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ABSTRACT OF THE DISSERTATION 

THIOREDOXIN AND JAB1 CONTROL ESTROGEN- AND ANTIESTROGEN-

MEDIATED PROGRESSION OF THE CELL CYCLE THROUGH P27 

INTERACTIONS 

by 

Rosalind Brigham Penney 

Florida International University, 2011 

Miami, Florida 

Professor Deodutta Roy, Major Professor 

A major problem with breast cancer treatment is the prevalence of antiestrogen 

resistance, be it de novo or acquired after continued use. Many of the underlying 

mechanisms of antiestrogen resistance are not clear, although estrogen receptor-mediated 

actions have been identified as a pathway that is blocked by antiestrogens. Selective 

estrogen receptor modulators (SERMs), such as tamoxifen, are capable of producing 

reactive oxygen species (ROS) through metabolic activation, and these ROS, at high 

levels, can induce irreversible growth arrest that is similar to the growth arrest incurred 

by SERMs. This suggests that SERM-mediated growth arrest may also be through ROS 

accumulation. Breast cancer receiving long-term antiestrogen treatment appears to adapt 

to this increased, persistent level of ROS. This, in turn, leads to the disruption of 

reversible redox signaling that involves redox-sensitive phosphatases and protein kinases 

and transcription factors. This has downstream consequences for apoptosis, cell cycle 

progression, and cell metabolism. For this dissertation, we explored if altering the ROS 

formed by tamoxifen also alters sensitivity of the drug in resistant cells. We explored an 
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association with a thioredoxin/Jab1/p27 pathway, and a possible role of dysregulation 

of thioredoxin-mediated redox regulation contributing to the development of antiestrogen 

resistance in breast cancer. We used standard laboratory techniques to perform proteomic 

assays that showed cell proliferation, protein concentrations, redox states, and protein-

protein interactions.  We found that increasing thioredoxin reductase levels, and thus 

increasing the amount of reduced thioredoxin, increased tamoxifen sensitivity in 

previously resistant cells, as well as altered estrogen and tamoxifen-induced ROS. We 

also found that decreasing levels of Jab1 protein also increased tamoxifen sensitivity, and 

that the downstream effects showed a decrease p27 phosphorylation in both cases. We 

conclude that the chronic use of tamoxifen can lead to an increase in ROS that alters cell 

signaling and causing cell growth in the presence of tamoxifen, and that this resistant cell 

growth can be reversed with an alteration to the thioredoxin/Jab1 pathway. 



 

vii 

TABLE OF CONTENTS 

CHAPTER                                                                                                                 PAGE 

I. INTRODUCTION 1 

II. LITERATURE REVIEW: THIOREDOXIN, CHANGES IN REDOX 4 
STATE OF CELLS AND A NEW PERSPECTIVE IN AN 
UNDERSTANDING OF TAMOXIFEN RESISTANCE IN BREAST 
CANCER TREATMENT 
Abstract 4 
1. Introduction 5 
2. Mechanisms of estrogen actions in breast cancer 7 
3. Actions of endocrine therapeutic agents 10 
4. Overview of existing paradigms of antiestrogen resistance 15 
5. Redox signaling and antiestrogen resistance 18 

Redox state of cells 18 
Reactive oxygen species as signaling molecules 21  
Redox signaling 23 
Redox regulation of protein tyrosine phosphatases/kinases 25 
Redox regulation of transcription factors 27 
Thioredoxin system and redox regulation 28 
Trx family and ROS 33 
Redox regulation of proteins by thioredoxin 36 
Thioredoxin interactions with other proteins 37 
Background to a new paradigm for antiestrogen resistance 42 
 Thioredoxin and cell cycle progression/arrest 42 
 p27 44 
 Jab1 47 
Thioredoxin and its proposed role in antiestrogen resistance 50 
Jab1 and a possible interaction with thioredoxin 52 
PTPs and thioredoxin 53 

6. Summary 55 
Acknowledgments 56 
Reference List 56 

 Figures 81 

III. INCREASING THIOREDOXIN REDUCTASE EXPRESSION OR  83 
REDUCING JAB1 EXPRESSION REDUCES CELL  
PROLIFERATION IN TAMOXIFEN-TREATED LCC2 CELLS  
Abstract 83 
Introduction 84 
Materials and methods 86 
Results 91 
Discussion 96 



 

viii 

Reference List 97 
Figures 99 
 

IV. INCREASED THIOREDOXIN REDUCTASE OR DECREASED  107 
JAB1 LEADS TO DECREASED GROWTH IN BREAST CANCER  
CELLS UPON ESTROGEN TREATMENT THROUGH DECREASED 
AKT AND P27 PHOSPHORYLATION 
Abstract 107 
Introduction 108 
Materials and methods 110 
Results 115 
Discussion 120 
Reference List 123 
Figures 126 
 

V. CONCLUSION 134 
Directions for future research 137 

 
       SUPPLEMENTAL DATA 138 
 
       VITA 139 

 
 

 
 



 

ix 

LIST OF FIGURES 
 

FIGURE                                                                                                                     PAGE 
 
1-LR  Estrogen actions in breast cancer          81 
 
2-LR  Sources of oxidants and actions of antioxidants 81 
 
3-LR Cellular dose/response to oxidants 82 
 
4-LR  Thioredoxin Oxidation and Reduction 82 
 
5-LR  Proposed role of thioredoxin in AE resistance 83 

1-LCC2 Upregulation of cellular and mitochondrial thioredoxin  99 
 reductase reduced the formation of anchorage–independent  
 colonies in tamoxifen–resistant cells. Downregulation of Jab1  
 reduced the formation of anchorage–independent colonies in  
 tamoxifen-treated tamoxifen-resistant LCC2 cells. 
 
2-LCC2 Upregulation of cellular and mitochondrial thioredoxin  101 
 reductase decreased DNA synthesis in tamoxifen-treated  
 tamoxifen-resistant LCC2 cells. Downregulation of Jab1 also  
 decreases DNA synthesis in tamoxifen-treated tamoxifen- 
 resistant LCC2 cells. 
 
3-LCC2  Upregulation of TrxR2 and TrxR2\ with plasmid overexpression 103 
 or isothiocyanate treatment increases Trx2 and Trx expression in  

addition to TrxR2 and TrxR expression in LCC2 cells.  
 
4-LCC2  Thioredoxin oxidation in tamoxifen resistant cells may be 103 
 reversible. 
 
5-LCC2  Upregulation of cellular and mitochondrial thioredoxin reductase  104 

increase Jab1/Trx binding and decrease Jab1 p27 binding in  
tamoxifen-treated tamoxifen-resistant LCC2 cells.    

 
6-LCC2  Overexpression of TrxR1 through erucin treatment decreases p27  105 
 phosphorylation at T157 and T187. Underexpression of Jab1  
 decreases p27 phosphorylation at T187. 
 
1-MCF7 Upregulation of cellular and mitochondrial thioredoxin reductase  126 

reduces the formation of anchorage–independent colonies in  
estrogen-treated ER+ breast cancer epithelial cells.  
Downregulation of Jab1 reduced the formation of anchorage– 



 

x 

independent colonies in estrogen-treated ER+ breast cancer  
epithelial cells. 
 

2-MCF7  Upregulation of cellular and mitochondrial thioredoxin reductase  128 
 decreased DNA synthesis in estrogen-treated MCF-7 cells. 

Downregulation of Jab1 decreased DNA synthesis in estrogen- 
treated MCF-7 cells.  

 
3-MCF7 Estrogen increases oxidative state of MCF-7 cells and leads to an  129 

increase in oxidation of Trx1.  
 

4-MCF7 Oxidation of PTEN by estradiol is reversed with overexpression  131 
 of thioredoxin reductase.  
 
5-MCF7 Overexpression of thioredoxin reductase and underexpression of  132 
  Jab1 decreases Akt phosphorylation at Ser473 in estrogen-treated  
  MCF-7 cells.  
 
6-MCF7 Overexpression of TrxR1 through erucin treatment decreases p27  133 
  phosphorylation at T157. Underexpression of Jab1 decreases p27 

phosphorylation at T157. 



 

xi 

LIST OF ACRONYMS 
 
AE   Antiestrogen 

AI   Aromatase inhibitor 

ASK1  Apoptosis signal-regulating kinase 1 

Cdk  Cyclin-dependent kinase 

CIP/KIP Cdk inhibiting and kinase inhibiting proteins 

Cys  Cysteine  

Δψm  Mitochondrial membrane potential 

E1  Estrone 

E2  17β-estradiol 

EGFR  Epidermal growth factor receptor 

ER  Estrogen receptor 

H2O2  Hydrogen peroxide 

Jab1  Jun activation domain-binding protein 1 

MAPK  mitogen activating protein kinase 

MIF  Macrophage migration inhibitory factor 

Nrf2  Nuclear factor erythroid 2-related factor 2 

O2
·-    Superoxide 

OH-    Hydroxyl radical  

ONOO- Peroxynitrite 

PTK  Protein tyrosine kinase 

PTP  Protein tyrosine phosphatase 

ROS  Reactive oxygen species 



 

xii 

RTK  Receptor Tyrosine Kinase 

SERM  Selective estrogen receptor modulator 

SOD  Superoxide dismutase 

Tam  Tamoxifen 

Trx  Thioredoxin 

TrxR  Thioredoxin reductase 

Txnip  Thioredoxin inhibiting protein 

 

 



1 

I. INTRODUCTION 

 

It is estimated that 1.2 million people will be diagnosed with breast cancer every year. 

Through research on hormone replacement therapies and estrogen-receptor (ER)-based 

therapies, estrogen has been found to be involved in the development of breast cancer.1 

Currently, there are several options for the treatment of breast cancer, including surgery, 

radiation, chemotherapy, and hormonal therapy. Antiestrogens (AEs) are a known 

adjunctive therapy, and are used as a preventive measure as well. The most common form 

of hormonal therapy has been, for many years, selective estrogen receptor modulators 

(SERMs) such as tamoxifen, raloxifene, and toremifene.2  

 

A major problem with the use of antiestrogens (AE) is the prevalence of resistance, either 

at the outset of treatment or after continued use. The underlying mechanisms of 

antiestrogen resistance remain unclear. ER-mediated actions were identified initially as a 

pathway that was blocked in AE-treated cells, and inhibition of this pathway has been 

shown to cause permanent growth arrest/cell death. Reactive oxygen species (ROS) are 

an outcome of oxidative processes and can induce an irreversible growth arrest similar to 

selective estrogen receptor modulator (SERM) antiestrogens. SERMs are capable of 

producing ROS through their metabolic activation. These findings suggest that SERMs 

may mediate growth arrest by a mechanism involving ROS accumulation. 

 

The antioxidant thioredoxin may have a role in antiestrogen resistance in breast cancer. 

As cells are chronically exposed to ROS from long-term tamoxifen treatment, they can 
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adapt to this increasing level of ROS and oxidative stress. This can lead to oxidation of 

certain cellular antioxidant systems, such as thioredoxin, causing them to become 

inactive. The inactivation of the thioredoxin antioxidant family can then affect other 

proteins such as PTPs or Jab1, or lead to the continued activation of cell signaling 

pathways such as MAPKs (mitogen activating protein kinases), leading to the activation 

of transcription factors such as AP-1 or NF-κB and subsequent cell proliferation.  

 

We hypothesized that antiestrogen generated ROS, through the oxidization of Trx, 

increases the amount of free Jab1 accessible to bind to p27. This, in turn, promotes the 

loss of the inhibitory functions of p27, leading to antiestrogen resistance. Our goal, then, 

was to investigate whether reducing oxidized Trx in antiestrogen-resistant breast cancer 

cells restores the anti-proliferative function of antiestrogen treatments through restoring 

the Trx to compete for Jab1 binding, and thus renewing the inhibitive quality of p27.  

 

The following specific aims were set up to test the hypothesis: 

Aim 1: To investigate whether reducing oxidized Trx restores the anti-proliferative action 

of antiestrogen by: (i) determining if reducing Trx using ROS inhibitors and/or ROS 

detoxifying enzymes and/or an overexpression of Trx reductase restores the anti-

proliferative effect of antiestrogens by increasing Trx binding with Jab-1 and renewing 

the inhibitory function of p27; and (ii) investigating whether a persistent increase in 

oxidative stress leads to antiestrogen resistance in previously sensitive breast cancer cells 

through downregulating Trx reductase, upregulating Jab-1, and thus impairing the p27 

inhibitory function. 
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Aim 2: To determine the molecular mechanisms by which a pro-oxidative state may 

promote the oxidation/inhibition of Trx, p27 inactivation by Jab-1, and cell cycle 

progression by investigating whether redox signaling pathways in antiestrogen resistant 

cells can either directly or indirectly regulate levels of oxidized Trx and p27 in 

antiestrogen-resistant breast cancer cells. 

 

Aim 3: Testing of the hypothesis using in vivo conditions by investigating whether ROS 

inhibitors and/or Trx reductase can cooperate with antiestrogens to inhibit the 

proliferation of estrogen-independent, antiestrogen-resistant breast cancer cells in a 3-

dimensional culture. 

 

After beginning experiments, we chose to alter Aim 1 (ii) and not to perform Aim 3. We 

wanted instead to explore the role of the protein tyrosine phosphatase PTEN in estrogen-

mediated oxidative stress in breast cancer cells, as PTP alteration may also occur due to 

increased estrogen. We thought it important to explore the cell signaling pathways, 

namely those associated with thioredoxin/Jab1 and p27, which occur due to estrogen 

exposure in ER+ cells, as well as those initiated by the treatments. Both estrogen and 

tamoxifen have been shown to increase levels of ROS in breast cancer cells,3 and thus our 

findings may be applied to the formation of tamoxifen resistance through increased ROS. 

Our specific aim was to show the alteration of ROS through the thioredoxin/Jab1 

pathway and the effect on p27 phosphorylation in MCF-7 cells. 
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II. LITERATURE REVIEW: 

THIOREDOXIN, CHANGES IN REDOX STATE OF CELLS AND A NEW 

PERSPECTIVE IN AN UNDERSTANDING OF TAMOXIFEN RESISTANCE IN 

BREAST CANCER TREATMENT 

 

Abstract 

A major problem with the use of antiestrogens (AE) is the prevalence of resistance, either 

at the outset of treatment or after continued use. The underlying mechanisms of 

AE resistance remain unclear. Estrogen receptor (ER)-mediated actions were identified 

initially as a pathway that was blocked in AE-treated cells, and inhibition of this 

pathway has been shown to cause permanent growth arrest/cell death. Reactive oxygen 

species (ROS), a byproduct of oxidative processes, can induce an irreversible growth 

arrest similar to selective estrogen receptor modulator (SERM) antiestrogens. SERMs are 

capable of producing ROS through their metabolic activation. These findings suggest that 

SERMs may mediate growth arrest by a mechanism involving ROS accumulation.  

 

Breast cancer cells have higher amounts of ROS than normal cells, and chronic treatment 

with tamoxifen or fulvestrant adds additional ROS. Breast cancer cells receiving long-

term antiestrogen treatment appear to adapt to this increased, persistent level of ROS. 

This, in turn, leads to the disruption of reversible redox signaling that involves redox-

sensitive phosphatases and protein kinases such as ERK and AKT, and also 

involves transcription factors such as AP-1 and NF-κB. This has downstream 

consequences for apoptosis, cell cycle progression, and cell metabolism. This review 
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discusses concepts in support of a possible role of dysregulation of thioredoxin-mediated 

redox regulation contributing to the development of AE resistance in breast cancer. The 

inactivation of the thioredoxin antioxidant family can disrupt reversible redox signaling 

pathways and cause the cell to become unresponsive to AE-induced cell cycle arrest or 

cell death, or lead to the continued activation of cell signaling pathways such as MAPKs, 

leading to the activation of transcription factors and subsequent cell proliferation.  

  

1. Introduction 

Through research on hormone contraception, postmenopausal hormonal therapies and 

estrogen-receptor (ER)-based endocrine therapies, we know that estrogen is a major risk 

factor of breast cancer. 1, 4-14 Therefore, preventive strategies are predominantly restricted 

to antiestrogenic (AE) stimulation of its cognate receptor. The ER-based endocrine 

therapy includes selective estrogen receptor modulators (SERMs) (tamoxifen, raloxifene 

[Evista], and toremifene [Fareston]), pure antiestrogens (fulvestrant [Faslodex]), 

luteinizing hormone-releasing hormone agonists (leuprolide, goserelin [Zoladex]), and 

aromatase inhibitors (anastrozole [Arimidex], letrozole [Femara], exemestane 

[Aromasin]).2 Currently, there are several other options for the treatment of breast cancer, 

including surgery, radiation, and chemotherapy. Endocrine therapy is an effective 

treatment strategy for breast cancer and is responsible for a significant reduction in breast 

cancer mortality. However, while approximately 70% of newly diagnosed breast cancers 

express the estrogen receptor (ER), up to 50% of these do not respond to the above 

endocrine therapeutic agents 15-17. Furthermore, after a certain period of treatment with 

antiestrogens or aromatase inhibitors, breast tumors can become resistant to these agents.  
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Along with the acquired form of resistance, there is also “de novo,” or primary, 

resistance. The mechanisms of acquired AE and de novo resistances are not completely 

understood, and are likely quite complex. Tamoxifen and other AEs are thought to 

prevent cancer through their actions at the ER. These compounds also scavenge free 

radicals and block the metabolism and redox cycling of estrogen, so other mechanisms of 

action cannot be ruled out.18 Another scenario is that the ER is functional and driving 

estrogen-dependent processes with the exception of growth. This would indicate that 

other independent pathways are stimulating growth. In this case, estrogen-deprivation 

therapies would reduce expression of classically estrogen-regulated genes, but not those 

associated with cellular proliferation. This phenotype has been observed in ER-positive 

tumors treated with neoadjuvant letrozole.19, 20  

 

These findings suggest that nuclear ER genomic signaling pathways do not solely 

regulate estrogen-dependent growth of cells. Both estrogen and AEs cause the production 

of ROS.3, 9 As a known signaling molecule and second messenger, ROS has the potential 

to make dramatic changes in cell cycle progression. While there are systems in cells to 

counteract this production, the chronic exposure of cells to low to medium levels of 

oxidants can lead to a shift in the “normal” environment of the cell. In the pro-oxidant 

state of cells (i.e., high oxidative stress), the balance of thioredoxin (Trx) status is shifted 

towards the oxidized form of Trx. There are several studies showing indirect evidences in 

support of the concept that high expression of oxidized Trx may be associated with drug 

resistance in primary breast cancer.21, 22 In this review, we will discuss the role of Trx in 

AE resistance in breast cancer and recent studies in this area. First, estrogen’s and AE’s 
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actions are reviewed in brief. Then the role of AE-induced generation of oxidants and 

emerging data on the ability of AE-induced RO/NS to modify Trx-mediated redox-

sensitive signal transduction pathways are discussed. 

 

2. Mechanisms of estrogen actions in breast cancer 

In order to understand the AE actions in cells, it is important that we understand estrogen 

actions in normal breast epithelial and cancer cells. Therefore, we have briefly 

summarized here estrogen actions. It is widely recognized that estrogen promotes pre-

neoplastic and malignant growth via interaction with estrogen receptors alpha and beta 

(ERα and ERβ). This interaction then can lead to transcription either by directly binding 

to estrogen response elements, or through non-genomic pathways. The non-genomic 

action of estrogen very often includes ligand-binding to the ER at the plasma membrane, 

and leads to the activation of signaling pathways such as MAPK, protein kinases A and 

C, and calcium pathways,23 initiating a cell signaling sequence that leads to proliferation. 

Another non-classical action of the ER is its direct binding to AP-1. When the DNA 

binding domain of mouse ERα is mutated, there is an interaction with Jun, an AP-1 

coactivator.24 In MCF-7 breast cancer cells, estrogen has been demonstrated to activate 

the growth regulatory gene cyclin D1 by 2 to 3 fold. It has also been seen that estrogen 

can upregulate c-jun and c-fos in this cell line, which can combine to bind and activate 

AP-1 sites on DNA.25, 26 Other studies, however, present that estrogen creates increased 

AP-1 activity without the expected increase in c-fos and c-jun synthesis, implying that 

estrogen activates, but does not synthesize, other proteins that activate AP-1.27 Estrogen 
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activates transcription factors such as NF-κB, and CREB. Estrogen actions through ER 

have been extensively reviewed; therefore we have limited our discussion in this area. 

 

More recently, a new mechanism of estrogen action in breast cancer cells has emerged. 

