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ABSTRACT OF THE DISSERTATION 

MINIMIZING MAKESPAN FOR HYBRID FLOWSHOPS WITH BATCH, DISCRETE 

PROCESSING MACHINES AND ARBITRARY JOB SIZES 

by 

Yanming Zheng 

Florida International University, 2011  

Miami, Florida 

Professor Chin-Sheng Chen, Co-Major Professor 

Professor  Syed M. Ahmed, Co-Major Professor 

This research aims at a study of the hybrid flow shop problem which has parallel 

batch-processing machines in one stage and discrete-processing machines in other stages 

to process jobs of arbitrary sizes.  The objective is to minimize the makespan for a set of 

jobs. The problem is denoted as: ܨܨหܾܽܿݐℎ1,  .ݔܽ݉ܥหݏ

The problem is formulated as a mixed-integer linear program. The commercial 

solver, AMPL/CPLEX, is used to solve problem instances to their optimality. 

Experimental results show that AMPL/CPLEX requires considerable time to find the 

optimal solution for even a small size problem, i.e., a 6-job instance requires 2 hours in 

average.  

A bottleneck-first-decomposition heuristic (BFD) is proposed in this study to 

overcome the computational (time) problem encountered while using the commercial 

solver.  The proposed BFD heuristic is inspired by the shifting bottleneck heuristic. It 

decomposes the entire problem into three sub-problems, and schedules the sub-problems 

one by one.  The proposed BFD heuristic consists of four major steps: formulating sub-
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problems, prioritizing sub-problems, solving sub-problems and re-scheduling. For 

solving the sub-problems, two heuristic algorithms are proposed; one for scheduling a 

hybrid flow shop with discrete processing machines, and the other for scheduling parallel 

batching machines (single stage). Both consider job arrival and delivery times. An 

experiment design is conducted to evaluate the effectiveness of the proposed BFD, which 

is further evaluated against a set of common heuristics including a randomized greedy 

heuristic and five dispatching rules.  The results show that the proposed BFD heuristic 

outperforms all these algorithms.   

To evaluate the quality of the heuristic solution, a procedure is developed to 

calculate a lower bound of makespan for the problem under study. The lower bound 

obtained is tighter than other bounds developed for related problems in literature.   

A meta-search approach based on the Genetic Algorithm concept is developed to 

evaluate the significance of further improving the solution obtained from the proposed 

BFD heuristic. The experiment indicates that it reduces the makespan by 1.93 % in 

average within a negligible time when problem size is less than 50 jobs.  
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1 INTRODUCTION 

1.1 Background and Motivation 

As industries are facing more and more intense competition, many 

manufacturing companies adapt newer systems, such as hybrid flow shops (HFS) which 

combine the flow shop with parallel machines. Batch processing machines are also used 

to simultaneously process multiple jobs to improve efficiency. The hybrid flow shop with 

batch processing machines in parallel is denoted as HFPB by Amin-Naseri (2009).  The 

problem under study considers a variant case of HFPB, denoted as ܨܨ|ܾܽܿݐℎ1,  ,ݔܽ݉ܥ|ݏ

which represents a hybrid flow shop with parallel identical batch processing machines in 

exactly one stage and discrete processing machines in other stages to process jobs with 

arbitrary size. 

 

 

Figure 1-1 A Rapid Prototyping Process 

 

One of the typical applications of this problem is in rapid prototyping. The rapid 

prototyping refers to a class of technologies that can automatically construct physical 
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models from Computer-Aided Design (CAD) data. These "three dimensional printers" 

allow designers to quickly create tangible prototypes of their designs, rather than just 

two-dimensional pictures. Prototyping plays an essential role in the development of 

appliances, machines, cars and many other items, small or large we encounter in our daily 

life. It can reduce development costs, shorten lead time and test configuration. Although 

several rapid prototyping techniques exist, all employ the same basic four-step process 

which is shown in Figure 1-1. The steps include:  

1. Model Simulation: The design to be prototyped is transformed from a one-

dimensional image to a three-dimensional likeness. This is usually done using computer-

aided design (CAD) software such as AutoCAD, and converted into the STL format 

which is considered a standard in the rapid prototyping process.  

2. Model Slicing: A pre-processing software is run to slice the STL model 

into a number of layers, depending on the “build” technique.  

3. Prototyping: A rapid prototyping machine is used to build the prototype 

one layer at a time from polymers, paper, or powdered metal.  Usually a prototyping 

machine can prototype multiple items as a batch simultaneously. The time required is 

determined by the longest time required by all the items in the batch. 

4. Finishing: The final step is post-processing. This involves removing the 

prototype from the machine and detaching any supports.  

The scheduling of rapid prototyping is to make two important and intertwined 

decisions: (1) how to group jobs to form batches for prototyping, and (3) how to sequence 

the jobs and batches so that the makespan of processing all prototypes will be minimized. 

Since different prototype has different design, which results in different size and requires 
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different processing times, the number of prototypes to be built simultaneously in a 

prototyping machine cannot be predetermined, and hence increase the complexity of 

batching and scheduling. 

 

Figure 1-2 PCB assembly process 

 

Another example is the printed circuit board (PCB) assembly (Figure 1-2).  The 

solder paste is first applied on a bare PCB. The PCB is later populated with appropriate 

components by a component placement machine. Later, the assembly is soldered in a 

convection oven. After soldering, PCBs are placed in an environmental stress screening 

chamber (ESS) for an environmental test, and then sent to the next operation for final 

inspection. PCB manufacturers, especially contract electronics manufacturers, usually 

have more than one machine at some stages of processing. In most of the processing, 

each machine can only process one PCB at a time, while in environmental stress testing 

one ESS chamber can test several PCBs simultaneously. The number of PCBs that can be 

processed at a time depends on the chamber’s capacity as well as the size of the PCBs.  

Applications of the scheduling problem under study can also be found in various 

industries, for example chemical industry and steel industry. 
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1.2 Problem Statement, Research Objectives and Deliverables 

1.2.1 Problem Statement 

The problem under study can be described as follows: We are given multiple 

stages of machines. Each stage has one or more identical machines in parallel. One stage 

consists of parallel batch processing machines, while all other stages consist of discrete 

processing machines. The batching stage can be any stage along the flow line. For all 

jobs to be processed, job processing times and job sizes are arbitrary. Each job should go 

through all stages and should be processed by only one machine in each stage. The 

process route is identical for all jobs. In the batching stage, machines are able to process 

two or more jobs simultaneously as long as the total size of jobs in a batch does not 

exceed the machine capacity. All jobs in the same batch start and finish at the same time. 

The batch processing time is determined by the longest job processing time of all jobs in 

the batch. The objective is to find a set of batches, the schedule of jobs and batches in 

each stage, so that the completion time of the last job is minimized.  

To study this scheduling problem, three issues are raised: 

1. The batching strategy 

Minimizing the number of batches or maximizing the size of each 

batch is usually the batching strategy for scheduling single and parallel batch 

processing machines. However, minimizing the number of batches may yield 

a good solution only when all the jobs are available at the same time. When 

jobs arrive at different time, a batch might close even though there is still 

space available, so as to avoid delaying the processing of the batch. The 
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question to answer is when to close the batch, or when to stop waiting for next 

job to join. On the other hand, the dispatching rule used to prioritize jobs 

should be determined, too. 

2. The impact of shop configuration on batching strategy 

As mentioned above, one of the scheduling decisions to make is how 

to form the batches. It is easy to understand that different batching strategies 

might yield different scheduling results. However, does batching strategy vary 

with shop configuration? Will the dispatching rule change when the batching 

stage position changes from the first stage to the last stage?  If yes, what 

dispatching rules should be considered for different shop configurations? 

3. The interaction between discrete hybrid flow shop and parallel batching machines 

The problem under study is an integration of the discrete HFS 

scheduling problem and the parallel batching machines scheduling problem. 

To get a good solution, we cannot simply split the problem into several sub-

problems and get solution for each sub-problem, since job completion times in 

one stage will affect the scheduling in the next stage. Hence, integrated 

solutions should be explored to consider the interaction between the hybrid 

flow shop and the parallel batching machines. 

This research aims to study above issues, and therefore fill the research gap in this 

field.  



6 

1.2.2 The Complexity Analysis 

If the number of stages is 3, the number of machines in each stage is 1, and all job 

sizes and capacity for all machines are equal to 1, the problem is then reduced to 

F3||Cmax, with time complexity function known to be NP-hard. If there is only one stage, 

and all job sizes and machine capacities are equal to 1, the problem is reduced to 

Pm||Cmax which is also NP-hard. It can be inferred that the problem under study is at 

least NP-hard, which means that finding an optimum solution in a reasonable time is 

unlikely, and heuristic methods are highly recommended. 

 

 

Figure 1-3 Complexity Analysis 

 

1.2.3 Research Objectives and Deliverables 

The objective of this study is to mathematically formulate the problem under 

study and develop a solution approach to effectively solve the problem of practical size.  

Since the problem under study is NP-hard, to solve such problems, the run-time of an 

FF|batch1, sj|Cmax

FF||Cmax Pm|rj, batch|Cmax

F3||Cmax P2||Cmax 1|rj, batch|Cmax
hard

1||Cmax
Easy
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exact algorithm, for example enumeration schemes or branch and bound, increases 

exponentially with the instance size, implying that usually only small instances can be 

solved in practice. In contrast with the exact methods, a heuristic would require much less 

time to find an approximate solution. However, the solution quality might be 

compromised. In this dissertation, the effectiveness of the heuristic approach is evaluated 

by measuring the run time and comparing its solution with the lower bound. Figure 1-4 

presents the different approaches developed for this research.  

 

 

Figure 1-4 Overview of the Methodology 

 

In this research a mixed-integer linear program is first formulated and solved 

using a commercial solver to obtain optimum solution. However, as the problem is NP–

hard, optimum solution can be obtained in reasonable time for only small-size problem 

instances. A constructive heuristic approach is proposed to solve the problem under study 

approximately.  The performance of the approach is measured by the computational cost 

and the solution quality. A meta-heuristic, genetic algorithm (GA), is also proposed to 

explore the significance of improvement on the solution produced by the constructive 

����ห��������ℎ1, ����ห�������� 
Exact Method Constructive Heuristic Improvement Algorithm

MILP

Lower Bound

Bottleneck-first 
Decomposition 
Heuristic (BFD)

GA
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heuristic. A procedure to calculate the lower bound of the makespan is developed to 

assess the quality of the solution obtained from various solution approaches proposed. 

Since optimal solution is difficult to obtain for even small-size problems, having a good 

lower bound is important for comparing the effectiveness of different solution 

approaches. In this research, the derived lower bound is used as the benchmark to 

evaluate the solution quality of heuristics whenever an optimal solution is not available. 

The deliverables of this study include: (1) A mixed-integer model, (2) a lower-

bound procedure, (3) a heuristic approach, and (4) a meta-heuristic approach.  

1.3 Research Assumptions 

The main assumptions are: (1) machines and jobs are available from the 

beginning, (2) neither job splitting nor preemption is allowed, (3) The buffers between 

stages are unlimited, (4)  job processing times and sizes are deterministic and known in 

advance, (5) machine breakdowns are not considered, (6) there is no waiting time limit 

between any two stages, (7) machine set up time is not considered, (8) all machines 

within the same stage are identical, (9) the batch processing time equals the longest 

processing time among all jobs in the batch,  (10) all jobs in a batch start and finish at the 

same time, and (11) the capacity and job size is assumed one dimension. 

1.4 Significance and Contribution 

The significance of this research can be addressed in two perspectives. First, the 

problem under study has a growing popularity of applications in different fields of 

industry, for example rapid prototyping, PCB assembly, metal working, etc. Actually, 

any production line related to a hybrid flow shop with batch and discrete processing 
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machines might encounter this scheduling problem. A solution approach to the problem 

under study will benefit the scheduling in these fields, and improve productivity of 

production line. Second, this research differs from most previous work done on HFS 

scheduling in that it considers a hybrid flow shop with both discrete and batch processing 

machines and allow jobs to have arbitrary sizes. Similar but simpler problems have never 

been solved by any exact algorithm within reasonable computational time and for a 

number of jobs that is of practical interest.  

The research contribution can be summarized as: (1) a category of scheduling 

problem, ܨܨหܾܽܿݐℎ1,  is mathematically modeled, (2) a tight lower bound is ,ݔܽ݉ܥหݏ

derived for this problem, and (3) a solution approach to solving this problem of practical 

size effectively and efficiently is proposed.  

1.5 Dissertation Organization 

The rest of the dissertation is organized as follows. Chapter 2 presents a literature 

review on existing research. Chapter 3 introduces a mixed-integer model. A lower bound 

is given in Chapter 4. In Chapter 5, a heuristic approach built on the decomposition 

method and the shifting bottleneck procedure is presented and its performance is 

compared to that of a set of common heuristics and dispatching rules. Chapter 6 describes 

a genetic algorithm to further improve the solutions. Conclusions are drawn in Chapter 7.  
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2 LITERATURE REVIEW 

2.1 Introduction 

The problem under study can be considered as the integration of two basic 

scheduling problems: (1) the classical Hybrid Flow Shop problem denoted as FFm | | Cmax, 

and (2) Parallel batch processing machines problem, denoted as Pm| batch | Cmax. The 

literature review is organized as below. Section 2.2 focuses on the HFS scheduling. 

Section 2.3 reviews parallel batching machines scheduling problems. Section 2.4 

addresses the HFS with both discrete and batch processing machines. Section 2.5 covers 

the decomposition methods. Section 2.6 discusses the genetic algorithm. A summary is 

given in Section 2.7. 

2.2 Hybrid Flow Shop Scheduling 

2.2.1 Hybrid Flow Shop with Identical Job Ready Times 

The scheduling problem to minimize the makespan on a hybrid flow shop is 

known to be NP-hard in the strong sense (Hoogeveen 1996). Various solution approaches 

have been proposed and can be grouped into three categories: exact methods, heuristics 

and meta-heuristics (Table 2-1).  

Arthanari and Ramamurthy (1971) define the HFS problem, and first suggest a 

branch and bound method to this problem. After that, the branch and bound method has 

been explored by many researchers to get optimal solutions for small size instances. 

Among all these, Neron et al. (2001) describe an exact approach which outperforms all 
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previous ones and reports the optimal solution of small-sized instances with up to 15 

jobs, 5 stages, and 3 machines in each stage.  

 

Table 2-1 Previous Research on Hybrid Flow Shop with Identical Ready Times  

Classes of 
Solution 

Approaches 

Previous Research 
Two Stages Three Stages and Above 

E
xa

ct
 m

et
ho

ds
 Arthanari and Ramamurthy(1971)  

Salvador (1973)  
Gupta et al. (1997)  
Portmann et al. (1998)  
Haouari  et al. (2006)  

Brah and Hunsucker (1991) 
Rajendran and Chaudhuri (1992)  
Perregaard (1995) 
Portmann et al. (1998) 
Carlier and Néron (2000) 
Moursli and Pochet (2000)  
Neron et al. (2001) 

H
eu

ri
st

ic
s 

B
ot

tl
en

ec
k-

ba
se

d 
he

ur
is

ti
cs

 

 Adler et al. (1993)  
Yang (1998) 
Chen (1998) 
Acero-Domínguez and Paternina-
Arboleda (2004) 
Lee et al. (2004) 
Paternina-Arboleda et al. (2008)  
Chen et al. (2009)  

O
th

er
 h

eu
ri

st
ic

s 

Narasimhan and Panwalker (1984) 
Narasimhan and Mangiameli (1987) 
Gupta and Tunc (1991) (1994) 
Gupta et al. (1997)  
 

Wittrock (1985)  
Wittrock (1988) 
 Ding and Kittichartphayak (1994) 
 Hunsucker and Shah (1994) 
Santos  et al. (1996)  
Guinet and Solomon (1996)  
Brah and Loo (1999)  
Gupta et al. (2002) 
Caricato and Grieco (2007) 

M
et

a-
he

ur
is

ti
cs

  Nowicki and Smutnicki (1998)  
Gourgand et al. (1999)  
Engin and Doyen (2004)  
Jin et al. (2002) 
Vishwanathan et al. (2007) 
Oulamara et al. (2009) 
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Since the exact methods, i.e. branch and bound, is computationally expensive and 

has been proved impractical for even modestly sized problems, it usually appeals to apply 

heuristic algorithms for large-scale HFS problems, to achieve near-optimal solutions. 

Therefore, starting from 1980’s, many studies have been conducted on solving two-stage 

HFS problems with heuristics. Narasimhan and Panwalker (1984) solve a variant of the 

HFS problem that had different machines at the second stage by using the Cumulative 

Minimum Deviation rule. Narasimhan and Mangiameli (1987) propose a Generalized 

Cumulative Minimum Deviation rule to solve HFS problems. Gupta et al. (1991; 1994; 

1997) research two-stage HFS problems with parallel machines at one of the stages and 

have extended their research to the two-stage HFS problems with parallel machines at 

both stages, and separable setup and removal times.  

For the HFS problem with more than two stages, the well known early researches 

are conducted by Wittrock (1985; 1988). The author develops a periodic heuristic 

algorithm for minimizing the makespan by focusing on job loading and time allocating. 

He also presents a more flexible non-periodic heuristic algorithm for the same problem 

by taking three steps: machine allocation, job sequencing and timing. Ding and 

Kittichartphayak (1994) develops three heuristics for HFS problems. The heuristics are 

extensions of Campbell-Dudek-Smith (CDS) by Campbell (1970) and a heuristic by 

Gupta (1972). Hunsucker and Shah (1994) evaluate six priority rules used in an HFS 

problem with a constrained total number of jobs in the system. The objectives are 

makespan, mean flow time and maximum flow time. They conclude that the SPT 

dispatching rule is superior for makespan and mean flow time. However, a similar study 

done by Guinet and Solomon (1996) lead to a different conclusion. The authors declare 
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that NEH heuristic of Nawaz, Enscore, and Ham with Largest Processing Time First rule 

is the best for Cmax instead of SPT. Santos et al. (1996) evaluate four heuristics 

algorithms used in HFS and concluded that ‘a non-delay-type scheduling procedure 

which utilizes a “good” starting permutation of job orderings at first stage of an HFS 

should produce a makespan which is not appreciably worse than that produced by an 

optimal general schedule. Brah and Loo (1999) expand five better-performing flow shop 

heuristics, and use regressions to investigate heuristic performance and the effects of 

problem characteristics. Gupta et al.(2002) study multiple-stage HFS problems with 

parallel machines at each stage with multiple criteria. It is assumed that processing times 

are controllable and due dates are assignable. The authors generalize well-known 

approaches for the heuristic solution of classical problems and propose heuristic 

algorithms based on job insertion techniques and iterative algorithms on local search.  

