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ABSTRACT OF THE DISSERTATION 

CHARACTERIZATION OF RECOMBINANT CHLOROPEROXIDASE, AND F103A 

AND C29H/C79H/C87H MUTANTS 

by 

Zheng Wang 

Florida International University, 2011 

Miami, Florida 

Professor Xiaotang Wang, Major Professor 

Mechanistically and structurally chloroperoxidase (CPO) occupies a unique niche 

among heme containing enzymes. Chloroperoxidase catalyzes a broad range of reactions, 

such as oxidation of organic substrates, dismutation of hydrogen peroxide, and 

mono-oxygenation of organic molecules. To expand the synthetic utility of CPO and to 

appreciate the important interactions that lead to CPO’s exceptional properties, a 

site-directed mutagenesis study was undertaken.  

Recombinant CPO and CPO mutants were heterologously expressed in Aspergillus 

niger. The overall protein structure was almost the same as that of wild type CPO, as 

determined by UV-vis, NMR and CD spectroscopies. Phenylalanine103, which was 

proposed to regulate substrate access to the active site by restricting the size of substrates 

and to control CPO’s enantioselectivity, was mutated to Ala. The ligand binding affinity 

and most importantly the catalytic activity of F103A was dramatically different from wild 

type CPO. The mutation essentially eliminated the chlorination and dismutation activities 

but enhanced, 4-10 fold, the epoxidation, peroxidation, and N-demethylation activities. 

As expected, the F103A mutant displayed dramatically improved epoxidation activity for  
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larger, more branched styrene derivatives. Furthermore, F103A showed a distinctive 

enantioselectivity profile: losing enantioselectivity to styrene and cis-β-methylstyrene; 

having a different configuration preference on α-methylstyrene; showing higher 

enatioselectivites and conversion rates on larger, more branched substrates. Our results 

show that F103 acts as a switch box that controls the catalytic activity, substrate 

specificity, and product enantioselectivity of CPO. Given that no other mutant of CPO 

has displayed distinct properties, the results with F103A are dramatic. 

The diverse catalytic activity of CPO has long been attributed to the presence of the 

proximal thiolate ligand. Surprisingly, a recent report on a C29H mutant suggested 

otherwise. A new CPO triple mutant C29H/C79H/C87H was prepared, in which all the 

cysteines were replaced by histidine to eliminate the possibility of cysteine coordinating 

to the heme. No active form protein was isolated, although, successful transformation and 

transcription was confirmed. The result suggests that Cys79 and Cys87 are critical to 

maintaining the structural scaffold of CPO. 

In vitro biodegradation of nanotubes by CPO were examined by scanning electron 

microscope method, but little oxidation was observed.  

 

 

 

 
 
 
 
 

 
 



 
 

viii 
 

TABLE OF CONTENTS 

CHAPTER                                                         PAGE 

I Introduction ................................................................................................................ 1 
1.1 Background ....................................................................................................... 1 
1.2 Chloroperoxidase structure and reaction mechanism ....................................... 4 

1.2.1 Chloroperoxidase reaction mechanism ...................................................... 4 
1.2.2 Structure of CPO ........................................................................................ 8 

1.3 Heterologous CPO expression ........................................................................ 15 
1.3.1 Aspergillus niger expression system ........................................................ 16 
1.3.2 Factors that affect CPO expression in Aspergillus niger .......................... 20 

1.4 Objectives of this work ................................................................................... 25 
 

II Optimization of Aspergillus niger expression system and NMR study of 
recombinant CPO ..................................................................................................... 26 

2.1 Material and methods ...................................................................................... 26 
2.1.1 Strains and reagents .................................................................................. 26 
2.1.2 Genomic DNA extraction and sequencing ............................................... 26 
2.1.3 Expression of rCPO .................................................................................. 27 
2.1.4 Purification of rCPO ................................................................................. 27 
2.1.5 Western blotting procedure ....................................................................... 28 
2.1.6 Circular Dichroism spectrum study .......................................................... 28 
2.1.7 UV-visible absorption spectrum study ..................................................... 28 
2.1.8 Enzyme activity Assays ............................................................................ 29 
2.1.9 NMR spectroscopy ................................................................................... 29 

2.2 Results and discussion .................................................................................... 30 
2.2.1 Optimization of rCPO production and purification procedure for rCPO . 30 
2.2.2 Validation of rCPO ................................................................................... 35 
2.2.3 UV-vis & CD spectroscopic study of rCPO ............................................. 37 
2.2.4 NMR spectroscopic study of rCPO .......................................................... 38 

2.3. Conclusion ..................................................................................................... 48 
 
III F103A CPO mutant preparation and properties ....................................................... 50 

3.1 Material and methods ...................................................................................... 50 
3.1.1 Strains and reagents .................................................................................. 50 
3.1.2 CPO mutant gene construction ................................................................. 50 
3.1.3 Plasmid transformation into Aspergillus niger protoplast ........................ 51 
3.1.4 Genomic DNA extraction and sequencing ............................................... 52 
3.1.5 Expression of F103A mutant .................................................................... 52 
3.1.7 Western blotting procedure ....................................................................... 53 
3.1.8 Circular Dichroism spectum study ........................................................... 53 
3.1.9 UV-Visible absorption spectrum study ..................................................... 53 
3.1.10 Determination of extinction coefficients of CPO mutant ....................... 53 
3.1.11 Activity assays ........................................................................................ 54 



 
 

ix 
 

3.1.12 Optimum pH for the chlorination activity .............................................. 56 
3.1.13 Ligand binding study .............................................................................. 56 

3.2. Results and discussion ................................................................................... 57 
3.2.1 Preparation and purification of F103A mutant ......................................... 57 
3.2.2 Structure and function study of F103A mutant ........................................ 61 
3.2.3 F103A mutant as a possible industrial catalyst ........................................ 76 

3.3 Conclusion ...................................................................................................... 82 
 
IV C29H/C79H/C87H CPO mutant purification and characterization ......................... 85 

4.1 Material and methods ...................................................................................... 85 
4.1.1 Strains and reagents .................................................................................. 85 
4.1.2 CPO mutant gene construction of expression plasmid ............................. 85 
4.1.3 Plasmid transformation into Aspergillus niger protoplast ........................ 85 
4.1.4 Genomic DNA extraction and sequencing ............................................... 85 
4.1.5 Expression of C29H/C79H/C87H CPO mutant ....................................... 86 
4.1.6 Total mRNA extraction and reverse transcription PCR ........................... 86 
4.1.7 Western blotting procedures ..................................................................... 86 

4.2 Results and discussion .................................................................................... 86 
4.3 Conclusion ...................................................................................................... 89 

 
V In vitro biodegradation of carbon nanotube by CPO ................................................ 91 

5.1 Material and methods ...................................................................................... 91 
5.1.1 Reagents ................................................................................................... 91 
5.1.2 Nanotube biodegradation by CPO and H2O2 ........................................... 91 
5.1.3 Measurement of H2O2 concentration ........................................................ 92 
5.1.4 Scanning slectron microscope (SEM) ...................................................... 92 

5.2 Results and discussion .................................................................................... 92 
5.3 Conclusion ...................................................................................................... 93 

 
VI Perspectives .............................................................................................................. 96 

 
REFERENCES ................................................................................................................. 96 
 
APPENDICES ................................................................................................................ 105 
 
VITA ............................................................................................................................... 112 
  
  



 
 

x 
 

LIST OF TABLES 

TABLE                                                            PAGE 

2.1 Optimized condition for production of rCPO after 72 h culture .............................. 31 

2.2 Purification result of rCPO from A. niger culture .................................................... 35 

2.3 Spin lattice relaxation times (T1) of paramagnetic shifted resonances for rCPO  
and Wt CPO in 0.1 M phosphate buffer, pD 5.5 and 25 °C ..................................... 47 

2.4 Distance between the selected protons and the heme iron in rCPO based  
upon spin-lattice relaxation values and from the X-ray structure of Wt CPO ......... 48 

 
3.1 F103A purification result ......................................................................................... 59 

3.2 Spectral properties of heme thiolate proteins (P450cam, Wt CPO and F103A) 
and their ligand complexes ....................................................................................... 64 

 
3.3 Optical absorption data, dissociation constants, and spin states of ferric  

Wt CPO & ferric F103A ligand complexes .............................................................. 73 
 
3.4 Apparent Kd for cyanide binding of Wt CPO and F103A at various pH ................. 74 

3.5 Enantioselectivity study of F103A catalyzed of epoxidation reactions ................... 81 

  



 
 

xi 
 

LIST OF FIGURES 

FIGURE                                                           PAGE 

1.1 Typical non-halogenating oxidation reactions catalyzed by CPO from C. fumago ... 3 
 

1.2 Cpd I formation from ferric hydrogen peroxide (Fe-HOOH) via Cpd 0 .................... 5 

1.3 Structures of a variety of intermediates formed during CPO catalyzed reactions ..... 8 

1.4 Chloroperoxidase crystal structure (complex with Mn2+) ......................................... 9 

1.5 cis-β-methylstyrene docked in the substrate pocket of CPO .................................... 12 

1.6 The active center of CPO ......................................................................................... 14 

1.7 The chromosomal integration of vector DNA into Aspergillus ................................ 18 

1.8 The expression vector for co-transformation of A. niger ......................................... 21 

1.9 The secretion pathway in filamentous fungi ............................................................ 23 

2.1 rCPO production yields versus days after inoculation ............................................. 33 

2.2 Chromatogram of ion exchange chromatography of rCPO ...................................... 34 

2.3 Chromatogram of gel filtration chromatography of rCPO ....................................... 35 

2.4 12% SDS-PAGE result of rCPO purification ........................................................... 36 

2.5 Western blotting results of Wt CPO and rCPO ........................................................ 36 
 
2.6 UV-vis spectra of rCPO and Wt CPO in 50 mM phosphate buffer, pH 5.0 ............. 37 

2.7 The CD spectra of rCPO (0.4 µM in 10 mM phosphate buffer, pH=6) and  
Wt CPO (0.35 µM in 10 mM phosphate buffer, pH=6) ........................................... 38 

 
2.8 NMR spectrum of rCPO at 25 °C in 0.1 M potassium phosphate buffer ................. 41 

2.9 Selected signals from the NMR spectra of rCPO at various relaxation times at 
25ºC and pD 5.5 ........................................................................................................ 42 

 
2.10 Determination of the spin-lattice relation times from peak intensities versus  

delay times ................................................................................................................ 43 



 
 

xii 
 

2.11 Curie plots for selected signals of rCPO .................................................................. 44 

2.12 rCPO COSY plot and crosspeak assignments based on analogy with  
Wt CPO .................................................................................................................... 45 

2.13 rCPO NOESY plot and crosspeak assignments based on analogy with  
Wt CPO .................................................................................................................... 46 

3.1 Chromatogram of ion exchange chromatography of F103A. ................................... 58 

3.2 Chromatogram of gel filtration chromatography of F103A ..................................... 58 

3.3 Visible spectra of the free ferrous heme-pyridine complex of F103A and 
Wt CPO .................................................................................................................... 59 

3.4 15% SDS-PAGE result of F103A purification ......................................................... 60 

3.5 Western blotting analysis results of F103A, Wt CPO and rCPO ............................. 60 

3.6 UV-vis spectra of Wt CPO, and F103A in 0.05 M potassium phosphate buffer,  
pH 5.0, and P450 camphor in 0.05 M potassium phosphate buffer, pH 7.4 ............. 63 

3.7 UV-vis spectra of the ferric, ferrous, and ferrous-CO complexes of the F103A 
in 0.05 M potassium phosphate buffer, pH 5.0 ......................................................... 63 

3.8 The CD spectra of F103A (0.375 µM in 10 mM phosphate buffer, pH=6) and  
Wt CPO (0.3 µM in 10 mM phosphate buffer, pH=6) ............................................. 65 

3.9 Relative activities of Wt CPO, C29H, F103A and E183H mutants ......................... 65 

3.10 Catalase activity assays of Wt CPO and F103A. ...................................................... 66 

3.11 N-demethylation activity comparison between Wt CPO and F103A ....................... 66 

3.12 UV-vis spectra of F103A mutant in 0.1 M potassium phosphate buffer at pH 3 ..... 69 

3.13 UV-vis spectra of the cyanide complexes of ferric Wt CPO and F103A ................. 70 

3.14 UV-vis spectra of the azide complexes of ferric Wt CPO and F103A ..................... 70 

3.15 UV-vis spectra of the imidazole complexes of ferric Wt CPO and F103A .............. 71 

3.16 UV-vis spectra of the thiocyanate complexes of ferric Wt CPO and F103A ........... 71 

3.17 UV-vis spectra of the formate complexes of ferric Wt CPO and F103A ................. 72 



 
 

xiii 
 

3.18 UV-vis spectra of the acetate complexes of ferric Wt CPO and F103A .................. 72 

3.19 pH profiles for chlorination activity of Wt CPO and F103A ................................... 75 

3.20 UV absorbance decrease at 242 nm profiles for F103A (39 nM) catalysis of the 
epoxidation of α-methylstyrene, α-ethylstyrene, and α-propylstyrene (300 µM) 
in 100 mM citrate buffer, pH = 5.5 ........................................................................... 77 

 
3.21 UV absorbance decrease at 243 nm profiles for F103A (39 nM) catalysis of the 

epoxidation of 2-methyl-phenyl-1-propene and 1,2-dimethyl-propenyl-benzene  
(300 µM) in 100 mM citrate buffer, pH = 5.5 .......................................................... 78 

 
3.22 UV absorbance decrease at 250 nm profiles for F103A (39 nM) catalysis of  

the epoxidation of trans-β-methylstyrene, trans-1-phenyl-1-butene, and 
trans-1-phenyl-1-pentene (300 µM) in 100 mM citrate buffer, pH = 5.5 ................. 78 

 
3.23 Chiral HPLC trace of the products obtained from the epoxidation of styrene 

catalyzed by Wt CPO ............................................................................................... 80 
 
3.24 Chiral HPLC trace of the products obtained from the epoxidation of styrene 

catalyzed by F103A. ................................................................................................. 81 
 

4.1 Confirmation of positive transformation and transcription of  
C29H/C79H/C87H mutant ....................................................................................... 88 

4.2 Western blotting analysis on extracted both cellular and extracellular protein 
samples from A. niger strain (ATCC 62590) transformed with CPO expression 
vector pCPO#3C to detect CPO mutant expression ................................................. 89 

 
5.1 SEM images of SWNTs treated with CPO for 8 weeks ........................................... 93 

  



 
 

xiv 
 

LIST OF ABBREVIATIONS 

ABBREVIATION FULL NAME 

Aa Amino acid 

ABTS 2,2'-azino-bis-3-ethyl-benzthiazoline-6-sulfonic acid 

ALA δ-Aminolevulinic Acid 

A.niger Aspergillus niger 

ATCC American type culture collection 

BSA Bovine serum ablumin 

BHT  Butylated hydroxytoluene 

C. fumago Caldariomyces fumago 

CD  Circular Dichroism  

COSY  Correlation spectroscopy 

CPD Cyclopentanedione 

Cpd 0 Compound 0 

Cpd I Compound I 

Cpd II Compound II 

Cpd X Compound X 

CPO Chloroperoxidase 

DNA Deoxyribonucleic acid 

DMF N,N-dimethylformamide 

ee% Enantiomeric excess 

ER Endoplasmic reticulum 



 
 

xv 
 

ε Extinction coefficient 

E. coli Escherichia coli 

F103A CPO with F103 to A mutation 

GLA Glucoamylase 

HPLC High-performance liquid chromatography 

HRP Horseradish peroxidase 

MCD Monochlorodimedone 

Mnp Manganese peroxidase 

rMnp Recombinant manganese peroxidase  

NMR Nuclear magnetic resonance spectroscopy 

NOESY Nuclear overhauser enhancement spectroscopy 

P450 Cytochrome P450  

P450cam P450 camphor 

PCR Polymerase chain reaction 

rCPO Recombinant CPO 

RNA Ribonucleic acid 

RT PCR Reverse transcription PCR 

Rz value Reinheitzahl value 

ROS Reactive oxygen species  

SWNTs Single-walled nanotubes 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM Scanning electron microscope 



 
 

xvi 
 

T1 Spin-lattice relation time 

TBST buffer Tris buffered saline with tween buffer 

UV-vis Ultraviolet-visible 

Wt CPO Wild type CPO 

 



 
 

1 
 

Chapter I 

Introduction 

1.1 Background  

Chloroperoxidase (CPO, EC 1.11.1.10) was originally isolated by Morris and Hager 

from the marine filamentous fungus, Caldariomyces fumago (C. fumago) in 1966 (Hager, 

Morris et al. 1966; Morris and Hager 1966; Brown and Hager 1967), as the enzyme 

responsible for the halogenations of caldariomycin, an antibiotic secreted by C. fumago. 

Chloroproxidase is a heavily glycosylated monomeric hemeprotein with carbohydrates 

accounting for 19% ~25% of the total molecular weight and one ferriprotoporphyrin IX 

prosthetic group per enzyme molecule (Hallenberg and Hager 1978). Chloroperoxidase 

derives its catalytic activity from its heme prosthetic group, and has a Soret band with an 

absorbance maximum at 398 nm and an extinction coefficient of 9.10×104 M-1cm-1 

(Hallenberg and Hager 1978). Initially, two isoforms with molecular weights of 

approximately 42 and 46 kDa were reported, but later work found additional isoforms 

that also differed in their carbohydrate content (Kenigsberg, Fang et al. 1987). The pH 

optimum for chlorination and the isoelectric point (pI) were determined to be 2.7 and 4 

respectively (Makino, Chiang et al. 1976).  

Chloroperoxidase occupies a key position amongst heme containing proteins, and it 

is the most versatile and efficient enzyme within the heme-peroxidase family. In addition 

to peroxide dependent halogenations (Thomas and Hager 1968; Thomas, Morris et al. 

1970), CPO is also able to catalyze a broad spectrum of reactions (Thomas, Morris et al. 

1970; Hofrichter and Ullrich 2006), including the typical peroxidase reactions, catalase 

reactions (Thomas, Morris et al. 1970), some P450-like oxidation reactions (Hollenberg 
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and Hager 1973), as outlined in scheme 1.1. Site directed mutagenesis of CPO offers the 

possibility of determining residues important for the catalase, cytochrome P450 

mono-oxygenase, and peroxidase activities of CPO, and the potential of elucidating the 

relationship between these diverse activities.  

 
RH + H2O2 + X- + H+ R−X + 2H2O              (1) 

2RH + H2O2 R−R + 2H2O                             (2) 

2H2O2 O2 + 2H2O                                       (3) 

R + H2O2 R−O + H2O                                  (4) 

Scheme 1.1 Halogenase, peroxidase, catalase, and mono-oxygenase types of reactions 
catalyzed by CPO are given in Equations 1→4, respectively. E represents the resting 
form of enzyme CPO; both RH and R represent substrates; X- is the halide ions. 

 

 In addition, CPO has the potential to catalyze the synthesis of a wide range of chiral 

or prochiral products. Chloroperoxidase can catalyze many reactions that are important in 

synthesis such as sulfoxidation (Silverstein and Hager 1974; Doerge 1986), hydroxylation 

(Miller, Tschirret-Guth et al. 1995) and epoxidation (Geigert, Lee et al. 1986), 

enantioselectivly and in high yield (Casella, Poli et al. 1994; Lakner and Hager 1996), 

such as the epoxidation of olefins (Ortiz de Montellano, Choe et al. 1987), where 

traditional peroxidases have failed. Other reactions such as N-demethylation (Kedderis, 

Koop et al. 1980) and dehalogenation (Osborne, Raner et al. 2006) are also possible. 

Some selected non-halogenating oxidation reactions catalyzed by CPO are listed in fig. 

1.1. Unlike P450, CPO can catalyze these reactions without cofactors like NAD(P)H, 

which are difficult to recover and recycle in industry; other peroxidases and catalases 

catalyze these reactions very slowly, if it all. 
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Figure 1.1 Typical non-halogenating oxidation reactions catalyzed by CPO from C. 
fumago. The figure was copied from Ullrich et al (Hofrichter and Ullrich 2006). 1. 
N-dealkylation, e.g. N,N-dimethylaniline to N-methylaniline; 2. oxidation of an amine to 
the corresponding N-oxide, e.g. p-chloroaniline; 3. enantioselective sulfoxidation of 
thioethers, e.g. thioanisole to (R)-methylphenylsulfoxide; 4.oxidation of indole to 
oxindole; 5. epoxidation / hydroxylation of 1,2-dihydronaphthalene; 6. hydroxylation of a 
propargyl group; 7a. hydroxylation of p-methylanisole; and 7b. sequential oxidation of 
one methyl group in p-xylene to the carboxylic acid.  
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 Chloroperoxidase, however, suffers from two drawbacks as a choice of catalyst for 

industrial uses: CPO is able to accept only a few substrates and has limited stability under 

catalytic conditions. Generally, substrates with at most nine carbon atoms, or equivalent 

are accepted (Hofrichter and Ullrich 2006). The limited stability is because of a 

self-destructive reaction with hydrogen peroxide, which is problematic for slow reactions, 

including hydroxylations (Miller, Tschirret-Guth et al. 1995) and epoxidations (Hager, 

Lakner et al. 1998). It is possible that site-directed mutagenesis and protein engineering 

will help to overcome these shortcomings. 

1.2 Chloroperoxidase structure and reaction mechanism 

1.2.1 Chloroperoxidase reaction mechanism 

 Reactions catalyzed by CPO can be classified into four categories. The first is 

halogenation reactions, which utilize three substrates: hydrogen peroxide or other 

hydroperoxides, halide ions except fluoride, and a wide range of suitable substrates 

(Corbett, Chipko et al. 1980). The second is the classic peroxidase reactions with a 

substrate and hydrogen peroxide, but without a halide ion. In the absence of a halide ion 

and organic substrate, CPO can catalyze reactions as a catalase: the disproportionation of 

hydrogen peroxide into dioxygen and water. Lastly, CPO shares some catalytic activities 

with cytochrome P450, such as mono-oxygenase reactions (Geigert, Neidleman et al. 

1983). 

 In the resting state, CPO has a ferric protoporphyrin IX in its active site. The ferric 

center then reacts with peroxide to form a short-lived intermediate, termed as “compound 

0” (Cpd 0). Heterolytic cleavage of the O-O bond in the loosely bound hydrogen 

peroxide molecule of Cpd 0 results in the formation of Compound I (Cpd I) and one 
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molecule of water (Penner-Hahn, McMurry et al. 1983; Frew and Jones 1984; 

Penner-Hahn, Smith Eble et al. 1986; Kim, Perera et al. 2006; Denisov, Dawson et al. 

2007), as showed in Fig 1.2.  

 

 
 

Figure 1.2 Cpd I formation from ferric hydrogen peroxide (Fe-HOOH) via Cpd 0. 
 

Compound I is a typical intermediate of many heme peroxidases, and its structure is 

an oxo-ferryl porphyrin cation-radical complex [heme (Fe4+=O)·+] (Kobayashi, Nakano et 

al. 1987). It is widely accepted that the formation of Cpd I is the first step for all the 

reactions that CPO catalyzes (Libby and Rotberg 1990; Green, Dawson et al. 2004). 

Although Cpd I of CPO is short-lived (Araiso, Rutter et al. 1981), it is the only Cpd I of a 

thiolate-ligated heme enzymes that is well characterized by many spectroscopic methods 

including UV-vis absorption, EPR, Mossbauer, and resonance Raman (Palcic, Rutter et al. 

1980; Sono, Eble et al. 1985; Hosten, Sullivan et al. 1994). Since CPO and P450 share 

the same proximal thiolate ligand, they also have many spectroscopic similarities. 

Therefore, the information from Cpd I of CPO may be relevant to the putative and elusive 
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P450 Cpd I species. The basic pathways of CPO-catalyzed reactions are summarized in 

Scheme 1.2. 