Estrogen produces intracellular ROS rapidly, which can lead to cell signaling, and 

oxidants contribute to the growth of estrogen-dependent breast cancer cells.28 29 

Importantly, the ROS produced in breast cancer as a result of estrogen stimulation does 

not require estrogen receptors, as the ER-negative cell line MDA-MB 468 produces a 

similar amount of ROS as the ER-positive cell lines MCF-7, T47D, and ZR75.9 It has 

also been demonstrated that estrogen is able to stimulate growth in the non-ER-

expressing cell line HEK293. This ER-independent growth shows that other factors are 

involved in estrogen-stimulated cell growth, and further studies have implicated 

mitochondrial ROS formation.30 Free radical generation by estrogen has been 

demonstrated, as has the instigation of redox cycling in both stilbene and catechol 

estrogens. The damage that can occur due to these estrogen-induced free radicals can lead 

to DNA strand breakage, 8-hydroxylation of purine bases of DNA, and lipid 

hydroperoxide-mediated DNA modification.9, 12, 31 Redox cycling of estrogen is a delayed 

event, because estrogen has to be first metabolized to catechol estrogens to participate in 

redox reactions. In the cells of target tissues, there has to be free catechol estrogen 

available to participate in redox reactions. Hydroxylated estrogens do not cause the rapid 

production of ROS intracellularly through redox cycling, as the metabolites and the 

adducts of these hydroxylated estrogens are not seen immediately after E2 treatment, 

while the ROS are.9 
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There is evidence in support of the concept that: i) Physiologically achievable 17β-

estradiol (E2) concentration of 1 nM, which corresponds to the estrogenic menstrual 

peak, induces rapid formation of mitochondrial ROS in MCF-7 cells. We and others have 

also shown similar findings in MDA-MB-231 and other ER-negative cells, indicating that 

ER status is not relevant to this effect.32-34 ii) Overexpression of biological ROS 

scavengers (e.g., MnSOD and catalase), treatments of cells with chemical antioxidants, 

(e.g., N-acetylcysteine and ebselen) or silencing of mitochondrial biogenesis (source of 

ROS), inhibits estrogen-induced colony formation in MCF-7 cells. This suggests that 

estrogen-induced mitochondrial ROS promote in vitro tumor formation in breast cancer 

cells. iii) The expression of early cell cycle genes (such as cyclin D1, D3, E1, E2, and 

B2) as well as PCNA, PRC1, and bcl2 that are normally induced by estrogen, were 

inhibited by the addition of mitochondrial blockers. This is important because neither 

antioxidants nor mitochondrial blockers have presented with ER binding. As such, it 

suggests that the transition from G1 to S in estrogen-exposed cells is modulated by 

mitochondrial ROS.35 Figure 1-LR shows the different pathways of estrogen-mediated 

cell growth. 

 

Recently estrogens have been implicated as antioxidants through scavenging lipid 

peroxyl radicals and thus interrupting lipid peroxidation. They also scavenge hydroxyl 

radicals at higher levels, and can inhibit superoxide radical generation.36 Estrogen inhibits 

the apoptotic oxidative effects of TNF- α (ROS generation, lipid peroxidation, 

antioxidant enzyme consumption and disruption of mitochondrial membrane potential).37 

Estrogens are phenolic chemicals. In the presence of an oxidant-generating environment, 
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the phenolic hydroxyl group present at the C3 position of the A ring of estrogens or 

catechol estrogens can readily accept electrons, and can become oxidized by either 

accepting these electrons or losing a proton. This can explain the anti-oxidative function 

of estrogens.31, 38, 39 There are structural similarities between estrogens and Vitamin E in 

terms of an aromatic ring. A hydroxyl group in both compounds donate a hydrogen atom 

to reduce free radicals, which allows estrogens and vitamin E to act in an antioxidant way 

in the presence of an oxidative environment. Additionally, it has been suggested that 

estrogen exerts its antioxidative actions through suppressing inflammatory cytokines or 

modulating antioxidant enzyme status.40, 41 In support, there is a link between cell 

viability that is enhanced by the estrogen receptor and thioredoxin expression. This was 

shown through inhibiting thioredoxin reductase, and noting a reduction in 

cytoprotection.42 This was also explored in bovine aortic endothelial cells, and found that 

17β-estradiol increased the levels of thioredoxin, glutaredoxin, and thioredoxin reductase. 

Tamoxifen treatment inhibited the induction of these three proteins.43  

 

In summary, these studies suggest that estrogen-generated oxidants, together with an 

estrogen-driven increase in epithelial cell proliferation, may initiate and promote 

neoplastic lesions in estrogen-sensitive tissues. As such, the importance of the ROS 

generated by estrogen cannot be ignored when exploring antiestrogen resistance. 

 

3. Actions of endocrine therapeutic agents 

The actions of endocrine therapy are primarily based on either lowering ER function or 

reducing the levels of circulating free estrogens. Molecular mechanisms of actions of 
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individual endocrine therapeutic agents have been extensively reviewed; therefore we 

have limited our discussion in this area here. Tamoxifen is one of the effective endocrine 

therapies for breast cancer that promotes a conformational change in the estrogen 

receptors that effectively blocks coactivator binding, and restricts AF-2 (a protein found 

in early G1 phase cells)-induced transcription. However, it also acts as an agonist on AF-

1-dependent genes.26 As AF-1 and AF-2 are tissue specific,44 this could explain the 

tissue-dependent dual antagonistic/agonistic roles of tamoxifen.26 While tamoxifen is a 

breast cancer antagonist, it also has agonistic qualities in the uterus and bone. It is 

through this duality that tamoxifen is called a selective estrogen receptor modulator 

(SERM).45 Tamoxifen’s role as a non-steroidal estrogen antagonist allows it to inhibit 

proliferation and induce apoptosis of breast cancer cells.46 This was demonstrated with 

the use of ER-positive MCF-7 cells and ER-negative MDA MB-231 cells in which 

tamoxifen (5-7uM) induced rapid (within 60 minutes) breast cancer cell death.3 It has 

been noted that tamoxifen will act as an estrogen agonist in the non-genomic, membrane-

bound ER pathways, where ER activates kinases such as Src, PI3K, MAPK, EGFR 

(epidermal growth factor receptor) and ErbB2. The levels of these kinases play a role in 

this, however. Thus if cancer cells express low levels of EGFR and ErbB2, for example, 

the membrane ER function, and thus tamoxifen’s agonistic effects, on these tyrosine 

kinase receptors may be slight.26  

 

Tamoxifen has also been shown to be a potent antioxidant in certain cells. While its 

actions in breast cancer cells lead to cell death, it offers neuroprotection after middle 

cerebral artery occlusion. Tamoxifen effects in this disease are thought to be through 
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agonistic actions on ER and antioxidant actions. Just as estrogen can be an antioxidant to 

low-density lipoproteins (LDLs), tamoxifen and raloxifene are also able to decrease the 

oxidation of LDLs.18 A similar antioxidant effect on LDLs is seen in human umbilical 

vein endothelial cells.47 Tamoxifen also has presented with antioxidant qualities in 

myocardial ischemia-reperfusion (I/R) injury. In rats with induced I/R injury there was a 

significant decrease in glutathione and glutathione peroxidase as compared to rats that 

also had tamoxifen treatment.48 With focal cerebral ischemia, the antioxidant effects of 

tamoxifen may be due to an increase in manganese superoxide dismutase (MnSOD)  

levels and a subsequent decrease in the activation of kinases and caspase-3, which are 

downstream of superoxide production.49 In the uterus, tamoxifen increases superoxide 

dismutase (SOD) activity, and decrease NADPH oxidase (a superoxide generator) 

activity.50 Tamoxifen is derived from the estrogen-mimetic hydrocarbon stilbene, and the 

stilbene structure can act as a substitute for estradiol. In the presence of an oxidant 

generating environment, tamoxifen can readily react quantitatively with hydroxyl free 

radicals, and this can explain the anti-oxidative function of tamoxifen.51  

 

When tamoxifen is present alone in cells it can lead to the formation of ROS in breast 

cancer cells. While tamoxifen induces breast cancer cell death, it also results in an 

increase of ROS production by 1.7 to 2.0 fold. Tamoxifen has rapid non-genomic effects 

such as releasing cytochrome c, decreasing mitochondrial membrane potential (Δψm), 

and increasing ROS.52 Tamoxifen also is known to inhibit the mitochondrial electron 

transport chain.53 Studies have shown that tamoxifen decreases the Δψm and rapidly 

releases mitochondrial cytochrome c in p53-negative breast cancers.3, 54 This occurs 
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through the stimulation of mitochondrial nitric oxide synthase and the ensuing decrease 

in mitochondrial respiration and release of cytochrome c.55 This release is accompanied 

by ROS production, leading to oxidative stress in the cell.28, 29, 56 This oxidative stress 

may then lead to apoptosis, as it has been suggested that this disruption of the function of 

the mitochondria may play an important role in tamoxifen’s fast death response.52 

However when inhibitors of complexes I, II, or III are added to HepG2 cells, the levels of 

ROS and apoptosis that are typically induced by tamoxifen are not altered significantly. 

This is also true when the mitochondrial uncoupler carbonylcyanide-p-

(triflouromethyoxy)phenylhydrazone (FCCP) is used.57 A novel use for tamoxifen 

utilizing its ability to produce ROS was seen when tamoxifen was used as a carrier for 

iron (ferrocene). When tamoxifen delivered the metal to tumor cells, the iron interacted 

with the hydrogen peroxide already present, and resulted in large amounts of hydroxyl 

ions and hydroxyl radicals, which then induced apoptosis in the cell. In this way the high 

amount of hydrogen peroxide in tumor cells was used as a prodrug for treatment.58  

 

Another SERM that works in a similar way to tamoxifen is raloxifene. Raloxifene also 

binds to the estrogen receptor, and its affinity for it is similar to that of estrogen. While 

the bond with the ER creates a change in the special configuration of the ER that 

prohibits both activation of and binding of estrogen to the ER, it also contains a 

peculiarity in its binding that allows it to block AF-2 interactions, which some say is the 

key to its ability to be an estrogen antagonist in both breast and uterine tissues. This 

interaction of raloxifene and the ER are quite different in bone and non-reproductive 

tissues where it acts as an estrogen agonist through the use of helper/adapter proteins.59 
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A more “pure” estrogen antagonist is ICI 182780, or fulvestrant. Fulvestrant acts in three 

ways on the ER. First, in binding to the ER, it impairs the ability of the ER to dimerize as 

well as its ability to move into the nucleus. It also disables the ER activation functions of 

AF1 and AF2, which recruit coactivators and other necessary proteins to the 

transcriptional complex, both of which are necessary for estrogen agonistic activity. And 

lastly, when fulvestrant binds to the ER, the complex becomes unstable, which leads to 

an accelerated degradation of the ER protein, though not of ER mRNA.60  

 

The prototype SERM (tamoxifen) and its derivatives (toremifene, droloxifene, and, 

idoxifene), the second-generation SERM raloxifene, the third-generation SERM 

arzoxifene, and the fourth-generation SERM alcolbifene undergo metabolic activation 

and their metabolites are more capable of participating in redox reactions. 61, 62 

 

The ER-mediated actions were identified initially as a pathway blocked in AE-treated 

cells, and inhibition of this pathway causes permanent growth arrest/cell death. Reactive 

oxygen species, a byproduct of oxidative processes, can induce an irreversible growth 

arrest similar to SERM antiestrogens. SERMs are capable of producing ROS through 

their metabolic activation. These findings suggest that SERMs may mediate growth arrest 

by a mechanism involving ROS accumulation.61, 62 

  

Third-generation aromatase inhibitors (AIs), such as anastrozole, letrozole, and 

exemestane that have a non-steroidal structure, also play a role in breast cancer treatment. 

As their name implies, AIs prevent conversion of androgen to estrogen by inhibiting 
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aromatase enzyme activity in the cells. Thus AIs inhibit the mitogenic response in the 

breast tissue by inhibiting both estrone (E1) and estradiol (E2) production.63 While first- 

and second-generation AIs have been found to be quite effective, the side effects have 

caused the use of them to be controversial. Third-generation AIs, on the other hand, 

appear to have complete specificity without adrenal axis affects. AIs are used on women 

with ER/PR expression, but who do not have functional ovaries or who are pre-

menopausal. The amount AIs lower estrogen expression in those who do not fit this 

description is not enough to have an effect on tumor growth.64 

  

In summary, antiestrogen-mediated oxidative stress has received attention as an ER-

independent mechanism. Like stilbene estrogen, tamoxifen and its metabolites produce 

ROS, which can lead to oxidative damages to macromolecules, such as lipids and 

DNA.65-68 Like tamoxifen, other SERMs can also participate as substrates in metabolic 

redox reactions, which in turn can also produce oxidative stress.61 This increase in redox 

reactions could lead to a more oxidized state of the breast cancer cell, leading to cellular 

adaptation to ROS signaling, and a new cellular state that allows cell cycle progression in 

the presence of tamoxifen and possibly other SERMs. 

 

4. Overview of existing paradigms of antiestrogen resistance 

A major problem with the use of antiestrogens is the prevalence of resistance, either at 

the outset of treatment or after continued use. De novo, or primary, resistance can occur 

when tumors do not express estrogen or progesterone receptors.69 70, 71 As most 

estrogenic actions are considered to be mediated through the ER, lack of this protein 
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causes an inherent resistance to endocrine therapies,72 but this does not explain the 40-

50% of people who do not respond to treatment despite steroid hormone receptor 

expression.73 A more recent discovery in de novo resistance is inactive alleles of 

cytochrome P450 2D6. This allelic inactivity keeps patients from being able to convert 

tamoxifen to its active metabolite, endoxifen, leading to a decreased response to 

tamoxifen. Patients who initially respond to antiestrogen treatment often become resistant 

to the drug within 2 to 5 years.26 The decreasing sensitivity of ER-positive breast cancer 

cells to antiestrogens with time is caused by several factors, and different mechanisms 

have been proposed to explain antiestrogen resistance. Since mechanisms of AE 

resistance have been widely reviewed,72 we have briefly summarized them here.  

 

Cross talk between ER and growth factor signaling has emerged as one of the important 

mechanisms in endocrine resistance. Since ERα expression plays a key role in predicting 

the response a patient will have to hormonal therapy such as antiestrogens,69 it is 

considered that a loss of ERα expression would be responsible for an acquired resistance 

to antiestrogens. Most data is related to tamoxifen treatment,69 and it shows that only 

approximately 17-28% of patients with acquired resistance to tamoxifen have a loss of 

ERα expression.26 There is also the possibility of ER mutations causing loss of 

functionality, or that the ER continues to drive all estrogenic actions except growth.72 But 

again, fewer than 1% of ER positive tumors have been found to have ERα mutations.74 

Another possibility lies in a truncated version of ERα, ERα36. When ERα36 is in the 

presence of the full ERα, there is decreased responsiveness. Posttranslational 

modification of ERα regulates its function as well as its interactions with other proteins 
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such as ERα co-regulators. Co-regulators include AP-1 and NF-κB, and phosphorylation 

and overexpression of these co-regulators can cause an increase in ERα-mediated 

transcription, which has been associated with endocrine resistance.74 

 

Mechanisms different from the ER have been proposed in antiestrogen resistance, with 

ErbB2 overexpression being the best characterized. Breast cancers that are resistant to 

tamoxifen have shown an increase in the expression of receptor tyrosine kinase (RTK) 

members, such as epidermal growth factor receptor pathway members like ErbB1 and 

ErbB2.75 76 When ErbB1 and ErbB2 (also known as HER-2) are overexpressed, they can 

reduce the levels of the cyclin-dependent kinase inhibitor p27 and inhibit its function, and 

thus keep tamoxifen from activating this molecule to keep the cell in G1 arrest.76 Not 

only does Her2 overexpression contribute to resistance on its own, but Her2 dimerization 

with other members of the ErbB receptor family can also lead to antiestrogen resistance.77 

Overexpression of other tyrosine kinases, such as Src kinase family members, is seen in 

breast cancer, and has been implicated in resistance through its substrate BCAR1.74 

 

Overexpression of cell cycle proteins such as Myc and cyclin D1 is associated with 

tamoxifen resistance, as is a decrease in expression of the NF-κB-binding interferon-

responsive putative tumor suppressor, IRF1.74 Response to tamoxifen is also correlated 

with the expression of the MAPK inhibitor, MAPK phosphatase 3 (MKP3), with resistant 

cells expressing increased levels of MKP3.78 
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Current hypotheses in tamoxifen resistance do not include the effect of a chronic 

exposure to ROS that is created by tamoxifen. Certainly tamoxifen is not known to    

work through a ROS-mediated pathway, but it does increase ROS. As such, the long- 

term exposure of breast cancer cells to tamoxifen- (and estrogen-) mediated ROS 

production may play a role in tamoxifen resistance. In the following section we explore 

this novel hypothesis.  

 

5. Redox signaling and antiestrogen resistance 

Before we discuss the role of redox signaling in antiestrogen resistance, we would like to 

briefly introduce the basic conditions that produce changes in the redox state of cells, 

generation of ROS and concepts of redox signaling.  

 

Redox state of cells: Historically, the term redox state has been used to describe the ratio 

of the interconvertible oxidized and reduced forms of a specific redox couple. The three 

major redox couples in cells are NADP+/NADPH, GSSG/2GSH, and TrxSS/Trx(SH)2. 

These redox couples are not isolated systems; rather they are thermodynamically 

connected to each other in the maintenance of redox equilibrium of cells. For example, 

both the Trx and GSH systems use NADPH as a source of reducing equivalents,79 and a 

decrease in thioredoxin reductase affects glutathione reductase activity in glucocorticoid-

resistant Alopecia areata.80 Redox couples in cells are responsive to electron flow, that is, 

changes in the reducing/oxidizing environment. When the products of the reducing 

capacity and the reduction potential of a linked set of redox couples in cells or tissue are 

added, it is considered the redox environment.79 
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As is true with the control of pH within the body, the redox environment is well governed 

through what is known as redox regulation. In this process, redox homeostasis is 

disturbed by increases in the formation of ROS or decreases in the actions of antioxidant 

systems. This imbalance towards oxidation allows for redox signaling to occur. When 

pathological conditions are present, however, these oxidizing conditions can accumulate 

and have the potential to cause changes in cell signaling, which is commonly seen in 

disease states.81 

 

When a cell loses its capacity to reduce redox couples,82 there is a higher production of 

ROS or reactive nitrogen species, which result in a production or reaction from the 

antioxidants and reducers within the cells. This is explained below. 

 

Reactive oxygen species (ROS) is a term extended to a range of molecules, including free 

radicals (which contain one or more unpaired electrons) and include superoxide (O2
·-), 

hydrogen peroxide (H2O2), hydroxyl radical (OH), and peroxynitrite (ONOO-).83 Several 

enzymatic systems and organelles create ROS, such as NADPH oxidase complex, 

cytochrome 450, nitric oxide synthases, xanthine oxidase, peroxisomes, endoplasmic 

reticulum and mitochondria.84, 85 The mitochondria, however, are the largest source of 

ROS in epithelial cells,29 and most ROS in endothelial cells are developed in the 

mitochondria through the electron transport chain.83 ROS are created when oxygen (O2) 

is put through an oxidoreduction conversion in the mitochondrial electron transport chain. 

There are four complexes relating to this chain through which electrons travel; the 

electrons are accepted by complex I (NADH-ubiquinone oxidoreductase) from NADH. 
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The electrons then move to complex II, succinate dehydrogenase. At this complex, the 

succinate is oxidized to fumarate, and the electrons continue to complex III, ubiquinol-

cytochrome c oxidoreductase, and then to complex IV, cytochrome c oxidase. When they 

finish the travel through all four complexes, they reduce molecular oxygen to water. 

Throughout this process, however, a small amount (1-4%) of the oxygen is not fully 

reduced and results in O2
·-. This release of O2

·- from the transport process occurs mainly 

at complexes I and III, with complex I-generated O2
·- being released only into the 

mitochondrial matrix, and complex III- O2
·- being released into both sides of the inner 

membrane of the mitochondria.86  

 

The enzymes that reduce proteins or destroy ROS are as important players as the ROS 

themselves.87 When there is a production of ROS within the cells, there is the reaction of 

the production of antioxidants. This is called redox (reduction and oxidation) 

regulation.81 There are several antioxidant systems, both enzymatic and non-enzymatic, 

in place to counteract redox imbalance. Enzymatic systems include superoxide dismutase 

(SOD), catalase, peroxiredoxins and glutathione peroxidase, while non-enzymatic 

systems include glutathione, thioredoxin, and vitamins C and E.88 Superoxide does not 

easily diffuse across the membrane of the mitochondria. While mechanisms do exist for 

this to occur (voltage dependent anion channels), SOD can reduce the superoxide to 

hydrogen peroxide (H2O2), which does easily cross the membrane.81, 86, 89 SOD has three 

isoforms; copper-zinc (CuZnSOD) in the cytoplasm, nucleus, and mitochondrial 

intermembrane space, a second form of CuZnSOD in the extracellular space, and 

magnesium SOD (MnSOD) in the mitochondrial mix. While they serve similar functions, 
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MnSOD appears to be highly important physiologically, for it’s genetic removal is 

embryonically lethal.86 Once SOD has changed the O2
·- to H2O2, catalase and glutathione 

peroxidase within the cell can then reduce the H2O2 to water, or, in the presence of 

transition metals, to the hydroxyl radical (OH-).86 81, 89 Figure 2-LR summarizes the major 

mammalian ROS and antioxidant systems. For a more in depth discussion on these 

processes see88,90,91. 

