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ABSTRACT OF THE DISSERTATION 

MITIGATING CONGESTION BY INTEGRATING TIME FORECASTING AND 

REALTIME INFORMATION AGGREGATION IN CELLULAR NETWORKS 

by 

Kai Chen 

Florida International University, 2011 

Miami, Florida 

Professor Niki Pissinou, Major Professor 

An iterative travel time forecasting scheme, named the Advanced Multilane 

Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this 

dissertation. This scheme is derived from the conventional kernel estimator based 

prediction model by the association of real-time nonlinear impacts that caused by 

neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP 

algorithm is evaluated by prediction of the travel time of congested arcs in the urban area 

of Jacksonville City. Experiment results illustrate that the proposed scheme is able to 

significantly reduce both the relative mean error (RME) and the root-mean-squared error 

(RMSE) of the predicted travel time. To obtain high quality real-time traffic information, 

which is essential to the performance of the AMPRFP algorithm, a data clean scheme 

enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method 

investigates the correlation between distance and direction in the geometrical map, which 

is not considered in existing fingerprint localization methods. Specifically, empirical 

learning methods are applied to minimize the error that exists in the estimated distance. A 

direction filter is developed to clean joints that have negative influence to the localization 
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accuracy. Synthetic experiments in urban, suburban and rural environments are designed 

to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s 

position. The results show that the cellular probe’s localization accuracy can be notably 

improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for 

overcoming the time efficiency problem of the existing correlation algorithm based 

floating car data (FCD) technique is developed. The matching process is transformed into 

a 1-dimensional (1-D) curve matching problem and the Fast Normalized 

Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product 

Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time 

requirement of the FCD method. The fast correlation technique shows a significant 

improvement in reducing the computational cost without affecting the accuracy of the 

matching process. 
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CHAPTER 1  

0BINTRODUCTION 

1.1 9BBackground 

In a wireless network, the interconnection between each node is achieved without the 

use of cables. Generally, different electromagnetic waves (radio waves, microwaves, 

terahertz radiation, infrared radiation, etc.) are used as a carrier to transmit remote 

information for various applications. Wireless networks are widely utilized in people’s 

daily life. For instance, people can communicate with each other through the use of a 

cellular phone and can connect to the internet in regions lacking of efficient telecom 

infrastructure.  

As a special kind of wireless network, a cellular network consists of a large number 

of radio cells which are centered with a fixed base station to provide full duplex 

communication services. Multiple frequencies correspond to the radio base station are 

assigned to each single cell. In order to satisfy the sustained increase of the demand for 

network capacity and communication quality, the traditional analog cellular network was 

mitigated with some digital networks such as time-division multiple access (TDMA) and 

code-division multiple access (CDMA) in the United States, Global System for Mobile 

communications (GSM) in Europe, and Personal Digital Cellular (PDC) in Japan.  

One primary characteristic of the cellular network is its ability to provide wide area 

coverage in order to allow a mobile terminal (MT) to move from cell to cell without loss 

of communication. This handover mechanism is achieved by the continually exchanging 

of signal pilots between the MT and surrounded base stations through the control channel. 
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Additionally, most environments where mobile units operate involve high-noise features. 

These noises may be caused by obstructions that block the transmission of radio signals, 

the frequent changes in atmospheric reflection, and the multipath propagation. The MT is 

power limited due to the rule of Federal Communication Commission (FCC) in the 

concern of the influence of human’s health. A power control mechanism is utilized in the 

cellular network to reduce interference between other MTs and to conserve energy. 

Unfortunately, this mechanism also limits the observation of surrounded base stations 

which will degrade the performance of location estimation by reducing the number of 

base stations used in the positioning system. 

Besides providing standard voice functions, a cellular network can also support many 

additional value added services, such as short message service (SMS) for text messaging, 

packet switching for accessing Internet, email, Internet gaming, and location-based 

service (LBS). LBS contains information collection, information sharing, and 

entertainment service that are supported by the mobile devices through the cellular 

network with its geographical position. For example, the position information of sampled 

MT placed in a vehicle is collected periodically in a short period in order to estimate the 

travel time of the arc where it is driving.  

An Intelligent Transportation System (ITS) refers to the utilization of information 

and telecommunication technologies to support transport infrastructure. The fundamental 

interest of ITS comes from the demand for overcoming traffic congestion problems and 

providing synergy to new real-time control technologies. Based on the specific tasks it 

contributed, ITS can be categorized into advanced traveler information systems (ATIS), 

advanced driver assistant (ADAS), traffic demand estimation, traffic forecasting and 
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monitoring, network control, automatic incident detection (AID), and crash analysis and 

prevention. 