 
E + H2O2 Cpd I + H2O                            (1) 

Cpd I + RH Cpd II + R· + H+               (2) 

Cpd II + R·+ H+ +RH E + R−R + H2O (3) 

Cpd I + H2O2 E + O2 + H2O                     (4) 

Cpd I + R E + R−O                                  (5) 

Cpd I + X- Cpd X                                     (6) 

Cpd X + H+ E + H−OX                            (7) 

H−OX + RH R−X+ H2O                         (8) 

Cpd X + X-+ 2H+ E + X2 + H2O              (9) 

 
Scheme 1.2 Pathways of basic reactions catalyzed by CPO are listed in Equations 1 to 7. 
Cpd I, Cpd II, and Cpd X are the enzymatic cation radical intermediate compound I, 
reduced intermediate compound II, and electrophilic halogenation intermediate 
compound X, respectively. Eqn. 1 CPO reacts rapidly with H2O2 to form Cpd I, this is the 
initial step in all CPO catalyzed reactions. Eqn. 2 & 3 completes the classic peroxidase 
reaction. Eqn. 4 is the catalase reaction. Eqn. 5 is the mono-oxygenase reaction. Eqn. 6 is 
the initiation step of the halide dependent reactions. Eqn. 7 & 8 completes the normal 
halogenation pathway. Finally, Eqn. 9 is the pathway for formation of molecular halogen. 
It should be noted that a variety of organic hydroperoxides ( ROOH’s ) or peroxy acids 
can replace H2O2 in reactions. 

 
In the peroxidase mode, Cpd I abstracts a hydrogen atom from an organic substrate 

(RH) to produce an organic radical (R·), and in the process Cpd I is converted to Cpd II, 

which is assumed to be a FeIV=O (Green, Dawson et al. 2004; Stone, Behan et al. 2006). 

The reaction involves a one-electron transfer. The intermediate Cpd II then oxidizes 

another substrate molecule to return to the ferric resting state (Nakajima, Yamazaki et al. 
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1985; Terner, Palaniappan et al. 2006; Gebicka and Didik 2007). Again a one-electron 

transfer reaction. CPO catalyzes the dehalogenation reaction using a similar mechanism 

(Zhang, Nagraj et al. 2006). 

 In the catalase mode, Cpd I reacts with a second molecule of hydrogen peroxide, in a 

two electron process, to produce dioxygen and the resting ferric state of the heme iron 

(Araiso, Rutter et al. 1981; Sun, Kadima et al. 1994). 

 In halogenase mode, Cpd I reacts with a halogen ion to form compound X (Cpd X), 

then Cpd X reacts with the substrate or water, either generating a chlorinated product 

(Champion, Munck et al. 1973; Suh and Hager 1991) or HOX, respectively (Libby, 

Shedd et al. 1992). The HOX can also oxidize organic molecules. The dual mechanism of 

halogenations is proposed to explain the general lack of enantioselectivity during 

halogenation reactions catalyzed by CPO. Compound X can react with a variety of 

substrates to perform halogen dependent peroxidatic, catalatic, and peroxygenase 

reactions (Dunford, Lambeir et al. 1987; Kobayashi, Nakano et al. 1987; Aaronson, 

Hager et al. 1988; Libby, Rotberg et al. 1989). Cpd X can also react with a halogen ion to 

form molecular halogen. 

 In the mono-oxygenase mode, Cpd I reacts directly with the substrate in a 

two-electron process, this is the underlying mechanism for a variety of reactions that 

CPO catalyzes, such as mono-oxygenation (Geigert, Lee et al. 1986; Ortiz de Montellano, 

Choe et al. 1987; Horner, Mouesca et al. 2007), hydroxylation (Miller, Tschirret-Guth et 

al. 1995), sulfoxidation (Casella, Gullotti et al. 1992) and demethylation (Kedderis, Koop 

et al. 1980; Kedderis and Hollenberg 1984).  
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 The structures of the above reaction intermediates, together with how they convert to 

other intermediates in the catalytic cycles are summarized in Fig. 1.3; as indicated, halide 

ions, organic substrates, and H2O2 compete with each other for reaction with Cpd I (Sun, 

Kadima et al. 1994), thus the actual reaction depends on several factors including pH, 

substrate, and solvent (Araiso, Rutter et al. 1981). 

 

 

 
Figure 1.3 Structures of a variety of intermediates formed during CPO catalyzed 
reactions. For classic peroxidase reaction: Cpd I ⇒ Cpd II ⇒ Resting state (without 
oxygen transfer to the substrate); for halogenations reactions: Cpd I ⇒ Cpd X, Cpd X 
could release hypohalous acid (HOX) as one of the halogenating species; for epoxidation, 
and sulfoxiation reactions: Cpd I ⇒ Resting state (oxygen transfer to the substrate). 

 

1.2.2 Structure of CPO 

Although mature CPO contains 299 aa, it is initially produced as a 372-aa precursor 

which is subsequently processed by proteolytic cleavage: A 21 aa N-terminal signal 

peptide, and a 52 aa C-terminal propeptide are removed, (Fang, Kenigsberg et al. 1986). 
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The 3-dimensional structure of mature CPO was solved by crystallographic refinement in 

1995 (Sundaramoorthy, Terner et al. 1995) (Fig 1.4). Structural studies offer insights into 

the mechanism, versatility, and enantioselectivity of CPO. 

 

 
 
Figure 1.4 Chloroperoxidase crystal structure (complex with Mn2+). The figure was 
copied from Sundaramnoorthy et al (Sundaramoorthy, Terner et al. 1995). 
 

   As shown in Fig. 1.4, the scaffold of CPO consists of eight α–helices (Rubin, 

VanMiddlesworth et al. 1982; Sundaramoorthy, Terner et al. 1995). Unlike most 

peroxidases and cytochrome P450s, where the α-helix on the proximal side is near the 

C-terminal, and lies parallel to the heme; in CPO, it is near the N-terminal, and lies 

perpendicular to the heme. The exact role of this structural feature, however, is still 

unknown (Sundaramoorthy, Terner et al. 1998). The crystal structure also shows that 

CPO is extensively glycosylated with both N- and O-linked oligosaccharide chains. There 



 
 

10 
 

are three N-linked oligosaccharide chains and eleven O-linked oligosaccharide chains.  

The O-glycosylation sites are in the C-terminal domain, which contains numerous serine 

and threonine residues. (Sundaramoorthy, Terner et al. 1995). 

The catalytic center of CPO contains a single high spin protoporphyrin IX (heme) 

that is sandwiched between an N-terminal and a C-terminal helix. In CPO, the iron atom 

is penta-coordinated, with four pyrrole nitrogens of the porphyrin and a sulfur of cysteine, 

a feature that had only been observed previously in P450s (Boddupalli, Hasemann et al. 

1992; Hasemann, Kurumbail et al. 1995). For other peroxidases, it is histidine ligated to 

the heme center.  

Even though CPO’s uniquely folded tertiary structure does not resemble that of 

peroxidase or P450, CPO shares some structural similarities with both types of enzymes. 

Both P450 and CPO have cysteine as the proximal ligand, while peroxidases have 

histidine. The hydrogen-bonding networks close to the proximal cysteine are also similar. 

P450 and CPO allow organic substrates to approach the heme iron, but peroxidases only 

allow organic substrates to approach the side of the heme. The distal heme surface that 

surrounds the peroxide binding site is polar in both peroxidases and CPO, but not P450. 

An important difference between peroxidase and P450 is the accessibility of the 

heme center. In peroxidase, substrate-protein interactions are limited to the heme edge as 

access to the ferryl center is blocked. Therefore, radicals are produced from aromatic 

organic substrates as only electrons are transferred. (Hewson and Hager 1979; Schulz, 

Devaney et al. 1979). P450s, however, allow organic substrates access to the ferryl center, 

as they have an active-site pocket directly adjacent. Thus, P450s can lock the substrate in 

place and transfer oxygen atoms for stereoselective and regioselective hydroxylations. In 
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a similar fashion as P450, CPO allows organic substrates access to the ferryl center. On 

the distal side of the heme center in CPO, there is a shallow hydrophobic pocket, where 

hydrophobic substrates likely bind (Hasemann, Kurumbail et al. 1995). The channel to 

access the ferryl center is relatively polar and wide at the top but mostly hydrophobic 

near the heme (Sundaramoorthy, Terner et al. 1998). Three hydrophobic amino acids 

Phe103, Val182, and Phe186 are positioned at the bottom of the opening to the ferryl 

center (Sundaramoorthy, Terner et al. 1995) and are proposed to interact with the 

substrates, as well as to control the size of substrate that enters the active center. 

Compared to other peroxidases, such a structure can enable CPO to hold substrates in a 

specific conformation, and accounts for its highly enantioselective and regioselective 

reactions.  

Chloroperoxidase, in general, chlorinates substrate with low regioselectivity and non 

stereospecificity; however, glycols and steroids are exceptions. Therefore, there must be 

an interaction between glycols and steroids, and CPO (Libby, Thomas et al. 1982; Geigert, 

Neidleman et al. 1983). Stereospecific epoxidation and sulfoxidation of organic 

substrates also suggests binding at the active site of CPO (Casella, Gullotti et al. 1992; 

Casella, Poli et al. 1994). The binding of CPO to cis-β-methylstyrene has been modeled 

using information from the crystal structure as shown in Fig. 1.5, since CPO catalyze the 

expoxidation of substrates with an enantiomeric excess (ee %) up to 96%. Both Phe103 

and Phe186 are proposed to interact with the substrate and account for the high 

enantioselectivity  

Except for the absence of a sixth ligand, the distal region has little similarity to other 

peroxidases. On the distal side of CPO, there is a water molecule 3.4 Å away from the 
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Figure 1.5 cis-β-methylstyrene docked in the substrate pocket of CPO. The figure was 
copied from Sundaramoorthy et.al. (Sundaramoorthy, Terner et al. 1998). A 
semi-transparent molecular surface diagram with the docked cis-β-methylstyrene (in 
yellow) located just above the heme outlined (in red). 

 

heme iron (Sundaramoorthy, Terner et al. 1995; Wang, Tachikawa et al. 2003). This water 

molecule is displaced by the incoming H2O2 during reactions. Instead of a distal histidine 

or arginine found in other peroxidase, Glu183 is the residue closest to the heme iron, and 

is proposed to be responsible for breaking the peroxide bond during the formation of Cpd 

I. The required high redox potential to oxidize substrate like chloride may explain why 

CPO has an acidic pH optimum, since the acidic amino acid Glu183 needs to perform a 

similar role as the basic amino acid in other peroxidase and Cpd I usually exhibits higher  

redox potential at acidic pH value (Sundaramoorthy, Terner et al. 1998). 
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 Glutamic acid 183 is thought to act as a shuttle that transfers a proton from the 

proximal O atom of the Fe-HOOH complex to the distal O atom. Initially, deprotonated 

Glu183 removes a proton from the incoming HOOH (Kuhnel, Blankenfeldt et al. 2006). 

The resulting HOO- anion then binds at the heme producing a ferric-hydroperoxo species, 

also called compound 0 (Cpd 0) (Denisov, Dawson et al. 2007). Subsequently, the distal 

oxygen of Cpd 0 is protonated by neutral Glu183, the O–O bond is broken, and water is 

released to form Cpd I. The mechanism is similar to the Poulos-Kraut mechanism for 

peroxidases except that Glu is used instead of His. Glutamic acid 183 is proposed to be 

held in position by a hydrogen bond to His105, which may also provide charge-charge 

stabilization. Furthermore, the cleavage of H2O2 could be facilitated by Glu183, His105, 

and Asp106 acting as a proton relay shuttle (Fig. 1.6) (Pelletier, Altenbuchner et al. 1995; 

Wang, Tachikawa et al. 2003). 

Among CPO-substrate complexes, only the binding of CPD and acetate caused 

minor conformational changes at the active site. In both cases, to make room for the 

substrate, there was a 0.5 Å shift of the side chain of Phe103 away from the active site. In 

all structures determined so far, the position of the catalytically important Glu183 has 

been fixed. The side chain carboxylate group of Glu183 is “locked”, because it is 

hydrogen bonded to His105 and a water molecule that is hydrogen bonded with the 

propionate group of the heme. In addition, the carboxylate group of Glu183 is held in 

position by pi-pi interactions with the heme. Not surprisingly, the “locked” Glu183 side 

chain has similar B-factors as the nearby main-chain atoms. Asn74 was also involved in 

stabilizing several substrate by forming hydrogen bond with their carboxyl group 

(Kuhnel, Blankenfeldt et al. 2006). 
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Figure 1.6 The active center of CPO. Residues His105, Asp 106, and Glu183 on the distal 
side and residues from Arg26 to Pro30, Asn33, and Asn37 on proximal side of the heme 
are indicated. Coordination of the proximal ligand to the heme is represented by a solid 
line. Hydrogen bonds are indicated by dashed lines. 
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1.3 Heterologous CPO expression 

 Due to advances in biotechnology, cloned genes can be heterologously expressed in a 

controlled manner and the resulting protein purified, however, the system needs to be 

carefully selected. Site directed mutagenesis studies are usually undertaken only after the 

successful expression of the native protein, (Frandsen, Dupont et al. 1994; Inoue, Hayashi 

et al. 1996; Sriprang, Asano et al. 2006). Because the expression of native CPO involves 

glycosylation, incorporation of a heme prosthetic group, formation of disulfide bonds, 

and the cleavage of N- and C-terminal peptides, production of CPO in prokaryotes, which 

perform these activities poorly, if at all, will be challenging. Not surprisingly, the 

expression of CPO in Escherichia coli (E. coli) has had only limited success, the results 

showed that the non-glycosylated enzyme was obtained in its apoform without the heme 

being incorporated into the enzyme. Only under high pressure, can the protein be 

refolded with heme to generate a somewhat active enzyme in very low yield (Zong, 

Osmulski et al. 1995).  

 Therefore, the expression of CPO in several eukaryotic systems was investigated. 

When the CPO gene was expressed in Baculovirus only an inactive form of the protein 

was obtained (Wang, Yao et al. 2003), and the active protein could not be reconstituted.  

Expression of the CPO gene in yeast, Saccharomyces cerevisiae and Pichia pastoris also 

did not lead to the production of active protein (Zong 1997). Expression of a mutant of 

CPO in the parental host itself, C. fumago has also been reported (Yi, Mroczko et al. 

1999). However, the presence of residual wild type CPO (Wt CPO), complicated the 

selection of recombinant CPO producing strains and did not provide sufficient 

recombinant protein (rCPO) for subsequent investigations. 
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 Recombinant CPO with catalytic properties almost identical to Wt CPO was reported 

in 2001 by Conesa et al. (Conesa, van De Velde et al. 2001). The rCPO was produced in 

the filamentous fungus Aspergillus niger (A. niger). Two years later, the same group 

reported the successful expression and characterization of the E183H mutant of CPO (Yi, 

Conesa et al. 2003).  

1.3.1 Aspergillus niger expression system 

 The industrial production of heterologous proteins in filamentous fungal species is 

wide spread for three main reasons: First, filamentous fungi can secrete large quantities 

of protein into the surrounding media (Lubertozzi and Keasling 2009); Second, their use 

in the commercial production of small molecules via fermentation has led to familiarity 

(Lubertozzi and Keasling 2009); Third. the availability of a complete genetic map for 

some species, the successful development of procedures for performing molecular 

biology, and a good genetic system (Visser, Bussink et al. 1995; Gouka, Punt et al. 1996). 

One of the most common fungal species of the genus Aspergillus is A. niger. It is 

characterized by its black spore, by which it is named after (Daboussi, Djeballi et al. 

1989). Aspergillus niger is used for the commercial production of both small molecules 

and proteins. Citric acid and gluconic acid are obtained from A. niger fermentations. 

Glucoamylase, used in the production of high fructose corn syrup, comes from A. niger 

(Kriechbaum, Heilmann et al. 1989). Isotopically labeled macromolecules for NMR 

analysis can be obtained from A. niger fermentations (Roth and Dersch 2010). 

 In the past decade, A. niger and other filamentous fungi have emerged as powerful 

host systems for expressing recombinant proteins (Punt, van Biezen et al. 2002). 

Aspergillus niger is a eukaryotic host, able to perform post-translational modifications, 
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and is extraordinary in its capability of secreting large amounts of proteins, metabolites, 

and organic acids into the growth medium (Visser, Bussink et al. 1995; Withers, Swift et 

al. 1998). For decades, the food and beverage industry has used these advantageous 

properties to successfully obtain compounds from the secretion of filamentous fungi. 

Recombinant proteins of fungal origin can be produced in A. niger, at the grams per liter 

level (Spencer, Morozov-Roche et al. 1999; Conesa, van den Hondel et al. 2000). In 

addition, a full genetic map is available and annotation is nearly complete (Swart, Debets 

et al. 2001). 

 Methods for the genetic manipulation of Saccharomyces and E. coli were greatly 

simplified by the discovery of plasmids, natural extrachromosomally replicating DNA 

elements. Unfortunately, Aspergillus lacks such elements, as is the case for most fungi. 

Transformations in Aspergillus occur via genomic integration of the transforming DNA.  

The transforming DNA can be incorporated at homologous and non-homologous (ectopic) 

sites, and even multiple times. The situation is half way between that of yeast and 

mammalian cells. In yeast, transforming DNA is usually incorporated at the homologous 

site with low frequency while in mammalian cells, transforming DNA is incorporated at 

non-homologous sites with high frequency and any homologous recombination is 

difficult to detect (Fig. 1.7) (Chakraborty, Patterson et al. 1991). Although 50 or more 

copies of the transforming DNA can be incorporated into Aspergillus, single digits 

frequencies are more common (Turnbull, Smith et al. 1990). Aspergillus cells containing 

multiple copies are, in general, mitotically stable (Liu, Liu et al. 2003). For several 

reasons, it would, however, be desirable to have a single event at the homologous site 

(Verdoes, van Diepeningen et al. 1994). Firstly, the number of copies in the genome does 
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Figure 1.7 The chromosomal integration of vector DNA into Aspergillus. The figure was 
copied from (Lubertozzi and Keasling 2009). (A) Integration of circular plasmid by 
single crossover. Plasmid (shaded) bearing wild type marker (gray) recombines with 
auxotrophic mutant host chromosome (gray with black bar indicating mutation). (I) Type 
I or homologous integration. (II) Type II or ectopic integration; the dark gray bars 
represent an interrupted gene sequence. (III) Type III gene replacement; here the 
chromosomal marker is replaced by the plasmid copy, restoring it to wild-type. (B) 
Integration of a plasmid bearing a truncated wild-type marker; only recombination at the 
homologous locus reconstitutes the functional marker gene. Sequence A′ to M′ on the 
plasmid is homologous to A to M in the target; the black bar indicates location of 
amutation in auxotrophic host. (C) Insertion of linear DNA; here A′ to M′ and N′ to 
Z′flanking the marker (darker gray) are homologous sequences corresponding to those at 
A to M and N to Z, respectively, in the chromosomal target (lighter gray). 
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not correspond with protein expression levels. Secondly, the location of the DNA within 

the genome can alter its expression level significantly. When the position of native genes 

within the genome are changed, their expression levels vary dramatically (Conesa, van 

den Hondel et al. 2000). Thirdly, incorporation of DNA randomly into the genome will 

cause mutations and, correspondingly, unpredictable side effects (Ruiz-Diez 2002). Cells 

with at least one homologous integration event can be selected for by using a truncated or 

mutated form of a wild-type selection marker (Hanegraaf, Punt et al. 1991). Although 

several systems have been developed based on the method outlined above, and 

Aspergillus is used to produce small molecules and proteins commercially, the expression 

of proteins in Aspergillus is still not straight forward and remains quite challenging 

(Mooibroek, Kuipers et al. 1990; Turnbull, Smith et al. 1990; Verdoes, Punt et al. 1993). 

Since versatile DNA transfer and gene expression systems are developed for these 

organisms, the necessary tools are available for the production of recombinant proteins 

(Juge, Svensson et al. 1998). Furthermore, A. niger has no detectable extracellular and 

intracellular peroxidase, and therefore, in contrast to the C. fumago system, no 

interference of endogenous oxidizing activities when screening for CPO producing 

transformants (Conesa, van den Hondel et al. 2000). In the past ten years, several reports 

on the expression of metalloproteins in filamentous fungi have been published (Juge, 

Svensson et al. 1998; Conesa, Jeenes et al. 2002). However, although production of 

active recombinant enzymes was found in most cases, yield levels were still far away 

from those obtained for less complex fungal proteins, making the secretion of 

metalloproteins an intriguing subject of study (Gordon, Khalaj et al. 2000; Ngiam, Jeenes 

et al. 2000).  
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 The host of choice for CPO expression, A. niger MGG029, is frequently used for the 

heterologous expression of proteins because it has many favorable attributes. The strain is 

protease deficient as result of a regulatory mutation, which reduces the number of 

endogenously expressed proteases. In addition, the strain is missing the glaA gene, which 

is responsible for the production of glucoamylase (GLA). Therefore, the secretion of 

GLA can be used to indicate the successful expression of a GLA fusion construct. 

Furthermore, A. niger MGG029 carries a nonfunctional pyrG, thus, pyrG can be used as a 

selection marker (Conesa, van De Velde et al. 2001). 

 The transforming vector pCPO3.I contains the full length CPO coding sequence 

placed under control of the A. niger glucoamylase promoter and A. nidulans trpC 

terminator. Aspergillus nidulans AmdS selection marker was introduced in pCPO3.I at a 

unique NotI site to obtain the CPO expression vector pCPO3.I-AmdS (Fig. 1.8) (Conesa, 

van De Velde et al. 2001). The vector also contains the pU19 vector sequence to enable 

its multiplication in E. coli and so that it can be shuttled between E. coli and A. niger.  

1.3.2 Factors that affect CPO expression in Aspergillus niger 

 As described earlier, one advantage of the A. niger expression system is its ability to 

secret peroxidase into the extracellular medium in high quantity (Conesa, Punt et al. 

2002). This property of extracellular secretion is very important for the expression of 

sufficient recombinant protein for structure and mechanism studies in the laboratory, 

since CPO is more stable in the acidified culture media, and can also help to simplify the 

purification procedures. In order to improve the in general low production yields, the 

process of overproduction of heme-containing proteins, has been subjected to numerous 

studies in the past, (Gouka, Punt et al. 1997; Conesa, van den Hondel et al. 2000).  
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Figure 1.8 The expression vector for co-transformation of A. niger. The figure was copied 
from Conesa et.al (Conesa, van De Velde et al. 2001) 
 

For heme-containing proteins, limited heme availability has been indicated as a limiting 

factor. The production of rCPO could be increased by heme addition to the culture 

medium (Conesa, van De Velde et al. 2001). Similar results have been obtained in 

previous studies by our group and other groups on the expression of fungal peroxidase in 

Aspergillus species (Yi, Conesa et al. 2003). However, experiments show that despite 

heme supplementation, rCPO was only partially (40%) incorporated with heme (Yi, 

Conesa et al. 2003). It is in contrast to observations on the production of Phanerochaete 

chrysosporium manganese peroxidase in A. niger, where the recombinant enzyme could 

be produced with the same heme content as the native protein (Conesa, Punt et al. 2002). 

A possible reason for this different behavior may be the different nature of heme 
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attachment in the manganese peroxidase (axial ligand: histidine) and CPO (axial ligand: 

cysteine).  

 The addition of δ-aminolevulinic acid (ALA) as heme precursor to the culture 

medium increased the secretion level of the E183H mutant of CPO by 4-fold (Yi, Conesa 

et al. 2003). δ-aminolevulinic acid synthase is thought to be a crucial enzyme in the 

regulation of heme synthesis. There are a few reports regarding an increase in heme 

protein production by ALA inducement. Another alternate way to overcome heme 

limitation is addition of hemoglobin to culture media. During the production of 

manganese peroxidase (MnP), heme supplementation in the form of hemoglobin or 

hemin was shown to significantly increase protein production as measured by 

extracellular MnP activity, although, the specific activity of MnP did not increase. 

