
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

8-10-2010

Minimizing Makespan for Hybrid Flowshops with
Batch, Discrete Processing Machines and Arbitrary
Job Sizes
Yanming Zheng
Florida International University, yzhen001@fiu.edu

DOI: 10.25148/etd.FI11050312
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Zheng, Yanming, "Minimizing Makespan for Hybrid Flowshops with Batch, Discrete Processing Machines and Arbitrary Job Sizes"
(2010). FIU Electronic Theses and Dissertations. 383.
https://digitalcommons.fiu.edu/etd/383

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/383?utm_source=digitalcommons.fiu.edu%2Fetd%2F383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

MINIMIZING MAKESPAN FOR HYBRID FLOWSHOPS WITH BATCH, DISCRETE

PROCESSING MACHINES AND ARBITRARY JOB SIZES

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSHOPY

in

 INDUSTRIAL AND SYSTEMS ENGINEERING

by

Yanming Zheng

2011

ii

To: Dean Amir Mirmiran
 College of Engineering and Computing

This dissertation, written by Yanming Zheng, and entitled Minimizing Makespan for
Hybrid Flowshops with Batch, Discrete Processing Machines and Arbitrary Job Sizes,
having been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

 Shih-Ming Lee

Ronald Giachetti

 Purushothaman Damodaran

Chin-Sheng Chen, Co-Major Professor

Syed M. Ahmed, Co-Major Professor

Date of Defense: August 10, 2010

The dissertation of Yanming Zheng is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Interim Dean Kevin O'Shea
University Graduate School

Florida International University, 2011

iii

© Copyright 2011 by Yanming Zheng

All rights reserved.

iv

ABSTRACT OF THE DISSERTATION

MINIMIZING MAKESPAN FOR HYBRID FLOWSHOPS WITH BATCH, DISCRETE

PROCESSING MACHINES AND ARBITRARY JOB SIZES

by

Yanming Zheng

Florida International University, 2011

Miami, Florida

Professor Chin-Sheng Chen, Co-Major Professor

Professor Syed M. Ahmed, Co-Major Professor

This research aims at a study of the hybrid flow shop problem which has parallel

batch-processing machines in one stage and discrete-processing machines in other stages

to process jobs of arbitrary sizes. The objective is to minimize the makespan for a set of

jobs. The problem is denoted as: ܨܨหܾܽܿݐℎ1, .ݔܽ݉ܥหݏ

The problem is formulated as a mixed-integer linear program. The commercial

solver, AMPL/CPLEX, is used to solve problem instances to their optimality.

Experimental results show that AMPL/CPLEX requires considerable time to find the

optimal solution for even a small size problem, i.e., a 6-job instance requires 2 hours in

average.

A bottleneck-first-decomposition heuristic (BFD) is proposed in this study to

overcome the computational (time) problem encountered while using the commercial

solver. The proposed BFD heuristic is inspired by the shifting bottleneck heuristic. It

decomposes the entire problem into three sub-problems, and schedules the sub-problems

one by one. The proposed BFD heuristic consists of four major steps: formulating sub-

v

problems, prioritizing sub-problems, solving sub-problems and re-scheduling. For

solving the sub-problems, two heuristic algorithms are proposed; one for scheduling a

hybrid flow shop with discrete processing machines, and the other for scheduling parallel

batching machines (single stage). Both consider job arrival and delivery times. An

experiment design is conducted to evaluate the effectiveness of the proposed BFD, which

is further evaluated against a set of common heuristics including a randomized greedy

heuristic and five dispatching rules. The results show that the proposed BFD heuristic

outperforms all these algorithms.

To evaluate the quality of the heuristic solution, a procedure is developed to

calculate a lower bound of makespan for the problem under study. The lower bound

obtained is tighter than other bounds developed for related problems in literature.

A meta-search approach based on the Genetic Algorithm concept is developed to

evaluate the significance of further improving the solution obtained from the proposed

BFD heuristic. The experiment indicates that it reduces the makespan by 1.93 % in

average within a negligible time when problem size is less than 50 jobs.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION ..1
1.1 Background and Motivation ...1
1.2 Problem Statement, Research Objectives and Deliverables4
1.3 Research Assumptions ..8
1.4 Significance and Contribution ..8
1.5 Dissertation Organization ...9

2 LITERATURE REVIEW ...10
2.1 Introduction ...10
2.2 Hybrid Flow Shop Scheduling ..10
2.3 Parallel Batching Machines Scheduling ...15
2.4 Flow Shop with Both Discrete and Batch Processing Machines18
2.5 Decomposition Approaches ..21
2.6 Genetic Algorithm ..24
2.7 Summary ...25

3 PROBLEM DESCRIPTION AND FORMULATION26
3.1 Problem Characteristics ..26
3.2 Mixed-integer Formulation ...26
3.3 Runtime Analysis ..30

4 A LOWER BOUND PROCEDURE ..35
4.1 The Proposed Lower Bound Procedure ..35
4.2 Qualification of the Proposed Lower Bound ..48

5 PROPOSED HEURISTIC APPROACH ...56
5.1 Overview of the Proposed Heuristic Approach ..56
5.2 Sub-problem Formulation ...59
5.3 Sub-problem Prioritization..62
5.4 Sub-problem Solving ..62
5.5 Re-scheduling ...73
5.6 Algorithm of the BFD Heuristic ...73
5.7 A Numeric Example ...77
5.8 Computational Experiment ...82
5.9 Summary ...100

6 SOLUTION IMPROVEMENT BY A GENETIC ALGORITHM101
6.1 Introduction to Genetic Algorithm ..101
6.2 Proposed Genetic Algorithm...102
6.3 Parameters Tuning ..109
6.4 Computational Result ..112

vii

7 CONCLUSION AND FUTURE RESEARCH ..117
7.1 Overview of the Problem under Study ..117
7.2 Findings...117
7.3 Future Research ..122

LIST OF REFERENCES..124

VITA ...131

viii

LIST OF TABLES

TABLE PAGE

Table 2-1 Previous Research on Hybrid Flow Shop with Identical Ready Times 11

Table 2-2 Previous Research on Flow shop With Discrete and Batching Machines .. 18

Table 3-1 Big O Notation on the Growth Rate of Binary Variables 30

Table 3-2 Experimental Factors .. 31

Table 4-1 Experimental Factors .. 49

Table 5-1 Sub-problem Formulation ... 61

Table 5-2 Data of the Numerical Example .. 66

Table 5-3 Scheduling Procedure of Numerical Example .. 67

Table 5-4 Experimental Factors .. 68

Table 5-5 Data of the Numerical Example .. 77

Table 5-6 Sub-problem Formations and Scheduling ... 78

Table 5-7 Job Sequences on Parallel Batch Processing Machines 79

Table 5-8 Sub-problem Formulation and Scheduling ... 79

Table 5-9 Job Sequences on the Down Stream Hybrid Flow Shop 79

Table 5-10 Sub-problem Formations and Scheduling ... 80

Table 5-11 Job Sequences on Parallel Batch Processing Machines 80

Table 5-12 Sub-problem Formations and Scheduling ... 80

Table 5-13 Job Sequence on the Down Stream Hybrid Flow Shop 81

Table 5-14 Final Job Sequence ... 81

Table 5-15 BFD and Reduced BFDs ... 83

Table 5-16 Experiment Factors ... 88

ix

Table 5-17 ANOVA Table for RDEV .. 90

Table 5-18 Solution Quality of BFD and Dispatching Rules .. 99

Table 6-1 An Example of Job Sequence on Machines .. 103

Table 6-2 Parameters in GA .. 110

Table 6-3 ANOVA Table for GA Parameter Selection .. 111

Table 6-4 ANOVA Table for RDEV of GA ... 112

x

LIST OF FIGURES

FIGURE PAGE

Figure 1-1 A Rapid Prototyping Process .. 1

Figure 1-2 PCB assembly process .. 3

Figure 1-3 Complexity Analysis ... 6

Figure 1-4 Overview of the Methodology .. 7

Figure 3-1 Main Effects Plot for Percentage of Instances Solved to Optimality 32

Figure 3-2 Run Time and Percentage of Instances Solved to Optimality 33

Figure 3-3 Percentage of Instances Solved to Optimality vs. Batching Position 33

Figure 4-1 Main Steps of the Proposed Lower Bound Procedure 35

Figure 4-2 Batching Procedure for Lower Bound .. 39

Figure 4-3 The Procedure to Calculate plb ... 43

Figure 4-4 The Procedure to Calculate GLB .. 47

Figure 4-5 Percentage of Improvement of plb Over Kashan’s Lower Bound 49

Figure 4-6 Number of Instances solved to the Optimality by CPLEX in 30 Minutes.. 50

Figure 4-7 Average MIPGAP for Instances Not Solved to the Optimality 51

Figure 4-8 Relative Deviation of GLB from the Optimal Makespan 52

Figure 4-9 Relative Deviation (RDEV) of GLB... 53

Figure 4-10 Relative Improvement of GLB on Amin-Naseri’s Lower Bound 55

Figure 5-1 Problem Decomposition.. 56

Figure 5-2 Major Steps of BFD .. 57

Figure 5-3 Map of the Heuristic Procedures... 58

Figure 5-4 Procedure of LSD ... 65

xi

Figure 5-5 Solution Quality of LSD, JobSimilarity and ModifiedDelay 68

Figure 5-6 Procedure of BA-Jackson ... 70

Figure 5-7 Modified Jackson’s Heuristic with Given Delay Parameter 71

Figure 5-8 Main Procedure of BFD .. 74

Figure 5-9 Sub-procedure: Bottleneck Identification and Scheduling 76

Figure 5-10 Shop Configuration of the Example .. 77

Figure 5-11 List of Comparisons .. 82

Figure 5-12 Main Effects Plot for Solution Quality of BFD 91

Figure 5-13 Solution Quality of BFD Discriminated by Number of Jobs 92

Figure 5-14 Scatter Chart: Solution Quality of BFD by Number of Jobs................... 92

Figure 5-15 RDEV* of BFD Solution Discriminated by Number of Jobs 93

Figure 5-16 Scatter Chart: RDEV* for BFD Solution by Number of Jobs 94

Figure 5-17 Solution Quality of BFD and Reduced BFDs ... 95

Figure 5-18 Average Improvement on Solution Quality by Full Rescheduling 96

Figure 5-19 Average Run Time of in Seconds ... 97

Figure 5-20 RDEV for BFD and RGH Discriminated by Number of Jobs 98

Figure 5-21 Solution Quality of BFD and Dispatching Rules 99

Figure 5-22 Average Run Time of BFD and BEST DSPT in Seconds 100

Figure 6-1 Procedure of the Proposed GA ... 103

Figure 6-2 3D Chromosome structure .. 104

Figure 6-3 Main effects plot for GA parameter selection ... 111

Figure 6-4 Main Effects Plot for RDEV of GA .. 113

Figure 6-5 Average RDEV of BFD and GA .. 114

xii

Figure 6-6 Average Improvement in RDEV by GA ... 114

Figure 6-7 Percentage of Improvement on RDEV by GA ... 115

Figure 6-8 Average Run Time of GA vs. BFD in Seconds .. 116

Figure 7-1 Solution Quality of Different Algorithms ... 121

Figure 7-2 Average Run Times in Seconds for All Algorithms 121

1

1 INTRODUCTION

1.1 Background and Motivation

As industries are facing more and more intense competition, many

manufacturing companies adapt newer systems, such as hybrid flow shops (HFS) which

combine the flow shop with parallel machines. Batch processing machines are also used

to simultaneously process multiple jobs to improve efficiency. The hybrid flow shop with

batch processing machines in parallel is denoted as HFPB by Amin-Naseri (2009). The

problem under study considers a variant case of HFPB, denoted as ܨܨ|ܾܽܿݐℎ1, ,ݔܽ݉ܥ|ݏ

which represents a hybrid flow shop with parallel identical batch processing machines in

exactly one stage and discrete processing machines in other stages to process jobs with

arbitrary size.

Figure 1-1 A Rapid Prototyping Process

One of the typical applications of this problem is in rapid prototyping. The rapid

prototyping refers to a class of technologies that can automatically construct physical

2

models from Computer-Aided Design (CAD) data. These "three dimensional printers"

allow designers to quickly create tangible prototypes of their designs, rather than just

two-dimensional pictures. Prototyping plays an essential role in the development of

appliances, machines, cars and many other items, small or large we encounter in our daily

life. It can reduce development costs, shorten lead time and test configuration. Although

several rapid prototyping techniques exist, all employ the same basic four-step process

which is shown in Figure 1-1. The steps include:

1. Model Simulation: The design to be prototyped is transformed from a one-

dimensional image to a three-dimensional likeness. This is usually done using computer-

aided design (CAD) software such as AutoCAD, and converted into the STL format

which is considered a standard in the rapid prototyping process.

2. Model Slicing: A pre-processing software is run to slice the STL model

into a number of layers, depending on the “build” technique.

3. Prototyping: A rapid prototyping machine is used to build the prototype

one layer at a time from polymers, paper, or powdered metal. Usually a prototyping

machine can prototype multiple items as a batch simultaneously. The time required is

determined by the longest time required by all the items in the batch.

4. Finishing: The final step is post-processing. This involves removing the

prototype from the machine and detaching any supports.

The scheduling of rapid prototyping is to make two important and intertwined

decisions: (1) how to group jobs to form batches for prototyping, and (3) how to sequence

the jobs and batches so that the makespan of processing all prototypes will be minimized.

Since different prototype has different design, which results in different size and requires

3

different processing times, the number of prototypes to be built simultaneously in a

prototyping machine cannot be predetermined, and hence increase the complexity of

batching and scheduling.

Figure 1-2 PCB assembly process

Another example is the printed circuit board (PCB) assembly (Figure 1-2). The

solder paste is first applied on a bare PCB. The PCB is later populated with appropriate

components by a component placement machine. Later, the assembly is soldered in a

convection oven. After soldering, PCBs are placed in an environmental stress screening

chamber (ESS) for an environmental test, and then sent to the next operation for final

inspection. PCB manufacturers, especially contract electronics manufacturers, usually

have more than one machine at some stages of processing. In most of the processing,

each machine can only process one PCB at a time, while in environmental stress testing

one ESS chamber can test several PCBs simultaneously. The number of PCBs that can be

processed at a time depends on the chamber’s capacity as well as the size of the PCBs.

Applications of the scheduling problem under study can also be found in various

industries, for example chemical industry and steel industry.

4

1.2 Problem Statement, Research Objectives and Deliverables

1.2.1 Problem Statement

The problem under study can be described as follows: We are given multiple

stages of machines. Each stage has one or more identical machines in parallel. One stage

consists of parallel batch processing machines, while all other stages consist of discrete

processing machines. The batching stage can be any stage along the flow line. For all

jobs to be processed, job processing times and job sizes are arbitrary. Each job should go

through all stages and should be processed by only one machine in each stage. The

process route is identical for all jobs. In the batching stage, machines are able to process

two or more jobs simultaneously as long as the total size of jobs in a batch does not

exceed the machine capacity. All jobs in the same batch start and finish at the same time.

The batch processing time is determined by the longest job processing time of all jobs in

the batch. The objective is to find a set of batches, the schedule of jobs and batches in

each stage, so that the completion time of the last job is minimized.

To study this scheduling problem, three issues are raised:

1. The batching strategy

Minimizing the number of batches or maximizing the size of each

batch is usually the batching strategy for scheduling single and parallel batch

processing machines. However, minimizing the number of batches may yield

a good solution only when all the jobs are available at the same time. When

jobs arrive at different time, a batch might close even though there is still

space available, so as to avoid delaying the processing of the batch. The

5

question to answer is when to close the batch, or when to stop waiting for next

job to join. On the other hand, the dispatching rule used to prioritize jobs

should be determined, too.

2. The impact of shop configuration on batching strategy

As mentioned above, one of the scheduling decisions to make is how

to form the batches. It is easy to understand that different batching strategies

might yield different scheduling results. However, does batching strategy vary

with shop configuration? Will the dispatching rule change when the batching

stage position changes from the first stage to the last stage? If yes, what

dispatching rules should be considered for different shop configurations?

3. The interaction between discrete hybrid flow shop and parallel batching machines

The problem under study is an integration of the discrete HFS

scheduling problem and the parallel batching machines scheduling problem.

To get a good solution, we cannot simply split the problem into several sub-

problems and get solution for each sub-problem, since job completion times in

one stage will affect the scheduling in the next stage. Hence, integrated

solutions should be explored to consider the interaction between the hybrid

flow shop and the parallel batching machines.

This research aims to study above issues, and therefore fill the research gap in this

field.

6

1.2.2 The Complexity Analysis

If the number of stages is 3, the number of machines in each stage is 1, and all job

sizes and capacity for all machines are equal to 1, the problem is then reduced to

F3||Cmax, with time complexity function known to be NP-hard. If there is only one stage,

and all job sizes and machine capacities are equal to 1, the problem is reduced to

Pm||Cmax which is also NP-hard. It can be inferred that the problem under study is at

least NP-hard, which means that finding an optimum solution in a reasonable time is

unlikely, and heuristic methods are highly recommended.

Figure 1-3 Complexity Analysis

1.2.3 Research Objectives and Deliverables

The objective of this study is to mathematically formulate the problem under

study and develop a solution approach to effectively solve the problem of practical size.

Since the problem under study is NP-hard, to solve such problems, the run-time of an

FF|batch1, sj|Cmax

FF||Cmax Pm|rj, batch|Cmax

F3||Cmax P2||Cmax 1|rj, batch|Cmax
hard

1||Cmax
Easy

7

exact algorithm, for example enumeration schemes or branch and bound, increases

exponentially with the instance size, implying that usually only small instances can be

solved in practice. In contrast with the exact methods, a heuristic would require much less

time to find an approximate solution. However, the solution quality might be

compromised. In this dissertation, the effectiveness of the heuristic approach is evaluated

by measuring the run time and comparing its solution with the lower bound. Figure 1-4

presents the different approaches developed for this research.

Figure 1-4 Overview of the Methodology

In this research a mixed-integer linear program is first formulated and solved

using a commercial solver to obtain optimum solution. However, as the problem is NP–

hard, optimum solution can be obtained in reasonable time for only small-size problem

instances. A constructive heuristic approach is proposed to solve the problem under study

approximately. The performance of the approach is measured by the computational cost

and the solution quality. A meta-heuristic, genetic algorithm (GA), is also proposed to

explore the significance of improvement on the solution produced by the constructive

����ห��������ℎ1, ����ห��������
Exact Method Constructive Heuristic Improvement Algorithm

MILP

Lower Bound

Bottleneck-first
Decomposition
Heuristic (BFD)

GA

8

heuristic. A procedure to calculate the lower bound of the makespan is developed to

assess the quality of the solution obtained from various solution approaches proposed.

Since optimal solution is difficult to obtain for even small-size problems, having a good

lower bound is important for comparing the effectiveness of different solution

approaches. In this research, the derived lower bound is used as the benchmark to

evaluate the solution quality of heuristics whenever an optimal solution is not available.

The deliverables of this study include: (1) A mixed-integer model, (2) a lower-

bound procedure, (3) a heuristic approach, and (4) a meta-heuristic approach.

1.3 Research Assumptions

The main assumptions are: (1) machines and jobs are available from the

beginning, (2) neither job splitting nor preemption is allowed, (3) The buffers between

stages are unlimited, (4) job processing times and sizes are deterministic and known in

advance, (5) machine breakdowns are not considered, (6) there is no waiting time limit

between any two stages, (7) machine set up time is not considered, (8) all machines

within the same stage are identical, (9) the batch processing time equals the longest

processing time among all jobs in the batch, (10) all jobs in a batch start and finish at the

same time, and (11) the capacity and job size is assumed one dimension.

1.4 Significance and Contribution

The significance of this research can be addressed in two perspectives. First, the

problem under study has a growing popularity of applications in different fields of

industry, for example rapid prototyping, PCB assembly, metal working, etc. Actually,

any production line related to a hybrid flow shop with batch and discrete processing

9

machines might encounter this scheduling problem. A solution approach to the problem

under study will benefit the scheduling in these fields, and improve productivity of

production line. Second, this research differs from most previous work done on HFS

scheduling in that it considers a hybrid flow shop with both discrete and batch processing

machines and allow jobs to have arbitrary sizes. Similar but simpler problems have never

been solved by any exact algorithm within reasonable computational time and for a

number of jobs that is of practical interest.

The research contribution can be summarized as: (1) a category of scheduling

problem, ܨܨหܾܽܿݐℎ1, is mathematically modeled, (2) a tight lower bound is ,ݔܽ݉ܥหݏ

derived for this problem, and (3) a solution approach to solving this problem of practical

size effectively and efficiently is proposed.

1.5 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents a literature

review on existing research. Chapter 3 introduces a mixed-integer model. A lower bound

is given in Chapter 4. In Chapter 5, a heuristic approach built on the decomposition

method and the shifting bottleneck procedure is presented and its performance is

compared to that of a set of common heuristics and dispatching rules. Chapter 6 describes

a genetic algorithm to further improve the solutions. Conclusions are drawn in Chapter 7.

10

2 LITERATURE REVIEW

2.1 Introduction

The problem under study can be considered as the integration of two basic

scheduling problems: (1) the classical Hybrid Flow Shop problem denoted as FFm | | Cmax,

and (2) Parallel batch processing machines problem, denoted as Pm| batch | Cmax. The

literature review is organized as below. Section 2.2 focuses on the HFS scheduling.

Section 2.3 reviews parallel batching machines scheduling problems. Section 2.4

addresses the HFS with both discrete and batch processing machines. Section 2.5 covers

the decomposition methods. Section 2.6 discusses the genetic algorithm. A summary is

given in Section 2.7.

2.2 Hybrid Flow Shop Scheduling

2.2.1 Hybrid Flow Shop with Identical Job Ready Times

The scheduling problem to minimize the makespan on a hybrid flow shop is

known to be NP-hard in the strong sense (Hoogeveen 1996). Various solution approaches

have been proposed and can be grouped into three categories: exact methods, heuristics

and meta-heuristics (Table 2-1).