In order to mitigate the congestion problem, the route guidance system is developed 

by operating a real-time process of guiding drivers along the route generated by a route 

planner. It integrates the general functions of ATIS, traffic forecasting and monitoring 

techniques to provide optimal route options for drivers to avoid involvement with 

congestions and to save traffic costs, such as time and gasoline. However, due to the 

complexity of the urban traffic network, the quality of traffic forecasting and monitoring 

services is volatile, and this will degrade the ability of route guidance system in 

determining proper routes.  

Current research concentrates its efforts on developing various mathematical models 

to investigate the linear relationship between the predicted travel time and the historical 

traffic behavior data to improve the accuracy of the forecasting result. This can overcome 

the unintelligent traffic behavior of most drivers who is driving based on their empirical 

experience but not the real-time traffic conditions. Nevertheless, the influence of the 

fluctuation of traffic flow that was caused by congestions and incidents happened in 

adjacent arcs is not well investigated. This nonlinear affection may cause the observed 

traffic behavior to be far more different from the historical records which will introduce 

more prediction errors into present prediction models. Additionally, the cellular network 

becomes a good infrastructure for providing real-time traffic monitoring data due to its 

seamless coverage in metropolitan areas. Researchers are in the process of improving the 

accuracy of the estimated location result in outdoor cellular networks by designing 

complex radio propagation models or by developing new integrated components for 
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mobile devices. However, few of them realize that the learning theory based method, 

which already achieved good performance in location estimation in indoor environments, 

can be a good option in dealing with this problem. Utilization of these mapping 

approaches in the outdoor cellular network, especially the urban region, poses new 

challenges and problems. Therefore, both the unique characteristic of outdoor cellular 

channels and the application requirements have to be carefully considered. 

This dissertation focuses on fusing the historical traffic behaviors and the real-time 

non-linear traffic patterns caused by neighboring arcs together to estimate the 

approximate travel time of an arc involved in congestion. We also concentrate on traffic 

information monitoring technologies in the cellular network and attempt to clean the 

collected position related information appropriately and improve the accuracy of the 

location estimation result. 

1.2 10BMotivation 

Traffic congestion has become a critical problem all over the world due to the fast 

development of cities and the persistent increase of motor vehicles. For instance, in the 

United States, the annual waste of gasoline is more than 10 billion gallons and the total 

economic loss caused by congestion is above 63 billion dollars. Additionally, the 

congestion will induce numerous environmental problems and human’s health problems 

by extending the time period for drivers to finish their trips, which will cause the increase 

of the amount of automobile exhaust. Unfortunately, congestion cannot be simply solved 

by building more routes and widening the existing ones because of the limited living 

space, the lengthy construction period and the inestimable budget.  
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In the previous section, characteristics of travel time prediction based congestion 

mitigating systems were introduced for distinguishing them from other ITSs. The most 

significant feature of the travel time prediction based method is its ability to provide a 

benchmark that can represent current traffic conditions and balance the requirement of 

spatial and temporal efficiencies. However, unexpected incidents, irrational operations of 

vehicles, and the collaborations of conjoint routes weaken the significance of the 

historical records and degrade the accuracy of the predicted travel time. This data may 

mislead the system to provide improper guidance to drivers and loss their trusts. 

For example, we know that an arc usually has a good traffic condition between 10:00 

AM to 12:00 AM. However, one day there was an incident that happened and blocked 

part of the route. If at this time we try to predict the transit time of this arc based only on 

the historical traffic behavior without noticing the incident, the predicted time will be 

much shorter than the actual travel time to go through it. And the congestion avoidance 

system may select this route for drivers in order to increase their trip efficiency. However, 

this false decision cannot achieve this objective.  

Although the real-time traffic patterns have big influences to the future travel time, 

obtaining the real-time traffic data in current transport infrastructure is hard to achieve. 

The traditional “in-situ” technology collects real-time traffic data through various kinds 

of sensors installed in the specific location along the highway. This technique can provide 

very accurate traffic data due to its direct access to the transport infrastructure. However, 

the cost of the deployment and maintenance of this system is extremely high that limited 

the coverage area only valid to some major freeways and highways. This means that only 
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a small part of routes are under monitored, and it is difficult to analyze the traffic 

conditions in adjacent arcs.  

Different from “in-situ” technology, the Floating Car Data (FCD) technique gathers 

traffic status of probe vehicles travelling on each route to estimate its traffic speed and 

volume data. This method avoids the requirement of building complex detector systems 

which enables it to monitor even a tiny local arterial. The most popular applications of 

FCD are the GPS based approaches, which can locate the target probe within a 10m area. 

However, the finite distribution and the high power consumption of GPS-equipped 

devices constraint the FCD to achieve seamless monitoring of the urban traffic network. 