Therefore, the apoform of rMnP is probably being degraded inside or outside of the cell, 

while only the haloform is stable enough to be secreted and preserved in the extracellular 

medium. Interestingly, iron supplementation alone did not increase the production of MnP, 

suggesting that the increased activity was not a consequence of the additional iron within 

the hemoglobin or hemin. Higher production yields were achieved with hemoglobin 

supplementation rather than hemin supplementation, indicating that adding heme to the 

culture media was important but that adding protein to the culture media might also be 

favorable. The addition of bovine serum albumin (BSA) or apohemoglobin had a positive 

effect on production levels, strongly suggesting that addition protein in the media protects 

rMnP from degradation caused by proteases or other pathways (Conesa, van den Hondel 

et al. 2000). 
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Figure 1.9 The secretion pathway in filamentous fungi. The figure was copied from 
Conesa et.al. (Conesa, Punt et al. 2001). Cloned secretion related GTPases (srg A–F), 
involved in vesicular trafficking, are indicated: N, nucleus; V, vacuole; ER, endoplasmic 
reticulum; G, Golgi apparatus; SV, secretion vesicles. 
 

Overproduction of heme-peroxidases places a heavy load on the protein secretory 

machine. Overall, the protein secretory machine in filamentous fungi does not differ 

greatly from those in yeast and higher eukaryotes, for which a more complete picture is 

available. However, there must be important differences in the details. The level of 

protein secretions in filamentous fungi can reach 30 g/L (Aspergillus and Trichoderma 

strains) (Punt, Veldhuisen et al. 1994), while in yeast a level of more than a gram per liter 

is found for only a few species, such as Pichia (Visser, Bussink et al. 1995). 

The fungal secretory pathway is illustrated in Fig. 1.9. For secretory proteins, the 

first step is to enter the endoplasmic reticulum (ER). In the ER, the proteins are folded 

and undergo some distinct posttranslational modifications, including disulfide bridge 

formation, glycosylation, phosphorylation, and subunit assembly (Conesa, Punt et al. 

2001). The proteins then leave the ER inside vesicles, which are directed to the Golgi 
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apparatus. In the Golgi apparatus, additional posttranslational modifications may take 

place including additional glycosylation and peptide processing. The proteins then leave 

the Golgi apparatus packed inside secretory vesicles. In most cases, the secretory vesicles 

are then sent to the plasma membrane and the proteins inside are secreted into the 

extracellular media. In some cases, instead of being directed to the plasma membrane, the 

vesicles and the proteins inside are sent to other intracellular compartments, such as 

vacuoles. Inside the vacuole, the protein will most likely be degraded via proteolysis 

catalyzed by proteases. Protein secretion is proposed to occur from the apical or subapical 

hyphal portions of the fungus (Conesa, Punt et al. 2001).  

 One key factor that regulates the production of recombinant proteins is presence of 

molecular chaperones. Molecular chaperones promote protein folding by binding 

transiently and noncovalently to protein folding intermediates. Once bound to the 

chaperone the folding intermediates are less likely to have unfavorable protein-protein 

interactions that might lead to protein aggregation or misfolding. Therefore, molecular 

chaperones are not regarded as “true’ catalysts but as proteins that assist folding. 

Chaperones and foldases are conserved between organisms and are present throughout 

the cell including in the cytosol, chloroplasts, the ER, and mitochondria (Gouka, Punt et 

al. 1996). For CPO, the CPO C-terminal pro-peptide may behave as a molecular 

chaperone, so that it can assist CPO to fold into its correct conformation, because the 

CPO sequence corresponding to the mature protein produced no active CPO when cloned 

into A. niger. The mechanism of this function, however, is still unknown (Conesa, 

Weelink et al. 2001). 
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1.4 Objectives of this work 

 For my dissertation, I first attempted to optimize the growth and expression condition 

for the A. niger strain to increase the purity and yield of recombinant proteins, so that I 

could rely on such a system for future studies. Also verification and a structural study 

using NMR spectroscopy were done on rCPO. Next, I produced site-directed mutants of 

CPO using A. niger as the host. By studying the function and mechanism of the mutants, 

I further elucidated the stucture of CPO’s active site and its role in regulating CPO’s 

catalytic activities and enantioselectivity. A very interesting and promising CPO mutant 

F103A was successfully produced and studied as part of my research. In addition, 

possible industrial applications of CPO were explored and examined. An attempt to 

obtain a CPO triple mutant C29H/C79H/C87H was made; however, it failed to produce 

active form of protein, probably a result of the instability of the triple mutant.  
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Chapter II 

Optimization of Aspergillus niger expression system and NMR study of recombinant 

CPO 

2.1 Material and methods 

2.1.1 Strains and reagents 

Recombinant CPO (rCPO) expressing A. niger strain pCPO3.1#5, which had been 

co-transformed with CPO expression vector pCPO3.1-amds and assistant plasmid 

pAB4.1, was kindly provided by Dr. Punt (TNO Nutrition and Food Research Institute, 

The Netherlands). Rabbit anti-CPO polyclonal IgG was also provided by Dr. Punt. Unless 

otherwise noted, all other chemicals and reagents were obtained from commercial sources 

and used without further purification.  

2.1.2 Genomic DNA extraction and sequencing 

 Spores of A. niger were inoculated and cultured for 2 d in minimal medium. The 

mycelia sample were collected by centrifuge and re-suspended in an isosmotic buffer (1 

g/20 mL). The cell wall was then partially digested by incubating with a lysing enzyme 

from Trichoferma harziannum (10 mg/20 mL, Sigma L-1412) for 4 h. The mycelia were 

again collected by centrifuge. The DNA extraction was performed with a QIAGEN plant 

DNA mini kit (QIAGEN, CA). The extracted DNA was then used as a template and 

amplified with primers (5'-cgc gga tcc atg ttc tcc aag gtc c -3' & 5'- ccg gaa ttc aag gtt gcg 

ggc-3’) that flanked the CPO coding region. Co-transformants containing the expression 

cassettes were confirmed by the presence of a band at 1122 bp. The extension temperature 

for the PCR reaction was optimized to 56.3 ºC. 
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2.1.3 Expression of rCPO  

 Fungal culturing was carried out in 2-L Erlenmeyer flasks containing 1 L of A. niger 

minimal growth medium with 5% maltose and supplemented with 0.5% casein amino 

acids. Cultures were inoculated with a whole Petri dish of conidia. After incubation in a 

rotary shaker revolving at 225 rpm for 24 h at 25 ºC, the temperature was lowered to 22 

ºC and the shaking was continued for 6 d. Hemin (500 mg/L) was added either at the time 

of or 48 h after inoculation. Crude medium was checked for chlorination activity (MCD 

assay), using the MCD assay to monitor for the production of rCPO, on a daily base. 

2.1.4 Purification of rCPO  

 Aspergillus niger crude medium samples were collected by filtering the fungal 

culture through Miracloth and then centrifuging at 9500 rpm for 1 h, followed by 

filtration though 0.8 µm filters to further remove mycelia debris. The crude culture 

medium containing the secreted enzyme was concentrated about 200 to 400 fold using a 

high output ultrafiltration cell (10 kDa cut off membrane, Millipore). The condensed 

medium sample (20 mL) was dialyzed twice against 25 mM potassium phosphate buffer 

(4 L) at pH 5.9 for at least 24 h to adjust the pH value and to obtain the proper 

conductivity. The sample was then applied to a DEAE Sepharose fast flow (Amersham) 

column (2.6 × 20 cm). After an initial wash to remove the unbounded protein, the mutant 

enzyme was eluted from the column by using a stepwise ionic strength gradient of 25 mM 

potassium phosphate buffer at pH 5.9 containing 0-0.5 M sodium chloride. The flow rate 

was adjusted to 1 mL/min. The Reinheitzahl value (Abs400 nm/Abs280 nm) was used to 

check the purity of each fraction. Fractions having an Rz value greater than 0.9 were 

collected, then concentrated using a Centriprep-YM30 concentrator (Amicon). Further 
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purification was done by gel filtration on a Sephadex G-75 (Amersham) column (2.6 

× 100 cm) with 50 mM potassium phosphate buffer (pH 4.6, 0.5 mL/min). All 

purification steps were done either on ice or in a cold box at 4 ºC.  

2.1.5 Western blotting procedure 

 The SDS-PAGE gel was placed next to a nitrocellulose membrane. At room 

temperature, the protein samples were transferred from the SDS-PAGE gel to the 

nitrocellulose membrane using 50 V, and 164 mA for 1 h. The membrane was then 

incubated with blocking buffer (5% non-fat milk in Tris buffered saline with tween 

(TBST) for 1 h at room temperature with agitation. The membrane was washed 3 times 

for 5 minutes each with TBST and incubated with rabbit anti-CPO polyclonal IgG 

antibody in the same buffer with 5% BSA for 16 h at 4 ºC with agitation. After 

incubation, the membrane was washed and then incubated with horseradish 

peroxidase-conjugated anti-rabbit IgG antibody for 1 h. After this secondary antibody 

incubation step, the membrane was washed and 3 mL of SuperSignal (1.5 mL 

Luminol/Enhancer, 1.5 mL 2x Hydrogen Peroxide) was added. After 1 min of gentle 

agitation, images were recorded by using X- ray film with an exposure time of 5 to 60 s. 

2.1.6 Circular Dichroism spectrum study 

 Far-UV-CD (Circular Dichroism) spectra were recorded on a JASCO J-720 

spectropolarimeter at room temperature. Spectrum was recorded from 190 to 250 nm at 

0.1-nm intervals with a spectral bandwidth of 1 nm. The path length was 1 cm. 

2.1.7 UV-visible absorption spectrum study  

 All UV-visible (UV-vis) absorption measurements were determined in a VARIAN 

Cary 300 spectrophotometer using a 1-cm path length quartz cuvette.  
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2.1.8 Enzyme activity assays  

Chlorination Assay (MCD assay) — the chlorination rate of monochlorodimedone 

(MCD) was used to measure the chlorination activity of CPO (Yi, Conesa et al. 2003). 

The 3 mL reaction mixture contained 100 mM potassium phosphate buffer at pH 2.75, 20 

mM KCl, 0.17 mM monochlorodimedone, 2 mM H2O2,
 and a suitable aliquot of CPO. 

The reaction was initiated by the addition of H2O2, and the decrease in absorbance at 278 

nm was monitored at room temperature. One unit of chlorination activity was defined as 

the conversion of 1 µmole of MCD per minute.  

2.1.9 NMR spectroscopy 

 The NMR samples of rCPO (~1.5 mM) were prepared in 100 mM potassium 

phosphate buffer at pD/pH 5.5 in either D2O buffer or 90% H2O/10% D2O buffer. In D2O 

the pH meter reading was adjusted by 0.4 units to account for solvent isotope effects. In 

90% H2O/10% D2O buffer no adjustment was made. Preparation of rCPO in D2O 

involved four buffer exchanges with D2O buffer at pD 5.5 starting from solutions of 

rCPO in H2O. The exchanges were accomplished at 4°C using a Centricon or Centriprep 

from Amicon. The protein concentration was determined from its absorbance at 398 nm 

(ε = 91.2 x 103 M-1cm-1). The rCPO-CN adduct was prepared by addition of a 1.1-1.2 

molar equivalents of KCN in D2O, from a freshly made KCN stock solution (0.5 M). 

 Proton NMR spectra were recorded on a Bruker Avance 600 (Ultrashield) NMR 

spectrometer operating at a proton frequency of 599.97 MHz. The residual solvent signal 

was suppressed with pre-saturation during relaxation delay. Chemical shift values were 

referenced to the residual HDO signal at 4.76 ppm. All NMR spectra were acquired at 

298 K unless otherwise noted. For variable temperature experiments the chemical shift of 
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the residual HDO signal was assigned a value according the relationship of δT = δ25 − 

0.012 (T − 25), where δT is the chemical shift of HDO at temperature T in °C, and δ25 is 

the chemical shift of HDO at 25 °C (Satterlee, Erman et al. 1983); The value of 4.76 ppm 

instead of the usual 4.81 ppm was selected to be consistent with previous experimental 

work on CPO (Wang, Tachikawa et al. 2003). 

 All two-dimensional data were processed on an HP Workstation with a Pentium 4 

processor using Topspin 1.3 (Bruker). Various apodization functions were employed to 

emphasize protons with different relaxation properties. The spin-lattice relaxation times 

(T1) were determined from 16 spectra obtained at 25 °C with delay times ranging from 

0.1 to 500 ms. After processing with Topspin each spectrum was downloaded into 

Microsoft Excel to determine peak heights and the resulting data curve fit using Sigma 

Plot. 

2.2 Results and discussion 

2.2.1 Optimization of rCPO production and purification procedure for rCPO 

 One obstacle presented in a previous report using the A. niger expression system was 

the very low production of the purified enzyme, at most 10 mg/L compared to 300 mg/L 

for Wt CPO produced by C. fumago; in addition, the heme incorporation rate of the 

enzyme was very low. While pure CPO has an Rz value higher than 1.44, the purified 

rCPO only had an Rz value of 0.54. These two shortcomings plus a low-yield purification 

procedure made it impractical to obtain sufficient protein for detailed structure and 

mechanistic studies. Thus, improved production yields, heme incorporation rates, and 

purification procedures were essential for the success of the project. 
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 First, heme and heme precursor were added, as previous studies on the expression of 

other fungal peroxidase in A. niger had demonstrated that incomplete incorporation with 

prosthetic group was a major issue (Conesa, van De Velde et al. 2001). For example, 

Conesa has reported that rCPO produced by MGG029 was only partially (40%) 

incorporated with heme even after heme supplementation (Conesa, van De Velde et al. 

2001). Table 2.1 shows the comparison between rCPO yield, and culture media with and 

without heme supplementation. When 500 mg of hemin was added at inoculation, protein 

production levels were similar to those reported previously. However, when hemin was 

added 48 h after inoculation, protein production was increased by 5-10 fold. Interestingly, 

the highest protein production (30.42 mg/L) was achieved without hemin addition at all, 

and protein production levels could be increased by 4-29 fold. Therefore, it seems that 

addition of heme to medium may have a toxic effect on the growth of A. niger. 

 

Table 2.1 Optimized condition for production of rCPO after 72 h culture 

Culture of Aspergillus niger  

 

rCPO activity 

(unit/mL) 

Estimated rCPO 

production yield  (mg/L) 

Reported in reference 

 

1.60   1.14  

Hemin (500 mg/L) added at  

inoculation  

1.63  1.16  

Hemin (500 mg/L) added 

 after culture reach plateau (48 h)  

8.52~19.7   6.08~14.07  

No heme addition 

  

6.28~42.6   4.49~30.42  
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 Two additional factors were examined to improve rCPO production yield: pH 

stability and culture time. Aspergillus niger strains are known to produce large amount of 

organic acids that acidify the culture media. Overly acidic crude media will denature the 

secreted protein before it is folded and processed to the functional protein. Readjusting 

the pH with greater than 1 M KOH, might further denature the protein locally as well, 

and lower concentrations of KOH are impractically as they significantly dilute the media 

due to the high concentration of organic acids. Thus, over acidification might have a 

profound effect on expression level. In order to minimize acidification, different carbon 

sources were added into the culture media. The mycelia of a hyper productive CPO3.1#5 

strain were used to inoculate one batch of 3x1 L cultures containing 5% maltose and no 

glucose, and another batch of 3x1 L cultures with maltose (5%) and glucose (1%). The 

pH values of the crude media were checked daily and the pH value was readjusted to 5 

using 1 M KOH if necessary. After 7 days, flasks without glucose, had rCPO production 

yields of 7, 13, and 15 mg/L, and the flasks with glucose, had rCPO production yields of 

36, 46, and 48 mg/L as determined by the MCD assay. In addition, the flasks without 

glucose reached to pH 3 after only two days, while the flasks with glucose never reached 

pH 3 during the course of the experiment. The pH values stayed between 4 and 5 for over 

7 days, and there was no need to adjust the pH. 

 In previous work using A. niger as a heterologous expression host to express 

heme-containing proxidase, all culture media were collected either 48 h or 72 h after 

inoculation, probably because of factors such as the intrinsic stability of the enzyme and 

the denaturation effect of over acidification. Since CPO is very stable under acidic 

conditions, prolonged culture times could benefit the production of rCPO. The results of 
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rCPO production yields versus culture time are showed in figure 2.1. The rCPO 

production yields after 3, 4, 5, 6, and 7 days of inoculation, were 16, 29, 40, 48, and 56 

mg/L, respectively. Further improvements in production efficiency were achieved by 

controlling the temperature. The initial culture temperature was increased from 22 ºC to 

25 ºC to help A. niger reach its maximum biomass faster, then the temperature was 

lowered to facilitate the secretion of rCPO. In addition, lower temperatures would help to 

stabilize the secreted enzyme. By increasing the incubation time and adjusting the 

temperature, the rCPO production yield was further increased to 85 mg/ L. 
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Figure 2.1 rCPO production yields versus days after inoculation.  

 

A few modifications were also made to the rCPO purification procedure. A stepwise 

rather than a linear ion strength gradient was used in the ion-exchange chromatography 

step. In the gel filtration chromatography step, a smaller sample volume (<0.5% column 

volume) and slower flow rate (0.5 mL/min instead of 1 mL/min) were found to improve 
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the resolution. The chromatography results of rCPO purification are shown in Fig. 2.2 & 

Fig. 2.3. Compared to the published rCPO purification table (Conesa, van De Velde et al. 

2001), the results (Table 2.2) demonstrated an approximately 2.5 times higher recovery 

rate and 2.6 times higher purity, thus enabling us to carry out an NMR study. Ultimately, I 

increased the overall production of pure rCPO to 85 mg/L and the Rz value of purified 

rCPO was up to 1.4. Wt CPO with an Rz value greater than 1.44 is considered pure. The 

ability to produce rCPO in high yield and purity opens the door to a greater 

understanding of the mechanism of CPO and the commercial application of mutants of 

CPO via protein engineering. 
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Figure 2.2 Chromatogram of ion exchange chromatography of rCPO. 
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Figure 2.3 Chromatogram of gel filtration chromatography of rCPO 
 

Table 2.2 Purification result of rCPO from A. niger culture 

  

Volume 

mL 

Activity 

units/mL 

Enzyme 

units 

Yield 

% 

Rz 

A400/A280 

Crude media 580  29 16820 100 ND 

Ultrafiltration  45 309 13888 82 ND 

DEAE-Sepharose  90 109  9797 58 ~1 

Sephedex G-75 40 112  4480 26 1.4 

 

2.2.2 Validation of rCPO  

Validation of rCPO was done by SDS-PAGE (Fig. 2.4) and western blotting (Fig. 

2.5). The results verified that the molecular weight of purified rCPO is slightly larger 

than that of Wt CPO. The western blot results showed the positive reaction of rCPO with  
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Figure 2.4 12% SDS-PAGE result of rCPO. Lane 1 is protein molecular weight markers. 
Lanes 2 to 4 are rCPO samples from crude media, and ion exchange and gel filtration 
purification steps, respectively. Lane 5 is a sample of Wt CPO and lane 6 is a mixed 
sample of Wt CPO and purified rCPO. According to the gel results, the molecular weight 
of the rCPO is 50 kDa and is sightly bigger than that of Wt CPO. 
 

 

 

 
Figure 2.5 Western blotting results of Wt CPO and rCPO. Proteins were detected with an 
anti-CPO polyclonal antiserum. The antibody was diluted to 1:10000 for Wt and 
recombinant CPO. 
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polyclonal antibodies, despite the different glycosylation profiles of A. niger and C. 

fumago. 

2.2.3 UV-vis & CD spectroscopic study of rCPO 

 After rCPO was verified, the UV-vis spectra of rCPO and Wt CPO (Fig. 2.6) were 

compared. The spectrum of rCPO was almost identical to that of Wt CPO in all regions 

except that the Soret band of Wt CPO was at 398 nm, but that of rCPO was at 400 nm. 

The activity assay also confirmed the validity of the rCPO (data not shown). The CD 

spectra (Fig. 2.7) also showed an essentially identical pattern between rCPO and Wt CPO 

indicating the presence of a similar secondary structure for the two proteins. 
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Figure 2.6 UV-vis spectra of rCPO and Wt CPO ( in 0.05 M potassium phosphate buffer, 
pH 5.0, at room temperature). 
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Figure 2.7 The CD spectra of rCPO (0.4 µM in 10 mM phosphate buffer, pH=6) and Wt 
CPO (0.35 µM in 10 mM phosphate buffer, pH=6). The experiments were carried out at 
room temperature and recorded from 190 to 250 nm. The path length was 1 cm. 
 

2.2.4 NMR spectroscopic study of rCPO 

 The proton NMR spectrum of the rCPO-CN adduct displayed only one set of signals, 

indicating the presence of only one isozyme (Fig. 2.8). In contrast, the proton NMR 

spectrum of the Wt CPO-CN adduct has pairwise signals because of the presence of two 

isozymes (Wang, Tachikawa et al. 2003), which complicates spectral interpretation. The 

rCPO-CN adduct was in the ferric low spin state and provided relatively sharp NMR 

signals (Fig. 2.8). Although, the adduct is not physiologically active, it is the most 

favored system for paramagnetic NMR investigation as it provides the most information 

about the magnetic, electronic and structural properties of the active site and is also a 

good mimic of reaction intermediates Cpd I and Cpd II (Satterlee, Erman et al. 1983; 

Thanabal, Deropp et al. 1987; Satterlee, Erman et al. 1990; Banci, Bertini et al. 1992).  
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 The structure of the active site of rCPO was investigated using spin-lattice relaxation 

times and Curie plots, as well as a NOESY spectrum (Table 2.3 and Scheme 1).  

 

 

 
Scheme 1 Iron protoporphyrin IX in CPO 
 

Comparisons were made with the comprehensive NMR results previously reported for 

Wt CPO (Wang, Tachikawa et al. 2003). The spin-lattice relaxation time of each 

paramagnetically shifted resonance in rCPO-CN was determined by measuring peak 

intensities as a function of relaxation times (Fig. 2.9) and then the results were curve fit to 

peak intensity = I0-2*a*e-t/T1, where I0 and a are variables corresponding approximately to 

the maximum peak intensity, t is time, and T1 is the spin-lattice relaxation constant (Fig. 

2.10). The spin-lattice relaxation times provide information about the distance between 
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the proton and the iron center (Table 2.4). The Curie plots involved plotting the chemical 

shift of a proton as a function of 1/T, where T is the temperature in Kelvin (Fig. 2.11). 

The intercept of the plot estimates the chemical shift of the proton in the absence of 

paramagnetic effects from the iron. Resonances were assigned based on analogy with the 

well-studied Wt CPO spectrum and the heme resonance was partially assigned based on 

off diagonal peaks in the COSY spectrum (Fig 2. 12) (Wang, Tachikawa et al. 2003). 

 The NOESY (Fig. 2.13) spectrum of rCPO possesses many of the same off diagonal 

peaks as that of Wt CPO. On the basis of the analogy with the Wt CPO spectrum, twenty 

four of the 37 crosspeaks observed in Wt CPO for isozyme B were identified in rCPO 

and the missing crosspeaks tended to be of lower intensity in the Wt CPO NOESY 

spectrum or may correspond to isozyme A. Off diagonal peaks between the heme 

hydrogens of rCPO and Pro28, Ala31, Phe57, Ile63, Val67, Ile68, Leu97, and Phe186 

were observed. Unlike Wt CPO, no off diagonal peak was observed between the heme 

protons and Phe57, although this is a very weak signal in the Wt CPO NOESY spectrum 

(Wang, Tachikawa et al. 2003). 