Arthanari and Ramamurthy (1971) define the HFS problem, and first suggest a

branch and bound method to this problem. After that, the branch and bound method has

been explored by many researchers to get optimal solutions for small size instances.

Among all these, Neron et al. (2001) describe an exact approach which outperforms all

11

previous ones and reports the optimal solution of small-sized instances with up to 15

jobs, 5 stages, and 3 machines in each stage.

Table 2-1 Previous Research on Hybrid Flow Shop with Identical Ready Times

Classes of
Solution

Approaches

Previous Research
Two Stages Three Stages and Above

E
xa

ct
 m

et
ho

ds
 Arthanari and Ramamurthy(1971)

Salvador (1973)
Gupta et al. (1997)
Portmann et al. (1998)
Haouari et al. (2006)

Brah and Hunsucker (1991)
Rajendran and Chaudhuri (1992)
Perregaard (1995)
Portmann et al. (1998)
Carlier and Néron (2000)
Moursli and Pochet (2000)
Neron et al. (2001)

H
eu

ri
st

ic
s

B
ot

tl
en

ec
k-

ba
se

d
he

ur
is

ti
cs

 Adler et al. (1993)
Yang (1998)
Chen (1998)
Acero-Domínguez and Paternina-
Arboleda (2004)
Lee et al. (2004)
Paternina-Arboleda et al. (2008)
Chen et al. (2009)

O
th

er
 h

eu
ri

st
ic

s

Narasimhan and Panwalker (1984)
Narasimhan and Mangiameli (1987)
Gupta and Tunc (1991) (1994)
Gupta et al. (1997)

Wittrock (1985)
Wittrock (1988)
 Ding and Kittichartphayak (1994)
 Hunsucker and Shah (1994)
Santos et al. (1996)
Guinet and Solomon (1996)
Brah and Loo (1999)
Gupta et al. (2002)
Caricato and Grieco (2007)

M
et

a-
he

ur
is

ti
cs

 Nowicki and Smutnicki (1998)
Gourgand et al. (1999)
Engin and Doyen (2004)
Jin et al. (2002)
Vishwanathan et al. (2007)
Oulamara et al. (2009)

12

Since the exact methods, i.e. branch and bound, is computationally expensive and

has been proved impractical for even modestly sized problems, it usually appeals to apply

heuristic algorithms for large-scale HFS problems, to achieve near-optimal solutions.

Therefore, starting from 1980’s, many studies have been conducted on solving two-stage

HFS problems with heuristics. Narasimhan and Panwalker (1984) solve a variant of the

HFS problem that had different machines at the second stage by using the Cumulative

Minimum Deviation rule. Narasimhan and Mangiameli (1987) propose a Generalized

Cumulative Minimum Deviation rule to solve HFS problems. Gupta et al. (1991; 1994;

1997) research two-stage HFS problems with parallel machines at one of the stages and

have extended their research to the two-stage HFS problems with parallel machines at

both stages, and separable setup and removal times.

For the HFS problem with more than two stages, the well known early researches

are conducted by Wittrock (1985; 1988). The author develops a periodic heuristic

algorithm for minimizing the makespan by focusing on job loading and time allocating.

He also presents a more flexible non-periodic heuristic algorithm for the same problem

by taking three steps: machine allocation, job sequencing and timing. Ding and

Kittichartphayak (1994) develops three heuristics for HFS problems. The heuristics are

extensions of Campbell-Dudek-Smith (CDS) by Campbell (1970) and a heuristic by

Gupta (1972). Hunsucker and Shah (1994) evaluate six priority rules used in an HFS

problem with a constrained total number of jobs in the system. The objectives are

makespan, mean flow time and maximum flow time. They conclude that the SPT

dispatching rule is superior for makespan and mean flow time. However, a similar study

done by Guinet and Solomon (1996) lead to a different conclusion. The authors declare

13

that NEH heuristic of Nawaz, Enscore, and Ham with Largest Processing Time First rule

is the best for Cmax instead of SPT. Santos et al. (1996) evaluate four heuristics

algorithms used in HFS and concluded that ‘a non-delay-type scheduling procedure

which utilizes a “good” starting permutation of job orderings at first stage of an HFS

should produce a makespan which is not appreciably worse than that produced by an

optimal general schedule. Brah and Loo (1999) expand five better-performing flow shop

heuristics, and use regressions to investigate heuristic performance and the effects of

problem characteristics. Gupta et al.(2002) study multiple-stage HFS problems with

parallel machines at each stage with multiple criteria. It is assumed that processing times

are controllable and due dates are assignable. The authors generalize well-known

approaches for the heuristic solution of classical problems and propose heuristic

algorithms based on job insertion techniques and iterative algorithms on local search.

Caricato and Grieco (2007) extends the traditional HFS scheduling problem to the case in

which jobs are due to follow strict precedence constraints and batch assignment

constraints and the parallel machines at a stage are served by a bottleneck machine. A

variant of the well-known Travelling salesman problem (TSP) is used to develop an

efficient heuristic solution for the problem. Furthermore, a simple insertion heuristic

based on the TSP model of the problem is tested.

A category of heuristics called bottleneck-based heuristics become popular in the

past two decades in scheduling HFS problem. The main idea behind bottleneck-based

heuristic is to find the bottleneck stage and to optimize the whole system performance

based on exploiting the bottleneck stage. It usually comprises three steps: (i) bottleneck

identification, (ii) scheduling of jobs at the bottleneck stage, and (iii) scheduling of jobs

14

at non-bottleneck stages. Adler et al. (1993) present a bottleneck heuristic algorithm to

for scheduling a HFS with non-identical machines in paper company with due date

related objective. Yang (1998) proposes a bottleneck-based heuristic to minimize the total

weighted tardiness for the HFS scheduling problem. Chen (1998) suggests a bottleneck-

based group scheduling procedure to solve flow line cell scheduling problems. Lee et al.

(2004) develop a bottleneck-focused algorithm to minimize total tardiness of a HFS

scheduling problem. In their algorithm, the ready times are iteratively updated using

information of the schedule obtained in the previous iterations. Acero-Domínguez and

Paternina-Arboleda (2004), Paternina-Arboleda et al. (2008) develop heuristics based on

Theory of Constraint (TOC) by Goldratt (1992) and minimize the makespan of a hybrid

flow shop by exploiting the bottleneck stage. They claim that this heuristic is with

smaller variance and requires less computational effort than other bottleneck based

algorithms. Chen et al. (2009) develop a bottleneck-based heuristic (BBFFL) to solve a

flexible flow line with unrelated parallel machines , with the objective of minimizing the

makespan, the total tardiness and number of tardy jobs.

Different meta-heuristic approaches are proposed to improve the solutions, for

example Tabu search by Nowicki and Smutnicki (1998), simulated annealing algorithms

by Gourgand et al. (1999), Jin et al. (2002) and Vishwanathan et al. (2007), genetic

algorithms by Jin et al. (2002) and Oulamara et al. (2009) , and artificial immune system

by Orhan Engin (2004).

15

2.2.2 Hybrid Flow Shop with Non-Identical Job Ready Times

Although there have been many studies on hybrid flow shop scheduling problems,

most of such studies deal with problems in which ready times of jobs are not considered,

that is, ready times of jobs are identical or equal to zero. Researches on HFS problems

with non-identical job ready times are very limited. Cheng et al. (2001) propose a shifting

bottleneck heuristic to minimize the Lmax on the HFS with non-identical job ready times.

The heuristic decomposes the HFS into m parallel-machine scheduling problems to be

solved one by one. Each parallel-machine problem is approximately solved by applying a

property of its reversibility in the proposed heuristic. The authors declare that their

heuristic produces optimal or quite near optional solutions within short computational

time. Gupta et al. (2002) propose heuristics for the HFS with non-identical job ready

times, controllable processing times and assignable due dates. The authors also use a list

scheduling method to deal with non-identical job ready times. Tang and Liu (2009)

derive a lower bound and develop dynamic programming-based heuristic algorithms to

minimize the makespan on a two-machine flow shop with batching and release time.

2.3 Parallel Batching Machines Scheduling

2.3.1 Parallel Batching Machines with Identical Job Ready Times

Batch processing by parallel machine is proven to be NP-hard in strong sense

(Lee 1992). Research efforts in this area can be classified using the following 3

independent criteria: (1) constant or varying batch-processing times, (2) presence or

absence of job sizes as a variable, and (3) presence or absence of incompatible job

families. Under the first criterion, if the batch processing times are not constant, the

16

processing time of a batch depends on the jobs that constitute a batch. Otherwise, the

batch processing times are independent of these jobs. Under the second criterion, if job

sizes are not considered, it is assumed that all the jobs have the same size and therefore

the machine capacity is given by the maximum number of jobs it can process

simultaneously. On the other hand, if job sizes are not identical, the machine capacity is

given by the maximum number of size units the machine can process simultaneously.

Under the third criterion, if incompatible job families are present, the jobs assigned to the

same batch must belong to the same family, and usually jobs belonging to the same

family share a common processing time, which determine the batch processing time. If

incompatible job families are not considered, the batch processing time is given by the

maximum processing time of the jobs assigned to the batch. The problem under study in

this dissertation assumes that batch processing times are varying and determined by the

composition of the batches, the job sizes are non-identical, and there is no incompatible

job present.

Lee et al.(1992) observe that there exists an optimal schedule in which all jobs are

pre-assigned into batches according to the BLPT rule: rank the jobs in non-increasing

order of processing times, and then batch the jobs by successively placing as many as

possible jobs with the largest processing times into the same batch. Remy (2004) presents

an algorithm which approximates the makespan for parallel batching machines with ratio

2. Lin (2004) studies the parallel batch scheduling problem to minimize the maximum

lateness and the number of tardy jobs. First dynamic programming algorithms are

designed for finding optimal solutions to the two problems, and then several heuristics

are developed to solve the same problems. Chang et al. (2004) develop a simulated

17

annealing algorithm to minimize the makespan for capacitated parallel batch processing

machines that process jobs with arbitrary sizes. Kashan et al (2008) propose a hybrid

genetic heuristic (HGH) to solve the same problem. The author claims that the HGH

outperforms the simulated annealing (SA) approach by Chang et al. (2004). Shao et al.

(2008) propose a solution approach based on neural networks on the same problem. Xu

(2007) proposes a genetic algorithm based on random keys (RKGA) to minimize the

makespan on parallel non-identical batch processing machines. Damodaran et al. (2007)

develop several heuristics to minimize the makespan on identical parallel batching

machines. Damodaran (2008) also develops a GA algorithm for the same problem.

2.3.2 Parallel Batching Machines with Non-identical Job Ready Times

Chung et al. (2008) propose a mathematical model and three heuristics to

minimize the makespan on parallel batching machines with non-identical job arrival

times and job sizes. The authors propose a sequential approach in which batches are

formed first and scheduled second. To form the batches, they propose the Modified Delay

algorithm which incorporates the merits of the DELAY heuristic solution procedure

proposed by Lee (1999). Damodaran et al. (2008) and Vélez-Gallego (2009) propose

several heuristics and meta-heuristics for the same problem. Two heuristics, JS1 and JS2,

are proposed to form batches. The authors claim that their scheduling rule with JS1 and

JS2 heuristics outperform the other heuristics, including the Modified Delay heuristic

addressed by Chung et al. (2008).

Other than minimizing the makespan, there is also research effort made on due

date relate objectives. Chiang (2008) proposes a local search-based heuristic to minimize

18

maximum lateness on identical parallel batching machines scheduling problem

considering incompatible job families and dynamic job arrivals. Li (2004) present a

polynomial time approximation scheme (PTAS) for minimizing maximum lateness on

identical parallel batch processing machines scheduling problem with ready times and

delivery times.

2.4 Flow Shop with Both Discrete and Batch Processing Machines

In this environment, jobs are routed through a flow shop which has batch

processing machines in some stages, and discrete processing machines in the other stages.

Table 2-2 shows major research papers in this area grouped into different categories.

Table 2-2 Previous Research on Flow shop With Discrete and Batching Machines

 Two stages Multiple stage

Flow shop Tang (2009)

Sung (2002)

Su (2003)

AHMADI (1992)

Hybrid flow

shop

Kim et al. (2009)

Bellanger (2009)

Bellanger (2008)

Vishwanathan (2007)

Amin-Naseri (2009)

AHMADI (1992) minimizes the makespan (Cmax) and the sum of completion

times (ΣCj) in two-machine flow shop scenario with one processor being a batching

machine and the other being a discrete machine. The batch processing time is assumed to

be independent of the composition of the batch. The authors proposes Full Batch-LPT

rules for the flow shop scenario with batching machine followed by discrete machine, and

19

SPT-Full Batch rules for the reversed machine environment with discrete machine

followed by batching machine. Both heuristics are claimed to yield optimal solution.

Sung (2002) considers a two-machine flow shop where a discrete processing machine is

followed by a batch processing machine and a finite number of jobs arrive dynamically at

the first machine. In Sung’s heuristic, the dynamic shortest processing time (DSPT) rule

is applied to schedule the first machine, and then FOE(n, c) heuristic is adopted to form

batches and schedule in the second machine. A tight worst-case error bound is also

derived. Su (2003) analyzes the problem of minimizing Cmax of a two-stage flow shop

having limited waiting time constraints, with a batch processor in stage 1 and a single

processor in stage 2. A heuristic algorithm and a mixed integer program are proposed.

Vishwanathan (2007) presents a hybrid flow shop scheduling problem with an interior

stage consists of a batch processing operation and all other stages being discrete-parts

processing. Different classic flow shop heuristics (CDS, NEH, Palmer’s heuristic) are

applied at the first stage, coupled with a FIFO progression throughout the shop. The

experiment result shows that Palmer and CDS outperform NEH on most problem

instances. Bellanger (2009) considers a two-stage hybrid flow shop problem in which the

first stage contains several identical discrete machines, and the second stage contains

several identical batching machines which can process several compatible tasks

simultaneously in a batch. A heuristics family denoted as H-FCBLPT along with their

worst cases analysis is developed to minimize the makespan. Tang et al. (2009) derive a

lower bound and develop dynamic programming-based heuristic algorithms to solve the

scheduling problem in a two-machine flow shop environment with batching and release

time, whose objective is to minimize the makespan. They apply DSPT to schedule the

20

first stage of single discrete machine and then use dynamic programming to find an

optimal job batching for the second stage based on given job sequence from stage 1. Kim

(2009) studies the scheduling problem of a two-stage hybrid flow shop with identical

parallel machines at the first stage and a single batch processing machine at the second

stage, subject to non-identical ready time and product-mix ratio constraint. Three

heuristics, forward heuristic, backward heuristic and iterative heuristic, are presented to

minimize the makespan. Bellanger (2008) presents a exact method based on Branch &

Bound for a two-stage hybrid flow shop with parallel discrete machines in the first stage

and parallel batching machines in the second stage, with the objective to minimize the

makespan. All jobs of the same batch have to be compatible. Recently, Amin-Naseri

(2009) develops three heuristic algorithm to minimize makespan in a hybrid flow shop

environment with parallel uniform batching machines in some stages and parallel

identical discrete machines in other stages. It is assumed that the job sizes are identical.

Three heuristics, H1, H2 and H3, which are inspired by Johnson’s rule, CDS and theory

of constraints (TOC) accordingly, are developed to minimize the makespan. A lower

bound and a three dimensional genetic algorithm (3DGA) is developed for evaluating the

performance of the proposed heuristics. Kim et al. (2009) study the scheduling problem

of a two-stage hybrid flow shop with identical parallel machines at the first stage and a

single batch processing machine at the second stage, subject to non-identical ready time

and product-mix ratio constraint.

21

2.5 Decomposition Approaches

2.5.1 Introduction of Decomposition Approaches

Decomposition approaches have been used widely in the operations research

fields as a manner of modeling and analyzing complex systems. The idea behind it is that

the resolution of certain critical (bottleneck) sub-problems will enable us to construct the

solution to the remaining parts of the original problem relatively easily. Therefore if we

successfully formulate and solve the bottleneck sub problems, it will be able to obtain a

near-optimal solution relative easily since the solutions to the remaining sub-problems

are determined to a great extent by the solutions to the bottleneck sub problems. If sub

problems differ in criticality, the most critical or most constraining sub problems will be

solved first to ensure the quality of the solution. Based on this idea, decomposition

methods attempt to develop solutions to complex problems by decomposing them into a

number of smaller sub-problems which are more tractable and easier to understand.

Solutions are developed for each sub-problem individually, and then integrated to form a

solution to the original problem. The solutions obtained may be exact or approximate,

depending on the nature of the procedure used and the problem under study. Ovacik

(1997) classified decomposition methods into three major types:

1) Temporal decomposition schemes that decompose problems based on time,

2) Entity decomposition schemes that decompose problems based on work centers or

machines and,

3) Hybrid decomposition schemes, which are combination of temporal decomposition

schemes and entity decomposition schemes.

22

They discuss a variety of issues regarding the development of successful

decomposition procedures: how to decompose the shop problem into appropriate sub-

problems, how to model the interactions between sub-problems, how to choose an

effective solution procedure for the sub-problems, and how to design an appropriate

control strategy that determines in what order the sub problems should be solved and how

intermediate solutions should be revised to improve solution quality. Most of the

researches focus on minimizing Lmax on a job shop.

2.5.2 Shifting Bottleneck Procedures

One of the most successful decomposition algorithms applied to shop scheduling

is the shifting bottleneck procedure originally developed by Adams (1988), which is

designed for the classical Jm | | Cmax problem. The procedure decomposes the job shop

problem into single machine sub-problems. In each iteration it aims at fixing the schedule

for the current bottleneck machine. It achieves this goal by scheduling the set of

unscheduled machines one at a time, each time solving a 1| rj |Lmax problem using a

branch-and-bound algorithm. The machine with the greatest Lmax is taken as the current

bottleneck machine and the corresponding disjunctive arcs are fixed while those on other

machines remain unfixed. This procedure also includes a re-optimization process, that is,

each time a new machine is scheduled, each of the machines previously scheduled is

considered again as an unscheduled machine by deleting the disjunctive arcs that had

been fixed before. The corresponding sub-problem is reformulated by re-computing the

data necessary and the machine is then rescheduled using the same branch-and-bound

23

algorithm. It has been found that the re-optimization process usually provides a

significant improvement. This shifting bottleneck procedure works well and achieves the

optimal solution for a well-known ten job, ten machine benchmark problem in a matter of

minutes. A lot of research work has been done on expanding ideas behind the shifting

bottleneck procedure, either to improve its performance on the Jm | | Cmax problem or to

adapt it to solve other complex shop scheduling problems.

2.5.3 Summary

In summary, the decomposition methods applied in HFS scheduling usually

follow the overall procedure as below: (1) problem decomposition, (2) bottleneck

identification, (3) sub-problem formulation, (4) solution of the sub-problems and (5) re-

optimization. While following the same overall procedure, different researchers

differentiate their heuristics in different aspects. For example, some of the researches

decompose the problem into stages, while the others decompose the problem into

bottleneck stage, upstream sub-problem and downstream sub problem. To decide which

way to apply depends on the problem characteristics as well as the solution time/quality

tradeoff. There are also different ways to identify the bottleneck selection criteria, the

ready times and due dates for sub problems, sub-problem solution procedures and the re-

optimization procedures. According to the experiment by Ovacik (1997), the sub-problem

solution and re-optimization procedures have a significant effect on both solution quality

and computation time, while the bottleneck selection criteria do not have any significant

effect as long as a sensible criterion is used.

24

2.6 Genetic Algorithm

Formally introduced in the 1970s by John Holland at University of Michigan, the

genetic algorithm is a population-based search and optimization method that simulate the

process of natural evolution. It uses techniques inspired by evolutionary biology for

example crossover, mutation, inheritance and selection. In the past decade, GA has

received considerable attention for solving complicate optimization problems. Hybrid

genetic algorithm is a genetic algorithm incorporating other techniques within its

framework to produce a hybrid that reaps the best from the combination. Hybrid genetic

algorithms have received significant interest in recent years and are being increasingly

used to solve real-world problems. Xu (2007) provide a genetic algorithm based on

random keys encoding (RKGA) for minimizing makespan on parallel non-identical

batching machines. The authors observe that RKGA is very robust and produces

consistent solutions across different random seeds within reasonable computation time.

Kashan (2008) proposes a hybrid genetic heuristic (HGH) to minimize makespan on

parallel batch processing machines with arbitrary job sizes. HGH is characterized by

using a robust mechanism for generating initial population, using efficient local search

heuristics to bring longer jobs together as a batch and further improve machines load.

HGH is claimed to outperform a simulated annealing (SA) approach. Amin-Naseri (2009)

develops a three dimensional genetic algorithm (3DGA) to minimize the makespan on

hybrid flow shop scheduling with parallel batching. Extensive reviews of GA can be

found in Draidi (2004), Chaudhry (2005) and El-Mihoub (2006).

25

2.7 Summary

The problem under study has not received due attention in the literature. Most

literature on the scheduling problems in the machine shop environment with batch and

discrete machines is focused on two-stage machine environment or three-stage with

single machine in each stage. The papers by Amin-Naseri (2009) and Vishwanathan

(2007) are the only two publications which are close to the problem under study. Amin-

Naseri (2009) conducts the research on multiple stages HFS with parallel uniform

batching machines. However, it is assumed that all jobs have identical size, which is

different from the assumption in the problem under study. With the identical job sizes

assumption, the maximum number of jobs a batching machine can process

simultaneously is constant and predetermined by machine capacity / job size, while with

arbitrary job size assumption the maximum number of jobs in a batch depends on the

batch components and cannot be predetermined, therefore increase the difficulty to solve

the problem. Vishwanathan (2007) presents a hybrid flow shop scheduling problem with

an interior stage consists of parallel batch processing machines and all other stages being

discrete-parts processing. It can be considered as a special case of the problem under

study, since it assumes identical job sizes, and the batching stage can only locate in

between discrete stages.