 

Reactive oxygen species as signaling molecules: ROS are known signaling molecules, 

meaning there is a stimulus and a response to the ROS from a protein of either activation 

or inhibition. This response is amplified through the activation or inhibition of effector 

molecules further downstream in the pathway, and there is reversibility so that the 

pathway can be responsive to more than just the one stimulus. While not all ROS 

modifications are regulatory in function, glutathione and thioredoxin, as well as enzymes 

that are associated with each, have been found to reduce the thiol oxidation that occurs 

through ROS. It has been compared to the regulatory effect of phosphorylation and de-

phosphorylation of proteins.92 

 

ROS can instigate both apoptosis and cell proliferation, depending on the dose.25, 93 For 

example, in HT-29 colon cancer cells, toxic levels of H2O2 (1,000 uM) lead to apoptosis, 

while lower doses, (10 uM) induce cell proliferation.94 And when MCF-7 clones 

overexpress IL-1β, which leads to a high IL-1β output and thus a high ROS generation, 

cells undergo apoptosis. When, however, a moderate level of IL-1β is secreted in these 

clones, it leads to clonal expansion.9 Mitochondrial ROS have been implicated in cell 
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signaling in several pathways, including integrins, platelet-derived growth factor, 

epidermal growth factor, and nerve growth factor.95 When the cells undergo stress such 

as chronic inflammation (often from infections) and chronic chemical insults (such as 

tobacco smoke), there can be a transformation of the cell due to the ROS created by these 

irritants. This transformation often causes a lack of cell cycle regulation at cell cycle 

checkpoints. As such, the cells will overexpress growth factors that are oncogenic, 

leading to cell proliferation.96 In a number of cell lines, hormones, cytokines, 

neurotransmitters and growth factors can instigate cell signaling97 through inducing a 

low-concentration oxidative burst that may lead to signal initiation.98 For example, in 

endothelial cells, TNF-α, IL-1, bradykinin and thrombin can generate superoxide, and 

TGF-β1 and bradykinin can generate H2O2. These ROS are created to mediate mitogenic 

signaling, to regulate gene expression, to induce mRNA, and to move the cell cycle 

progression from G0/G1 to S phase.95 ROS produced by the estrogen-induced cytokine 

Interleukin-1β can lead to cell proliferation through AP-1 and NF-κB binding sites and 

through the MAPK/AP-1 and ROS/NF-κB pathways.99 Estradiol can lead to an 

overexpression of IL-1β in MCF-7 cells, which then leads to cell proliferation. When 

these cells are exposed to antioxidants and mitochondrial blockers, both a decrease in 

cyclin D1 expression and a suppression of cell growth can be seen.100 In a study of MCF-

7 cells treated with 17β-estradiol and insulin-like growth factor, it was shown that the 

combination of these elements increased peroxide production.101 The role of 

mitochondrial ROS production in regards to signal transduction can be seen in HeLa cells 

that lack mitochondrial DNA, which show a reduced ROS level, as well as a decrease of 
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cell cycle progression at all phases, and a decrease in certain cell-cycle regulators such as 

p21 and p27. This decrease is attributed to the lack of ROS production.102  

 

The apoptotic effect of cytotoxic levels of ROS is one way in which mitochondria play a 

role in chemotherapy-induced apoptosis.96 Camptothecin, mechlorethamine, and 

doxorubicin all induce apoptosis in breast cancer cells.103 Other ROS-utilizing 

chemotherapies include epirubicin, topotecan, and cisplatin.104 Dicumarol, an 

anticoagulant that creates oxidative stress and induces cytotoxicity in human pancreatic 

cancer cells, is thought to work through the electron transport chain in the     

mitochondria to create superoxide and hydrogen peroxide. This action of increasing 

cytotoxicity in these cells is decreased in pancreatic cancer cells that do not express 

functional mitochondria.105  

  

Redox signaling: Redox changes in the cell are critical for initiating various signaling 

pathways [see above]. Three of the major cell signaling pathways involve: (i) protein 

phosphorylation, (ii) protein acetylation or (iii) protein thiol status change that occurs 

because of alterations in cellular redox environment. Change in the thiol status of the cell 

can be triggered by both oxidants and reductants. We now know that signal transduction, 

DNA and RNA synthesis, protein synthesis, enzyme activation, cell cycle regulation, 

ligand binding, DNA binding, and nuclear translocation are altered by changes in the 

cellular redox environment. Most eukaryotic transcription factors such as AP-1, NF-κB, 

and Sp-1106 and glucocorticoid107 and estrogen receptors108 are affected by the redox 

environment. They must be in their reduced form to be active, and their translocation to 
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the nucleus is often redox-dependent.79, 106 We discuss below the molecular mechanisms 

of redox signaling in more detail.  

 

As a known signaling molecule and second messenger, ROS has the potential to make 

dramatic changes in cell cycle progression. As mentioned earlier, high levels of ROS can 

lead to apoptosis while low levels can lead to cell cycle progression. Yet another action 

of ROS includes cell adaptation to chronic exposure of low to moderate levels. 

At moderate levels, ROS can use reversible protein oxidation to regulate signaling 

pathways. The common foci of this are protein kinases and transcription factors. This 

regulation can lead to an adaptation of the cell to changes in its environment.109 For 

example, when renal cells are exposed to oxalate, the initial reaction is cell death, but 

after 48-72 hours they can adapt to the exposure and begin to grow.110 In muscles, it has 

been suggested that exercise-induced ROS, as well as muscle-derived cytokines, play a 

role in muscle adaptation to exercise.111 The treatment of cisplatin on HepG cells 

increases ROS tremendously, with levels returning to normal after 120 hours.  At the 

same time, the mitochondria membrane potential changes, but then also returns to normal 

by 120 hours despite continued exposure. It is suggested that this occurs due to the cells 

adapting to the experience of cisplatin exposure.112 

 

This adaptation to ROS could play a role in breast cancer resistance to tamoxifen. As 

tamoxifen is known to increase levels of ROS and this increase is not at a high level that 

leads to apoptosis, there appears to be a low to medium exposure of cells to tamoxifen-

related ROS. The ROS produced may alter cell signaling, and the cell may begin to adapt 
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to this new signaling function and learn to grow in the presence of tamoxifen. Figure 3-

LR summarizes these ROS actions in the cell. In the next sections we discuss possible 

protein adaptations that can occur from this constant exposure to ROS via tamoxifen. 

  

Redox regulation of protein tyrosine phosphatases/kinases: Along with the    

alteration of transcription factors and certain receptors, the modification of protein 

phosphatases and kinases by ROS must also be considered.113 Cell proliferation, 

differentiation, activation, homeostasis and apoptosis are all furthered by tyrosine 

phosphorylation, as well as threonine and serine phosphorylation (though these play a 

lesser role). This phosphorylation is regulated by protein tyrosine kinases and protein 

tyrosine phosphatases.114 

 

Protein-tyrosine phosphatases (PTPs) are a part of the family of cysteine-based 

phosphatases. ROS plays its role most especially in PTPs, which have a signature motif 

made up of a cysteine, five X (any) amino acids, and Arginine (Cys-Xaa(5)-Arg). This 

motif allows for redox regulation of proteins when the cysteine residues react with 

ROS.115 The PTP catalytic cysteine, which remains as an etiolate anion (Cys-S-) under 

reducing conditions, only requires mild oxidative conditions to be oxidized to sulfenic 

acid (Cys-SOH). Once in this oxidized form, there is a continued vulnerability to ROS, 

and it can become terminally oxidized as sulfinic (Cys-SO2) and sulfonic (Cys-SO3) 

acids. This can be averted by interactions with a protein structure such as a thiol. This 

interaction can protect the cell through creating an inter- or intra-molecular disulfide 

bond that does not allow any other reactions to occur at the catalytic cysteine.87, 115-117  



 

26 

The counter proteins to PTPs are protein tyrosine kinases (PTKs). An important role of 

PTPs and PTKs is their ability to turn on and off the action of the protein on which they 

are exerting their influence.117 The PTP’s common active motif exists as a thiolate,118 

which allows PTPs to perform their dephosphorylation activity on phosphoproteins or 

phospholipids. Oxidation of PTPs can be reversed by thiol compounds118 once the 

catalytic cysteine forms a disulfide bond with an N-terminal cysteine. This disulfide bond 

can originate from same site cysteines, as is the case with low molecular weight PTPs,119 

from “distant” cysteines such as with PTEN and cdc25,120 or from a bond between the 

PTP and a thiol, such as with PTP1B.121 The important step of the disulfide bond blocks 

the oxidation of the thiolate to Cys-SOH by connection to another thiolate. Oxidation and 

phosphorylation have the potential of influencing each other in the signaling of PTPs and 

PTKs. It is suggested that one may actually be a preparatory modification for the other. 

For example, PTP phosphorylation can increase the catalytic activity of the protein. This, 

in turn, opens the protein to oxidation.118  

 

The reversibility of PTP oxidation is critical to cell signaling response. It has been 

suggested that at physiologic levels, one of the roles of ROS is to oxidize PTPs to 

encourage redox signaling.122 Structural changes to PTPs, as well as serine/threonine and 

phospholipid phosphatases, are induced by ROS, and the altered protein conformation 

leads to signaling cascade upregulation. Included in these cascades are growth factor 

kinase-dependent, src/Abl kinase-dependent, MAPK-dependent, and PI3 kinase-

dependent pathways, leading to activation of AP-1, NF-κB, HIF-1, and other redox-

regulated transcription factors.88 
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Redox regulation of transcription factors: Certain transcription factors such as AP-1 

and NF-κB are known to be redox regulated.106 AP-1 is a heterodimeric transcription 

factor that has been found to regulate cell proliferation, death, survival, and 

differentiation,123 depending on several factors. These factors include the balance of 

target genes that are either pro- or anti-apoptotic, the type of stimulus that induced the 

AP-1, and the persistence of that stimulus.88 The components of AP-1, c-Jun and c-Fos, 

can be induced by reactive radicals, and can positively regulate proliferation.88 

  

Because of their regulatory actions on transcription factors, most especially MAP-

kinase/AP-1 and NF-κB, ROS are able to alter cell proliferation, differentiation, and 

apoptosis.81, 124, 125 Since certain cell cycle genes contain response elements for these 

transcription factors, ROS can activate these genes and lead to cell proliferation.126 ROS 

actions regarding these transcription factors can be different depending on the cell line, 

however. For example, H2O2 is known to activate NF-κB,127 and in cardiovascular 

vessels, ROS activates AP-1 and NF-κB.128 In normal melanocytes, oxidative stress can 

be “suppressed” without the recruitment of NF-κB and AP-1. In melanoma cells, on the 

other hand, redox changes easily recruit NF-κB and AP-1. In these cells, NF-κB is 

correlated to H2O2 and not superoxide, and AP-1 to superoxide anion and not H2O2.
129 

AP-1 can, however, be induced by H2O2 in other cells, mainly through the JNK and p38 

MAPK signaling pathways. This can be done through either ASK1 (apoptosis signal-

regulating kinase 1, which is released on thioredoxin oxidation as discussed below) or 

through the inhibition of MAPK phosphatases (which in turn leads to increased kinase 

activity).88 In tamoxifen resistant breast cancer, oxidative stress is implicated in an 
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increased AP-1 DNA binding with c-JUN NH2 terminal kinase activity in tamoxifen 

resistant breast cancer.68, 130, 131  

 

Reactive oxygen species are significant outcomes of estrogen and tamoxifen actions in 

cells. Tamoxifen resistance has an association with oxidative stress in breast cancer cells, 

and this leads to an increase in c-Jun and phosphorylated JNK levels, as well as an 

increase in AP-1 activity. A significant decrease in glutathione levels has been shown in 

tamoxifen resistant MCF-7 xenograft tumors, though there is an increase in SOD and 

glutathione S-transferase levels.68 And when vitamin E is added to tamoxifen-treated 

breast cancer cells, cell proliferation and ERK phosphorylation, which are normally 

decreased with tamoxifen treatment, are restored.132 It is with this in mind that we now 

discuss the thioredoxin system.  

 

Thioredoxin system and redox regulation: For this review, our focus is not on the 

mechanisms of antiestrogen treatment, but rather the resistance that occurs with 

treatment. To explore how redox regulation may play a role in antiestrogen resistance, we 

will discuss the possible involvement of thioredoxin and the thioredoxin family. In the 

following section we discuss the role of ROS in Trx oxidation, and then a potential role 

in tamoxifen resistance.  

 

Thioredoxin (Trx) is a 12 KD disulphide reducing enzyme that is excreted by a variety of 

cells.133, 134 The importance of thioredoxin can be seen with its role within the DNA-

binding sites of several transcription factors, where it reduces cysteine moieties and thus 
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plays a role in gene expression.135 There are five cysteines in Trx (32, 35, 62, 69, and 

73),136 two of which (32 and 35) are in the highly conserved domain of redox 

regulation137 with the sequence Trp-Cys-Gly-Pro-Cys.106 There are three forms of Trx; 

Trx1 (herein called Trx) that is cytosolic, the mitochondrial form (Trx2), and a third 

(SpTrx) that is found in spermatazoa.138 The cytosolic mammalian Trx, lack of which is 

embryonically lethal, has numerous functions in the defense against oxidative stress, 

control of growth and apoptosis. It also has co-cytokine and chemokine activities.139 

Thioredoxin is secreted in times of oxidative stress and inflammation in both normal and 

neoplastic cells.139 It has been suggested that Trx2 may be protective to cells during such 

exogenous insults as radiation and certain anticancer drugs.140 It has also been suggested 

that Trx2 and peroxiredoxins (Trx peroxidases) regulate the release of cytochrome c.  

 

As discussed above, an important aspect of the redox state is the role of cysteine residues 

and thiol chemistry.92 ROS is particularly drawn to cysteine and methionine residues,88 

and when these residues are oxidized, they are reduced by thioredoxin and 

glutathione/glutaredoxin-dependent reactions.139 Thioredoxin and glutathione are the 

major factors in maintaining reduced proteins,81, 139 and these reducing agents are found, 

in normal cells, in their reduced form. When they perform their reduction actions on 

oxidized proteins, they themselves are oxidized. They are then returned to their reduced 

forms through the use of thioredoxin reductase and glutathione reductase, respectively. 

Cysteine residues have been found to be specific targets for ROS when in the thiolate (-S) 

form, making them susceptible to ROS modification. ROS is drawn to reactive cysteine 

residues in target proteins. When the cysteine residue is in the thiol form (-SH) it is not 
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highly reactive and requires some catalyst to encourage reaction with a hydroperoxide. 

When the cysteine residue is in the thiolate form, however, it can react easily with 

ROS.141 Thiol chemistry has been well reviewed, and thus is only discussed in the context 

of this paper. For an extensive review, see Forman et al.141 

 

Trx is ubiquitous and has a variety of functions, including gene regulation (such as with 

NF-κB and p53), regenerating antioxidant enzymes, and catalyzing antioxidant reactions. 

Trx also can indirectly affect MAPKs and phosphoprotein phosphatases. When in the 

cytoplasm, Trx functions more as a reducing agent and an antioxidant, whereas in the 

nucleus it is a transcription factor regulator.142 In breast carcinomas, immunoreactivity of 

Trx in the nucleus is related to p53 positivity and to proliferation, as well as to an inverse 

association with estrogen and progesterone receptor status.143  

 

Trx is induced by stressors, including mitogens and H2O2. In stromal cells, both Trx 

mRNA and protein are increased with 17β-estradiol treatment. This effect is suppressed 

when tamoxifen treatment is given. It is also suggested that Trx might act with EGF, 

another secretion of stromal cells upon E2 treatment, as a co-mitogen.144 Intracellular 

levels of Trx increase when human skin fibroblasts have been UVA-irradiated, as have, 

in a time-dependent manner, Trx mRNA. This irradiation may lead to the translocation of 

Trx from the cytosol to the nucleus, and to an increase in thioredoxin reductase.145 In 

HIV patients, it has been seen that the loss of CD4+ T-cells by apoptosis is preceded by 

depletion of, among other redox molecules, glutathione and thioredoxin. An increase in 

ROS and a change in the Δψm are also seen before the T-cell loss.146  



 

31 

Thioredoxin has been linked to cancer in a variety of ways, and it is associated with 

several effects, such as decreased survival and aggressive tumor growth. Cancer cells can 

secrete Trx, and there have been reports of high levels of Trx in certain cancers, namely 

cervical, hepatoma, gastric, lung, and colorectal. In human leukemia cells and solid tumor 

lines, growth can be stimulated by Trx.81 

 

The redox state of Trx is important to its function, and as such, the role of Trx reductase 

(TrxR) is key. In both Trx and TrxR there are cysteine molecules that are key to redox 

regulation.133, 134 TrxRs are NADPH-dependent, and they catalyze disulfide reduction at 

thioredoxin active sites. In turn, reduced thioredoxins catalyze the movement of active 

site dithiols to a disulfide state. This process has given the thioredoxin family a crucial 

role in cell-growth and apoptosis, as it is through this process they can regulate enzymes 

such as ribonucleotide reductase, peroxiredoxins and transcription factors.147  

 

When exposed to oxidants or nitrosothiols, Trx quickly translocates to the nucleus,148 and 

acts in the control of transcription factors.149 A growing number of transcription factors, 

including NF-κB or Ref-1-dependent AP-1, are showing a need for thioredoxin reduction 

for DNA binding.139, 150 123 When Trx is overexpressed, NF-κB is downregulated and AP-

1 is upregulated and enhanced. Interestingly, while thioredoxin-induced NF-κBNF-κB 

inhibition is found in the cytoplasm, Trx can increase NF-κB binding to nuclear DNA.  

 

The TXNRD1 gene encodes for thioredoxin reductase 1, and transcription involves 

alternate splicing, and thus leads to several isoforms.151 The three TrxR enzymes that 
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have been identified in mammals are TrxR1, TrxR2, and TGR. TGR is expressed mostly 

in the testis, and TrxR2 is a mitochondrial form. TrxR1 (herein called TrxR) is the 

cytosolic enzyme, and, like Trx, is widely expressed.149, 152 TrxR belongs to the 

homodimeric pyridine nucleotide disulfide oxidoreductase class.152 It is a homodimeric 

selenocysteine-containing protein, and thus is dependent on selenium for its synthesis.149 

82 Selenium (selenite, 1uM) increases the mRNA levels of TrxR by two- to five-fold.149 

TrxR has the capability of metabolizing certain selenium compounds, and it is thought 

that through this process, TrxR can reduce the active site of plasma glutathione 

peroxidase, another selenoprotein.153 TrxR has been found to be elevated in several 

cancerous cell lines133, 149 including pancreatic, cervical, hepatocellular, and certain lung 

cancers,21 and repressed in cells that overexpress the p53 protein. Several studies have 

looked at the rise of TrxR in cancer cells.149  

 

Thioredoxin and thioredoxin reductase work together with NADPH to form a system 

that, through redox regulation, control processes such as DNA synthesis, transcriptional 

regulation, and cell growth. They also confer resistance to cytotoxic agents that produce 

oxidative stress and lead to apoptosis. While thioredoxin is a reducer of proteins that have 

oxidized cysteine residues, it also is susceptible to oxidation as it contains one cysteine in 

the thiolate form. The reaction of thioredoxin is described as follows: 

 RS- +H2O2→RSO- +H2O+H+ 

As is true with other cysteine-based proteins, thioredoxin can create a disulfide bond, 

either intramolecularly or with peroxiredoxin. This form of the protein then is not open 



 

33 

for interaction with other thiols or thiolates, and requires thioredoxin reductase to reduce 

its disulfide status. To do this, thioredoxin reductase works with NADPH as follows: 

   Trx reductase 

Trx(S2)+NADPH              →                Trx(SH)(S-)+NADP+   

In Trx and TrxR, the redox signal can change the cysteine sulfur molecule from –CH2—

SH to –CH2—S-. This “sulfhydryl switch” allows for changes in the enzymes’ activities. 

