m3 

Bulb 
(dia: 3-
4mm) 
Depth: 
1-2cm 
(edge) 

ICG 1:0 FDPM 
Laser 
diode 
(area ) 

CCD 
camera 
(area) 

3D FEM AEKF 

(Roy 
et al, 
2006) 

Breast 
phantom 

V = 
1087cm3 

Bulb 
(0.5-

1.0cm3) 
ICG 1:0 

100:1 FDPM 
Laser 
diode 

(seq.point) 

CCD camera 
(sim.point) 3D FEM PMBF/CO

NTN 

(Schul
z et al, 
2006) 

cylindrical 
phantom [ 
D=4 cm, 
height 10 

cm; 

hollow 
tubes( 
D=4 
mm) 

Cy5.5 1: 0 CW 

Laser 
diode 

(seq.point 
& 

Area) 

CCD camera 
(sim. point 

& 
 

3D FEM 
Normalized 

Born 
approach 

(Yuan 
and 

Zhu et 
al 

2006) 

Semi-
infinite 

phantom 

Spheric
al(R=0.
4cm) 
Cube 

(0.8x0.8
x0.8cm3

) 

Cy5.5 
1:0 

100:1 
200:1 

FDPM 
Laser 
diode 

(seq.point) 

PMT(seq.po
int) 3D 

Normalized 
Born 

Approximati
on 

(analytical) 

Total least 
square 

/Conjugate 
gradient 

technique 

(Moha
jerani 
et al, 
2007) 

 

Cylinder 
(D=7.5 

cm, H = 6 
cm) 

Small 
glass 

cuvetts 
(1 mm 
! 1 mm 
! 3 

mm) 

Rhodamin
e 6G 

 
1 : 0 CW 

Solid-state 
laser (seq. 

point) 

PMT (seq. 
Point) 3D FEM Sparse 

model 

(Corlu 
et al, 
2007) 

In vivo 
(human) Tumor ICG 

3.5-
5.5:1 

 
CW 

Laser 
diode 
(seq. 

CCD camera 
(Area) 3D FEM GMRES 
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point) 

(Davis 
et al, 
2007) 

Rounded 
epoxy 
solid 

phantom 
(D=5.5cm

) 

14mm 
hole Lutex 2.0:1 

3.3:1 
CW/FD

PM 

Laser 
diode 

(seq.point) 

CCD camera 
sim.point) 3D FEM 

Adjoint 
Method 
(MR-

guided) 

(Delio
lanis 
et al, 
2007) 

in vivo 
(mice) 

9mm 
tube 

(0.75m
m 

diamete
r) 

Alexa 
Fluor 750 1:0 CW 

Laser 
diode 
(seq. 
point) 

CCD camera 
(area) 3D Analytical 

Analytical 
(Normalize

d Born 
solution) 

(Herve 
et al, 
2007) 

Solid 
phantom 

 
And in 

vivo 
(mice) 

Glass 
tube 
(D=3 

mm, L= 
3 cm) 

and 14-
day 
lung 

tumor in 
mice 

Alexa 750 1 : 0 CW 

Laser 
diode 
(seq. 
point) 

CCD camera 
(area) 3D FD ART 

(Keps
hire et 

al, 
2007; 
2008) 

Tank 
filled with 
2% India 
ink and 

5% 
Tween-20 

(V= 
3!4!1 cm 

3  ) 

Cyclind
rical 

target 
(D=8m

m) 

Pp-IX 

3.5 :1
, 5 :1 
and 

10 :1 

CW 

Laser 
diode 
(seq. 
point) 

CCD camera 
(area) 3D FEM 

Non-liniear 
Newton 

minimizati
on 

(Mont
et et 
al, 

2007) 

In vivo 
(mice) 

5-7 day 
tumor 
(D=3 – 
5 mm) 

Angiosens
e 680 and 

750 
/ CW FMT-

Solaris FMT-Solaris 3D Normalized 
Born N/A 
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(Meye
r et al, 
2007.) 

In vivo 
(transgeni

c mice) 
tumor CD2-GFP / CW Ar+ laser 

(area) 
CCD camera 

(area) 3D FD ART 

(Roy 
et al, 
2007) 

Breast 
shape 

phantom 
(V = 1081 

cm3) 

Spheric
al target 
(V= 1.0 

cm3) 

ICG 
 

Fluor
escen

ce 
absor
ption: 
212: 

1 
70:1 
Lifeti
me: 

1: 2.1 
2.1 : 

1 

FDPM 

Laser 
diode 
(seq. 
point) 

CCD camera 
(sim. point) 3D FEM 

PMBF/CO
NTN 

 

(Ge et 
al, 

2008) 

Cube 
filled with 

1% 
Liposyn 
solution 
(V=10 
!10!6.5 
cm 3  ) 

Sphere 
(D=0.95

cm) 
ICG 1:0 FDPM 

Laser 
diode 
(sim. 
point) 

CCD camera 
(sim. point) 3D FEM AEKF 

(Keren 
et al, 
2008) 

Cylindrica
l Phantom 

Inclusio
n (D= 3 

mm) 
Cy 5.5 1: 0 TD 

Pulsed 
diode 

laser (seq. 
point) 

PMT (seq. 
point) 3D 

Born 
approximati

on 
N/A 

(Tan 
et al, 
2008) 

Solid 
phantom 
(V= 3 ! 3 
! 9 cm3) 

Cylindri
cal 

target 
(D= 6 
mm) 

ICG 1 : 0 CW 

Laser 
diode 
(seq. 
point) 

CCD camera 
(area) 3D FEM 

Newton’s 
iterative 
method 
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APPENDIX C 
Summary of the experiment parameters for various experimental cases including the average 
measured source intensities, the gain setting on the image intensifier, the actual target 
location in cm, the actual target volume, the measured optical property values of the 
phantom at the excitation and emission wavelengths, the target to background ratio (T:B), 
the recovered target location in cm, the recovered !axf values in cm-1, the recovered target 
volume, the number of iterations executed before convergence, and the breakpoint (cutoff 
value selected on the first breakpoint of a histogram plot of the recovered !axf values).  
Results from experimental cases 26 and 27 (highlighted in yellow) are presented in Section 
10.3. 
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