26

3 PROBLEM DESCRIPTION AND FORMULATION

3.1 Problem Characteristics

We are given a set I of stages. Each stage has one or more identical machines in

parallel. There is exactly one stage, denoted as batching stage, consisting of parallel

batch processing machines, while all other stages, denoted as discrete stage, consist of

discrete machines. The batching stage can be in any position along the flow line. We are

also given the set J of jobs. Each job j є J is described by {pji, sj} representing its

processing time at each stage and job size respectively. Processing times and job sizes are

arbitrary and independent to each other. Each job needs to go through all stages in the

same order and be processed by only one machine at each stage. In batching stage,

machines are able to process two or more jobs simultaneously as long as the total size of

jobs in a batch does not exceed the machine capacity. All jobs in a batch start and

complete at the same time. The processing time of a batch, defined as Pb=max{pji | j є b},

equals to the longest processing time among all jobs in the batch. The objective is to

schedule jobs so that the makespan is minimized.

3.2 Mixed-integer Formulation

The sets used in the mathematical formulation are defined below:

J Set of jobs, Jj ∈

I Set of stages, Ii∈

Q Set of positions in the schedule, Qq∈

27

The parameters used in this mathematical formulation are given below:

jip Processing time of job j in stage i

C Machine capacity

js Size of job j

w A large number not less than the schedule duration

n Number of jobs

im Number of machines in stage i

B The position of batching stage

Decision Variables

=
otherwise

istageatpositionqthetoassignedisjif
x

th

ijq
,0

job,1

=
otherwise

istageatmmachinetoassignedisitionqintheif
y

th

iqm
,0

posjob,1

jic -- The starting time of job j in stage i

maxC Makespan or maximum completion time

The mixed-integer formulation developed is as follows:

Min maxC 3-1

Subject to:

 =
q ijqx 1 JjIi ∈∈∀ , 3-2

28

 =
m iqmy 1 QqIi ∈∈∀ , 3-3

1<= j ijqx QqBIi ∈∈∀ ,}{\ 3-4

Cxs
j Bjqj ≤ Qq∈∀ 3-5

)1(,)1(, −− +>= ijijji pcc JjBBIi ∈+∈∀ ,}1,,1{\ 3-6

)1(BjqBrqrBjBji xwxpcc −−+>= QqJrJjIBi ∈∈∈++∈∀ ,,},1{\}1{ 3-7

)2()1(,)1(, irqijqBrBrji xxwpcc −−−+>= −− { } JrQqJjBi ∈∈∈∈∀ ,,,1\}{ 3-8

)4(
1

1 irm

q

d irdiqmijqririji yxyxwpcc −−−−−+>= −

=

{ }1\,..1},{\,, QqmmjJrJjIi i ∈∈∈∈∈∀ 3-9

)2(BrqBjqrBjB xxwcc −−+<= QqjJrJj ∈∈∈∀ },{\, 3-10

IjIj pcC ,,max +>= Jj ∈∀ 3-11

{ }1,0∈ijqx QqJjIi ∈∈∈∀ ,, 3-12

{ }1,0∈iqmy QqmmIi i ∈∈∈∀ ,..1, 3-13

0>=jic JjIi ∈∈∀ , 3-14

The constraints 3-2 and 3-3 are to make sure each job is scheduled exactly once in

every stage. 3-4 ensures that no more than one job can be processed at the same time in

each discrete machine. 3-5 ensures that the summation of job sizes in a batch does not

exceed the machine capacity. 3-6 ensures that a job cannot be started until it is finished

in previous stage. 3-7 ensures that at the stage right behind the batching stage, a job

cannot be started until all jobs in the same batch it belongs to at previous stage are

finished. If job r and job j are assigned to the same batch q, then 1== BrqBjq xx and

0)1(=− Bjqxw . The equation is then simplified to BrqrBjBji xpcc +>= . It means job j at

29

stage B+1 cannot be started until job r is completed at stage B. On the other hand, if job

j or job r are not assigned to batch q, then the constraint is invalid. 3-8 ensures that at the

batching stage, a job cannot be started until all jobs in the same batch are released from

previous stage. If job r and job j are assigned to the same batch q, then 1== irqijq xx

and 0)2(=−− irqijq xxw . The equation is then reduced to)1(,)1(, −− +>= BrBrji pcc . It

means job j at stage i cannot be started until job r is completed at stage previous stage. If

1== irqijq xx is not true, this constraint is invalid. 3-9 ensures that a job cannot be

started unless the jobs scheduled before it on the same machine are finished. Assuming

two jobs, j and r, if job is r assigned to the position before q, 1
1

1
= −

=

q

d irdx , otherwise

0
1

1
= −

=

q

d irdx . If job j is assigned to the position q, and also assigned to the same

machine as job r, then 1=== irmiqmijq yyx , 04
1

1
=−−−− −

= irm

q

d irdiqmijq yxyx , and the

constraints can be reduced to ririji pcc +>= , which means that job j cannot be started

until job r is finished. On the other hand, if 1
1

1
==== −

=

q

d irdirmiqmijq xyyx is not true,

then the constraint is invalid. 3-10 ensures that all jobs in the same batch start at the

same time. 3-11 ensures that makespan is no less than the completion time of any job in

the last stage. 3-12, 3-13 and 3-14 are the binary and non-negativity restriction on the

decision variables.

Since number of variables, especially number of binary variable is the most

important indicator of model complexity, the number of binary variables is used to

measure the model complexity in this research. Table 3-1 provides the equation to

calculate the number of variables, with |I| representing number of stages, |J| as number of

30

jobs and denoting number of machines at stage i. To compare the growth rate of

binary variables, we use big O notation. The growth rate of binary variables is ܱሺ|ܬ|ଶ)
based on |J|, ܱሺ|ܫ|) based on |ܫ|), and ܱሺ∑ ݉)∈ூ based on ݉. The table shows that |ܫ| ,|ܬ| and ݉ all affect number of binary variables. Among them, number of jobs |ܬ|	has the

greatest impact.

Table 3-1 Big O Notation on the Growth Rate of Binary Variables

Number of Binary
Variables

|J| |I| ݉
2

JImJI
i i + ܱሺ|ܬ|ଶ) ܱሺ|ܫ|) ܱሺ ݉)∈ூ

This model is validated by manually checking the optimal solution produced by

the model. Several problem instances are randomly generated and solved by a

commercial solver, AMPL/CPLEX. The optimal schedule obtained by the solver is used

to check if all constraints are satisfied. If there is no violation, the model is correct.

3.3 Runtime Analysis

3.3.1 Experiment Design

The proposed model is implemented on AMPL/CPLEX and run on a desktop

computer equipped with a 2.21 GHz Intel Core 2 Duo ® processor with 2 GB of RAM.

Two experiments are conducted. In the first experiment, the solver is allowed to run for a

maximum of half an hour for each problem instance. The percentage of instances whose

optimal solution is found within half an hour, denoted by ROPT, is calculated using

equation 3-15. In the second experiment, the solver is allowed to run until the optimal

solution is found. Run time is recorded for each instance.

31

%100×=
total

optimal

N

N
ROPT

3-15

Experiment factors are given in Table 3-2. The number of jobs (n), number of

stages (v) and position of batching stage (b) are considered in order to determine if the

machine environment and job characteristic have a significant effect on the model

performance. The number of machines is fixed at 2 at each batching stage, and 1 or 2 at

each discrete stage. The capacity of batching machine is assumed to be 10 in all instances.

Job sizes are generated randomly from discrete uniform distribution of [1, 8]. Processing

times are generated randomly from discrete uniform distribution of [10, 50]. With these

factors considered, there are a total of 18 production scenarios. 10 replicas are generated

for each scenario for a total of 180 instances for the first experiment, and 5 replicas for

each scenario for a total of 90 instances are tested in the second experiment. Less

instances are tested in the second experiment due to the much longer run time it requires.

Table 3-2 Experimental Factors

Experiment Factors Levels

Number of jobs (n) 4, 5, 6

Number of stages (v) 3, 5

Position of batching Stage (b) Front ,interior, Rear

3.3.2 Computational Results

The main effects plot obtained from the analysis of variance is given in Figure 3-1.

The factors n, v and b all have a significant effect on ROPT with p-value all equal 0.

32

Figure 3-2 shows the ROPT discriminated by n and v. It also described the

average run time the solver spent to find an optimal solution, discriminated by n. The

percentage of instances solved to optimality within 1800s decreases significantly as n or v

increases. On the other hand, the run time to find the optimal solution increases

dramatically as n increases. For 4-job problem instances, the average run time is 5.22

minutes. For 5-job problem instances, the average run time is 23.37 minutes. However,

for 6-job problem instances, the average run time dramatically increases to almost 2 hour.

Clearly, as the problem size increases to beyond 6 jobs, the computational cost of solving

the problem to optimality is too large to be used in practical implementations. Figure 3-3

shows that the optimal solution is harder to find when batch processors are located at the

interior stage.

Figure 3-1 Main Effects Plot for Percentage of Instances Solved to Optimality

654

0.60

0.45

0.30

0.15

0.00
53

321

0.60

0.45

0.30

0.15

0.00

Number of Jobs (n)

M
ea

n

Number of Stages (k)

Position of Batching Stage

Main Effects Plot for ROPT

(v)

(b)

33

Figure 3-2 Run Time and Percentage of Instances Solved to Optimality

Figure 3-3 Percentage of Instances Solved to Optimality vs. Batching Position

In summary, the number of jobs, the number of stages and the position of

batching stage have significant impact on the computational cost. Among these three

factors, the number of jobs has the greatest impact. Increase in the number of jobs will

dramatically increase computational cost. An instance with more than 6 jobs cannot be

4-job 5-job 6-job

3-stage 91.11% 48.89% 14.81%

5-stage 49.63% 17.04% 2.96%

RunTime 5.22 23.37 117.60

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Ru
nt

im
e

in
 M

in
ut

es

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es
 S

ol
ve

d
to

O

pt
im

al
ity

 in
 1

80
0

Se
co

nd
s

4-job 5-job 6-job

Front 81.48% 39.58% 19.30%

Interior 65.36% 30.56% 6.01%

Rear 73.02% 35.71% 6.67%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

Pe
rc

en
ta

ge
 of

 In
sta

nc
es

 S
ol

ve
d

to

Op
tim

ali
ty

 in
 1

80
0 S

ec
on

ds

34

solved to optimality within 2 hours. Therefore, using AMPL/CPLEX to get an optimal

solution for the problem under study is computationally expensive and prohibitive for a

problem of practical size.

35

4 A LOWER BOUND PROCEDURE

4.1 The Proposed Lower Bound Procedure

4.1.1 Overview

While a number of lower bounds have been derived for the makespan of parallel

machines or the hybrid flow shop scheduling problem, there is no lower bound derived

for a scheduling problem associated with hybrid flow shop, parallel batch processing

machines and jobs of arbitrary sizes. The lower bound procedure derived in this

dissertation incorporates several well known lower bounds which are originally

developed for parallel discrete processing machines, parallel batch processing machines

or hybrid flow shops with discrete processing machines, and enable to calculate a tight

lower bound for the problem under study.

Figure 4-1 shows the main steps in the proposed lower bound procedure. First of

all, the jobs in the batching stage are grouped into batches. Based on this, the existing

lower bound procedures for parallel discrete-processing machines can be used to

calculated the single-stage lower bound for the parallel batch processing machines, with

the job processing times replaced with batch processing times. And then the global lower

bound for the whole shop is calculated based on the single-stage lower bounds.

Figure 4-1 Main Steps of the Proposed Lower Bound Procedure

36

The proposed three-step lower bound procedure is as follows:

1) Develop a batching plan: A batching scheme proposed by Kashan et al. (2008) is

applied. Based on Kashan’s batching scheme, a bin packing procedure is used to

further improve the batching plan.

2) Derive a lower bound for each stage: A lower bound for the makespan of each

stage is derived by the scheme proposed by Webster (1996). The lower bound is

furthered improved by the machine-subset lifting procedure and the bin packing

procedure. At this step, the batch processing stage is treated as a discrete stage by

replacing job processing times with batch processing times.

3) Calculate a global lower bound: two lower bounds for the whole shop are

calculated using two lower bound schemes, Machine-based Lower Bound

(MBLB) proposed by Santos (1995) and Stage-based Lower Bound (SBLB)

proposed by Kurz and Askin (2003) . The lower bound with the greater value is

chosen as the global lower bound. For small size instances the global lower bound

can be further enhanced by a job-subset lifting procedure.

4.1.2 Batching Plan

4.1.2.1 Batching Plan Proposed by Kashan et al. (2008)

Kashan et al. proposed that a lower bound of the makespan on the parallel

batching machines can be calculated by allowing jobs to be split and processed in

different batches. This is done by constructing an instance where each job j, of the

original problem, is replaced with ݏ jobs of unit size, of which processing times all equal

37

 . The obtained unit-size jobs are sorted in the LPT order. Starting from the top of the

list, successively group every S adjacent jobs into a batch. This batching procedure is

called LPT-Full batching, and results in the formation of a set B of batches, with |ܤ| ൌቒଵௌ ∑ ∈ݏ ቓ. Based on this, Kashan et al. further improved it by separating the big jobs

from being spit. Let J be the original set of jobs, and let J1 be the set of jobs in J that

satisfy equation 4-1.

ଵܬ ൌ ൫݆ ∈ ܵ|ܬ െ ݏ ൏ ݉݅݊∈ሼݏሽ൯ 4-1

 The rest of the jobs in J are assigned to set ܬଶ. If ݆ ∈ ଵ assigned to a batch, theܬ

residual capacity of the batch (S – sj) is smaller than the smallest job. Consequently, all

the jobs in set J1 are large jobs and will not accommodate any other job in the same batch.

Each job from J1 is therefore separately assigned to a unique batch. On the other hand,

each job from ܬଶ is split into unit-sized jobs. Applying the LPT-Full batching rule, a set B

of batches is formed with |ܤ| ൌ |ଵܬ| ቒଵௌ ∑ ∈మݏ ቓ. With this modification, the number of

batches formed might increase and therefore lead to an increment in the lower bound.

4.1.2.2 Improvement: Bin Packing Procedure

A Bin Packing Procedure (BPP) is applied here to further improve the batching

plan. The mechanism of BPP is to calculate the minimum number of batches required (L)

to contain all the jobs. If ܮ ܮ then ,|ܤ| െ amount of batches should be added to the |ܤ|

former batching plan B.

38

For the set of job sizes ሼݏଵ, … , ݏ ሽ , let W be the set of all distinct valuesݏ ൏ ௌଶ.
For each integer ݏ ∈ ܹ, let 	 (ݏଵሺܬ ൌ ൫݆ ∈ :ܬ ݏ ܵ െ ൯ݏ 4-2

(ݏଶሺܬ ൌ ൬݆ ∈ :ܬ 2ܵ ൏ ݏ ܵ െ ൰ݏ 4-3

(ݏଷሺܬ ൌ ൬݆ ∈ :ܬ ݏ ൏ ݏ 2ܵ൰
4-4

Define ܮఈሺݏ) by

(ݏఈሺܮ ൌ |(ݏଵሺܬ| |(ݏଶሺܬ| ݔܽ݉ ቆ0, ቜ∑ (∈యሺ௦ݏ െ ሺ|ܬଶሺݏ)|ܵ െ ∑ ܵ()∈మሺ௦ݏ ቝቇ
4-5

The number of batches required can be decided by: ܮ ൌ 6-4 (ݏఈሺܮ௦∈ௐݔܽ݉

If ܮ |ܤ| let ,|ܤ| ൌ ܮ by adding ܮ െ .batches to the former batching plan B |ܤ|

The processing times of the new added batches are set as the the ܮ െ shortest job |ܤ|

processing times. After batches are formed, let ܲ be the processing time of ܾ ∈ .batch ܤ

List the batches in B in non-increasing order of their processing times such that ଵܲ
ଶܲ ⋯ ܲ||. ܲ will be used to calculate the lower bound for the batching stage and

the whole shop. The BPP might increase the number of batches, and therefore leads to an

increment in the lower bound.

39

4.1.2.3 The Procedure to Get the Batching Plan

The procedure to get the batching plan for deriving the lower bound is given in

Figure 4-2.

Identify big-size
jobs

End

Form batches B1

with big-size jobs
Start

Form batches B2

with remaining jobs

Combine B1 and B2

to form B

Apply Bin Packing
Procedure to
improve B

Figure 4-2 Batching Procedure for Lower Bound

1) Identify big-size jobs: Find out all the big-size jobs ܬଵ which cannot accommodate

any other job in the same batch using the equation 4-1.

2) Form batches with big-size jobs: Form a set of batches |ܤଵ| by putting each job

of ܬଵ into one batch.

3) Form batches with remaining jobs: Split every remaining job ݆ into ݏ unit-size

jobs with processing times equal to , thus form a job set ܬଶ. Sort ܬଶ in the LPT

order and successively group the S jobs with longest processing times into the

same batch to form a second set of batches ܤଶ, with |ܤଶ| ൌ ቒଵௌ ∑ 	∈మݏ ቓ.
4) Combine ܤଵ and ܤଶ to obtain all batches B and corresponding batch processing

times ܲ sorted by LPT rule.

5) Apply the bin packing procedure described in 4.1.2.2 to improve the batching

plan.

Among this procedure, step 1) to 4) is the same as the procedure proposed by

Kashan et al., and 5) is proposed by author of this dissertation.

40

4.1.3 Single-stage Lower Bound

4.1.3.1 A Trivial Lower Bound

Let ܲ ൌ ሼଵ, … , is the processing time of job j ሽ be a problem instance where

and jobs are indexed such that ଵ ଶ ⋯ . Assume the number of machines in

parallel is m and all machines are available at time 0. A trivial lower bound for the

scheduling problem P//Cmax can be derived by using following equation by Baker

(1974):

0ܾ݈ ൌ ݔܽ݉ ቆଵ, ቜ∑ ݉ ቝ , ାଵቇ
4-7

The first term in 4-7 is built on machine capacity relaxation. It implies that the

makespan has to be at least the largest processing time of all the jobs. The second term is

based on the preemption relaxation. It allows the total processing time of all the jobs

equally divided among all the m machines. The third terms implies that if there are at

least m+1 jobs in J, the makespan has to greater than or equal to the sum of the ݉௧ and ሺ݉ 1)௧ smallest processing times.

4.1.3.2 An Enhanced Lower Bound

An enhanced lower bound for P//Cmax based on Webster’s general lower bound

(1996) is used to obtain a tighter lower bound. Webster’s general lower bound is

originally used for parallel discrete processing machines. A modification is applied in this

dissertation to accommodated batch processing.

In Webster’s lower bound derivation, for ܲ ൌ ሼଵ, … , ሽ, with p sorted in the

non-increasing order, let ఘܲ be a relaxed instance defined as 4-8.

41

ఘܲ ൌ ሼଵ ⋯ ,ᇲ ,ߩ … , ሽ 4-8ߩ

Where ߩ ൌ gcd	ሺଵ, … , (
 ݊ᇱ ݊ , and ݊ᇱ is the largest integer that satisfies at least one of the

following conditions: 1) /ାଵ	is	integer	for	݆ ൌ 1,… , ݊ᇱ െ 1 4-9

ିଵ (2 ⋯ ᇲିଶ 4-10

3) ݊ᇱ 2݉ and ଶିᇲାଵ ᇲ 4-112

The minimum makespan of ఘܲ , can be found using the LPT rule, and denoted as

ைܹ൫ ఘܲ൯.
For batch processing stage, to apply Webster’s lower bound scheme, each batch is

treats as a job, and job processing times are replaced with batching processing times.

Taking into acount the trivial lower bound 4-7, a tighter lower bound for parallel

machines scheduling problem can be obtained by using following equation:

ܾ݈ ൌ ൫ݔܽ݉ ைܹ൫ ఘܲ൯, ,ଵ ାଵ൯ 4-12

4.1.3.3 Improvement 1: Machine Sub-set Lifting Procedure

A machine sub-set lifting procedure proposed by Haouari (2004) is used to

improve the lower bound quality. According to the lemma proposed by the authors, in

any feasible schedule of a parallel machine problem with n jobs and m machines, there is

at least a set of k machines (1 ݇ ݉), which must process at least ߣ jobs, where

42

ߣ ൌ ݇ ቔ ݊݉ ቕ ݉݅݊ ቀ݇, ݊ െ ቔ ݊݉ ቕ݉ቁ 4-13

Therefore a reduced problem can be constructed with k machines in parallel

(1 ݇ ݉) and ߣ jobs of J with smallest processing times. Let ܾ݈ denotes a lower

bound for the reduced instance ߣ , a lower bound can be derived from following

equation:

ܾ݈ ൌ 4-14ܾ݈ଵஸஸݔܽ݉

4.1.3.4 Improvement 2: Bin Packing Procedure

Martello (1990) derived a lower bound for P||Cmax by continuously checking

whether the n jobs could be processed on the m machines such that the makespan does

not exceed a trial value C. If the number of machines required exceeds m, the lower

bound is then increased by one unit: C=C+1. This idea is applied here to improve plb.

Let V be the set of all distinct values ൏ ଶ. For each integer ∈ ܸ, let ܬଵሺ) ൌ ൫݆ ∈ :ܬ ܥ െ ൯ 4-15

(ଶሺܬ ൌ ൬݆ ∈ :ܬ 2ܥ ൏ ܥ െ ൰
4-16

(ଷሺܬ ൌ ൬݆ ∈ :ܬ ൏ 2൰ܥ
4-17

43

Define ܮఈሺ) by

(ఈሺܮ ൌ |(ଵሺܬ| |(ଶሺܬ| ݔܽ݉ ቆ0, ቜ∑ (∈యሺ െ ሺ|ܬଶሺܥ|(െ ∑ ܥ()∈మሺ ቝቇ
4-18

Number of machines required can be decided by: ܮ ൌ 19-4 (ఈሺܮ∈ݔܽ݉

If ܮ ݉, let ܥ ൌ ܥ 1, and repeat above procedure until ܮ ݉. The final value

of ܥ is a valid lower bound for the P||Cmax.