Therefore, as mentioned in the previous section, the cellular network supported FCD 

attracts people’s attention. For instance, some companies and organizations like 

CELLINT, DELCAN, APPLIED GENERICS, AIRSAGE, and GLOBIS DATA, 

developed numerous test projects for justifying the performance of it. However, the 

accuracy of the estimated position of the cellular probe is constrained by the high-noise 

wireless environment where most mobile units operate. The received signal suffered from 

the influence of various errors and increase difficulties of the inverse operation (to derive 

coordinates from the received signal). This is a critical problem since we cannot specify 

the source of the estimated traffic information without the precise location information.  

Network-based location estimation of mobile devices in the cellular network is 

becoming increasingly popular for providing LBS such as enhanced-911, field worker 

deployment, and real-time traffic monitoring services [1]. In traditional network-based 

location estimation solutions, signal propagation models that are based on the geometric 

and statistical approaches were developed and widely used to approximately estimate the 
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path loss of the received signal. However, building an accurate and proper signal 

propagation model is difficult and sometimes impossible. This is due to the channel 

noises which attenuate the field strength and spread the obstructed path of the transmitted 

waves. The source of those noises includes absorption, scattering, reflection, refraction, 

diffraction, multipath, and Non-Line-of-Sight (NLOS), which are defined as the 

Environmental-dependent Factors (denoted as EFs) [2, 3]. In previous research [2, 4-6], 

the machine learning theory based (denoted as learning-based) approaches are capable of 

avoiding the design of the complex propagation model and reducing localization errors. 

This is achieved by using the empirical data observed in the training phase where 

historical data in the same situation is collected before the estimation.  

The motivation behind this research originates from challenges and problems 

declared in the above arguments involving the optimization of approaches of travel time 

forecasting, mobile unit location estimation, and cellular probe tracking. 

1.3 11BProblem Statement 

This dissertation originates from the observation that the conventional travel time 

forecasting approaches only focus on investigating the relationship between the future 

travel time and the historical traffic patterns (daily, weekly, and seasonal). These 

approaches ignore the collaborations exist in the transport architecture which will also 

affect the performance of future traffic behaviors. Additionally, the inefficient diversion 

strategy problem is not well considered by them. Therefore, the main aim of this 

dissertation is to design a congestion mitigating system that fuses both the historical 
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traffic behavior and the real-time non-linear traffic patterns of neighboring arcs together 

to overcome the limitation of present congestion mitigating systems. 

The other objective of this research is to design and develop schemes that will reduce 

errors which exist in the received signal strength and the travel time using learning-based 

methods. On comparison with the conventional learning-based methods, these new 

schemes adapt the nonlinear expansion of the input vector and map this vector to a 

high-dimensional feature space. The Signal Strength (SS) profile of the received signal is 

utilized together in location estimation, particularly in urban areas where establishing a 

signal propagation model is complex and difficult. A learning-based method is used to 

predict and abate errors that exist in the SS data. Also, the developed scheme should 

contain a reliability feature required to be deployed in any real-time situation.  

1.4 12BSignificance and Contribution 

Travel time as a parameter that does not belong to the nature of an arc has the ability 

to balance between multiple traffic flow properties, such as route length, traffic speed, 

and event issues. Using accurate travel time, especially the future time, we can provide a 

high quality weight parameter for congestion mitigating system to generate optimal 

routes for drivers to reach their destination quickly and smoothly. Travel time forecasting 

is more valuable in the congestion situation where calculating accurate travel time is 

difficult. This dissertation focuses on improving the performance of the fusing phase in 

travel time prediction according to the characteristics of transport infrastructure. It paves 

a way for the next generation congestion mitigating system that is able to adapt to the 

complexity and mutability of urban traffic networks. 
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The major contribution of this dissertation is the development of a novel congestion 

mitigating system for both the single lane and multi-lane urban environments. This 

system establishes a data fusing technique that consolidates interactions between the 

current arc and its surrounding infrastructures with the arc’s historical traffic features to 

predict the prospective traffic conditions of this arc. This dissertation empirically 

illustrates that the congestion reason analysis scheme and the iterative travel time 

forecasting mechanism promote the accuracy and efficiency of the congestion mitigating 

system.  