Once oxidative stress has occurred, the TrxR charges the sulfur atoms on the Trx, 

activating the Trx. And once activated, Trx can move from the cytoplasm to the nucleus 

where it activates Ref-1, which further activates transcription factors that can protect the 

cell from oxidative stress.133  

 

Thioredoxin reductase and glutathione reductase have similar homologies, and also have 

some overlap of function. Similarly, thioredoxin and glutaredoxin also have an overlap  

of function. Thioredoxins, however, are able to catalyze disulfide reduction much faster 

than GSH. 139 

 

Trx family and ROS: There are several published examples of Trx’s susceptibility to 

ROS. There is a variety of compounds that have been found to oxidize Trx, such as H2O2, 

superoxide,154 paraquat, rotenone,155 and 2-[(1-methylpropyl)dithio]-1H-imidazole (PX-

12).156 PX-12 (also called IV-2) not only oxidizes TrxR, but also irreversibly inhibits Trx 

protein function through cysteine residue oxidation.156 In human lens epithelial HLE B3 

cells, when H2O2 treatment was given, Trx expression increased.157 In keratinocytes, 

lymphoid, and HeLa cells, H2O2 exposure leads to an increase in Trx mRNA levels.158 
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When endothelial cells are exposed to low doses of ROS, (10 and 50 μM H2O2 and short-

term exposure to shear stress), significant increases in Trx mRNA and protein levels are 

seen. It follows, then, that there would also be a reduction in apoptosis induction, and 

when Trx expression is reduced and low doses of ROS administered, apoptosis is 

induced. Thus a portion of the anti-apoptotic nature of low-dose ROS in endothelial cells 

could be due to the increase in Trx expression.159  

 

It is thought that lung injury that occurs with bleomycin anticancer therapy is due in part 

to ROS. Trx, but not Cu/Zn-SOD, mnSOD, catalase, or glutathione peroxidase is strongly 

induced in the lungs of mice treated with bleomycin, suggesting that Trx may modify the 

reduction and oxidation state in bleomycin resistance, and perhaps may be protective 

against bleomycin-induced lung injury.160  

 

Trx scavenges ROS that has been created by diesel exhaust particles (DEP). While acute 

lung disease and an increase in inflammatory cells were seen in control mice, human Trx 

transgenic mice appeared to be protected from this injury. L929 cells that had been hTrx-

1 transfected and A549 cells pretreated with recombinant human Trx were utilized. A 

downregulation of the phosphorylation of Akt was shown, which led to apoptosis. This 

downregulation and subsequent cell death was prevented by treatment with Trx. It was 

also seen that when Akt was inhibited in the cells, the protective effect of Trx was 

canceled. These results show that Trx may play a protective role against DEP and 

subsequent lung damage via Akt regulation.161  
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It is thought that oxidative stress that is present in hyperhomocysteinemia is due to 

impaired Trx and subsequent increased ROS.162 Low-dose exposure to 5-aminolaevulinic 

acid-based photodynamic therapy (ALA-PDT, a treatment for superficial skin cancer) 

increases Trx expression and leads to cell growth, while high-dose exposure showed 

apoptosis with minimal Trx expression.163  

 

Trx acts as a cofactor for peroxiredoxins in their role as H2O2 scavengers. Trx and 

peroxiredoxin I are elevated in human lung tissues by hypoxia.140 MCF-7 cells that have 

been transfected with Trx also have an increase in the expression of Trx peroxidase-1, an 

H2O2 scavenger. This expression protects against H2O2-induced apoptosis, but not against 

apoptosis induced by anti-cancer drugs such as etoposide and doxorubicin.164 In a study 

of 89 non-small cell lung carcinomas, Trx and TrxR were found in all but 3 and 8 cases, 

respectively, and were both cytoplasmic and nuclear. When the expression of these 

proteins was nuclear, there was an inverse association with apoptosis. When the grade of 

the carcinoma was high, there was a decrease in Trx and TrxR expression.165 Thioredoxin 

peroxidase II (also known mitochondrial peroxiredoxin 3)166 can decrease H2O2 when 

overexpressed, and through this mechanism can inhibit apoptosis.139  

 

The dietary isothiocyanates sulforaphane, erucin, and iberin have been found to induce 

thioredoxin reductase in MCF-7 cells.167 In HepG2 and undifferentiated Caco-2 cells, not 

only does sulforaphane induce TrxR, but also its substrate Trx.168 Selenium 

supplementation increases TrxR activity in high risk prostate cancer patients,169 and 

mercury toxicity can lead to the selective inhibition of TrxR.170 
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Redox regulation of proteins by Trx: Trx family under- or over-expression has been 

related to a number of diseases and their effects, from airway remodeling,171 H. felis-

induced gastritis,172 Sjögren's syndrome,173 and angina174 to alopecia areata-based 

glucocorticoid resistance,80 decreased cystic fibrosis sputum,175, 176 and ischemia-

reperfusion injury prevention.177, 178 Trx is also both a biomarker and a therapeutic agent 

for cardiac disorders.179 It has been suggested that an increase in Trx in lung transplant 

patients can be a biomarker for organ rejection, as a significant increase in Trx was seen 

in bronchoalveolar lavage fluid of graft-rejecting patients in an 18-patient study.180 

Metastatic colorectal cancer liver resection patients whose metastases were Trx positive 

presented with shorter survival than those whose tumors were Trx negative.181 Trx 

inhibits the activity of PPARα, a transcription factor in the nuclear receptor family   

which is involved with lipid catabolism, and whose genes are targets of lipid lowering 

fibrate drugs.182 

 

The majority of studies performed on the thioredoxin family are on its role as an 

apoptosis inhibitor. This inhibition has been seen by Trx2 overexpression in SH-SY5Y 

human neuroblastoma,183 lung and other cells by overexpression of Trx.184 185 In mice, 

TrxR overexpression inhibits apoptotic signaling and gastric ulcer formation that occurs 

with the treatment of the non-steroidal anti-inflammatory drug indomethacin.186 For Trx 

to suppress apoptosis of cisplatin-treated breast cancer cells, it must be nuclear. In MCF-

7 cells, when total Trx was increased with no increase in nuclear Trx, there was no 

change in cisplatin-mediated apoptosis. There was, however, a decrease in cisplatin-

induced apoptosis when nuclear Trx was increased with no change in total Trx.187 
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This propensity for inhibition has made TrxR a target of certain drugs. TrxR has been 

inhibited by auranofin to induce apoptosis in cisplatin-resistant C13* ovarian cancer 

cells,188 and by 1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)] ethane and 

cyclophosphamide to induce apoptosis in several human cancer cell lines.189 190 Green tea 

extracts inhibit TrxR in HeLa cells, which also show a concentration-dependent decrease 

in cell viability.191 GRIM-12 has been identified as being identical to TrxR, and GRIM-

12 overexpression increases apoptosis that is interferon/tamoxifen induced. On the other 

hand, when GRIM-12 is underexpressed, there is a resistance to interferon/tamoxifen-

induced cell death and an increase in cell growth. Thus TrxR may play an important role 

in tamoxifen resistance.192 

 

Thioredoxin interactions with other proteins: Thioredoxin interacts with many 

different proteins and acts as both an inhibitor and a regulator. One MAP3K protein that 

is directly affected by Trx is apoptosis signal-regulating kinase 1 (ASK1).149 In its 

reduced form, thioredoxin is known to inhibit ASK1 through binding to the protein.193 

However, Trx becomes disassociated with ASK1 in the presence of ROS,193, 194 149, 195 

allowing ASK1 to activate the JNK/p38 pathway.140 196  

 

Under reduced conditions, Trx binds to the N-terminus of ASK1. However, upon 

oxidation it become dissociated from ASK1.197 Competition with Txnip can also interfere 

with Trx/ASK1 interactions.198 The importance of the Trx relationship with ASK1 can be 

seen with H2O2 exposure. This exposure leads to the oxidation of ASK1, which can be 

reversed by Trx.199 The loss of interaction ASK1 has with Trx upon Trx oxidation has 
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been studied in several diseases. Overexpression of Trx can reduce cigarette smoke-

stimulated apoptosis through the ASK1/JNK pathway.200 Oxidation of Trx may play a 

role in Alzheimer’s disease as amaloid beta causes Trx oxidation and the nuclear export 

of the ASK1 downstream protein Daxx.201 Oxidation of Trx2, and subsequent release of 

ASK1, by the anti-inflammatory drug troglitazone can lead to mitochondrial 

permeabilization.202 The Trx/ASK1 pathway is also used in therapy modes. For example, 

the chemotherapeutic cisplatin has mechanisms of action that include the activation of 

ASK1/p38 through decreasing TrxR activity and enhancing Akt activation.203 

Thioredoxin inhibiting protein (Txnip) is upregulated by ceramide, a tumor-suppressor 

lipid that is generated by cells under stress conditions, as well as by cancer cells exposed 

to genotoxic chemotherapy. This upregulation of Txnip can lead to an increase in 

Trx/Txnip interactions and a decrease in Trx/ASK1 interactions, freeing ASK1 to 

promote apoptosis.204 

  

Trx also has regulatory abilities with cytochrome 450s, hypoxia-inducible factor-1 (HIF-

1), and Nrf-2.150 In non-small cell lung cancer, Trx is a HIF-1α stabilizer,205 and in 

HT1080 cells the overexpression of Trx leads to the increase in HIF-1α when under 

hypoxic conditions.206 Silencing of Trx decreases HIF-1α, as well as vascular endothelial 

growth factor expression.206 On the other hand, HIF-1 accumulation is decreased by Trx2 

overexpression. Trx increases and Trx2 decreases cap-dependent translation, and HIF-1 

transactivation is stimulated by Trx, but decreased by Trx2. From this data, it has been 

suggested that thioredoxins may contribute to the synthesis of HIF-1α.207  
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Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that transcribes 

genes for antioxidants, xenobiotic detoxifiers, and other cytoprotective proteins.208 Nrf2 

is a transcription factor of thioredoxin that is activated in the cytoplasm by an oxidative 

signal.209 Nrf-2 increase in expression is correlated with an increase in Trx.210 Nrf2 may 

assist in the regulation of the entire Trx system, as cadmium-induced Nrf2 activation and 

binding to antioxidant response element in the TrxR gene promoter leads to TrxR gene 

expression.211 For Nrf2 to bind to the DNA it must be reduced at a critical cysteine,209 

and while Nrf2 translocation is regulated by glutathione, nuclear Trx regulates the 

antioxidant reporter element.212 An increase of Nrf2 in tamoxifen-resistant MCF-7 cells 

has been shown and may be due either to an enhancement in the stability in the protein 

with long-term exposure to tamoxifen, or to an increase in gene transcription. It has been 

suggested that the Nrf2/ARE-mediated increase in antioxidant proteins such as 

thioredoxin and peroxiredoxin 1 is involved in tamoxifen resistance.213 It does not appear 

to have been explored, however, if such an increase in Trx results in an increase in active 

Trx, as opposed to oxidized Trx, which could occur from the increase in ROS from 

tamoxifen treatment. 

 

Macrophage migration inhibitory factor (MIF) is now recognized as being part of the 

thioredoxin superfamily,214 and Trx is able to suppress MIF production. 215 It has been 

shown that as nuclear MIF increases, p27 levels decrease. It would seem to follow,    

then, if Trx were increased, MIF levels would decrease and allow p27 levels to increase. 

The association with Jab1 may also play a role in this as Jab1 is also known to interact 

with MIF.216  
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Thioredoxin inhibiting protein (Txnip) is also known as vitamin D3 up-regulated protein 

1 (VDUP1) and Trx-binding protein-2 (TBP-2).21 As mentioned earlier, Txnip is an 

antagonist of Trx, and various stressors, including ROS, regulate its expression.217 Txnip 

is often decreased in tumor cells and tissues. It negatively regulates Trx, and VDUP1 

(Txnip) -/- mice present with a higher susceptibility to carcinogenesis and defective 

immune system.218 Txnip forms a stable complex with reduced Trx that is disulfide 

linked.219 In the mouse uterus, estrogen treatment decreases Txnip expression and 

increases Trx, Trx2, and TrxR expression, as evidenced by mRNA levels. 220 Txnip is 

found at low levels in human cancers.21 An overexpression of Txnip leads to a decrease 

in Trx activity, as well as slow growth and apoptosis susceptibility.157 For example, 

colonic mucosa from ulcerative colitis and colorectal cancer specimens have significantly 

decreased Txnip levels as compared to normal tissue.221 

 

Txnip appears to be closely linked to hyperglycemia. Txnip-deficient mice that have been 

fed are metabolically similar to mice that have fasted. While the thioredoxin activity of 

the fed Txnip-deficient mice was similar to wild type, the deficient mice also presented 

with an increase in the NADH to NAD+ ratio.222 In beta cells, glucose increases 

expression of Txnip and apoptosis.223 High glucose levels also increase Txnip expression 

in renal proximal tubule cells (HK-2).224 In breast cancer cells, hyperglycemia affects 

Txnip levels, with tumorigenic cells expressing a low level and metastatic cells 

expressing a high level. Hyperglycemia was found to increase paclitaxel cytotoxicity, and 

this was also associated with Txnip expression.225 In MDA-MB-231 breast cancer cells, 

hyperglycemia increases Txnip RNA within 6 hours of exposure.226  
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When Txnip was explored for its metabolic effects in type 2 diabetes, patients with one 

particular variant, TXNIP-T, had both higher diastolic blood pressure (5.5 mmHg) and 

higher trigliceride concentrations (1.6 fold).227 In INS-1 insulinoma beta cells that 

overexpressed Txnip, 90 of 98 genes that were differentially expressed were 

downregulated. It is thought that Txnip is able to enhance beta-cell death and decrease 

insulin secretion through its modulation of genes that are involved with cell death, cell 

survival, and insulin secretion.228 

 

There are many proteins that interact with members of the Trx family. Table 1 explores 

many of these interacting proteins. From this table we can see the variety of ways in 

which thioredoxin family members may play a role in cell cycle progression, as well as  

how oxidation of thioredoxin can lead to a disruption in regular cell function. 

 

TABLE 1  Intracellular Trx family interactions 
Trx enhances AP-1 binding to DNA via Ref-1 (redox factor-1) 
Trx inhibits PPAR 
Trx inhibits  Apoptosis signal-regulating kinase (ASK) 1 
Trx1 suppresses MIF production 
Nuclear Trx regulates the antioxidant reporter element of Nrf2 
Nrf2 transcription factor may assist in the regulation of the Trx system 
Nrf-2 increase in expression is correlated with an increase in Trx 
Overexpression of Trx2 decreases HIF-1 accumulation 
Cyanidin elevates Trx expression 
H2O2 increases Trx expression 
H2O2 increases Trx mRNA 
UVA-irradiation increases intracellular levels of Trx 
Homocysteine upregulates Trx expression 
5-aminolaevulinic acid-based photodynamic therapy (ALA-PDT) increases Trx 
expression 

Sulforaphane induces Trx 
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Cancer cells secrete Trx 
Superoxide and H2O2 oxidize Trx 
Paraquat and Rotenone oxidize Trx 
2-[(1-methylpropyl)dithio]-1H-imidazole (PX-12) oxidizes Trx 
Trx is a HIF-1a stabilizer 
Overexpression of Trx leads to the increase in HIF-1a under hypoxic conditions 
Silencing of Trx decreases vascular endothelial growth factor expression. 
Selenium supplementation increases TrxR activity 
Sulforaphane, Erucin, Iberin induce TrxR 
1,2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)] ethane (BBSKE) inhibits TrxR 
Auranofin inhibits TrxR 
Green tea extracts inhibit TrxR 
Cyclophosphamide inhibits TrxR 
Mercury toxicity leads to the selective inhibition of TrxR 
Estrogen increases Trx, Trx2, and TrxR expression 
Overexpression of thioredoxin peroxidase II decreases H2O2 
Txnip can interfere with Trx/ASK-1 interactions 
Txnip is an antagonist of Trx 
Estrogen decreases Txnip expression 
Histone deacetylase inhibitors upregulate Txnip 
Glucose increases expression of Txnip 

 
 
 
Background to a new paradigm for antiestrogen resistance 

Thioredoxin and cell cycle progression/arrest: As we look at the role thioredoxin may 

play in antiestrogen resistance, we briefly discuss how estrogen actions are controlled by 

redox regulation and other interacting proteins that can affect this change in a breast 

cancer cell’s sensitivity to AE treatment and AR resistance. 

 

Thioredoxin appears to play an important role in the redox state of the estrogen receptor. 

Using the breast cancer cell line ZR-75-1, researchers have shown that when cells were 

treated with H2O2, there was a decrease in the levels of pS2, a gene induced by estrogen. 

When, however, cells were transfected with thioredoxin, the expression of pS2 was 
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restored in the H2O2-treated cells.106 In a study regarding estrogen and congestive heart 

failure, subcutaneous slow release pellets of estrogen (0.5 mg/60 day release) offered 

antioxidative properties. These properties were also associated with an increase in the 

expression of Trx, TrxR, and TrxR activity. In this form, estrogen also reduced ASK-1 

activation, JNK activation, and p38 MAPK, which can all be related to the increase in 

availability of thioredoxin. These data may show that thioredoxin could be conferring the 

antioxidative properties that are being linked to estrogen.231 

 

In another example of Trx and estrogen interactions, 17β-estradiol normalizes 

thioredoxin reductase and glutathione reductase levels in rats that had been 

ovariectomized. As this was not also seen when 17α-estradiol, which is non-receptor 

binding, was administered, it has been suggested that glutathione and thioredoxin systems 

may be stimulated by estrogen through estrogen-receptor positivity.41 Endometrial 

stromal cells not only increase Trx secretions with estrogen treatment in a time-dependent 

manner, but this effect has been enhanced with an estrogen and progesterone combined 

treatment.144 In the interaction between estrogen and the thioredoxin system in mice, the 

main component of the thioredoxin system found affected by estrogen was thioredoxin-

interacting protein (Txnip). While Txnip mRNA levels rise in the initial treatment of 

mice with estrogen, after 2 hours both mRNA and protein amounts drop approximately 

20 per cent, followed by a rise in levels of the other members of the thioredoxin family 

by 2.5- to 4-fold over 24 hours. This reaction was prevented when the mice were treated 

with the estrogen antagonist ICI 182780, which suggests a role for the estrogen receptor 

in Txnip decrease upon estrogen treatment.220 Inhibition of TrxR reduces estrogen’s 
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cytoprotection against neurodegeneration.42 When this was explored in bovine aortic 

endothelial cells, it was found that 17β-estradiol increased the levels of thioredoxin, 

glutaredoxin, and thioredoxin reductase. When cells were treated with tamoxifen, it 

inhibited the induction of these three proteins.43 Estrogen metabolites 4-OH and 2-OH 

have been found to be mediated by p450 CYP1B1 and CYP1A1 respectively. CYP1B1 is 

induced by Trx in MCF-7 cells, and in MCF-7 cells that have been Trx-1 transfected, 

there is a decrease in ERα expression.232 

 

We have discussed the link between Trx family members and estrogen, and the role ROS 

plays in the inhibition of Trx actions. We will now discuss other proteins that play a role 

in our novel paradigm of tamoxifen resistance. 

 

p27: p27KIP1 is a 27 kD protein found in the nucleus, where it is active and inhibits 

cyclin-dependent kinases (cdks),233 most specifically by binding with the cyclin E/cdk2 

or cyclin A/cdk2 complexes.234, 235 p27KIP1 (herein called p27) belongs to the CIP/KIP 

(cdk inhibiting and kinase inhibiting proteins) family and suppresses the G1-to-S phase of 

the cell cycle233, 236 in G0 and early G1, where it inhibits cyclin E/cdk2 through binding to 

the cyclin E protein.235, 237 Highest concentrations of p27 can be found bound to the 

cyclin E/cdk2 complex during cell quiescence in normal epithelial cells.238 Cyclin E, 

when bound to the cyclin-dependent kinase cdk2, activates cdk2. If p27 is not available to 

inhibit this complex, the activated cdk2 phosphorylates the tumor suppressing 

retinoblastoma protein, which then disassociates from the E2F transcription factor, 

leading to the transcription of genes that allow progression into the S phase of the cell 
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cycle.235, 237 The phosphorylation of the retinoblastoma protein is necessary for the cell to 

move from the G1 to the S phase of the cell cycle, and both D-type and E-type cyclins 

can lead to this phosphorylation.239 Cyclins E, A, and D are involved with G1 

progression, and p27 can play a dual role when interacting with these cyclins. While 

unphosphorylated p27 inhibits cell cycle progression through cyclin E/cdk2 and cyclin 

A/cdk2 binding,237 properly phosphorylated p27 can assist in assembling cyclin D with 

cdk4 and cdk6, creating complexes that further G1 progression. Many cell lines require 

high levels of p27 to stay in quiescence, and thus the down regulation of p27 is necessary 

for cell cycle progression.240 There are several ways in which p27 can become 

inactivated, and thus lose its inhibitory action and promote cell cycle progression. 

Localization, phosphorylation, and proteolysis are three known factors affecting the 

activity state of p27. The location of p27 plays an important role in the inhibition of the 

cell cycle, because while it is inhibiting cell cycle progression it remains bound to the 

cyclin E/cdk2 complex in the nucleus. However, upon proper phosphorylation, it moves 

to the cytoplasm as the cell moves into G1, where it can either assemble cyclin D/cdk 

complexes or undergo proteolysis. p27 has been found in the cytoplasm in approximately 

40% of primary breast cancers, and this relocation of p27 can increase the de-

differentiation of tumors, and decrease the chances for survival.237 Phosphorylation of 

p27 can change the function of the protein. Several phosphorylation sites and their 

functions are currently known. Phosphorylation at threonine 157 can both impair the 

nuclear import of p27 and promote the assembly of cyclin D/cdk complexes.241 Through 

phosphorylation at threonine 198, p27 can help a cell survive through autophagy in 

cellular metabolic stress, and can also promote cyclin D/cdk assembly, with the addition 
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of tyrosine phosphorylation.242 When E2 binds to the ER, there is as activation of Src, 

which can lead to phosphorylation of p27 at tyrosines 74 and 88. This encourages 

phosphorylation at T187 as well as reduces the half-life of p27. Tamoxifen also interacts 

with Src, furthering the role of p27 in breast cancer inhibition. When Src is inhibited, the 

actions of tamoxifen are enhanced. This shows an important role for Src, and thus p27 

phosphorylation, in breast cancer cell survival.243 

 

The phosphorylation of p27 at tyrosines 74, 88, and 89 can also reduce p27’s affinity for 

cdk2.238 Cyclin E-cdk2 can phosphorylate p27 at threonine 187, an action that can lead to 

the marking of p27 to be recognized by its ligase (SCF-type E3), which further leads to 

the ubiquitylation of p27 and its 26S proteasome-related degradation.235, 244 Serine 10 

phosphorylation is necessary for p27 to be transported out of the nucleus,237 and in this 

way assists with ubiquitination (and subsequent proteolysis) of p27 in late G1. In many 

human cancers, activation of p27 proteolysis appears excessive, with it being seen 

approximately 41-69% in breast cancer.237  

 

Approximately 60% of primary human breast cancer and other cancers express a reduced 

amount of p27 and are associated with poor patient outcome.244 Loss of p27 is also 

correlated with tumor grade increase.245 Low concentrations of p27 have been found to be 

associated with a 3.4-fold increased risk of death (p=0.0306), and an increase of risk of 

relapse of 2.7-fold (p=0.01). Other studies have shown a decrease in overall survival 

when there is a low p27 concentration and high cyclin E content (RR=2.7, p=0.01).246 

Reduced levels of p27 are a poor prognostic factor in several other carcinomas as well, 
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including colon, lung, prostate, esophageal, and gastric carcinomas,247 and oral dysplasias 

and carcinomas.248 

 

A key to p27 ubiquination is its nuclear export to the cytoplasm. This can be influenced 

by p27 binding to CRM1.249 It has been implied that Jab1 may be a bridging protein 

between p27 and CRM-1, as treatment of NIH3T3 cells with leptomycin B (a specific 

CRM-1 nuclear export inhibitor) decreased p27 nuclear export by Jab1.250 It also has 

been shown, however, that CRM-1 binds to p27 at its cdk2 binding site to export it from 

the nucleus.251 We next explore Jab1 as part of our paradigm for tamoxifen resistance. 

 

Jab1: Jab1 (Jun activation domain-binding protein 1) is a ~40 kD protein that was named 

for its interaction with c-Jun at its activation domain. Jab1 is the 5th subunit in the COP9 

signalosome, and is also known as CSN5.252 The COP9 signalosome is a known co-

activator of the AP-1 transcription factor,123 and Jab1 is known to interact with at least 4 

other subunits in the COP9 complex; CSNs 1, 2, 4, and 7.253 Jab1 stabilizes c-Jun or JunD 

complexes at their AP-1 binding sites, which allows the specificity of the target gene 

activation to be increased. When Jab1 interacts with the c-Jun protein, it enhances the 

binding power of AP-1 complexes that contain c-Jun. This increases AP-1-dependent 

transcription, which then leads to cell proliferation.123, 252 Nuclear receptor transcriptional 

transactivation can be modulated by Jab1, as can be seen with progesterone receptors. 