4.1.3.5 The Procedure to Calculate Single-stage Lower bound

Based on above discussion, a procedure to calculate the single-stage lower bound

is shown in Figure 4-3 and presented as below:

Figure 4-3 The Procedure to Calculate plb

1) If the stage is the batching stage, replace the original processing times ܲ with

batch processing times ܲ.

2) Set ߩ ൌ gcd	ሺଵ, … , (
3) Construct a reduce problem instance ఘܲ using equation 4-8, 4-9,

4-10 and 4-11.

44

4) Apply the LPT rule on the reduced instance ఘܲ to obtain the optimal makespan,

ைܹ൫ ఘܲ൯.
5) Calculate the single stage lower bound, ܾ݈, using equation 4-12.

6) Apply machine subset lifting procedure to improve ܾ݈.

7) Apply bin packing procedure to further improve ܾ݈.

4.1.4 Global Lower Bound

4.1.4.1 A Trivial Global Lower bound

A trivial lower bound of makespan for the problem under study is given in the

equation 4-20.

0ܤܮܩ ൌ ∈ݔܽ݉ ൜ ∈ூ ൠ 4-20

It is based on the relaxation of machine capacities in all stages by assuming

machine number job number in each stage. This trivial lower bound will be combined

with lower bounds derived in the rest of this chapter to obtain a final lower bound.

4.1.4.2 Stage-based Lower bound Scheme

The stage-based lower bound is in the method proposed by Kurz and Askin

(2003) and Kashan (2008). A lower bound of the whole shop is developed based on a

single stage and the greatest stage-based bound is the bound which can be used for the

45

entire problem. The stage-based bounds are denoted as ݈ܾ1, and the global lower bounds

are denoted as GLB1. A global lower bound GLB1 can be derived as follows: 1ܤܮܩ ൌ ∈ூሼ݈ܾ1ሽ 4-21ݔܽ݉

Where

݈ܾ1 ൌ 	݉݅ ݊∈ ቐିଵ
ୀଵ ቑ ܾ݈ ݉݅ ݊∈ ቐ ||ூ

ୀାଵ ቑ
4-22

 is the lower bound for the makespan at stage i. Stage i could beܾ݈

batch processing stage or discrete stage. The procedure to calculate ܾ݈ is

stated in 4.1.3.

4.1.4.3 Machine-based Lower Bound Scheme

A lower bound originally proposed by Santos (1995) is applied to calculate the

machine-based lower bound.It is based on the concept of finding the mean of the

machine-based lower bounds. This scheme is originally used for hybrid flow shops with

discrete processing machines. In this dissertation, it is modified to accommodate batch

processing.

A machine-based lower bound is calculated by using following equations: 2ܤܮܩ ൌ ሼ݈ܾ2ሽ 4-23ݔܽ݉

Where

݈ܾ2 ൌ 1݉ ܮܬ௩
௩ୀଵ

ୀଵ ܴܬ௩
௩ୀଵ 4-24

46

݈ܾ2 ൌ 1݉ ܮܬ௩
௩ୀଵ

ୀଵ ܴܬ௩
௩ୀଵ 4-25

݂	݁ݑ݈ܽݒ	ݐݏ݈݈݁ܽ݉ݏ	ℎݐ݈	ℎ݁ݐ :ܮܬ ∑ , ∀݆ ∈ ିଵୀଵ,ܬ ݂	݁ݑ݈ܽݒ	ݐݏ݈݈݁ܽ݉ݏ	ℎݐ݈	ℎ݁ݐ :ܴܬ .	݅	݀݁ݔ݂݅	ܽ	ݎ݂	 ∑ , ∀݆ ∈ ூ|ୀାଵ|,	ܬ 	 .	݅	݀݁ݔ݂݅	ܽ	ݎ݂	 ݉:							the	number	of	machines	at	stage	i	

To modify Santo’s lower bound scheme to accommodate batch processing, is

replaced by ܲ at batch processing stage, and ܲ can be obtained using the batching plan

introduced in 4.1.2.

4.1.4.4 The Global Lower Bound

The global lower bound GLB is determined by the maximum value among the

trivial lower bound GLB0, the stage-based lower bound GLB1 and the machine-based

lower bound GLB2. ܤܮܩ ൌ ,0ܤܮܩሼݔܽ݉ ,1ܤܮܩ 2ሽ 4-26ܤܮܩ

4.1.5 A Lifting Procedure

A job sub-set lifting procedure proposed by Carlier and Pinson (1998) can find a

tighter lower bound by considering different subsets of J. Define ܬ ⊆ as the subset of ܬ

jobs that contains any k jobs from J. Let ܤܮܩ denotes a lower bound for the reduced

instance ܬ, a valid lower bound can be found as follows:

47

ܤܮܩ ൌ 4-27ܤܮܩ∈ஸஸݔܽ݉

Where ݉݅݊∈ூ݉ is the minimum number of machines in parallel among all stages.

Note that it is only necessary to consider the values of ݇ ݉݅݊∈ூ݉, since the

derived lower bound is dominated by the trivial bound ݉ܽݔ∈൛∑ ∈ூ ൟ.
4.1.6 The Global Lower Bound Procedure

 The overall procedure to calculate the lower bound for the makespan on the

problem under study is given in Figure 4-4 and presented as follows:

Figure 4-4 The Procedure to Calculate GLB

1) For the batching stage, get the batching plan using the method introduced in 4.1.2

to obtain ܲ.

2) Calculate the single-stage lower bounds ܾ݈ for each stage i as introduced in

4.1.3. If i is the batching stage, replace the original processing times in stage i

with ܲ.

3) Calculate the trivial global lower bound GLB0 using equation 4-20. Calculate the

stage-based lower bound GLB1 using equations 4-21 and 4-22. Calculate the

machine-based lower bound GLB2 using equations and 4-23, 4-24 and 4-25.

Determine the global lower bound using equation 4-26.

48

4) Apply job subset lifting procedure introduced in 4.1.4.4 to improve GLB.

4.2 Qualification of the Proposed Lower Bound

4.2.1 Experiment Design

Computational experiments are conducted to evaluate the quality of the proposed

lower bound. First of all, the proposed lower bound for parallel batching machines, plb, is

compared with the lower bound derived by Kashan (2008). And then GLB, the proposed

global lower bound for the problem under study, is first compared with the makespan

solved by CPLEX, and then evaluated against the lower bound proposed by Amin-Naseri

(2009).

4.2.2 Comparing plb with the Lower Bound by Kashan et al (2008)

The lower bound of the makespan on parallel batching machines, plb, is derived

in 4.1.3, and is a component of the global lower bound GLB. The quality of plb is

compared with the quality of lower bound derived by Kashan. Kashan ‘s lower bound is

calculated using following equation.

௫ܥ ൌ ݔܽ݉ ቊ݉ܽݔ∈൛ൟ, ∑ ܲ∈݉ , ܲ ܲାଵቋ
4-28

Where

 Pb is the batch processing time of ܾ ∈ .ܤ

` ଵܲ ଶܲ ⋯ ܲ||
The experimental factors are given in Table 4-1. A total of 1200 instances are

tested. The average improvement of plb over Kashan’s lower bound is calculated by

following equation:

49

ܯܫ% ൌ	ܾ݈	 െ ݏ′ℎܽ݊ݏܽܭ ݎ݁ݓܮ ݏ′ℎܽ݊ݏܽܭ݀݊ݑܤ ݎ݁ݓܮ ݀݊ݑܤ ൈ 100%
4-29

Table 4-1 Experimental Factors

Factors Level Factors Level
n 10, 20, 50, 100, 200 m 3, 5

MaxS 5, 20 MaxP 10, 30
Machine Capacity 20

The job size s is generated from the discrete uniform [1, MaxS], and the

processing time p is generated from the discrete uniform [1, MaxP]. Machine capacity is

fixed at 20, and machine number is 2 or 4.

The comparison result reveals that plb dominates Kashan’s lower bound and

results in a 0.42% improvement in average for all instances tested.

Figure 4-5 Percentage of Improvement of plb Over Kashan’s Lower Bound

10-job 20-job 50-job 100-job 200-job

%IM 0.47% 0.27% 0.58% 0.38% 0.40%

0.00%
0.10%
0.20%
0.30%
0.40%
0.50%
0.60%
0.70%

%
IM

50

4.2.3 Comparing GLB with the Optimal Makespan Solved by CPLEX

The lower bound is compared with the makespan of the optimal solution solved

by CPLEX, denoted as ܥ௫ை். The relative gap between the lower bound and the optimal

makespan, as defined in following equation, is used to evaluate the lower bound tightness.

ை்ିீܸܧܦܴ ൌ ௫ை்ܥ െ ௫ை்ܥܤܮܩ ൈ 100%
4-30

The experiment data are randomly generated based on two factors:

Number of Jobs (n): 4, 5, 6, 8, 10, 20

Number of Stages (v): 3, 5

The number of machines at the batching stage is fixed at 2 and the number of

machines at discrete stages is either one or two. The capacity of batching machine is

assumed to be 10 in all instances, and the size of job is generated from discrete uniform

distribution of [1, 8].

With two factors considered, there are a total of 12 scenarios and 30 problem

instances are generated for each scenario resulting in 360 problem instances in total.

Figure 4-6 Number of Instances solved to the Optimality by CPLEX in 30 Minutes

4-job 5-job 6-job 8-job 10-job 20-job

3-stage 30 26 5 0 0 0

5-stage 29 12 1 0 0 0

0

5

10

15

20

25

30

N
um

be
r o

f O
pt

im
al

 S
ol

ut
io

ns

51

Among 360 randomly generate instances, optimal solutions are found within 30

minutes by CPLEX for 103 instances. The distribution of instances solved to the

optimality by CPLEX is presented in Figure 4-6. The optimal solution is found for most

of the 4-job instances, and 5-job instances with 3 stages. Among instances with 5 jobs

and 5 stages, 12 instances out of 30 are solved to the optimality. For 6-job instances with

3 stages and 5 stages, optimal solution is found for only 5 out of 30 instances and 1 out of

30 instances, respectively. None of the 8-job, 10-job and 20-job instances is solved to the

optimality. For all the instances whose optimal solution are found within 30 minutes, the

relative gap between the linear relaxation and the best solution found, MIPGAP, are

given in Error! Reference source not found.. It shows that the gap increases

substantially when the number of jobs increases. For 10-job instances and 20-job

instances, the gaps exceed 50%, indicating the poor quality of the solution found by

CPLEX.

Figure 4-7 Average MIPGAP for Instances Not Solved to the Optimality

52

Figure 4-8 shows the average ܴܸܧܦ of lower bounds from the optimal makespan

for all 103 instances discriminated by number of jobs and stages. The average RDEV for

all 103 instances is 6.20%. Among 4-job instances, the RDEV is 5.43% and 6.35% for 3-

stage and 5-stage instances, respectively. Among 5-job instances, the RDEV is 7.52% and

5.82% for 3-stage and 5-stage instances. While among 6-job instances, the RDEV is 5.19%

and 0% for 3-stage and 5-stage instances. Please note that only one instance is included in

the 6-job/5-stage category. Therefore, this category should be discarded. The result

reveals that the proposed lower bound is consistently close to the optimal makespan, and

the number of stages and number of jobs show no great impact on lower bound quality.

Figure 4-8 Relative Deviation of GLB from the Optimal Makespan

For the remaining instances whose optimal solution is not found by CPLEX

within 30 minutes, the lower bound is compared with the best integer solution found, and

4-job 5-job 6-job

3-stage 5.43% 7.52% 5.19%

5-stage 6.35% 5.82% 0.00%

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%

Ga
p

be
tw

ee
n

GL
B

an
d

O
pt

im
al

M

ak
es

pa
n

(R
DE

V)

53

the relative gap, ܴܸܧܦௌିீ, is calculated using the equation 4-29. The value of ܴܸܧܦௌିீ is given in Figure 4-9. The relative gap between GLB and the best integer

solution found is significantly larger than the gap between GLB and the optimal solution,

and the gap increases substantially when the number of jobs or number of stages

increases. This can be explained by the poor quality of the CPLEX solution for larger

instances. As we can see in Error! Reference source not found., the best integer

solution found is deviated from the linear relaxation solution when the problem size

increases.

ௌିீܸܧܦܴ ൌ ௫ை்ܥ െ ௫ை்ܥܤܮܩ ൈ 100%
4-31

Figure 4-9 Relative Deviation (RDEV) of GLB

4-job 5-job 6-job 8-job 10-job 20-job

3-stage 10.95% 10.32% 10.28% 13.97% 42.64%

5-stage 7.08% 9.02% 11.15% 15.12% 19.92% 44.82%

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%

Ga
p

be
tw

ee
n

GL
B

an
d

Be
st

 S
ol

ut
io

n
Fo

un
d

by
 C

PL
EX

54

4.2.4 Comparing GLB with Amin-Naseri’s Lower Bound (ALB)

Amin-Naseri (2009) calculate a lower bound for the makespan on the hybrid flow

shop with parallel batching machines, of which machines are uniform in each stage and

job sizes are identical. Since the problem the author studied is similar, with a few

modifications, Amin-Naseri’s lower bound procedure can be used to calculate the lower

bound for our problem. Machine speeds are set to one, and arbitrary job sizes are added.

The modified Amin-Naseri’s lower bound is calculated using following equations:

ܤܮܣ ൌ ∈,∈ூݔܽ݉ ቐ݈ܾ,݉ܽݔ∈ ൝∈ூ ൡቑ
4-32

Where

݈ܾ ൌ ݉݅ ݊∈൛ൟିଵ
ୀଵ

݉ܽݔ ቊ∑ ൫ೕൈ௦ೕ൯ೕ∈ൈ ൟቋ if i is the batching stage∈൛ݔܽ݉,

݉ܽݔ ቊ∑ ೕೕ∈ , ൟቋ if i is the batching stage∈൛ݔܽ݉

 ݉݅ ݊∈൛ൟڿூۀ
ୀାଵ

4-33

݉ is the number of parallel machines in stage i.

C is the capacity of batch processing machines.

ALB and the proposed lower bound GLB are tested on 1458 randomly generated

instances. The average improvement of GLB over LB is calculated by following equation:

55

ܯܫ% ൌ ܤܮܩ െ ܤܮܣܤܮܣ ൈ 100%
4-34

The comparison result reveals that GLB dominates ALB and results in a 3.18%

improvement in average for all instances tested. The percentage of improvement

discriminated by number of jobs is given in Figure 4-10. Among all 1458 instances, GLB

outperforms LB for 965 instances, while LB outperforms GLB for 0 instance.

Figure 4-10 Relative Improvement of GLB on Amin-Naseri’s Lower Bound

4.2.5 Summary

Based on the experiment results, a conclusion can be made that the proposed

lower bound procedure generates tight lower bound for the problem under study. The

lower bound quality remains consistent when the problem size increases. The derived

lower bound dominates the lower bound proposed by Amin-Naseri, and the derived lower

4-job 6-job 10-job 20-job 50-job 100-job

%IM 6.45% 4.35% 5.37% 1.55% 0.95% 0.45%

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%

%
IM

56

bound on parallel batching machines dominates the lower bound proposed by by Kashan

et al (2008).

57

5 PROPOSED HEURISTIC APPROACH

A bottleneck-first-decomposition heuristic (BFD) is proposed for the problem

under study in this chapter to overcome the computational (time) problem encountered

while using the commercial solver for analytic solutions.

Figure 5-1 Problem Decomposition

5.1 Overview of the Proposed Heuristic Approach

The proposed BFD heuristic is inspired by the Theory of Constraint and

decomposition approaches, and follows the basic procedure of the shifting bottleneck

heuristic designed by Adams (1988) and improved by Balas (1995). Even though shifting

bottleneck is originally designed for job shops, some literature has applied it to flow

shops, for example Cheng et al. (2001). To reduce computational time, instead of treating

a single-stage scheduling as a sub-problem, BFD decomposes the problem into three sub-

problems: parallel batch processing machines scheduling problem (PB), upstream hybrid

flow shop scheduling problem (UHFS) and downstream hybrid flow shop scheduling

problem (DHFS) (Figure 5-1). In case that batch processing machines lie at the first

stage, UHFS doesn’t exist, while when PB lies at the last stage, DHFS no longer exists.

58

The original problem ܨܨหܾܽܿݐℎ1, ݔܽ݉ܥหݏ is referred to as master problem. The

heuristic schedules one sub-problem at a time until all sub-problems have been scheduled.

A re-scheduling process is also included in the heuristic: every time a sub-problem is

scheduled, all previously scheduled sub-problems need to be re-scheduled.

Figure 5-2 Major Steps of BFD

The major steps of BFD are given in Figure 5-2, and is described as below:

Step 1: Let M be the set of all sub-problems and M0 be the set of sub-
problems which have been scheduled. Set M0=Φ.

Step 2: Formulate each un-scheduled sub-problem in M.

Step 3: Identify a bottleneck sub-problem Mm∈ .

Step 4: Solving sub-problem m.

Step 5: Re-schedule all sub-problems in M0 based on the schedule of m.

Step 6: Set 0ܯ ൌ 0ܯ ∪ ሼ݉ሽ and ܯ ൌ .ሼ݉ሽ\ܯ
Step 7: If M= Φ, stop. Otherwise, go to step 2.

 The BFD heuristic is applied forwardly and backwardly on the same problem

instance, and the better solution is reported as the final solution.

59

Although the shifting bottleneck procedure is a common basic procedure, each

step can be accomplished in different ways. In the remaining part of this chapter, each

major step will be discussed in detail.

The BFD heuristic consists of a main procedure and several sub-procedures. The

map of the main procedure and sub-procedures are shown in Figure

5-3. The sub-procedure, Bottleneck Identification and Scheduling (BIS), is called by the

main BFD procedure iteratively to identify and schedule the bottleneck sub-problem.

When scheduling the bottleneck sub-problem, two procedures, List-scheduling-with-

delay (LSD) and Bottleneck Approach based on Jackson’s Heuristic (BA-Jackson), are

called by BIS to solve the sub-problems. Additionally, BA-Jackson also has a sub-

procedure, Modified Jackson's heuristic, to identify and schedule the bottleneck stage of

the sub-problem. The details of these procedures are provided in 5.4-5.6.

 Figure 5-3 Map of the Heuristic Procedures

60

5.2 Sub-problem Formulation

Sub-problems have to be formulated in such a way that interactions between sub-

problems should be formed appropriately, so as to facilitate the search for a good solution

for the master problem. According to Ovacik (1997), the interactions between sub-

problems come from two sources: job arrival times at a given sub-problem from the

upstream shops, and job delivery time required for each job to complete its processing

after leaving the current sub-problem. These are determined by the scheduling decisions

taken at all previously scheduled sub-problems. Once a sub-problem is scheduled,

constraints are imposed on the remaining sub-problems. The time by which a job is ready

for processing at a particular sub-problem depends on the job precedence relationship at

previous sub-problems. This defines the job arrival times for the current sub-problem (ݎ).
On the other hand, it is also important to estimate for how long the job will be stay in the

shop after it leaves current sub-problem, which is denoted as delivery time (ݍ). These

arrival times and delivery times form the input to schedule the current sub-problem.

However, since we do not have the schedule for each sub-problem at the

beginning, the arrival times and delivery times cannot be determined. To resolve this

issue, unscheduled sub-problems are assumed to have infinite capacity so that the

precedence relationships between jobs are ignored temporarily. Based on this assumption,

a lower bound of the arrival times (ݎ) can be obtained by summating the processing

times of the job in upstream shops (5-1), and delivery times (ݍ) can be calculated by

adding the processing times in downstream shops (5-2).

61

ݎ ൌ ∈ 5-1

ݍ ൌ ∈ 5-2

Where

U is the set of stages prior to the current sub-problem.

D is the set of stages in the downstream of the current sub-problem.

Whenever a sub-problem is scheduled, the makespan of the whole problem will

be prolonged resulting from the newly added job precedence relationship. Meanwhile,

new constraints will impose on the arrival times and delivery times at the remaining sub-

problems. The arrival time is set as the job completion time in the previous stage (5-3),

and the delivery time can be obtained by calculating the shortest path at downstream

stages (5-4).

ݎ ൌ ݍ ,ିଵ 5-3ݓ ൌ ܵܶ ܲ, 5-4

Where ݓ,ିଵ is the completion time of job j at stage i-1. ܵܶ ܲ, is the shortest path for job j at downstream stages. It can be obtained by

calculating the earliest job completion time in the reversed downstream stages

with predefined job precedence relationship.

62

The sub-problem for batching stage is modeled as parallel batch processing

machines scheduling problem with non-identical arrival times, delivery times and

arbitrary job sizes, and the objective is to minimize the time by which all jobs are

delivered. The sub-problem can be presented as ܲหݎ, ,ݍ ,ݏ ݍ andݎ ௫ , withܥℎหܿݐܾܽ
calculated by using equations 5-1, 5-2, 5-3 and 5-4. When batch processing machines are

located at the last stage, ݍ equals 0. On the other hand, when the batch processing

machines are at the first stage, ݎ equals to 0. Both scenarios are special cases of ܲหݎ,ݍ, ௫ܥ|ℎܿݐܾܽ	ݏ . Therefore, the same sub-problem formulation can be used for

scheduling the batching stage no matter where it locates.

Table 5-1 Sub-problem Formulation

Sub-
problem

Position Formulation
Arrival Time

 Delivery Time (ݎ)
 (ݍ)

PB Front

ܲหݎ, ,ݍ ,ݏ ௫ܥℎหܿݐܾܽ

ݍ 0 ൌ ݍ∈or ൌ ܵܶ ܲ,Interior ݎ ൌ ∈

or ݎ ൌ ,ିଵݓ

Rear

0

DHFS Downstream ܨܨหݎ, ௫. UHFS Upstreamܥหݍ

0
ݍ ൌ ݍ∈or ൌ ܵܶ ܲ,

The upstream HFS and downstream HFS can be both modeled as hybrid flow

shop scheduling problem with arrival times, delivery times and the objective to minimize

63

the time by which all jobs are delivered, or ܨܨหݎ, ௫. For upstream HFS, arrivalܥหݍ

time jr equals zero, and the sub-problem can be simplified as ܨܨห	ݍหܥ௫ . The

delivery time ݍ is determined by the schedule at downstream stages. For downstream

HFS, ݍ equals to zero, and the sub-problem can be simplified as ܨܨหݎ, หܥ௫. The

arrival time ݎ depends on the schedule at upsteam stages.