Caricato and Grieco (2007) extends the traditional HFS scheduling problem to the case in 

which jobs are due to follow strict precedence constraints and batch assignment 

constraints and the parallel machines at a stage are served by a bottleneck machine. A 

variant of the well-known Travelling salesman problem (TSP) is used to develop an 

efficient heuristic solution for the problem. Furthermore, a simple insertion heuristic 

based on the TSP model of the problem is tested. 

A category of heuristics called bottleneck-based heuristics become popular in the 

past two decades in scheduling HFS problem. The main idea behind bottleneck-based 

heuristic is to find the bottleneck stage and to optimize the whole system performance 

based on exploiting the bottleneck stage. It usually comprises three steps: (i) bottleneck 

identification, (ii) scheduling of jobs at the bottleneck stage, and (iii) scheduling of jobs 



14 

at non-bottleneck stages. Adler et al. (1993) present a bottleneck heuristic algorithm to 

for scheduling a HFS with non-identical machines in paper company with due date 

related objective. Yang (1998) proposes a bottleneck-based heuristic to minimize the total 

weighted tardiness for the HFS scheduling problem. Chen (1998) suggests a bottleneck-

based group scheduling procedure to solve flow line cell scheduling problems. Lee et al. 

(2004) develop a bottleneck-focused algorithm to minimize total tardiness of a HFS 

scheduling problem. In their algorithm, the ready times are iteratively updated using 

information of the schedule obtained in the previous iterations. Acero-Domínguez and 

Paternina-Arboleda (2004),  Paternina-Arboleda et al. (2008) develop heuristics based on 

Theory of Constraint (TOC)  by Goldratt (1992) and minimize the makespan of a hybrid 

flow shop by exploiting the bottleneck stage. They claim that this heuristic is with 

smaller variance and requires less computational effort than other bottleneck based 

algorithms.  Chen et al. (2009) develop a bottleneck-based heuristic (BBFFL) to solve a 

flexible flow line with unrelated parallel machines , with the objective of minimizing the 

makespan, the total tardiness and number of tardy jobs.  

Different meta-heuristic approaches are proposed to improve the solutions, for 

example Tabu search by Nowicki and Smutnicki (1998), simulated annealing algorithms 

by  Gourgand et al. (1999), Jin et al. (2002) and Vishwanathan et al. (2007), genetic 

algorithms  by Jin et al. (2002) and Oulamara et al. (2009) , and artificial immune system 

by Orhan Engin (2004).  
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2.2.2 Hybrid Flow Shop with Non-Identical Job Ready Times 

Although there have been many studies on hybrid flow shop scheduling problems, 

most of such studies deal with problems in which ready times of jobs are not considered, 

that is, ready times of jobs are identical or equal to zero. Researches on HFS problems 

with non-identical job ready times are very limited. Cheng et al. (2001) propose a shifting 

bottleneck heuristic to minimize the Lmax on the HFS with non-identical job ready times. 

The heuristic decomposes the HFS into m parallel-machine scheduling problems to be 

solved one by one. Each parallel-machine problem is approximately solved by applying a 

property of its reversibility in the proposed heuristic. The authors declare that their 

heuristic produces optimal or quite near optional solutions within short computational 

time. Gupta et al. (2002) propose heuristics for the HFS with non-identical job ready 

times, controllable processing times and assignable due dates. The authors also use a list 

scheduling method to deal with non-identical job ready times. Tang and Liu (2009) 

derive a lower bound and develop dynamic programming-based heuristic algorithms to 

minimize the makespan on a two-machine flow shop with batching and release time.  

2.3 Parallel Batching Machines Scheduling 

2.3.1 Parallel Batching Machines with Identical Job Ready Times 

Batch processing by parallel machine is proven to be NP-hard in strong sense 

(Lee 1992). Research efforts in this area can be classified using the following 3 

independent criteria: (1) constant or varying batch-processing times, (2) presence or 

absence of job sizes as a variable, and (3) presence or absence of incompatible job 

families. Under the first criterion, if the batch processing times are not constant, the 
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processing time of a batch depends on the jobs that constitute a batch. Otherwise, the 

batch processing times are independent of these jobs. Under the second criterion, if job 

sizes are not considered, it is assumed that all the jobs have the same size and therefore 

the machine capacity is given by the maximum number of jobs it can process 

simultaneously. On the other hand, if job sizes are not identical, the machine capacity is 

given by the maximum number of size units the machine can process simultaneously. 

Under the third criterion, if incompatible job families are present, the jobs assigned to the 

same batch must belong to the same family, and usually jobs belonging to the same 

family share a common processing time, which determine the batch processing time. If 

incompatible job families are not considered, the batch processing time is given by the 

maximum processing time of the jobs assigned to the batch. The problem under study in 

this dissertation assumes that batch processing times are varying and determined by the 

composition of the batches, the job sizes are non-identical, and there is no incompatible 

job present. 

Lee et al.(1992) observe that there exists an optimal schedule in which all jobs are 

pre-assigned into batches according to the BLPT rule: rank the jobs in non-increasing 

order of processing times, and then batch the jobs by successively placing as many as 

possible jobs with the largest processing times into the same batch. Remy (2004) presents 

an algorithm which approximates the makespan for parallel batching machines with ratio 

2. Lin (2004) studies the parallel batch scheduling problem to minimize the maximum 

lateness and the number of tardy jobs. First dynamic programming algorithms are 

designed for finding optimal solutions to the two problems, and then several heuristics 

are developed to solve the same problems. Chang et al. (2004) develop a simulated 
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annealing algorithm to minimize the makespan for capacitated parallel batch processing 

machines that process jobs with arbitrary sizes. Kashan et al (2008) propose a hybrid 

genetic heuristic (HGH) to solve the same problem. The author claims that the HGH 

outperforms the simulated annealing (SA) approach by Chang et al. (2004). Shao et al. 

(2008) propose a solution approach based on neural networks on the same problem. Xu 

(2007) proposes a genetic algorithm based on random keys (RKGA) to minimize the 

makespan on parallel non-identical batch processing machines. Damodaran et al. (2007) 

develop several heuristics to minimize the makespan on identical parallel batching 

machines. Damodaran (2008) also develops a GA algorithm for the same problem. 

2.3.2 Parallel Batching Machines with Non-identical Job Ready Times 

Chung et al. (2008) propose a mathematical model and three heuristics to 

minimize the makespan on parallel batching machines with non-identical job arrival 

times and job sizes. The authors propose a sequential approach in which batches are 

formed first and scheduled second. To form the batches, they propose the Modified Delay 

algorithm which incorporates the merits of the DELAY heuristic solution procedure 

proposed by Lee (1999). Damodaran et al. (2008) and Vélez-Gallego (2009) propose 

several heuristics and meta-heuristics for the same problem.  Two heuristics, JS1 and JS2, 

are proposed to form batches. The authors claim that their scheduling rule with JS1 and 

JS2 heuristics outperform the other heuristics, including the Modified Delay heuristic 

addressed by Chung et al. (2008).   

Other than minimizing the makespan, there is also research effort made on due 

date relate objectives. Chiang (2008) proposes a local search-based heuristic to minimize 
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maximum lateness on identical parallel batching machines scheduling problem 

considering incompatible job families and dynamic job arrivals. Li (2004) present a 

polynomial time approximation scheme (PTAS ) for minimizing maximum lateness on 

identical parallel batch processing machines scheduling problem with ready times and 

delivery times. 

2.4 Flow Shop with Both Discrete and Batch Processing Machines 

In this environment, jobs are routed through a flow shop which has batch 

processing machines in some stages, and discrete processing machines in the other stages. 

Table 2-2  shows major research papers in this area grouped into different categories. 

 

Table 2-2 Previous Research on Flow shop With Discrete and Batching Machines 

 Two stages Multiple stage 

Flow shop Tang (2009)  

Sung (2002)  

Su (2003) 

AHMADI (1992) 

Hybrid flow 

shop 

Kim et al. (2009)  

Bellanger (2009)  

Bellanger (2008) 

Vishwanathan (2007) 

Amin-Naseri (2009) 

 

AHMADI (1992) minimizes the makespan (Cmax) and the sum of completion 

times (ΣCj) in two-machine flow shop scenario with one processor being a batching 

machine and the other being a discrete machine. The batch processing time is assumed to 

be independent of the composition of the batch. The authors proposes Full Batch-LPT 

rules for the flow shop scenario with batching machine followed by discrete machine, and 
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SPT-Full Batch rules for the reversed machine environment with discrete machine 

followed by batching machine. Both heuristics are claimed to yield optimal solution. 

Sung (2002) considers a two-machine flow shop where a discrete processing machine is 

followed by a batch processing machine and a finite number of jobs arrive dynamically at 

the first machine. In Sung’s heuristic, the dynamic shortest processing time (DSPT) rule 

is applied to schedule the first machine, and then FOE(n, c) heuristic is adopted to form 

batches and schedule in the second machine. A tight worst-case error bound is also 

derived. Su (2003) analyzes the problem of minimizing Cmax of a two-stage flow shop 

having limited waiting time constraints, with a batch processor in stage 1 and a single 

processor in stage 2. A heuristic algorithm and a mixed integer program are proposed. 

Vishwanathan (2007) presents a hybrid flow shop scheduling problem with an interior 

stage consists of a batch processing operation and all other stages being discrete-parts 

processing. Different classic flow shop heuristics (CDS, NEH, Palmer’s heuristic) are 

applied at the first stage, coupled with a FIFO progression throughout the shop. The 

experiment result shows that Palmer and CDS outperform NEH on most problem 

instances. Bellanger (2009) considers a two-stage hybrid flow shop problem in which the 

first stage contains several identical discrete machines, and the second stage contains 

several identical batching machines which can process several compatible tasks 

simultaneously in a batch. A heuristics family denoted as H-FCBLPT along with their 

worst cases analysis is developed to minimize the makespan. Tang et al. (2009) derive a 

lower bound and develop dynamic programming-based heuristic algorithms to solve the 

scheduling problem in a  two-machine flow shop environment with batching and release 

time, whose objective is to minimize the makespan. They apply DSPT to schedule the 
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first stage of single discrete machine and then use dynamic programming to find an 

optimal job batching for the second stage based on given job sequence from stage 1. Kim 

(2009) studies the scheduling problem of a two-stage hybrid flow shop with identical 

parallel machines at the first stage and a single batch processing machine at the second 

stage, subject to non-identical ready time and product-mix ratio constraint. Three 

heuristics, forward heuristic, backward heuristic and iterative heuristic, are presented to 

minimize the makespan. Bellanger (2008) presents a exact method based on Branch & 

Bound for a two-stage hybrid flow shop with parallel discrete machines in the first stage 

and parallel batching machines in the second stage, with the objective to minimize the 

makespan. All jobs of the same batch have to be compatible. Recently, Amin-Naseri 

(2009) develops three heuristic algorithm to minimize makespan in a hybrid flow shop 

environment with parallel uniform batching machines in some stages and parallel 

identical discrete machines in other stages. It is assumed that the job sizes are identical. 

Three heuristics, H1, H2 and H3, which are inspired by Johnson’s rule, CDS and theory 

of constraints (TOC) accordingly, are developed to minimize the makespan. A lower 

bound and a three dimensional genetic algorithm (3DGA) is developed for evaluating the 

performance of the proposed heuristics. Kim et al. (2009) study the scheduling problem 

of a two-stage hybrid flow shop with identical parallel machines at the first stage and a 

single batch processing machine at the second stage, subject to non-identical ready time 

and product-mix ratio constraint. 
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2.5 Decomposition Approaches 

2.5.1 Introduction of Decomposition Approaches 

Decomposition approaches have been used widely in the operations research 

fields as a manner of modeling and analyzing complex systems. The idea behind it is that 

the resolution of certain critical (bottleneck) sub-problems will enable us to construct the 

solution to the remaining parts of the original problem relatively easily. Therefore if we 

successfully formulate and solve the bottleneck sub problems, it will be able to obtain a 

near-optimal solution relative easily since the solutions to the remaining sub-problems 

are determined to a great extent by the solutions to the bottleneck sub problems. If sub 

problems differ in criticality, the most critical or most constraining sub problems will be 

solved first to ensure the quality of the solution. Based on this idea, decomposition 

methods attempt to develop solutions to complex problems by decomposing them into a 

number of smaller sub-problems which are more tractable and easier to understand. 

Solutions are developed for each sub-problem individually, and then integrated to form a 

solution to the original problem. The solutions obtained may be exact or approximate, 

depending on the nature of the procedure used and the problem under study.  Ovacik 

(1997) classified decomposition methods into three major types: 

1) Temporal decomposition schemes that decompose problems based on time, 

2) Entity decomposition schemes that decompose problems based on work centers or 

machines and, 

3) Hybrid decomposition schemes, which are combination of temporal decomposition 

schemes and entity decomposition schemes.  
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They discuss a variety of issues regarding the development of successful 

decomposition procedures: how to decompose the shop problem into appropriate sub-

problems, how to model the interactions between sub-problems, how to choose an 

effective solution procedure for the sub-problems, and how to design an appropriate 

control strategy that determines in what order the sub problems should be solved and how 

intermediate solutions should be revised to improve solution quality. Most of the 

researches focus on minimizing Lmax on a job shop.  

2.5.2 Shifting Bottleneck Procedures 

One of the most successful decomposition algorithms applied to shop scheduling 

is the shifting bottleneck procedure originally developed by Adams (1988), which is 

designed for the classical Jm | | Cmax problem. The procedure decomposes the job shop 

problem into single machine sub-problems. In each iteration it aims at fixing the schedule 

for the current bottleneck machine. It achieves this goal by scheduling the set of 

unscheduled machines one at a time, each time solving a 1| rj |Lmax problem using a 

branch-and-bound algorithm. The machine with the greatest Lmax is taken as the current 

bottleneck machine and the corresponding disjunctive arcs are fixed while those on other 

machines remain unfixed. This procedure also includes a re-optimization process, that is, 

each time a new machine is scheduled, each of the machines previously scheduled is 

considered again as an unscheduled machine by deleting the disjunctive arcs that had 

been fixed before. The corresponding sub-problem is reformulated by re-computing the 

data necessary and the machine is then rescheduled using the same branch-and-bound 
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algorithm. It has been found that the re-optimization process usually provides a 

significant improvement. This shifting bottleneck procedure works well and achieves the 

optimal solution for a well-known ten job, ten machine benchmark problem in a matter of 

minutes. A lot of research work has been done on expanding ideas behind the shifting 

bottleneck procedure, either to improve its performance on the Jm | | Cmax problem or to 

adapt it to solve other complex shop scheduling problems. 

2.5.3 Summary 

In summary, the decomposition methods applied in HFS scheduling usually 

follow the overall procedure as below: (1) problem decomposition, (2) bottleneck 

identification, (3) sub-problem formulation, (4) solution of the sub-problems and (5) re-

optimization. While following the same overall procedure, different researchers 

differentiate their heuristics in different aspects. For example, some of the researches 

decompose the problem into stages, while the others decompose the problem into 

bottleneck stage, upstream sub-problem and downstream sub problem. To decide which 

way to apply depends on the problem characteristics as well as the solution time/quality 

tradeoff. There are also different ways to identify the bottleneck selection criteria, the 

ready times and due dates for sub problems, sub-problem solution procedures and the re-

optimization procedures. According to the experiment by Ovacik (1997), the sub-problem 

solution and re-optimization procedures have a significant effect on both solution quality 

and computation time, while the bottleneck selection criteria do not have any significant 

effect as long as a sensible criterion is used. 
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2.6 Genetic Algorithm 

Formally introduced in the 1970s by John Holland at University of Michigan, the 

genetic algorithm is a population-based search and optimization method that simulate the 

process of natural evolution. It uses techniques inspired by evolutionary biology for 

example crossover, mutation,  inheritance and selection. In the past decade, GA has 

received considerable attention for solving complicate optimization problems. Hybrid 

genetic algorithm is a genetic algorithm incorporating other techniques within its 

framework to produce a hybrid that reaps the best from the combination. Hybrid genetic 

algorithms have received significant interest in recent years and are being increasingly 

used to solve real-world problems. Xu (2007) provide a genetic algorithm based on 

random keys encoding (RKGA) for minimizing makespan on parallel non-identical 

batching machines. The authors observe that RKGA is very robust and produces 

consistent solutions across different random seeds within reasonable computation time. 

Kashan (2008) proposes a hybrid genetic heuristic (HGH) to minimize makespan on 

parallel batch processing machines with arbitrary job sizes. HGH is characterized by 

using a robust mechanism for generating initial population, using efficient local search 

heuristics to bring longer jobs together as a batch and further improve machines load. 

HGH is claimed to outperform a simulated annealing (SA) approach.  Amin-Naseri (2009) 

develops a three dimensional genetic algorithm (3DGA) to minimize the makespan on 

hybrid flow shop scheduling with parallel batching. Extensive reviews of GA can be 

found in Draidi (2004), Chaudhry (2005) and El-Mihoub (2006). 
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2.7  Summary 

The problem under study has not received due attention in the literature. Most 

literature on the scheduling problems in the machine shop environment with batch and 

discrete machines is focused on two-stage machine environment or three-stage with 

single machine in each stage. The papers by Amin-Naseri (2009) and Vishwanathan 

(2007) are the only two publications which are close to the problem under study. Amin-

Naseri (2009) conducts the research on multiple stages HFS with parallel uniform 

batching machines. However, it is assumed that all jobs have identical size, which is 

different from the assumption in the problem under study. With the identical job sizes 

assumption, the maximum number of jobs a batching machine can process 

simultaneously is constant and predetermined by machine capacity / job size, while with 

arbitrary job size assumption the maximum number of jobs in a batch depends on the 

batch components and cannot be predetermined, therefore increase the difficulty to solve 

the problem. Vishwanathan (2007) presents a hybrid flow shop scheduling problem with 

an interior stage consists of parallel batch processing machines and all other stages being 

discrete-parts processing. It can be considered as a special case of the problem under 

study, since it assumes identical job sizes, and the batching stage can only locate in 

between discrete stages.   
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3 PROBLEM DESCRIPTION AND FORMULATION 

3.1 Problem Characteristics 

We are given a set I of stages. Each stage has one or more identical machines in 

parallel. There is exactly one stage, denoted as batching stage, consisting of parallel 

batch processing machines, while all other stages, denoted as discrete stage, consist of 

discrete machines. The batching stage can be in any position along the flow line. We are 

also given the set J of jobs. Each job j є J is described by {pji, sj} representing its 

processing time at each stage and job size respectively. Processing times and job sizes are 

arbitrary and independent to each other. Each job needs to go through all stages in the 

same order and be processed by only one machine at each stage. In batching stage, 

machines are able to process two or more jobs simultaneously as long as the total size of 

jobs in a batch does not exceed the machine capacity. All jobs in a batch start and 

complete at the same time. The processing time of a batch, defined as Pb=max{pji | j є b}, 

equals to the longest processing time among all jobs in the batch. The objective is to 

schedule jobs so that the makespan is minimized.  