The addition of Jab1 can enhance the capability of the progesterone receptor to perform 

hormone-dependent transactivation. This enhancing ability has also been shown with 

glucocorticoid, mineralocorticoid, androgenic and estrogenic receptors, and NF-κB.254 
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Nuclear receptor binding protein (NRBP) may be a negative regulator of Jab1-mediated 

functions, as phosphorylation of c-Jun and AP-1 activation is inhibited by the addition of 

NRBP, and thus may inhibit tumor progression.255  

 

There is a difference in action between the smaller Jab1 complex and the larger COP9 

complex. Researchers note that a loss of anchorage leads to the downregulation of the 

smaller Jab1 complex, that when p27 is downregulated the smaller Jab1 complex was 

upregulated, and that throughout the cell cycle the small Jab1 complex moves between 

the monomeric state and the COP9 signalosome.216  

 

One of the significant common themes with Jab1 is its numerous interactions with multi-

protein complexes that appear to be connected to ubiquitin-dependent protein degradation 

pathways.253 Jab1 interaction with p27 is a good example of this. It has been suggested 

that Jab1 can lead to cell proliferation through the translocation of p27 from the nucleus 

to cytoplasm and accelerating p27 degradation through the ubiquitin/proteosome 

pathway.256 Jab1 has been negatively associated with p27 expression in a variety of 

cancer cells. The expression of both Jab1 and p27 in breast carcinomas in regards to 

clinical outcomes has been explored, and it has been found that in 60% of the carcinomas 

studied there is a reduced or depleted existence of p27. Researchers also looked at the 

possibility of using this information in a prognostic way, and saw that those patients with 

tumors that were Jab1-negative did not relapse or show signs of disease progress.257 

Translocation of p27 can occur due to mitogenic stimuli,233 and Jab1 has been implicated 
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as a major cause for the translocation of p27 from the nucleus to the cytoplasm. When 

p27 and Jab1 are cotransfected, there is acceleration in p27 proteolysis.249 

 

Vitamin D3 upregulated protein 1 (Txnip) is also a Jab1 inhibitor that blocks the ability of 

Jab1 to move p27 from the nucleus to the cytoplasm, as well as blocking its co-activation 

of AP-1.258 The proteolysis of p27 is thought to be mediated by not just Jab1, but by the 

COP9 signalosome as well. There are at least three other parts of COP9 (namely CSN6, 

CSN7, and CSN8) which also can lead to the downregulation of p27 when they are 

expressed ectopically. 259 

 

In a study of levels of p27 in benign and malignant lesions in 94 randomly selected cases 

at the University of Texas MD Anderson Cancer Center, fourteen out of seventeen 

standard nevi cases showed a strong expression of p27 in over 75% of the cells. Out of 22 

melanoma cases, only 3 showed expression of p27. And out of 30 cases of metastatic 

melanoma, only 4 were p27 positive. The expression of Jab1 in these same samples was 

also investigated. Jab1 was expressed in 14 out of 17 cases of standard nevi, and in 18 out 

of 19 dysplastic nevi, with 11 of those strongly Jab1-positive. While only few of the 

primary melanoma cases were p27 positive, approximately 77% of them were Jab1 

positive. Metastatic melanomas were Jab1 positive in 53% of the cases. This pattern was 

seen across different histologic types of melanoma. 233 This theme of high Jab1 and low 

p27 in cancer is seen in several studies.257, 260-262 In breast cancer, there is an increase in 

Jab1 in adjacent normal cells as compared to normal breast cancer cells.263 Interestingly, 
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there is initial evidence that cytoplasmic p27 is present in invasive tumors, yet not in non-

invasive tumors, presenting the possibility of a role for cytoplasmic p27 in metastasis.264  

 

It has been shown that Jab1 and ERα interact (either directly or indirectly) through a 

finding that Jab1 comimmunoprecipitates with ERα. Also, an increase in Jab1 levels is 

associated with hormone-induced ERα degradation. Curcumin, which inhibits CSN-

associated kinase activity and prevents the degradation of ERα, increases the amount of 

coimmunoprecipitated Jab1 and ERα, as well as blocked ERα phosphorylations and 

degradations that are ligand dependent.265  

 

It has been presented that Jab1 location is well regulated within the cell, and is present 

mostly in the nucleus, though there are small amounts in the cytoplasm. The Jab1 signal 

is also very strong in adult tissues that are terminally differentiated.266  

 

Thioredoxin and its proposed role in antiestrogen resistance: With the oxidation that 

is produced by both estrogen and tamoxifen, the redox nature of proteins cannot be 

ignored as a possible player in tamoxifen resistance. Tamoxifen-resistant breast cancer 

tumors show decreased glutathione levels, and it is suggested that the increase in 

tamoxifen-induced oxidative stress and decreased glutathione levels activate JNK and 

increase AP-1 actions, leading to growth in the presence of tamoxifen.68 As mentioned 

earlier, tamoxifen inhibits estrogen-induced thioredoxin, glutaredoxin, and thioredoxin 

reductase.43 Also, when cells proliferate in a manner that forms cellular masses, cells are 

deprived of oxygen and nutrients, which leads to cellular adaptations that allow the 
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cancer cell to survive (i.e. the suppression of apoptosis).267 Trx reductase has a variant, 

labeled TrxR1b, which is thought to influence the assembly of estrogen receptor 

coactivator complex. As such, it may modulate estrogen signaling.268 When doxorubicin-

resistant small cell carcinoma lung cells are treated with selenium, the result is caspase-3-

independent apoptosis. While TrxR levels and activity increases with this treatment, the 

amount of truncated Trx does not change.269 These cancer studies on Trx do not observe 

the oxidative state of the Trx that is being measured, and results such as these could be 

due to TrxR reducing Trx and restoring its activity.  

 

As mentioned earlier, most studies on Trx and resistance focus on Trx’s anti-apoptotic 

role. Response to docetaxel, a potent anti-cancer drug used with breast cancer patients, 

has been linked to thioredoxin. In a study on Docetaxel and the gene expression that may 

predict resistance to the drug, thioredoxin was one of several proteins that, when 

overexpressed, meant there was a good chance the person would not respond to the 

anticancer drug.270 Trx expression is correlated with platinum-based drug resistance.271 

High levels of thioredoxin have been associated with resistance to cis-

diamminedichloroplatinum (II) (cisplatin), mitomycin C, doxorubicin, and etoposide. To 

test this association with docetaxel, thioredoxin expression was related to its reaction to 

estrogen receptor positivity. It was found that patients with ER negative tumors low in 

thioredoxin showed the highest response to docetaxel treatment (42.3%) and the lowest 

response (0%) was in patients who had high thioredoxin levels and were estrogen 

receptor positive. When patients were treated with thioredoxin prior to docetaxel therapy, 

thioredoxin levels rose upon treatment with the drug. While levels of thioredoxin 
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increased equally across cell samples, it was noted that it was the high level of 

thioredoxin present before docetaxel treatment that confers resistance, not the increase at 

the time of treatment.272 It is thought that thioredoxin may contribute to other anti-cancer 

drug resistances. When a thioredoxin antisense plasmid was transfected into cisplatin-

resistant T-cell leukemia cells, sensitivity to cisplatin, as well as several other anticancer 

drugs, was restored.21 When selenium treatment was added to doxorubicin-resistant cells, 

caspase-3-independent apoptosis occurred. There was also an increase in TrxR protein 

levels and activity, and truncated Trx increased.  

 

While these studies show the role of Trx as an agonist for chemotherapeutic drug 

resistance, we suggest that the role Trx plays in other protein actions (outside of reducing 

the effects of ROS) is affected by the overoxidation of Trx and can play a role in 

antiestrogen resistance (see Figure 4-LR). We suggest that the oxidative state of cells 

treated with antiestrogens will add a constant state of oxidative stress, and will create an 

adaptation in the cellular mechanism that leads to resistance to antiestrogens, namely 

through an oxidation of thioredoxin.  

 

Jab1 and a possible interaction with thioredoxin: When hepatopoietin (HPO) loses its 

sulfhydryl oxidase abilities at its cysteine residues, it is no longer able to affect AP-1 

activation due to its lack of ability to interact with Jab1. This does not affect HPOs ability 

to promote growth via the MAPK pathway.273 However, this suggests that the sulfhydryl 

ability of an interacting protein will affect its interaction with Jab1, as may be the case 

with thioredoxin. Trx has been found to compete with p27 for binding with Jab1 in 
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HEK293T (human embryonic kidney) cells, and through this, negatively regulate p27 

degradation. The possibility that Trx could affect Jab1/p27 binding in these cells was 

explored, and it was found that the addition of Trx to cells altered the direction of Jab1-

induced p27 level decrease. It was also found that the addition of Trx did not increase 

levels of p27 when Jab1 was not overexpressed. This led to a hypothesis that Trx 

competes with p27 for binding with Jab1. The researchers showed that Trx specifically 

interacts with the C-terminal of Jab1, while p27 is known to interact with the N-terminal. 

The hypothesis was that when Trx binds with Jab1, it produces a conformational change 

that inhibits the binding affinity for p27. This decrease in binding affinity could then 

allow p27 to continue to bind to the cyclin E/cdk2 complex, and inhibit cell proliferation. 

Another Jab1 effect that was inhibited by Trx binding was AP-1 activation. When Jab1 

levels were increased, Trx was found to decrease AP-1 activity. Increased Jab1 levels 

have been found in certain cancers of the pituitary, ovary and breast and in certain 

lymphomas. Because of the increased Jab1 expression in these tumors, Trx could play an 

important role in decreasing AP-1 activity, but also in keeping Jab1 from removing p27 

from the nucleus.123 Figure 5-LR shows this interaction and a possible role for Trx in 

keeping Jab1 from moving p27 out of the nucleus. The possible oxidation and 

inactivation of Trx through tamoxifen treatment can lead to an increase in p27 removal 

from the nucleus by Jab1. 

 

PTPs and thioredoxin: Particularly susceptible to oxidation are protein tyrosine 

phosphatases (PTPs), including PTEN, PTP1B, cdc25, and low molecular weight PTP.87, 

116 Several PTPs have been show to correlate with p27 levels. A downstream molecule in 
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the phosphoinositol 3’ kinase (PI3K) pathway, protein kinase B (Akt), can phosphorylate 

p27 at T157 and inhibit its import to the nucleus. This prohibits p27 from inhibiting cell 

proliferation.274 When the PI3K pathway has been activated, as it is in human cancers, it 

has been found that p27 concentrations decrease. This effect is reversed by the PI3K 

inhibitor LY294002, a “kinase-dead” PKB/Akt, or the PI3K phosphatase PTEN. When 

PI3K activation is opposed by PTEN in specific cell lines, p27 concentrations increase. It 

has been suggested that PTEN may work in this way through repressing SKP-2, a 

component of the SCFSKP2 ubiquitin ligase.237 Overexpression of the PTEN gene 

increases p27 levels, decreases cyclin D1 levels, inhibits the phosphorylation of Akt, and 

through these mechanisms inhibits cell growth in MCF-7 cells.275 In human mammary 

epithelial cells (HMEC), activation of the PI3K pathway is necessary for the cell to move 

from G1 to S because of its activation of the cyclin E/cdk2 complex.240 The CDC25A 

PTP has been linked to cdk2. CDC25 is a dual specificity PTP that dephosphorylates 

cyclin E-cdk2 inhibitory phosphorylation sites. In this way, CDC25A controls S phase 

entry and progression. PTP1B has been associated with the Src family kinases, as well as 

with other pathways.276, 277 Src has two phosphorylation sites that can be affected by 

phosphatases. While one is an inhibiting site, the other is an activation site that is 

autophosphorylated. PTP-BL dephosphorylates Src at this activation site, keeping Src 

inactivated.278 Src binding to PTP1B is proline residue dependent.279 When PTP1B is 

downregulated, a decrease in ERK1/2 phosphorylation has been shown, as well as a 

dephosphorylation of Src at the inactivation site.277 When HEK293 cells are transfected 

with both Src and TRPV6, a cation channel, the tyrosine phosphorylation that Src 

imposed on TRPV6 is dephosphorylated by PTP1B.280 
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These same PTPs are also reduced by Trx. PTEN can be oxidized by H2O2, and then 

reduced by Trx.281 CDC25 PTPs are known to react directly with ROS due to their 

catalytic cysteine residue. This reaction causes an inactivation in the CDC25 enzyme 

through creating a disulphide that can be reversed by thioredoxin.282 283 While no data is 

available for the actions Trx may have on PTP-BL, it is known that PTP-BL contains two 

cysteine residues that appear to regulate binding, and that this binding capacity is lost 

when a reducing treatment is added.284 PTP1B has been linked with thioredoxin through a 

murine study using selenium supplementation. Rats that were fed 75 or 150 μg of 

selenium/kg showed an increase in thioredoxin reductase, as well as other selenoproteins, 

and a decrease in PTP1B glutathionylation (which inhibits PTP activity).285  

 

It is possible that the oxidation of PTPs via the oxidative stress of tamoxifen treatment 

can play an important role in tamoxifen resistance through lack of interaction with 

kinases that phosphorylate p27. In the suggested case of an increase oxidized state in the 

cell by chronic tamoxifen treatment, oxidized Trx is unable to reduce p27-affecting PTPs, 

which could play a role in the continued growth of cancer cells in the presence of 

tamoxifen treatment. 

 

6. Summary 

The mechanisms of antiestrogen resistance are complex. Here we have presented the data 

involving Trx and show different ways Trx may have a role in antiestrogen resistance in 

breast cancer. As cells are chronically exposed to ROS from long-term tamoxifen 

treatment, they can adapt to this increasing level of ROS and oxidative stress. This can 
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lead to oxidation of certain cellular antioxidant systems, such as thioredoxin, causing 

them to become inactive. The inactivation of the thioredoxin antioxidant family can then 

affect other proteins such as PTPs or Jab1, or lead to the continued activation of cell 

signaling pathways such as MAPKs, leading to the activation of transcription factors such 

as AP-1 or NF-κB and subsequent cell proliferation. It is in this way that we propose that 

ROS and the thioredoxin family may play a role in tamoxifen resistance. 
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Figures 

Figure 1 –LR 

 

Estrogen actions in breast cancer. Most well characterized is the genomic action of 

estrogen binding to the ER, and this complex binding to EREs in the DNA. Non-genomic 

actions include activation of the PI3K and MAPK pathways. More recently, cell-

signaling activation through ROS formation has been explored.23, 28,29,126,286,287 

Figure 2-LR 
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Sources of oxidants and actions of antioxidants. Schematic of major sources of ROS 

and antioxidants that counteract the oxidative effects of this ROS. 

Figure 3-LR 

 

Cellular dose/response to oxidants. While high doses of ROS can lead to apoptosis, and 

low levels can lead to cell growth, chronic exposure to antiestrogens can lead to an 

adaptation of the cell and subsequent AE resistance. 

Figure 4-LR 

 

Thioredoxin oxidation and reduction. After oxidation, thioredoxin becomes more 

susceptible to overoxidation by H2O2 until it become irreversibly inactive. The increase 

in ROS from tamoxifen treatment can lead to the oxidation and overoxidation of 

thioredoxin, and perhaps plays a role in antiestrogen resistance.  
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Figure 5-LR 

 

Proposed role of thioredoxin in AE resistance. We propose a Trx/Jab1 interaction that 

mimics the Trx/Ask1 interaction. Oxidation (inactivation) of thioredoxin from AE-

generated ROS leads to a release of Jab1. Jab1 is then free to bind to p27, carrying it    

out of the nucleus. With p27 gone, the Cyclin E/cdk2 complex is free to forward cell 

cycle progression. 

III  INCREASING THIOREDOXIN REDUCTASE EXPRESSION OR 

REDUCING JAB1 EXPRESSION REDUCES CELL PROLIFERATION IN 

TAMOXIFEN-TREATED LCC2 CELLS 

Abstract 

Antiestrogen resistance is a major problem in breast cancer treatment. While the reactive 

oxygen species that are produced by selective estrogen receptor modulators such as 

tamoxifen are not thought to play a major role in treatment, it may have a role in the 
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development of resistance. For this study we looked at the role of thioredoxin and its 

ability to alter the oxidative state of tamoxifen-resistant (LCC2) cells. We also explored 

the Jab1/thioredoxin pathway as a way thioredoxin may alter the effects of resistance on 

the cell cycle inhibitor p27. We show that overexpressing thioredoxin reductase or 

underexpressing Jab1 inhibits growth of tamoxifen-resistant cells upon tamoxifen 

treatment. We also show that p27 phosphorylation is altered when thioredoxin reductase 

or Jab1 levels are altered. This data implies a role for antioxidants in reversing tamoxifen 

resistance. Through altering p27 phosphorylation, changing the redox nature of tamoxifen 

resistant cells may not only reverse but also may prevent tamoxifen resistance. 

 

Introduction 

A major problem with the use of antiestrogens (AE) is the prevalence of resistance, either 

at the outset of treatment or after continued use, and underlying mechanisms of this 

resistance remain unclear. Selective estrogen receptor modulator (SERM) antiestrogens 

are capable of producing ROS through their metabolic activation. It is possible that 

SERMs may play a role in estrogen receptor (ER) positive breast cancer growth arrest by 

a mechanism involving ROS accumulation. Breast cancer receiving long-term 

antiestrogen treatment appears to adapt to this increased, persistent level of ROS, leading 

to the disruption of reversible redox signaling that involves redox-sensitive phosphatases 

and kinases, such as ERK and Akt. This has downstream consequences for apoptosis, cell 

cycle progression, and cell metabolism.1, 2  
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The inactivation of the thioredoxin antioxidant family can disrupt reversible redox 

signaling pathways and cause the cell to become unresponsive to certain stimuli, or lead 

to the continued activation of cell signaling pathways such as MAPKs, and further the 

activation of transcription factors and subsequent cell proliferation.3 It may also play a 

role in making Jab1 protein available to move the cell-cycle inhibitor p27 from the 

nucleus and freeing the cyclin E / cdk2 complex to forward cell progression. Thioredoxin 

(Trx) has been found to compete with p27 for binding with Jab1 in HEK293T (human 

embryonic kidney) cells, and, through this, negatively regulate p27 degradation.4  

 

There is very little research in the area of reactive oxygen species as a mechanism for 

tamoxifen resistance. One study has looked at glutathione as an antioxidant that can 

affect the oxidation of the MKP3 phosphatase. There appear to be no studies exploring 

the role of thioredoxin as an inhibitor of antiestrogen resistance. There also are no studies 

regarding the role of Jab1 in AE resistance, however, it has been shown that there needs 

to be a certain level of p27 in breast cancer cells for the cells to respond to tamoxifen, and 

that increasing MAPK pathway activation increases p27 phosphorylation and reduces 

levels of p27, leading to tamoxifen resistance.5  

 

Thioredoxin and thioredoxin reductase (TrxR) are considered prime targets for resistance 

to chemotherapeutic drugs that utilize high levels of ROS to kill breast cancer cells, such 

as docetaxel, a potent anti-cancer drug.6 However, with drugs that do not utilize ROS as 

their main mechanism, such as tamoxifen, chronic exposure to the lower levels of ROS 

produced have not been explored as part of the mechanisms of action. With the exception 
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of the previously mentioned MKP3 study, the alteration of cellular ROS has not been 

explored as a pathway to reversing/preventing tamoxifen resistance.  

 

We suggest that chronic tamoxifen usage increases ROS and inactivates the antioxidant 

Trx family through oxidation. This oxidation can affect several signaling pathways and 

lead to cell cycle progression in the presence of tamoxifen treatment. In this study we 

overexpressed thioredoxin reductase and underexpressed Jab1 proteins to explore the role 

of each in tamoxifen resistance. Our data indicate there is a role for TrxR overexpression 

or Jab1underexpression in reversing or preventing tamoxifen resistance through alteration 

of p27 phosphorylation.  

 

Materials and methods 

Cell lines, cultures, and treatments: The tamoxifen-resistant/fulvestrant-sensitive human 

breast adenocarcinoma MCF-7-variant LCC2 cell line was propagated in phenol red-free 

Dulbecco's Modified Eagle Medium F12 (DMEM/F12) with L-Glutamine and 15mM 

HEPES (Invitrogen, Grand Island, NY; Mediatech, Manassas, VA) containing 5% (v/v) 

fetal bovine serum (Invitrogen), 100 u/mL penicillin G sodium, and 100 ug/mL 

streptomycin sulfate (Invitrogen) at 37 °C in 5% CO2 atmosphere. For experimental 

purposes, cells were seeded in 5% FBS DMEM/F12 medium and allowed to adhere 

overnight. Culture medium was replaced with DMEM/F12 with 5% charcoal/dextran-

treated FBS (Invitrogen), and allowed to grow for 48 h, followed by treatments (0.1% 

DMSO, 1 μM tamoxifen, 1 μM fulvestrant [Sigma, St. Louis, MO]) as described in the 

figure legends. For cells with erucin treatment, 10 μM erucin (LKT Laboratories, St. 
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Paul, MN) was added with the DMEM/F12 with charcoal/dextran-treated FBS for the 

initial 48 hours in order to overexpress thioredoxin reductase 1 (TrxR1). Media was then 

removed from erucin-treated cells, fresh media was added, and treatments administered.  
 