An overview of sub-problem formulation is given in Table 5-1.

5.3 Sub-problem Prioritization

According to the theory of constraint, the sub-problem with more critical resource

constraint has the higher priority to be scheduled. Therefore, sub-problems are scheduled

in the order of non-decreasing criticality of resource constraints. In this research, Cmax is

used to measure the criticality of resource constraints. The sub-problem with the largest

Cmax has the highest scheduling priority.

5.4 Sub-problem Solving

Selection of the sub-problem solution approach depends on a tradeoff between

time and quality. In original shifting bottleneck procedures, branch-and-bound is applied

to find the optimal solution for single machine scheduling problem, but it is

computationally expensive, and the shifting bottleneck procedure built on branch and

bound can only solve up to ten-job and ten-stage problem within a minutes. Since the

problem under study contains batch processing machines, it is even more complicated,

hence an exact method like branch and bound will require even more time to solve the

64

sub-problem. To reduce the computational cost, heuristic methods will be applied to

solve sub-problems efficiently.

5.4.1 Sub-problem 1: Scheduling Parallel Batch Processing Machines with Arrival

Times, Delivery Times and Non-identical Job Sizes

5.4.1.1 Problem Description

This sub-problem can be described as follows: a set J of jobs and a set M of

identical batch processing machines with capacity constraint C are given. Each job j∈J is

described by (pj, rj, qj, sj) representing its processing time, arrival time, delivery time and

size, respectively. The objective is to find a set B of batches and to schedule these batches

such that the time by which all jobs are delivered is minimized. The scheduling problem

is denoted as ܲหݎ, ,ݍ ,ݏ	 .௫, and is known to be strongly NP-hardܥℎหܿݐܾܽ

5.4.1.2 Proposed Solution Approach

To the best of author’s knowledge, the literature on heuristics for the ܲหݎ,ݍ, ,ݏ ,௫ can not be found. Two most close researches on a reduced problemܥ|ℎܿݐܾܽ

ܲหݎ, ,ݏ ௫ܥℎหܿݐܾܽ , are conducted by Chung (2008) and by Vélez-Gallego (2009).

Both researches proposed the heuristics based on batching first, sequencing second

strategy. The heuristics solve the problem in two phases: first a batching procedure is

applied to form the batches, and then scheduling rules (earliest ready time, or longest

earliest completion time) are used to schedule the batches formed. However this two-

phase procedure has a drawback which might hurt the solution quality: if a job is ready

before a machine is available, the ready time of this job should no longer be a valid

65

constraint. The two-phase procedure does not take into account this fact, so that might

lead to a bad solution by considering unnecessary ready time constraints. Another

reduced problem, ܲหݎ, ௫ܥหݍ , is studied by Gusfield (1984), Carlier (1987; 1998)

and Gharbi (2007). They investigated the so-called Jackson’s algorithm to minimize the

time by which all jobs are delivered. Jackson’s algorithm is a simple list scheduling

algorithm based on a dispatching rule which schedules, on the earliest available machine,

the available job with a largest delivery. Since Jackson’s algorithm is originally

developed for discrete machine scheduling problem, it does not deal with batching,

therefore cannot be applied directly to solve our sub-problem ܲหݎ, ,ݍ ,ݏ .௫ܥℎหܿݐܾܽ

In this research, a new heuristic called List-scheduling-with-delay (LSD) is

developed to solve ܲหݎ, ,ݍ ,ݏ ௫ܥℎหܿݐܾܽ . LSD incorporates the merits of the list

scheduling and the Delay Heuristic proposed by Lee and Uzsoy (1999). It allows for

postponement in processing a batch in order to accommodate a job that is due to arrive

soon and might be combined with the delayed batch as long as the machine capacity

constraint is not violated. Instead of separating batching procedure from scheduling

procedure, LSD integrates these two procedures. Batches are formed and scheduled

concurrently. Whenever a new batch is formed and scheduled, machine available time

will be updated. If a job is ready by the time when a machine is available, its ready time

constraint will thus become invalid. All the unscheduled jobs which are ready to be

processed will then form a set of job candidates to be assigned to that machine. By doing

this, LSD avoids the unnecessary ready time constraints and thus improves the solution

quality.

66

Let t be the earliest time when at least one machine and one job are available,

and a certain period of delay has passed. At time t , amongst ready jobs Jt , starting from

the one with the longest summation of processing time and delivery time (), jobsݍ

are added one by one into current batch as long as the machine capacity is not exceeded.

If all ݍ equal to zero, the dispatching rule is then reduced to LPT. The batch is then

assigned to the first available machine l , and the machine available time is updated.

Batching process is repeated until all jobs have been scheduled. The procedure of LSD is

shown in Figure 5-4.

Figure 5-4 Procedure of LSD

The delay period is a parameter for the LSD heuristic, and the value is set by

following equation:

ݕ݈ܽ݁݀ ൌ ൟݎ∈൛ݔܽ݉ െ ݉݅ ݊∈൛ݎൟ݊ െ 1 ൈ ݇, ∀݇ ൌ 0,1, …݊ െ 1
5-5

Where n is the number of jobs.

67

For each problem instance, the LSD algorithm will be run n times, each with a

different delay value calculated from the equation 5-5. After n iterations, the best result is

reported. Taking advantage of the reversibility feature, the LSD algorithm can be also

applied backwardly on the problem instance, with a reversed routing and time frame, and

the job arrival times and delivery times switched. The better solution between the forward

result and backward result is chosen as the final solution.

5.4.1.3 A Numerical Example

A numerical example is given here to illustrate the algorithm. There are two batch

processing machines in parallel, each with 10-unit capacity. The processing times, sizes,

arrival times and delivery times of the jobs are shown in Table 5-2.

Table 5-2 Data of the Numerical Example

Jobs p s r q ݍ

Job 1 7 3 6 0 7

Job 2 8 8 6 9 17

Job 3 3 3 4 3 6

Job 4 8 4 3 5 13

Job 5 6 5 7 7 13

Job 6 5 2 8 4 9

To simplify the process, assume k=4 in this iteration.

First, we calculate the delay period:

4
1

)(min)(max
×

−
−

= ∈∈

n

rr
delay jJjjJj = 4

5

38 ×−
=4

The procedure of scheduling can be found in Table 5-3.

68

Table 5-3 Scheduling Procedure of Numerical Example

J t Jt w Machine 1 Machine 2 Cmax’

1,2,3,4,5,6 7 2, 4, 5, 1, 3 2 (2) 23

1,3,4,5,6 7 4, 5, 1, 3 4 (4) 16

1,3,5,6 5, 1, 3 5 (4,5) 22

1,3,6 18 6,1,3 6 (6) 23

1,3 1,3 1 (6,1) 25

1 3 3 (6,1,3) 25

At the beginning of the scheduling, a decision point in time t is calculated by max൫0,݉݅ ݊∈ݎ൯ ݕ݈ܽ݁݀ ൌ 3 4 ൌ 7 . All jobs ready by time t are added to a

candidate set Jt, and ranked in non-deceasing order of . The job sequence in Jt isݍ

(2, 4, 5, 1, 3). The first job, job 2, is assigned to a new batch, and removed from both J

and Jt . Since S2=8, job 2 cannot accommodate any other job in the same batch, this batch

is closed and be processed on machine1. ݔܽ݉ܥᇱ ൌ ଶݎ ଶ ଶݍ ൌ 8 6 9 ൌ 23. This

cycle repeats until all jobs are scheduled. The ݔܽ݉ܥᇱ obtained is 25.

The final schedule is obtained as below:

Machine 1: (2) → (6, 1, 3)

Machine 2: (4, 5)

Cmax=25.

The solution is proved to be optimal by CPLEX.

5.4.1.4 Evaluation of Solution Quality

An experiment is performed to evaluate the solution quality of LSD against other

two heuristics from literatures, the JobSimilarity (JS) proposed by Vélez-Gallego (2009)

69

and the ModifiedDelay (MD) proposed by Chung (2008). All three heuristics are tested

on the same set of random instances generated in the same way as Vélez-Gallego did in

his research. A problem instance is defined by a set of n jobs and a set of m machines.

Each job j is described by the triplet {, ݎ, ݏ}, and each machine is described by its

capacity S. The processing times, ready times and job sizes are sampled from a discrete

uniform (DU) random variable so that ~ܷܦሾ1,ܲݔܽܯሿ ,ሾ1ܷܦ~ݎ , ሿܼߩ and ݏ~ܷܦሾ1,ܵݔܽܯሿ, where ܼ ൌ ∑ ∈ and 0 ߩ 1.The factors are given in Table 5-4.

Table 5-4 Experimental Factors

Factors Level Factors Level

n 10, 20, 50, 100, 200 ρ 5%, 10%, 50%

m 3, 5 MaxP 10, 30

MaxS 5, 20 Machine Capacity 20

Figure 5-5 Solution Quality of LSD, JobSimilarity and ModifiedDelay

10 20 50 100 200

LSD 2.03% 5.28% 5.75% 6.23% 6.13%

JS 2.21% 6.40% 7.56% 7.73% 7.24%

MD 3.34% 6.93% 7.12% 8.26% 7.71%

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%
9.00%

M
ea

n
of

 R
DE

V

n

70

Experiments result reveals that LSD outperforms both JobSimilarity and

ModifiedDelay, which, to the best of our knowledge, are the only two heuristic

approaches available in the literature for the parallel batching machines scheduling

problem with job ready times and non-identical job sizes.

5.4.2 Sub-problem 2: Scheduling the Hybrid Flow Shop with Arrival Times and

Delivery Times

5.4.2.1 Problem Description

This sub-problem can be described as below: There are multiple stages of

machines in series, each stage comprises of one or several identical machines in parallel.

There are a set of jobs J to be processed following the same routing. Each job j∈J is

described by (pj, rj , qj) representing its processing time, arrival time and delivery time,

respectively. The objective is to find a schedule that minimizes the time by which all jobs

are delivered. This sub-problem can be denoted as ܨܨหݎ, ௫, and is NP hard inܥหݍ

strong sense.

5.4.2.2 Proposed Solution Approach

5.4.2.2.1 Overview

A bottleneck-based heuristic, named Bottleneck Approach based on Jackson’s

Heuristic (BA-Jackson), is proposed to solve this sub-problem. BA-Jackson incorporates

the merits from bottleneck-based heuristics and a modified Jackson’s heuristic. In the

BA-Jackson heuristic, a bottleneck stage is first identified and scheduled by applying the

71

Modified Jackson’s Heuristic, and then upstream and downstream stages are scheduled

sequentially using the same heuristic. The major procedure is show in Figure 5-6.

Figure 5-6 Procedure of BA-Jackson

5.4.2.2.2 Proposed Modified Jackson’s Heuristic

The well-known Jackson’s Heuristic is originally developed for parallel machines

scheduling problem with arrival delivery times to minimize the time by which all jobs

can be delivered. The heuristic can be states as follows: on the earliest available machine,

schedule the available job with the largest delivery time. In this research, the Jackson’s

Heuristic is modified by applying a delay strategy to improve the solution quality. With

the modification, it is possible that a job with late arrival time but large delivery time be

processed before a job with early arrival time but less delivery time. The Modified

Jackson’s Heuristic is described as below: Let t be the earliest time when at least one

machine and one job are available, and a certain period of delay has passed. At time t ,

amongst the ready jobs, assign a job with maximum delivery time qj to the first available

machine, breaking tie with LPT rule. Same as LSD, the value of delay period is

determined by equation 5-5. For each problem instance, the Modified Jackson’s Heuristic

will be run n times, each with a different delay value calculated from equation 5-5. After

n iterations, the best result is reported as the final solution. The procedure of the Modified

Jackson’s Heuristic is given in Figure 5-7.

72

Figure 5-7 Modified Jackson’s Heuristic with Given Delay Parameter

5.4.2.2.3 The Proposed BA-Jackson

The procedure of the BA-Jackson heuristic is given as follows:

a. Identify the bottleneck stage

i

Jj ji

i m

p
WR

 ∈← //For each stage i, compute the workload ratio.

iIi WRB ∈← maxarg //Select the stage B with maximum workload.

b. Schedule stage B

Apply Modified Jackson’s Heuristic to schedule the bottleneck stage B,

which is formulated as ܲหݎ, ݀หܥ௫. Job arrival times ݎ, and job delivery

times ݀ are calculated as follows:

ݎ ൌ ቐݎ,					 ܤ ൌ ݎ1 ௦ିଵ௦ୀଵ , ܤ 1
5-6

ݍ ൌ ቐݍ ௦|ூ|௦ୀାଵ , ∀ 1 ൏ ܤ ൏ 				,ݍ|ܫ| ܤ ൌ |ܫ|
5-7

73

Once schedule is decided and the job delivered time (݀ݐ) is calculated for

each job, the added value of ݀ݐ due to new imposed job precedence relationship

at stage B can be calculated by following equation: ݀ܣ ݀ ൌ ݐ݀ െ ∈ூ , ∀ 1 ൏ ܤ ൏ |ܫ| 5-8

c. Schedule upstream stage

Starting from stage 1, apply Modified Jackson’s Heuristic to schedule

each stage sequentially. Job arrival times ݎ , and job delivery times ݀ are

calculated as follows:

ݎ ൌ ൜ݎ,										 ݅ ൌ 		,,ିଵݐ1ܿ ∀1 ൏ ݅ ൏ ܤ
5-9

ݍ ൌ ݀ܣ ݀ ௦|ூ|௦ୀାଵ , 1 ൏ ݅ ൏ ܤ
5-10

d. Schedule downstream stage

Starting from stage B+1, apply Modified Jackson’s Heuristic to schedule

each stage sequentially. Job arrival times ݎ , and job delivery times ݀ are

calculated as follows: ݎ ൌ 	,,ିଵݐܿ ܤ∀ ൏ ݅ 11-5 |ܫ|

ݍ ൌ ቐ ௦|ூ|௦ୀାଵ , ∀ ܤ ൏ ݅ ൏ 				,ݍ|ܫ| ݅ ൌ |ܫ| 5-12

74

5.5 Re-scheduling

Re-scheduling, also called re-optimization, is an essential element of

decomposition algorithms and proved to be very effective in improving the solution

quality. It is sometimes also referred to as the control structure. Whenever a new sub-

problem has been scheduled, all the sub-problems that have been scheduled previously

need to be rescheduled in the non-increasing order of their criticality of resource

constraints. More specifically, for each sub-problem previously scheduled, the schedule

obtained before is discarded and treated as without job precedence relationship. The same

method for solving the sub-problem as described before is then applied to obtain a new

schedule. This may lead to a better schedule because more information has become

available with regard to the other sub-problem at this moment.

5.6 Algorithm of the BFD Heuristic

The BFD heuristic includes a main procedure and a sub-procedure. The sub-

procedure called Bottleneck Identification and Scheduling (BIS) is called by the main

BFD procedure iteratively to identify and schedule the bottleneck sub-problem. Both

procedures are described in this section.

5.6.1 Main Procedure

The flow chart of the main procedure is given in Figure 5-8.

75

Figure 5-8 Main Procedure of BFD

The procedure is stated as follows:

Step 1: Initialization

If ܤ ൌ ܯ 1 ← ሼܲܵܨܪܦ,ܤሽ.
Else if ܤ ൌ ܯ |ܫ| ← ሼܷܵܨܪ, .ሽܤܲ
Else ܯ ← ሼܷܵܨܪ, ,ܤܲ .ሽܵܨܪܦ
End if

M0 ← Φ

Step 2: Identify and schedule the bottleneck sub-problem

Call BIS(M) to identify and schedule the bottleneck sub-problem ݉ ∈ ܯ

Step 3: Re-scheduling

1) SUB ← M0

2) Remove all the job precedence relationship in SUB

76

3) Call BIS(SUB) to identify and schedule the bottleneck sub-problem ݇ ∈ ܤܷܵ

4) SUB ← SUB/ሼ݇ሽ
5) If Φ≠SUB

go to 3)

Else

 Call BIS({m}) to re-schedule m

If the scheduling result is improved

 Update schedules on m and M0

Go to 1)

Else

M0 ← M0	∪ ሼ݉ሽ
M ← M/ሼ݉ሽ
Go to step 4

End if

Step 4: If ܯ ൌ ∅, go to step 2, otherwise, stop

5.6.2 Sub-procedure: BIS

The flow chart of the sub-procedure BIS is given in Figure 5-9.

77

Figure 5-9 Sub-procedure: Bottleneck Identification and Scheduling

The procedure is stated as follows:

Step 1: Randomly pick a sub-problem k from SUB
Step 2: Calculate arrival times and delivery times for k ݎ ൌ ൜0,																																								݂݅	݇ ൌ ݇	݂݅							,,ିଵݐܿܵܨܪܷ	ݎ	ݐ݊ݎ݂	ܤܲ ൌ ,ݎ݅ݎ݁ݐ݊݅	ܤܲ ܵܨܪܦ	ݎ	ݎܽ݁ݎ	ܤܲ

ݍ ൌ ൜ܿݐ′,ାଵ,							݂݅	݇ ൌ ,ݐ݊ݎ݂	ܤܲ ݇	݂݅																																													,0ܵܨܪܷ	ݎ	ݎ݅ݎ݁ݐ݊݅	ܤܲ ൌ ܵܨܪܦ	ݎ	ݎܽ݁ݎ	ܤܲ

Where ܿݐ,ିଵ is the job completion time of the sub-problem before k. ܿݐ′,ାଵ is the job completion time of the sub-problem after k based

on non-delay reversed schedule.

Step 3: Formulate and solve the sub-problem k:

If k =PB,

Apply LSD to schedule k.

Calculate Cmax(k).

Else

Apply BA-Jackson to schedule k.

78

Calculate Cmax(k).

End

Step 4: Set }/{kSUBSUB← . If Φ≠SUB , go to step 1, otherwise go to step 5.

Step 5: Find the sub-problem m with maximum value of Cmax. m is considered as
the bottleneck.

Step 6: Fix the job precedence relationship on m, and remove the job precedence
relationship from all other sub-problems in the original set SUB.

5.7 A Numeric Example

A simple example is used to illustrate the procedure of BFD described in 5.6.1.

This example includes 6 jobs and 3 stages. The first stage has two batch processing

machines in parallel, each with 10 units of capacity. The second stage has only one single

discrete machine, and the last stage has two discrete machines in parallel. The processing

times and sizes of the jobs are shown in Table 5-5.

To simplify the calculation, CPLEX is used to solve all the sub-problems.

Figure 5-10 Shop Configuration of the Example

Table 5-5 Data of the Numerical Example

Jobs s
1p 2p 3p

Job 1 4 47 5 19

Job 2 4 77 10 17

79

Job 3 3 21 7 9

Job 4 6 94 4 18

Job 5 4 58 10 8

Job 6 5 38 6 3

Following the BFD main procedure, the solution is derived step by step as below:

Step 1: Initialization

Divide the problem into parallel batch processing machines (PB), and downstream

hybrid flow shop (DHFS): M={PB, DHFS}.

0ܯ ൌ ∅.

Step 2: Identify and schedule the bottleneck sub-problem

Use AMPL/CPLEX to identify and schedule the bottleneck. Sub-problem

formulations and schedule obtained are shown in Table 5-6 and Table 5-7.

Table 5-6 Sub-problem Formations and Scheduling

Sub-
problem

Formulation Arrival Time Delivery Time Cmax

PB ܲหݍ, ,ݏ ௫ܥℎหܿݐܾܽ 0
∈

=
Di jij pq

24, 27,16,22,18,9

121

DHFS ܨܨหݎหܥ௫
1jj pr =

47,77,21,94,58, 38
0 116

Max (Cmax)=121, therefore bottleneck is PB

80

Table 5-7 Job Sequences on Parallel Batch Processing Machines

Machine Job Sequence

Machine 1 (1, 5) → (3,6)

Machine 2 (2, 4)

Step 3: Re-scheduling

Since there is only one sub-problem scheduled so far, re-scheduling is not

required.

M={ DHFS}

M0={ PB}

Since there is still a sub-problem in the unscheduled problem set M, Step 2 need to be

repeated to solve the remaining sub-problem.

Step 2: Use CPLEX to schedule the only sub-problem, DHFS, in M. The formulation and

scheduling are shown in Table 5-8 and Table 5-9.

Table 5-8 Sub-problem Formulation and Scheduling

Subsystem Formulation Arrival Time Delivery
Time

Cmax

DHFS ܨܨหݎหܥ௫
jj ctr 1=

58, 94, 96, 94, 58, 96
0 128

Since DHFS is the only un-scheduled sub-problem, it is also the bottleneck.

Table 5-9 Job Sequences on the Down Stream Hybrid Flow Shop

Stage Machine Job Sequence

2nd stage Machine 1 5 →1 →4 →2 →3 →6

81

3rd stage
Machine 1 5 →1 →4 →3 →6

Machine 2 2

Step 3: Re-scheduling

SUB ൌ M0={ PB}.

Remove all the job precedence relationship in SUB.

Use AMPL/CPLEX to schedule PB. The results are given in Table 5-10 and
Table 5-11.

Table 5-10 Sub-problem Formations and Scheduling

Sub-
problem

Formulation Arrival
Time

Delivery Time Cmax

PB ܲหݍ, ,ݏ ௫ܥℎหܿݐܾܽ 0
 ′ݐܿ=ݍ

54, 29, 19, 34, 67, 9

128

Since PB is the only un-scheduled sub-problem, it is also the bottleneck

Table 5-11 Job Sequences on Parallel Batch Processing Machines

Machine Job Sequence

Machine 1 (1, 5) → (3) → (6)

Machine 2 (2, 4)

Use AMPL/CPLEX to re-schedule DHFS. The results are given in Table
5-12 and Table 5-14.