3.2 Mixed-integer Formulation 

The sets used in the mathematical formulation are defined below: 

J  Set of jobs, Jj ∈  

I  Set of stages, Ii∈  

Q Set of positions in the schedule, Qq∈  
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The parameters used in this mathematical formulation are given below: 

jip  Processing time of job j in stage i 

C  Machine capacity 

js  Size of job j 

w  A large number not less than the schedule duration 

n  Number of jobs 

im  Number of machines in stage i 

B  The position of batching stage 

 

Decision Variables 





=
otherwise

istageatpositionqthetoassignedisjif
x

th

ijq
,0

job,1
 





=
otherwise
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y

th
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jic -- The starting time of job j in stage i 

maxC  Makespan or maximum completion time 

 

The mixed-integer formulation developed is as follows: 

Min maxC  3-1

Subject to: 

 =
q ijqx 1     JjIi ∈∈∀ ,    3-2



28 

 =
m iqmy 1         QqIi ∈∈∀ ,   3-3

1<= j ijqx       QqBIi ∈∈∀ ,}{\  3-4

Cxs
j Bjqj ≤    Qq∈∀  3-5

)1(,)1(, −− +>= ijijji pcc       JjBBIi ∈+∈∀ ,}1,,1{\  3-6

)1( BjqBrqrBjBji xwxpcc −−+>=  QqJrJjIBi ∈∈∈++∈∀ ,,},1{\}1{  3-7

)2()1(,)1(, irqijqBrBrji xxwpcc −−−+>= −−     { } JrQqJjBi ∈∈∈∈∀ ,,,1\}{   3-8

)4(
1

1 irm

q

d irdiqmijqririji yxyxwpcc −−−−−+>=  −

=
 

{ }1\,..1},{\,, QqmmjJrJjIi i ∈∈∈∈∈∀ 3-9

)2( BrqBjqrBjB xxwcc −−+<=   QqjJrJj ∈∈∈∀ },{\,  3-10

IjIj pcC ,,max +>=          Jj ∈∀   3-11

{ }1,0∈ijqx     QqJjIi ∈∈∈∀ ,,   3-12

{ }1,0∈iqmy     QqmmIi i ∈∈∈∀ ,..1,  3-13

0>=jic     JjIi ∈∈∀ ,  3-14

 

The constraints 3-2 and 3-3 are to make sure each job is scheduled exactly once in 

every stage. 3-4 ensures that no more than one job can be processed at the same time in 

each discrete machine. 3-5 ensures that the summation of job sizes in a batch does not 

exceed the machine capacity. 3-6 ensures that a job cannot be started until it is finished 

in previous stage. 3-7 ensures that at the stage right behind the batching stage, a job 

cannot be started until all jobs in the same batch it belongs to at previous stage are 

finished. If job r and job j are assigned to the same batch q, then 1== BrqBjq xx  and 

0)1( =− Bjqxw . The equation is then simplified to BrqrBjBji xpcc +>= . It means job j at 
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stage B+1 cannot be started until job r is completed at stage B. On the other hand, if job 

j or job r are not assigned to batch q, then the constraint is invalid. 3-8 ensures that at the 

batching stage, a job cannot be started until all jobs in the same batch are released from 

previous stage. If job r and job j are assigned to the same batch q, then 1== irqijq xx  

and 0)2( =−− irqijq xxw . The equation is then reduced to )1(,)1(, −− +>= BrBrji pcc . It 

means job j at stage i cannot be started until job r is completed at stage previous stage. If 

1== irqijq xx is not true, this constraint is invalid. 3-9 ensures that a job cannot be 

started unless the jobs scheduled before it on the same machine are finished. Assuming 

two jobs, j and r, if job is r assigned to the position before q, 1
1

1
= −

=

q

d irdx , otherwise 

0
1

1
= −

=

q

d irdx . If job j is assigned to the position q, and also assigned to the same 

machine as job r, then 1=== irmiqmijq yyx , 04
1

1
=−−−−  −

= irm

q

d irdiqmijq yxyx , and the 

constraints can be reduced to ririji pcc +>= , which means that job j cannot be started 

until job r is finished. On the other hand, if 1
1

1
====  −

=

q

d irdirmiqmijq xyyx  is not true, 

then the constraint is invalid. 3-10 ensures that all jobs in the same batch start at the 

same time. 3-11 ensures that makespan is no less than the completion time of any job in 

the last stage. 3-12, 3-13 and 3-14 are the binary and non-negativity restriction on the 

decision variables. 

Since number of variables, especially number of binary variable is the most 

important indicator of model complexity, the number of binary variables is used to 

measure the model complexity in this research. Table 3-1 provides the equation to 

calculate the number of variables, with |I| representing number of stages, |J| as number of 
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jobs and   denoting number of machines at stage i. To compare the growth rate of 

binary variables, we use big O notation. The growth rate of binary variables is ܱሺ|ܬ|ଶ) 
based on |J|, ܱሺ|ܫ|) based on |ܫ|), and ܱሺ∑ ݉)∈ூ  based on ݉. The table shows that |ܫ| ,|ܬ| and ݉  all affect number of binary variables. Among them, number of jobs |ܬ|	has the 

greatest impact.  

Table 3-1 Big O Notation on the Growth Rate of Binary Variables  

Number of Binary 
Variables 

|J| |I| ݉ 
2

JImJI
i i +  ܱሺ|ܬ|ଶ) ܱሺ|ܫ|) ܱሺ ݉)∈ூ  

 

This model is validated by manually checking the optimal solution produced by 

the model. Several problem instances are randomly generated and solved by a 

commercial solver, AMPL/CPLEX. The optimal schedule obtained by the solver is used 

to check if all constraints are satisfied. If there is no violation, the model is correct. 

3.3 Runtime Analysis 

3.3.1 Experiment Design 

The proposed model is implemented on AMPL/CPLEX and run on a desktop 

computer equipped with a 2.21 GHz Intel Core 2 Duo ® processor with 2 GB of RAM. 

Two experiments are conducted. In the first experiment, the solver is allowed to run for a 

maximum of half an hour for each problem instance. The percentage of instances whose 

optimal solution is found within half an hour, denoted by ROPT, is calculated using 

equation 3-15. In the second experiment, the solver is allowed to run until the optimal 

solution is found. Run time is recorded for each instance. 
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%100×=
total

optimal

N

N
ROPT  

3-15

 

Experiment factors are given in Table 3-2.  The number of jobs (n), number of 

stages (v) and position of batching stage (b) are considered in order to determine if the 

machine environment and job characteristic have a significant effect on the model 

performance. The number of machines is fixed at 2 at each batching stage, and 1 or 2 at 

each discrete stage. The capacity of batching machine is assumed to be 10 in all instances. 

Job sizes are generated randomly from discrete uniform distribution of [1, 8].  Processing 

times are generated randomly from discrete uniform distribution of [10, 50]. With these 

factors considered, there are a total of 18 production scenarios. 10 replicas are generated 

for each scenario for a total of 180 instances for the first experiment, and 5 replicas for 

each scenario for a total of 90 instances are tested in the second experiment. Less 

instances are tested in the second experiment due to the much longer run time it requires. 

Table 3-2 Experimental Factors 

Experiment Factors Levels 

Number of jobs (n) 4, 5, 6 

Number of stages (v) 3, 5 

Position of batching  Stage (b) Front ,interior, Rear 

 

3.3.2 Computational Results 

The main effects plot obtained from the analysis of variance is given in Figure 3-1. 

The factors n, v  and b all have a significant effect on ROPT with p-value all equal 0. 



32 

Figure 3-2 shows the ROPT discriminated by n and v. It also described the 

average run time the solver spent to find an optimal solution, discriminated by n. The 

percentage of instances solved to optimality within 1800s decreases significantly as n or v 

increases. On the other hand, the run time to find the optimal solution increases 

dramatically as n increases. For 4-job problem instances, the average run time is 5.22 

minutes. For 5-job problem instances, the average run time is 23.37 minutes. However, 

for 6-job problem instances, the average run time dramatically increases to almost 2 hour. 

Clearly, as the problem size increases to beyond 6 jobs, the computational cost of solving 

the problem to optimality is too large to be used in practical implementations. Figure 3-3 

shows that the optimal solution is harder to find when batch processors are located at the 

interior stage. 

 

 

Figure 3-1 Main Effects Plot for Percentage of Instances Solved to Optimality 
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Figure 3-2 Run Time and Percentage of Instances Solved to Optimality 

 

 

Figure 3-3 Percentage of Instances Solved to Optimality vs. Batching Position 

 

In summary, the number of jobs, the number of stages and the position of 

batching stage have significant impact on the computational cost. Among these three 

factors, the number of jobs has the greatest impact. Increase in the number of jobs will 

dramatically increase computational cost. An instance with more than 6 jobs cannot be 
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solved to optimality within 2 hours. Therefore, using AMPL/CPLEX to get an optimal 

solution for the problem under study is computationally expensive and prohibitive for a 

problem of practical size. 
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4 A LOWER BOUND PROCEDURE 

4.1 The Proposed Lower Bound Procedure 

4.1.1 Overview 

While a number of lower bounds have been derived for the makespan of parallel 

machines or the hybrid flow shop scheduling problem, there is no lower bound derived 

for a scheduling problem associated with hybrid flow shop, parallel batch processing 

machines and jobs of arbitrary sizes. The lower bound procedure derived in this 

dissertation incorporates several well known lower bounds which are originally 

developed for parallel discrete processing machines, parallel batch processing machines 

or hybrid flow shops with discrete processing machines, and enable to calculate a tight 

lower bound for the problem under study.   

Figure 4-1 shows the main steps in the proposed lower bound procedure. First of 

all, the jobs in the batching stage are grouped into batches. Based on this, the existing 

lower bound procedures for parallel discrete-processing machines can be used to 

calculated the single-stage lower bound for the parallel batch processing machines, with 

the job processing times replaced with batch processing times. And then the global lower 

bound for the whole shop is calculated based on the single-stage lower bounds. 

 

  

Figure 4-1 Main Steps of the Proposed Lower Bound Procedure 
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The proposed three-step lower bound procedure is as follows: 

1) Develop a batching plan: A batching scheme proposed by Kashan et al. (2008) is 

applied. Based on Kashan’s batching scheme, a bin packing procedure is used to 

further improve the batching plan. 

2) Derive a lower bound for each stage: A lower bound for the makespan of each 

stage is derived by the scheme proposed by Webster (1996). The lower bound is 

furthered improved by the machine-subset lifting procedure and the bin packing 

procedure. At this step, the batch processing stage is treated as a discrete stage by 

replacing job processing times with batch processing times. 

3) Calculate a global lower bound: two lower bounds for the whole shop are 

calculated using two lower bound schemes, Machine-based Lower Bound 

(MBLB) proposed by Santos (1995) and Stage-based Lower Bound (SBLB) 

proposed by Kurz and Askin (2003) . The lower bound with the greater value is 

chosen as the global lower bound. For small size instances the global lower bound 

can be further enhanced by a job-subset lifting procedure. 

 

4.1.2 Batching Plan 

4.1.2.1 Batching Plan Proposed by Kashan et al. (2008) 

Kashan et al. proposed that a lower bound of the makespan on the parallel 

batching machines can be calculated by allowing jobs to be split and processed in 

different batches. This is done by constructing an instance where each job j, of the 

original problem, is replaced with ݏ jobs of unit size, of which processing times all equal  
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  . The obtained unit-size jobs are sorted in the LPT order. Starting from the top of the

list, successively group every S adjacent jobs into a batch. This batching procedure is 

called LPT-Full batching, and results in the formation of a set B of batches, with |ܤ| ൌቒଵௌ ∑ ∈ݏ ቓ. Based on this, Kashan et al. further improved it by separating the big jobs 

from being spit.  Let J be the original set of jobs, and let J1 be the set of jobs in J that 

satisfy equation 4-1. 

ଵܬ  ൌ ൫݆ ∈ ܵ|ܬ െ ݏ ൏ ݉݅݊∈ሼݏሽ൯ 4-1 

 

 The rest of the jobs in J are assigned to set ܬଶ. If ݆ ∈  ଵ assigned to a batch, theܬ

residual capacity of the batch (S – sj) is smaller than the smallest job. Consequently, all 

the jobs in set J1 are large jobs and will not accommodate any other job in the same batch. 

Each job from J1 is therefore separately assigned to a unique batch. On the other hand, 

each job from ܬଶ is split into unit-sized jobs. Applying the LPT-Full batching rule, a set B 

of batches is formed with |ܤ| ൌ |ଵܬ|  ቒଵௌ ∑ ∈మݏ ቓ. With this modification, the number of 

batches formed might increase and therefore lead to an increment in the lower bound. 

4.1.2.2 Improvement: Bin Packing Procedure 

A Bin Packing Procedure (BPP) is applied here to further improve the batching 

plan. The mechanism of BPP is to calculate the minimum number of batches required (L) 

to contain all the jobs.  If ܮ  ܮ then ,|ܤ| െ  amount of batches should be added to the |ܤ|

former batching plan B.  
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For the set of job sizes ሼݏଵ, … , ݏ ሽ , let W be the set of all distinct valuesݏ ൏ ௌଶ. 
For each integer ݏ ∈ ܹ, let 	 (ݏଵሺܬ ൌ ൫݆ ∈ :ܬ ݏ  ܵ െ ൯ݏ 4-2

(ݏଶሺܬ ൌ ൬݆ ∈ :ܬ 2ܵ ൏ ݏ  ܵ െ ൰ݏ 4-3 

(ݏଷሺܬ ൌ ൬݆ ∈ :ܬ ݏ ൏ ݏ  2ܵ൰ 
4-4 

 

Define ܮఈሺݏ) by 

 

(ݏఈሺܮ ൌ |(ݏଵሺܬ|  |(ݏଶሺܬ|  ݔܽ݉ ቆ0, ቜ∑ (∈యሺ௦ݏ െ ሺ|ܬଶሺݏ)|ܵ െ ∑ ܵ()∈మሺ௦ݏ ቝቇ 
4-5 

 

The number of batches required can be decided by: ܮ ൌ  6-4 (ݏఈሺܮ௦∈ௐݔܽ݉

 

If ܮ  |ܤ| let ,|ܤ| ൌ ܮ by adding ܮ െ  .batches to the former batching plan B |ܤ|

The processing times of the new added batches are set as the the ܮ െ  shortest job |ܤ|

processing times. After batches are formed, let ܲ be the processing time of ܾ ∈  .batch ܤ

List the batches in B in non-increasing order of their processing times such that ଵܲ 
ଶܲ  ⋯  ܲ||. ܲ will be used to calculate the lower bound for the batching stage and 

the whole shop. The BPP might increase the number of batches, and therefore leads to an 

increment in the lower bound. 
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4.1.2.3 The Procedure to Get the Batching Plan 

The procedure to get the batching plan for deriving the lower bound is given in 

Figure 4-2.  

Identify big-size 
jobs

End

Form batches B1

with big-size jobs
Start

Form batches B2

with remaining jobs

Combine B1 and B2

to form B

Apply Bin Packing 
Procedure to 
improve B

 

Figure 4-2 Batching Procedure for Lower Bound 

1) Identify big-size jobs: Find out all the big-size jobs ܬଵ which cannot accommodate 

any other job in the same batch using the equation 4-1. 

2) Form batches with big-size jobs: Form a set of batches |ܤଵ|  by putting each job 

of ܬଵ into one batch. 

3) Form batches with remaining jobs: Split every remaining job ݆ into ݏ  unit-size 

jobs with processing times equal to , thus form a job set ܬଶ. Sort ܬଶ in the LPT 

order and successively group the S jobs with longest processing times into the 

same batch to form a second set of batches ܤଶ, with |ܤଶ| ൌ ቒଵௌ ∑ 	∈మݏ ቓ. 
4) Combine ܤଵ and ܤଶ to obtain all batches B and corresponding batch processing 

times ܲ sorted by LPT rule.  

5) Apply the bin packing procedure described in 4.1.2.2 to improve the batching 

plan. 

Among this procedure, step 1) to 4) is the same as the procedure proposed by 

Kashan et al., and 5) is proposed by author of this dissertation. 
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4.1.3 Single-stage Lower Bound 

4.1.3.1 A Trivial Lower Bound 

Let ܲ ൌ ሼଵ, … ,   is the processing time of job j ሽ be a problem instance where

and jobs are indexed such that ଵ  ଶ  ⋯   . Assume the number of machines in

parallel is m and all machines are available at time 0. A trivial lower bound for the 

scheduling problem P//Cmax can be derived by using following equation by Baker 

(1974):  

0ܾ݈ ൌ ݔܽ݉ ቆଵ, ቜ∑ ݉ ቝ ,    ାଵቇ
4-7 

The first term in 4-7 is built on machine capacity relaxation. It implies that the 

makespan has to be at least the largest processing time of all the jobs. The second term is 

based on the preemption relaxation. It allows the total processing time of all the jobs 

equally divided among all the m machines. The third terms implies that if there are at 

least m+1 jobs in J, the makespan has to greater than or equal to the sum of the ݉௧ and ሺ݉  1)௧ smallest processing times.  

4.1.3.2 An Enhanced Lower Bound 

An enhanced lower bound for P//Cmax based on Webster’s general lower bound 

(1996)  is used to obtain a tighter lower bound. Webster’s general lower bound is 

originally used for parallel discrete processing machines. A modification is applied in this 

dissertation to accommodated batch processing. 

In Webster’s lower bound derivation, for ܲ ൌ ሼଵ, … ,  ሽ, with p sorted in the

non-increasing order, let ఘܲ be a relaxed instance defined as 4-8.  
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ఘܲ ൌ ሼଵ  ⋯ ,ᇲ ,ߩ … ,  ሽ           4-8ߩ

 

Where ߩ ൌ gcd	ሺଵ, … ,  (
 ݊ᇱ  ݊ , and ݊ᇱ  is the largest integer that satisfies at least one of the 

following conditions: 1) /ାଵ	is	integer	for	݆ ൌ 1,… , ݊ᇱ െ 1             4-9

ିଵ (2   ⋯  ᇲିଶ 4-10

3) ݊ᇱ  2݉ and ଶିᇲାଵ   ᇲ 4-112

The minimum makespan of  ఘܲ , can be found using the LPT rule, and denoted as 

ைܹ൫ ఘܲ൯. 
For batch processing stage, to apply Webster’s lower bound scheme, each batch is 

treats as a job, and job processing times are replaced with batching processing times. 