 In summary, on the basis of the NMR data, rCPO and Wt CPO have very similar 

active site structures. The 1D and 2D spectra are nearly identical, as are the T1 values and 

the intercepts of the Curie plots. The chemical shifts of the paramagnetically shifted 

resonances in isozyme B of Wt CPO and the corresponding resonances in rCPO are at 

most 0.4 ppm apart with the exception of the resonance at approximately 39 ppm, which 

is broad and has a poorly defined peak, Table 2.3. For comparison, when yeast 

cytochrome c, a non-glycosylated heme protein was expressed in E. coli, the chemical 

shifts of the paramagnetically shifted resonance of wild type and recombinant proteins  
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Figure 2.8 NMR spectrum of rCPO at 25 °C in 0.1 M potassium phosphate buffer
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Figure 2.9 Selected signals from the NMR spectra of rCPO at various relaxation times at 25 °C and pD 5.5. 
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Figure 2.11 Curie plots for selected signals of rCPO. 
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Figure 2.12 rCPO COSY plot. 
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Figure 2.13 rCPO NOESY plot and crosspeak assignments based on analogy with Wt CPO (Wang, Tachikawa et al. 2003). The 
same numbering system was used as in Wt CPO, which has additional peaks, in part, due to the presence of two isozymes. 
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Table 2.3 Spin lattice relaxation times (T1) of paramagnetic shifted resonances for rCPO 

and Wt CPO in 0.1 M phosphate buffer, pD 5.5 and 25 °C. 

rCPO Wt CPOa 

Chemical 
shift (ppm) 

T1 (ms) Intercept 
(ppm) 

Chemical 
shift (ppm) 

T1 (ms) Intercept 
(ppm) 

Assignment 

39.6  -8.5 39.0/38.3  -10.6/-9.6 Hβ-Cys29 

24.1 43 1.8 24.0/23.8 33/35 0.1/0.4 8-CH3 

20.8 38 0.4 20.7/20.4 30/34 -0.7/-0.6 3-CH3 

17.0 5 5.3 17.4/17.0 6/6 3.1/3.0 NAc

   16.3 (H2O)b 200  His105 

14.8 30 8.7 14.8 29 8.7 4- Hα 

12.9 33 4.0 14.1/12.9 35/35 3.3/2.4 7- Hα 

12.2  265 11.7 12.3/11.9 220/NRd NR/NRd CH2-Pro28 

11.9 10 3.8 12.2/11.8 NR/NRd NR/NRd CH-Phe186 

   11.6 (A)a 30 (A)a 3.5 (A)a 7- Hα’ (A)a

-1.2 52 4.4     

-1.4 54 5.4 -1.4 NRd 5.8 2- Hβtrans 

-2.5 81 3.4 -2.5 NRd 3.4 β-CH-Ile68 

-2.6 65 9.9 -2.7 70 9.7 4-Hβtrans 

-3.8 7 7.7 -3.8 7 5.5 NAc

-4.5 72 10.3 -4.4 80 10.8 4-Hβcis 

-5.1 62 4.2 -5.2 58 4.6 2-Hβcis 

-21.0 1.4 0.8 -20.7 1.5 6.4 Hβ’-Cys29 

aPairwise signals were observed for Wt CPO, the first number corresponds to isozyme A 
and the second number corresponds to isozyme B. One number corresponds to both 
isozymes unless indicated otherwise (Wang, Tachikawa et al. 2003).  . 
bSignal observed in H2O but not D2O. 
cNot assigned in Wt CPO due to several possibilities or undetermined 
dNot reported 
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Table 2.4 Distance between the selected protons and the heme iron in rCPO based upon 
spin-lattice relaxation values and from the X-ray structure of Wt CPO (Sundaramoorthy, 
Terner et al. 1995).  
Chemical Shift  

(ppm) 

T1 (ms) Assignment Predicted Distance  

(Å) 

X-ray (Å) of  

Wt CPO 

24.1 43 8-CH3 6.1 6.1 

20.8 38 3-CH3 5.9 6.0 

17.0 5 Meso-H 4.2 4.6 

14.8 30 4-Hα 5.7 5.5 

12.9 33 7-Hα 5.8 6.3 

12.2   265 CH2, Pro28 8.2 7.9 

11.9 10 CH, Phe186 4.7 3.9 

-2.6 65 4- Hβtrans 6.5 6.8 

-4.5 72 4-Hβcis 6.6 6.8 
 

aThe predicted distances were determined from the T1 values assuming that the average 
distance between the three protons of 8-CH3 and the heme iron was 6.05 Å and that T1 
varies with 1/r6. 

 

differed by up to 0.6 ppm (Satterlee, Erman et al. 1990). The chemical shifts of the 

paramagnetically shifted resonance of the two isozymes of Wt CPO listed in Table 2.3 

also differed by slightly more than 1 ppm (Wang, Tachikawa et al. 2003). Based on the 

chemical shifts of the 7-Hα protons, rCPO is slightly closer in structure to isozyme B of 

Wt CPO than to isozyme A. 

2.3. Conclusion 

Expression level is an important feature for a recombinant protein system. Structural 

and mechanistic studies requires large quantities of protein and under laboratory 

condition, it is impractical to increase the fermentation volume to compensate for low 
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production yields. It is also a very important factor for economic reasons, if future 

industrial applications of the protein are under consideration. Needless to say, high purity 

is also critical for structural and other in-depth studies of protein function. My 

optimization of the expression and purification procedure of CPO not only allows the 

production of protein with adequate purity for structural studies, but also increases the 

production efficiency of active enzyme by 7 fold. Although, addition of either 

heme-precursor or heme was proposed to increase the production yield and heme 

incorporation rate, the current work proved it to be unnecessary. My work showed that an 

Rz value of up to 1.40 can be achieved for rCPO without the use of either heme or heme 

precursor during protein expression, demonstrating at least 97% heme incorporation rate. 

The rCPO produced by A. niger was both structurally and functionally very similar to Wt 

CPO, although the glycosylation degree was different. The UV-vis, CD, and 1D and 2D 

NMR spectra were almost identical between rCPO and WtCPO. The CD data suggested 

only minor changes in the secondary structure and the NMR data suggested that the 

structure of the active site was essentially the same. Importantly, rCPO also possessed 

efficient catalytic activity as Wt CPO does.  

My work proved that A. niger is an efficient and effective system for heterologous 

expression of CPO. In addition, the results suggested that A. niger may be used to express 

heme-containing proteins from other source which have proven difficult to express 

otherwise (Zong 1997; Aburto, Correa-Basurto et al. 2008; Lubertozzi and Keasling 

2009). The results also laid a solid foundation for future studies on CPO using 

site-directed mutagenesis as demonstrated in Chapter 3 of this dissertation.  
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Chapter III  

F103A CPO mutant preparation and properties 

3.1 Material and methods 

3.1.1 Strains and reagents 

Escherichia coli strains DH5α and Novablue were used for the construction and 

propagation of vectors. E. coli strain XL Gold-10 was purchased from the quik-change II 

XL kit (Strategene, CA) to propagate the nicked and mutagenesis induced CPO 

expression vector. The A. niger strain MGG029 (prtT, gla::fleor, pyrG) was obtained 

from TNO Nutrition and Food Research Institute, The Netherlands and was employed as 

recipient strain in the transformation experiments. High fidelity DNA polymerase pfu 

ultra and Phusion were obtained from Stratagene (San Diego, CA) and New England 

Biolabs, respectively. Rabbit anti-CPO polyclonal IgG was provided by Dr. Punt. Purified 

oligonucleotide primers were synthesized by MWG-Biotech. Unless otherwise noted, all 

other chemicals and reagents were obtained from commercial sources and used without 

further purification.  

3.1.2 CPO mutant gene construction 

The rCPO expression vector pCPO3.I-AmdS, a plasmid containing the CPO genomic 

clone, was purchased from TNO Nutrition and Food Research Institute, The Netherlands. 

In vector pCPO3.I-AmdS, the cDNA sequence encoding the full-length CPO precursor 

(1122 bp, GenBankTM accession #.AJ300448) is placed under the control of the A. niger 

glucoamylase promoter and A. nidulans trpC terminator. The A. nidulans AmdS selection 

marker was introduced at a unique NotI site. The Amds selection marker encodes 

acetamidase as a dominant nutritional marker. The mutation was prepared by the 
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QuikChange II XL site-directed mutagenesis kit (Stratagene, CA), and introduced via 

PCR amplification of pCPO3.I-AmdS with mutagenic oligonucleotide primers encoding 

an F103A mutation (5' gcc gag ccc cac gct GCC gag cac gac cac tcc 3’). The PCR 

reactions were carried out in a Eppendorf Mastercycler gradient thermal cycler 

(Eppendorf, North American) using the following parameters: initial denaturation at 95 ºC 

for 2 min followed by 18 cycles of 95 ºC for 1 min (denaturation), 60 ºC for 1 min 

(annealing) and 68 ºC for 15 min (elongation). The final touch up PCR step was 68 ºC for 

7 min. The desired mutation was confirmed by DNA sequencing and the expression 

vector pCPO3.I-AmdS containing the F103A mutation was denoted as 

pCPO-F103A-AmdS. 

3.1.3 Plasmid transformation into Aspergillus niger protoplast 

Fungal co-transformation was carried out as described (Punt 1992) using each of the 

expression vectors and pAB4.1 plasmids containing the A. niger pyrG selection marker in 

weight ratio of 10:1. Because the original lysing enzyme Novozym 234 was no longer 

commercially available, the lysing enzyme from Trichoferma harziannum (Sigma S-1412) 

was used. For protoplast production, 1 g of wet A. niger mycelia was incubated with 150 

mg lysing enzyme for 4.5 h in 20 mL of isosmotic buffer. Transformants were selected on 

minimal medium plates containing acetamide as the sole nitrogen source. Transformants 

were further selected for multicopy integration of the expression cassettes on acrylamide 

plates. Extracellular peroxidase activity was screened on o-anisidine plates using 0.05% 

H2O2 in 0.1 M potassium phosphate (pH=3) as developing buffer. 
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3.1.4 Genomic DNA extraction and sequencing 

Spores of A. niger were inoculated and cultured for 2 days in minimal medium. The 

mycelia were collected by centrifugation at 3500 rpm for 20 minutes and re-suspended in 

an isosmotic buffer (1 g/20 mL). The cell wall was then partially digested by incubating 

with lysing enzyme (10 mg/20 mL, Sigma L-1412) for 4 h. The mycelia were again 

collected by centrifugation. DNA extraction was performed with a QIAGEN plant DNA 

mini kit (QIAGEN, CA). The extracted DNA was then used as the template and amplified 

with primers (5'-cgc gga tcc atg ttc tcc aag gtc c -3' & 5'- ccg gaa ttc aag gtt gcg ggc-3’) 

which flanked the CPO coding region. Co-transformants containing the expression 

cassettes were confirmed by the presence of a band at 1122 bp. The extension temperature 

for the PCR reaction was optimized to 56.3 ºC. 

3.1.5 Expression of F103A mutant 

 Fungal culturing was carried out in 2-L Erlenmeyer flasks containing 1 L of A. niger 

minimal growth medium with 5% maltose and supplemented with 0.5% casein amino 

acids. Cultures were inoculated with a whole Petri dish of conidia. After incubation in a 

rotary shaker revolving at 225 rpm for 24 h at 25 ºC, the temperature was lowered to 22 

ºC and the shaking was continued for 6 days. 

3.1.6 Purification of F103A mutant  

 Aspergillus niger crude medium was collected by filtering the fungal culture through 

Miracloth and then centrifuging at 9500 rpm for 1 h, followed by filtration though 0.8 µm 

filters, to further remove mycelia debris. The crude culture medium containing the 

secreted enzyme was concentrated about 200 ~ 400 fold by using a high output 

ultrafiltration cell (10 kDa cut off membrane, Millipore). The condensed medium was 
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dialyzed twice against 25 mM potassium phosphate buffer (4 L) at pH 5.9 for at least 24 

h to adjust the pH and to obtain the proper conductivity. The sample was then applied to a 

DEAE Sepharose fast flow (Amersham) column (2.6 × 20 cm). After an initial wash to 

remove the unwanted protein, the mutant enzyme was eluted from the column by using a 

linear ionic strength gradient of 25 mM potassium phosphate buffer at pH 5.9 containing 

0-0.5 M sodium chloride in 15 bed volumes. The flow rate was adjusted to 1 mL/min. 

The Rz value was used to check the purity of each fraction. Fractions having an Rz value 

greater than 0.6 were collected, then concentrated using a Centriprep-YM30 concentrator 

(Amicon). Further purification was done by gel filtration on a Sephadex G-75 (Amersham) 

column (2.6 × 100 cm) with 50 mM potassium phosphate buffer (pH 4.6, 0.5 mL/min). 

All purification steps were done either using on ice or in a cold box at 4 ºC. 

3.1.7 Western blotting procedure 

The same procedure was used as described for rCPO in section 2.1.5. 

3.1.8 Circular Dichroism spectrum study 

The same procedure was used as described for rCPO in section 2.1.6. 

3.1.9 UV-Visible absorption spectrum study  

All UV-visible absorption measurements were determined in a VARIAN Cary 300 

spectrophotometer using a 1-cm path length quartz cuvette.  

3.1.10 Determination of extinction coefficients of CPO mutant 

In order to determine the extinction coefficient of the Soret band of the F103A 

mutant, both the Wt CPO and the F103A mutant were denatured and then reduced in the 

presence of pyridine and the absorbance of the free ferrous heme complex bound with 

pyridine at 555 nm measured. The mixture contained 166 µL enzyme solution, 600 µL 
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NaOH solution (0.066 N), and 400 µL pyridine. After careful mixing, 10 µL of 1 M 

Na2S2O4 was then added to reduce the heme from ferric to ferrous state. On the basis of 

the known extinction coefficient of Wt CPO (ε398nm = 91200 M-1cm-1), the extinction 

coefficient of the free ferrous heme-pyridine complex was determined (ε555nm = 33.8 

M-1cm-1), which was then used to calculate the extinction coefficient of the F103A 

mutant. 

3.1.11 Activity assays  

1). Chlorination Assay (MCD assay) — the same procedure was used as described 

for rCPO. 

2). Peroxidase Assay (ABTS assay) — the peroxidase’s activity was measured by 

using 2,2'-azino-bis-3-ethyl-benzthiazoline-6-sulfonic acid (ABTS) as the electron donor 

(Yi, Conesa et al. 2003). The 3 mL reaction mixture contained 50 mM phosphate-citrate 

buffer, pH 5.0, 0.01% H2O2, 100 mg/L ABTS, and a suitable aliquot of the enzyme. The 

reaction was initiated by the addition of H2O2, and the increase in absorbance at 405 nm 

was monitored at room temperature. One unit will oxidize 1.0 µmole of ABTS per minute 

at pH 5.0 at 25oC. 

3). Catalase Assay — The 3 mL reaction mixture contained 50 mM phosphate buffer, 

pH 5.0, 4 µL of 35 % H2O2, and a suitable aliquot of the enzyme. The reaction was 

initiated by the addition of enzyme, and the decrease in absorbance at 240 nm was 

monitored at room temperature. 

4). Epoxidation activity and enantioselectivity study — The initial epoxidation rate 

of styrene or its derivatives was determined by monitoring the decrease in absorption at 

242~252 nm with time. The exact wavelength depended on the derivative being analyzed. 
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The 3-mL reaction mixture contained approximately 5 µg of native or mutant CPO, 2 mM 

H2O2, and 300 µM substrate in 100 mM, pH= 5.5 citrate buffer at room temperature (Yi, 

Mroczko et al. 1999). Product yields and enantioselectivity of native and mutant CPOs 

with styrene and its derivatives were determined by HPLC. For these assays, a mixture 

containing 70 µL of styrene or its derivatives, 100 µL of tert-butyl hydrogen peroxide, 

and 400 µL of tert-butanol was first prepared. Then, 250 µL of the above mixture was 

added to 1 mg of wild-type or mutant CPO in 375 µL of 100 mM citrate buffer, pH 5.5. 

The reaction mixture was agitated at room temperature. After 45 min, the reaction was 

stopped by the addition of 50 µL of 1 M Na2S2O3 in a saturated solution of NaHCO3. The 

reaction mixture was extracted with 300 µL of isooctane. The HPLC analysis of the 

extracted organic phase was conducted on a Pirkle Concept WhelkO-1-SS column (2% 

isopropyl alcohol in hexane, 1 mL/min, and UV detector at 214 nm) to determine the 

yield of the reaction and the enantiomeric excess of epoxides (Geigert, Lee et al. 1986). 

5). N-demethylation activity — the reaction mixtures (Kedderis, Koop et al. 1980) 

contained sodium/potassium phosphate buffer (0.5 M), pH 6.0, N,N-dimethylaniline (0.53 

mM), and tert-butyl hydroperoxide (2.1 mM) in a final volume of 3 mL. The reactions 

were initiated by the addition of the enzyme, incubated at 25 °C for 15 min, and 

terminated by the addition of 0.75 mL of 60% trichloroacetic acid. The incubation 

mixtures were extracted twice with ethyl acetate (5 mL) to remove the violet color 

formed during the course of the reaction at higher protein concentrations. To 1 mL of the 

extracted aqueous phase, 0.5 mL of Nash reagent (30 g of ammonium acetate and 0.4 mL 

of 2, 4-pentanedione per 50 mL volume) was added and the solutions were mixed and 

incubated at 25 °C for 45 min. The absorbance of the resulting conjugate was read at 421 
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nm. All experiments were carried out in duplicate or triplicate and included controls in 

which the enzyme was omitted. The data presented are average values. 

3.1.12 Optimum pH for the chlorination activity 

The relationship between activity and pH was examined from pH 2.5 to 7.0 using the 

MCD assay. The phosphate buffer contained 20 mM KCl at each pH value.  

3.1.13 Ligand binding study 

The apparent dissociation constant (Kd) of enzyme and substrate binding was 

determined by the titration method (Dawson, Sono et al. 1983). Enzyme solution (5 μM) 

was prepared in 100 mM phosphate buffer at the appropriate pH and added to a cuvet, 

which was then placed inside a UV-vis spectrometer. A stock solution of the ligand was 

made in the same buffer and added in equal volume to the enzyme solution and the blank, 

which initially contained only the phosphate buffer. The UV-vis spectrum was recorded at 

the beginning and every time an aliquot of the ligand was added until the spectrum 

stopped changing. The Kd was calculated using the formula: 

Kd = [L] (1-v)/v 

Kd is the apparent dissociation constant, [L] is the free ligand concentration and v is the 

ratio of ligand bound enzyme concentration to total enzyme concentration. 

To obtain the ferrous-CO complex of CPO, the [Fe+3] was first reduced to [Fe+2] with 

dithionite and then bubbled for 1 min with carbon monoxide. 

To evaluate the affinity of CPO for a sixth axial ligand, ligands such as cyanide and 

azide, that are known to bind strongly to the heme iron atom, were used and UV-vis 

spectra of the enzyme-ligand complexes were obtained. These ligands would induce a 

change of the heme iron from high spin to low spin (Sono, Dawson et al. 1986). 
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3.2. Results and discussion 

3.2.1 Preparation and purification of F103A mutant 

After successfully expressing rCPO, I prepared a new mutant of CPO, F103A 

employing the same system. Using Stratagene QuikChange II XL site-directed 

mutagenesis kit, a 34 base primer containing the intended mutation was introduced into 

the pCPO3.1-Amds plasmid. After amplification and purification, the PCR product was 

analyzed by agarose gel electrophoresis to verify the vector size and was sequenced to 

verify that the mutation was indeed introduced at the correct location. The new plasmid 

was named pCPOF103A3.1 and was transformed into A. niger strain MGG029 as 

described in Chapter 2. After two rounds of screening based on the uridine dependence, 

ability to use acrylamide and extracellular peroxidase activity, several colonies were 

picked for further investigation. As with rCPO, DNA sequencing was used to confirm the 

presence of the mutant gene in each colony after several rounds of passage of the 

transformed strain to eliminate possible transient transformation.  

One colony was then selected and cultured to produce the mutant protein and the 

mutant protein was purified by the procedure mentioned above for rCPO. The 

chromatography results of purification are shown in Fig. 3.1 & Fig. 3.2. The fractions 

were collected based on the UV-vis absorption at 418 nm (for Soret band) and 280 nm 

(for protein absorption). The fourth peak in Fig. 3.1 and the second peak in Fig. 3.2 were 

identified as heme-proteins and the fractions corresponding to these peaks were collected 

and combined. The purification results are summarized in Table 3.1. With this method, 

more than 8 mg/L active protein can be obtained. Strikingly, the purified F103A CPO 

mutant displayed an Rz value of 1.25, which matched the theoretically calculated value  
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Figure 3.1 Chromatogram of ion exchange chromatography of F103A. 
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Figure 3.2 Chromatogram of gel filtration chromatography of F103A 
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Table 3.1 F103A purification result 

  

Volume 

mL 

Absorbance 

at 418 nm 

Enzyme 

mg 

Yield 

% 

Rz 

A418/A280 

Crude media (condensed) 43 1.934 44.1 100 ND 

Dialysis 27 2.223 31.8 72 ND 

DEAE-Sepharose  60  0.4174 13.3 30 ~0.9 

Sephedex G-75 40  0.3588  7.6 17  ~1.25 
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Figure 3.3 Visible spectra of the free ferrous heme-pyridine complex of F103A mutant 
and Wt CPO. The Soret bands are located at 555, 523, and 478 nm. Based on the known 
extinction coefficient of Wt CPO (ε398 nm = 91200 M-1cm-1) and the calculated extinction 
coefficient of free ferrous heme-pyridine complex (ε555 nm = 33.8 M-1cm-1), the extinction 
coefficient for the F103A mutant was determined. For F103A mutant, ε418 nm = 79200 
M-1cm-1, and the Rz value = 1.25. 
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Figure 3.4 15% SDS-PAGE result of F103A purification. Lanes 1&7 are protein 
molecular weight markers. Lanes 2 to 4 are F103A samples from crude media, and ion 
exchange and gel filtration purification steps, respectively. Lane 5 is the sample of Wt 
CPO and lane 6 is a mixed sample of Wt CPO and purified F103A. According to the gel 
result, the molecular weight of the F103A mutant is sightly smaller than that of Wt CPO. 

 

 
 

 
Figure 3.5 Western blotting analysis result: Lanes 1 to 3 are F103A, Wt CPO, and rCPO 
respectively. Proteins were detected with an anti-CPO polyclonal antiserum. The 
antibody was diluted 1:10K for F103A, and 1:100K for Wt and rCPO. 
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for F103A using the pyridine hemochromagen method (Fig. 3.3). The calculated 

extinction coefficient for F103A at 418 nm equals to 79200 M-1cm-1, and the pure form of 

protein is supposed to has an Rz value equals to 1.25. The protein fractions from each 

purification step and the final product were analyzed by SDS-PAGE to determine its 

purity (Fig. 3.4). In addition, the authenticity of the product was examined by western 

blotting (Fig. 3.5). As seen in the SDS-PAGE and western blotting, the molecular weight 

of F103A is apparently smaller than that of either rCPO or Wt CPO, probably because of 

a different glycosylation profile. The molecular difference may indicate a possible 

conformational change causing the amino acid side chains exposed on the protein surface 

to have changed, thus altering the glycosylation profile. However, due to the difficulty 

caused by the heavy glycosylation with both N- and O-glycosylation, I was unable to 

identify the differences in glycosylation. Nonetheless, the western blotting with rabbit 

anti-CPO polyclonal antibody confirmed that the purified protein is indeed a CPO 

mutant.  

3.2.2 Structure and function study of F103A mutant 

Heme proteins have characteristic visible Soret absorption bands that convey 

significant information about the structure and coordination state of their active sites. The 

UV-vis spectrum of F103A, Wt CPO, and P450 camphor were examined and compared 

in Fig. 3.6. The UV-vis spectrum of F103A was quite different from that of Wt CPO, yet 

resembled that of camphor free P450cam (CYP101). The major Soret band for Wt CPO is 

at 398 nm and the corresponding band for the mutant is at 418 nm. The α and β bands of 

Wt CPO are at 514 nm and 539 nm; the corresponding bands for the mutant are at 

539 nm and 573 nm. Both the major Soret band and the minor bands of F103A mutant are 
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all at the positions that are very similar to P450cam, which has bands at 417, 536, and 

569 nm. 