Table 5-12 Sub-problem Formations and Scheduling

Sub-problem Formulation Ready Times Cmax

DHFS
maxCrFF j 58, 94, 79, 94, 58, 117 126

82

126<128, Cmax is improved.

Table 5-13 Job Sequence on the Down Stream Hybrid Flow Shop

Stage Machine Job Sequence

2nd stage Machine 1 1 →5 →3 →2 →4 →6

3rd stage
Machine 1 1 →5 →2 →6

Machine 2 3 →4

Since the scheduling result is improved, re-scheduling need to be repeated. The

second iteration of re-scheduling shows no improvement, therefore re-scheduling stops

after two iterations of re-scheduling. The detail of the second re-scheduling is skipped

here.

M0 ൌ M0	∪ ሼܵܨܪܦሽ ൌ ሼܲܤ, .ሽܵܨܪܦ
M ൌ M/ሼܵܨܪܦሽ ൌ ∅.

Step 4: Since all sub-problems have been scheduled, BFD stops. The final schedule is

shown in Table 5-14 with Cmax=126.

Table 5-14 Final Job Sequence

Stage Machine Job Sequence

1st stage
Machine 1 (1, 5) → (3) → (6)

Machine 2 (2, 4)

2nd stage Machine 1 1 →5 →3 →2 →4 →6

3rd stage
Machine 1 1 →5 →2 →6

Machine 2 3 →4

83

Using CPLEX to solve this instance, the Cmax is also 126. However, if sub-

problem is not solved by AMPL/CPLEX but by the sub-problem heuristic LSD and BA-

Jackson, the Cmax obtained is 128. This is because the solution of sub-problem produced

by heuristics is not optimal, which affects the solution quality for the whole problem.

5.8 Computational Experiment

5.8.1 Experiment Design

The BFD heuristic is first compared with two reduced versions of BFD to

examine the effectiveness of re-scheduling process, and then further compared against

several commonly used heuristics, including a Randomized Greedy Heuristic and five

well-known dispatching rules, to evaluate its solution quality. All comparisons conducted

are listed in Figure 5-11.

Figure 5-11 List of Comparisons

5.8.1.1 Reduced BFD Heuristics

To verify the significance of re-scheduling procedure, two reduced versions of

BFD heuristic, BFD1 and BFD2 (Table 5-15), are used to provide comparison.

In original BFD, whenever a sub-problem is scheduled, the previously scheduled

sub-problems will be rescheduled based on the job sequences on the last scheduled sub-

84

problem. This re-scheduling procedure is referred to as full re-scheduling and is

computationally intensive. To reduce computational cost, BFD1 completely skips the re-

scheduling procedure, while BFD2 considers an alternative re-scheduling procedure: re-

scheduling is performed only after all sub-problems have been introduced into the

schedule.

Table 5-15 BFD and Reduced BFDs

Algorithm Re-scheduling

BFD Full
BFD1 None
BFD2 Last Iteration Only

All the algorithms are tested on the same set of problem instances, and results will

be analyzed to evaluate the importance of the re-scheduling procedure.

5.8.1.2 Randomized Greedy Heuristic

A greedy heuristic is a heuristic that follows the problem solving approach of

making the locally optimal choice at each stage with the hope of finding the global

optimum (Black 2005). The greedy randomized solutions are generated by adding

elements to the problem's solution set from a list of elements ranked by a greedy

function. Ranked candidate elements are often placed in a restricted candidate list (RCL),

and chosen at random when building up the solution. This kind of greedy randomized

construction method is also known as randomized greedy heuristic (RGH) or a semi-

greedy heuristic, first described by Hart (1987).

In the proposed RGH, the job candidates ready for processing are ranked

according to the Longest Remaining Processing Time First rule (LRPT). Instead of

85

selecting the first job in the list, the job is selected randomly from the top k elements in

the list, where k is the size of the RCL and predefined as 3 in this dissertation. The

selected element is then assigned to a batch (in batch processing stage) or a machine (in

discrete stage).

 The procedure of the proposed RGH is as follows:

Starting from the first stage, schedule jobs at each stage using following algorithm:
Let current stage number be i
Let J be the set of unscheduled jobs

Let M be the set of machines in parallel
Let ݎ be the ready time of job j at stage i. ݎ is set as 0 when i=1, otherweise set ݎ as

the completion time of job j in stage i-1. ܿܽܯℎ݈݅݊݁݁݉݅ܶ݅ܽݒܣ∈ெ ← 0
If stage i is the batch processing stage

Φ←B

0←b
While J≠ Φ do

1+← BB

Φ←bB

Capacity=S ݈ ← 1ݐ ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ∈ெ݊݅݉݃ݎܽ ← ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ
jJj rt ∈← min2

)2,1max(ttt ←

}{ trJjJ jt ≤∈←

Sort tJ in LRPT, breaking tie with LPT ܿܽܯℎ݅݊݁݊݃݅ݏܣ ← ݈
For i=1 to |ܬ௧|

ܮܥܴ ← :௧ሺ1ܬ ݇)
Randomly choose a job w from RCL

86

if 0≥− wsCapacity

}{wBB bb ∪←

}{\ wJJ ←

}{\ wJJ tt ←

wsCapacityCapacity −←

End if

End for

End while

Else if stage i is a discrete stage

While J≠ Φ do ݈ ← 1ݐ ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ∈ெ݊݅݉݃ݎܽ ← ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ
jJj rt ∈← min2

)2,1max(ttt ←

}{ trJjJ jt ≤∈←

Sort tJ in LRPT, breaking tie with LPT ܴܮܥ ← :௧ሺ1ܬ ݇)
 Randomly select a job w from RCL ܿܽܯℎ݅݊݁݊݃݅ݏܣ ← ݈

}{\ wJJ ←

}{\ wJJ tt ← ௪ݐݏ ← ,݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯሺݔܽ݉ (௪ݎ
www pstct +← ݈݁݉݅ܶ݅ܽݒܣℎ݅݊݁ܿܽܯ ← ௪ݐܿ

End while

End

87

5.8.1.3 List Scheduling With Dispatching Rules

Five commonly used dispatching rules combined with list scheduling are adopted

to provide comparisons. By applying dispatching rule, every time when a machine

becomes available, one job among the set of unscheduled jobs is selected as the next one

on the machine according to a certain priority index. Dispatching rules used in the

experiment are listed as below:

1. List Scheduling with Largest Delivery Time (LS-LDT): Select the available job

with largest delivery time.

2. List Scheduling with Largest Remaining Processing Time (LS-LRPT): Select the

available job with largest amount of remaining processing time.

3. List Scheduling with Largest Processing Time (LS-LPT): Select the available job

with largest processing time.

4. List Scheduling with Earliest Ready Time (LS-ERT): Select the available job that

has been ready for the longest time.

5. List Scheduling with Shortest Processing Time (LS-SPT): Select the available job

with the shortest processing time.

For all above dispatching rules, machine assignment is made implicitly according

to the available timing of machines, and batch forming and scheduling is done by

following algorithm:

1. Find out the first available machine, and open a new batch on that machine.

2. Find out all the unscheduled jobs ࢚ࡶ which are ready to be process at current

moment t, and change the ready times of all jobs in ࢚ࡶ to t.

3. Sort jobs in ERT, breaking ties using the predefined dispatching rule.

88

4. Assign the jobs one by one from the top of the list to current batch if the batch

size doesn’t exceed the machine capacity.

5. When no more jobs can fit in current batch, close the batch.

6. Go to step 1, and repeat the above procedure until all jobs are scheduled.

The result obtained by the BFD heuristic is compared with the result by each

dispatching rule, as well as the best result among them, which is referred to as BEST-

DSPT. BEST-DSPT is obtained by running all dispatching rules on each problem

instance and selecting the best solution obtained. The computational time of this

procedure is given by the sum of the times for all dispatching rules.

5.8.2 Data Generation

Experiment data is randomly generated in a manner similar to the methods by

Chen (2009) and Kim (2009), with additional considerations of non-identical job sizes

and batch processing machines. Table 5-16 summarizes the experimental factors: number

of jobs, number of stages, size of jobs, position of batching stage, position of bottleneck

stage and work load difference between bottleneck and non-bottleneck stages. Number of

jobs has six levels: 4, 6, 10, 20, 50 and 100. Number of stages has three levels: 3, 5 and 7

(low, medium and high), where each batching stage has 2 to 4 machines in parallel, and

each discrete stages has 1 to 4 machines in parallel. For small problem instances with less

than or equal to 10 jobs, the number of machines is 2 at the batching stage, and 1 to 3 at

each discrete stage. The capacity of batch processing machines is assumed to be 10 in

small instances, and 20 in median and large instances, and the size of job is generated

from discrete uniform distribution of [1, 5] (small), [1, 9] (mixed) and [3, 7] (big). The

89

position of batching stage has three levels: front, interior and rear (the first stage, any

interior stage and the last stage). The exact position of the interior stage is randomly

selected from discrete uniform distribution of [2, ࢜ െ1], with v denoting number of

stages. The position of bottleneck stage has the same levels as the position of batching

stage, and is generated in the same way. The workload difference between the bottleneck

stage and the highest work load of non-bottleneck stage has also three levels: the low one

is randomly generated from uniform distribution of [1, 1.2], the median one is generated

from [1.5, 1.9], and the high one is generated from [2.0, 3.0].

Table 5-16 Experiment Factors

Experiment Factors Level
Number of Jobs (n) 4, 6, 10, 20, 50, 100
Number of Stages (v) Low 3

Median 5
High 7

Size of Jobs (s) Small U[1, 5]
Mix U[1, 9]
Big U[3, 7])

Position of Batching
Stage (b)

Front 1
Interior U[2, ࢜ െ1]
Rear ࢜

Position of Bottleneck
Stage (q)

Front 1
Interior U[2, ࢜ െ1]
Rear ࢜

Workload Difference
(w)

Low U[1.0, 1.2]
Median U[1.5, 1.9]
High U[2.0, 3.0]

The workload of a specified bottleneck stage is implemented as follows: (1)

randomly generate the processing times for every job on each stage from discrete uniform

90

distribution of [1, 50]; (2) calculate workload iR for each non-bottleneck stage:

ij jii mpR /)(= for every discrete stage, and cmspR ij jii /)(×= for the batching

stage, with s denoting average job size. The highest workload value maxR is set as the

benchmark; (3) apply the same formula to calculate the workload for the bottleneck

stage; (4) with a specified workload difference value (w), modify the processing time of

job j at bottleneck stage b:
b

jb
jb Rold

wRpold
p

_

)_(max ××
= . This procedure will guarantee

that
maxR

Rb equals the specified w.

With six factors considered, there are a total of 1458 production scenarios. 1

problem instance for each scenario, there are 1458 problem instances in total.

5.8.3 Experiment Measurement

The relative deviation (RDEV) is used as the measurement to evaluate the

solution quality of different algorithms. The RDEV is defined as:

%100
max

maxmax
×

−
=

a

ab

C

CC
RDEV 5-13

bC max is the solution value obtained by method b. aC max is the benchmark

solution value. When the comparison is between heuristic and lower bound, aC max is

replaced by the lower bound value. If the comparison is made between heuristic and the

optimal solution, aC max will be the optimal solution. For problem instances which can

be solved by AMPL/CPLEX to the optimality, the optimal solution is used as the

91

benchmark. For those instances whose optimal solution is unknown, lower bound is

calculated to provide the benchmark.

5.8.4 Experiment Result

5.8.4.1 Analysis of Variance

The analysis of variance (ANOVA) (Table 5-17) shows that three factors have

statistically significant impact on BFD’s solution quality at a 5% significance level.

These factors include number of job (n), batching position (b) and bottleneck position (q).

While the remaining three factors, number of stages (v), job size (s) and workload

difference (w), do not show statistically significant impact. A main effects plot for each

factor tested is presented in Figure 5-12.

Table 5-17 ANOVA Table for RDEV

Factors P Value

n 0.000

v 0.697

s 0.352

b 0.001

w 0.063

q 0.044

92

Figure 5-12 Main Effects Plot for Solution Quality of BFD

The main effects plot shows that number of job (n) has the greatest impact on the

solution quality. For small size instances, solution quality decreases as n increases, while

for large size instance it is opposite: solution quality increases as n increases. Figure 5-13

shows the average RDEV discriminated by number of jobs and Figure 5-14 is the

corresponding scatter chart.

10050201064

0.10

0.08

0.06

0.04

0.02

753 SML

RearInteriorFront

0.10

0.08

0.06

0.04

0.02

SML RearInteriorFront

Number of Jobs (n)

M
ea

n

Number of Stages (v) Job Size (s)

Batching Position (b) W ork load Difference (w) Bottleneck Position (q)

Main Effects Plot for Mean %DEVLBRDEV

93

Figure 5-13 Solution Quality of BFD Discriminated by Number of Jobs

Figure 5-14 Scatter Chart: Solution Quality of BFD by Number of Jobs

The result shows that solution quality decreases dramatically as number of jobs

increases from 4 to 6. This is partially due to the benchmark used. As stated in the

experiment design section, whenever the optimal solution is available, the optimal

solution is used to provide benchmark. Otherwise, a lower bound is used as the

benchmark. For 4-job instances, the optimal solution can be found for 88.61% of the

4 6 10 20 50 100

BFD 2.16% 8.00% 9.08% 9.68% 5.96% 2.59%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

M
ea

n
of

 R
DE

V

n

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%

0 20 40 60 80 100

M
ea

n
of

 R
DE

V

Number of Jobs

94

instances. Contrastively, only 27.85% of the 6-job instances are solved to optimality, and

none of 10-job instances can be solved. When a lower bound is used to calculate the

deviation, it magnifies the deviation. This explains why RDEV drops dramatically as

number of jobs increases from 4 to 6.

To exclude the impact of using different benchmark, an extra comparison is

performed. In this comparison, lower bounds are used to provide the benchmark in all

instances. The deviation from the lower bound is denoted as RDEV*. Figure 5-15 and

Figure 5-16 present the RDEV* bar chart and scatter chart respectively. By using lower

bound as the benchmark for all instances, the deviation increases from 2.16% to 5.66%

for 4-jobs instances, from 8.00% to 8.26% for 6-job instances and remained the same for

the rest.

Figure 5-15 RDEV* of BFD Solution Discriminated by Number of Jobs

4 6 10 20 50 100

BFD 5.66% 8.26% 9.08% 9.68% 5.96% 2.59%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

M
ea

n
of

 R
DE

V*

n

95

Figure 5-16 Scatter Chart: RDEV* for BFD Solution by Number of Jobs

When number of jobs is greater than or equal to 20, the relative deviation starts

decreasing slowly as the number of jobs increases. The decrease is partially due to the

change in lower bound quality. As discussed in Chapter 4, the lower bound is getting

closer to the optimal ܥ௫ as number of jobs increases, which leads to the reduction in

the deviation.

Based on above analysis, conclusion can be made that number of jobs, n, has the

greatest impact on solution quality. The solution quality decrease as n increases for small

size instance (݊ 10), and stabilizes and then slightly increases for median and large

size instances (݊ 10). For instances with 50 and 100 jobs, the gaps between BFD

solution and the lower bound are as low as 5.96% and 2. 59%, indicating high quality of

BFD solution when job number is large.

Impact of Other Factors on the Solution Quality

The position of batching stage and the position of bottleneck stage also affect the

solution quality. BFD produces better results when the batch processing machines or

bottleneck located in the first or last stage.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0 20 40 60 80 100

M
ea

n
of

 R
DE

V

Number of Jobs

%DEVLB

%DEVLB*

96

Even though workload difference does not demonstrate statistically significant

impact on solution quality, it still has slight impact. Problem instances with higher

workload difference tend to get better solutions. This is due to the bottleneck first

strategy applied in the heuristic. It gives the bottleneck stage the highest priority to be

scheduled, therefore if the workload difference increases, more work will be scheduled

with higher priority.

5.8.4.2 BFD vs. Reduced BFDs

The RDEV of solutions produced by BFD and reduced BFDs are presented in

Figure 5-17.

Figure 5-17 Solution Quality of BFD and Reduced BFDs

To explain more clearly the impact of re-scheduling on solution quality, another

measurement, IMRDEV, is used. ܸܧܦܴܯܫிଵ means the improvement in RDEV on

BFD1 after apply full re-scheduling. IMRDEV is calculated as follows:

4 6 10 20 50 100

BFD1 2.62% 8.65% 9.60% 10.53% 7.09% 3.32%

BFD2 2.22% 8.04% 9.16% 9.84% 6.25% 2.60%

BFD 2.16% 8.00% 9.08% 9.68% 5.96% 2.59%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

M
ea

n
of

 R
DE

V

n

97

∗ிܸܧܦܴܯܫ ൌ ∗ிܸܧܦܴ െ ி 5-14ܸܧܦܴ

Where BFD* denotes the reduced BFD: BFD1 or BFD2.

Experiment result shows that full re-scheduling reduces the RDEV by 0.0072 in

average for BFD1 for all instances, and 0.0011 for BFD2. The breakdown of IMRDEV is

given in Figure 5-18.

Figure 5-18 Average Improvement on Solution Quality by Full Rescheduling

Since re-scheduling is removed completely from BFD1, the algorithm takes much

less run time (Figure 5-19), however the solution quality also drops obviously. When re-

scheduling is only performed in the last iteration (BFD2), the solution quality is slightly

worse than that of BFD, while the run time is also slightly less than that of BFD. The

ANOVA results reveal that the difference in solution quality between BFD and BFD1 is

statistically significant with a P value equal to 0.035, while the difference between BFD

4 6 10 20 50 100

BFD1 0.00459 0.00648 0.00516 0.00855 0.01130 0.00728

BFD2 0.00063 0.00036 0.00076 0.00164 0.00287 0.00007

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

M
ea

n
of

 Im
pr

ov
em

en
t o

n
RD

EV

n

98

and BFD2 is not statistically significant, with P=0.738. Even though the improvement on

BFD2 is not statistically significant, the algorithm with full re-scheduling consistently

outperforms BFD2, with only slight increase in CPU time (Figure 5-19). Therefore, BFD

with full re-scheduling is preferable.

The experiment results demonstrate the importance of re-scheduling procedure.

Re-scheduling plays an important role in the BFD heuristic by increasing the solution

quality, therefore cannot be removed from the algorithm.

Figure 5-19 Average Run Time of in Seconds

5.8.4.3 BFD vs. Randomized Greedy Heuristic

In this section of experiment, each instance is solved by the proposed RGH for 10

times, and the best solution is compared with BFD solution. The summation of 10 run

times is considered as the run time for RGH.

4 6 10 20 50 100

BFD1 0.06 0.10 0.21 0.66 3.82 16.74

BFD2 0.09 0.17 0.39 1.18 7.15 33.14

BFD 0.11 0.17 0.39 1.30 8.15 36.73

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

M
ea

n
of

 C
PU

 T
im

e
in

 S
ec

on
ds

n

99

Figure 5-20 RDEV for BFD and RGH Discriminated by Number of Jobs

From Figure 5-20, we can see that the RDEV of RGH increases steadily as n

increases, and exceeds 50% when n reaches 100. BFD shows significant advantage

against RGH.

5.8.4.4 BFD vs. List Scheduling with Dispatching Rules

The solution produced by BFD is also compared to the solutions produced by

several dispatching rules introduced in the experiment design section. Table 5-18 and

Figure 5-21 show the comparison results. The solutions obtained by BFD deviate from

the optimal solution or lower bound by 6.25% on average. While the deviations of

dispatching rules spread from 14.93% to 20.11%. BFD outperforms all dispatching rules.

Furthermore, BFD solution is compared against the best solution produced by all

these dispatching rules, BEST-DSPT. BEST-DSPT has an average deviation of 10.41%,

which is higher than that of BFD (6.25%). BFD gives better result than BEST-DSPT.

4 6 10 20 50 100

BFD 2.16% 8.00% 9.08% 9.68% 5.96% 2.59%

RGH 8.44% 25.90% 31.39% 39.34% 47.19% 50.53%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

M
ea

n
of

 R
DE

V

n

100

Table 5-18 Solution Quality of BFD and Dispatching Rules

n BFD BEST_DSPT LS-ERT LS-LDT LS-LPT LS-LRPT LS-SPT Total

4 2.16% 6.45% 12.56% 9.97% 14.12% 10.72% 11.14% 9.59%

6 8.00% 12.48% 22.30% 16.90% 23.17% 18.11% 20.59% 17.37%

10 9.08% 13.81% 24.23% 19.50% 25.28% 19.42% 23.28% 19.23%

20 9.68% 15.57% 27.15% 20.02% 28.80% 20.23% 23.09% 20.65%

50 5.96% 9.32% 20.29% 13.81% 21.07% 12.96% 15.04% 14.06%

100 2.59% 4.81% 14.12% 10.15% 14.75% 8.13% 8.60% 9.02%

Total 6.25% 10.41% 20.11% 15.06% 21.20% 14.93% 16.96% 14.99%

Figure 5-21 Solution Quality of BFD and Dispatching Rules

With regard to the computational cost, dispatching rules are much faster than

BFD (Figure 5-22), nevertheless, since BFD requires less than 40 seconds of CPU time in

average to solve a large problem instance with 100 jobs, and 8 seconds in average for all

problem sizes, the run time required is practical and acceptable. Therefore, BFD is

preferable when high solution quality is important. On the other hand, in the situation that

time is extremely critical and the quality can be compromised, dispatching rules can serve

as fast scheduling algorithms to solve the problem within one second.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

4 6 10 20 50 100

M
ea

n
of

 R
DE

V

BEST_DSPT

BFD

LS-ERT

LS-LDT

LS-LPT

LS-LRPT

LS-SPT

n

101

Figure 5-22 Average Run Time of BFD and BEST DSPT in Seconds

5.9 Summary

In this chapter, a heuristic approach BFD is proposed for solving the scheduling

problem ܨܨหܾܽܿݐℎ1, ݔܽ݉ܥหݏ . A series of experiments are conducted to evaluate the

effectiveness of BFD, which is further evaluated against a set of common algorithms,

including a randomized greedy heuristic and five dispatching rules. The results show that

the proposed BFD outperforms all these algorithms, and can solve a 100-job instance

within a minute with the deviation from the lower bound less than 3% in average. The

solution quality increases as number of jobs increases for small size instance (݊ 10),

and stabilizes for median and large size problem (݊ 10).