Taking into acount the trivial lower bound 4-7, a tighter lower bound for parallel 

machines scheduling problem can be obtained by using following equation: 

ܾ݈  ൌ ൫ݔܽ݉ ைܹ൫ ఘܲ൯, ,ଵ    ାଵ൯ 4-12

 

4.1.3.3 Improvement 1: Machine Sub-set Lifting Procedure 

A machine sub-set lifting procedure proposed by Haouari (2004) is used to 

improve the lower bound quality. According to the lemma proposed by the authors, in 

any feasible schedule of a parallel machine problem with n jobs and m machines, there is 

at least a set of k machines (1  ݇  ݉), which must process at least ߣ jobs, where 
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ߣ  ൌ ݇ ቔ ݊݉ ቕ  ݉݅݊ ቀ݇, ݊ െ ቔ ݊݉ ቕ݉ቁ 4-13 

 

Therefore a reduced problem can be constructed with k machines in parallel 

(1  ݇  ݉) and ߣ jobs of J with smallest processing times. Let ܾ݈ denotes a lower 

bound for the reduced instance ߣ , a lower bound can be derived from following 

equation: 

ܾ݈  ൌ   4-14ܾ݈ଵஸஸݔܽ݉

 

4.1.3.4 Improvement 2: Bin Packing Procedure 

Martello (1990) derived a lower bound for P||Cmax by continuously checking 

whether the n jobs could be processed on the m machines such that the makespan does 

not exceed a trial value C. If the number of machines required exceeds m, the lower 

bound is then increased by one unit: C=C+1. This idea is applied here to improve plb. 

Let V be the set of all distinct values  ൏ ଶ. For each integer  ∈ ܸ, let ܬଵሺ) ൌ ൫݆ ∈ :ܬ   ܥ െ  ൯ 4-15

(ଶሺܬ ൌ ൬݆ ∈ :ܬ 2ܥ ൏   ܥ െ  ൰
4-16 

(ଷሺܬ ൌ ൬݆ ∈ :ܬ  ൏    2൰ܥ
4-17 
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Define ܮఈሺ) by 

(ఈሺܮ ൌ |(ଵሺܬ|  |(ଶሺܬ|  ݔܽ݉ ቆ0, ቜ∑ (∈యሺ െ ሺ|ܬଶሺܥ|( െ ∑ ܥ()∈మሺ ቝቇ 
4-18 

 

Number of machines required can be decided by: ܮ ൌ  19-4 (ఈሺܮ∈ݔܽ݉

 

If ܮ  ݉, let ܥ ൌ ܥ  1, and repeat above procedure until ܮ  ݉. The final value 

of ܥ is a valid lower bound for the P||Cmax. 

4.1.3.5 The Procedure to Calculate Single-stage Lower bound 

Based on above discussion, a procedure to calculate the single-stage lower bound 

is shown in Figure 4-3 and presented as below: 

 

Figure 4-3 The Procedure to Calculate plb 

1) If the stage is the batching stage, replace the original processing times ܲ with 

batch processing times ܲ. 

2) Set ߩ ൌ gcd	ሺଵ, … ,  (
3) Construct a reduce problem instance ఘܲ using equation           4-8,             4-9, 

4-10 and 4-11. 
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4) Apply the LPT rule on the reduced instance ఘܲ to obtain the optimal makespan, 

ைܹ൫ ఘܲ൯. 
5) Calculate the single stage lower bound, ܾ݈,  using equation 4-12. 

6) Apply machine subset lifting procedure to improve ܾ݈. 

7) Apply bin packing procedure to further improve ܾ݈. 

 

4.1.4 Global Lower Bound 

4.1.4.1 A Trivial Global Lower bound 

A trivial lower bound of makespan for the problem under study is given in the 

equation 4-20.   

 

0ܤܮܩ ൌ ∈ݔܽ݉ ൜ ∈ூ ൠ 4-20 

 

It is based on the relaxation of machine capacities in all stages by assuming 

machine number  job number in each stage. This trivial lower bound will be combined 

with lower bounds derived in the rest of this chapter to obtain a final lower bound. 

4.1.4.2 Stage-based Lower bound Scheme 

The stage-based lower bound is in the method proposed by Kurz and Askin 

(2003) and Kashan (2008). A lower bound of the whole shop is developed based on a 

single stage and the greatest stage-based bound is the bound which can be used for the 
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entire problem. The stage-based bounds are denoted as ݈ܾ1, and the global lower bounds 

are denoted as GLB1. A global lower bound GLB1 can be derived as follows: 1ܤܮܩ ൌ  ∈ூሼ݈ܾ1ሽ 4-21ݔܽ݉

Where 

݈ܾ1 ൌ 	݉݅ ݊∈ ቐିଵ
ୀଵ ቑ  ܾ݈  ݉݅ ݊∈ ቐ  ||ூ

ୀାଵ ቑ 
4-22 

  is the lower bound for the makespan at stage i. Stage i could beܾ݈

batch processing stage or discrete stage. The procedure to calculate ܾ݈   is 

stated in 4.1.3.  

4.1.4.3 Machine-based Lower Bound Scheme 

A lower bound originally proposed by Santos (1995) is applied to calculate the 

machine-based lower bound.It is based on the concept of finding the mean of the 

machine-based lower bounds. This scheme is originally used for hybrid flow shops with 

discrete processing machines. In this dissertation, it is modified to accommodate batch 

processing. 

A machine-based lower bound is calculated by using following equations: 2ܤܮܩ ൌ  ሼ݈ܾ2ሽ 4-23ݔܽ݉

Where 

݈ܾ2 ൌ 1݉ ܮܬ௩
௩ୀଵ  

ୀଵ ܴܬ௩
௩ୀଵ  4-24 
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݈ܾ2 ൌ 1݉ ܮܬ௩
௩ୀଵ  

ୀଵ ܴܬ௩
௩ୀଵ  4-25 

݂	݁ݑ݈ܽݒ	ݐݏ݈݈݁ܽ݉ݏ	ℎݐ݈	ℎ݁ݐ :ܮܬ ∑ , ∀݆ ∈ ିଵୀଵ,ܬ ݂	݁ݑ݈ܽݒ	ݐݏ݈݈݁ܽ݉ݏ	ℎݐ݈	ℎ݁ݐ :ܴܬ .	݅	݀݁ݔ݂݅	ܽ	ݎ݂	 ∑ , ∀݆ ∈ ூ|ୀାଵ|,	ܬ 	 .	݅	݀݁ݔ݂݅	ܽ	ݎ݂	 ݉:							the	number	of	machines	at	stage	i	
 

To modify Santo’s lower bound scheme to accommodate batch processing,   is 

replaced by ܲ at batch processing stage, and ܲ can be obtained using the batching plan 

introduced in 4.1.2. 

4.1.4.4 The Global Lower Bound 

The global lower bound GLB is determined by the maximum value among the 

trivial lower bound GLB0, the stage-based lower bound GLB1 and the machine-based 

lower bound GLB2. ܤܮܩ ൌ ,0ܤܮܩሼݔܽ݉ ,1ܤܮܩ  2ሽ 4-26ܤܮܩ

 

4.1.5 A Lifting Procedure 

A job sub-set lifting procedure proposed by Carlier and Pinson (1998) can find a 

tighter lower bound by considering different subsets of J. Define ܬ ⊆  as the subset of ܬ

jobs that contains any k jobs from J. Let ܤܮܩ denotes a lower bound for the reduced 

instance ܬ, a valid lower bound can be found as follows: 
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ܤܮܩ ൌ   4-27ܤܮܩ∈ஸஸݔܽ݉

Where ݉݅݊∈ூ݉ is the minimum number of machines in parallel among all stages. 

Note that it is only necessary to consider the values of ݇  ݉݅݊∈ூ݉, since the 

derived lower bound is dominated by the trivial bound ݉ܽݔ∈൛∑ ∈ூ ൟ. 
4.1.6 The Global Lower Bound Procedure 

 The overall procedure to calculate the lower bound for the makespan on the 

problem under study is given in Figure 4-4 and presented as follows: 

 

 

Figure 4-4 The Procedure to Calculate GLB 

 

1) For the batching stage, get the batching plan using the method introduced in 4.1.2 

to obtain ܲ.  

2) Calculate the single-stage lower bounds ܾ݈  for each stage i as introduced in 

4.1.3. If i is the batching stage, replace the original processing times in stage i 

with ܲ. 

3) Calculate the trivial global lower bound GLB0 using equation 4-20. Calculate the 

stage-based lower bound GLB1 using equations 4-21 and 4-22. Calculate the 

machine-based lower bound GLB2 using equations and 4-23, 4-24 and 4-25. 

Determine the global lower bound using equation 4-26. 
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4) Apply job subset lifting procedure introduced in 4.1.4.4 to improve GLB. 

4.2 Qualification of the Proposed Lower Bound 

4.2.1 Experiment Design 

Computational experiments are conducted to evaluate the quality of the proposed 

lower bound. First of all, the proposed lower bound for parallel batching machines, plb, is 

compared with the lower bound derived by Kashan (2008). And then GLB, the proposed 

global lower bound for the problem under study, is first compared with the makespan 

solved by CPLEX, and then evaluated against the lower bound proposed by Amin-Naseri 

(2009). 

4.2.2 Comparing plb with the Lower Bound by Kashan et al (2008) 

The lower bound of the makespan on parallel batching machines, plb, is derived 

in 4.1.3, and is a component of the global lower bound GLB. The quality of plb is 

compared with the quality of lower bound derived by Kashan. Kashan ‘s lower bound is 

calculated using following equation. 

௫ܥ ൌ ݔܽ݉ ቊ݉ܽݔ∈൛ൟ, ∑ ܲ∈݉ , ܲ  ܲାଵቋ 
4-28 

Where 

 Pb is the batch processing time of ܾ ∈  .ܤ

` ଵܲ  ଶܲ  ⋯  ܲ|| 
The experimental factors are given in Table 4-1. A total of 1200 instances are 

tested. The average improvement of plb over Kashan’s lower bound is calculated by 

following equation: 
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ܯܫ% ൌ	ܾ݈	 െ ݏ′ℎܽ݊ݏܽܭ ݎ݁ݓܮ ݏ′ℎܽ݊ݏܽܭ݀݊ݑܤ ݎ݁ݓܮ ݀݊ݑܤ ൈ 100% 
4-29 

 

Table 4-1 Experimental Factors  

Factors Level Factors Level 
n 10, 20, 50, 100, 200 m 3, 5 

MaxS 5, 20 MaxP 10, 30 
Machine Capacity 20 

 

The job size s is generated from the discrete uniform [1, MaxS], and the 

processing time p is generated from the discrete uniform [1, MaxP]. Machine capacity is 

fixed at 20, and machine number is 2 or 4. 

The comparison result reveals that plb dominates Kashan’s lower bound and 

results in a 0.42% improvement in average for all instances tested. 

 

 

Figure 4-5 Percentage of Improvement of plb Over Kashan’s Lower Bound 
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4.2.3 Comparing GLB with the Optimal Makespan Solved by CPLEX 

The lower bound is compared with the makespan of the optimal solution solved 

by CPLEX, denoted as ܥ௫ை். The relative gap between the lower bound and the optimal 

makespan, as defined in following equation, is used to evaluate the lower bound tightness.  

ை்ିீܸܧܦܴ ൌ ௫ை்ܥ െ ௫ை்ܥܤܮܩ ൈ 100% 
4-30 

The experiment data are randomly generated based on two factors:  

Number of Jobs (n): 4, 5, 6, 8, 10, 20 

Number of Stages (v): 3, 5 

The number of machines at the batching stage is fixed at 2 and the number of 

machines at discrete stages is either one or two. The capacity of batching machine is 

assumed to be 10 in all instances, and the size of job is generated from discrete uniform 

distribution of [1, 8].  

With two factors considered, there are a total of 12 scenarios and 30 problem 

instances are generated for each scenario resulting in 360 problem instances in total.  

 

Figure 4-6 Number of Instances solved to the Optimality by CPLEX in 30 Minutes 
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Among 360 randomly generate instances, optimal solutions are found within 30 

minutes by CPLEX for 103 instances. The distribution of instances solved to the 

optimality by CPLEX is presented in Figure 4-6. The optimal solution is found for most 

of the 4-job instances, and 5-job instances with 3 stages. Among instances with 5 jobs 

and 5 stages, 12 instances out of 30 are solved to the optimality. For 6-job instances with 

3 stages and 5 stages, optimal solution is found for only 5 out of 30 instances and 1 out of 

30 instances, respectively. None of the 8-job, 10-job and 20-job instances is solved to the 

optimality. For all the instances whose optimal solution are found within 30 minutes, the 

relative gap between the linear relaxation and the best solution found, MIPGAP, are 

given in Error! Reference source not found.. It shows that the gap increases 

substantially when the number of jobs increases. For 10-job instances and 20-job 

instances, the gaps exceed 50%, indicating the poor quality of the solution found by 

CPLEX. 

 

Figure 4-7 Average MIPGAP for Instances Not Solved to the Optimality 
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Figure 4-8 shows the average ܴܸܧܦ of lower bounds from the optimal makespan 

for all 103 instances discriminated by number of jobs and stages. The average RDEV for 

all 103 instances is 6.20%. Among 4-job instances, the RDEV is 5.43% and 6.35% for 3-

stage and 5-stage instances, respectively. Among 5-job instances, the RDEV is 7.52% and 

5.82% for 3-stage and 5-stage instances. While among 6-job instances, the RDEV is 5.19% 

and 0% for 3-stage and 5-stage instances. Please note that only one instance is included in 

the 6-job/5-stage category. Therefore, this category should be discarded.  The result 

reveals that the proposed lower bound is consistently close to the optimal makespan, and 

the number of stages and number of jobs show no great impact on lower bound quality. 

 

 

Figure 4-8 Relative Deviation of GLB from the Optimal Makespan 

 

For the remaining instances whose optimal solution is not found by CPLEX 

within 30 minutes, the lower bound is compared with the best integer solution found, and 
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the relative gap, ܴܸܧܦௌିீ, is calculated using the equation 4-29. The value of ܴܸܧܦௌିீ is given in Figure 4-9. The relative gap between GLB and the best integer 

solution found is significantly larger than the gap between GLB and the optimal solution, 

and the gap increases substantially when the number of jobs or number of stages 

increases. This can be explained by the poor quality of the CPLEX solution for larger 

instances. As we can see in Error! Reference source not found., the best integer 

solution found is deviated from the linear relaxation solution when the problem size 

increases. 

 

ௌିீܸܧܦܴ ൌ ௫ை்ܥ െ ௫ை்ܥܤܮܩ ൈ 100% 
4-31 

  

 

Figure 4-9 Relative Deviation (RDEV) of GLB 
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4.2.4 Comparing GLB with Amin-Naseri’s Lower Bound (ALB) 

Amin-Naseri (2009) calculate a lower bound for the makespan on the hybrid flow 

shop with parallel batching machines, of which machines are uniform in each stage and 

job sizes are identical. Since the problem the author studied is similar, with a few 

modifications, Amin-Naseri’s lower bound procedure can be used to calculate the lower 

bound for our problem. Machine speeds are set to one, and arbitrary job sizes are added. 

The modified Amin-Naseri’s lower bound is calculated using following equations: 

ܤܮܣ ൌ ∈,∈ூݔܽ݉ ቐ݈ܾ,݉ܽݔ∈ ൝∈ூ ൡቑ 
4-32 

Where 

݈ܾ ൌ ݉݅ ݊∈൛ൟିଵ
ୀଵ  

݉ܽݔ ቊ∑ ൫ೕൈ௦ೕ൯ೕ∈ൈ  ൟቋ     if i is the batching  stage∈൛ݔܽ݉,

݉ܽݔ ቊ∑ ೕೕ∈ ,  ൟቋ            if i is the batching  stage∈൛ݔܽ݉

  ݉݅ ݊∈൛ൟڿூۀ
ୀାଵ  

4-33 

݉  is the number of parallel machines in stage i. 

C is the capacity of batch processing machines. 

ALB and the proposed lower bound GLB are tested on 1458 randomly generated 

instances.  The average improvement of GLB over LB is calculated by following equation: 
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ܯܫ% ൌ ܤܮܩ െ ܤܮܣܤܮܣ ൈ 100% 
4-34 

 

The comparison result reveals that GLB dominates ALB and results in a 3.18% 

improvement in average for all instances tested. The percentage of improvement 

discriminated by number of jobs is given in Figure 4-10. Among all 1458 instances, GLB 

outperforms LB for 965 instances, while LB outperforms GLB for 0 instance. 

 

 

Figure 4-10 Relative Improvement of GLB on Amin-Naseri’s Lower Bound 

4.2.5 Summary 

Based on the experiment results, a conclusion can be made that the proposed 

lower bound procedure generates tight lower bound for the problem under study. The 

lower bound quality remains consistent when the problem size increases.  The derived 

lower bound dominates the lower bound proposed by Amin-Naseri, and the derived lower 
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bound on parallel batching machines dominates the lower bound proposed by by Kashan 

et al (2008).  
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5 PROPOSED HEURISTIC APPROACH 

A bottleneck-first-decomposition heuristic (BFD) is proposed for the problem 

under study in this chapter to overcome the computational (time) problem encountered 

while using the commercial solver for analytic solutions. 

 

 

Figure 5-1 Problem Decomposition 

5.1 Overview of the Proposed Heuristic Approach 

The proposed BFD heuristic is inspired by the Theory of Constraint and 

decomposition approaches, and follows the basic procedure of the shifting bottleneck 

heuristic designed by Adams (1988) and improved by Balas (1995). Even though shifting 

bottleneck is originally designed for job shops, some literature has applied it to flow 

shops, for example Cheng et al. (2001). To reduce computational time, instead of treating 

a single-stage scheduling as a sub-problem, BFD decomposes the problem into three sub-

problems: parallel batch processing machines scheduling problem (PB), upstream hybrid 

flow shop scheduling problem (UHFS) and downstream hybrid flow shop scheduling 

problem (DHFS) (Figure 5-1). In case that batch processing machines lie at the first 

stage, UHFS doesn’t exist, while when PB lies at the last stage, DHFS no longer exists. 
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The original problem ܨܨหܾܽܿݐℎ1, ݔܽ݉ܥหݏ  is referred to as master problem. The 

heuristic schedules one sub-problem at a time until all sub-problems have been scheduled. 