Furthermore, achieving high accuracy in the location estimation is significant for 

providing real-time traffic information to support the congestion mitigating system. This 

is difficult due to the complexity of the wireless environments. A large number of 

non-linear effects such as the NLOS propagation and the multipath propagation [3] exist 

there. Traditional solutions to the above open issues offer complex mathematical 

approaches to reduce location errors relying on physical parameters of the signal received 

by the base station. Using learning-based methods to solve the position estimation 

problem in the cellular network has been proposed in [2, 4-6]. This is a significant 

breakthrough since there is no need to build a specific and complex signal propagation 

model. Wu et al. [2] has identified several drawbacks such as the random and incomplete 

characteristics of a cellular signal, and the fluctuated wireless environments. They are 

critical to the successful implementation of machine learning algorithms in a realistic 

scenario. Without a proper solution to these drawbacks, it is difficult for the existing 

models to efficiently locate mobile objects. In this research, we attempt to design and 

develop new schemes to eliminate these drawbacks. 
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At the end of this dissertation, we extend the correlation based cellular probe speed 

estimation mechanism, that first specified by Chandrasekaran [7], by utilizing the Fast 

Normalized Cross-Correlation (FNCC) algorithm [8] to replace the Pearson product 

Moment Correlation Co-efficient (PMCC) algorithm [9] applied in the matching phase. 

This modification is critical in improving the efficiency of correlation based FCD and 

contributes to meet the real-time feature of the congestion mitigating system. 

1.5 13BMethodology 

This dissertation addresses the problem of accurately predicting the travel time of the 

congestion involved arc with the support of real-time traffic stream of adjacent areas 

collected from the cellular FCD system. The work demonstrates that the identification of 

the traffic status parameter through the traffic pattern classification model and the 

multi-lane congestion analysis model is necessary in determining a proper method to 

estimate the future travel time. Support Vector Regression (SVR) is utilized as the kernel 

based predictor to forecast the travel time of the arc that was not influenced by conjoint 

routes.  The proposed iterative architecture of the congested route travel time estimation 

process combines the prediction result of SVR which is based on the current arc’s 

historical traffic behaviors and the transit time of anterior arc that induce this congestion, 

to achieve a proximal estimation result. 

In order to obtain detail traffic status data from the nearby transport infrastructure 

(highway, local arterial, etc.), a correlation based FCD approach, relying on cellular 

network, is introduced. Conventional learning-based approaches can achieve very 

accurate position estimation in a challenging environment with a high quality training 
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dataset. One of the problems of them is that the geometry feature (latitude, longitude, etc.) 

of position-related parameters is not well considered. Thus, we developed a data clean 

enhanced empirical learning algorithm to predict the more precise value of the estimated 

distance that relied on the SS data between the target point and each reference base 

station (BTS) before the position estimation phase. According to these distances, a group 

of joints that contains the location information of the target point are generated using the 

trilateration method [10]. An original filtering method is developed to clean the 

unqualified joints.  

Besides mobile unit tracking, this dissertation also dedicates itself to improve the 

efficiency of the correlation based FCD method in extracting speed information. This is 

achieved by transforming the calculation of the coefficient points in the searching range 

into a whole-to-part matching problem. The fast normalized cross-correlation (FNCC) 

algorithm [8] is utilized to diminish redundancies that exist in the calculation of the 

correlation coefficient. 

The mathematical proof for the new schemes will be established and their 

efficiencies will be evaluated by different simulations. Matlab 7.1 and Visual Studio.Net 

2008 are going to be used for synthetic simulation for this research work. The accuracy of 

predicted travel time, the new congestion mitigating system and localization schemes’ 

efficiencies, robustness and their abilities to survive in imperfect environments will be 

demonstrated using different simulation results. The main parameter that needs to be 

measured and analyzed is the congestion ratio of the urban network, the standard 

deviation of errors of the predicted SS data, and the average time consumption of the 

matching phase. Other parameters used in evaluating the performance of our scheme 



 12 

include: the mean absolute error (MAE), the relative mean errors (RME), the median 

localization error (MLE), the root mean square error (RMSE), the cumulative distribution 

function (CDF), and the histogram of the localization error distribution. 

1.6 14BOrganization of the Dissertation 

The organization of this dissertation is defined as follows: In Chapter 2, an 

exhaustive literature survey about the acquisition of location related parameters and 

position estimation is done. Chapter 3 presents the cellular network supported congestion 

mitigating system with proper justifications to the claims made. Chapter 4 focuses on the 

novel data clean scheme enhanced empirical learning algorithm (DCSEEL) with 

appropriate evaluations of the improvement in the location estimation result. In Chapter 5, 

a theoretical procedure using FNCC to improve the computational efficiency of the one 

dimensional signal profile matching phase is presented. In Chapter 6, conclusions of the 

dissertation and summarization of the simulation results of this work are presented. 

Future works of this research are further discussed in this chapter. 
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CHAPTER 2  

1BRELATED WORK 

2.1 15BIntroduction 

A cellular network [11] is a radio network composed of hexagonal multiple shape 

radio cells in order to provide desired services to telephone customers. As a fundamental 

of Global System for Mobile communications (GSM) and Universal Mobile 

Telecommunications System (UMTS), cellular networks utilize various technological 

advancements in volatile wireless environments to provide services of mobility 

management, call set up, registration, and handover. In the contemporary world, the 

coverage of cellular networks across more than 212 countries and more than 3 HbillionH 

people are benefited from their services all over the world.  