4 6 10 20 50 100

BEST_DSPT 0.04 0.05 0.08 0.14 0.35 0.74

BFD 0.11 0.17 0.39 1.30 8.15 36.73

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

M
ea

n
of

 C
PU

 T
im

e
in

 S
ec

on
ds

n

102

6 SOLUTION IMPROVEMENT BY A GENETIC ALGORITHM

A genetic algorithm (GA) with tuned parameters is presented in this chapter to

further improve the solution for the problem under study. The solution quality is

evaluated against the lower bound and the solution obtained by BFD.

6.1 Introduction to Genetic Algorithm

Genetic Algorithm is an adaptive heuristic search algorithm built on the

evolutionary ideas of natural selection. By simulating processes in natural system

necessary for evolution, GA represents an intelligent exploitation of a random search

within a defined search space to solve a problem. GA is often implemented in a computer

simulation in which a population of abstract representations (called chromosomes) of

candidate solutions to an optimization problem evolves toward better solutions. The

evolution usually starts from a population of randomly generated solutions. In each

generation, the fitness of every solution in the population is evaluated and a certain

number of solutions are stochastically selected based on their fitness. The selected

solutions are then further modified to form a new population. The new population is then

passed on to the next iteration of the algorithm. The algorithm terminates when either a

maximum number of generations has been reached, or a satisfactory fitness level has

been met for the population.

A typical GA requires: 1) a genetic representation of the solution domain (or

chromosome), 2) genetic operators, and 3) a fitness function evaluating the solution

domain. The main property of the genetic representation is that it usually has fixed size

which facilitates simple crossover operations. A genetic operator is an operator used in

103

genetic algorithms to maintain genetic diversity, which is a necessity for the process of

evolution. Examples of genetic operators include mutation, crossover, inversion and

selection operators. A fitness function is a particular type of objective function that

prescribes the optimality of a solution, and is always problem dependent.

A GA has a variety of advantages. It can quickly scan a vast solution set. Bad

proposals do not affect the end solution negatively as they are simply discarded. The

inductive nature of the GA means that it doesn't have to know any rules of the problem -

it works by its own internal rules. This is very useful when the problem is complex

defined problems like the one under study in this dissertation.

6.2 Proposed Genetic Algorithm

Each iteration of the GA starts with a population of feasible solutions found by

heuristics. This initial population is later taken as the initial solution of a local search

procedure and the procedure is repeated until some stopping criterion is met. The

algorithm flow chart is given in Figure 6-1.

nMakespan>
Lowerbound?

Nonimproved
iterations<i1

END

y

Find the best
solution

Form parent
population

(Pop)

Start

Generate initial
solutions using BFD,

DPST and RGH

Create new
immigrants by

RGH (IM)

Randomly select
from the rest

(REST)

Keep the best
solutions from

offspring (BEST)

n

Form offspring
population

(Pop+3*MU)

IM=Pop-BEST-REST

Swapping(MU)

Reversion(MU)

Insertion(MU)

Apply BFP to
ensure batching

feasibiilty

y

104

Figure 6-1 Procedure of the Proposed GA

6.2.1 Chromosome Representation

The chromosome applied in this algorithm is similar to the 3DGA initially

proposed by Amin-Naseri (2009). Each chromosome in the algorithm has a 3D structure.

The first dimension indicates the stages, the second dimension shows the number of

machines at each stage and the third dimension represents the sequence of each job in

that machine. Each variable in the chromosome is called a gene. For instance, the CR(m,

j, i) represents the gene of the job j on machine m at stage i. It means that to which

position on machine m the job j is assigned at stage i. If CR(m, j, i) has value zero, it

means that job j is not assigned to machine m. Let’s use an example to further illustrate it.

Assume a three-stages scheduling problem with five jobs. The first two stages comprise

two and one discrete processing machine individually, while the third stage has two batch

processing machines. The jobs arrangement is presented in Table 6-1. The structure of

the corresponding chromosome is presented in Figure 6-2.

Table 6-1 An Example of Job Sequence on Machines

Stage
Machine

1 2

1 3→5→1 4→2

2 3→1→4→5→2 --

3
1st Batch: 1,3
2nd Batch: 4

Only one batch: 2,5

105

Figure 6-2 3D Chromosome structure

6.2.2 Initial Population

Initial population is generated by 1) BFD, 2) five dispatching rules presented in

5.8.1.3, and 3) RGH introduced in 5.8.1.3. Since RGH is a heuristic based on the

randomized greedy heuristic, it creates diversity for the initial solutions. The number of

initial solutions in the population is a parameter, named Pop.

6.2.3 Genetic Operators

Three genetic operators are used in this algorithm to perform mutations. For each

mutation, a chromosome and a stage in that chromosome is selected randomly. The

genetic operators are as follows:

Swapping: Two genes are randomly selected at the defined stage. They can be

from the same machine or different machines. These two genes are then exchanged with

each other.

106

Reversion: Two genes in the same machine are randomly selected. The sequence

of genes (only consider the genes with nonzero value) between the two selected genes are

reversed.

Insertion: A job is randomly selected and inserted to another position or batch,

therefore changes the gene of itself as well as those of other jobs related.

The number of iterations of mutations depends on the parameter MU, which is a

fraction of Pop. The maximal amount of offspring chromosomes generated by mutation

is then 3ܷܯ.

Crossover operators are also applied to generate offspring. However the

preliminary result show that crossover operators do not improve the solution quality, but

increase the run time. Therefore, crossover operators are removed from the proposed GA.

6.2.4 Batching Feasibility Procedure

Since the mutation operation changes genes randomly, which might causes over

size batches, an algorithm named Batching Feasibility Procedure (BFP) is developed to

assure the batching feasibility. The BFP borrows the idea from the RBP heuristic

presented by Kashan et al. (2008). Some adjustment is applied to fit the problem under

study. The BFP algorithm is as follows:

IF there is at least one over size batch exists in the chromosome
THEN

REPEAT
 Select a batch with capacity violation and the longest batch processing
time.
 Select the job with the longest processing time in it.
 IF the selected job fits in any existing batch ܾ ∈ ܤ

107

 THEN
IF among batches in B, there are some batches having the batch
processing time longer than that of the selected job, and the batch
ready time later than that of the selected job. (batches r ⊆ B)
THEN put the selected job in one of the batches in r with the
smallest residual capacity.
ELSE put the job in a feasible batch in B with the longest
processing time;

 END IF
 ELSE create a new batch and assign the selected job to it;
 END IF
 UNTIL a feasible batching plan is obtained
ENDIF
END

6.2.5 Selection

After each mutation and the BFP are performed, a new chromosome is generated.

If this new chromosome has better fitness than the parent chromosome, then it will be

added into the offspring generation. Otherwise it will be abandoned.

Elitism replacement scheme is applied in the GA to select next generation. The

good individuals will survive for the next generation and are never lost unless better

solutions are found. The elitism replacement is applied as follows: both parent and

offspring population are combined into a single population and sorted in a non-increasing

order of their makespan. Then, BEST*Pop best chromosomes of the combined population

are selected as the individuals of the new population for the next generation. In order to

avoid premature convergence and to add diversity to the new population, IM*Pop new

chromosomes generated by RGH are introduced as immigrants to replace the worst

chromosomes in the population. Among the remaining individuals, ܴܶܵܧ ∗ ܲ

108

chromosomes are randomly selected to join the next generation of population. BEST, IM

and REST are fractions of the initial population Pop. The total number of the

chromosomes in the next generation, BEST+IM+REST, is equal to Pop. Therefore,

parameter IM is determined by BEST, REST and Pop, and is not included in the

parameter tuning in section 6.3.

6.2.6 Stopping criterion

If either of the following two conditions appears, the algorithm is terminated.

1. The best makespan obtained is equal to the lower bound;

2. The makespan is not improved in a number of consecutive generations.

This number, called STOP, is another parameter.

6.2.7 Pseudo code

The pseudo code for the proposed GA approach is shown below:

Let ࢻ be the problem instance to be solved and let ࣎ be the set of solutions in current
population. Let ߬ be a chromosome in ߬.
Let Makespan(߬) be the algorithm that return the makespan of the chromosome	߬.
Lower bound(ߙ) returns a lower bound on the makespan for ߙ.
BFD(ߙ) returns a chromosome of solution by applying Bottleneck First Decomposition
heuristic.
RGH(ߙ, ݇) generates a chromosome by applying randomized greedy algorithm, where k
is the size of RCL.
BFP(߬) returns a feasible chromosome without capacity violation.
Swap(߬), Insertion(߬) and Reversion(߬) return a chromosome in the neighborhood of ߬
by means of swapping, insertion and reversion respectively. These operators can be
applied on genes as well as batches.
Rand(A,n) randomly pick n elements from set A. ߬ଵ ← (ߙሺܦܨܤ
For i=2: Pop

109

߬ ← ,ߙሺܪܩܴ ݇)
End for ܴܥݐݏ݁ܤ ← ݊ܽݏ݁݇ܽܯݐݏ݁ܤ ∅ ← ݂݅݊
NonImprove=0
NewCR=0
While (BestMakespanLB) & (NonImprove<STOP)

For mutationMU
Randomly pick 3 chromosomes ߬, ߬ and ߬ from Ω

NewCR=NewCR+1 ܷܯ_ܴܥே௪ோ ← ሺܽݓܵ ߬)
if ݊ܽݏ݁݇ܽܯሺܷܯ_ܴܥே௪ோ) ሺ݊ܽݏ݁݇ܽܯ ߬)
 NewCR=NewCR-1
End if
NewCR=NewCR+1 ܷܯ_ܴܥே௪ோ ← (ሺ߬݊݅ݐݎ݁ݏ݊ܫ
if ݊ܽݏ݁݇ܽܯሺܷܯ_ܴܥே௪ோ) (ሺ߬݊ܽݏ݁݇ܽܯ
 NewCR=NewCR-1
End if
NewCR=NewCR+1 ܷܯ_ܴܥே௪ோ ← (ሺ߬݊݅ݏݎ݁ݒܴ݁
if ݊ܽݏ݁݇ܽܯሺܷܯ_ܴܥே௪ோ) (ሺ߬݊ܽݏ݁݇ܽܯ
 NewCR=NewCR-1
End if

End for ܱ݂݂ܵ݃݊݅ݎ ← 	߱	 ∪ ܵ_݃݊݅ݎ݂݂ܱܵ ܷܯ_ܴܥ	 ← ߤ ݊ܽݏ݁݇ܽ݉	݃݊݅ݏܽ݁ݎܿ݁݀݊݊	݊݅	݃݊݅ݎ݂݂ܱܵ	ݐݎݏ	 ← ݃݊݅ݎ݂݂ܱܵ	݊݅	݁݉ݏ݉ݎℎܿ	ݐݏ݁ܤ	
If ݊ܽݏ݁݇ܽܯሺߤ) ൏ ݊ܽݏ݁݇ܽܯݐݏ݁ܤ ݊ܽݏ݁݇ܽܯݐݏ݁ܤ ← ܴܥݐݏ݁ܤ (ߤሺ݊ܽݏ݁݇ܽܯ ← ݁ݒݎ݉ܫ݊ܰ ߤ ← 0
Else ܰ݁ݒݎ݉ܫ݊ ← ݁ݒݎ݉ܫ݊ܰ 1
End if ߬ሺ1: (ܶܵܧܤ ← :ሺ1ܵ_݃݊݅ݎ݂݂ܱܵ :ሺ1ܵ_݃݊݅ݎ݂݂ܱܵ (ܶܵܧܤ (ܶܵܧܤ ← ∅ ߬ሺܶܵܧܤ 1: ܶܵܧܤ (ܶܵܧܴ ൌ ܴܽ݊݀ሺܱ݂݂ܵ݃݊݅ݎ_ܵ, (ܶܵܧܴ
For m=1: Pop-BEST-REST

110

߬ሺܶܵܧܤ ܶܵܧܴ ܯ) ← ,ߙሺܪܩܴ ݇)
End for

End while

There are a number of parameters which affects the algorithm performance. These

parameters include:

1. Pop, the population size, a fraction of n. It increases as the problem size

increases;

2. STOP, the maximal number of consecutive iterations allowed without

improvement;

3. K, the maximal number of elements allowed in RCL;

4. MU, mutation rate;

5. BEST, the percentage of the top candidates passed on to the next generation;

6. REST, the percentage of population chosen randomly from the remaining

candidates.

6.3 Parameters Tuning

A full factorial experiment is conducted to determine the appropriate values of the

parameters. The factors and levels tested are shown in the Table 6-2. All the

combinations of the parameter values are tested on 20 instances of 10-job and 20

instances of 20-job, since the solution obtained by BFD for 10-job and 20-job instances

has the largest deviation from the lower bound. The deviation between the GA solution

and the lower bound is defined as the dependent variable.

111

ࢂࡱࡰࡾ ൌ ࢇ࢙ࢋࢇࡹ࢚࢙ࢋ െ ࢊ࢛࢈࢘ࢋ࢝ࡸࢊ࢛࢈࢘ࢋ࢝ࡸ ൈ %
6-1

Table 6-2 Parameters in GA

Parameter Description Level

Pop Population size [n 2n 3n]

STOP
Maximal number of consecutive
iterations allowed without
improvement

[12 50 100]

K
The maximal number of elements
allowed in RCL when applying RGH

[1 3 5]

MU Mutation rate [0.3 0.5 0.7]

BEST
The percentage of the population
chosen from the top to next
generation

[0.1 0.3 0.5]

REST
The percentage of population chosen
from the remaining offspring
population

[0.1 0.3 0.5]

The analysis of variance conducted with a significance level of 5% is presented in

Table 6-3. The analysis revealed that all parameters except for REST have a significant

effect on the solution quality. Figure 6-3 shows the main effects plot for each parameter.

The selected parameter values are as follows: Pop=3n, K=3, MU=0.7, BEST=0.3 and

REST=0.3. As for the parameter STOP, when STOP=100, GA produced the best solution.

However, for 50-job instances and 100-job instances, the algorithm requires tremendous

run time (over 2 hours for each instance). Therefore, for 4-job, 6-job, 10-job and 20-job

instances, STOP is set as 100, while for 50-job and 100-job instances, STOP is set as 12

and 50, respectively, to reduce run time. Since the solution produced by BFD is close to

optimal in average when number of jobs are greater than 50, there is not as much

112

improving potential by GA. Therefore the value of STOP will not cause a significant

impact on the solution quality for 50-job and 100-job instances. The value of the non-

significant parameter, REST, is set so that the run time is minimized.

Table 6-3 ANOVA Table for GA Parameter Selection

Parameter P Value

Pop 0.0000

STOP 0.0000

K 0.0418

MU 0.0001

BEST 0.0457

REST 0.5765

Figure 6-3 Main effects plot for GA parameter selection

5.670%

5.543%

5.415%

5.288%

5.160%
0.3 0.5 0.7

Mu
0.1 0.3 0.5

Best
0.1 0.3 0.5

Rest

6.300%

6.000%

5.700%

5.400%

5.100%
1n 2n 3n

Pop
12 50 100

Stop
1 3 5

k

RD
EV

RD
EV

113

6.4 Computational Result

A full factorial design of experiments based on the same set of 1458 random

generated instances from chapter 5 is conducted in order to determine the impact of each

factor on the quality of the proposed GA approach. The experiment used the same factors

as defined in Table 5-16, including number of jobs (n), number of stages (v), size of jobs

(s), position of batching stage (b), position of bottleneck stage (q) and workload

difference (w). Each problem instance is solved by GA 3 times and the average result is

reported.

The percentage of deviation from lower bound or optimal solution calculated by

equation 6-2 is applied to evaluate the performance. ࢂࡱࡰࡾ ൌ ൫ࡳ࢞ࢇ ࡳ࢞ࢇ൯ࡸି ൈ % 6-2

Table 6-4 ANOVA Table for RDEV of GA

Factors P Value

n 0.000

v 0.698

s 0.377

b 0.000

w 0.047

q 0.017

Table 6-4 and Figure 6-4 present the result of analysis of variance. Four out of six

factors, problem size, batching position, bottleneck position and workload difference, are

114

significant at a 5% confidence level. On the other hand, job size and number of stages do

not have significant impact.

Figure 6-4 Main Effects Plot for RDEV of GA

The algorithm performs better when number of jobs is small or large. The

instance with batching machines at the first or the last stage is easier to solve than at the

interior stages. Besides, the solution quality is also better when the bottleneck locates at

the first or last stage. The problem instances with higher workload difference result in

better solutions. The comparison of RDEV between BFD and GA is given in Figure 6-5.

To further analyze the improvement on solution by GA, two more measurements,

IMDEV and RIMDEV are used. While ܸܧܦܯܫ means the improvement in RDEV on BFD

by GA, ܴܸܧܦܯܫ represents the percentage of improvement. These measurements are

calculated as follows: ࢂࡱࡰࡹࡵ ൌ ࡰࡲࢂࡱࡰࡾ െ 3-6 ࡳࢂࡱࡰࡾ

10050201064

0.08

0.06

0.04

0.02

0.00
753 SML

RearInteriorFront

0.08

0.06

0.04

0.02

0.00
SML RearInteriorFront

Number of Jobs (n)
M
ea
n

Number of Stages (v) Job Size (s)

Batching Position (b) Workload Difference (w) Bottleneck Position (q)

Main Effects Plot for RDEV
Data Means

115

ܸܧܦܯܫ% ൌ ிܸܧܦܴ െ ீܸܧܦܴீܸܧܦܴ ൈ 100%
6-4

Computational results show that GA reduces the RDEV by 1.47% unit in average,

and the relative improvement on RDEV is 19.95%. Figure 6-6 describes the improvement

on RDEV discriminated by problem size, and Figure 6-7 presents the relative

improvement of RDEV discriminated by problem size.

Figure 6-5 Average RDEV of BFD and GA

Figure 6-6 Average Improvement in RDEV by GA

4 6 10 20 50 100

BFD 2.16% 8.00% 9.08% 9.68% 5.96% 2.59%

GA 0.72% 6.14% 6.62% 7.72% 5.28% 2.18%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

M
ea

n
of

 R
DE

V

4 6 10 20 50 100

GA 1.44% 1.87% 2.46% 1.96% 0.68% 0.41%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

M
ea

n
of

 Im
pr

ov
em

en
t o

n
RD

EV
 b

y
GA

n

116

Figure 6-7 Percentage of Improvement on RDEV by GA

The GA algorithm is coded in Matlab 7.04 and the experiments are run on a

desktop computer with a 2.21 GHz Intel Core 2 Duo ® processor with 2 GB of RAM.

Figure 6-8 shows the average run times of the GA algorithm compared to the run times of

BFD discriminate by problem size. The results show that the run time of GA increases

dramatically as problem size increases, and is significantly longer than that of BFD. Run

times for 50-job and 100-job instances are not significant higher than that of 20-job

instances. This is because the value of parameter, STOP, are reduced from 100 to 50 for

50-job instances, and to 12 for 100-job instances, as explained in section 6.3.

In summary, the proposed GA algorithm improves the solution of BFD by around

20% in a negligible time when problem size is less than 50 jobs. When the problem size

reaches 50 jobs, the computational time required is increased dramatically, and the

improvement over BFD is very limited since the average quality of BFD solutions for 50-

4 6 10 20 50 100

GA 28.91% 18.82% 23.57% 26.66% 13.87% 7.87%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

M
ea

n
of

 R
el

at
iv

e
Im

pr
ov

em
en

t o
n

RD
EV

by

 G
A

n

117

job and 100-job instances are higher than those of smaller-size instances and leave

limited space for improvement. As a result, GA can be used to improve solution for small

and median size instances (݊ ൏ 50), while for solving large instances BFD is more

efficient and preferable.

Figure 6-8 Average Run Time of GA vs. BFD in Seconds

4 6 10 20 50 100

BFD 0.11 0.17 0.39 1.30 8.15 36.73

GA 2.02 11.07 33.81 161.51 187.91 163.88

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00

t i
n

Se
co

nd
s

n

118

7 CONCLUSION AND FUTURE RESEARCH

This chapter re-examines the results in light of the original questions proposed in

Chapter 1, presents the summary of findings and conclusions, and concludes with an

exploration of possible future directions for the research.

7.1 Overview of the Problem under Study

In this dissertation, research is conducted on a scheduling problem, ܨܨหܾܽܿݐℎ1, which is to minimize the makespan on the hybrid flow shop with ,ݔܽ݉ܥหݏ

parallel batch-processing machines in one of the stages to process jobs with arbitrary

sizes. A mathematical model is developed to formulate the problem, heuristics are

proposed to solve the problem and extensive computational experiments are performed to

evaluate the performance of proposed heuristics.

7.2 Findings

A mixed-integer-linear-programming model is developed to formulate the

problem under study, ܨܨหܾܽܿݐℎ1, Randomly generated problem instances are .ݔܽ݉ܥหݏ

solved by the commercial solver AMPL/CPLEX. The result reveals that problem size,

number of stage and the position of batching stage have significant impact on

computational time. The run time required to solve the problem to optimality increases

dramatically when job number or stage number increases. Within two hours, the solver

can only solve a problem instance with up to 6 jobs. As the problem size increases to

beyond 6 jobs, the computational cost of solving the problem to optimality is too large to

be used in practical implementations. It is also discovered that a problem instance with

119

batching machines in an interior stage requires more time to find the optimal solution

than the one with batching machines in the first or last stage.