A re-scheduling process is also included in the heuristic: every time a sub-problem is 

scheduled, all previously scheduled sub-problems need to be re-scheduled.   

 

Figure 5-2 Major Steps of BFD 

 

The major steps of BFD are given in Figure 5-2, and is described as below: 

Step 1: Let M be the set of all sub-problems and M0 be the set of sub-
problems which have been scheduled. Set M0=Φ. 

Step 2: Formulate each un-scheduled sub-problem in M. 

Step 3: Identify a bottleneck sub-problem Mm∈ . 

Step 4: Solving sub-problem m. 

Step 5: Re-schedule all sub-problems in M0 based on the schedule of m. 

Step 6: Set 0ܯ ൌ 0ܯ ∪ ሼ݉ሽ and ܯ ൌ  .ሼ݉ሽ\ܯ
Step 7: If M= Φ, stop. Otherwise, go to step 2.  

 The BFD heuristic is applied forwardly and backwardly on the same problem 

instance, and the better solution is reported as the final solution. 
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Although the shifting bottleneck procedure is a common basic procedure, each 

step can be accomplished in different ways. In the remaining part of this chapter, each 

major step will be discussed in detail. 

The BFD heuristic consists of a main procedure and several sub-procedures. The 

map of the main procedure and sub-procedures are shown in    Figure 

5-3. The sub-procedure, Bottleneck Identification and Scheduling (BIS), is called by the 

main BFD procedure iteratively to identify and schedule the bottleneck sub-problem. 

When scheduling the bottleneck sub-problem, two procedures, List-scheduling-with-

delay (LSD) and Bottleneck Approach based on Jackson’s Heuristic (BA-Jackson), are 

called by BIS to solve the sub-problems. Additionally, BA-Jackson also has a sub-

procedure, Modified Jackson's heuristic, to identify and schedule the bottleneck stage of 

the sub-problem. The details of these procedures are provided in 5.4-5.6. 

 

 

   Figure 5-3 Map of the Heuristic Procedures  
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5.2 Sub-problem Formulation 

Sub-problems have to be formulated in such a way that interactions between sub-

problems should be formed appropriately, so as to facilitate the search for a good solution 

for the master problem. According to Ovacik (1997), the interactions between sub-

problems come from two sources: job arrival times at a given sub-problem from the 

upstream shops, and job delivery time required for each job to complete its processing 

after leaving the current sub-problem. These are determined by the scheduling decisions 

taken at all previously scheduled sub-problems. Once a sub-problem is scheduled, 

constraints are imposed on the remaining sub-problems. The time by which a job is ready 

for processing at a particular sub-problem depends on the job precedence relationship at 

previous sub-problems. This defines the job arrival times for the current sub-problem (ݎ). 
On the other hand, it is also important to estimate for how long the job will be stay in the 

shop after it leaves current sub-problem, which is denoted as delivery time (ݍ). These 

arrival times and delivery times form the input to schedule the current sub-problem.  

However, since we do not have the schedule for each sub-problem at the 

beginning, the arrival times and delivery times cannot be determined. To resolve this 

issue, unscheduled sub-problems are assumed to have infinite capacity so that the 

precedence relationships between jobs are ignored temporarily. Based on this assumption, 

a lower bound of the arrival times (ݎ) can be obtained by summating the processing 

times of the job in upstream shops (5-1), and delivery times (ݍ) can be calculated by 

adding the processing times in downstream shops (5-2). 
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ݎ ൌ ∈  5-1  

ݍ ൌ ∈  5-2  

Where  

U is the set of stages prior to the current sub-problem. 

D is the set of stages in the downstream of the current sub-problem. 

 

Whenever a sub-problem is scheduled, the makespan of the whole problem will 

be prolonged resulting from the newly added job precedence relationship. Meanwhile, 

new constraints will impose on the arrival times and delivery times at the remaining sub-

problems. The arrival time is set as the job completion time in the previous stage (5-3), 

and the delivery time can be obtained by calculating the shortest path at downstream 

stages (5-4). 

ݎ ൌ ݍ  ,ିଵ 5-3ݓ ൌ ܵܶ ܲ, 5-4  

Where  ݓ,ିଵ is the completion time of job j at stage i-1. ܵܶ ܲ, is the shortest path for job j at downstream stages. It can be obtained by 

calculating the earliest job completion time in the reversed downstream stages 

with predefined job precedence relationship. 
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The sub-problem for batching stage is modeled as parallel batch processing 

machines scheduling problem with non-identical arrival times, delivery times and 

arbitrary job sizes, and the objective is to minimize the time by which all jobs are 

delivered. The sub-problem can be presented as ܲหݎ, ,ݍ ,ݏ  ݍ  andݎ ௫ , withܥℎหܿݐܾܽ
calculated by using equations 5-1, 5-2, 5-3 and 5-4. When batch processing machines are 

located at the last stage, ݍ  equals 0. On the other hand, when the batch processing 

machines are at the first stage, ݎ equals to 0.  Both scenarios are special cases of ܲหݎ,ݍ, ௫ܥ|ℎܿݐܾܽ	ݏ . Therefore, the same sub-problem formulation can be used for 

scheduling the batching stage no matter where it locates.  

 

Table 5-1 Sub-problem Formulation 

Sub-
problem 

Position Formulation 
Arrival Time 

 Delivery Time (ݎ)
 (ݍ)

PB Front 

ܲหݎ, ,ݍ ,ݏ  ௫ܥℎหܿݐܾܽ

ݍ 0 ൌ ݍ∈or ൌ ܵܶ ܲ,Interior ݎ ൌ ∈  

or ݎ ൌ  ,ିଵݓ

Rear 

0
 

DHFS Downstream ܨܨหݎ,  ௫. UHFS Upstreamܥหݍ

0 
ݍ ൌ ݍ∈or ൌ ܵܶ ܲ, 

 

The upstream HFS and downstream HFS can be both modeled as hybrid flow 

shop scheduling problem with arrival times, delivery times and the objective to minimize 
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the time by which all jobs are delivered, or ܨܨหݎ,  ௫. For upstream HFS, arrivalܥหݍ

time jr  equals zero, and the sub-problem can be simplified as ܨܨห	ݍหܥ௫ . The 

delivery time ݍ is determined by the schedule at downstream stages. For downstream 

HFS,  ݍ  equals to zero, and the sub-problem can be simplified as ܨܨหݎ, หܥ௫. The 

arrival time ݎ depends on the schedule at upsteam stages.  

An overview of sub-problem formulation is given in Table 5-1. 

5.3 Sub-problem Prioritization 

According to the theory of constraint, the sub-problem with more critical resource 

constraint has the higher priority to be scheduled. Therefore, sub-problems are scheduled 

in the order of non-decreasing criticality of resource constraints. In this research, Cmax is 

used to measure the criticality of resource constraints. The sub-problem with the largest 

Cmax has the highest scheduling priority. 

5.4 Sub-problem Solving 

Selection of the sub-problem solution approach depends on a tradeoff between 

time and quality. In original shifting bottleneck procedures, branch-and-bound is applied 

to find the optimal solution for single machine scheduling problem, but it is 

computationally expensive, and the shifting bottleneck procedure built on branch and 

bound can only solve up to ten-job and ten-stage problem within a minutes. Since the 

problem under study contains batch processing machines, it is even more complicated, 

hence an exact method like branch and bound will require even more time to solve the 
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sub-problem. To reduce the computational cost, heuristic methods will be applied to 

solve sub-problems efficiently.  

5.4.1 Sub-problem 1: Scheduling Parallel Batch Processing Machines with Arrival 

Times, Delivery Times and Non-identical Job Sizes 

5.4.1.1 Problem Description 

This sub-problem can be described as follows: a set J of jobs and a set M of 

identical batch processing machines with capacity constraint C are given. Each job j∈J is 

described by (pj, rj, qj, sj) representing its processing time, arrival time, delivery time and 

size, respectively. The objective is to find a set B of batches and to schedule these batches 

such that the time by which all jobs are delivered is minimized. The scheduling problem 

is denoted as ܲหݎ, ,ݍ ,ݏ	   .௫, and is known to be strongly NP-hardܥℎหܿݐܾܽ

5.4.1.2 Proposed Solution Approach 

To the best of author’s knowledge, the literature on heuristics for the ܲหݎ,ݍ, ,ݏ  ,௫ can not be found. Two most close researches on a reduced problemܥ|ℎܿݐܾܽ

ܲหݎ, ,ݏ ௫ܥℎหܿݐܾܽ , are conducted by Chung (2008) and by Vélez-Gallego (2009). 

Both researches proposed the heuristics based on batching first, sequencing second 

strategy. The heuristics solve the problem in two phases: first a batching procedure is 

applied to form the batches, and then scheduling rules (earliest ready time, or longest 

earliest completion time) are used to schedule the batches formed. However this two-

phase procedure has a drawback which might hurt the solution quality: if a job is ready 

before a machine is available, the ready time of this job should no longer be a valid 



65 

constraint. The two-phase procedure does not take into account this fact, so that might 

lead to a bad solution by considering unnecessary ready time constraints. Another 

reduced problem, ܲหݎ, ௫ܥหݍ , is studied by Gusfield (1984), Carlier (1987; 1998) 

and Gharbi (2007). They investigated the so-called Jackson’s algorithm to minimize the 

time by which all jobs are delivered. Jackson’s algorithm is a simple list scheduling 

algorithm based on a dispatching rule which schedules, on the earliest available machine, 

the available job with a largest delivery. Since Jackson’s algorithm is originally 

developed for discrete machine scheduling problem, it does not deal with batching, 

therefore cannot be applied directly to solve our sub-problem ܲหݎ, ,ݍ ,ݏ  .௫ܥℎหܿݐܾܽ

In this research, a new heuristic called List-scheduling-with-delay (LSD) is 

developed to solve ܲหݎ, ,ݍ ,ݏ ௫ܥℎหܿݐܾܽ . LSD incorporates the merits of the list 

scheduling and the Delay Heuristic proposed by Lee and Uzsoy (1999). It allows for 

postponement in processing a batch in order to accommodate a job that is due to arrive 

soon and might be combined with the delayed batch as long as the machine capacity 

constraint is not violated. Instead of separating batching procedure from scheduling 

procedure, LSD integrates these two procedures. Batches are formed and scheduled 

concurrently. Whenever a new batch is formed and scheduled, machine available time 

will be updated. If a job is ready by the time when a machine is available, its ready time 

constraint will thus become invalid. All the unscheduled jobs which are ready to be 

processed will then form a set of job candidates to be assigned to that machine. By doing 

this, LSD avoids the unnecessary ready time constraints and thus improves the solution 

quality.  
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Let t  be the earliest time when at least one machine and one job are available, 

and a certain period of delay has passed. At time t , amongst ready jobs Jt , starting from 

the one with the longest summation of processing time and delivery time (   ),  jobsݍ

are added one by one into current batch as long as the machine capacity is not exceeded. 

If all ݍ equal to zero, the dispatching rule is then reduced to LPT. The batch is then 

assigned to the first available machine l , and the machine available time is updated. 

Batching process is repeated until all jobs have been scheduled. The procedure of LSD is 

shown in Figure 5-4.  

 

Figure 5-4 Procedure of LSD 

 

The delay period is a parameter for the LSD heuristic, and the value is set by 

following equation: 

ݕ݈ܽ݁݀ ൌ ൟݎ∈൛ݔܽ݉ െ ݉݅ ݊∈൛ݎൟ݊ െ 1 ൈ ݇, ∀݇ ൌ 0,1, …݊ െ 1 
5-5  

Where n is the number of jobs. 



67 

For each problem instance, the LSD algorithm will be run n times, each with a 

different delay value calculated from the equation 5-5. After n iterations, the best result is 

reported. Taking advantage of the reversibility feature, the LSD algorithm can be also 

applied backwardly on the problem instance, with a reversed routing and time frame, and 

the job arrival times and delivery times switched. The better solution between the forward 

result and backward result is chosen as the final solution. 

5.4.1.3 A Numerical Example  

A numerical example is given here to illustrate the algorithm. There are two batch 

processing machines in parallel, each with 10-unit capacity. The processing times, sizes, 

arrival times and delivery times of the jobs are shown in Table 5-2. 

Table 5-2 Data of the Numerical Example 

Jobs p s r q    ݍ

Job 1 7 3 6 0 7 

Job 2 8 8 6 9 17 

Job 3 3 3 4 3 6 

Job 4 8 4 3 5 13 

Job 5 6 5 7 7 13 

Job 6 5 2 8 4 9 

 

To simplify the process, assume k=4 in this iteration.  

First, we calculate the delay period:  

4
1

)(min)(max
×

−
−

= ∈∈

n

rr
delay jJjjJj = 4

5

38 ×−
=4 

The procedure of scheduling can be found in Table 5-3.  
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Table 5-3 Scheduling Procedure of Numerical Example 

J t Jt w Machine 1 Machine 2 Cmax’ 

1,2,3,4,5,6 7 2, 4, 5, 1, 3 2 (2)  23

1,3,4,5,6 7  4, 5, 1, 3 4 (4) 16

1,3,5,6  5, 1, 3 5 (4,5) 22

1,3,6 18 6,1,3 6 (6)  23

1,3  1,3 1 (6,1)  25

1  3 3 (6,1,3)  25

 

At the beginning of the scheduling, a decision point in time t is calculated by  max൫0,݉݅ ݊∈ݎ൯  ݕ݈ܽ݁݀ ൌ 3  4 ൌ 7 . All jobs ready by time t are added to a 

candidate set Jt, and ranked in non-deceasing order of     . The job sequence in Jt isݍ

(2, 4, 5, 1, 3). The first job, job 2, is assigned to a new batch, and removed from both J 

and Jt . Since S2=8, job 2 cannot accommodate any other job in the same batch, this batch 

is closed and be processed on machine1. ݔܽ݉ܥᇱ ൌ ଶݎ  ଶ  ଶݍ ൌ 8  6  9 ൌ 23. This 

cycle repeats until all jobs are scheduled.  The ݔܽ݉ܥᇱ obtained is 25.  

The final schedule is obtained as below: 

Machine 1: (2) → (6, 1, 3) 

Machine 2: (4, 5) 

Cmax=25. 

The solution is proved to be optimal by CPLEX.  

5.4.1.4 Evaluation of Solution Quality 

An experiment is performed to evaluate the solution quality of LSD against other 

two heuristics from literatures, the JobSimilarity (JS) proposed by Vélez-Gallego (2009) 



69 

and the ModifiedDelay (MD) proposed by Chung (2008). All three heuristics are tested 

on the same set of random instances generated in the same way as Vélez-Gallego did in 

his research. A problem instance is defined by a set of n jobs and a set of m machines. 

Each job j is described by the triplet {, ݎ, ݏ}, and each machine is described by its 

capacity S. The processing times, ready times and job sizes are sampled from a discrete 

uniform (DU) random variable so that ~ܷܦሾ1,ܲݔܽܯሿ ,ሾ1ܷܦ~ݎ , ሿܼߩ  and ݏ~ܷܦሾ1,ܵݔܽܯሿ, where ܼ ൌ ∑ ∈  and 0  ߩ  1.The factors are given in Table 5-4.  

Table 5-4 Experimental Factors 

Factors Level Factors Level 

n 10, 20, 50, 100, 200 ρ 5%, 10%, 50% 

m 3, 5 MaxP 10, 30 

MaxS 5, 20 Machine Capacity 20 

 

 

 

Figure 5-5 Solution Quality of LSD, JobSimilarity and ModifiedDelay 
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Experiments result reveals that LSD outperforms both JobSimilarity and 

ModifiedDelay, which, to the best of our knowledge, are the only two heuristic 

approaches available in the literature for the parallel batching machines scheduling 

problem with job ready times and non-identical job sizes. 

5.4.2 Sub-problem 2: Scheduling the Hybrid Flow Shop with Arrival Times and 

Delivery Times 

5.4.2.1 Problem Description 

This sub-problem can be described as below: There are multiple stages of 

machines in series, each stage comprises of one or several identical machines in parallel. 

There are a set of jobs J to be processed following the same routing. Each job j∈J is 

described by ( pj, rj , qj ) representing its processing time, arrival time and delivery time, 

respectively. The objective is to find a schedule that minimizes the time by which all jobs 

are delivered. This sub-problem can be denoted as ܨܨหݎ,  ௫, and is NP hard inܥหݍ

strong sense. 

5.4.2.2 Proposed Solution Approach 

5.4.2.2.1 Overview 

A bottleneck-based heuristic, named Bottleneck Approach based on Jackson’s 

Heuristic (BA-Jackson), is proposed to solve this sub-problem. BA-Jackson incorporates 

the merits from bottleneck-based heuristics and a modified Jackson’s heuristic. In the 

BA-Jackson heuristic, a bottleneck stage is first identified and scheduled by applying the 
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Modified Jackson’s Heuristic, and then upstream and downstream stages are scheduled 

sequentially using the same heuristic. The major procedure is show in Figure 5-6.  