Transfection procedures: pRS shRNA vector without shRNA cassette insert, pRS HuSH 

29mer shRNA constructs against COPS5 (Jab1), and pCMV6-XL4 carrying the full-

length human TrxR2 cDNA (OriGene Technologies, Rockville, MD, USA) were purified 

using MAX Efficiency® DH5α™ Competent Cells (Invitrogen) and plasmid was 

extracted using phenol extraction and ethanol precipitation. For transfection, cells were 

seeded in 6-well plates at 70%. After overnight incubation, transfection was performed 

using Fugene (1:3) and left to incubate overnight in Optimem (Invitrogen) or DMEM/F12 

with no serum or antibiotics. The next day media was changed to growth media and cells 

were allowed to recuperate overnight. Cells were seeded the next day. HuSH 29-mer non-

effective (scrambled) pRS vector (Origene) was tested and showed similar actions to the 

empty plasmid vector (data not shown). 

 

Antibodies: All antibodies used were purchased from Santa Cruz (Santa Cruz, CA), 

except the following: GAPDH (Sigma), β-actin (Sigma), and p27 phosphorylated at T157 

(Abcam, Cambridge, MA). 

 

Soft agar colony formation assay: Cells were seeded at a concentration of 500 cells/well 

in 0.25% agar on a 0.5% agar base using 5% FBS in 48-well plates. Cells were fed 2 
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times per week with treatments as described in figure legends, and colonies were counted 

on days 16 and 18. Each assay was repeated three times with triplicate treatments. 

 

BrdU cell proliferation assay: Cells were grown (2500 cells/well) in 96-well plates in 

DMEM/F12 with 5% charcoal/dextran-treated FBS for 48 h (certain wells also including 

10 μM erucin), followed by treatments in DMEM/F12 with charcoal/dextran-treated FBS 

as described in the figure legends for 48 h. A colorimetric BrdU cell proliferation assay 

was performed according to the manufacturer’s instructions (Roche, Indianapolis, IN). 

After incubation with treatments, cells were labeled for 24 hours at 37° C in 5% CO2. 

After 30 minutes of fixation and denaturing (FixDenat), cells were incubated with anti-

BrdU-peroxidase antibody (1:1000) for 90 minutes. Cells were washed three times with 

PBS, and the final substrate was added. Sample measurements were taken with Synergy 

HT (BioTek, Winooski, VT) plate reader at 370 nm (reference λ at 492 nm) at time points 

from 5-30 minutes at 5-minute intervals.  

 

Redox Western: The procedure for redox western for thioredoxin has been described in 

detail.7 Briefly, LCC2 cells were seeded at either 400,000 / well (6 well plate) or 1 x 

106/plate (100 mm plates). After overnight incubation, media with charcoal/dextran 

treated FBS was added to all cells, with 10 μM erucin added to specified wells/plates. 

After 48 hours, cells were treated as noted for 30 minutes. After washing twice with cold 

PBS, cells were scraped into 1.5 mL tubes with G lysis buffer with 50 mM iodoacetic 

acid. Samples were incubated for 30 minutes at 37°. Lysate was sonicated briefly, then 

centrifuged for 3 minutes at 2000 x g at room temperature. Lysate was transferred to new 
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tubes, and a BCA assay was performed to quantitate proteins. 50 μg was loaded in a 

native gel (15%) under non-reducing conditions and run for 90 minutes at 150V in native 

running buffer. Proteins were transferred to PVDF (GE Healthcare), blocked with 5% 

BSA, and incubated in anti-Trx antibody overnight. An SDS-PAGE (12%) was also run 

with the same lysate for loading control GAPDH or B-actin. Blots were developed using 

either a film developer (Konica Minolta) or VersaDoc imaging system using 

QuantityOne software (BioRad). 

 

Redox potential (Eh) of Trx1 was calculated using the Nernst equation through the use of 

the reduced and oxidized bands of thioredoxin. The equation Eh (mV, redox potential) = 

Eo (midpoint potential) + (RT/nF) ln(Trx1Ox /Trx1Red) was used, where Eo = -240 mV 

for Trx1 at pH 7.0 and 25°C, 30=ln and RT/nF. This equation was calculated previously 

by Go and Jones by using values [R, universal gas constant; T, absolute temperature; n, 

number of electrons; F, Faraday constant]). The ratio of oxidized and reduced Trx1 (Trx1 

Ox/Trx1 Red) band intensities was taken for each sample and used to calculate 

ln(Trx1Ox /Trx1Red). Thus, the final equation (as calculated by Go and Jones, 2009) 

reduces to Eh, Trx1 = −240 mV + 30 × ln(ratio of Trx1Ox and Trx1Red). 

Immunoblot: Cells were seeded in 100mm plates at 1 x 106 cells in DMEM/F12 with 5% 

charcoal/dextran-treated FBS and allowed to grow for 48 hours. Cells were then treated 

with DMSO and tamoxifen for 48 hrs. Cells were rinsed with cold PBS, lysed (20mM 

HEPES (pH 7.2), 50 mM NaCl, 0.5% Triton X-100, 0.1mM Na3VO4, 1mM NaF, 1x 

complete protease inhibitor (Roche)), and proteins isolated. Quantification of proteins 

was performed using the Pierce BCA Protein Assay Kit (Pierce, Rockford, IL), and lysate 
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was boiled for 5 minutes at 95-100° C. Acrylamide gel (12%) was loaded with 100 μg 

protein and run for 2.5 h at 150 volts. Proteins were transferred to PVDF and blots were 

blocked with either 5% milk or blocking buffer for phosphorylated proteins (1% milk, 

1% BSA, 50 mM NaF) in TBS-T. Blots were then incubated with anti-p27, anti-p27 

(T157), and anti-p27 (T187) (Santa Cruz, US) antibodies overnight. Secondary antibodies 

were added for one hour, and blots were imaged using either a film developer (Konica 

Minolta) or VersaDoc imaging system using QuantityOne software (BioRad). 

 

Co-immunoprecipitation: Cells were seeded in 100mm plates at 1 x 106 cells in 

DMEM/F12 with 5 % charcoal/dextran-treated FBS and allowed to grow for 48 h. Cells 

were then treated with DMSO and tamoxifen for 48 h. Cells were rinsed with cold PBS, 

lysed (NP-40 buffer, 1mM NaF, 1x complete protease inhibitor (Roche)), and proteins 

isolated. Quantification of proteins was performed using the Pierce BCA kit. 1000 μg 

lysate was precleared with 30 uL Protein A Agarose (Invitrogen) for 30 minutes. Lysate 

was separated from agarose beads, and incubated overnight with appropriate antibody (2 

ug/mL). Lysates were then incubated for 90 minutes with 50 uL Agarose A slurry, 

centrifuged, then supernatant removed. Beads were washed 3 times, and then 60 uL 2.5x 

loading buffer was added. Lysate was boiled for 10 minutes at 95-100° C, 30 uL was 

loaded in each of 2 acrylamide gels (12 and 15%), and run for 2.5 h at 150 volts. Proteins 

were transferred to PVDF and blots were blocked with 5% milk in TBS-T or 5% BSA in 

TBS-T (Trx). Blots were then incubated with anti-Jab1, anti-p27, or anti-Trx) antibodies 

overnight. After washing, secondary antibodies were added (Santa Cruz) for 1 hour. 

Images were captured using either Kodak Film or Versadoc digital imaging. 
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Results 

Upregulation of TrxR through Erucin treatment decreases proliferation and 

tumorigenicity of tamoxifen treated tamoxifen-resistant breast cancer cells 

If indeed thioredoxin oxidation is playing a role in tamoxifen resistance, we would expect 

an increase in thioredoxin reductase (and the subsequent reduction of oxidized 

thioredoxin) to decrease tamoxifen-resistant cell proliferation after tamoxifen treatment. 

We first wanted to check the validity of this hypothesis on tamoxifen-resistant cells, and 

performed a soft agar anchorage-independence assay. Anchorage-independence is a 

hallmark of tumor growth, so we used this assay to see if the overexpression of 

thioredoxin reductase 1 or 2 would create an atmosphere of tamoxifen sensitivity. We 

transfected LCC2 cells to overexpress TrxR2 or co-treated LCC2 cells with erucin to 

increase TrxR1. Cells were treated for over 2 weeks, and colonies counted on days 16 

and 18. Figure 1 shows the outcome of this experiment as representative pictures (A, B, 

C) and graphic representation of colony counts (D, E, F). We found that the 

overexpression of TrxR1 and TrxR2 each significantly decreased the number of colonies 

that formed after tamoxifen treatments.  

 

Jab1 aids in removing p27 from its inhibitory position in the nucleus. We would expect 

an underexpression of Jab1 would increase available p27 and lead to the inhibition of 

tumor growth in tamoxifen treated resistance cells. We found that indeed the 

underexpression of Jab1 through plasmid transfection also leads to significantly 

decreased colony formation. 
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We also looked at the DNA synthesis (cell proliferation) of these cells through the use of 

the BrdU incorporation assay. After incubating our cells with media with 

charcoal/dextran treated FBS, we treated the cells as noted for another 48 hours. We then 

labeled the cells for 24 hours with BrdU, and performed the BrdU assay (Roche). The 

overexpression of TrxR2 (Figure 2A), treatment of cells with erucin (overexpression of 

TrxR1, Figure 2B), and the underexpression of Jab1 (Figure 2C) show significant (p < 

0.05) decreases in DNA synthesis in LCC2 cells. 

 

Upregulation of TrxR and TrxR2 through isothiocyanate treatment and plasmid 

overexpression increases Trx and Trx2 expression in LCC2 cells 

It has been seen in HepG2 and undifferentiated Caco-2 cells that an increase in TrxR 

expression leads to an increase in expression of Trx,8 and the dietary isothiocyanates 

sulforaphane, erucin, and iberin have been found to induce thioredoxin reductase in 

MCF-7 cells.9 Our hypothesis is based on an overexpression of thioredoxin and/or 

thioredoxin 2, and so to confirm this increase in protein expression in tamoxifen-resistant 

LCC2 cells and to look at the expression of Trx2 after TrxR2 overexpression we 

performed a western blot. Figure 3A shows plasmid overexpression of TrxR2 leads to an 

increase in Trx2. Figure 3B shows the overexpression of thioredoxin reductase through 

the use of the isothiocyanate sulforaphane, and the subsequent increase in Trx.  

 

It is not only necessary to have more thioredoxin, but to also have more reduced 

thioredoxin to understand the validity of our hypothesis. As such, we also explored if the 

overexpression of thioredoxin reductase 1 and 2 led to a decrease in oxidized thioredoxin.  
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Tamoxifen increases ROS in LCC2 cells, and leads to an increase in oxidized 

thioredoxin in MCF-7 cells  

Tamoxifen has been shown to increase ROS in cells as estrogen does. We have 

previously shown that estrogen increases the oxidation of thioredoxin in MCF-7 cells. 

We wanted to explore the effect of tamoxifen on thioredoxin oxidation in breast cancer 

cells. Figure 4A shows that overexpression of TrxR2 increases levels of reduced 

thioredoxin, as does erucin treatment (Figure 4B). These data show that the reduction of 

oxidized thioredoxin occurs with the overexpression of TrxR2.  

 

Isothiocyanates are able to oxidize TrxR and glutathione reductase.10 Here we see that 

while the use of the isothiocyanate erucin increases levels of oxidized Trx, it also 

significantly increases the amount in reduced (and thus active) Trx (Figure 4B). Figure 

4C shows the redox potential as computed using the Nernst equation as noted in the 

Materials and Methods section. While the use of isothiocyanates decreases the redox 

potential due to the ratio of oxidized to reduced thioredoxin, the goal of this experiment 

was to increase the amount of reduced thioredoxin available in the cell, and this was 

achieved with isothiocyanate use. 

 

We hypothesize that the oxidation and subsequent inactivation of thioredoxin may lead to 

cell cycle signaling that promotes tamoxifen resistance. If thioredoxin is not reducing 

other proteins, these proteins may be “switched on” or “switched off” and can cause cell 

proliferation even when treated with tamoxifen. When thioredoxin is oxidized, it may not 

be able to bind to the Jab1 protein, as it has been shown to do.4 This would leave Jab1 
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free to bind to bind to p27, and carry it out of the nucleus, inhibiting p27 from controlling 

cell growth. 

 

Increased TrxR 1 and 2 increases Jab1/Trx binding 

In a variety of cancer cells, Jab1 has been negatively associated with p27 expression.11 

Jab1 has been implicated as a major cause of the translocation of p27 from the nucleus to 

the cytoplasm.12 Jab1 is thought to play a role in accelerating p27 degradation through the 

ubiquitin/proteosome pathway. Alternatively, Trx has been found to compete with p27 

for binding with Jab1 in HEK293T (human embryonic kidney) cells, and, through this, 

negatively regulate p27 degradation.4 Because of this finding, we wanted to explore the 

possibility that Trx may bind with Jab1 in breast cancer cells, and to see if altering Trx 

oxidative state would also alter Jab1/p27 binding. We performed a co-

immunoprecipitation, pulling down the Jab1 protein and probing it for Trx and for p27. 

We treated LCC2 cells as before, then incubated 1mg of protein with 2 μg Jab1 antibody 

overnight and followed the protocol as noted in Materials and Methods. Figures 5A     

and 5B show binding between Jab1 and Trx1, and figures 5C and 5D show binding 

between Jab1 and p27 after overexpression of TrxR 1 and 2. When cells are pretreated 

with isothiocyanates, an increase in binding of Jab1 and Trx occurs after treatment     

with tamoxifen. 

 

We also looked at Jab1 binding with p27, as we would expect to see Jab1/p27 binding 

decrease as Jab1/Trx binding increases. While we saw a drop in Jab1/p27 binding with 

the use of isothiocyanates, we did not see a significant decrease in Jab1/p27 binding as 



 

95 

we expected when tamoxifen treatment was added. Thus we do not feel the binding of 

p27 to Jab1 is competitive with binding of Trx to Jab1. This is the first time, however, 

that Trx binding to Jab1 is shown in breast cancer cells 

 

TrxR1 and 2 overexpression and Jab1 underexpression decrease p27 

phosphorylation at T187. Increased TrxR 1 but not TrxR2 or decreased Jab1 

decrease p27 phosphorylation at T157 

p27 is a known cdk2 inhibitor. When p27 is phosphorylated and disconnects from cdk2, 

cdk2 is free to phosphorylate retinoblastoma, which can then activate the E2F gene and 

lead to cell proliferation.13, 14 We explored the phosphorylation of p27 at the T187 and 

T157 sites. The T187 site is phosphorylated by cdk2 once other sources (Src) 

phosphorylate p27 at T74 and T88.15 T77 and T88 phosphorylation weaken the p27/cdk2 

bond, and encourage T187 phosphorylation. Once p27 is phosphorylated at these sites, it 

becomes unbound from cdk2, and can be ubiquinated and subsequently degraded by the 

26S proteosome.13, 16 We hypothesize that it is at this point Jab1 can bind to p27 and aid 

in p27 degradation. We found that p27 is phosphorylated at 187 in LCC2 cells, but when 

TrxR 1 and 2 are overexpressed or Jab1 is underexpressed, T187 phosphorylation 

decreases. (Figures 6A and 6B) 

 

The T157 phosphorylation site prohibits p27 translocation into the nucleus. As such, p27 

is not available for cdk2/cyclin E binding, and cannot perform its inhibitory role. It also is 

available for and promotes cyclin D1/cdk4 assembly, which forwards cell cycle 

progression.17 Here we show that overexpression of thioredoxin reductase through 
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treatment of cells with erucin decreases phosphorylation of p27 at T157. This decrease is 

not seen when thioredoxin reductase 2 is overexpressed or Jab1 is underexpressed. 

(Figures 6A and 6B) 

 

Discussion 

As mentioned earlier, most studies on Trx and resistance to breast cancer treatment focus 

on Trx’s anti-apoptotic role in high ROS-producing chemotherapies. For example, 

response to docetaxel, a potent anti-cancer drug used with breast cancer patients, is linked 

to thioredoxin,6 and Trx expression is correlated with platinum-based drug resistance.18  

 

While these studies show the role of Trx as an agonist for chemotherapeutic drug 

resistance, we suggest that the role Trx plays in tamoxifen-treated breast cancer is 

affected by the overoxidation of Trx by the chronic low to medium levels of tamoxifen-

induced ROS, and that this can play a role in anti-estrogen resistance. We suggest that the 

oxidative state of cells treated with anti-estrogens will add a constant state of oxidative 

stress, and will create an adaptation in the cellular mechanism that leads to resistance to 

antiestrogens, namely through an oxidation of thioredoxin.  

 

We also suggest that altering Trx oxidation may alter tamoxifen-resistant cells’ reactions 

to tamoxifen, and lead to a more sensitive cell. We found that reducing Trx through an 

increase in TrxR did lead to higher levels of growth arrest and fewer tumor formations 

(soft agar) in tamoxifen-treated cells. 
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Tamoxifen is known to lead to an increase in ROS.19 Here we show that     

overexpression of TrxR in tamoxifen treated resistant cells can reduce the amount of 

oxidized thioredoxin. 

 

The role of Jab1 in tamoxifen resistance has not been explored. While Jab1 has been 

shown to bind to both p27 and Trx in HEK cells,4 this association has not been shown 

elsewhere. Here we show that altering the redox state of Trx leads to Jab1/Trx binding 

during tamoxifen treatment. We were unable to show a decrease in Jab1/p27 binding in 

these experiments.  

 

The function of p27 is also important when looking at tamoxifen resistance. While we 

show that p27 levels rise when TrxR is overexpressed, more importantly we also show 

decreased levels of phosphorylated p27 at T157 and T187. This implies that the increased 

p27 may be able to function properly in its cell cycle inhibitory role. In total, our results 

show a possible role for thioredoxin and for Jab1 in the reversal of tamoxifen resistance. 

When Trx is reduced through overexpression of TrxR, or when Jab1 levels are decreased, 

we show changes in tamoxifen-resistant LCC2 breast cancer cells that imply a shift of the 

cell towards tamoxifen sensitivity.  
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Figure 1-LCC2 
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D 

 

Upregulation of cellular and mitochondrial thioredoxin reductase reduced the 

formation of anchorage–independent colonies in tamoxifen–resistant cells. Wild type 

and cells overexpressing TrxR 1 and 2 were treated with either 0.1% DMSO or 1 μM 

tamoxifen and 1 μM fulvestrant (positive control) in soft agar for over 14 days. (A) 

Tamoxifen-resistant LCC2 cells were transfected with pCMV6-XL4 plasmid to 

overexpress mitochondrial thioredoxin reductase 2. Representative pictures of colonies 

with transfections and treatments as noted. (B) LCC2 cells were treated with 10 μM 

Erucin as well as other treatments as noted. (D & E) Graphic representation of colony 

counts with treatments as noted. Data shown are representative of minimum three 

independent experiments and are presented as number of colonies +/- SD. Values that are 

significantly different from empty vector control (TrxR2 overexpression) or DMSO 

(erucin treatment) are marked with an asterisk (*), and those significantly different from 

tamoxifen treatment are marked with two asterisks (**). 
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Downregulation of Jab1 reduced the formation of anchorage–independent colonies 

in tamoxifen-treated tamoxifen-resistant LCC2 cells. Wild type LCC2 cells and LCC2 

cells underexpressing Jab1 were treated with either 0.1% DMSO or 1 μM tamoxifen in 

soft agar for over 14 days. (C) LCC2 cells were transfected with HuSH purified pRS 

plasmid to underexpress Jab1. Representative pictures of colonies with transfections and 

treatments as noted. (F) Graphic representation of colony counts with treatments as noted. 

Data shown are representative of three independent experiments. Values that are 

significantly different from empty vector control (TrxR2 overexpression) or DMSO 

(Erucin treatment) are marked with an asterisk (*), and those significantly different from 

tamoxifen treatment are marked with two asterisks (**). Data are presented as number of 

colonies +/- SD. Values that are significantly different (p<0.05) from empty vector 

control are marked with an asterisk (*).  

 
Figure 2-LCC2 
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Upregulation of cellular and mitochondrial thioredoxin reductase decreased DNA 

synthesis in tamoxifen-treated tamoxifen-resistant LCC2 cells. Cells were treated to 

overexpress thioredoxin reductase, then treated with either 0.1% DMSO or 1 μM 

tamoxifen and 1 μM fulvestrant (positive control) for 48 hours. (A) Tamoxifen-resistant 

LCC2 cells were transfected with pCMV6-XL4 plasmid to overexpress mitochondrial 

thioredoxin reductase 2, then treated as noted in Materials and Methods section. (B) 

LCC2 cells were treated with 10 μM Erucin for 48 hours in serum-free media. 

Afterwards, starvation media was removed, fresh serum-free media added, and cells were 

treated as noted. Data shown are representative of minimum three independent 

experiments and are presented as absorbance reading +/- SD. Values that are significantly 

different from empty vector control (TrxR2 overexpression) or DMSO (erucin treatment) 

are marked with an asterisk (*), and those significantly different from tamoxifen 

treatment are marked with two asterisks (**). 

 

Downregulation of Jab1 also decreases DNA synthesis in tamoxifen-treated 

tamoxifen-resistant LCC2 cells. (C) Cells were treated to underexpress Jab1, incubated 

in serum-free media 48 hours, then treated with either 0.1% DMSO, 1 μM tamoxifen, or 

1 μM fulvestrant (positive control) for 48 hours. Data shown are representative of 

minimum three independent experiments and are presented as absorbance +/- SD. Values 

that are significantly different from empty vector control are marked with an asterisk (*). 
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Figure 3-LCC2 

 

Upregulation of TrxR2 and TrxR2 with plasmid overexpression or isothiocyanate 

treatment increases Trx2 and Trx expression in addition to TrxR2 and TrxR 

expression in LCC2 cells. (A) LCC2 cells were transfected with plasmid to overexpress 

TrxR2. Treatments were administered as noted in Materials and Methods section. (B) 

LCC2 cells were serum starved 48 hours during which specified cells were treated with 

10 μM sulforaphane. After starvation, media was replaced with fresh serum-free media, 

and cells were treated as noted. Cells were collected after 48 hours for protein analysis.  