One important service supported by the cellular network is the location-based 

services (LBS) which enables personalized services to mobile subscribers relying on their 

current position [4]. For example, a mobile terminal may be designed to detect the 

position of a subscriber, and is able to send advertisements of nearby shops to this 

customer. A critical issue in cellular network is the way the location related parameters 

are collected, analyzed and utilized to estimate an accurate position of a mobile terminal. 

Specifically, in the case of parameter analysis, the pivotal step is to cleanse nonlinear 

residuals that exist in received radio frequency (RF) signals. In this respect, cellular 

networks based location estimation studies as a discipline which involves extraction, 

estimation and rectification of spatial coordinates to overcome constraints of the harsh 

cellular environment. To sum up, location estimation in cellular networks can be defined 



 14 

as the manner to calculate the concrete coordinates of a mobile terminal by calibrating 

and deriving erroneous signals.  

Location estimation is an emerging application where noisy position-related 

parameters are measured from multiple channels to derive the location of the mobile unit. 

The first application of location estimation of the mobile terminal can be retrospect to 

World War II [12]. It was designed for accurately and rapidly tracing the military 

personnel in emergent battlefields. Due to the dramatic increasing of the demand of 

location awareness, emergency call location, and ambient intelligence services, accurate 

location estimation has become imperative to support new generation of LBS.       

The primary challenging aspect of location estimation in cellular networks is to 

impute the channel noises which attenuate the field strength and spread the obstructed 

path of the transmitted waves. The source of those noises includes absorption, scattering, 

reflection, refraction, diffraction, multipath, and Non-Line-of-Sight (NLOS), which are 

defined as the Environmental-dependent Factors (denoted as EFs) [2, 3]. In the ideal 

situation, after the execution of location estimation, the geometrical coordinates of the 

target should be solely identified, released from any discrepancies, and made adaptable 

for supporting any applications of the LBS. However, there is no perfect location 

estimation mechanism for cellular networks so far due to the time-vary nature of wireless 

environments [5], the lacking of complete environmental factors [2], and the unaffordable 

cost of integrating new components into the development of mobile terminal [10].  

2.1.1 38BTerminology 

Generally, location estimation can be operated with two steps: position related 



 15 

parameters estimation and position estimation. In each step, many operations are 

encompassed respectively. Some examples of these operations are shown below: 

! Signal Parameter Extraction 

! Parameter Discarding 

! Parameter Replenishing 

! Dataset Training 

! Propagation Model Determination 

! Regress Scheme Learning 

! Location Approximation 

In this study, the term “location estimation” will be used, which includes the basic 

operations of position related parameter estimation, propagation model determination and 

regress scheme learning. Furthermore, terms such as data, signals, and parameters are 

also used in this dissertation, to refer the values used for locating the position of the 

mobile terminal. 

2.1.2 39BShortcomings of the Outdoor Cellular Network 

Generally, the cellular network is designed to provide services in complex 

environments especially in the outdoor region which encompasses urban areas, suburban 

areas, and rural areas. The signal may be transmitted from far away base stations and 

experiences unpredictable fluctuations due to the frequent change of the characteristics of 

RF channels. For instance, a signal may be bounced off mountains, buildings or other 

obstructions during its transmission, which poses multipath problems for representing 

precise spatial correlations. This is caused by the inability of the receiver to distinguish 
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the reflected signal with the straightly traveled one, and the accuracy of the estimated 

position is confined. Additionally, even in the ideal condition where all signals can 

penetrate obstacles without reflection, they may still not be completely observed by 

receivers. This is due to the non-line-of-sight (NLOS) propagation problem, that signals 

can be absorbed or garbled by those obstacles. 

The cellular network also faces constraints of the system. For example, not all the 

base stations are installed with mutual synchronization equipments, which means that 

their signals do not enclose with timing information. Thus, the accuracy of location 

estimation using these data is degraded remarkably. Otherwise, since the primary demand 

of the cellular network is providing continual telephone services to mobile subscribers, 

only a small subset of signals propagated from base stations are large enough to be 

readable on a mobile terminal. Additionally, the bandwidth limitation in some kinds of 

cellular networks (GSM) also constrains the quality of received signals. 

2.1.3 40BOutline of the Chapter 

The purpose of this chapter is to provide a survey on location estimation mechanisms 

and architectures for the cellular network, and to discuss the relationship between them. 