One similarity between Wt CPO and P450cam is that they have a cysteine as the 

proximal ligand for the heme center. To verify that such a structural feature was retained 

in the F103A mutant, the UV-vis spectral properties of the protein-CO complex of these 

enzymes under reducing condition were studied (Fig. 3.7). The ferrous-CO complex of 

heme containing enzymes with a thiol group as the proximal ligand shows a distinctive 

Soret band near 450 nm. The spectrum of F103A CPO-CO complex was essentially 

identical to that of Wt CPO-CO and P450-CO, confirming that F103A also has a thiol 

proximal ligand. 

These spectral features are summarized in Table 3.2 and indicate that although 

F103A has the same proximal ligand as Wt CPO; F103A has different structural features 

around the heme center. It is most probable that these differences are caused by change 

on the distal side. The close resemblance of F103A and P450cam indicates that F103A 

may have a water molecule as the sixth ligand, like P450cam. Unlike in Wt CPO, the 

water molecule in the active center does not bind to the ferrous center directly, but only 

binds with Glu183 by hydrogen bond. These changed will affect ligand binding, substrate 

selection, as well as catalytic behavior of the enzyme; it makes F103A a much better 

model for p450. The structural basis for this change is worth further exploration. There is 

a slight possibility that the changes were the result of an overall structural reconfiguration. 

A nearly identical CD spectrum (Fig. 3.8) showed that, like rCPO, there is no significant 

secondary structural change in F103A compared to Wt CPO. 
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Figure 3.6 UV-vis spectra of Wt CPO, and its F103A mutant in 0.05 M potassium 
phosphate buffer, pH 5.0, and P450cam in 0.05 M potassium phosphate buffer, pH 7.4. 
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Figure 3.7 UV-vis spectra of the ferric, ferrous, and ferrous-CO complexes of the F103A 
mutant in 0.05 M potassium phosphate buffer, pH 5.0
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Table 3.2 Spectral properties of heme thiolate proteins (P450cam, Wt CPO and CPO F103A mutant) and their ligand complexes 
 

Protein λmax, nm (ε, mM-1•cm-1) reference 

 δ Soret β α CT  

Ferric substrate free 

CPO F103A 356 418 (79.2) 538 (8.5) 572 (7.5) 637 (2.2) this work 

Wt CPO  398 (91.2) 514 (13.0) 543 (11.5) 651 (4.4)  

Wt P450cam 365 417 (115) 536 (10.6) 569 (11.1) na (Dawson, 
Andersson et al. 
1982) 

 

Ferrous ligand free 

CPO F103A  405 (60.6) 547 (10.5)   This work 

Wt CPO  408 (79.3)  550 (12.7)   This work 

Wt P450cam  408 (87.1) 540 (15.8)   This work 

       

Ferrous-CO complex 

CPO F103A  443 (71.7) 552 (9.7)   This work 

Wt CPO  446(124.8) 550 (11.2)   This work 

Wt P450cam  446(130.6) 550 (16.3)   This work 
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Figure 3.8 The CD spectra of F103A mutant (0.375 µM in 10 mM phosphate buffer 
pH=6) and Wt CPO (0.3 µM in 10 mM phosphate buffer, pH=6). The experiments were 
carried out at the room temperature and recorded from 190 to 250 nm. The path length 
was 1cm.  
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Figure 3.9 Relative activities of Wt CPO, C29H, F103A and E183H mutants.
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Figure 3.10 Catalase activity assays of Wt CPO and F103A.  
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Figure 3.11 N-demethylation activities of Wt CPO and its F103A mutant.  
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Naturally, I am interested in understanding how these structural changes affect the 

protein’s catalytic properties. A comparison of the chlorination, epoxidation, peroxidation 

and dismutation activity of the wild type, F103A mutant, and other CPO mutants is 

shown in Fig. 3.9. The chlorination activity of the mutant enzyme decreased to 1% of the 

wild type activity, so did the dismutation activity, and the catalase activity decreased to an 

undetectable level (Fig. 3.10). Peroxidation and epoxidation activity, however, 

unexpectedly increased by 10-fold, and 4-fold, respectively. Similarly, an increase of 5.6 

fold in the N-demethylation activity was observed for this mutant CPO (Fig. 3.11). 

These data show that the F103→A mutation changes the catalytic activity of CPO 

dramatically. As mentioned in the introduction, once the CPO reacts with hydrogen 

peroxide and forms Cpd I, it has three pathways to return to the resting state: (1) react 

with another molecule of polar substrate with high redox potential like peroxide or 

chloride, generating O2 or a reactive oxygen species like HOCl; (2) return to resting state 

by two one-electron steps, lose one redox equivalent and be reduced to Cpd II, a 

nonradical oxoferryl species, then oxidize another substrate and return to the resting state; 

(3) lose two electron equivalents by inserting its oxoferryl oxygen into a suitable acceptor 

in a P450 type reaction. 

After examination of the catalytic activities of F103A, it becomes evident that 

pathway (1) is inhibited, whereas pathways (2) and (3) are enhanced as reflected by the 

decrease in catalase and chlorination activity but an increase in peroxidase, epoxidation 

and N-demethylation activity. Two plausible explanations for the results are that F103A 

Cpd I has a lower redox potential, and thus is unable to oxidize reactants with higher 

redox potentials; and that the F103A catalytic center does not react with polar substrates 
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favorably, thus lowering the reactivity with hydrogen peroxide and chloride ion. A 

combination of both is also possible; however, further studies are required. 

The dramatic changes in the activity profile of F103A CPO actually make it a better 

industrial catalyst than Wt CPO. Epoxidation of alkenes, chloroalkenes, styrene, and 

other chemicals is an important type of reactions used in drug synthesis (Neidleman and 

Geigert 1983; Lakner and Hager 1996). Higher activity will certainly preferred for a 

catalyst used in these areas. In Wt CPO, the epoxidation pathway has to compete with 

catalatic pathway; a lower catalase activity will help to improve the epoxidation activity 

and conversion rate especially with higher hydrogen peroxide concentration (Manoj and 

Hager 2001)  

To gain insight into the structural changes of the active site, the UV-vis spectrum of 

F103A was acquired at each of several pH values. As the pH is lowered down to 3, a 

shoulder peak at 400 nm became more prominent (Fig. 3.12), indicating the presence of a 

high spin ferric center, similar to that found in Wt CPO from pH 2 to 7. The five 

coordinate high spin state of F103A could be produced by the loss of water from the 

six-coordinate low spin state. As the pH is lowered, water has a lower binding affinity for 

F103A and tends to disassociate from the heme center converting the ferric center of 

F103A from a six coordinate low spin state to a five coordinate high spin or mixed spin 

state. In the mixed spin state some of the iron atoms are high. This further proves that the 

F103A CPO mutant, like P450cam, has a water molecule served as the sixth ligand of the 

heme center at its resting state. Similar spectral changes are also observed when P450 

binds a molecule of camphor, which results in the loss of water as the sixth ligand 

completely (Dawson, Andersson et al. 1982). 
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Figure 3.12 UV-vis spectra of F103A in 0.1 M potassium phosphate buffer at pH 3. At 
pH=3, the F103A mutant has a shoulder peak around 400 nm. 

 

The ligand binding properties of F103A with a variety of ligand were investigated to 

probe the chemical environment of the heme center in this CPO mutant. A wide range of 

ligands with different pKa values and different coordinating atoms were employed. The 

spectrums of each F103A-ligand and Wt CPO-ligand complex are presented here: 

cyanide (Fig. 3.13), azide (Fig. 3.14), imidazole (Fig. 3.15), thiocyanate (Fig. 3.16), 

formate (Fig. 3.17), and acetate (Fig. 3.18). Both Wt CPO and its F103 mutant showed 

very similar absorption spectrum when binding to the same ligand, indicating the heme 

center in F103A has a similar configuration to Wt CPO when binds to a ligand, thus it 

may adopt similar intermediates and mechanism during catalysis. The only exception is 

acetate; unlike in Wt CPO, it binds to the ferric center and gives a mixed spin state for the 

heme center (Sono, Dawson et al. 1986), in F103A, the heme center remains its original 

low spin state, in addition to no shift in Soret band position shift was observed. 
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Figure 3.13 UV-vis absorption spectra of the cyanide complexes of ferric Wt CPO and 
F103A. The spectra were obtained at pH=3 in 0.1 M potassium phosphate buffer at room 
temperature with 5 µM enzyme concentration. The ligand concentrations were 0.2 M for 
F103A mutant, and 20 mM for Wt CPO 
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Figure 3.14 UV-vis absorption spectra of the azide complexes of ferric Wt CPO and 
F103A. The spectra were obtained at pH=3 in 0.1 M potassium phosphate buffer at room 
temperature with 5 µM enzyme concentration. The ligand concentrations were 35 mM for 
F103A mutant, and 13 mM for Wt CPO. 
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Figure 3.15 UV-vis absorption spectra of the imidazole complexes of ferric Wt CPO and 
F103A. The spectra were obtained at pH=6 in 0.1 M potassium phosphate buffer at room 
temperature with 5 µM enzyme concentration. The ligand concentrations were 2 M for 
F103A mutant, and 4 M for Wt CPO. 
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Figure 3.16 UV-vis absorption spectra of the thiocyanate complexes of ferric Wt CPO 
and F103A. The spectra were obtained at pH=3, in 0.1 M potassium phosphate buffer at 
room temperature with 5 µM enzyme concentration. The ligand concentration was 100 
mM for F103A mutant, and 15 mM for Wt CPO.   
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Figure 3.17 UV-vis absorption spectra of the formate complexes of ferric Wt CPO and 
F103A. The spectra were obtained at pH=3 in 0.1 M potassium phosphate buffer at room 
temperature with 5 µM enzyme concentration. The ligand concentration was 1.5 M. 
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Figure 3.18 UV-vis absorption spectra of the acetate complexes of ferric Wt CPO and 
F103A. The spectra were obtained at pH=3 in 0.1 M potassium phosphate buffer at room 
temperature with 5 µM enzyme concentration. The ligand concentration was 2 M. 
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Table 3.3 Optical absorption data, dissociation constants, and spin states of ferric Wt CPO & ferric F103A CPO mutant ligand 

complexs
a
  

 

Ligand 

Pka of 

Ligand
b
 

absorption maxima
c

 [λ (εmM)]   Kd

app 
(mM) Kd

int d 
(mM) 

spin 
state Enzyme name δ Soret  β α     pH=3   

KCN Wt CPO 

9.14 

366 (45.4) 439 (92.3) 557 (13.0)       0.14 0.14 low 

F103A CPO 361 (35.9) 436 (56.1) 556 (8.5)       0.27 0.27 low 

KN3 Wt CPO 

4.72 

365 (37.6) 431 (85.5) 544 (11.3) 580 (7.8) 642 (3.0) 1.3+0.2
 
 1.3 low 

F103A CPO 360 (46.1) 428 (64.3) 548 (10.3) 583 (7.5) 647 (2.1)   2.9+1.4
 
 1.8 low 

KSCN Wt CPO 

-1.90 

365 (36.8) 430 (90.3) 548 (11.4) 585 (6.4) 649 (1.4)   0.09+0.01
 
 e low 

F103A CPO 366 (40.6) 426 (64.5) 543 (9.4) 575 (6.4) 646 (1.6)   6+4 e low 

Imidazole Wt CPO 

7.00 

367 (37.8) 428 (93.3) 545 (12.8) 580 (7.5) 644 (1.5)   e e low 

F103A CPO 358 (40.0) 427 (107.1) 545 (12.8) 575 (8.1)     e e low 

HCOOK Wt CPO 

3.75 

358 (30.1) 424 (99.6) 544 (9.4) 581 (8.3) 637 (2.9)   0.62 0.53 low 

F103A CPO 360 (35.1) 421 (68.3) 541 (8.2) 574 (7.1) 637 (2.8)   102 87 low 

CH3COOK Wt CPO 

4.77 

  411 (79.7) 540 (7.6) 583 (6.0) 638 (4.8)   e e mix 

F103A CPO 358 (32.8) 419 (86.1) 538 (9.5) 574 (8.5) 638 (2.4)   e e low 
 
a All data were abtained in 0.1 potassium phosphate buffer at pH 6 or pH 3 at room temperature. b pKa values for the ligands are 
taken from the following literature: (i) (Danehy and Parameswaran 1968); (ii) (Perrin, Dempsey et al. 1981); (iii) (Streitwieser 
1981). c The λ and εmM expressed in nm and mM-1cm-1, respectively. d Intrinsic (int) affinity for the neutral form of the ligands (see 
text). e Not determined. 
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Table 3.4 Apparent Kd for cyanide binding of Wt CPO and F103A at various pH 

pH value F103A Wt CPO 

pH=3  268.0 μM 141.5 μM 

pH=4  298.0 μM 151.7 μM 

pH=5 4236.8 μM 165.7 μM 

pH=6 4481.7 µM 90.33 μM 

 

The apparent Kd values (Kd) for ligand binding of several ligands were derived from 

the ligand binding studies (Table 3.3). Generally F103A shows lower affinity for ligands 

than Wt CPO, an effect that can be accounted for by a more opened active center 

allowing more freedom of the ligand in F103A, plus the ligand has to compete with a 

H2O molecule that served as the sixth ligand, while in Wt CPO, a H2O is 3.5 Å away 

from the heme center. The binding affinity of the F103A for cyanide and azide decreased 

2 fold, and for two of the more acidic ligand, thiocyanate, and formate decreased 

dramatically (100 fold). The extent of decrease was hard to determine for acetate because 

it has a very low affinity for Wt CPO and any significant decrease will cause its binding 

with F103A to become undetectable. However the extent of the decrease is not correlated 

with pKa values, it is possible that the structure of the ligand may also play a role here.  

The effect of pH on the ligand binding of the F103A mutant to one of the strongest 

ligands, cyanide (Table 3.4). Compared to Wt CPO, which has a small increase in the 

ligand affinity between pH 5~6, F103A actually showed an abrupt decrease in ligand 

affinity between pH 4~5. A similar effect was observed when studying the chlorination 



 
 

75 
 

activity of F103A, unlike Wt CPO that has an optimum pH=2.75, F103A mutant has an 

optimum pH=3 (Fig. 3.19). 
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Figure 3.19 pH profiles for chlorination activity of Wt CPO and F103A. 

 

One possible explanation for such changes could be changes of the distal ligand state. 

It had been well established that Glu183 plays an important role in stabilizing the 

ligand-ferric heme iron complex (Sundaramoorthy, Terner et al. 1998; Kuhnel, 

Blankenfeldt et al. 2006). It is possible that Glu183 may not be suitably close enough to 

the ferric center to form a hydrogen bond with the ligand, or the hydrogen bond network 

formed by Glu183, His105 and Asp106 had been interrupted. Thus instead of Glu183, Ser 

184 is placed close to the ferric center, adopting a similar configuration to P450cam. 

Another possible scenario is that the F103A mutation causes a slight twist of the peptide 

backbone where F103 is located, disrupting the nearby hydrogen bond between His105 
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and Glu183, resulting in the formation of a new hydrogen bond between Asp106 and 

Glu183. On the basis of significant decrease in cyanide binding between pH 4-5 and the 

decrease in optimum pH of chlorination, the latter hypothesis is more plausible.  

3.2.3 F103A mutant as a possible industrial catalyst 

As mentioned in the introduction, one drawback of Wt CPO is its limited ability to 

accept larger substrate, thus substituting the Phe103 with a smaller amino acid, Ala, 

should change the structure of the active center to allow access of larger substrate. To 

evaluate this approach, a series of styrene derivatives were used to study the catalytic 

activity of the F103A mutant.  

Although Wt CPO can catalyze the epoxidation of α-methylstyrene and 

α-ethylstyrene (Dexter, Lakner et al. 1995), with high enantioselectivity, the turnover 

number decreased dramatically as the substituent group was changed from methyl to 

ethyl; a similar phenomenon was also observed when comparing α-methylstyrene and 

styrene. It is proposed that repositioning the methyl or larger substituent group on the 

double bond of the styrene might offer insights into the steric control of both reactant size 

and reaction enantioselectivity. Furthermore, styrene and its derivatives are an important 

group of compounds for industrial applications, yet are challenging to modify with 

enzymes. In addition, the aromatic group will enable assessment of the reaction with 

UV-vis spectroscopy.  

 The epoxidation behavior of F103A on styrene derivatives with increasing size of the 

substituent on alpha carbon of the double bond was investigated: α-methylstyrene, 

α-ethylstyrene, and α-propylstyrene. An increase in catalytic activity with both 

α-ethylstyrene and α-propylstyrene (Fig. 3.20) was observed for F103A, both substrate 
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react very slow with Wt CPO and required prolonged time (~1 h) for a noticeable change 

to occur by UV-vis. Styrene derivatives with a more highly substituted group on the 

double bond was also used as substrates. While Wt CPO reacts poorly with tri-substituted 

styrene, F103A can accept such substrates with higher turnover rates. However, 

tetra-substituted styrene was accepted as a substrate by neither Wt CPO nor F103A (Fig. 

3.21). The next structural feature we studied was the conformation of the substrate. Trans 

derivatives of styrene and trans olefins, in general, were found to be poor substrates for 

Wt CPO, as is usually the case in epoxidation reactions catalyzed by heme proteins and 

their synthetic models (Groves and Nemo 1983). However, F103A can catalyze the 

epoxidation of trans-β-methylstyrene (Fig. 3.22), and trans-substrates with larger 

substituent, such as trans-1-phenyl-1-pentene and trans-1-phenyl-1-butene. 
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Figure 3.20 UV absorbance decrease at 242 nm profiles for F103A (39 nM) catalysis of 
the epoxidation of α-methylstyrene, α-ethylstyrene, and α-propylstyrene (300 µM) in 100 
mM citrate buffer, pH = 5.5. 
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Figure 3.21 UV absorbance decrease at 243 nm profiles for F103A (39 nM) catalysis of 
the epoxidation of 2-methyl-phenyl-1-propene and 1,2-dimethyl-propenyl-benzene (300 
µM) in 100 mM citrate buffer, pH = 5.5.  
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Figure 3.22 UV absorbance decrease at 250 nm profiles for F103A (39 nM) catalysis of 
the epoxidation of trans-β-methylstyrene, trans-1-phenyl-1-butene, and 
trans-1-phenyl-1-pentene (300 µM) in 100 mM citrate buffer, pH = 5.5. 
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Lastly, the enantioselectivity of F103A with these substrates was examined. Chiral 

HPLC with an UV detector was used to study the epoxidation products of various styrene 

derivatives. A sample HPLC trace is shown in Fig. 3.23 & Fig. 3.24. In these figures, It 

can be seen that the F103A mutant has almost completely lost its enantioselectivity when 

catalyzing styrene epoxidation, in contrast to Wt CPO which has an ee% of 49. For other 

substrates that can be accepted by both Wt CPO and F103A, F103A showed a distinctive 

enantioselectivity profile (Table 3.5). Similar to styrene, F103A almost lost its 

enantioselectivity when catalyzing the epoxidation of cis-β-methylstyrene. However, 

when catalyzing another substrate that reacts readily with Wt CPO, α-methylstyrene, 

F103A showed high enantioselectivity but with a different configurational In summary, 

on the basis of the NMR data, rCPO and Wt CPO have very similar active site structures. 

The 1D and 2D spectra are nearly identical, as are the T1 values and the intercepts of the 

Curie plots. The chemical shifts of the paramagnetically shifted resonances in isozyme B 

of Wt CPO and the corresponding resonances in rCPO are at most 0.4 ppm apart with the 

exception of the resonance at approximately 39 ppm, which is broad and has a poorly 

defined peak, Table 2.3. For comparison, when yeast cytochrome c, a non-glycosylated 

heme protein was expressed in E. coli, the chemical shifts of the paramagnetically shifted 

resonance of wild type and recombinant proteins differed by up to 0.6 ppm preference. 

When catalyzing larger, more branched substrates, trans-β-methylstyrene, 

trans-1-phenyl-1-butene, and 2-methyl-phenyl-1-propene, F103A exhibited higher 

enatioselectivites and higher conversion rate.  

The new enantioselectivity profile can be explained by the steric control of substrate 

access to the ferric center and the configuration inside the heme pocket. When F103 is  
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Figure 3.23 Chiral HPLC trace of the products obtained from the epoxidation of styrene 
catalyzed by Wt CPO. 
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Figure 3.24 Chiral HPLC trace of the products obtained from the epoxidation of styrene 
catalyzed by F103A. 
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Table 3.5 Enantioselectivity study of F103A catalyzed of epoxidation reactions 

Substrate            Major product          ee (%)a          Yield (%)   

  
 

a enantiomeric excess (ee%)  
 

replaced by Ala, it creates a larger opening within the heme pocket. Thus, when styrene 

derivatives enter the heme pocket of F103A, the substrates have more freedom compared 

to Wt CPO. A model of styrene binding to Wt CPO indicates close proximity between the 

alpha-carbon of styrene and F103. Therefore, the alpha-substituted styrenes have to adapt 
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a configuration that allows them to avoid Phe103 and Phe186, resulting in a lower 

reaction rate and a different orientation of the double bond next to the catalytic center. 

Other more branched styrene derivatives can enter the heme pocket in F103A, but have a 

much greater difficulty entering the Wt CPO heme pocket. Once the styrene derivative 

enters the heme pocket, a conformation that allows it to be in a close proximity to the 

ferric-oxo catalytic center has to be adapted, thus leading to enantioselective oxygen 

insertion reactions. 

Furthermore, the heme pocket of F103A must be wider and maybe deeper than that 

of Wt CPO, as it can accommodate trans-substituted styrenes and other styrene 

derivatives with larger or more substituted double bonds. This may be because the 

alpha-helix where the F103 is located adopts a slightly different orientation when F103 is 

substituted with Ala.  

3.3 Conclusion 

In F103A mutant, a Phe located at the opening of the heme pocket was replaced by a 

small hydrophobic amino acid, Ala. The mutant displayed very desirable features 

compared to Wt CPO. One significant improvement is F103A’s lack of catalase activity. 

Catalase pathway compete with monooxygenase pathway in CPO, lower catalase activity 

will help to improve the desired activities like epoxidation increased; indeed, epoxidation 

activity of F103A increased by 4-fold. Another important change was F103A’s ability to 

catalyze the epoxidation of many styrene derivatives with high enantioslectity that are 

poor substrates for Wt CPO. Styrene and its derivatives are an important group of 

substrates with important industrial applications (Hager, Lakner et al. 1998). F103A can 
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be served as a very promising candidate as an industrial catalyst due to its special 

substrate specificity and enatioselectivity. 

It is very intriguing that a simple replacement of a single amino acid outside the 

catalytic center can cause such dramatic changes in the catalytic profile of CPO. 

Phenylalanine 103 was originally proposed to regulate substrate access to the catalytic 

center, although this hypothesis proved to be valid, by the study of its epoxidation of 

styrene derivatives, it is somewhat unexpected that it can act as a switch to turn on and 

off many of the Wt CPO’s activities.  

A look at the primary sequence and secondary structure of CPO tells us that Phe103 

is located at the end of a hydrogen bonded turn and at the beginning of an undefined loop 

that consists of a series of polar amino acid ranging from Glu104 to Tyr114. It contains 

Glu104-His105-Asp106-His107-Ser108-Phe109-Ser110-Arg111-Lys112-Asp113-Tyr114 , 

and forms part of the wall and ceiling of the heme-pocket as revealed by the X-ray 

structure of Wt CPO (Sundaramoorthy, Terner et al. 1995). Two of these amino acids, His 

105 and Asp106, were proposed to form a hydrogen bond network with Glu183 to 

facilitate the formation of Cpd I and ligand binding.  