 

 

Figure 5-6 Procedure of BA-Jackson 

5.4.2.2.2 Proposed Modified Jackson’s Heuristic 

The well-known Jackson’s Heuristic is originally developed for parallel machines 

scheduling problem with arrival delivery times to minimize the time by which all jobs 

can be delivered. The heuristic can be states as follows: on the earliest available machine, 

schedule the available job with the largest delivery time. In this research, the Jackson’s 

Heuristic is modified by applying a delay strategy to improve the solution quality. With 

the modification, it is possible that a job with late arrival time but large delivery time be 

processed before a job with early arrival time but less delivery time. The Modified 

Jackson’s Heuristic is described as below: Let t  be the earliest time when at least one 

machine and one job are available, and a certain period of delay has passed. At time t , 

amongst the ready jobs, assign a job with maximum delivery time qj to the first available 

machine, breaking tie with LPT rule. Same as LSD, the value of delay period is 

determined by equation 5-5. For each problem instance, the Modified Jackson’s Heuristic 

will be run n times, each with a different delay value calculated from equation 5-5. After 

n iterations, the best result is reported as the final solution. The procedure of the Modified 

Jackson’s Heuristic is given in Figure 5-7. 
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Figure 5-7 Modified Jackson’s Heuristic with Given Delay Parameter 

 

5.4.2.2.3 The Proposed BA-Jackson 

The procedure of the BA-Jackson heuristic is given as follows: 
 
a. Identify the bottleneck stage 

i

Jj ji

i m

p
WR

 ∈←  //For each stage i, compute the workload ratio. 

iIi WRB ∈← maxarg   //Select the stage B with maximum workload. 

b. Schedule stage B 

Apply Modified Jackson’s Heuristic to schedule the bottleneck stage B, 

which is formulated as ܲหݎ, ݀หܥ௫. Job arrival times ݎ, and job delivery 

times ݀ are calculated as follows: 

ݎ ൌ ቐݎ,					 ܤ ൌ ݎ1  ௦ିଵ௦ୀଵ , ܤ  1 
5-6  

ݍ ൌ ቐݍ  ௦|ூ|௦ୀାଵ , ∀ 1 ൏ ܤ ൏ 				,ݍ|ܫ| ܤ ൌ |ܫ|  
5-7  
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Once schedule is decided and the job delivered time (݀ݐ) is calculated for 

each job, the added value of ݀ݐ due to new imposed job precedence relationship 

at stage B can be calculated by following equation: ݀ܣ ݀ ൌ ݐ݀ െ ∈ூ , ∀ 1 ൏ ܤ ൏ |ܫ|  5-8  

 

c. Schedule upstream stage 

Starting from stage 1, apply Modified Jackson’s Heuristic to schedule 

each stage sequentially. Job arrival times ݎ , and job delivery times ݀  are 

calculated as follows: 

ݎ ൌ ൜ݎ,										 ݅ ൌ 		,,ିଵݐ1ܿ ∀1 ൏ ݅ ൏  ܤ
5-9  

ݍ ൌ ݀ܣ ݀  ௦|ூ|௦ୀାଵ , 1 ൏ ݅ ൏  ܤ
5-10  

d. Schedule downstream stage 

Starting from stage B+1, apply Modified Jackson’s Heuristic to schedule 

each stage sequentially. Job arrival times ݎ , and job delivery times ݀  are 

calculated as follows: ݎ ൌ 	,,ିଵݐܿ ܤ∀ ൏ ݅    11-5 |ܫ|

ݍ ൌ ቐ ௦|ூ|௦ୀାଵ , ∀ ܤ ൏ ݅ ൏ 				,ݍ|ܫ| ݅ ൌ |ܫ|  5-12  
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5.5 Re-scheduling 

Re-scheduling, also called re-optimization, is an essential element of 

decomposition algorithms and proved to be very effective in improving the solution 

quality. It is sometimes also referred to as the control structure. Whenever a new sub-

problem has been scheduled, all the sub-problems that have been scheduled previously 

need to be rescheduled in the non-increasing order of their criticality of resource 

constraints. More specifically, for each sub-problem previously scheduled, the schedule 

obtained before is discarded and treated as without job precedence relationship. The same 

method for solving the sub-problem as described before is then applied to obtain a new 

schedule. This may lead to a better schedule because more information has become 

available with regard to the other sub-problem at this moment.  

5.6 Algorithm of the BFD Heuristic 

The BFD heuristic includes a main procedure and a sub-procedure. The sub-

procedure called Bottleneck Identification and Scheduling (BIS) is called by the main 

BFD procedure iteratively to identify and schedule the bottleneck sub-problem. Both 

procedures are described in this section. 

5.6.1 Main Procedure 

The flow chart of the main procedure is given in Figure 5-8. 
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Figure 5-8 Main Procedure of BFD 

 

The procedure is stated as follows: 

Step 1: Initialization 

If ܤ ൌ ܯ 1 ← ሼܲܵܨܪܦ,ܤሽ. 
Else if ܤ ൌ ܯ |ܫ| ← ሼܷܵܨܪ,  .ሽܤܲ
Else ܯ ← ሼܷܵܨܪ, ,ܤܲ  .ሽܵܨܪܦ
End if 

M0 ← Φ 

Step 2: Identify and schedule the bottleneck sub-problem 

Call BIS(M) to identify and schedule the bottleneck sub-problem ݉ ∈  ܯ

Step 3: Re-scheduling 

1) SUB ← M0 

2) Remove all the job precedence relationship in SUB 
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3) Call BIS(SUB) to identify and schedule the bottleneck sub-problem ݇ ∈   ܤܷܵ

4) SUB ← SUB/ሼ݇ሽ 
5) If Φ≠SUB  

go to 3) 

Else 

 Call BIS({m}) to re-schedule m  

If the scheduling result is improved 

 Update schedules on m and M0 

Go to 1) 

Else 

M0 ← M0	∪ ሼ݉ሽ 
M ← M/ሼ݉ሽ 
Go to step 4 

End if 

Step 4: If ܯ ൌ ∅, go to step 2, otherwise, stop 

 

5.6.2 Sub-procedure: BIS 

The flow chart of the sub-procedure BIS is given in Figure 5-9. 
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Figure 5-9 Sub-procedure: Bottleneck Identification and Scheduling 

 

The procedure is stated as follows: 

Step 1: Randomly pick a sub-problem k from SUB 
Step 2: Calculate arrival times and delivery times for k ݎ ൌ ൜0,																																								݂݅	݇ ൌ ݇	݂݅							,,ିଵݐܿܵܨܪܷ	ݎ	ݐ݊ݎ݂	ܤܲ ൌ ,ݎ݅ݎ݁ݐ݊݅	ܤܲ ܵܨܪܦ	ݎ	ݎܽ݁ݎ	ܤܲ  

ݍ ൌ ൜ܿݐ′,ାଵ,							݂݅	݇ ൌ ,ݐ݊ݎ݂	ܤܲ ݇	݂݅																																													,0ܵܨܪܷ	ݎ	ݎ݅ݎ݁ݐ݊݅	ܤܲ ൌ  ܵܨܪܦ	ݎ	ݎܽ݁ݎ	ܤܲ

Where  ܿݐ,ିଵ is the job completion time of the sub-problem before k. ܿݐ′,ାଵ is the job completion time of the sub-problem after k based 

on non-delay reversed schedule. 

Step 3: Formulate and solve the sub-problem k: 

If k =PB, 

Apply LSD to schedule k. 

Calculate Cmax(k). 

Else 

Apply BA-Jackson to schedule k. 
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Calculate Cmax(k). 

End 

Step 4: Set }/{kSUBSUB← . If Φ≠SUB , go to step 1, otherwise go to step 5. 

Step 5: Find the sub-problem m with maximum value of Cmax. m is considered as 
the bottleneck.  

Step 6: Fix the job precedence relationship on m, and remove the job precedence 
relationship from all other sub-problems in the original set SUB. 

 

5.7 A Numeric Example 

A simple example is used to illustrate the procedure of BFD described in 5.6.1. 

This example includes 6 jobs and 3 stages. The first stage has two batch processing 

machines in parallel, each with 10 units of capacity. The second stage has only one single 

discrete machine, and the last stage has two discrete machines in parallel. The processing 

times and sizes of the jobs are shown in Table 5-5. 

To simplify the calculation, CPLEX is used to solve all the sub-problems. 

 

Figure 5-10 Shop Configuration of the Example 

 

Table 5-5 Data of the Numerical Example 

Jobs s  
1p  2p  3p  

Job 1 4 47 5 19 

Job 2 4 77 10 17 
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Job 3 3 21 7 9 

Job 4 6 94 4 18 

Job 5 4 58 10 8 

Job 6 5 38 6 3 

 

Following the BFD main procedure, the solution is derived step by step as below: 

Step 1: Initialization 

Divide the problem into parallel batch processing machines (PB), and downstream 

hybrid flow shop (DHFS): M={PB, DHFS}. 

0ܯ ൌ ∅. 

Step 2: Identify and schedule the bottleneck sub-problem 

Use AMPL/CPLEX to identify and schedule the bottleneck. Sub-problem 

formulations and schedule obtained are shown in Table 5-6 and Table 5-7. 

 

Table 5-6 Sub-problem Formations and Scheduling 

Sub-
problem 

Formulation Arrival Time Delivery Time Cmax

PB ܲหݍ, ,ݏ ௫ܥℎหܿݐܾܽ 0 
∈

=
Di jij pq

 

24, 27,16,22,18,9
 

121 

DHFS ܨܨหݎหܥ௫ 
1jj pr =  

47,77,21,94,58, 38
0 116 

Max (Cmax)=121, therefore bottleneck is PB 
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Table 5-7 Job Sequences on Parallel Batch Processing Machines 

Machine Job Sequence 

Machine 1 (1, 5) → (3,6) 

Machine 2 (2, 4) 

 

Step 3: Re-scheduling 

Since there is only one sub-problem scheduled so far, re-scheduling is not 

required. 

M={ DHFS} 

M0={ PB} 

Since there is still a sub-problem in the unscheduled problem set M, Step 2 need to be 

repeated to solve the remaining sub-problem. 

Step 2: Use CPLEX to schedule the only sub-problem, DHFS, in M.  The formulation and 

scheduling are shown in Table 5-8 and Table 5-9. 

Table 5-8 Sub-problem Formulation and Scheduling 

Subsystem Formulation Arrival Time Delivery 
Time 

Cmax 

DHFS ܨܨหݎหܥ௫ 
jj ctr 1=  

58, 94, 96, 94, 58, 96 
0 128 

Since DHFS is the only un-scheduled sub-problem, it is also the bottleneck. 

 

Table 5-9 Job Sequences on the Down Stream Hybrid Flow Shop 

Stage Machine Job Sequence 

2nd stage Machine 1 5 →1 →4 →2 →3 →6 
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3rd stage 
Machine 1 5 →1 →4 →3 →6 

Machine 2             2 

 

Step 3: Re-scheduling 

SUB ൌ M0={ PB}. 

Remove all the job precedence relationship in SUB. 

Use AMPL/CPLEX to schedule PB. The results are given in Table 5-10 and 
Table 5-11. 

 

Table 5-10 Sub-problem Formations and Scheduling 

Sub-
problem 

Formulation Arrival 
Time 

Delivery Time Cmax 

PB ܲหݍ, ,ݏ ௫ܥℎหܿݐܾܽ 0 
 ′ݐܿ=ݍ

54, 29, 19, 34, 67, 9
 

128 

Since PB is the only un-scheduled sub-problem, it is also the bottleneck 

 

Table 5-11 Job Sequences on Parallel Batch Processing Machines 

Machine Job Sequence 

Machine 1 (1, 5) → (3) → (6) 

Machine 2 (2, 4) 

 

Use AMPL/CPLEX to re-schedule DHFS. The results are given in Table 
5-12 and Table 5-14. 

 

Table 5-12 Sub-problem Formations and Scheduling 

Sub-problem Formulation Ready Times Cmax 

DHFS 
maxCrFF j  58, 94, 79, 94, 58, 117 126 
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126<128, Cmax is improved.  

 

 

Table 5-13 Job Sequence on the Down Stream Hybrid Flow Shop 

Stage Machine Job Sequence 

2nd stage Machine 1 1 →5 →3 →2 →4 →6 

3rd stage 
Machine 1 1 →5 →2 →6 

Machine 2 3 →4 

 

Since the scheduling result is improved, re-scheduling need to be repeated. The 

second iteration of re-scheduling shows no improvement, therefore re-scheduling stops 

after two iterations of re-scheduling. The detail of the second re-scheduling is skipped 

here.  

M0 ൌ M0	∪ ሼܵܨܪܦሽ ൌ ሼܲܤ,  .ሽܵܨܪܦ
M ൌ M/ሼܵܨܪܦሽ ൌ ∅. 

Step 4: Since all sub-problems have been scheduled, BFD stops. The final schedule is 

shown in Table 5-14 with Cmax=126.  

Table 5-14 Final Job Sequence 

Stage Machine Job Sequence 

1st stage 
Machine 1 (1, 5) → (3) → (6) 

Machine 2 (2, 4) 

2nd stage Machine 1 1 →5 →3 →2 →4 →6 

3rd stage 
Machine 1 1 →5 →2 →6 

Machine 2 3 →4 
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Using CPLEX to solve this instance, the Cmax is also 126. However, if sub-

problem is not solved by AMPL/CPLEX but by the sub-problem heuristic LSD and BA-

Jackson, the Cmax obtained is 128. This is because the solution of sub-problem produced 

by heuristics is not optimal, which affects the solution quality for the whole problem. 

5.8 Computational Experiment 

5.8.1 Experiment Design 

The BFD heuristic is first compared with two reduced versions of BFD to 

examine the effectiveness of re-scheduling process, and then further compared against 

several commonly used heuristics, including a Randomized Greedy Heuristic and five 

well-known dispatching rules, to evaluate its solution quality. All comparisons conducted 

are listed in Figure 5-11.  

 

Figure 5-11 List of Comparisons 

 

5.8.1.1 Reduced BFD Heuristics 

To verify the significance of re-scheduling procedure, two reduced versions of 

BFD heuristic, BFD1 and BFD2 (Table 5-15), are used to provide comparison.  

In original BFD, whenever a sub-problem is scheduled, the previously scheduled 

sub-problems will be rescheduled based on the job sequences on the last scheduled sub-
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problem. This re-scheduling procedure is referred to as full re-scheduling and is 

computationally intensive. To reduce computational cost, BFD1 completely skips the re-

scheduling procedure, while BFD2 considers an alternative re-scheduling procedure: re-

scheduling is performed only after all sub-problems have been introduced into the 

schedule.  

Table 5-15 BFD and Reduced BFDs 

Algorithm Re-scheduling 

BFD Full 
BFD1 None 
BFD2 Last Iteration Only 

 

All the algorithms are tested on the same set of problem instances, and results will 

be analyzed to evaluate the importance of the re-scheduling procedure. 

5.8.1.2 Randomized Greedy Heuristic 

A greedy heuristic is a heuristic that follows the problem solving approach of 

making the locally optimal choice at each stage with the hope of finding the global 

optimum (Black 2005). The greedy randomized solutions are generated by adding 

elements to the problem's solution set from a list of elements ranked by a greedy 

function. Ranked candidate elements are often placed in a restricted candidate list (RCL), 

and chosen at random when building up the solution. This kind of greedy randomized 

construction method is also known as randomized greedy heuristic (RGH) or a semi-

greedy heuristic, first described by Hart (1987).  

In the proposed RGH, the job candidates ready for processing are ranked 

according to the Longest Remaining Processing Time First rule (LRPT). Instead of 
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selecting the first job in the list, the job is selected randomly from the top k elements in 

the list, where k is the size of the RCL and predefined as 3 in this dissertation. The 

selected element is then assigned to a batch (in batch processing stage) or a machine (in 

discrete stage). 

 The procedure of the proposed RGH is as follows: 

Starting from the first stage, schedule jobs at each stage using following algorithm: 
Let current stage number be i 
Let J be the set of unscheduled jobs 

Let M  be the set of machines in parallel 
Let ݎ be the ready time of job j at stage i. ݎ is set as 0 when i=1, otherweise set ݎ as 

the completion time of job j in stage i-1. ܿܽܯℎ݈݅݊݁݁݉݅ܶ݅ܽݒܣ∈ெ ← 0 
If stage i is the batch processing stage 

Φ←B  

0←b  
While J≠ Φ do 

1+← BB  

Φ←bB  

Capacity=S ݈ ← 1ݐ ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ∈ெ݊݅݉݃ݎܽ ←  ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ
jJj rt ∈← min2    

)2,1max( ttt ←    

}{ trJjJ jt ≤∈←   

Sort tJ  in LRPT, breaking tie with LPT        ܿܽܯℎ݅݊݁݊݃݅ݏܣ ← ݈ 
For i=1 to |ܬ௧|    

ܮܥܴ  ← :௧ሺ1ܬ ݇)                      
Randomly choose a job w from RCL 
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if 0≥− wsCapacity     

}{wBB bb ∪←    

}{\ wJJ ←    

}{\ wJJ tt ←    

wsCapacityCapacity −←   

End if 

End for 

End while 

Else if stage i is a discrete stage 

While J≠ Φ do ݈ ← 1ݐ ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ∈ெ݊݅݉݃ݎܽ ←  ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ
jJj rt ∈← min2    

)2,1max( ttt ←    

}{ trJjJ jt ≤∈←   

Sort tJ  in LRPT, breaking tie with LPT        ܴܮܥ ← :௧ሺ1ܬ ݇)  
  Randomly select a job w from RCL ܿܽܯℎ݅݊݁݊݃݅ݏܣ ← ݈ 

}{\ wJJ ←     

}{\ wJJ tt ← ௪ݐݏ     ← ,݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯሺݔܽ݉  (௪ݎ
www pstct +← ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ     ←  ௪ݐܿ

End while 

End 
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5.8.1.3 List Scheduling With Dispatching Rules 

Five commonly used dispatching rules combined with list scheduling are adopted 

to provide comparisons. By applying dispatching rule, every time when a machine 

becomes available, one job among the set of unscheduled jobs is selected as the next one 

on the machine according to a certain priority index. Dispatching rules used in the 

experiment are listed as below: 

1. List Scheduling with Largest Delivery Time (LS-LDT): Select the available job 

with largest delivery time. 

2. List Scheduling with Largest Remaining Processing Time (LS-LRPT): Select the 

available job with largest amount of remaining processing time. 

3. List Scheduling with Largest Processing Time (LS-LPT): Select the available job 

with largest processing time. 

4. List Scheduling with Earliest Ready Time (LS-ERT): Select the available job that 

has been ready for the longest time. 

5. List Scheduling with Shortest Processing Time (LS-SPT): Select the available job 

with the shortest processing time. 

For all above dispatching rules, machine assignment is made implicitly according 

to the available timing of machines, and batch forming and scheduling is done by 

following algorithm: 

1. Find out the first available machine, and open a new batch on that machine. 

2. Find out all the unscheduled jobs ࢚ࡶ  which are ready to be process at current 

moment t, and change the ready times of all jobs in ࢚ࡶ to t. 

3. Sort jobs in ERT, breaking ties using the predefined dispatching rule. 



88 

4. Assign the jobs one by one from the top of the list to current batch if the batch 

size doesn’t exceed the machine capacity.  

5. When no more jobs can fit in current batch, close the batch. 

6.  Go to step 1, and repeat the above procedure until all jobs are scheduled. 

The result obtained by the BFD heuristic is compared with the result by each 

dispatching rule, as well as the best result among them, which is referred to as BEST-

DSPT. BEST-DSPT is obtained by running all dispatching rules on each problem 

instance and selecting the best solution obtained. The computational time of this 

procedure is given by the sum of the times for all dispatching rules. 