The background of this dissertation is presented in the following structure: Section 2.1 

presents the terminology, fundamentals and significance of location estimation; Section 

2.2 discusses different methodologies of location estimation presented in the literature in 

the cellular network especially in the outdoor environment; In Section 2.3, a summary of 

this chapter is provided. 
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2.2 16BLocation Estimation 

Location estimation in the cellular network is designed specifically for conquering 

the drawbacks and shortcomings mentioned in Section 2.1.2. Along with these drawbacks 

and shortcomings, the primary challenge of location estimation in the cellular network is 

that the estimation process has to derive accurate position information from a stream of 

retrievable data which is incomplete and deviated.  

Generally, location estimation can be divided into two categories: handset-based 

location estimation and network-based location estimation. For handset-based location 

methods, the core idea is to locate the handset equipment with the help of an integrated 

GPS unit [13]. Despite the high accuracy of the localization result, high cost and long 

periods of deploying new handset equipments in the whole cellular networks lead the 

handset-based method cannot be a general location estimation solution for supporting all 

kinds of applications of LBS. For instance, in terms of engineering view, to upgrade 

millions of mobile phones which had already been in operation is not efficient and 

economical. Additionally, the poor performance of GPS in indoors or urban canyon 

environments where tall buildings are densely distributed also constrains the 

implementation of handset-based location estimation methods. 

A large number of network-based location estimation approaches have been 

developed in literature to calibrate the location of mobile units using the harsh RF signals 

in the cellular network. The common two-step architecture is shown in Figure 2.1. 

2.2.1 41BPosition Related Parameters Estimation 

In order to extract spatial data from a received signal, the first step is to identify and 
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estimate position related parameters. Generally, signal parameters that can be employed 

in location estimation encompass power, timing, and direction of a received signal. 

 

Figure 2.1: Two-step Architecture of Network-based Location Estimation [10] 

A. Signal Strength (SS) 

Signal strength can be defined as the power or energy of a signal traveling between 

the mobile terminal and base stations. As a signal parameter, it contains information that 

relates to the distance or range between the cellular subscriber and the served base station. 

When combining this parameter with a properly designed path-loss and shadowing model, 

the distance d can be approximated. Thus, in the ideal situation, the location of MT can 

be concluded on the circle in which the center is the serving base station and the radius is 

the calculated distance for two-dimensional positioning (as shown in Fig. 2.2). 

The main advantage of SS is that the signal strength, or the signal attenuation 

parameter, is the only common information available among various kinds of cellular 
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network [4]. The economic and compatible features of SS [14-16] also draw great 

attention of researchers due to SS’s ability to avoid installing expensive components in 

each side.  

 

Figure 2.2: One base station measures the SS and determines the distance d between 

itself and the MT (uncertainty is defined as a circle) 

However, in practice, an error-free environment is not achievable, especially in the 

outdoor urban region. This means that the signal exchanged within cellular 

communication networks has to experience fast (multipath) fading, shadowing and 

path-loss, which may lead to a complex signal shape. These influences become rapidly 

serious along with the increase of the distance. Another drawback of SS is its random and 

incomplete characteristics, which raise a great challenge to the location estimation [2]. 

These are caused by the original settings of the cellular network: only a small subset of 

RF signals can be recorded on a mobile handset and their strength need to exceed the 

threshold of the smallest handset reading.  

B. Angle of Arrival (AOA) 

In addition to developing new method to overcome the shortcomings of SS, a new 

parameter was proposed to serve location estimation. The AOA parameter is derived 

from the signals received by different antenna elements which are installed in the base 
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station or the handset [10]. With this parameter, a unique measurement will create a 

straight line to connect the base station to the MT. Thus, if an antenna array is installed 

and with known array geometry, the time differences of the same arrival signal can 

determine the angle between the base station and the MT [17]. For instance, in a 

narrowband communication environment, the phase shift is utilized to present the 

difference of the arrived time. Then, the AOA can be determined by using this shift data 

combined with the geometrical feature of each antenna element [18]. 

The AOA scheme can provide enough location information to rely on a minimum of 

only two base stations. However, the requirement of installing antenna array is difficult to 

be implemented and is not economical. Additionally, the accuracy of AOA measurements 

is highly related to the cell range. A tiny error in the estimated angle can be amplified to a 

large position deviation in urban environments where MT is far away from base stations.   

C. Time of Arrival (TOA) / Time Difference of Arrival (TDOA) 

The TOA parameter is defined as the flight time of a signal transmitting between MT 

and a base station. The estimation of this parameter is similar to the estimation of the SS 

parameter which is focusing on collecting the distance related information. This is due to 

the assumption that most RF signals are traveling at the speed of light (3x108m/s). Thus, 

in the absence of errors situation, the position of the MT will be laid on the circular locus 

around base stations (similar to Fig.2.2). In order to improve the quality of TOA, a 

synchronized clock is necessary to provide a unified time tick for an exchanged signal. 