Since there are no significant structural changes in F103A as indicated by the CD 

spectroscopy study, one possible explanation for the importance of Phe103 is that the 

replacement of F103 by A caused subsequent conformation changes in this undefined 

loop structure, including perturbation of the hydrogen bonded network formed by His105, 

Asp 106 and Glu183. Since cyanide binding affinity undergoes significant decrease 

between pH 4-5, it is suspected that another acidic amino acid side chain is still involved 

with Glu183, if it remains in the same position as in Wt CPO. One possible candidate is 
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Asp106. Another possible scenario is that more dramatic changes have caused Glu183 to 

move away, and another amino acid side chain has repositioned to react with the water 

molecule. Judging from the optimal pH and ligand binding affinity of F103A, the amino 

acid would still be an acidic amino acid side chain like Glu or Asp. By analyzing the 

crystal structural of Wt CPO, such relocations would have caused significant overall 

structural changes, thus the latter scheme is unlikely to happen. 

The F103A is a very interesting mutant as it provides greater enzymatic activities and 

several clues on how CPO regulates its catalytic activity. Since it has a greater 

resemblance to P450cam in its UV-vis spectrum; F103A is a better model to understand 

the long standing yet difficult question of P450 mechanism than CPO. Future studies on 

F103A, with more site-directed mutagenesis, spectroscopic and kinetic studies, will help 

us to elucidate the structural basis of its attractive features and the mechanism underlying 

them. It will also facilitate the study of P450cam and other related heme-containing 

peroxidase.  

 

  



 
 

85 
 

Chapter IV 

C29H/C79H/C87H CPO Mutant Purification and Characterization 

4.1 Material and methods 

4.1.1 Strains and reagents 

The same procedure was used as described for F103A in section 3.1.1; except that A. 

niger strain ATCC 62590 (pyrG deficiency) was bought from American type culture 

center (ATCC) and was used as the expression host. The strain carries a nonfunctional 

pyrG gene, which enables the use of the pyrG selection marker. Recombinant CPO was 

expressed successfully in our laboratory using A. niger strain ATCC 62590 as host strain. 

4.1.2 CPO mutant gene construction of expression plasmid 

The same procedure was used as described for F103A in section 3.1.2, except that 

three different primers were used to introduce the triplet mutation into CPO. The three 

primers were C29H-anti: gac tct cgt gct cct CAC cca gct ctg aac gct c, C79H-anti: c aac 

gcc ttc gtc gtc CAC gag tac gtt act ggc and C87H-anti: gtt act ggc tcc gac CAT ggt gac 

agc ctt gtc. After each mutation was confirmed by DNA sequencing, the resulting plasmid 

was then used as the template for the next mutation. The CPO expression vector with the 

triple mutations was named pCPO#3C. 

4.1.3 Plasmid transformation into A. niger protoplast  

Fungal co-transformation was carried out as described in section 3.1.3, using the 

CPO expression vector pCPO#3C and assistant plasmids pAB4.1, which contains the A. 

niger pyrG selection marker in a weight ratio of 10:1.  

4.1.4 Genomic DNA extraction and sequencing 

The same procedure was used as described for F103A in section 3.1.4 
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4.1.5 Expression of C29H/C79H/C87H CPO mutant 

The same procedure was used as described for F103A in section 3.1.5  

4.1.6 Total mRNA extraction and reverse transcription PCR  

Aspergillus niger culture medium was collected after 48 h of growth then filtered. 

The A. niger mycelia were washed with sterile water and then grinded in liquid nitrogen 

to a fine power. The grinded power, 50 mg, was either stored in a -70oC freezer for 

further study or used directly. Total mRNA was extracted with a QIAGEN plant mRNA 

kit. The extracted total mRNA was then converted into cDNA via reverse transcription 

PCR (RT PCR). The RT PCR mixture contained, 5 µL of mRNA sample as template, 

0.75 µL of a blend of random hexameric RNA primers, 0.25 µL of anchored oligo dT 

RNA primers, 1 µL of RT enhancer, 1 µL of reverse transcription DNA polymerase, 2 µL 

of dNTP mix, 4 µL of 5X PCR buffer and 4 µL of water. The extension PCR step was 

performed at 56 ºC for 30 min. The cDNA sample was then used as the template to 

undergo a second PCR reaction using primers 5'-cgc gga tcc atg ttc tcc aag gtc c -3' and 

5'- ccg gaa ttc aag gtt gcg ggc-3’ to amplify the CPO coding region. A PCR fragment size 

of 1122 bp was used to confirm positive CPO mRNA transcription. 

4.1.7 Western blotting procedures 

The same procedure was used as described for F103A in section 3.1.7 

4.2 Results and discussion 

One unique feature that separates CPO and P450 from other peroxidases is the 

proximal ligand, which is the fifth ligand to the ferric center of the heme. In CPO, the 

proximal ligand is a cysteine, instead of the usual histidine. A previous report about C29H 

expressed in C. fumago showed that replacement of the proximal amino acid Cys29 with 
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histidine had no significance effect on enzymatic activity (Yi, Mroczko et al. 1999) Given 

the surprising result, I suspected that another cysteine was involved as the proximal 

ligand or contamination from endogenous Wt CPO in the parental host. With these 

questions in mind, I attempted to create a new CPO mutant C29H/C79H/C87H in which 

all of the cysteines in CPO were replaced by histidine.  

The experimental approach is basically the same as for the F103A CPO mutant. I 

designed the primers and introduced the three mutations to the transformation vector one 

by one. The vector was then sequenced to verify that the mutations were introduced 

correctly and that no other bases had been altered. The new vector was named pCPO#3C. 

I then proceeded to co-transform of pCPO#3C and pAB4.1 into A. niger strain ATCC 

62590, the parent strain of MGG029. The MGG029 strain was used to produce rCPO and 

F103A as decribed in earlier chapters. After uridine and acrylamide selection, PCR 

confirmed that a positive clone had been selected and RT-PCR was then undertaken to 

confirm that the CPO gene was transformed and transcripted (Fig. 4.1).  

However, when I proceeded to purify the mutant protein, I found neither detectable 

extracellular peroxidase activity nor a visible protein band between 40 to 50 kDa on the 

SDS-PAGE gel. Therefore I extracted not only the extracellular protein secreted by A. 

niger, but also the cellular protein of A. niger as well for immunizing detection. A 

western blot showed no reaction between the polyclonal CPO antibody and a protein of 

the correct size (Fig. 4.2), although, some broad bands did appeared. I reasoned that the 

three mutations had dramatically changed the protein conformation, thus, the product 

protein lost structural similarity to CPO and maybe also the ability to incorporate heme, 

since no peroxidase activity was detected. Other possible explanation are that the mutant 
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A 

 

B. 
 

Figure 4.1 Confirmation of positive transformation and transcription of 
C29H/C79H/C87H mutant. A. PCR results on extracted genomic DNA sample to 
confirm positive transformation. A.niger stain ATCC 62590 was transformed with 
plasmids pCPO#3C and pAB4.1. B. RT-PCR & cDNA PCR results. RT-PCR was done 
on extracted mRNA sample of A. niger strain B3C#1-3. The second PCR were done on 
the cDNA sample synthesized in the RT-PCR to confirm positive CPO gene 
transcription. NC and PC are the abbreviation of negative and positive control 
respectively.  
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—75 kDa 
—50 kDa —75 kDa 

—50 kDa 

          

  A                                      B 

Figure 4.2 Western blotting analysis on extracted both cellular and extracellular protein 
samples from A. niger strain (ATCC 62590) transformed with CPO expression vector 
pCPO#3C to detect CPO mutant expression. A. Total extracellular protein; B. Total 
cellular protein.  
 

protein was expressed but partially digested by protease or wrongly folded, which caused 

the unclear, broaden bands in the western blot. Similar phenomenon were observed with a 

CPO mutant with a truncated C-terminal gene (Conesa, Weelink et al. 2001). 

4.3 Conclusion 

Although, successful transformation and transcription was confirmed for the 

C29H/C79H/C87H mutant, no active protein could be isolated or detected in the culture 

media, indicating that a complete structural rearrangement have taken place in this 

mutant. Cystine 29 is undoubtedly an important amino acid served as the proximal ligand 

for the ferric heme center in Wt CPO. Surprisingly no dramatic change but some decrease 

(about 20%) in activity was observed in the C29H mutant (Yi, Mroczko et al. 1999) My 

results suggest that Cys79 and Cys87 are critical to maintaining the structural scaffold of 

CPO. According the CPO crystal structure (Sundaramoorthy, Terner et al. 1995), Cys79 
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and Cys87 are close enough to form a disulfide bond and are located in the middle of an 

alpha-helix. Apparently disrupting the disulfide bond, results in the collapse of the protein 

scaffold and loss of its active conformation. Thus, it is very unlikely that in C29H mutant, 

another Cys was recruited as the proximal ligand for the heme-center. Therefore my 

results supports the findings made in the C29H study that cysteine is not required for Wt 

CPO activity although its ligation to ferric center facilitates the cleavage of O-O bond to 

form Cpd I. It will be interesting to see if replacement of C29 with another amino acid 

like tyrosine would cause a different scenario. Ultimately, the distal amino acid forming 

the substrate binding pocket above the heme center may play a significant role in 

regulation CPO’s enzymatic activities. 
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Chapter V 

In vitro biodegradation of carbon nanotube by CPO 

5.1 Material and Methods 

5.1.1 Reagents  

 Electric arc discharge single wall nanotubes (SWNTs) were purchased from Carbon 

Solutions, Inc. All other reagents were purchased from Sigma-Aldrich. Wt CPO was 

purified in Dr. Xiaotang Wang’s laboratory. 

5.1.2 Nanotube biodegradation by CPO and H2O2                   

 Purchased SWNTs were further purified by oxidative treatment with H2SO4 /H2O2 to 

remove residual metal catalyst, to impart carboxylic acid groups, and to break down the 

size of the SWNTs to shorter pieces (500~600 nm), thus improving solubility in aqueous 

media.  

 Nanotubes (2 mg) were suspended in 4.5 mL of 0.1 M phosphate buffer at pH 3 or 5 

using an ultrasonic bath for 1 min (Branson 1510, frequency 40 kHz). Purified CPO (1 

mg/mL) was dissolved in 0.1 M phosphate buffer (pH 3 or 5), and then 4.0 mL was added 

to the carboxylated nanotubes suspended in the same buffer. The entire suspension was 

then statically incubated for 24 h at 4 °C in the dark. Hydrogen peroxide, 10.0 mL of a 

160 µM solution in 0.1 M phosphate buffer at the corresponding pH, either 3 or 5, was 

added to the bulk sample to start the catalytic biodegradation of carbon nanotubes in the 

presence of CPO. Static incubation with H2O2 was performed at 4 °C in the dark to avoid 

enzyme denaturation and photolysis of H2O2.  

 Over the incubation period, daily measurements of H2O2 concentration were 

performed, and fresh H2O2 was added to bring the total concentration back to the initial 
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concentration. Furthermore, the absorbance of the mixture at 398 nm was determined 

biweekly and fresh CPO was added to maintain the CPO concentration, if necessary. 

5.1.3 Measurement of H2O2 concentration 

I prepared FOX-2 reagent (Nourooz-Zadeh 1999) by dissolving xylenol orange and 

ammonium ferrous sulfate in 250 mM H2SO4 to final concentrations of 1 and 2.5 mM, 

respectively. One volume of this concentrated reagent was added to 9 volumes of HPLC 

grade methanol containing 4.4 mM BHT (butylated hydroxytoluene) to make the working 

reagent which comprised of 250 µM ammonium ferrous sulfate, 100 µM xylenol orange, 

25 mM H2SO4, and 4 mM BHT in 90% v/v methanol. A mixture containing 100 µL of 

sample and 900 µL of FOX-2 reagent was incubated at room temperature for 30 min and 

then the absorbance at 560 nm was measured. The working reagent has an extinction 

coefficient of 4.3xl04 M-1 cm-1 for hydroperoxide. The FOX-2 reagent was prepared in 

bulk and stored in the dark at 4 ºC (good for 6 months). The reagent was calibrated with 

known concentrations of H2O2 before each use. 

5.1.4 Scanning electron microscope (SEM)  

 The SEM in the Physics Department was used to follow the degradation of the 

SWNTs. Samples (250 µL) of CPO treated SWNTs were centrifuged (3400 rpm) and then 

the supernatant was decanted off. The pellet of SWNTs was washed with water twice and 

ethanol three times. For SEM sample preparation, the SWNTs were resuspended in 

approximately 1 mL of N,N-dimethylformamide (DMF) via sonication.  

5.2 Results and discussion 

 Another possible application for CPO is the catalytic biodegradation of hazardous 

waste, especially aromatic substrates, which represent a difficult task for many 
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biodegradation reagents. Given the recent surge in nanowaste, single wall nanotubes 

(SWNTs) represented an ideal target. Another peroxidase, horseradish peroxidase (HRP), 

was recently shown to catalytically degrade SWNTs (Allen, Kichambare et al. 2008). 

The degradation of SWNTs at pH 3 and 5 in the presence of 80 µM H2O2 and CPO 

was evaluated by SEM. However, no significant change in the morphology of the 

SWNTs was detected, suggesting that CPO has little or no effect on the degradation of 

SWNTs under these conditions. Some SEM images are shown below:  

 

A. B. 
 

Figure 5.1 SEM images of SWNTs treated with CPO for 8 weeks. A. pH=3; B. pH=5 
 
5.3 Conclusion 

Unlike HRP, which facilitate the degradation of SWNTs in vitro, CPO seems have 

no effect on their degradation. This may due to the structure and mechanism differences 

of these two enzymes: HRP has a more open active site, and produces reactive oxygen 

species (ROS) during its catalytic cycle while CPO has restricted access to its activity 

site, and does not generate ROS during its catalytic cycle, except for during some 

halogenation reactions. Thus, the ROS produced during the catalytic cycle of HRP may 
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be responsible for the degradation of the SWNTs. Therefore, in the presence of high 

halide concentrations, CPO might facilitate the degradation of SWNTs. 
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Chapter VI 

Perspectives 

 For rCPO expression, a detailed analysis can be done to determine which factors 

affecting the production yield of heme-proteins, such as the copy number of the gene, the 

level of transcription of mRNA, the ratio of apo to holo secreted protein. Co-expressing 

with foldases, molecular chaperones can be done as well, to see if they could help to 

increase production yield of rCPO further. 

The production of partially deuterated -rCPO can be attempted by letting the host 

strain growing in culture media made from D2O. NMR spectrum of deuterated rCPO 

should be less complex than that of its fully protonated analog and offers the possibility 

of assigning additional resonances with concomitant structural information.  

 The dramatic catalytic behavioral changes of the F103A mutant suggest that not only 

the major amino acids, which actually take part in the catalysis, but also that the distal 

heme microenvironment plays an important in regulating catalytic behavior. Additional 

mutations of amino acids close to the heme center should be constructed and expressed, 

based on the current hypothesis. Targets should include V182 and F186. 

 The structure of F103A should be elucidated so that the kinetic and ligand binding 

results can be placed in context. Because the enantioselectivity profile changed with the 

F103 to A mutation, other large amino acids in the active site should be mutated to 

alanine as well, such as V182 and F186. Furthermore, mutants that might improve upon 

the enantioselectivity of WT CPO for styrene should also be constructed such as F103V, 

F103Y, and F103W.



 
 

96 
 

REFERENCES 
 
Aburto, J., J. Correa-Basurto, et al. (2008). "Atypical kinetic behavior of 

chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic 
hydrocarbons." Arch Biochem Biophys 480(1): 33-40. 

 
Allen, B. L., P. D. Kichambare, et al. (2008). "Biodegradation of single-walled carbon 

nanotubes through enzymatic catalysis." Nano Lett 8(11): 3899-3903. 
Araiso, T., R. Rutter, et al. (1981). "Kinetic analysis of compound I formation and the 

catalatic activity of chloroperoxidase." Can J Biochem 59(4): 233-236. 
 
Banci, L., I. Bertini, et al. (1992). "H-1-Nmr Investigation of Manganese Peroxidase from 

Phanerochaete-Chrysosporium - a Comparison with Other Peroxidases." 
Biochemistry 31(41): 10009-10017. 

 
Boddupalli, S. S., C. A. Hasemann, et al. (1992). "Crystallization and preliminary x-ray 

diffraction analysis of P450terp and the hemoprotein domain of P450BM-3, 
enzymes belonging to two distinct classes of the cytochrome P450 superfamily." 
Proc Natl Acad Sci U S A 89(12): 5567-5571. 

 
Brown, F. S. and L. P. Hager (1967). "Chloroperoxidase. IV. Evidence for an ionic 

electrophilic substitution mechanism." J Am Chem Soc 89(3): 719-720. 
 
Casella, L., M. Gullotti, et al. (1992). "Mechanism of enantioselective oxygenation of 

sulfides catalyzed by chloroperoxidase and horseradish peroxidase. Spectral 
studies and characterization of enzyme-substrate complexes." Biochemistry 
31(39): 9451-9459. 

 
Casella, L., S. Poli, et al. (1994). "The chloroperoxidase-catalyzed oxidation of phenols. 

Mechanism, selectivity, and characterization of enzyme-substrate complexes." 
Biochemistry 33(21): 6377-6386. 

 
Chakraborty, B. N., N. A. Patterson, et al. (1991). "An electroporation-based system for 

high-efficiency transformation of germinated conidia of filamentous fungi." Can J 
Microbiol 37(11): 858-863. 

 
Champion, P. M., E. Munck, et al. (1973). "Mossbauer investigations of chloroperoxidase 

and its halide complexes." Biochemistry 12(3): 426-435. 
 
Conesa, A., D. Jeenes, et al. (2002). "Calnexin overexpression increases manganese 

peroxidase production in Aspergillus niger." Appl Environ Microbiol 68(2): 
846-851. 

 
Conesa, A., P. J. Punt, et al. (2002). "Fungal peroxidases: molecular aspects and 

applications." J Biotechnol 93(2): 143-158. 



 
 

97 
 

Conesa, A., P. J. Punt, et al. (2001). "The secretion pathway in filamentous fungi: a 
biotechnological view." Fungal Genet Biol 33(3): 155-171. 

 
Conesa, A., F. van De Velde, et al. (2001). "Expression of the Caldariomyces fumago 

chloroperoxidase in Aspergillus niger and characterization of the recombinant 
enzyme." J Biol Chem 276(21): 17635-17640. 

 
Conesa, A., C. A. van den Hondel, et al. (2000). "Studies on the production of fungal 

peroxidases in Aspergillus niger." Appl Environ Microbiol 66(7): 3016-3023. 
 
Conesa, A., G. Weelink, et al. (2001). "C-terminal propeptide of the Caldariomyces 

fumago chloroperoxidase: an intramolecular chaperone?" FEBS Lett 503(2-3): 
117-120. 

 
Corbett, M. D., B. R. Chipko, et al. (1980). "The action of chloride peroxidase on 

4-chloroaniline. N-oxidation and ring halogenation." Biochem J 187(3): 893-903. 
 
Daboussi, M. J., A. Djeballi, et al. (1989). "Transformation of seven species of 

filamentous fungi using the nitrate reductase gene of Aspergillus nidulans." Curr 
Genet 15(6): 453-456. 

 
Danehy, J. P. and K. N. Parameswaran (1968). "Acidic dissociation constants of thiols." 

Journal of Chemical & Engineering Data 13(3): 386-389. 
 
Dawson, J. H., L. A. Andersson, et al. (1982). "Spectroscopic investigations of ferric 

cytochrome P-450-CAM ligand complexes. Identification of the ligand trans to 
cysteinate in the native enzyme." J Biol Chem 257(7): 3606-3617. 

 
Dawson, J. H., M. Sono, et al. (1983). "Comparative studies of spectroscopic and 

ligand-binding properties of Chloroperoxidase and Cytochrome-P-450." 
Federation Proceedings 42(7): 1900-1900. 

 
Denisov, I. G., J. H. Dawson, et al. (2007). "The ferric-hydroperoxo complex of 

chloroperoxidase." Biochem Biophys Res Commun 363(4): 954-958. 
 
Doerge, D. R. (1986). "Oxygenation of organosulfur compounds by peroxidases: 

evidence of an electron transfer mechanism for lactoperoxidase." Arch Biochem 
Biophys 244(2): 678-685. 

 
Dunford, H. B., A. M. Lambeir, et al. (1987). "On the mechanism of chlorination by 

chloroperoxidase." Arch Biochem Biophys 252(1): 292-302. 
 
Fang, G. H., P. Kenigsberg, et al. (1986). "Cloning and sequencing of chloroperoxidase 

cDNA." Nucleic Acids Res 14(20): 8061-8071. 
 



 
 

98 
 

Frew, J. E. and P. Jones (1984). "Structure and functional properties of peroxidases and 
catalases Adv." Inorg. Bioinorg. Mech 3: 175-212. 

 
Gebicka, L. and J. Didik (2007). "Kinetic studies of the reaction of heme-thiolate enzyme 

chloroperoxidase with peroxynitrite." J Inorg Biochem 101(1): 159-164. 
 
Geigert, J., T. D. Lee, et al. (1986). "Epoxidation of alkenes by chloroperoxidase 

catalysis." Biochem Biophys Res Commun 136(2): 778-782. 
 
Geigert, J., S. L. Neidleman, et al. (1983). "Novel haloperoxidase substrates. Alkynes and 

cyclopropanes." J Biol Chem 258(4): 2273-2277. 
 
Gordon, C. L., V. Khalaj, et al. (2000). "Glucoamylase::green fluorescent protein fusions 

to monitor protein secretion in Aspergillus niger." Microbiology 146 ( Pt 2): 
415-426. 

 
Gouka, R. J., P. J. Punt, et al. (1996). "Analysis of heterologous protein production in 

defined recombinant Aspergillus awamori strains." Appl Environ Microbiol 62(6): 
1951-1957. 

 
Gouka, R. J., P. J. Punt, et al. (1997). "Efficient production of secreted proteins by 

Aspergillus: progress, limitations and prospects." Appl Microbiol Biotechnol 
47(1): 1-11. 

 
Green, M. T., J. H. Dawson, et al. (2004). "Oxoiron(IV) in chloroperoxidase compound II 

is basic: implications for P450 chemistry." Science 304(5677): 1653-1656. 
 
Groves, J. T. and T. E. Nemo (1983). "Aliphatic Hydroxylation Catalyzed by Iron 

Porphyrin Complexes." J Am Chem Soc 105(20): 6243-6248. 
 
Hager, L. P., F. J. Lakner, et al. (1998). "Chiral synthons via chloroperoxidase catalysis." 

Journal of Molecular Catalysis B-Enzymatic 5(1-4): 95-101. 
 
Hager, L. P., D. R. Morris, et al. (1966). "Chloroperoxidase. II. Utilization of halogen 

anions." J Biol Chem 241(8): 1769-1777. 
 
Hallenberg, P. F. and L. P. Hager (1978). "Purification of chloroperoxidase from 

Caldariomyces fumago." Methods Enzymol 52: 521-529. 
 
Hanegraaf, P. P., P. J. Punt, et al. (1991). "Construction and physiological characterization 

of glyceraldehyde-3-phosphate dehydrogenase overproducing transformants of 
Aspergillus nidulans." Appl Microbiol Biotechnol 34(6): 765-771. 

 
Hasemann, C. A., R. G. Kurumbail, et al. (1995). "Structure and function of cytochromes 

P450: a comparative analysis of three crystal structures." Structure 3(1): 41-62. 



 
 

99 
 

Hewson, W. D. and L. P. Hager (1979). "Oxidation of horseradish-peroxidase compound 
II to compound I." J Biol Chem 254(9): 3182-3186. 

 
Hofrichter, M. and R. Ullrich (2006). "Heme-thiolate haloperoxidases: versatile 

biocatalysts with biotechnological and environmental significance." Appl 
Microbiol Biotechnol 71(3): 276-288. 

 
Hollenberg, P. F. and L. P. Hager (1973). "The P-450 nature of the carbon monoxide 

complex of ferrous chloroperoxidase." J Biol Chem 248(7): 2630-2633. 
 
Horner, O., J. M. Mouesca, et al. (2007). "Spectroscopic description of an unusual 

protonated ferryl species in the catalase from Proteus mirabilis and density 
functional theory calculations on related models. Consequences for the ferryl 
protonation state in catalase, peroxidase and chloroperoxidase." J Biol Inorg 
Chem 12(4): 509-525. 