5.8.2 Data Generation 

Experiment data is randomly generated in a manner similar to the methods by 

Chen (2009) and Kim (2009), with additional considerations of non-identical job sizes 

and batch processing machines. Table 5-16 summarizes the experimental factors: number 

of jobs, number of stages, size of jobs, position of batching stage, position of bottleneck 

stage and work load difference between bottleneck and non-bottleneck stages. Number of 

jobs has six levels: 4, 6, 10, 20, 50 and 100. Number of stages has three levels: 3, 5 and 7 

(low, medium and high), where each batching stage has 2 to 4 machines in parallel, and 

each discrete stages has 1 to 4 machines in parallel. For small problem instances with less 

than or equal to 10 jobs, the number of machines is 2 at the batching stage, and 1 to 3 at 

each discrete stage. The capacity of batch processing machines is assumed to be 10 in 

small instances, and 20 in median and large instances, and the size of job is generated 

from discrete uniform distribution of [1, 5] (small), [1, 9] (mixed) and [3, 7] (big).  The 
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position of batching stage has three levels: front, interior and rear (the first stage, any 

interior stage and the last stage). The exact position of the interior stage is randomly 

selected from discrete uniform distribution of [2, ࢜ െ1], with v denoting number of 

stages. The position of bottleneck stage has the same levels as the position of batching 

stage, and is generated in the same way. The workload difference between the bottleneck 

stage and the highest work load of non-bottleneck stage has also three levels: the low one 

is randomly generated from uniform distribution of [1, 1.2], the median one is generated 

from [1.5, 1.9], and the high one is generated from [2.0, 3.0].  

 

Table 5-16 Experiment Factors 

Experiment Factors Level 
Number of Jobs (n) 4, 6, 10, 20, 50, 100 
Number of Stages (v) Low 3 

Median 5 
High 7 

Size of Jobs (s) Small U[1, 5] 
Mix U[1, 9] 
Big U[3, 7]) 

Position of Batching  
Stage (b) 

Front 1 
Interior U[2, ࢜ െ1] 
Rear ࢜ 

Position of Bottleneck 
Stage (q) 

Front 1 
Interior U[2, ࢜ െ1] 
Rear ࢜ 

Workload Difference 
(w) 

Low U[1.0, 1.2] 
Median U[1.5, 1.9] 
High U[2.0, 3.0] 

 

The workload of a specified bottleneck stage is implemented as follows: (1) 

randomly generate the processing times for every job on each stage from discrete uniform 
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distribution of [1, 50]; (2) calculate workload iR  for each non-bottleneck stage: 

ij jii mpR /)(=  for every discrete stage, and cmspR ij jii /)( ×=   for the batching 

stage, with s denoting average job size. The highest workload value maxR  is set as the 

benchmark; (3) apply the same formula to calculate the workload for the bottleneck 

stage; (4) with a specified workload difference value ( w ), modify the processing time of 

job j at bottleneck stage b: 
b

jb
jb Rold

wRpold
p

_

)_( max ××
= . This procedure will guarantee 

that 
maxR

Rb  equals the specified w. 

With six factors considered, there are a total of 1458 production scenarios. 1 

problem instance for each scenario, there are 1458 problem instances in total.  

5.8.3 Experiment Measurement 

The relative deviation (RDEV) is used as the measurement to evaluate the 

solution quality of different algorithms. The RDEV is defined as: 

%100
max

maxmax
×

−
=

a

ab

C

CC
RDEV      5-13 

bC max is the solution value obtained by method b. aC max is the benchmark 

solution value. When the comparison is between heuristic and lower bound, aC max  is 

replaced by the lower bound value. If the comparison is made between heuristic and the 

optimal solution, aC max will be the optimal solution. For problem instances which can 

be solved by AMPL/CPLEX to the optimality, the optimal solution is used as the 
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benchmark. For those instances whose optimal solution is unknown, lower bound is 

calculated to provide the benchmark. 

 

5.8.4 Experiment Result 

5.8.4.1 Analysis of Variance 

The analysis of variance (ANOVA) (Table 5-17) shows that three factors have 

statistically significant impact on BFD’s solution quality at a 5% significance level. 

These factors include number of job (n), batching position (b) and bottleneck position (q). 

While the remaining three factors, number of stages (v), job size (s) and workload 

difference (w), do not show statistically significant impact. A main effects plot for each 

factor tested is presented in Figure 5-12. 

 

Table 5-17 ANOVA Table for RDEV 

Factors P Value 

n 0.000 

v 0.697 

s 0.352 

b 0.001 

w 0.063 

q 0.044 
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Figure 5-12 Main Effects Plot for Solution Quality of BFD 

 

The main effects plot shows that number of job (n) has the greatest impact on the 

solution quality. For small size instances, solution quality decreases as n increases, while 

for large size instance it is opposite: solution quality increases as n increases. Figure 5-13 

shows the average RDEV discriminated by number of jobs and Figure 5-14 is the 

corresponding scatter chart. 
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Figure 5-13 Solution Quality of BFD Discriminated by Number of Jobs 

 

 

Figure 5-14 Scatter Chart: Solution Quality of BFD by Number of Jobs 

 

The result shows that solution quality decreases dramatically as number of jobs 

increases from 4 to 6. This is partially due to the benchmark used. As stated in the 

experiment design section, whenever the optimal solution is available, the optimal 

solution is used to provide benchmark. Otherwise, a lower bound is used as the 

benchmark. For 4-job instances, the optimal solution can be found for 88.61% of the 
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instances. Contrastively, only 27.85% of the 6-job instances are solved to optimality, and 

none of 10-job instances can be solved. When a lower bound is used to calculate the 

deviation, it magnifies the deviation. This explains why RDEV drops dramatically as 

number of jobs increases from 4 to 6. 

To exclude the impact of using different benchmark, an extra comparison is 

performed. In this comparison, lower bounds are used to provide the benchmark in all 

instances. The deviation from the lower bound is denoted as RDEV*. Figure 5-15 and 

Figure 5-16 present the RDEV* bar chart and scatter chart respectively. By using lower 

bound as the benchmark for all instances, the deviation increases from 2.16% to 5.66% 

for 4-jobs instances, from 8.00% to 8.26% for 6-job instances and remained the same for 

the rest. 

 

Figure 5-15 RDEV* of BFD Solution Discriminated by Number of Jobs 
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Figure 5-16 Scatter Chart: RDEV* for BFD Solution by Number of Jobs 

 

When number of jobs is greater than or equal to 20, the relative deviation starts 

decreasing slowly as the number of jobs increases. The decrease is partially due to the 

change in lower bound quality. As discussed in Chapter 4, the lower bound is getting 

closer to the optimal ܥ௫ as number of jobs increases, which leads to the reduction in 

the deviation. 

Based on above analysis, conclusion can be made that number of jobs, n, has the 

greatest impact on solution quality. The solution quality decrease as n increases for small 

size instance (݊  10), and stabilizes and then slightly increases for median and large 

size instances (݊  10). For instances with 50 and 100 jobs, the gaps between BFD 

solution and the lower bound are as low as 5.96% and 2. 59%, indicating high quality of 

BFD solution when job number is large. 

Impact of Other Factors on the Solution Quality 

The position of batching stage and the position of bottleneck stage also affect the 

solution quality. BFD produces better results when the batch processing machines or 

bottleneck located in the first or last stage.  
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Even though workload difference does not demonstrate statistically significant 

impact on solution quality, it still has slight impact. Problem instances with higher 

workload difference tend to get better solutions. This is due to the bottleneck first 

strategy applied in the heuristic. It gives the bottleneck stage the highest priority to be 

scheduled, therefore if the workload difference increases, more work will be scheduled 

with higher priority. 

5.8.4.2 BFD vs. Reduced BFDs 

The RDEV of solutions produced by BFD and reduced BFDs are presented in 

Figure 5-17. 

 

 

Figure 5-17 Solution Quality of BFD and Reduced BFDs 
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BFD2 2.22% 8.04% 9.16% 9.84% 6.25% 2.60%

BFD 2.16% 8.00% 9.08% 9.68% 5.96% 2.59%
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∗ிܸܧܦܴܯܫ ൌ ∗ிܸܧܦܴ െ  ி 5-14ܸܧܦܴ

  

Where BFD* denotes the reduced BFD: BFD1 or BFD2. 

Experiment result shows that full re-scheduling reduces the RDEV by 0.0072 in 

average for BFD1 for all instances, and 0.0011 for BFD2. The breakdown of IMRDEV is 

given in Figure 5-18. 

 

Figure 5-18 Average Improvement on Solution Quality by Full Rescheduling 

 

Since re-scheduling is removed completely from BFD1, the algorithm takes much 

less run time (Figure 5-19), however the solution quality also drops obviously. When re-

scheduling is only performed in the last iteration (BFD2), the solution quality is slightly 

worse than that of BFD, while the run time is also slightly less than that of BFD. The 

ANOVA results reveal that the difference in solution quality between BFD and BFD1 is 

statistically significant with a P value equal to 0.035, while the difference between BFD 
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and BFD2 is not statistically significant, with P=0.738. Even though the improvement on 

BFD2 is not statistically significant, the algorithm with full re-scheduling consistently 

outperforms BFD2, with only slight increase in CPU time (Figure 5-19). Therefore, BFD 

with full re-scheduling is preferable. 

The experiment results demonstrate the importance of re-scheduling procedure. 

Re-scheduling plays an important role in the BFD heuristic by increasing the solution 

quality, therefore cannot be removed from the algorithm.  

 

 

Figure 5-19 Average Run Time of in Seconds 

 

5.8.4.3 BFD vs. Randomized Greedy Heuristic 

In this section of experiment, each instance is solved by the proposed RGH for 10 

times, and the best solution is compared with BFD solution. The summation of 10 run 

times is considered as the run time for RGH. 
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Figure 5-20 RDEV for BFD and RGH Discriminated by Number of Jobs 

 

From Figure 5-20, we can see that the RDEV of RGH increases steadily as n 

increases, and exceeds 50% when n reaches 100. BFD shows significant advantage 

against RGH.  

5.8.4.4 BFD vs. List Scheduling with Dispatching Rules 

The solution produced by BFD is also compared to the solutions produced by 

several dispatching rules introduced in the experiment design section. Table 5-18 and 

Figure 5-21 show the comparison results. The solutions obtained by BFD deviate from 

the optimal solution or lower bound by 6.25% on average. While the deviations of 

dispatching rules spread from 14.93% to 20.11%. BFD outperforms all dispatching rules.  

Furthermore, BFD solution is compared against the best solution produced by all 

these dispatching rules, BEST-DSPT. BEST-DSPT has an average deviation of 10.41%, 

which is higher than that of BFD (6.25%). BFD gives better result than BEST-DSPT.  
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Table 5-18 Solution Quality of BFD and Dispatching Rules 

n BFD BEST_DSPT LS-ERT LS-LDT LS-LPT LS-LRPT LS-SPT Total 

4 2.16% 6.45% 12.56% 9.97% 14.12% 10.72% 11.14% 9.59% 

6 8.00% 12.48% 22.30% 16.90% 23.17% 18.11% 20.59% 17.37% 

10 9.08% 13.81% 24.23% 19.50% 25.28% 19.42% 23.28% 19.23% 

20 9.68% 15.57% 27.15% 20.02% 28.80% 20.23% 23.09% 20.65% 

50 5.96% 9.32% 20.29% 13.81% 21.07% 12.96% 15.04% 14.06% 

100 2.59% 4.81% 14.12% 10.15% 14.75% 8.13% 8.60% 9.02% 

Total 6.25% 10.41% 20.11% 15.06% 21.20% 14.93% 16.96% 14.99% 
 

 

Figure 5-21 Solution Quality of BFD and Dispatching Rules  

 

With regard to the computational cost, dispatching rules are much faster than 

BFD (Figure 5-22), nevertheless, since BFD requires less than 40 seconds of CPU time in 

average to solve a large problem instance with 100 jobs, and 8 seconds in average for all 

problem sizes, the run time required is practical and acceptable. Therefore, BFD is 

preferable when high solution quality is important. On the other hand, in the situation that 

time is extremely critical and the quality can be compromised, dispatching rules can serve 

as fast scheduling algorithms to solve the problem within one second. 
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Figure 5-22 Average Run Time of BFD and BEST DSPT in Seconds 

5.9 Summary 

In this chapter, a heuristic approach BFD is proposed for solving the scheduling 

problem ܨܨหܾܽܿݐℎ1, ݔܽ݉ܥหݏ . A series of experiments are conducted to evaluate the 

effectiveness of BFD, which is further evaluated against a set of common algorithms, 

including a randomized greedy heuristic and five dispatching rules.  The results show that 

the proposed BFD outperforms all these algorithms, and can solve a 100-job instance 

within a minute with the deviation from the lower bound less than 3% in average. The 

solution quality increases as number of jobs increases for small size instance (݊  10), 

and stabilizes for median and large size problem (݊  10).  
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6 SOLUTION IMPROVEMENT BY A GENETIC ALGORITHM 

A genetic algorithm (GA) with tuned parameters is presented in this chapter to 

further improve the solution for the problem under study. The solution quality is 

evaluated against the lower bound and the solution obtained by BFD.  

6.1 Introduction to Genetic Algorithm 

Genetic Algorithm is an adaptive heuristic search algorithm built on the 

evolutionary ideas of natural selection. By simulating processes in natural system 

necessary for evolution, GA represents an intelligent exploitation of a random search 

within a defined search space to solve a problem. GA is often implemented in a computer 

simulation in which a population of abstract representations (called chromosomes) of 

candidate solutions to an optimization problem evolves toward better solutions. The 

evolution usually starts from a population of randomly generated solutions. In each 

generation, the fitness of every solution in the population is evaluated and a certain 

number of solutions are stochastically selected based on their fitness. The selected 

solutions are then further modified to form a new population. The new population is then 

passed on to the next iteration of the algorithm. The algorithm terminates when either a 

maximum number of generations has been reached, or a satisfactory fitness level has 

been met for the population.  

A typical GA requires:   1) a genetic representation of the solution domain (or 

chromosome), 2) genetic operators, and 3) a fitness function evaluating the solution 

domain. The main property of the genetic representation is that it usually has fixed size 

which facilitates simple crossover operations. A genetic operator is an operator used in 
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genetic algorithms to maintain genetic diversity, which is a necessity for the process of 

evolution. Examples of genetic operators include mutation, crossover, inversion and 

selection operators. A fitness function is a particular type of objective function that 

prescribes the optimality of a solution, and is always problem dependent.  

A GA has a variety of advantages. It can quickly scan a vast solution set. Bad 

proposals do not affect the end solution negatively as they are simply discarded. The 

inductive nature of the GA means that it doesn't have to know any rules of the problem - 

it works by its own internal rules. This is very useful when the problem is complex 

defined problems like the one under study in this dissertation. 

6.2 Proposed Genetic Algorithm  

Each iteration of the GA starts with a population of feasible solutions found by 

heuristics. This initial population is later taken as the initial solution of a local search 

procedure and the procedure is repeated until some stopping criterion is met. The 

algorithm flow chart is given in Figure 6-1. 
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Figure 6-1 Procedure of the Proposed GA 

 

6.2.1 Chromosome Representation 

The chromosome applied in this algorithm is similar to the 3DGA initially 

proposed by Amin-Naseri (2009). Each chromosome in the algorithm has a 3D structure. 

The first dimension indicates the stages, the second dimension shows the number of 

machines at each stage and the third dimension represents the sequence of each job in 

that machine. Each variable in the chromosome is called a gene. For instance, the CR(m, 

j, i) represents the gene of the job j on machine m at stage i. It means that to which 

position on machine m the job j is assigned at stage i.  If CR(m, j, i) has value zero, it 

means that job j is not assigned to machine m. Let’s use an example to further illustrate it.  

Assume a three-stages scheduling problem with five jobs. The first two stages comprise 

two and one discrete processing machine individually, while the third stage has two batch 

processing machines. The jobs arrangement is presented in Table 6-1. The structure of 

the corresponding chromosome is presented in Figure 6-2. 

 

Table 6-1 An Example of Job Sequence on Machines 

Stage 
Machine 

1 2 

1 3→5→1 4→2 

2 3→1→4→5→2 -- 

3 
1st Batch: 1,3 
2nd Batch: 4 

Only one batch: 2,5 
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Figure 6-2 3D Chromosome structure 

 

6.2.2 Initial Population 

Initial population is generated by 1) BFD, 2) five dispatching rules presented in 

5.8.1.3, and 3) RGH introduced in 5.8.1.3. Since RGH is a heuristic based on the 

randomized greedy heuristic, it creates diversity for the initial solutions. The number of 

initial solutions in the population is a parameter, named Pop. 

6.2.3 Genetic Operators 

Three genetic operators are used in this algorithm to perform mutations. For each 

mutation, a chromosome and a stage in that chromosome is selected randomly. The 

genetic operators are as follows: 

Swapping: Two genes are randomly selected at the defined stage. They can be 

from the same machine or different machines. These two genes are then exchanged with 

each other.  
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Reversion: Two genes in the same machine are randomly selected. The sequence 

of genes (only consider the genes with nonzero value) between the two selected genes are 

reversed.  

Insertion: A job is randomly selected and inserted to another position or batch, 

therefore changes the gene of itself as well as those of other jobs related.  

The number of iterations of mutations depends on the parameter MU, which is a 

fraction of Pop. The maximal amount of offspring chromosomes generated by mutation 

is then 3ܷܯ. 

Crossover operators are also applied to generate offspring. However the 

preliminary result show that crossover operators do not improve the solution quality, but 

increase the run time. Therefore, crossover operators are removed from the proposed GA. 

6.2.4 Batching Feasibility Procedure  

Since the mutation operation changes genes randomly, which might causes over 

size batches, an algorithm named Batching Feasibility Procedure (BFP) is developed to 

assure the batching feasibility. The BFP borrows the idea from the RBP heuristic 

presented by Kashan et al. (2008). Some adjustment is applied to fit the problem under 

study. The BFP algorithm is as follows: 

 

IF there is at least one over size batch exists in the chromosome 
THEN 

REPEAT 
  Select a batch with capacity violation and the longest batch processing 
time. 
  Select the job with the longest processing time in it. 
  IF the selected job fits in any existing batch ܾ ∈  ܤ
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  THEN 
IF among batches in B, there are some batches having the batch 
processing time longer than that of the selected job, and the batch 
ready time later than that of the selected job. (batches r ⊆ B) 
THEN put the selected job in one of the batches in r with the 
smallest residual capacity. 
ELSE put the job in a feasible batch in B with the longest 
processing time; 

   END IF 
  ELSE create a new batch and assign the selected job to it; 
  END IF 
 UNTIL a feasible batching plan is obtained 
ENDIF 
END 
 

6.2.5 Selection 

After each mutation and the BFP are performed, a new chromosome is generated. 

If this new chromosome has better fitness than the parent chromosome, then it will be 

added into the offspring generation. Otherwise it will be abandoned. 