For a two-way communication situation, exchanging time information by certain 

protocols is also an efficient way to maintain the synchronization feature [19].  

Turin et. al. [20] firstly utilized the phase estimation method to obtain a TOA 
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parameter by employing a phase detector in his simulation. However, phase estimation 

method requires synchronization from at least three base stations, which sometimes 

cannot fulfill in practice. In 1992, H. Hashemi [21] proposed a pulse transmission method 

for wideband cellular network TOA parameter estimation. In this method, a 

correlator-based technique is applied to correlate the received signal with a local template 

for diverse delay corresponding, which can be calibrated based on the correlation peak. 

Meanwhile, a similar approach using the matched filter (MF) receiver to estimate TOA 

was also mentioned in Hashemi’s research [21]. The filter engaged in this method 

matched with the signal transmitted between MT and a base station and executed 

estimation when the output of MF reached the maximum value. Both of these schemes 

can achieve optimal results in the maximum likelihood (ML) sense [22]. However, the 

performance of them degrades sharply in the multipath environment where the received 

signal is used as the template signal or the MF impulse response. Apart from phase 

estimation and pulse transmission techniques, the TOA can also be concluded through the 

spread spectrum technique [23, 24] in literature. 

The main shortcoming of the estimation of the TOA parameter is the imperative of 

an installed synchronization clock which is expensive and hard to be achieved. 

Additionally, the accuracy of TOA data is influenced by the multipath problem and the 

NLOS noise, which are commonly observed in an urban environment.  

In order to overcome the lacking of synchronization equipments between base 

stations and MT, an advanced method of signal travel time estimation, called time 

difference of arrival (TDOA) was developed, where synchronization is unavailable 

among each reference base station [18]. TDOA estimation calculates the time difference 
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of two arrival signals received by two base stations from the MT. After subtracting these 

two different values, the synchronization error (also called timing offset [10]) between 

MT and base stations can be eliminated, and then used to locate the position of the MT on 

a hyperbola (on which foci are at the two reference base stations and shown in Fig. 2.3). 

This is due to the assumption that all the synchronization error between the 

unsynchronized pair of MT and each base station are the same. 

 

Figure 2.3: TDOA hyperbola based on the time difference between MT and two 

base stations 

Another method of TDOA parameter estimation developed by Caffery and Stüber 

[25], as an extension of their previous work, is focusing on calculating time difference 

value of two reference signals with the help of cross-correlations. In this method, the 

largest cross-correlation value is observed and applied in the calculation of the 

corresponded travel time delay. The formula of cross-correlation-based TDOA estimation 

is 

              (2-1) 

              (2-2) 

where ti(t), for i=1, 2, … represents the travel time of signal between MT and the base 

station i, and T is selected as the observation time interval. Unfortunately, this 
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correlation-based method can only achieve good performances in single path channels 

where white noise is the primary interference. This performance will be degraded when 

signals transmitting through multipath channels with colored noise exist. 

 Aatique, in his master thesis [26], proposed an advanced method that utilizes 

generalized cross-correlation (GCC) techniques [27] to cross-correlate the filtered signals.  

This method is able to mitigate colored noise in multipath channels by shaping the 

cross-power spectral density that corresponds to the filtered versions of the signal. It can 

provide more rigorous TDOA results than the conventional peak detection method. 

However, the performance of this method is constrained seriously when deriving 

information from microphone signals. 

D. Hybrid Schemes 

Since the single position related parameter has various constraints in providing high 

quality localization services, hybrid methods which can provide extra position 

information of the MT, had drawn continuous attention from different scientific 

communities. The hybrid TOA/AOA parameter is used in location estimation by Aatique 

et. al. [28] in order to provide accurate position when there is only a single base station 

available to serve the MT. Different from TOA only and AOA only methods, with a 

hybrid identification of the LOS base station makes the new hybrid method is possible to 

eliminate the NLOS influences. The drawback of this hybrid scheme is that the 

improvement of accuracy is not prominent compared to others. However, its ability to 

provide location estimation in a lacking base station coverage situation without 

modifying the handset still makes it a good option in rural regions. 