 
Hosten, C. M., A. M. Sullivan, et al. (1994). "Resonance Raman spectroscopy of the 

catalytic intermediates and derivatives of chloroperoxidase from Caldariomyces 
fumago." J Biol Chem 269(19): 13966-13978. 

 
Juge, N., B. Svensson, et al. (1998). "Secretion, purification, and characterisation of 

barley alpha-amylase produced by heterologous gene expression in Aspergillus 
niger." Appl Microbiol Biotechnol 49(4): 385-392. 

 
Kedderis, G. L. and P. F. Hollenberg (1984). "Peroxidase-catalyzed N-demethylation 

reactions. Substrate deuterium isotope effects." J Biol Chem 259(6): 3663-3668. 
 
Kedderis, G. L., D. R. Koop, et al. (1980). "N-Demethylation reactions catalyzed by 

chloroperoxidase." J Biol Chem 255(21): 10174-10182. 
 
Kenigsberg, P., G. H. Fang, et al. (1987). "Post-translational modifications of 

chloroperoxidase from Caldariomyces fumago." Arch Biochem Biophys 254(2): 
409-415. 

 
Kim, S. H., R. Perera, et al. (2006). "Rapid freeze-quench ENDOR study of 

chloroperoxidase compound I: the site of the radical." J Am Chem Soc 128(17): 
5598-5599. 

 
Kobayashi, S., M. Nakano, et al. (1987). "On the mechanism of the peroxidase-catalyzed 

oxygen-transfer reaction." Biochemistry 26(16): 5019-5022. 
 
Kriechbaum, M., H. J. Heilmann, et al. (1989). "Cloning and DNA sequence analysis of 

the glucose oxidase gene from Aspergillus niger NRRL-3." FEBS Lett 255(1): 
63-66. 

 



 
 

100 
 

Kuhnel, K., W. Blankenfeldt, et al. (2006). "Crystal structures of chloroperoxidase with 
its bound substrates and complexed with formate, acetate, and nitrate." J Biol 
Chem 281(33): 23990-23998. 

 
Lakner, F. J. and L. P. Hager (1996). "Chloroperoxidase as Enantioselective Epoxidation 

Catalyst: An Efficient Synthesis of (R)-(-)-Mevalonolactone." J Org Chem 61(11): 
3923-3925. 

 
Libby, R. D. and N. S. Rotberg (1990). "Compound I formation is a partially rate-limiting 

process in chloroperoxidase-catalyzed bromination reactions." J Biol Chem 
265(25): 14808-14811. 

 
Libby, R. D., N. S. Rotberg, et al. (1989). "The chloride-activated peroxidation of 

catechol as a mechanistic probe of chloroperoxidase reactions. Competitive 
activation as evidence for a catalytic chloride binding site on compound I." J Biol 
Chem 264(26): 15284-15292. 

 
Libby, R. D., A. L. Shedd, et al. (1992). "Defining the involvement of HOCl or Cl2 as 

enzyme-generated intermediates in chloroperoxidase-catalyzed reactions." J Biol 
Chem 267(3): 1769-1775. 

 
Libby, R. D., J. A. Thomas, et al. (1982). "Chloroperoxidase halogenation reactions. 

Chemical versus enzymic halogenating intermediates." J Biol Chem 257(9): 
5030-5037. 

 
Liu, L., J. Liu, et al. (2003). "Improving heterologous gene expression in Aspergillus 

niger by introducing multiple copies of protein-binding sequence containing 
CCAAT to the promoter." Lett Appl Microbiol 36(6): 358-361. 

 
Lubertozzi, D. and J. D. Keasling (2009). "Developing Aspergillus as a host for 

heterologous expression." Biotechnol Adv 27(1): 53-75. 
 
Makino, R., R. Chiang, et al. (1976). "Oxidation-reduction potential measurements on 

chloroperoxidase and its complexes." Biochemistry 15(21): 4748-4754. 
 
Manoj, K. M. and L. P. Hager (2001). "Utilization of peroxide and its relevance in 

oxygen insertion reactions catalyzed by chloroperoxidase." Biochim Biophys Acta 
1547(2): 408-417. 

 
Miller, V. P., R. A. Tschirret-Guth, et al. (1995). "Chloroperoxidase-catalyzed benzylic 

hydroxylation." Arch Biochem Biophys 319(2): 333-340. 
 
Mooibroek, H., A. G. Kuipers, et al. (1990). "Introduction of hygromycin B resistance 

into Schizophyllum commune: preferential methylation of donor DNA." Mol Gen 
Genet 222(1): 41-48. 



 
 

101 
 

 
Morris, D. R. and L. P. Hager (1966). "Chloroperoxidase. I. Isolation and properties of 

the crystalline glycoprotein." J Biol Chem 241(8): 1763-1768. 
 
Nakajima, R., I. Yamazaki, et al. (1985). "Spectra of chloroperoxidase compounds II and 

III." Biochem Biophys Res Commun 128(1): 1-6. 
 
Neidleman, S. L. and J. Geigert (1983). "Biological halogenation and epoxidation." 

Biochem Soc Symp 48: 39-52. 
 
Ngiam, C., D. J. Jeenes, et al. (2000). "Characterization of a foldase, protein disulfide 

isomerase A, in the protein secretory pathway of Aspergillus niger." Appl Environ 
Microbiol 66(2): 775-782. 

 
Nourooz-Zadeh, J. (1999). Ferrous ion oxidation in presence of xylenol orange for 

detection of lipid hydroperoxides in plasma. Methods Enzymol. P. Lester, 
Academic Press. Volume 300: 58-62. 

 
Ortiz de Montellano, P. R., Y. S. Choe, et al. (1987). "Structure-mechanism relationships 

in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish 
peroxidase." J Biol Chem 262(24): 11641-11646. 

 
Osborne, R. L., G. M. Raner, et al. (2006). "C. fumago chloroperoxidase is also a 

dehaloperoxidase: oxidative dehalogenation of halophenols." J Am Chem Soc 
128(4): 1036-1037. 

 
Palcic, M. M., R. Rutter, et al. (1980). "Spectrum of chloroperoxidase compound I." 

Biochem Biophys Res Commun 94(4): 1123-1127. 
 
Pelletier, I., J. Altenbuchner, et al. (1995). "A catalytic triad is required by the non-heme 

haloperoxidases to perform halogenation." Biochim Biophys Acta 1250(2): 
149-157. 

 
Penner-Hahn, J. E., T. J. McMurry, et al. (1983). "X-ray absorption spectroscopic studies 

of high valent iron porphyrins. Horseradish peroxidase compounds I and II and 
synthetic models." Journal of Biological Chemistry 258(21): 12761-12764. 

 
Penner-Hahn, J. E., K. Smith Eble, et al. (1986). "Structural characterization of 

horseradish peroxidase using EXAFS spectroscopy. Evidence for Fe= O ligation 
in compounds I and II." J Am Chem Soc 108(24): 7819-7825. 

 
Perrin, D. D., B. Dempsey, et al. ( 1981). pKa Prediction of Organic Bases. New York 

Chapman and Hall. 
 

 



 
 

102 
 

Punt, P. J., N. van Biezen, et al. (2002). "Filamentous fungi as cell factories for 
heterologous protein production." Trends Biotechnol 20(5): 200-206. 

 
Punt, P. J., G. Veldhuisen, et al. (1994). "Protein targeting and secretion in filamentous 

fungi. A progress report." Antonie Van Leeuwenhoek 65(3): 211-216. 
 
Punt, P. J. v. d. H., C. A. (1992). "Transformation of filamentous fungi based on 

hygromycin B and phleomycin resistance markers." Methods Enzymol 216: 
447-457. 

 
Roth, A. H. F. J. and P. Dersch (2010). "A novel expression system for intracellular 

production and purification of recombinant affinity-tagged proteins in Aspergillus 
niger." Applied Microbiology and Biotechnology 86(2): 659-670. 

 
Rubin, B., J. VanMiddlesworth, et al. (1982). "Crystallization and preliminary X-ray data 

for chloroperoxidase." J Biol Chem 257(13): 7768-7769. 
 
Ruiz-Diez, B. (2002). "Strategies for the transformation of filamentous fungi." J Appl 

Microbiol 92(2): 189-195. 
 
Satterlee, J. D., J. E. Erman, et al. (1983). "Assignment of Hyperfine-Shifted Resonances 

in Low-Spin Forms of Cytochrome-C Peroxidase by Reconstitutions with 
Deuterated Hemins." J Am Chem Soc 105(8): 2099-2104. 

 
Satterlee, J. D., J. E. Erman, et al. (1990). "Comparative Proton Nmr Analysis of 

Wild-Type Cytochrome-C Peroxidase from Yeast, the Recombinant Enzyme from 
Escherichia-Coli, and an Asp-235-]Asn-235 Mutant." Biochemistry 29(37): 
8797-8804. 

 
Schulz, C. E., P. W. Devaney, et al. (1979). "Horseradish-peroxidase compound I .1. 

Evidence for spin coupling between the heme iron and a free-radical " Febs 
Letters 103(1): 102-105. 

 
Silverstein, R. M. and L. P. Hager (1974). "The chloroperoxidase-catalyzed oxidation of 

thiols and disulfides to sulfenyl chlorides." Biochemistry 13(25): 5069-5073. 
 
Sono, M., J. H. Dawson, et al. (1986). "Ligand and halide binding properties of 

chloroperoxidase: peroxidase-type active site heme environment with cytochrome 
P-450 type endogenous axial ligand and spectroscopic properties." Biochemistry 
25(2): 347-356. 

 
Sono, M., K. S. Eble, et al. (1985). "Preparation and properties of ferrous 

chloroperoxidase complexes with dioxygen, nitric oxide, and an alkyl isocyanide. 
Spectroscopic dissimilarities between the oxygenated forms of chloroperoxidase 
and cytochrome P-450." J Biol Chem 260(29): 15530-15535. 



 
 

103 
 

Spencer, A., L. A. Morozov-Roche, et al. (1999). "Expression, purification, and 
characterization of the recombinant calcium-binding equine lysozyme secreted by 
the filamentous fungus Aspergillus niger: comparisons with the production of hen 
and human lysozymes." Protein Expr Purif 16(1): 171-180. 

 
Stone, K. L., R. K. Behan, et al. (2006). "Resonance Raman spectroscopy of 

chloroperoxidase compound II provides direct evidence for the existence of an 
iron(IV)-hydroxide." Proc Natl Acad Sci U S A 103(33): 12307-12310. 

 
Streitwieser, A., Jr. Heathcock, C. H., Ed. (1981). Introduction to Organic Chemistry. 

New York, Macmillan. 
 
Suh, Y. J. and L. P. Hager (1991). "Chemical and transient state kinetic-studies on the 

formation and decomposition of horseradish-peroxidase compound-X(I) and 
compound-X(II)." J Biol Chem 266(33): 22102-22109. 

 
Sun, W., T. A. Kadima, et al. (1994). "Catalase activity of chloroperoxidase and its 

interaction with peroxidase activity." Biochem Cell Biol 72(7-8): 321-331. 
 
Sundaramoorthy, M., J. Terner, et al. (1995). "The crystal structure of chloroperoxidase: a 

heme peroxidase--cytochrome P450 functional hybrid." Structure 3(12): 
1367-1377. 

 
Sundaramoorthy, M., J. Terner, et al. (1998). "Stereochemistry of the chloroperoxidase 

active site: crystallographic and molecular-modeling studies." Chem Biol 5(9): 
461-473. 

 
Swart, K., A. J. Debets, et al. (2001). "Genetic analysis in the asexual fungus Aspergillus 

niger." Acta Biol Hung 52(2-3): 335-343. 
 
Terner, J., V. Palaniappan, et al. (2006). "Resonance Raman spectroscopy of oxoiron(IV) 

porphyrin pi-cation radical and oxoiron(IV) hemes in peroxidase intermediates." J 
Inorg Biochem 100(4): 480-501. 

 
Thanabal, V., J. S. Deropp, et al. (1987). "Identification of the Catalytically Important 

Amino-Acid Residue Resonances in Ferric Low-Spin Horseradish-Peroxidase 
with Nuclear Overhauser Effect Measurements." J Am Chem Soc 109(24): 
7516-7525. 

 
Thomas, J. A. and L. P. Hager (1968). "The peroxidation of molecular iodine to iodate by 

chloroperoxidase." Biochem Biophys Res Commun 32(5): 770-775. 
 
Thomas, J. A., D. R. Morris, et al. (1970). "Chloroperoxidase. 8. Formation of peroxide 

and halide complexes and their relation to the mechanism of the halogenation 
reaction." J Biol Chem 245(12): 3135-3142. 



 
 

104 
 

Thomas, J. A., D. R. Morris, et al. (1970). "Chloroperoxidase. VII. Classical peroxidatic, 
catalatic, and halogenating forms of the enzyme." J Biol Chem 245(12): 
3129-3134. 

 
Turnbull, I. F., D. R. Smith, et al. (1990). "Expression and secretion in Aspergillus 

nidulans and Aspergillus niger of a cell surface glycoprotein from the cattle tick, 
Boophilus microplus, by using the fungal amdS promoter system." Appl Environ 
Microbiol 56(9): 2847-2852. 

 
Verdoes, J. C., P. J. Punt, et al. (1993). "Glucoamylase overexpression in Aspergillus 

niger: molecular genetic analysis of strains containing multiple copies of the glaA 
gene." Transgenic Res 2(2): 84-92. 

 
Verdoes, J. C., A. D. van Diepeningen, et al. (1994). "Evaluation of molecular and genetic 

approaches to generate glucoamylase overproducing strains of Aspergillus niger." 
J Biotechnol 36(2): 165-175. 

 
Visser, J., H. J. Bussink, et al. (1995). "Gene expression in filamentous fungi. Expression 

of pectinases and glucose oxidase in Aspergillus niger." Bioprocess Technol 22: 
241-308. 

 
Wang, X., H. Tachikawa, et al. (2003). "Two-dimensional NMR study of the heme active 

site structure of chloroperoxidase." J Biol Chem 278(10): 7765-7774. 
 
Withers, J. M., R. J. Swift, et al. (1998). "Optimization and stability of glucoamylase 

production by recombinant strains of Aspergillus niger in chemostat culture." 
Biotechnol Bioeng 59(4): 407-418. 

 
Yi, X., A. Conesa, et al. (2003). "Examining the role of glutamic acid 183 in 

chloroperoxidase catalysis." J Biol Chem 278(16): 13855-13859. 
 
Yi, X., M. Mroczko, et al. (1999). "Replacement of the proximal heme thiolate ligand in 

chloroperoxidase with a histidine residue." Proc Natl Acad Sci U S A 96(22): 
12412-12417. 

 
Zhang, R., N. Nagraj, et al. (2006). "Kinetics of two-electron oxidations by the 

compound I derivative of chloroperoxidase, a model for cytochrome P450 
oxidants." Org Lett 8(13): 2731-2734. 

 
Zong, Q. (1997). "Expression of recombinant chloroperoxidase." University of Illinois at 

Urbana-Champaign Ph.D Thesis  
 
Zong, Q., P. A. Osmulski, et al. (1995). "High-pressure-assisted reconstitution of 

recombinant chloroperoxidase." Biochemistry 34(38): 12420-12425. 
  



 
 

105 
 

APPENDICES 

Table A1 Primers used to conduct the research in FIU 

Figure B1 Plasmid pCPO3.1-amds sequencing results by primer walking (12.2k bp) 

Figure B2 Map of assistant plasmid pAB4.1. 

APPENDIX A 

Table A1 Primers used to conduct the research in FIU 

Primer name Primer’s sequence 

C29H-anti:  5’-gac tct cgt gct cct CAC cca gct ctg aac gct c-3’ 

C79H-anti:  5’-c aac gcc ttc gtc gtc CAC gag tac gtt act ggc-3’ 

C87H-anti:  5’-gtt act ggc tcc gac CAT ggt gac agc ctt gtc-3’ 

C29H-sense: 5’ -gag cgt tca gag ctg ggt gag cac gag agt-3’ 

C79H-sense: 5’ -gcc agt aac gta ctc gtg gac gac gaa ggc gtt-3’ 

C87H-sense: 5’ -gac aag gct gtc acc atg gtc gga gcc agt aac-3’ 

F103A-anti:  5’-gcc gag ccc cac gct GCC gag cac gac aca tcc -3’ 

F103A-sense: 5’ –gga tgt gtc gtg ctc ggc agc gtg ggg ctc ggc-3’ 

CPO-anti: 5’-ccg gaa ttc aag gtt gcg ggc ctt gtt-3’ 

CPO-sense: 5’ -cgc gga tcc atg ttc aag gtc ctt ccc-3’ 

 

 APPENDIX B  

Figure B1 Plasmid pCPO3.1-amds sequencing results by primer walking (12.2k bp)  