Figure 4-LCC2 
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Thioredoxin oxidation in tamoxifen resistant cells may be reversible. (A) Tamoxifen-

resistant LCC2 cells were transfected with pCMV6-XL4 plasmid to overexpress 

mitochondrial thioredoxin reductase 2, and (B) LCC2 cells were treated with 10 μM 

erucin for 48 hours in serum-free media. Cells were then exposed to either 0.1% DMSO 

or 1 μM tamoxifen for 30 minutes. Cells were lysed and lysate run through redox western 

protocol as noted in Materials and Methods section. Data shown are representative, and 

are presented as (C) redox potential of thioredoxin. 

Figure 5-LCC2 
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Upregulation of cellular and mitochondrial thioredoxin reductase increases Jab1/ 

Trx binding and decrease Jab1 p27 binding in tamoxifen-treated tamoxifen-

resistant LCC2 cells. Cells were treated to overexpress thioredoxin reductase, then 

treated with either 0.1% DMSO or 1 μM tamoxifen for 48 hours. LCC2 cells 

overexpressing mitochondrial thioredoxin reductase by pretreatment with 10 μM 

isothiocyanate for 48 hours in serum-free media were harvested for co-

immunoprecipitation after 48 hours of treatment. (A) After immunoprecipitation of Jab1 

with anti-Jab1 antibody, precipitated proteins were probed with anti-Trx antibody. Trx 

binding was seen as greatly enhanced in sulforaphane pretreated/tamoxifen treated cells. 

(B) After immunoprecipitation of Jab1, precipitated proteins were probed with anti-p27 

antibody. Jab1/p27 binding was decreased as compared to cells without erucin pretreat.   

Figure 6-LCC2 
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      C 

 

Overexpression of TrxR1 through erucin treatment decreases p27 phosphorylation 

at T157 and T187. LCC2 cells were serum starved 48 hours during which specified cells 

were treated with 10 μM erucin. After starvation, media was replaced with fresh serum-

free media, and cells were treated as noted. Cells were collected after 48 hours of 

treatment for protein analysis. LCC2 cells were treated with 0.1% DMSO or 1 μM 

tamoxifen. (A) Expression of phosphorylated p27 at T157 and T187 before and after 

overexpression of TrxR2 and TrxR1 through erucin treatment. (B) Quantification of 

protein expression (T157). Phosphorylated/total p27 ratio was normalized to β-actin. (C) 

Quantification of protein expression (T187). Phosphorylated/total p27 ratio was 

normalized to β-actin. Data shown are representative of two independent experiments and 

are presented as protein expression amounts.  

 

Underexpression of Jab1 decreases p27 phosphorylation at T187. LCC2 cells were 

serum starved 48 hours, then media replaced with fresh serum-free media, and cells 

treated with 0.1% DMSO or 1 μM tamoxifen. Cells were collected after 48 hours of 

treatment for protein analysis. (A) Expression of phosphorylated p27 at T157 and T187 
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with and without underexpression of Jab1. (B) Quantification of protein expression 

(T157). Phosphorylated/total p27 ratio was normalized to β-actin. (C) Quantification of 

protein expression (T187). Data shown are representative of two independent 

experiments and are presented as protein expression amounts.  

 

IV INCREASED THIOREDOXIN REDUCTASE OR DECREASED JAB1 

LEADS TO DECREASED GROWTH IN BREAST CANCER CELLS  

UPON ESTROGEN TREATMENT THROUGH DECREASED AKT AND  

P27 PHOSPHORYLATION 

 

Abstract 

It is known that estrogen increases ROS in breast cancer cells. Thioredoxin, an enzymatic 

antioxidant, reduces proteins that have been oxidized by ROS. We wanted to show that 

mild oxidants such as estrogen could oxidize thioredoxin, causing it to be inactive and 

unable to reduce other proteins. This alteration in an antioxidant could lead to furthering 

cell proliferation by changing the redox state of the cell and leading to an increase in cell 

cycle pathways that lead to proliferation, such as the PI3K pathway. This increase in 

proliferation signaling could be a pathway for resistance to treatments such as tamoxifen, 

which has also been shown to produce ROS in low to medium doses. For this study we 

looked at how overexpressing thioredoxin reductase or underexpressing Jab1 affects 

estrogen-mediated cell proliferation in the breast cancer epithelial cell line MCF-7, as 

well as the effects of oxidized thioredoxin on Akt and p27 phosphorylation. We show 

that estrogen oxidizes thioredoxin, and that this is reversed with the overexpression of 
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thioredoxin reductase. We also show that thioredoxin reductase overexpression in MCF-7 

cells decreases Akt phosphorylation, increases p27 expression, and decreases p27 

phosphorylation. This data implies a role for antioxidants in altering estrogen-mediated 

growth of breast cancer cells. As we have already shown that it plays a role in altering 

tamoxifen resistance in breast cancer cells, this data may imply a role for thioredoxin 

reductase in preventing tamoxifen resistance. 

 

Introduction 

Estrogen actions with estrogen receptors are well known to promote pre-neoplastic and 

malignant growth. The estrogen / estrogen receptor combination can directly interact with 

the estrogen response element, or can act through a non-genomic pathway.1 Estrogen 

mechanisms in breast cancer cells have more recently included the production of 

intracellular ROS, leading to cell signaling and growth of estrogen-dependent breast 

cancer cells.2 3 At moderate levels, ROS can use reversible protein oxidation to regulate 

signaling pathways, most especially in PTPs.4 An important role of PTPs and PTKs is 

their ability to turn on and off the action of the protein on which they are exerting their 

influence.5 Structural changes to PTPs are induced by ROS, and the altered protein 

conformation leads to signaling cascade upregulation.6 Oxidation of PTPs can be 

reversed by thiol compounds7 such as thioredoxin (Trx), a 12 kDa disulphide reducing 

enzyme8, 9 that is induced by stressors such as 17β-estradiol.10  

The redox state of Trx is important to its function, and as such, the role of Trx reductase 

(TrxR) is key. In both Trx and TrxR there are cysteine molecules that are key to redox 

regulation.8, 9 Trx reductases are NADPH-dependent, and they catalyze disulfide 
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reduction at thioredoxin active sites. In turn, reduced thioredoxins catalyze the movement 

of active site dithiols to a disulfide state. This process has given the thioredoxin family a 

crucial role in cell-growth and apoptosis, as it is through this process they can regulate 

enzymes such as ribonucleotide reductase, peroxiredoxins and transcription factors.11  

 

The PTP PTEN is a phosphoinositol 3’ kinase (PI3K) inhibitor. A downstream molecule 

in the PI3K pathway, protein kinase B (Akt), can phosphorylate p27 at T157 and inhibit 

its import to the nucleus, prohibiting p27 from inhibiting cell proliferation.12 

Overexpression of the PTEN gene increases p27 levels, decreases cyclin D1 levels, 

inhibits the phosphorylation of Akt, and through these mechanisms inhibits cell growth in 

MCF-7 cells.13 The tumor suppressor PTEN can be reduced by Trx.14  

 

Several studies have explored the link between estrogen, estrogen receptor (ER) and 

thioredoxin. For example, the breast cancer cell line ZR-75-1 has been used to show that 

H2O2 treatment leads to a decrease in levels of pS2, a gene induced by estrogen. When, 

however, cells were transfected with thioredoxin, the expression of pS2 was restored in 

the H2O2-treated cells.15 Another study has shown that Trx expression may be correlated 

with better prognosis in ER+ and p53-intact patients.16 In the mouse uterus, estrogen 

treatment increases Trx, Trx2, and TrxR expression, as evidenced by mRNA levels.17 In a 

study regarding estrogen and congestive heart failure, subcutaneous, slow release pellets 

of estrogen (0.5 mg/60 day release) offered antioxidative properties. These properties 

were also associated with an increase in the expression of Trx, TrxR, and TrxR activity. 

In this form, estrogen also reduced ASK-1 activation, JNK activation, and p38 MAPK, 
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which can all be related to the increase in availability of thioredoxin. These data may 

show that thioredoxin could be conferring the antioxidative properties that are being 

linked to estrogen.18  

 

In considering breast cancer and its treatment, it is important to also explore the cell 

signaling pathways that occur due to estrogen exposure in ER+ cells, as well as those 

initiated by the treatments. While both Trx mRNA and protein are increased with 17β-

estradiol treatment, this effect is suppressed when tamoxifen treatment is given.10 Both 

estrogen and tamoxifen have been shown to increase levels of ROS in breast cancer 

cells.19 ROS can initiate signal transduction cascades that have been shown to lead to cell 

proliferation.3 In this study, we explore the role thioredoxin may have in reversing 

estrogen-mediated cell signaling. In particular, we look at the effect of oxidized Trx on 

PTEN function, as well as the downstream targets of Akt and phosphorylated p27. We 

find that altering the oxidative state of breast cancer cells with thioredoxin reductase 

leads to a decrease in cell growth through decreasing Akt phosphorylation, and 

subsequently decreasing phosphorylation of p27 at T157. 

 

Materials and methods  

Cell lines and cultures: Human breast adenocarcinoma MCF-7 cells were propagated in 

phenol red free Dulbecco's Modified Eagle Medium/F12 (DMEM/F12) with L-Glutamine 

and 15mM HEPES (Invitrogen, Grand Island, NY; Mediatech, Manassas, VA) containing 

10% (v/v) fetal bovine serum (Invitrogen; Atlanta Biologicals Lawrenceville, GA),  
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100 u/mL penicillin G sodium, and 100 ug/mL streptomycin sulfate (Invitrogen) at 37 °C 

in 5% CO2 atmosphere.  

 

Antibodies: All antibodies used were purchased from Santa Cruz (Santa Cruz, CA), 

except the following: GAPDH (Sigma), β-actin (Sigma), and p27 phosphorylated at T157 

(Abcam, Cambridge, MA). 

 

Chemicals and experimental protocol: Erucin was purchased from LKT Laboratories (St. 

Paul, MN). DMSO and 17β-estradiol were purchased from Sigma (St. Louis, MO). For 

experimental purposes, cells were seeded in 10% FBS DMEM/F12 medium and allowed 

to adhere overnight. Culture medium was replaced with serum-free DMEM/F12 and 

allowed to grow for 48 h (starvation), followed by treatments as described in figure 

legends. For cells with erucin treatment, 10 μM erucin was added with the DMEM/F12 

without FBS for the starvation period of 48 h in order to overexpress thioredoxin 

reductase 1 (TrxR1). Media with erucin was then removed, fresh serum-free media added 

without erucin, and treatments added. 

 

Transfection procedures: pRS shRNA vector without shRNA cassette insert, pRS HuSH 

29mer shRNA constructs against COPS5 (Jab1), and pCMV6-XL4 carrying the full-

length human TrxR2 cDNA (OriGene Technologies, Rockville, MD, USA) were purified 

using MAX Efficiency® DH5α™ Competent Cells (Invitrogen) and plasmid was 

extracted using phenol extraction and ethanol precipitation. For transfection, cells were 

seeded in 6-well plates at 70%. After overnight incubation, transfection was performed 
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using Fugene (1:3) (Roche, Indianapolis, IN) and left to incubate overnight in Optimem 

(Invitrogen) or DMEM/F12 without serum or antibiotics. The next day media was 

changed to growth media, and cells were seeded the following day. HuSH 29-mer non-ef-

fective (scrambled) pRS vector (Origene) was tested and showed similar actions to the 

empty plasmid vector (data not shown). 

 

Soft agar colony formation assay: Cells were seeded at a concentration of 500 cells/well 

(48-well plates) in 0.25% agarose on a 0.5% agarose base in DMEM/F12 with 10% FBS. 

Cells were fed two times per week with treatments as described in figure legends, and 

colonies were counted on day 16. Each assay was performed with triplicate treatments. 

 

BrdU cell proliferation assay: Cells were seeded at 2500 cells/well in 96-well plates in 

serum-free DMEM/F12 for 48 h (certain wells also including 10 μM erucin as described 

earlier). Treatments were added as described in figure legends for 48 h. A colorimetric 

BrdU cell proliferation assay was performed according to the manufacturer’s instructions 

(Roche). After incubation, the cells were labeled with BrdU for 24 hours at 37° C in 5% 

CO2. After 30 m of fixation/denaturing, cells were incubated with anti-BrdU-peroxidase 

antibody (1:1000) for 90 m. Cells were then washed three times with 1x PBS, and the 

final substrate added. The absorbance was measured at a wavelength of 370 nm and a 

reference wavelength of 492 nm at time points from 5-30 m at 5 m intervals.  

Immunoblot: Cells were seeded in 100mm plates at 1 x106 cells in 10% FBS DMEM/F12 

and allowed to grow overnight. Cells were then starved for 48 hours, then treated with 

DMSO and 17β-estradiol (E2) for 48 h. Cells were then rinsed with cold PBS, lysed (150 
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mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS (sodium dodecyl sulphate), 

50 mM Tris, pH 8.0 0.2mM Na3VO4, 50mM NaF, 1x complete protease inhibitor 

(Roche)), and proteins isolated. Quantification of proteins was performed using the BCA 

assay (Pierce, Rockford, IL), and lysate was boiled for 5 m at 95-100° C. Acrylamide gel 

(12%) was loaded with 100 μg protein, and run for 2.5 h at 150 volts. Proteins were 

transferred to PVDF, and blots were blocked with either 5% milk or blocking buffer for 

phosphorylated proteins (1% milk, 1% BSA, 50 mM NaF) in TBS-T. Blots were then 

incubated with primary antibodies overnight. Secondary antibodies were added for one 

hour, and blots were developed using either a film developer (Konica Minolta) or 

VersaDoc imaging system using QuantityOne software (BioRad). ImageJ software (NIH) 

was used to quantify the protein expression through densitometry. This software was 

used for all assays that required densitometry. 

 

PTEN Redox Western: Cells were seeded in 6 well plates at 400,000 cells / well in 10% 

FBS DMEM/F12 and allowed to grow overnight. Cells were then grown in DMEM/F12 

without serum for 48 h, and then treated with DMSO and 17β-estradiol for 30 m in 1 mL 

of starvation media. Cells were scraped in the media and treatment, and placed in 1.5 mL 

tube containing 200 uL of ice-cold 50% trichloroacetic acid. Cells and media were 

sonicated briefly, and then centrifuged at 2000 x g for 5 m. Supernatant was removed, 

and the pellet was washed with acetone. After centrifuging again, supernatant was 

removed, and 200 uL lysis buffer was added (100 mm Tris-HCl (pH 6.8), 2% SDS, 40 

mM NEM). 30-50 uL of lysate was run under non-reducing conditions using SDS-PAGE.  
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Thioredoxin Redox Western: The procedure for redox western for thioredoxin has been 

described in detail.20 Briefly, MCF-7 cells were seeded at either 400,000 cells / well (6 

well plate) or 1 x 106  cells/plate (100 mm plates). After overnight incubation, serum-free 

media was added to all wells, with 10 μM erucin added to certain wells/plates. After 48 h, 

cells were treated as noted in figures for 30 m. After washing 2x with PBS, G lysis buffer 

with 50 mM iodoacetic acid was added and cells were scraped into 1.5 mL tubes. 

Samples were incubated for 30 m at 37°. Lysate was sonicated briefly, then centrifuged 

for 3 m at 2000 x g at room temperature. Lysate was transferred to new tubes, and BCA 

assay was performed to quantitate the proteins. 50 μg was loaded in a native separating 

gel (15%) under non-reducing conditions and run for 90 m at 150V in native running 

buffer. Proteins were transferred to PVDF, incubated in 5% BSA for 1 h, then incubated 

in anti-Trx antibody overnight. An SDS-PAGE (12%) was also run with the same lysate 

for loading control GAPDH or B-actin. Films or Versadoc images were subjected to 

densitometry using ImageJ software.  

 

Redox potential (Eh) of Trx1 was calculated using the Nernst equation through the use of 

the reduced and oxidized bands of thioredoxin. The equation  

Eh (mV, redox potential) = Eo (midpoint potential) + (RT/nF) ln(Trx1Ox /Trx1Red) was 

used, where Eo = -240 mV for Trx1 at pH 7.0 and 25°C, 30=ln and RT/nF (this was 

calculated previously by Go and Jones by using values [R, universal gas constant; T, 

absolute temperature; n, number of electrons; F, Faraday constant]). The ratio of oxidized 

and reduced Trx1 bands (Trx1 Ox/Trx1 Red) band intensities were taken for each sample  
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and used to calculate ln(Trx1Ox /Trx1Red). Thus, the final equation (as calculated by Go 

and Jones) reduces to Eh, Trx1 = −240 mV + 30 × ln(ratio of Trx1Ox and Trx1Red).  

 

Results 

Upregulation of TrxR or downregulation of Jab1 suppresses anchorage-

independent growth and DNA synthesis in estrogen-treated MCF-7 cells 

Estrogen is known to lead to cell growth in MCF-7 cells. Our lab has shown the induction 

of mitochondrial ROS (mtROS) in estrogen-dependent breast cancer cells upon estrogen 

treatment. We have also shown the effect of antioxidants, such as ebselen and NAC, on 

reducing these mtROS, and subsequently on the reduction of estrogen-mediated growth 

in MCF-7 cells. For these experiments, we wanted to explore the role of thioredoxin 

reductase 1 and 2 on estrogen-mediated growth in MCF-7 cells. 

 

Anchorage-independent growth is a hallmark of tumor cells. As such, we performed a 

colony formation assay in soft agar with MCF-7 cells, MCF-7 cells transfected with Jab1 

shRNA to underexpress Jab1, MCF-7 cells transfected to overexpress TrxR2, and MCF-7 

cells that were co-treated with erucin to increase TrxR1. Cells were treated for over 2 

weeks, and colonies counted. Figures 1A, 1B, and 1C show representative pictures and 

graphic representations of these counts. We found that the overexpression of TrxR2 

through transfection and TrxR1 through the treatment with erucin decreased both DMSO 

and estrogen treated cells significantly. (Figure 1A and 1B) Underexpression of Jab1 also 

showed a decrease in estrogen-treated cells. (Figures 1C and 1F) These data show a role 



 

116 

for increased reduced thioredoxin or decreased Jab1 expression in reducing estrogen-

mediated growth of tumor cells. 

 

We also looked at the DNA synthesis (cell proliferation) of these cells through the use of 

the BrdU incorporation assay (Figures 2A, 2B, and 2C) and found that all three cellular 

modulations led to a decrease in DNA synthesis. These data suggest that an increase of 

thioredoxin reductase, both cellular and mitochondrial, will decrease estrogen-mediated 

growth of MCF-7 epithelial cancer cells, supposedly through the reduction of thioredoxin 

1 and thioredoxin 2 and subsequent reduction of other cell cycle proteins. It also suggests 

a role for Jab1 in estrogen–mediated growth of breast cancer. 

 

Thioredoxin is reversibly oxidized by estrogen treatment, and reduced after the 

upregulation of TrxR 

Estrogens are phenolic chemicals, (Roy and Liehr, 1990) and are known to lead to the 

production of mitochondrial ROS.19, 21 MtROS have been implicated in cell signaling in 

several pathways, including integrins, platelet-derived growth factor, epidermal growth 

factor, and nerve growth factor.22 We confirmed the increase of ROS by estrogen by 

measuring H2O2 production through the DCF assay. (Data not shown) One of the three 

major redox couples that are responsive to changes in the reducing/oxidizing (redox) 

environment in cells is Trx(SS)/Trx(SH)2.23 There are several published examples of 

Trx’s susceptibility to ROS, and there are a variety of compounds that have been found to 

oxidize Trx, such as H2O2 and superoxide.24 While it has been shown that estrogen 

treatment increases thioredoxin and thioredoxin reductase levels in bovine aortic 
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endothelial cells, we wanted to test if the mtROS produced by estrogen would have an 

oxidative effect on thioredoxin. We performed a redox western to explore the effects of 

estrogen treatment on the redox state of thioredoxin. Cells were treated for 30 m before 

lysates were prepared. 50 mM iodoacetic acid was used in 6M guanidine lysis buffer, as 

it leads to thiol alkylation. When a thiol is modified, one negative charge is added, and 

reduced thioredoxin, which will have a negative charge after IAA treatment, will run 

faster than oxidized thioredoxin in a native, non-reducing gel electrophoresis.20
 

  

We found that estrogen treatment increases thioredoxin oxidation (Figure 3A) and, 

utilizing the Nernst equation as described in Materials and Methods, found that estrogen 

decreases thioredoxin redox potential (Figure 3B). The dietary isothiocyanates 

sulforaphane, erucin, and iberin have been found to induce thioredoxin reductase in 

MCF-7 cells.25 We wanted to explore if this chemical induction of TrxR would change 

the redox state of thioredoxin that was oxidized by estrogen. In HepG2 and 

undifferentiated Caco-2 cells, not only does sulforaphane induce TrxR, but also its 

substrate Trx.26 We found this to also be true of pretreating with erucin on the MCF-7 sub 

line LCC-2 cells. 

 

We found that there is an overall increase in thioredoxin due to erucin treatment, and 

there is an increase in the amount of reduced thioredoxin in erucin+estrogen-treated cells 

in relation to those treated with the vehicle (DMSO). Erucin, however, also increases the 

amount of both TrxR and Trx, and has been shown to increase oxidation of glutathione 

reductase, thioredoxin reductase and peroxiredoxin 3. We found that the redox potential 
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of thioredoxin went down with isothiocyanate treatment, but feel this avenue deserves 

further research, as the amount of reduced thioredoxin increased dramatically. As the 

goal of this experiment was to ensure an increase in reduced thioredoxin, and not 

necessarily only an increase in oxidized/reduced thioredoxin ratio, we felt the use of 

isothiocyanates achieved this goal. 