Since optimal solution cannot be found within reasonable time on any problem

instance with more than 6 jobs, a lower bound is required to serve as the benchmark for

heuristic performance evaluation. For this purpose, a tight lower bound is proposed. This

lower bound is derived by a three-level lower bound procedure. 1010 instances with 4

jobs, 5 jobs or 6 jobs are tested to evaluate the lower bound quality. The lower bound

obtained is compared with the optimal solution solved by AMPL/CPLEX solver. The

result shows that the proposed lower bound procedure generates tight lower bounds, and

the tightness increases substantially as the number of jobs increases. On the other hand,

the number of stages shows no great impact on lower bound quality. Besides, the lower

bound of small problem instances with less than 20 jobs can be further improved by a

lifting procedure by 0.51% in average.

To be able to solve moderate and large size problem instances efficiently, a

heuristic approach called bottleneck-first-decomposition heuristic (BFD) is proposed.

The BFD heuristic decomposes ܨܨหܾܽܿݐℎ1, into three sub-problems: upstream ݔܽ݉ܥหݏ

hybrid flow shop, parallel batch processing stage, and downstream hybrid flow shop, and

schedules the sub-problems one by one by identifying and scheduling the bottleneck one

at a time. Two heuristics are proposed to solve sub-problems: one is LSD for solving

',,, maxCbatchsqrP jjjm and the other one is BA-Jackson for solving ', maxCqrFF jjm . At

the batch-processing stage, batches are formed by a list scheduling with the dispatching

rule of largest processing time + delivery time (). At the discrete-processingݍ

120

stages, jobs are scheduled using a list scheduling with the largest delivery time (ݍ),
breaking tie with LPT rule. Since jobs have un-equal arrival times at each stage, a delay

strategy is applied to identify a pool of candidate jobs for next machine or for forming a

batch. For batch-processing, the delay strategy allows a job with late arrival time to join

the batch and hence improve the utilization of current batch space.

For discrete-processing, it allows a job with late arrival time but large delivery time to

have higher priority to be processed, therefore reduces the chance of being delayed by

this job at remaining stages. The interaction between stages is modeled as job arrival

times (ݎ) and delivery times (ݍ ݎ .(and ݍ for a stage are determined by the job

precedence relationship at previous stages and remaining stages, respectively, and form

the input to schedule the current stage. Solutions obtained by BFD are deviated from the

optimal solution or lower bound by 6.87% in average for all problem instances tested,

and BFD consistently outperform the randomized greedy heuristic, various dispatching

rules as well as the best solution produced by the dispatching rules. The number of jobs,

n, has the greatest impact on solution quality. The solution quality decrease as n increases

for small size instance (݊ 10), and stabilizes and then slightly increases for median and

large size instances (݊ 10). BFD produces better results when the batch processing

machines or bottleneck located in the first or last stage. Problem instances with higher

workload difference tend to get better solutions. This is due to the bottleneck first

strategy applied in the heuristic. It gives the bottleneck stage the highest priority to be

scheduled, therefore if the workload difference increases, more work will be scheduled

with higher priority. Results also show that re-scheduling procedure has a significant

effect on both solution quality and computation time by decreasing the deviation by

121

4.65% and doubles the run time. Since increment in run time is limited and acceptable,

the re-scheduling procedure is preferable in order to increase the solution quality. Overall,

the results indicate that decomposition methods such as that described in this dissertation

offers significant potential as solution procedures for complicate practical scheduling.

The sub-problem modeling and sub-problem solution approaches proposed in this

research perform well as components for the decomposition-based heuristic.

To further improve the heuristic solution, a genetic algorithm GA is developed. In

The proposed GA algorithm effectively improves the solution of BFD in a negligible

time when problem size is less than 50 jobs. When the problem size reaches 50 jobs, the

computational time required is increased dramatically with limited improvement. As a

result, GA can be used to improve solution for small and median size instances (݊ ൏ 50),
while for solving large instances BFD is preferable.

Figure 7-1 and Figure 7-2 and present a comparison of the performance for all the

heuristic approaches proposed in this research. The two measurements are the deviation

from the lower bound, RDEV, and run times.

Based on above performance evaluation, a selecting criterion of solution

approaches is presented as follows: For problems with median and small number of jobs

(n<50), the meta-heuristic approach GA is the most effective approach to solve the

problem, while for problems with large number of jobs (n>=50), BFD can yield good

results within reasonable time.

122

Figure 7-1 Solution Quality of Different Algorithms

Figure 7-2 Average Run Times in Seconds for All Algorithms

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

4 6 10 20 50 100

M
ea

n
of

 R
D

EV

Number of Jobs

BEST_DSPT

BFD

GA

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00

4 6 10 20 50 100

Ru
n

Ti
m

e
in

 S
ec

on
ds

Number of Jobs

BEST_DSPT

BFD

GA

n

123

7.3 Future Research

The development of an effective decomposition procedure also requires effective

solution procedures for the sub-problems. To reduce computational cost, this research

applies heuristics to get approximate solutions for the sub-problems, which reduce the

run time in a great sense, while caused unavoidable impact on the final solution quality.

Future research may focus on developing exact solutions for the sub-problems, for

example branch and bound, to improve the solution quality. However, the computational

time can significantly increase.

For the same purpose of reducing computational cost, instead of decomposing the

shop into single stage scheduling problem, the proposed heuristic decomposes the

problem into three sub-problems each containing one or more stages, so that re-

scheduling time is reduced. Future research may stick to the original decomposition

method used by the shifting bottleneck heuristic and consider each stage as a sub-

problem.

Another important issue which needs to be addressed for the BFD heuristic to be

useful in practice is that of how to handle uncertainties occurring on the shop floor. The

design of effective heuristic for the case of stochastic arrivals, in which the arrival of the

job is not known in advance, is also an opportunity for further research.

To simplify the problem, the capacity of the batching machines and physical size

of jobs are assumed one-dimension in this research. The future research can change this

assumption to 2-dimension or 3-dimemsion.

Objectives other than Cmax, i.e. due date related objectives and multiple

objectives can also be investigated. This dissertation focuses on minimizing the

124

makespan since it can help to increase the utilization of machine and labor resource,

reduce the lead time of a manufacturing order and therefore improve the manufacturer's

strength of competition. Other objectives besides Cmax can also be important, for

example minimizing maximum lateness or minimizing the number of late jobs. These

due-date related objectives are especially important when jobs to process have a tight due

date or the capacity of the resource cannot meet the demand.

125

LIST OF REFERENCES

Acero-Domínguez, M. J. and C. D. Paternina-Arboleda (2004). SCHEDULING JOBS
ON A K-STAGE FLEXIBLE FLOW SHOP USING A TOC-BASED (BOTTLENECK)
PROCEDURE. the 2004 Systems and Information Engineering Design Symposium.

Adams, J., E. Balas, et al. (1988). "The Shifting Bottleneck Procedure for Job Shop
Scheduling." Management Science 34(3): 391-401.

Adler, L., N. Fraiman, et al. (1993). "BPSS: a scheduling support system for the
packaging industry." Operations Research 41: 641-648.

AHMADI, J. H., R. H. AHMADI, et al. (1992). "BATCHING AND SCHEDULING
JOBS ON BATCH AND DISCRETE PROCESSORS." Operations Research 40(4): 750
- 763

Amin-Naseri, M. R. and M. A. Beheshti-Nia (2009). "Hybrid flow shop scheduling with
parallel batching." International Journal of Production Economics 117: 185-196.

Arthanari, T. S. and K. G. Ramamurthy (1971). "An extension of two machines
sequencing problem." Opsearch 8: 10-22.

Baker, K. R. (1974). Introduction to Sequencing and Scheduling, Wiley.

Balas, E., J. K. Lenstra, et al. (1995). "One Machine Scheduling with Delayed
Precedence Constraints." Management Science 41(94-109).

Bellanger, A. and A.Oulamara (2009). "Scheduling hybrid flow shop with parallel
batching machines and compatibilities." Computers &OperationsResearch 36(1982--
1992).

Bellanger, A. and A. Oulamara (2008). Exact Method For Hybrid Flowshop With
Batching Machines And Tasks Compatibilities. The Eleventh International Workshop on
Project Management and Scheduling - PMS 2008.

Black, P. E. (2005). "greedy algorithm" in Dictionary of Algorithms and Data
Structures, U.S. National Institute of Standards and Technology.

Brah, S. A. and J. L. Hunsucker (1991). "Branch and bound algorithm for the flowshop
with multiple processors." European Journal of Operational Research 51: 88-99.

Brah, S. A. and L. L. Loo (1999). "Heuristics for scheduling in a flow shop with
multiple processors." European Journal of Operational Research 113(1): 113-122.

Campbell, H. G., R. A. Dudek, et al. (1970). "A heuristic algorithm of the n-job, m-
machine sequencing problem." Manag. Sci. 16: b630-b637.

126

Caricato, P., A. Grieco, et al. (2007). "Tsp-based scheduling in a batch-wise hybrid
flow-shop." Robotics and Computer-Integrated Manufacturing 23: 234-241.

Carlier, J. (1987). "Scheduling jobs with release dates and tails on identical machines to
minimize the makespan." European Journal of Operational Research 29: 298-306.

Carlier, J. and E. Pinson (1998). "Jackson's pseudo preemptive schedule for the
Pm/rj,qj/Cmax scheduling problem." Annals of Operations Research 83(1): 41-58.

Chang P-Y., D. P., et al. (2004). "Minimizing makespan on parallel batch processing
machines." International Journal of Production Research 42: 11-20.

Chaudhry, S. S. and W. Luo (2005). "Application of genetic algorithms in production
and operations management: a review." International Journal of Production Research
43(19): 4083.

Chen, C.-L. and Chuen-LungChen (2008). "Bottleneck-based heuristics to minimize
tardy jobs in a flexible flow line with unrelated parallel machines." International Journal
of Production Research 46(22): 6415-6430.

Chen, C.-L. and Chuen-LungChen (2009). "A bottleneck-based heuristic for minimizing
makespan in a flexible flow line with unrelated parallel machines." Computers
&OperationsResearch.

Chen, Y. C. and C. E. Lee (1998). "Bottleneck-based group scheduling in a flow line
cell." International Journal of Industrial Engineering -Application and Practice 5: 288-
300.

Cheng, J., Y. Karuno, et al. (2001). "A shifting bottleneck approach for a parallel-
machine flowshop scheduling problem." Journal of Operations Research 44(2).

Chiang, T.-C., H.-C. Cheng, et al. (2008). An efficient heuristic for minimizing
maximum lateness on parallel batch machines. Eighth International conference on
Intelligent Systems Design and Applications.

Chung, S. H., Tai, Y.T and Pearn, W.L., (2008). "Minimising makespan on parallel
batch processing machines with non-identical ready time and arbitrary job sizes."
International Journal of Production Research.

Conway, R. (1997). "Comments on an exposition of multiple constraint scheduliing."
Production and Operation Management 6: 23-24.

D., G. (1984). "Bounds for naive multiple machine scheduling with release times and
deadlines." Journal of Algorithms 5(1-6).

127

Damodaran, P. and P.-Y. Chang (2007). "Heuristics to minimize makespan of parallel
batch processing machines " The International Journal of Advanced Manufacturing
Technology 37: 1005-1013.

Damodaran, P., N. S. Hirani, et al. (2008). "Scheduling identical parallel batch
processing machines to minimise makespan using genetic algorithms." European Journal
of Industrial Engineering 3: 187 - 206.

Damodaran, P., M.C. Velez-Gallego (2008). "Minimising makespan on parallel batch-
processing machines with unequal job ready times." Under review.

Ding, F. Y. and D. Kittichartphayak (1994). "Heuristics for scheduling flexible flow
lines." Computers and Industrial Engineering 26: 27-34.

Draidi, F. (2004). Parameterless genetic algorithms: Review, comparison and
improvement, Concordia University. M.A.Sc: 126.

El-Mihoub, T. A., A. A. Hopgood, et al. (2006) "Hybrid Genetic Algorithms: A
Review." Engineering Letters Volume, DOI:

Gharbi, A. and M. Haouari (2007). "An approximate decomposition algorithm for
scheduling on parallel machines with heads and tails." Computers & Operations
Research 34: 868-883.

Goldratt, E. and R. Fox (1986). The Race. New York, North River Press.

Goldratt, T. and J. Cox (1992). the goal, North River Press.

Gourgand, M., Grangeon, N., Norre, S., (1999). "Metaheuristics for the deterministic
hybrid flowshop problem." Proceedings of International Conference on Industrial
Engineering and Production management: 136-145.

Guinet, A. G. P. and M. M. Solomon (1996). "Scheduling hybrid flowshops to minimize
maximum tardiness or maximum completion time." International Journal of Production
Research 34(6): 1643-1654.

Gupta, J. N. D. (1972). "Heuristic algorithms for multistage flowshop scheduling
problem." AIIE Transactions 4: 11-18.

Gupta, J. N. D., A. M. A. Hariri, et al. (1997). "Scheduling a two-stage hybrid flow shop
with parallel mahines at the first stage." Annals of Operation Research 69: 171-191.

Gupta, J. N. D., K. Kruger, et al. (2002). "Heuristics for hybrid flow shops with
controllable processing times and assignable due dates." Computers and Operations
Research 29(10): 1417-1439.

128

Gupta, J. N. D. and E. A. Tunc (1991). "Schedules for a two-stage hybrid flowshop with
parallel machines at the second stage." International Journal of Production Research
29(7): 1489-1502.

Gupta, J. N. D. and E. A. Tunc (1994). "Scheduling a two-stage hybrid flowshop with
separable setup and removal times." European Journal of Operational Research 77: 415-
428.

Haouari, M. and A. Charbi (2004). "Lower bounds for scheduling on identical parallel
machines with heads and tails." Annals of Operations Research 129: 187-204.

Haouari, M., L. Hidri, et al. (2006). "Optimal scheduling of a two-stage hybrid flow
shop.". Meth. Oper. Res. 64: 107-124.

Hart, J. P. and A. W. Shogan (1987). "Semi-greedy heuristics: An empirical study."
Operations Research Letters 6: 107-114.

Hoogeveen, J. A., Lenstra, J.K., Veltman, B., (1996). "Preemption scheduling in a two-
stage multiprocessor flowshop is NPhard." European Journal of Operational Research
89: 172-175.

Hunsucker, J. L. and J. R. Shah (1994). "Comparative performance analysis of priority
rules in a constrained flow shop with multiple processors environment." European
Journal of Operational Research 72: 102-114.

J, C. and N. E (2000). "An exact method for solving themultiprocessor flowshop."
RAIRO-Oper Res 34(1-25).

Jin, Z. H., Ohno, K., Ito, T., Elmaghraby, S.E., (2002). "Scheduling hybrid flowshops in
printed circuit board assembly line." Production and Operation Management 11(1): 216-
230.

Kashan, A. H., B. Karimi, et al. (2008). "A hybrid genetic heuristic for scheduling
parallel batch processing machines with arbitrary job sizes." Computers & Operations
Research 35: 1084-1098.

Kim, Y.-D., B.-J. Joo, et al. (2009). "Heuristics for a two-stage hybrid flowshop
scheduling problem with ready times and a product-mix ratio constraint." Journal of
Heuristics 15: 19-42.

Kurz, M. E. and R. G. Askin (2003). "Comparing scheduling rules for flexible flow
lines." International Journal of Production Economics 85: 371-388.

Lee, C.-Y., R. Uzsoy, et al. (1992). "Efficient Algorithms for Scheduling Semiconductor
Burn-In Operations." INFORMS 40: 764-775.

129

Lee, C. Y. and R. Uzsoy (1999). "Minimising makespan on a single batch processing
machine with dynamic job arrivals." International Journal of Production Research 37(1):
219–236.

Lee, G.-C., Y.-D. Kim, et al. (2004). "Bottleneck-focused scheduling for a hybrid
flowshop." International Journal of Production Research 42(1): 165-181.

Li, S., G. Li, et al. (2004). Minimizing Maximum Lateness on Identical Parallel Batch
Processing Machines.

Lin, B. M. T. and A. A. K. Jeng (2004). "Parallel-machine batch scheduling to minimize
the maximum lateness and the number of tardy jobs." International Journal of
Production Economics 91(2): 121-134.

M, P. (1995). Branch and bound method for the multiprocessor jobshop and flowshop
scheduling problem. Department of Computer Science, University of Copenhagen.

Martello, S. and P. Toth (1990). Knapsack problems: Algorithms and computer
implementations, John Wiley & Sons.

Narasimhan, S. L. and P. M. Mangiameli (1987). "A comparison of sequencing rules for
a two-stage hybrid flow shop." Decision Sciences 18: 250-265.

Narasimhan, S. L. and S. S. Panwalker (1984). "Scheduling in a two-stage
manufacturing process." International Journal of Production Research 22(4): 555-564.

Neron, E., P. Baptiste, et al. (2001). "Solving hybrid flow shop problem using energetic
reasoning and global operations." Omega 29(6): 501-511.

Nowicki, E., Smutnicki, C., (1998). "The flowshop with parallel machines: A tabu
search approach." European Journal of Operational Research 106(226): 253.

O, M. and P. Y (2000). "A branch and bound algorithm for the hybrid flowshop."
International Journal of Production Economics 64(113-125).

Orhan Engin, A. D. (2004). "A New Approach to Solve Hybrid Flow Shop Scheduling
Problems by Aritficial Immune System." Future Generation Computer Systems 20:
1083-1095.

Oulamara, A., G. Finke, et al. (2009). "Flowshop scheduling problem with a batching
machine and task compatibilities." Computers and Operations Research 36(2): 391-401.

Ovacik, I. M. and R. Uzsoy (1997). Decomposition Methods for Complex Factory
Scheduling Problems. Boston, Kluwer Academic Publishers.

Paternina-Arboleda, C. D., J. R.Montoya-Torres, et al. (2008). "Scheduling jobs on a k-
stage flexible flow-shop." Annals of Operation Research 164: 29-40.

130

Portmann, M., A. Vignier, et al. (1998). "Branch and bound crossed with GA to solve
hybrid flowshops." European Journal of Operational Research 107: 389-400.

Portmann, M. C., A. Vignier, et al. (1998). "Branch and bound corssed with GA to solve
hybrid flowshops." European Journal of Operational Research 107(2): 389-400.

Rajendran, C. and D. Chaudhuri (1992). "Scheduling in n-job m stage flowshop with
parallel processors to minimize makespan." International Journal of Production
Economics 27: 137-143.

Remy, J. (2004). "Resource constrained scheduling on multiple machines." Information
Processing Letters 91(4): 177-182.

RezaAmin-Naseri, M. and MohammadAliBeheshti-Nia (2009). "Hybrid flow shop
scheduling with parallel batching." International Journal of Production Economics 117:
185-196.

Salvador, M. S. (1973). A solution to a special case of flow shop scheduling problems.
New York, Springer.

Santos, D. L., Hunsucker, J.L. (1995). "Global lower bounds for flowshop with multiple
processors." European Journal of Operational Research 80: 112-120.

Santos, D. L., Hunsucker, J.L., J. L. Hunsucker, et al. (1996). "An evaluation of
sequencing heuristics in flow shops with multiple processors." Computers and Industrial
Engineering 30(4): 681-691.

Shao, H., H.-P. Chen., et al. (2008). Minimizing makespan for parallel batch processing
machines with non-identical job sizes using a neural network approach. 2008 ICIEA
2008 3rd Conference on Industrial Electronics and Applications, Singapore.

Su, L.-H. (2003). "A hybrid two-stage flowshop with limited waiting time constraints."
Computers and Industrial Engineering 44(3): 409 - 424

Sung, C. S. and Y. H. Kim (2002). "Minimizing makespan in a two-machine flowshop
with dynamic arrivals allowed." Computers & Operations Research 29: 275-294.

Tang, L. and P. Liu (2009). "Minimizing makespan in a two-machine flowshop
scheduling with batching and release time." Mathematical and Computer Modelling
2009: 1071-1077.

Vishwanathan, K., N. Kulkarni, et al. (2007). A Comparative Study of Dispatching
Rules in Hybrid Flow Shops with Discrete and Batch Processors. Proceedings of the
2007 Industrial Engineering Research Conference.

Webster, S. T. (1996). "A general lower bound for the makespan problem." European
Journal of Operational Research 89: 516-524.

131

Wittrock, R. J. (1985). "Scheduling algorithms for flexible flow lines." IBM Journal of
Research and Development 29(401-412).

Wittrock, R. J. (1988). "An adaptable scheduling algorithm for flexible flow lines."
Operation Research 36: 445-453.

Xu, S. and J. C. Bean (2007). A Genetic Algorithm for Scheduling Parallel Non-
identical Batch Processing Machines. IEEE Symposium on Computational Intelligence
in Scheduling.

Yang, Y. (1998). Optimization and Heuristic Algorithms for Flexible Flow shop
Scheduling. Graduate School of Arts and Sciences, Columbia University. Ph.D.: 104.

132

VITA

YANMING ZHENG

October 6, 1975 Born, Xianyou, Fujian, China

1994-1998 B.A., Structure Engineering
Southeast University

 Nanjing, Jiangsu, China
1998-2001 M.S., Construction Management

Southeast University
 Nanjing, Jiangsu, China

2001-2006 Huawei Technologies, China
2006-2010 Teaching Assistant
 Florida International University
 Miami, Florida

2009 Doctoral Candidate in Industrial and Systems Engineering
 Florida International University
 Miami, Florida

PUBLICATIONS

Yanming Zheng, Chin-Sheng Chen, and Syed M. Ahmed. (2007). the Impact of MTO
Feature on ERP Application in Construction Industry. Proceedings of the Fourth
International Conference on Construction in the 21st Century, Australia. 664-672.

	Florida International University
	FIU Digital Commons
	8-10-2010

	Minimizing Makespan for Hybrid Flowshops with Batch, Discrete Processing Machines and Arbitrary Job Sizes
	Yanming Zheng
	Recommended Citation

	Minimizing Makespan for Hybrid Flowshops with Batch, Discrete Processing Machines and Arbitrary Job Sizes