G A G G A C G G A T T T G G T G A A G A G G C G G A G G T C T A A C A T A C T T C A T C A G T G A C 
T G C C G G T C T C G T A T A T A G T A T A A A A A G C A A G A A A G G A G G A C A G T G G A G G C 
C T G G T A T A G A G C A G G A A A A G A A G G A A G A G G C G A A G G A C T C A C C C T C A A C A 
G A G T G C G T A A T C G G C C C G A C A A C G C T G T G C A C C G T C T C C T G A C C C T C C A T 
G C T G T T C G C C A T C T T T G C A T A C G G C A G C C G C C C A T G A C T C G G C C T T A G A C 
C G T A C A G G A A G T T G A A C G C G G C C G G C A C T C G A A T C G A G C C A C C G A T A T C C 
G T T C C T A C A C C G A T G A C G C C A C C A C G A A T C C C A A C G A T C G C A C C C T C A C C 
A C C A G A A C T G C C G C C G C A C G A C C A G T T C T T G T T G C G T G G G T T G A C G G T G C 
G C C C G A T G A T G T T G T T G A C T G T C T C G C A G A C C A T C A G G G T C T G C G G G A C A 
G A G G T C T T G A C G T A G A A G A C G G C A C C G G C T T T G C G G A G C A T G G T T G T C A G 
A A C C G A G T C C C C T T C G T C G T A C T T G T T T A G C C A T G A G A T G T A G C C C A T T G 
A T G T T T C G T A G C C C T G G T G G C A T A T G T T A G C T G A C A A A A A G G G A C A T C T A 
A C G A C T T A G G G G C A A C G G T G T A C C T T G A C T C G A A G C T G G T C T T T G A G A G A 
G A T G G G G A G G C C A T G G A G T G G A C C A A C G G G T C T C T T G T G C T T T G C G T A G T 
A T T C A T C G A G T T C C C T T G C C T G C G C G A G A G C G G C G T C A G G G A A G A A C T C G 
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T G G G C G C A G T T T G T C T G C A C A G A A G C C A G C G T C A G C T T G A T A G T C C C A T A 
A G G T G G C G T T G T T A C A T C T C C C T G A G A G G T A G A G G G G A C C C T A C T A A C T G 
C T G G G C G A T T G C T G C C C G T T T A C A G A A T G C T A G C G T A A C T T C C A C C G A G G 
T C A A C T C T C C G G C C G C C A G C T T G G A C A C A A G A T C T G C A G C G G A G G C C T C T 
G T G A T C T T C A G T T C G G C C T C T G A A A G G A T C C C C G A T T T C T T T G G G A A A T C 
A A T A A C G C T G T C T T C C G C A G G C A G C G T C T G G A C T T T C C A T T C A T C A G G G A 
T G G T T T T T G C G A G G C G G G C G C G C T T A T C A G C G G C C A G T T C T T C C C A G G A T 
T G A G G C A T T C T G T G T T A G C T T A T A G T C A G G A T G T T G G C T C G A C G A G T G T A 
A A C T G G G A G T T G G C A T G A G G G T T A T G T A G G C T T C T T T A G C C C C G C A T C C C 
C C T C A T T C T C C T C A T T G A T C C C G G G G G A G C G G A T G G T G T T G A T A A G A G A C 
T A A T T A T A G G G T T T A G C T G G T G C C T A G C T G G T G A T T G G C T G G C T T C G C C G 
A A T T T T A C G G G C C A A G G A A A G C T G C A G A A C C G C G G C A C T G G T A A A C G G T A 
A T T A A G C T A T C A G C C C C A T G C T A A C G A G T T T A A A T T A C G T G T A T T G C T G A 
T A A A C A C C A A C A G A G C T T T A C T G A A A G A T G G G A G T C A C G G T G T G G C T T C C 
C C A C T G C G A T T A T T G C A C A A G C A G C G A G G G C G A A C T T G A C T G T C G T C G C T 
G A G C A G C C T G C A G T C A A A C A T A C A T A T A T A T C A A C C G C G A A G A C G T C T G G 
C C T T G T A G A A C A C G A C G C T C C C T A G C A A C A C C T G C C G T G T C A G C C T C T A C 
G G T T G T T A C T T G C A T T C A G G A T G C T C T C C A G C G G G C G A G C T A T T C A A A A T 
A T T C A A A G C A G G T A T C T C G T A T T G C C A G G A T T C A G C T G A A G C A A C A G G T G 
C C A A G G A A A T C T G C G T C G G T T C T C A T C T G G G C T T G C T C G G T C C T G G C G T A 
G A T C T A G A A A C C G C A A T C T C T A T G A A A T G A T A A G G T G C T T G A C C A A T T C T 
A A T A T C G G T G T G G T G G A C T G T C C T A A C A A A A C C C G G C T A T A T T G G A C C C A 
T C A G A G C T C T C T T T G A T C T T C A T A T C C A G C G A A T G C A G T C G C A G C A T T T A 
C A T C A G G C T T G A T T G A G T A T A C A T C A G C G T T T G C A G T T G G A C T G G A T C A G 
G A G G C A A C A C C T C A T G T T G T A G T T C A T C A T C T A G G T C T T T T G A A A C G G A C 
T A C T G G G C T T G T C A T A C C A A G T G C A T C T T A G C G C T T G T T T G T G T G A C C T A 
T T G T A T C A T G G G T A A C A T G T T G A T G T C A T T C A G G C T G A G T A A T C T G C C T A 
T C C A A T G A T G A C T A G T T A A A G A T G G A T A T A C G T C G T A C A T C C G A C C T T C A 
G G G C C G G A T G C A T T C T T C A G C A T A C G A A A C T G G T G T T A T A A C T T T G A A T C 
C C A T C A A T G G T T A T C G G G T T G G T C C C A T A A T A A A C A A A A A G A G G C T G C A T 
T G C C C T A T G G C A T G C C A T T C T T G A C G C G G C A T G C C G A G T T A G C C G A A A T T 
G G G C C A A T C G G C T T C C C G T C A G A A G A G G A T C A C T G G C G C C T C A A T T T T G G 
T T T T T A T A G T A C C G G T G C A G C A C G G C T A A A C G T T C T C T T T C T A C G G C C C G 
G C A T C T C A T A A G C A G C C A G G T A C A G A A A A G C A A G A A T A G A A A A T T C A G G A 
A A A A C C A T C C C A G C A T C C A A C C T G G T G C C C A G A A T G G C G G A A A C G T C G G A 
T A T A A G G A G C A A T G G C T A T C C A T T A C C G A C T G A A C T T T T G C A G G A G A T A C 
T C C T A T T C G C T G A C T T C C A G T C G T T C T T T T C G G C G A G T T G G A C G T G C A A A 
G A T T G G C G G A A C G C G G C G T T A A G C T C T T A T G T A C T T C G G C A C C A G C T C A A 
C A C T G T T C C C A C T G T T C C C A C A C T C G C C G A G G C A G A C A T T G A A C A G G C G A 
C A C C A C G A G A A C T G A G A A T A C T A T T C C A C C G T G T C T G C C G G C A G A A C C T C 
A T G G G G A T A C G G A G C A A C G T T T C C C T C A G C A A T A C G G A G G A G A A A A C A G T 
A A G A C C A A T G T C G G C T A T T G C G G T T C A A T C T C G G C A T G G G T G C C A A T A C G 
C G C A G T T G C G T G G G A T G A C A T T C A T A C T C A A G A C G T C G A T A G G A A T T C T G 
C A C A G C G G C C G C A A T T C C C T T G T A T C T C T A C A C A C A G G C T C A A A T C A A T A 
A G A A G A A C G G T T C G T C T T T T T C G T T T A T A T C T T G C A T C G T C C C A A A G C T A 
T T G G C G G G A T A T T C T G T T T G C A G T T G G C T G A C T T G A A G T A A T C T C T G C A G 
A T C T T T C G A C A C T G A A A T A C G T C G A G C C T G C T C C G C T T G G A A G C G G C G A G 
G A G C C T C G T C C T G T C A C A A C T A C C A A C A T G G A G T A C G A T A A G G G C C A G T T 
C C G C C A G C T C A T T A A G A G C C A G T T C A T G G G C G T T G G C A T G A T G G C C G T C A 
T G C A T C T G T A C T T C A A G T A C A C C A A C C C T C T T C T G A T C C A G T C G A T C A T C 
C C G C T G A A G G G C G C T T T C G A A T C G A A T C T G G T T A A G A T C C A C G T C T T C G G 
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G A A G C C A G C G A C T G G T G A C C T C C A G C G T C C C T T T A A G G C T G C C A A C A G C T 
T T C T C A G C C A G G G C C A G C C C A A G A C C G A C A A G G C C T C C C T C C A G A A C G C C 
G A G A A G A A C T G G A G G G G T G G T G T C A A G G A G G A G T A A G C T C C T T A T T G A A G 
T C G G A G G A C G G A G C G G T G T C A A G A G G A T A T T C T T C G C T C T G T A T T A T A G A 
T A A G A T G A T G A G G A A T T G G A G G T A G C A T A G C T T C A T T T G G A T T T G C T T T C 
C A G G C T G A G A C T C T A G C T T G G A G C A T A G A G G G T C C C T T T G G C T T T C A A T A 
T T C T C A A G T A T C T C G A G T T T G A A C T T A T T C C C G T G A A C C T T T T A T T C A C C 
A A T G A G C A T T G G A A T G A A C A T G A A T C T G A G G A C T G C A A T C G C C A T G A G G T 
T T T C G A A A T A C A T C C G G A T G T C G A A G G C T T G G G G C A C C T G C G T T G G T T G A 
A T T T A G A A C G T G G C A C T A T T G A T C A T C C G A T A G C T C T G C A A A G G G C G T T G 
C A C A A T G C A A G T C A A A C G T T G C T A G C A G T T C C A G G T G G A A T G T T A T G A T G 
A G C A T T G T A T T A A A T C A G G A G A T A T A G C A T G A T C T C T A G T T A G C T C A C C A 
C A A A A G T C A G A C G G C G T A A C C A A A A G T C A C A C A A C A C A A G C T G T A A G G A T 
T T C G G C A C G G C T A C G G A A G A C G G A G A A G C C C A C C T T C A G T G G A C T C G A G T 
A C C A T T T A A T T C T A T T T G T G T T T G A T C G A G A C C T A A T A C A G C C C C T A C A A 
C G A C C A T C A A A G T C G T A T A G C T A C C A G T G A G G A A G T G G A C T C A A A T C G A C 
T T C A G C A A C A T C T C C T G G A T A A A C T T T A A G C C T A A A C T A T A C A G A A T A A G 
A T G G T G G A G A G C T T A T A C C G A G C T C C C A A A T C T G T C C A G A T C A T G G T T G A 
C C G G T G C C T G G A T C T T C C T A T A G A A T C A T C C T T A T T C G T T G A C C T A G C T G 
A T T C T G G A G T G A C C C A G A G G G T C A T G A C T T G A G C C T A A A A T C C G C C G C C T 
C C A C C A T T T G T A G A A A A A T G T G A C G A A C T C G T G A G C T C T G T A C A G T G A C C 
G G T G A C T C T T T C T G G C A T G C G G A G A G A C G G A C G G A C G C A G A G A G A A G G G C 
T G A G T A A T A A G C G C C A C T G C G C C A G A C A G C T C T G G C G G C T C T G A G G T G C A 
G T G G A T G A T T A T T A A T C C G G G A C C G G C C G C C C C T C C G C C C C G A A G T G G A A 
A G G C T G G T G T G C C C C T C G T T G A C C A A G A A T C T A T T G C A T C A T C G G A G A A T 
A T G G A G C T T C A T C G A A T C A C C G G C A G T A A G C G A A G G A G A A T G T G A A G C C A 
G G G G T G T A T A G C C G T C G G C G A A A T A G C A T G C C A T T A A C C T A G G T A C A G A A 
G T C C A A T T G C T T C C G A T C T G G T A A A A G A T T C A C G A G A T A G T A C C T T C T C C 
G A A G T A G G T A G A G C G A G T A C C C G G C G C G T A A G C T C C C T A A T T G G C C C A T C 
C G G C A T C T G T A G G G C G T C C A A A T A T C G T G C C T C T C C T G C T T T G C C C G G T G 
T A T G A A A C C G G A A A G G C C G C T C A G G A G C T G G C C A G C G G C G C A G A C C G G G A 
A C A C A A G C T G G C A G T C G A C C C A T C C G G T G C T C T G C A C T C G A C C T G C T G A G 
G T C C C T C A G T C C C T G G T A G G C A G C T T T G C C C C G T C T G T C C G C C C G G T G T G 
T C G G C G G G G T T G A C A A G G T C G T T G C G T C A G T C C A A C A T T T G T T G C C A T A T 
T T T C C T G C T C T C C C C A C C A G C T G C T C T T T T C T T T T C T C T T T C T T T T C C C A 
T C T T C A G T A T A T T C A T C T T C C C A T C C A A G A A C C T T T A T T T C C C C T A A G T A 
A G T A C T T T G C T A C A T C C A T A C T C C A T C C T T C C C A T C C C T T A T T C C T T T G A 
A C C T T T C A G T T C G A G C T T T C C C A C T T C A T C G C A G C T T G A C T A A C A G C T A C 
C C C G C T T G A G C A G A C A T C A C C A T G T T C T C C A A G G T C C T T C C C T T C G T G G G 
A G C G G T T G C C G C C C T C C C T C A C T C C G T C C G T C A G G A G C C T G G C T C C G G C A 
T T G G C T A C C C A T A C G A C A A C A A C A C C C T G C C A T A T G T C G C C C C A G G T C C T 
A C C G A C T C T C G T G C T C C T T G C C C A G C T C T G A A C G C T C T T G C C A A C C A C G G 
T T A C A T T C C T C A C G A T G G C C G T G C C A T C A G C A G G G A G A C C C T C C A G A A C G 
C T T T C C T C A A C C A C A T G G G T A T T G C C A A C T C C G T C A T T G A G C T T G C T C T G 
A C C A A C G C C T T C G T C G T C T G C G A G T A C G T T A C T G G C T C C G A C T G T G G T G A 
C A G C C T T G T C A A C C T G A C T C T G C T C G C C G A G C C C C A C G C T T T C G A G C A C G 
A C C A C T C C T T C T C C C G C A A G G A T T A C A A G C A G G G T G T C G C C A A C T C C A A C 
G A C T T C A T C G A C A A C A G G A A C T T C G A T G C C G A G A C C T T C C A G A C C T C T C T 
G G A T G T C G T T G C A G G C A A G A C C C A C T T C G A C T A T G C C G A C A T G A A C G A G A 
T C C G C C T T C A G C G C G A G T C C C T C T C C A A C G A G C T T G A C T T C C C C G G T T G G 
T T C A C C G A G T C C A A G C C A A T C C A G A A C G T C G A G T C T G G C T T C A T C T T C G C 
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C C T T G T C T C T G A C T T C A A C C T G C C C G A C A A C G A T G A G A A C C C T C T G G T T C 
G C A T T G A C T G G T G G A A G T A C T G G T T C A C C A A C G A G T C C T T C C C A T A C C A C 
C T C G G C T G G C A C C C C C C G T C T C C A G C C A G G G A G A T C G A G T T C G T C A C C T C 
C G C C T C C T C C G C T G T C C T G G C T G C C T C T G T C A C C T C T A C T C C A T C T T C C C 
T T C C A T C C G G T G C C A T C G G C C C A G G T G C C G A G G C T G T C C C T C T C T C C T T C 
G C C T C C A C C A T G A C C C C A T T C C T C C T C G C C A C C A A T G C T C C T T A C T A C G C 
C C A G G A C C C A A C T C T C G G C C C C A A C G A C A A G C G T G A G G C T G C C C C A G C T G 
C C A C C A C C T C C A T G G C C G T C T T C A A G A A C C C A T A C C T C G A G G C C A T T G G C 
A C C C A G G A C A T C A A G A A C C A G C A G G C T T A C G T C A G C T C C A A G G C T G C T G C 
C A T G G C C T C T G C C A T G G C C G C C A A C A A G G C C C G C A A C C T T T A A G C T T G A G 
A T C C A C T T A A C G T T A C T G A A A T C A T C A A A C A G C T T G A C G A A T C T G G A T A T 
A A G A T C G T T G G T G T C G A T G T C A G C T C C G G A G T T G A G A C A A A T G G T G T T C A 
G G A T C T C G A T A A G A T A C G T T C A T T T G T C C A A G C A G C A A A G A G T G C C T T C T 
A G T G A T T T A A T A G C T C C A T G T C A A C A A G A A T A A A A C G C G T T T C G G G T T T A 
C C T C T T C C A G A T A C A G C T C A T C T G C A A T G C A T T A A T G C A T T G G A C C T C G C 
A A C C C T A G T A C G C C C T T C A G G C T C C G G C G A A G C A G A A G A A T A G C T T A G C A 
G A G T C T A T T T T C A T T T T C G G G A G A C G A G A T C A A G C A G A T C A A C G G T C G T C 
A A G A G A C C T A C G A G A C T G A G G A A T C C G C T C T T G G C T C C A C G C G A C T A T A T 
A T T T G T C T C T A A T T G T A C T T T G A C A T G C T C C T C T T C T T T A C T C T G A T A G C 
T T G A C T A T G A A A A T T C C G T C A C C A G C C C C T G G G T T C G C A A A G A T A A T T G C 
A C T G T T T C T T C C T T G A A C T C T C A A G C C T A C A G G A C A C A C A T T C A T C G T A G 
G T A T A A A C C T C G A A A A T C A T T C C T A C T A A G A T G G G T A T A C A A T A G T A A C C 
A T G C A T G G T T G C C T A G T G A A T G C T C C G T A A C A C C C A A T A C G C C G G C C G A A 
A C T T T T T T A C A A C T C T C C T A T G A G T C G T T T A C C C A G A A T G C A C A G G T A C A 
C T T G T T T A G A G G T A A T C C T T C T T T C T A G A G C T T G G C A C T G G C C G T C G T T T 
T A C A A C G T C G T G A C T G G G A A A A C C C T G G C G T T A C C C A A C T T A A T C G C C T T 
G C A G C A C A T C C C C C T T T C G C C A G C T G G C G T A A T A G C G A A G A G G C C C G C A C 
C G A T C G C C C T T C C C A A C A G T T G C G C A G C C T G A A T G G C G A A T G G C G C C T G A 
T G C G G T A T T T T C T C C T T A C G C A T C T G T G C G G T A T T T C A C A C C G C A T A T G G 
T G C A C T C T C A G T A C A A T C T G C T C T G A T G C C G C A T A G T T A A G C C A G C C C C G 
A C A C C C G C C A A C A C C C G C T G A C G C G C C C T G A C G G G C T T G T C T G C T C C C G G 
C A T C C G C T T A C A G A C A A G C T G T G A C C G T C T C C G G G A G C T G C A T G T G T C A G 
A G G T T T T C A C C G T C A T C A C C G A A A C G C G C G A G A C G A A A G G G C C T C G T G A T 
A C G C C T A T T T T T A T A G G T T A A T G T C A T G A T A A T A A T G G T T T C T T A G A C G T 
C A G G T G G C A C T T T T C G G G G A A A T G T G C G C G G A A C C C C T A T T T G T T T A T T T 
T T C T A A A T A C A T T C A A A T A T G T A T C C G C T C A T G A G A C A A T A A C C C T G A T A 
A A T G C T T C A A T A A T A T T G A A A A A G G A A G A G T A T G A G T A T T C A A C A T T T C C 
G T G T C G C C C T T A T T C C C T T T T T T G C G G C A T T T T G C C T T C C T G T T T T T G C T 
C A C C C A G A A A C G C T G G T G A A A G T A A A A G A T G C T G A A G A T C A G T T G G G T G C 
A C G A G T G G G T T A C A T C G A A C T G G A T C T C A A C A G C G G T A A G A T C C T T G A G A 
G T T T T C G C C C C G A A G A A C G T T T T C C A A T G A T G A G C A C T T T T A A A G T T C T G 
C T A T G T G G C G C G G T A T T A T C C C G T A T T G A C G C C G G G C A A G A G C A A C T C G G 
T C G C C G C A T A C A C T A T T C T C A G A A T G A C T T G G T T G A G T A C T C A C C A G T C A 
C A G A A A A G C A T C T T A C G G A T G G C A T G A C A G T A A G A G A A T T A T G C A G T G C T 
G C C A T A A C C A T G A G T G A T A A C A C T G C G G C C A A C T T A C T T C T G A C A A C G A T 
C G G A G G A C C G A A G G A G C T A A C C G C T T T T T T G C A C A A C A T G G G G G A T C A T G 
T A A C T C G C C T T G A T C G T T G G G A A C C G G A G C T G A A T G A A G C C A T A C C A A A C 
G A C G A G C G T G A C A C C A C G A T G C C T G T A G C A A T G G C A A C A A C G T T G C G C A A 
A C T A T T A A C T G G C G A A C T A C T T A C T C T A G C T T C C C G G C A A C A A T T A A T A G 
A C T G G A T G G A G G C G G A T A A A G T T G C A G G A C C A C T T C T G C G C T C G G C C C T T 
C C G G C T G G C T G G T T T A T T G C T G A T A A A T C T G G A G C C G G T G A G C G T G G G T C 
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T C G C G G T A T C A T T G C A G C A C T G G G G C C A G A T G G T A A G C C C T C C C G T A T C G 
T A G T T A T C T A C A C G A C G G G G A G T C A G G C A A C T A T G G A T G A A C G A A A T A G A 
C A G A T C G C T G A G A T A G G T G C C T C A C T G A T T A A G C A T T G G T A A C T G T C A G A 
C C A A G T T T A C T C A T A T A T A C T T T A G A T T G A T T T A A A A C T T C A T T T T T A A T 
T T A A A A G G A T C T A G G T G A A G A T C C T T T T T G A T A A T C T C A T G A C C A A A A T C 
C C T T A A C G T G A G T T T T C G T T C C A C T G A G C G T C A G A C C C C G T A G A A A A G A T 
C A A A G G A T C T T C T T G A G A T C C T T T T T T T C T G C G C G T A A T C T G C T G C T T G C 
A A A C A A A A A A A C C A C C G C T A C C A G C G G T G G T T T G T T T G C C G G A T C A A G A G 
C T A C C A A C T C T T T T T C C G A A G G T A A C T G G C T T C A G C A G A G C G C A G A T A C C 
A A A T A C T G T T C T T C T A G T G T A G C C G T A G T T A G G C C A C C A C T T C A A G A A C T 
C T G T A G C A C C G C C T A C A T A C C T C G C T C T G C T A A T C C T G T T A C C A G T G G C T 
G C T G C C A G T G G C G A T A A G T C G T G T C T T A C C G G G T T G G A C T C A A G A C G A T A 
G T T A C C G G A T A A G G C G C A G C G G T C G G G C T G A A C G G G G G G T T C G T G C A C A C 
A G C C C A G C T T G G A G C G A A C G A C C T A C A C C G A A C T G A G A T A C C T A C A G C G T 
G A G C T A T G A G A A A G C G C C A C G C T T C C C G A A G G G A G A A A G G C G G A C A G G T A 
T C C G G T A A G C G G C A G G G T C G G A A C A G G A G A G C G C A C G A G G G A G C T T C C A G 
G G G G A A A C G C C T G G T A T C T T T A T A G T C C T G T C G G G T T T C G C C A C C T C T G A 
C T T G A G C G T C G A T T T T T G T G A T G C T C G T C A G G G G G G C G G A G C C T A T G G A A 
A A A C G C C A G C A A C G C G G C C T T T T T A C G G T T C C T G G C C T T T T G C T G G C C T T 
T T G C T C A C A T G T T C T T T C C T G C G T T A T C C C C T G A T T C T G T G G A T A A C C G T 
A T T A C C G C C T T T G A G T G A G C T G A T A C C G C T C G C C G C A G C C G A A C G A C C G A 
G C G C A G C G A G T C A G T G A G C G A G G A A G C G G A A G A G C G C C C A A T A C G C A A A C 
C G C C T C T C C C C G C G C G T T G G C C G A T T C A T T A A T G C A G C T G G C A C G A C A G G 
T T T C C C G A C T G G A A A G C G G G C A G T G A G C G C A A C G C A A T T A A T G T G A G T T A 
G C T C A C T C A T T A G G C A C C C C A G G C T T T A C A C T T T A T G C T T C C G G C T C G T A 
T G T T G T G T G G A A T T G T G A G C G G A T A A C A A T T T C A C A C A G G A A A C A G C T A T 
G A C A T G A T T A C G A A T T G C G G C C G C T G T G C A G A A T T C C G A T A C G G G G A A T C 
G A A C C C C G A G C T G C T G T G C A C A T G C A A T G A G A G A C A G C G A T G T T A A C C A T 
T A C A C C A T A T C G G A T G T T A T A T T T T T A T T C T C C T C A A A T A A A T G T A T A T A 
A C T A T A G G A A T G G A T T C A A T A G A A T C T C C C A G G T C A G T G T A C T T A C T C C G 
G A C C C T C T T A A A T A T G T C G C C A G A G T G C T T C A C T T G A A C C G T A A T T A G A G 
C A G G T A T C G C G C A A A T T T T A C A G G C A T T T G A G A C A C T T T T T T G T C C T G G T 
G A G A G T T T A T A T A T C G C A T A A C A A G C C C T T G T G C T G G A C A T C T G C T A A T G 
T G A G G G A A G C A C G A G A C C G C C G T C A G A C T G A A C G C T A C G T T T G A C C A T A A 
T C T A A A T A T A C G C T A C C T A T A T T T G T C G C T A T G G C T A C T A T T T C C G A T G T 
T A C C G A A G A A G A G A T T T T A T A A A A C C T G G T G A A G T C G A G G A A T C G A T G A G 
C T C G C G A A A T A G G T G G G G T A T C T T G C A C A T A C T T C T A C T T G G G T A T A T C C 
C C A T G G C T A T T C T C A C T A C T A A G T C T C T G G T G A G A G G G G A T T G A A G C A G G 
A A C T G C C A G A G C T A C G T C G G T G C T T C C A G T C T T G T T T G C A T C A T G A A C T C 
C A C C G C G T C C A G T T G C C A C T A C T C A G G A A T G T A C T T C A G A G A C T T T T T C G 
A G A A T T T T G T G G A T T T A C G C T T T C C T T G G G C C G A C C T G A C T C C C A C C T G A 
C T A T C T T G G A T T A T C T T G C A A A G C C A G C T G C C A A C C G A G G T T T C C A C T G T 
A A A A T A T G A C C C T A A C T C A G C A C A C G T G A C C T C C A G G T T G T G C T T C A G T A 
G C T G T A C T T A A T C G T C T G T A T T T C G T T A A C T A T G C T T A G C A C A T A C A T A T 
A T A T C A T G G C A C T C G G T T G A T T A G T C T C C G A G A G G T T C T A C T T T T C T T T A 
T T G A T G C C G T G G C A C C G C A G G A C A G T C T G C A C G T T A C T G C T T C T G T G T G T 
A T C T A C A G C G A C A A A G T A G T C C T G A T A A C A G G A G C T T C A G A T G C C A A G G T 
G G T A G G A G C G C T C C A C T A G G A T G G A A A A T G T C C T C C T A G G A C A A C A A T A T 
A A A A G C G G T A C T C T T A C T G A T G T C T A T T G G A A G A A A A C T T G G G G A C T C G A 
C A C A G T A A T A A G G A C A A T A G A C A G A C G C G G A A A T C A C C T G C A A G G C T G A G 
C T A T C G T T A T T A C T C T A C C G C A A G G C A A C A A C C A G C T C A C C C C T G A G G C A 
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C G G G T A C C A T G G G T T G A G T G G T A T G G G G C C A T C C A G A G T C A C C T G T G G C A 
G C A T G A G A C T G C A C T C G A A G C A G C C A T C A A C C C A G C C A A T A T T C T G G G C T 
T T C C A T C C T T A G A T C A C A T T T G A G A T A T A A C C C A T T T G G T G A G A G A C A C T 
T G T G C C G T T A T A C G T G T C T A G A C T G G A A A C G C A A C C C T G A A G G G A T T C T T 
C C T T T G A G A G A T G G A A G C G T G T C A T A T C T C T T C G G T T C T A C G G C A G G T T T 
T T T T C T G C T C T T T C G T A G C A T G G C A T G G T C A C T T C A G C G C T T A T T T A C A G 
T T G C T G G T A T T G A T T T C T T G T G C A A A T T G C T A T C T G A C A C T T A T T A G C T A 
T G G A G T C A C C A C A T T T C C C A G C A A C T T C C C C A C T T C C T C T G C A A T C G C C A 
A C G T C C T C T C T T C A C T G A G T C T C C G T C C G A T A A C C T G C A C T G C A A C C G G T 
G C C C C A T G G T A C G C C T C C G G A T C A T A C T C T T C C T G C A C G A G G G C A T C A A G 
C T C A C T A A C C G C C T T G A A A C T C T C A T T C T T C T T A T C G A T G T T C T T A T C C G 
C A A A G G T A A C C G G A A C A A C C A C G C T C G T G A A A T C C A G C A G G T T G A T C A C A 
G A G G C A T A C C C A T A G T A C C G G A A C T G G T C A T G C C G T A C C G C A G C G G T A G G 
C G T A A T C G G C G C G A T G A T G G C G T C C A G T T C C T T C C C G G C C T T T T C T T C A G 
C C T C C C G C C A T T T C T C A A G G T A C T C C A T C T G G T A A T T C C A C T T C T G G A G A 
T G C G T G T C C C A G A G C T C G T T C A T G T T A A C A G C T T T G A T G T T C G G G T T C A G 
T A G G T C T T T G A T A T T T G G A A T C G C C G G C T C G C C G G A T G C A C T G A T A T C G C 
G C A T T A C G T C G G C G C T G C C G T C A G C C G C G T A G A T A T G G G A G A T G A G A T C G 
T G G C C G A A A T C G T G C T T G T A T G G C G T C C A C G G G G T C A C G G T G T G A C C G G C 
T T T G G C G A G T G C G G C G A C G G T G G T T T C C A C G C C G C G C A G G A T A G G A G G G T 
G T G G A A G G A C A T T G C C G T C G A A G T T G T A G T A G C C G A T A T T G A G C C C G C C G 
T T C T T G A T C T T G G A G G C A A T A A T G T C C G A C T C G G A C T G G C G C C A G G G C A T 
G G G G A T G A C C T T G G A G T C G T A T T T C C A T G G C T C C T G A C C G A G G A C G G A T T 
T G G T G A A G A G G C G G A G G T C T A A C A T A C T T C A T C A G T G A C T G C C G G T C T C G 
T A T A T A G T A T A A A A A G C A A G A A A G G A G G A C A G T G G A G G C C T G G T A T A G 
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Figure B2 Map of assistant plasmid pAB4.1. It contains the pyrG selection marker for A. 
niger. The pyrG gene will be enable the transformed strain the ability to grow without 
uridine supplement 
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