 

We explored if increasing the mitochondrial thioredoxin reductase (TrxR2) through 

transfection would have an effect on the oxidative state of cellular thioredoxin. (Figures 

3C and 3D) We found that not only is there a decrease in the oxidation level of Trx (and 

an increase in redox potential) after this overexpression, there is an unexpected increase 

in thioredoxin redox potential when Jab1 is underexpressed.  

 

These experiments show that the oxidation of thioredoxin by estrogen can be reduced 

with the use of an overexpression of thioredoxin reductase or the underexpression of 

Jab1. The oxidation of Trx can lead to its inactivity, which can affect several cell 

signaling pathways. For this study we explored PTEN oxidation and thioredoxin’s role in 

reducing PTEN and restoring its function. 

 

Upregulation of TrxR through transfection decreases the ratio of oxidized to 

reduced PTEN 

ROS plays a redox regulatory role in protein-tyrosine phosphatases (PTPs). Its signature 

motif allows for redox regulation of proteins when the cysteine residues react with ROS.4 

The PTP catalytic cysteine only requires mild oxidative conditions to be oxidized to 
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sulfenic acid (Cys-SOH). This can be averted by interactions with a protein structure such 

as a thiol.4, 5, 27, 28 We first checked for oxidation of PTEN by estrogen through non-

reducing SDS-PAGE. MCF-7 cells were transfected with TrxR2 or pretreated with 

erucin, then treated with estrogen for 30 m. We found that cells that were transfected with 

thioredoxin reductase reduced the ratio of oxidized/reduced PTEN in cells treated with 

estrogen (Figure 4A and B) We did not see similar results in cells pretreated with erucin 

to overexpress TrxR (data not shown). This may be due to the treatment time used. 

 

Downstream signaling of phosphorylated Akt is altered by modulation of 

thioredoxin reductase and Jab1 

PTEN is known to inhibit phosphoinositol 3’ kinase (PI3K). A downstream molecule in 

the PI3K pathway is protein kinase B (Akt), which can phosphorylate, and thus 

inactivate, the cell cycle inhibitor p27. We wanted to explore if the oxidation or oxidation 

and then reduction of PTEN had an effect on this pathway. We performed a western blot 

on MCF-7 cells that had been treated with estrogen, pretreated with erucin and/or 

transfected with TrxR2 cDNA or Jab1 shRNA. We found that while estrogen increases 

the expression of phosphorylated Akt at S473, increasing the expression of thioredoxin 

reductase 2 alters this estrogen-mediated phosphorylation, as seen in Figure 5A and B. 

We were not able to show that the chemical overexpression of TrxR through the use of 

erucin also decreases phosphorylation of Akt (data not shown). Again, this could be due 

to the treatment times chosen for this experiment. However, again unexpectedly, the 

downregulation of Jab1 also showed a decrease in Akt phosphorylation. 
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Overexpression of TrxR or underexpression of Jab1 alters p27 phosphorylation  

at T157 

Protein kinase B (Akt) can phosphorylate p27 at T157 and inhibit its import to the 

nucleus. This prohibits p27 from inhibiting cell proliferation.12 When p27 is in the 

cytoplasm, it aids in the assembly of cyclin D1/cdk4, which furthers cell proliferation.29 

When the PI3K pathway has been activated, as it is in human cancers, it has been found 

that p27 concentrations decrease. This effect is reversed by PTEN.30 Overexpression of 

the PTEN gene increases p27 levels, decreases cyclin D1 levels, inhibits the 

phosphorylation of Akt, and through these mechanisms inhibits cell growth in MCF-7 

cells.13 We wanted to explore the effect of an increase of thioredoxin through an 

overexpression of thioredoxin reductase on p27 phosphorylation at T157. We performed 

a western blot as outlined in the Materials and Methods section (Figure 6A and D). We 

underexpressed Jab1 and overexpressed TrxR2 and pretreated with erucin to overexpress 

both cellular and mitochondrial TrxR (TrxR1 and TrxR2 respectively) and treated as 

noted in figures. We also scanned the blots and used ImageJ to quantify the blots (Figures 

6B, 6C, 6E, 6F). We found that the overexpression of both TrxR1 and TrxR2 led to a 

decrease in the PTEN downstream target of p27 phosphorylation at T157. This data 

paired with the data on PTEN shows a possible link between the oxidation of thioredoxin, 

oxidation of PTEN, and cell cycle progression through T157 phosphorylation of p27. 

 

Discussion 

Estrogen and tamoxifen produce intracellular ROS rapidly, which can lead to cell 

signaling and the growth of estrogen-dependent breast cancer cells.2, 3, 19 Upon ROS 
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production there is a stimulus and a response to the ROS from a protein of either 

activation or inhibition, which is amplified through the activation or inhibition of effector 

molecules further downstream in the pathway. There is also reversibility so that the 

pathway can be responsive to more than just the one stimulus. Thioredoxin and 

glutathione, as well as enzymes that are associated with each, have been found to reduce 

the thiol oxidation that occurs through ROS. It has been compared to the regulatory effect 

of phosphorylation and de-phosphorylation of proteins.31  

 

Thioredoxin and glutathione are the major factors in maintaining reduced proteins,6, 32, 33 

and these reducing agents are found, in normal cells, in their reduced form. When they 

perform their reduction actions on oxidized proteins, they themselves are oxidized.    

They are then returned to their reduced forms through the use of thioredoxin reductase 

and glutathione reductase, respectively. Cysteine residues have been found to be specific 

targets for ROS when in the thiolate (-S) form, making them susceptible to modification 

by ROS. 

 

Trx has been found to compete with p27 for binding with Jab1 in HEK293T (human 

embryonic kidney) cells, and, through this, negatively regulate p27 degradation. It has 

been shown that the addition of Trx to cells altered the direction of Jab1-induced p27 

level decrease. In our study, we both overexpressed thioredoxin reductase to increase the 

amount of reduced, and thus active, thioredoxin, and underexpressed Jab1 through 

shRNA transfection to show a possible role for this pathway. We used these treatments 

on MCF-7 breast cancer cells to explore if altering the redox state of cells will alter 
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estrogen-mediated growth. We found that overexpression of both thioredoxin reductase 1 

and 2 reduces colony formation and cell proliferation effects of estrogen. We saw the 

same effects when we reduced Jab1 expression. 

 

We explored the oxidation of thioredoxin by estrogen, and found that in MCF-7 cells 

thioredoxin is oxidized by estrogen. Overexpressing thioredoxin reductase, as would be 

expected, reversed these effects of estrogen. Interestingly, the reduction of Jab1 

expression also led to a reduction in thioredoxin oxidation. We are unsure of the 

signaling pathway that may lead to this increase in redox potential by Jab1, and feel it 

deserves further study. 

 

Particularly susceptible to oxidation are protein tyrosine phosphatases (PTPs).27, 28 PTEN 

can be oxidized by H2O2, and then reduced by Trx.14 We found that estrogen-induced 

ROS oxidizes PTEN in MCF-7 cells, and that the addition of thioredoxin reductase 

reduces this oxidation. PTEN, as well as other PTPs, has been show to correlate with p27 

levels. We wanted to explore if this pathway was affected by TrxR overexpression or 

Jab1 underexpression. A downstream molecule in the phosphoinositol 3’ kinase (PI3K) 

pathway, protein kinase B (Akt) can phosphorylate p27 at T157 and inhibit its import to 

the nucleus. This prohibits p27 from inhibiting cell proliferation12 and makes it available 

for cyclin D1/cdk4 assembly which furthers cell cycle progression.29 When the PI3K 

pathway has been activated, as it is in human cancers, it has been found that p27 

concentrations decrease.30 We looked at the phosphorylation of Akt, and found it to be 

susceptible to estrogen and enzymatic antioxidants. The overexpression of thioredoxin 
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reductase, presumably through the reduction of oxidized thioredoxin and subsequent 

reduction of oxidized PTEN, led to a decrease in phosphorylated Akt at S473. This 

decrease was also seen in cells that underexpressed Jab1. Further downstream in this 

pathway, the phosphorylation of p27 at T157 was decreased by altering TrxR and Jab1 

levels in the cells. 
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Figures 

Figure 1-MCF7 
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Upregulation of cellular and mitochondrial thioredoxin reductase reduces the 

formation of anchorage–independent colonies in estrogen-treated ER+ breast 

cancer epithelial cells. MCF-7 cells were transfected to overexpress TrxR2 or were 

treated chemically with 10 μM erucin to overexpress TrxR1 and seeded in 0.25% agarose 

with DMEM and 10% FBS. Cells were treated with either 0.1% DMSO or 100 pg E2 for 

over two weeks. (A & B) Representative pictures of wells demonstrating colonies formed 

by MCF-7 cells transfected and/or treated as indicated. Also shown, graphic 

representation of colony counts. Data shown are representative of three independent 

experiments and are presented as number of colonies +/- SD. Values that are significantly 

different (p<0.05) from empty vector control (TrxR2 overexpression) or DMSO (erucin 

treatment) are marked with an asterisk (*). 

 

Downregulation of Jab1 reduced the formation of anchorage–independent colonies 

in estrogen-treated ER+ breast cancer epithelial cells. MCF-7 cells were transfected 

with the HuSH pRS plasmid to underexpress Jab1. Wild type cells and cells 

underexpressing Jab1 were treated with either 0.1% DMSO or 100 pg E2 in soft agar for 

over 14 days. (C) Representative pictures of wells demonstrating colonies formed by 

MCF-7 cells transfected and treated as indicated. Also shown, graphic representation of 

colony counts. Data shown are a representative of two independent experiments 

performed in triplicate and are presented as number of colonies +/- SD. Values that are 

significantly different (p<0.05) from empty vector control are marked with an asterisk (*) 
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Figure 2-MCF7 

 

Upregulation of cellular and mitochondrial thioredoxin reductase decreased DNA 

synthesis in estrogen-treated MCF-7 cells. Cells were treated to overexpress 

thioredoxin reductase, and then treated with either 0.1% DMSO or 100 pg E2 for 48 

hours. (A) MCF-7 cells were transfected with pCMV6-XL4 plasmid to overexpress 

mitochondrial thioredoxin reductase 2, then treated as noted in the Materials and Methods 

section. (B) MCF-7 cells were treated with 10 μM erucin for 48 hours in media without 

FBS. Afterwards, starvation media was removed, fresh media added, and treatments as 

noted were added. BrdU assay was performed as noted in Materials and Methods section. 

Data shown are representative of minimum three independent experiments and are 

presented as absorbance reading +/- SD. Values that are significantly different from 

empty vector (TrxR2 overexpression) or DMSO (erucin treatment) are marked with an 

asterisk (*). 



 

129 

Downregulation of Jab1 decreased DNA synthesis in estrogen-treated MCF-7 cells. 

Cells were treated to overexpress thioredoxin reductase, and then treated with either 0.1% 

DMSO or 100 pg E2 for 48 hours. Data shown are representative of minimum three 

independent experiments and are presented as absorbance reading +/- SD. Values that are 

significantly different from empty vector control (TrxR2 overexpression) or DMSO 

(erucin treatment) are marked with an asterisk (*). 

Figure 3-MCF7 
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Estrogen increases oxidative state of MCF-7 cells and leads to an increase in 

oxidation of Trx1. TrxR2 overexpression increases Trx redox potential. MCF-7 cells 

were seeded to 10-6 in 100 mm plates. After incubating overnight, cells were incubated 

with serum-free media for 48 hours. During this time, noted plates were treated with 10 

μM erucin. After 48 hour incubation, cells were treated for 30 minutes with 0.1% DMSO 

or 100 pg (100 ng in WT cells) 17β-estradiol. Cells were harvested in 50 mM guanidine 

lysis buffer and prepared as described in Materials and Methods. (A) MCF-7 cells were 

treated with 10 μM erucin for 48 hours in serum-free media, and (C) MCF-7 cells were 

transfected with pCMV6-XL4 plasmid to overexpress mitochondrial thioredoxin 

reductase 2. Cells were then exposed to either 0.1% DMSO or 100 pg E2 for 30 minutes. 

Cells were lysed and lysate run through redox western protocol as noted in Materials and 

Methods section. Data for DTT (reductant) and H2O2 (oxidant) are also shown. (B & D) 

Data are presented as redox potential of thioredoxin. Data shown are representative of 

three independent experiments and are presented as protein expression amounts and 

redox potential values (Nernst equation).  

 

Jab1 downregulation increases Trx redox potential. MCF-7 cells were seeded to 10-6 

in 100 mm plates. After incubating overnight, cells were incubated with serum-free 

media for 48 hours. After 48 hour incubation, cells were treated for 30 minutes with 0.1% 

DMSO or 100 pg 17β-estradiol. Cells were harvested in 50 mM guanidine lysis buffer 

and prepared as described in Materials and Methods. (C) MCF-7 cells were transfected to 

downregulate Jab1. Cells were then exposed to either 0.1% DMSO or 100 pg E2 for 30 

minutes. Cells were lysed and lysate run through redox western protocol as noted in 
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Materials and Methods section. (D) Data are presented as redox potential of thioredoxin. 

Data shown are representative of three independent experiments and are presented as 

protein expression amounts and redox potential values (Nernst equation).  

Figure 4-MCF7 

 

Oxidation of PTEN by estradiol is reversed with overexpression of thioredoxin 

reductase. MCF-7 cells overexpressing TrxR1 (erucin pretreat) and TrxR2   

(transfection) were treated with 0.1% DMSO for 20 minutes or 100 pg 17β-estradiol     

for 20 or 30 minutes after 48-hour incubation in serum-free medium. Cells were 

harvested as noted   in Materials and Methods section. (A) Oxidation of PTEN is shown 

in EV (control) transfected cells, though not seen in TrxR2 transfected cells. (B) 

Quantification of oxidized PTEN/reduced PTEN ratio. Data are representative of two 

independent experiments. 
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Figure 5-MCF7 

 

Overexpression of thioredoxin reductase and underexpression of Jab1 decreases 

Akt phosphorylation at Ser473 in estrogen-treated MCF-7 cells. Transfected or 

chemically treated MCF-7 cells were treated with 0.1% DMSO or 100 pg 17β-estradiol. 

(A) Expression of phosphorylated Akt before and after overexpression of TrxR2 or 

underexpression of Jab1. (B) Quantification of protein expression. E2 time point shown is 

30-minute treatment. Akt was normalized to β-actin first. The graph shown is 

phosphorylated Akt/total normalized Akt ratio. Data shown are representative of two 

independent experiments and are presented as protein expression amounts as quantified 

by densitometry.  
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Figure 6-MCF7 
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Overexpression of TrxR1 through erucin treatment decreases p27 phosphorylation 

at T157. MCF-7 cells were treated with 0.1% DMSO or 100 pg 17β-estradiol. (A) 

Expression of p27 and phosphorylated p27 at T157 with and without overexpression of 

TrxR2. (B) Quantification of relative p27 protein expression. (C) Quantification of 

relative phosphorylated p27 expression. Phosphorylated/total p27 ratio was normalized to 

β-actin. (D) Expression of p27 and p27 phosphorylated at T157 after overexpression of 

TrxR. (E) Quantification of relative p27 protein expression. (F) Quantification of ratio of 

phosphorylated/total p27, normalized to β-actin. Data shown are representative of two 

independent experiments and are presented as protein expression amounts and redox 

potential values.  

 

Underexpression of Jab1 decreases p27 phosphorylation at T157. MCF-7 cells were 

transfected to underexpress Jab2, incubated in serum-free media 48 hours, then treated 

with 0.1% DMSO or 100 pg 17β-estradiol. (A) Expression of phosphorylated p27 at 

T157 (B) Quantification of protein expression. Phosphorylated/total p27 ratio was 

normalized to β-actin. Data shown are representative of two independent experiments and 

are presented as protein expression amounts and redox potential values.  

                 

V    CONCLUSION 

The purpose of this research was to explore the enigmatic problem of tamoxifen 

resistance in breast cancer through looking at the p27/Jab1/Trx pathway. The sub goals 

were twofold: First, to show that reducing oxidized thioredoxin through increasing 

thioredoxin reductase or that decreasing Jab1 protein can alter p27 phosphorylation; 
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second, to show these same cellular alterations can increase tamoxifen sensitivity in 

previously tamoxifen-resistance breast cancer cells.  

 

Results of this study add several significant findings to research on tamoxifen resistance 

and the p27/Jab1/Trx pathway. While there is one study that explores glutathione actions 

on MKP3 phosphatase in antiestrogen resistance, there appear to be no other studies that 

consider the role of reactive oxygen species in tamoxifen resistance. Further, the studies 

that involve thioredoxin and chemotherapeutic resistance look at the chemotherapeutics 

that use a high level of reactive oxygen species to kill breast cancer, and show that 

thioredoxin interferes with cellular death in these cases. No other study looks at the level 

of ROS produced by antiestrogens and how thioredoxin alteration by this ROS may affect 

the possibility of resistance. Findings in this study showed that thioredoxin is oxidized by 

physiologic levels of estrogen, and that reversal of this oxidation through the 

overexpression of thioredoxin reductase can lead to previously tamoxifen-resistant cells 

appearing to regain sensitivity. 

 

There is one study out that shows that p27 and thioredoxin compete for binding to Jab1, 

and when thioredoxin is not available for binding that Jab1 can bind to p27 and aid in 

removing it from the nucleus. The current study explored the relationship between these 

three proteins in tamoxifen-resistant breast cancer cells. While a thioredoxin/Jab1 

interaction was shown, p27/Jab1 binding did not appear to decrease with the reduction of 

oxidized thioredoxin. In both MCF-7 breast cancer and LCC2 tamoxifen-resistant breast 

cancer cells, reduction of Jab1 levels led to a change in response of the cells to estrogen 
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and tamoxifen, respectively. Decreasing Jab1 led to a decrease in cell growth, a    

decrease in thioredoxin oxidation, and a decrease in p27 phosphorylation. The role of 

Jab1 in tamoxifen resistance has not been explored, and as such these data add to the 

current knowledge. 

 

The current study also sought to explore if the effect thioredoxin has on the PTP PTEN 

would have downstream effects on the p27 protein. While PTEN is known to be reduced 

by thioredoxin, it has not been shown that reducing oxidized thioredoxin through 

increasing thioredoxin reductase levels affects phosphorylation of p27 at T157. This 

study shows that in both MCF-7 and LCC2 cells, altering the oxidative state of the cell 

through thioredoxin reductase can alter the effects on p27 phosphorylated stated. Two 

phosphorylation sites were shown to be dephosphorylated after an increase in levels of 

thioredoxin reductase. The PTEN/Akt pathway is implicated in this study, but further 

studies are recommended, as the time point chosen for experiments may not have been 

sufficient to show a strong link. 

 

The major goals of this study were to explore a link between oxidative stress and 

tamoxifen resistance, and specifically to look at the thioredoxin/Jab1/p27 pathway as a 

target. By identifying the specific data mentioned above, thioredoxin and Jab1 have   

been shown to be proteins that may play a role in tamoxifen resistance, and through 

further research may be proven to be potent tools for avoiding antiestrogen resistance in 

breast cancer. 
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Directions for future research 

The results of the present study are intended to start a conversation on the role of 

thioredoxin reductase, thioredoxin, and Jab1 in antiestrogen resistance. The data show 

three areas of possible research.  

 

The reduction of oxidized thioredoxin by thioredoxin reductase showed a significant 

reduction in cell growth and p27 phosphorylation in both MCF-7 cells and tamoxifen-

treated tamoxifen-resistant LCC2 cells. This effect on cancer cells, as well as the 

apparent increased sensitivity to tamoxifen, suggest that thioredoxin reductase may be a 

potent tool in delaying, reducing, or abrogating tamoxifen resistance. This is not true with 

other chemotherapeutics where thioredoxin can interfere with the onslaught of reactive 

oxygen species that the chemotherapeutic uses to kill cancer cells. In the case of 

antiestrogens that have been shown to create ROS but are not seen to use ROS as the 

main pathway of apoptosis, thioredoxin reductase may prove a useful too, and as such 

should be explored further in this role. 

 

Jab1 was explored for its role with thioredoxin in counteracting tamoxifen resistance and 

estrogen effects in MCF-7 cells. The data show that reducing Jab1 can affect tamoxifen 

sensitivity, causing a decrease in cell growth in tamoxifen-treated tamoxifen-resistant 

cells. While we were unable to show a change in p27/Jab1 binding in tamoxifen-treated 

resistant cells, there was a change in p27 phosphorylation when Jab1 levels were 

decreased. There was also an interesting finding of an increase in the reduction of 

thioredoxin when Jab1 was decreased. As such, the p27/Jab1/thioredoxin pathway 
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deserves further research to explore other possibilities of interactions between these three 

proteins, as the final result is decreased growth in both cancer and tamoxifen-resistant 

cancer cells. 

 

The data in this study show a possible role for thioredoxin in affecting the PTEN/Akt/p27 

phosphorylation pathway. As thioredoxin is known to interact with other protein   

tyrosine phosphatases, these phosphatases should be explored for an effect on 

antiestrogen resistance. The PTEN pathway deserves further exploration, as our data 

show minimal results. Other pathways may also show other targets for abrogating 

antiestrogen resistance. 

      

SUPPLEMENTAL DATA 
 

 
 

HuSH 29-mer non-effective (scrambled) pRS vector (Origene) was tested and showed 

similar actions to the empty plasmid vector. 
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