Elitism replacement scheme is applied in the GA to select next generation. The 

good individuals will survive for the next generation and are never lost unless better 

solutions are found. The elitism replacement is applied as follows: both parent and 

offspring population are combined into a single population and sorted in a non-increasing 

order of their makespan. Then, BEST*Pop best chromosomes of the combined population 

are selected as the individuals of the new population for the next generation. In order to 

avoid premature convergence and to add diversity to the new population, IM*Pop new 

chromosomes generated by RGH are introduced as immigrants to replace the worst 

chromosomes in the population. Among the remaining individuals, ܴܶܵܧ ∗  ܲ
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chromosomes are randomly selected to join the next generation of population. BEST, IM 

and REST are fractions of the initial population Pop. The total number of the 

chromosomes in the next generation, BEST+IM+REST, is equal to Pop. Therefore, 

parameter IM is determined by BEST, REST and Pop, and is not included in the 

parameter tuning in section 6.3. 

6.2.6 Stopping criterion 

If either of the following two conditions appears, the algorithm is terminated. 

1. The best makespan obtained is equal to the lower bound; 

2. The makespan is not improved in a number of consecutive generations. 

This number, called STOP, is another parameter.  

6.2.7 Pseudo code 

The pseudo code for the proposed GA approach is shown below: 

 

Let ࢻ be the problem instance to be solved and let ࣎ be the set of solutions in current 
population. Let ߬ be a chromosome in ߬. 
Let Makespan(߬) be the algorithm that return the makespan of the chromosome	߬. 
Lower bound(ߙ) returns a lower bound on the makespan for ߙ. 
BFD(ߙ) returns a chromosome of solution by applying Bottleneck First Decomposition 
heuristic. 
RGH(ߙ, ݇) generates a chromosome by applying randomized greedy algorithm, where k 
is the size of RCL. 
BFP(߬) returns a feasible chromosome without capacity violation. 
Swap(߬), Insertion(߬) and Reversion(߬) return a chromosome in the neighborhood of ߬ 
by means of swapping, insertion and reversion respectively. These operators can be 
applied on genes as well as batches. 
Rand(A,n) randomly pick n elements from set A. ߬ଵ ←  (ߙሺܦܨܤ
For i=2: Pop 
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߬ ← ,ߙሺܪܩܴ ݇) 
End for ܴܥݐݏ݁ܤ ← ݊ܽݏ݁݇ܽܯݐݏ݁ܤ ∅ ← ݂݅݊ 
NonImprove=0 
NewCR=0 
While  (BestMakespanLB) & (NonImprove<STOP) 

For mutationMU 
Randomly pick 3 chromosomes ߬, ߬ and ߬ from Ω 

NewCR=NewCR+1 ܷܯ_ܴܥே௪ோ ← ሺܽݓܵ ߬) 
if  ݊ܽݏ݁݇ܽܯሺܷܯ_ܴܥே௪ோ)  ሺ݊ܽݏ݁݇ܽܯ ߬) 
 NewCR=NewCR-1 
End if 
NewCR=NewCR+1 ܷܯ_ܴܥே௪ோ ←  (ሺ߬݊݅ݐݎ݁ݏ݊ܫ
if  ݊ܽݏ݁݇ܽܯሺܷܯ_ܴܥே௪ோ)   (ሺ߬݊ܽݏ݁݇ܽܯ
 NewCR=NewCR-1 
End if 
NewCR=NewCR+1 ܷܯ_ܴܥே௪ோ ←  (ሺ߬݊݅ݏݎ݁ݒܴ݁
if  ݊ܽݏ݁݇ܽܯሺܷܯ_ܴܥே௪ோ)   (ሺ߬݊ܽݏ݁݇ܽܯ
 NewCR=NewCR-1 
End if 

End for ܱ݂݂ܵ݃݊݅ݎ ← 	߱	 ∪ ܵ_݃݊݅ݎ݂݂ܱܵ ܷܯ_ܴܥ	 ← ߤ ݊ܽݏ݁݇ܽ݉	݃݊݅ݏܽ݁ݎܿ݁݀݊݊	݊݅	݃݊݅ݎ݂݂ܱܵ	ݐݎݏ	 ←  ݃݊݅ݎ݂݂ܱܵ	݊݅	݁݉ݏ݉ݎℎܿ	ݐݏ݁ܤ	
If ݊ܽݏ݁݇ܽܯሺߤ) ൏ ݊ܽݏ݁݇ܽܯݐݏ݁ܤ ݊ܽݏ݁݇ܽܯݐݏ݁ܤ ← ܴܥݐݏ݁ܤ (ߤሺ݊ܽݏ݁݇ܽܯ ← ݁ݒݎ݉ܫ݊ܰ ߤ ← 0 
Else ܰ݁ݒݎ݉ܫ݊ ← ݁ݒݎ݉ܫ݊ܰ  1 
End if ߬ሺ1: (ܶܵܧܤ ← :ሺ1ܵ_݃݊݅ݎ݂݂ܱܵ :ሺ1ܵ_݃݊݅ݎ݂݂ܱܵ (ܶܵܧܤ (ܶܵܧܤ ← ∅ ߬ሺܶܵܧܤ  1: ܶܵܧܤ  (ܶܵܧܴ ൌ ܴܽ݊݀ሺܱ݂݂ܵ݃݊݅ݎ_ܵ,  (ܶܵܧܴ
For m=1: Pop-BEST-REST 
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߬ሺܶܵܧܤ  ܶܵܧܴ ܯ) ← ,ߙሺܪܩܴ ݇) 
End for 

End while 
 

There are a number of parameters which affects the algorithm performance. These 

parameters include: 

1. Pop, the population size, a fraction of n. It increases as  the problem size 

increases; 

2. STOP, the maximal number of consecutive iterations allowed without 

improvement; 

3. K,  the maximal number of elements allowed in RCL; 

4. MU, mutation rate; 

5. BEST, the percentage of the top candidates passed on to the next generation; 

6. REST, the percentage of population chosen randomly from the remaining 

candidates. 

6.3 Parameters Tuning 

A full factorial experiment is conducted to determine the appropriate values of the 

parameters. The factors and levels tested are shown in the Table 6-2. All the 

combinations of the parameter values are tested on 20 instances of 10-job and 20 

instances of 20-job, since the solution obtained by BFD for 10-job and 20-job instances 

has the largest deviation from the lower bound. The deviation between the GA solution 

and the lower bound is defined as the dependent variable. 
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ࢂࡱࡰࡾ ൌ ࢇ࢙ࢋࢇࡹ࢚࢙ࢋ െ ࢊ࢛࢈࢘ࢋ࢝ࡸࢊ࢛࢈࢘ࢋ࢝ࡸ ൈ % 
6-1  

 

Table 6-2 Parameters in GA 

Parameter Description Level 

Pop Population size [n 2n 3n] 

STOP 
Maximal number of consecutive 
iterations allowed without 
improvement 

[12 50 100] 

K 
The maximal number of elements 
allowed in RCL when applying RGH 

[1 3 5] 

MU Mutation rate [0.3 0.5 0.7] 

BEST 
The percentage of the population 
chosen from the top to next 
generation 

[0.1 0.3 0.5] 

REST 
The percentage of population chosen 
from the remaining offspring 
population 

[0.1 0.3 0.5] 

 

The analysis of variance conducted with a significance level of 5% is presented in 

Table 6-3. The analysis revealed that all parameters except for REST have a significant 

effect on the solution quality. Figure 6-3 shows the main effects plot for each parameter. 

The selected parameter values are as follows: Pop=3n, K=3, MU=0.7, BEST=0.3 and 

REST=0.3. As for the parameter STOP, when STOP=100, GA produced the best solution. 

However, for 50-job instances and 100-job instances, the algorithm requires tremendous 

run time (over 2 hours for each instance). Therefore, for 4-job, 6-job, 10-job and 20-job 

instances, STOP is set as 100, while for 50-job and 100-job instances, STOP is set as 12 

and 50, respectively, to reduce run time. Since the solution produced by BFD is close to 

optimal in average when number of jobs are greater than 50, there is not as much 
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improving potential by GA. Therefore the value of STOP will not cause a significant 

impact on the solution quality for 50-job and 100-job instances. The value of the non-

significant parameter, REST, is set so that the run time is minimized.  

 

Table 6-3 ANOVA Table for GA Parameter Selection 

Parameter P Value 

Pop 0.0000 

STOP 0.0000 

K 0.0418 

MU 0.0001 

BEST 0.0457 

REST 0.5765 

 

 

Figure 6-3 Main effects plot for GA parameter selection 
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6.4 Computational Result 

A full factorial design of experiments based on the same set of 1458 random 

generated instances from chapter 5 is conducted in order to determine the impact of each 

factor on the quality of the proposed GA approach. The experiment used the same factors 

as defined in Table 5-16, including number of jobs (n), number of stages (v), size of jobs 

(s), position of batching stage (b), position of bottleneck stage (q) and workload 

difference (w). Each problem instance is solved by GA 3 times and the average result is 

reported.  

The percentage of deviation from lower bound or optimal solution calculated by 

equation 6-2 is applied to evaluate the performance.  ࢂࡱࡰࡾ ൌ ൫ࡳ࢞ࢇ ࡳ࢞ࢇ൯ࡸି ൈ % 6-2  

 

Table 6-4 ANOVA Table for RDEV of GA 

Factors P Value 

n 0.000 

v 0.698 

s 0.377 

b 0.000 

w 0.047 

q 0.017 

 

Table 6-4 and Figure 6-4 present the result of analysis of variance. Four out of six 

factors, problem size, batching position, bottleneck position and workload difference, are 
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significant at a 5% confidence level. On the other hand, job size and number of stages do 

not have significant impact. 

 

 
Figure 6-4 Main Effects Plot for RDEV of GA 

 

The algorithm performs better when number of jobs is small or large. The 

instance with batching machines at the first or the last stage is easier to solve than at the 

interior stages. Besides, the solution quality is also better when the bottleneck locates at 

the first or last stage. The problem instances with higher workload difference result in 

better solutions. The comparison of RDEV between BFD and GA is given in Figure 6-5.  

To further analyze the improvement on solution by GA, two more measurements, 

IMDEV and RIMDEV are used. While ܸܧܦܯܫ means the improvement in RDEV on BFD 

by GA, ܴܸܧܦܯܫ represents the percentage of improvement. These measurements are 
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ܸܧܦܯܫ% ൌ ிܸܧܦܴ െ ீܸܧܦܴீܸܧܦܴ ൈ 100% 
6-4 

 

Computational results show that GA reduces the RDEV by 1.47% unit in average, 

and the relative improvement on RDEV is 19.95%. Figure 6-6 describes the improvement 

on RDEV discriminated by problem size, and Figure 6-7 presents the relative 

improvement of RDEV discriminated by problem size. 

 

Figure 6-5 Average RDEV of BFD and GA 

 

 

Figure 6-6 Average Improvement in RDEV by GA 
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Figure 6-7 Percentage of Improvement on RDEV by GA 
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job and 100-job instances are higher than those of smaller-size instances and leave 

limited space for improvement. As a result, GA can be used to improve solution for small 

and median size instances (݊ ൏ 50), while for solving large instances BFD is more 

efficient and preferable. 

 

 

Figure 6-8 Average Run Time of GA vs. BFD in Seconds 
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7 CONCLUSION AND FUTURE RESEARCH 

This chapter re-examines the results in light of the original questions proposed in 

Chapter 1, presents the summary of findings and conclusions, and concludes with an 

exploration of possible future directions for the research. 

7.1 Overview of the Problem under Study 

In this dissertation, research is conducted on a scheduling problem, ܨܨหܾܽܿݐℎ1,  which is to minimize the makespan on the hybrid flow shop with ,ݔܽ݉ܥหݏ

parallel batch-processing machines in one of the stages to process jobs with arbitrary 

sizes. A mathematical model is developed to formulate the problem, heuristics are 

proposed to solve the problem and extensive computational experiments are performed to 

evaluate the performance of proposed heuristics.  

7.2 Findings  

A mixed-integer-linear-programming model is developed to formulate the 

problem under study, ܨܨหܾܽܿݐℎ1,  Randomly generated problem instances are .ݔܽ݉ܥหݏ

solved by the commercial solver AMPL/CPLEX.  The result reveals that problem size, 

number of stage and the position of batching stage have significant impact on 

computational time. The run time required to solve the problem to optimality increases 

dramatically when job number or stage number increases. Within two hours, the solver 

can only solve a problem instance with up to 6 jobs. As the problem size increases to 

beyond 6 jobs, the computational cost of solving the problem to optimality is too large to 

be used in practical implementations. It is also discovered that a problem instance with 



119 

batching machines in an interior stage requires more time to find the optimal solution 

than the one with batching machines in the first or last stage.  

Since optimal solution cannot be found within reasonable time on any problem 

instance with more than 6 jobs, a lower bound is required to serve as the benchmark for 

heuristic performance evaluation. For this purpose, a tight lower bound is proposed. This 

lower bound is derived by a three-level lower bound procedure. 1010 instances with 4 

jobs, 5 jobs or 6 jobs are tested to evaluate the lower bound quality. The lower bound 

obtained is compared with the optimal solution solved by AMPL/CPLEX solver. The 

result shows that the proposed lower bound procedure generates tight lower bounds, and 

the tightness increases substantially as the number of jobs increases. On the other hand, 

the number of stages shows no great impact on lower bound quality. Besides, the lower 

bound of small problem instances with less than 20 jobs can be further improved by a 

lifting procedure by 0.51% in average.  

To be able to solve moderate and large size problem instances efficiently, a 

heuristic approach called bottleneck-first-decomposition heuristic (BFD) is proposed. 

The BFD heuristic decomposes ܨܨหܾܽܿݐℎ1,  into three sub-problems: upstream ݔܽ݉ܥหݏ

hybrid flow shop, parallel batch processing stage, and downstream hybrid flow shop, and 

schedules the sub-problems one by one by identifying and scheduling the bottleneck one 

at a time. Two heuristics are proposed to solve sub-problems: one is LSD for solving 

',,, maxCbatchsqrP jjjm   and the other one is BA-Jackson for solving ', maxCqrFF jjm . At 

the batch-processing stage, batches are formed by a list scheduling with the dispatching 

rule of largest processing time + delivery time (   ). At the discrete-processingݍ
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stages, jobs are scheduled using a list scheduling with the largest delivery time (ݍ), 
breaking tie with LPT rule. Since jobs have un-equal arrival times at each stage, a delay 

strategy is applied to identify a pool of candidate jobs for next machine or for forming a 

batch. For batch-processing, the delay strategy allows a job with late arrival time to join 

the batch and hence improve the utilization of current batch space.  

For discrete-processing, it allows a job with late arrival time but large delivery time to 

have higher priority to be processed, therefore reduces the chance of being delayed by 

this job at remaining stages. The interaction between stages is modeled as job arrival 

times (ݎ ) and delivery times (ݍ ݎ .(  and ݍ  for a stage are determined by the job 

precedence relationship at previous stages and remaining stages, respectively, and form 

the input to schedule the current stage. Solutions obtained by BFD are deviated from the 

optimal solution or lower bound by 6.87% in average for all problem instances tested, 

and BFD consistently outperform the randomized greedy heuristic, various dispatching 

rules as well as the best solution produced by the dispatching rules. The number of jobs, 

n, has the greatest impact on solution quality. The solution quality decrease as n increases 

for small size instance (݊  10), and stabilizes and then slightly increases for median and 

large size instances (݊  10). BFD produces better results when the batch processing 

machines or bottleneck located in the first or last stage. Problem instances with higher 

workload difference tend to get better solutions. This is due to the bottleneck first 

strategy applied in the heuristic. It gives the bottleneck stage the highest priority to be 

scheduled, therefore if the workload difference increases, more work will be scheduled 

with higher priority. Results also show that re-scheduling procedure has a significant 

effect on both solution quality and computation time by decreasing the deviation by 
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4.65% and doubles the run time. Since increment in run time is limited and acceptable, 

the re-scheduling procedure is preferable in order to increase the solution quality. Overall, 

the results indicate that decomposition methods such as that described in this dissertation 

offers significant potential as solution procedures for complicate practical scheduling. 

The sub-problem modeling and sub-problem solution approaches proposed in this 

research perform well as components for the decomposition-based heuristic.  

To further improve the heuristic solution, a genetic algorithm GA is developed. In 

The proposed GA algorithm effectively improves the solution of BFD in a negligible 

time when problem size is less than 50 jobs. When the problem size reaches 50 jobs, the 

computational time required is increased dramatically with limited improvement. As a 

result, GA can be used to improve solution for small and median size instances (݊ ൏ 50), 
while for solving large instances BFD is preferable. 

Figure 7-1 and Figure 7-2 and present a comparison of the performance for all the 

heuristic approaches proposed in this research. The two measurements are the deviation 

from the lower bound, RDEV, and run times. 

Based on above performance evaluation, a selecting criterion of solution 

approaches is presented as follows: For problems with median and small number of jobs 

(n<50), the meta-heuristic approach GA is the most effective approach to solve the 

problem, while for problems with large number of jobs (n>=50), BFD can yield good 

results within reasonable time. 
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Figure 7-1 Solution Quality of Different Algorithms 

 

 

Figure 7-2 Average Run Times in Seconds for All Algorithms 
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7.3 Future Research 

The development of an effective decomposition procedure also requires effective 

solution procedures for the sub-problems. To reduce computational cost, this research 

applies heuristics to get approximate solutions for the sub-problems, which reduce the 

run time in a great sense, while caused unavoidable impact on the final solution quality. 

Future research may focus on developing exact solutions for the sub-problems, for 

example branch and bound, to improve the solution quality. However, the computational 

time can significantly increase. 

For the same purpose of reducing computational cost, instead of decomposing the 

shop into single stage scheduling problem, the proposed heuristic decomposes the 

problem into three sub-problems each containing one or more stages, so that re-

scheduling time is reduced. Future research may stick to the original decomposition 

method used by the shifting bottleneck heuristic and consider each stage as a sub-

problem. 

Another important issue which needs to be addressed for the BFD heuristic to be 

useful in practice is that of how to handle uncertainties occurring on the shop floor. The 

design of effective heuristic for the case of stochastic arrivals, in which the arrival of the 

job is not known in advance, is also an opportunity for further research.  

To simplify the problem, the capacity of the batching machines and physical size 

of jobs are assumed one-dimension in this research. The future research can change this 

assumption to 2-dimension or 3-dimemsion. 

Objectives other than Cmax, i.e. due date related objectives and multiple 

objectives can also be investigated.  This dissertation focuses on minimizing the 
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makespan since it can help to increase the utilization of machine and labor resource, 

reduce the lead time of a manufacturing order and therefore improve the manufacturer's 

strength of competition. Other objectives besides Cmax can also be important, for 

example minimizing maximum lateness or minimizing the number of late jobs. These 

due-date related objectives are especially important when jobs to process have a tight due 

date or the capacity of the resource cannot meet the demand.   
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