In order to further increase accuracy of location estimation when there is no 
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constraint in the number of serving base stations, a hybrid TDOA/AOA scheme which 

encompasses the advantages of both TDOA and AOA parameters was proposed by Li et. 

al. [29]. One advantage of TODA/AOA method is its ability to obtain the parameter of 

both AOA and TDOA at the same time. The AOA information can locate MT with only 

two base stations as the minimum, while the TDOA data can achieve a high accuracy 

when three or more base stations are available for location estimation. The AOA 

information can be used to compensate the TDOA parameter in order to solve the 

ambiguity problem of the TDOA approach. The other advantage is that the TDOA 

information can also help the AOA only method to avoid its drawbacks. In [17], we 

learned that the AOA information cannot be measured at the MT due to the uniformly 

distributed characteristic of AOA and the requirement of installing complex antenna 

array. Additionally, the near-far effect, which can degrade the quality of the neighboring 

base station’s received signals due to the power control mechanism of the reverse-link 

pilot signal sent from the MT, resulting in low accuracy of AOA measurement. 

Furthermore, to gather the AOA information of the reverse-link pilot signal from the MT, 

antennas installed in each base station should be able to keep tracking the movement of a 

MT. Generally, this operation will introduce huge burden on the antennas. The TDOA 

measurements can help the AOA scheme to reduce the impact of near–far effect by 

applying the soft handoffs of the signaling and pseudo noise (PN) code tracking at the 

MT receiver, where the forward pilot signals are not constraint by power. Fourth, the 

TDOA scheme can release the synchronization requirement between MT and base 

stations, in contrast to the TOA approach. However, in order to achieve high localization 

accuracy, a long period TDOA/AOA measurement is necessary because of the 
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continuous transmission property of the forward and reverse pilot signals. Furthermore, 

special attention needs to be paid to ensure that error from either one method will not 

influence the overall performance of location estimation. 

Along with the development of TOA/AOA and TDOA/AOA schemes, the other 

important hybrid parameter, TOA/TDOA, was proposed by Reza in his master thesis [30]. 

In his research, the raw measurements of TOA and TDOA are collected respectively. 

Since they have different error biases and variances, the weight of TOA and TDOA 

measurements that rely on their quality make it possible to improve the general 

performance of the estimated location. 

Catovic and Sahinoglu [31] proposed a novel scheme using hybrid TOA/RSS or 

TDOA/RSS scheme to extend TOA only, TDOA only or RSS only method. They 

concluded that using the estimation result of RSS in conjunction with TOA or TDOA 

parameter can enhance the location estimation in short-range communications. Two 

enhancements can be achieved by TOA/RSS or TDOA/RSS schemes, including 

improvement of the overall location estimation accuracy and the distinct promotion of the 

nearby reference devices’ performance. However, these methods can only improve the 

accuracy in short-range communication networks such as wireless sensor networks 

(WSNs), Wi-Fi, Bluetooth, and Ultra-wideband (UWB). Along with the increase of 

coverage area, the performance of TOA/RSS and TDOA/RSS become close to TOA and 

TDOA, gradually. 

E. Others 

Apart from the conventional position related parameters mentioned above, few other  
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researchers concentrated their efforts on analyzing the exchanged RF signal and finding 

new parameters for specific applications.  

Multipath power delay profile (MPDP) [32] was proposed to be utilized in cellular 

networks location estimation based on the assumption that the characteristic of all 

multipath components’ excess delay is resolvable. Nevertheless, MPDP can achieve good 

performance only in an indoor adverse environment where multipath and NLOS 

problems are serious. And a high time resolution is necessary to support the MPDP 

approach. Similar to the MPDP scheme, a multipath angular power profile (MAP) 

parameter was mentioned by the same author [32]. It focuses on estimating the multipath 

power profile at each node using antenna arrays. 

In order to accomplish rough location estimation for some specific applications 

within the UWB channel, a channel impulse response (CIR) parameter, which exploits 

the nature of UWB channels, was nominated by Althaus, Troesch, and Wittneben [33]. In 

this scheme, the CIR of a transmitter and receiver pair (TX/RX) is unique. The CIR 

received by a RX works like a signature of any TX. If two CIRs are similar, it means the 

two TXs are close to each other. This feature can be used to decide the geographical 

region of the target node.  

The primary advantage of these new developed parameters is their ability to provide 

more position related information in location estimation. In contrast, one drawback of 

these schemes is the requirement of building a database to store preceding parameters in 

order to extract location information which will increase complexities of the position 

related parameter estimation phase. The other drawback is that most of these schemes are 

only efficient for selected applications. 
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2.2.2 42BPosition Estimation 

After the first step, which collects position related parameters, the next step is to 

design an appropriate method to extract position information from them, to reduce 

variants, and to calculate the position of the MT. Generally, this phase can be categorized 

into two different types based on the availability of database technologies. 

A. Geometrical and Statistical Techniques 

Geometrical Techniques 

In a nutshell, the geometrical technique is defined as the technique that uses a 

deterministic approach to do position estimation relying on certain geometric 

relationships gathered from the first step.  

 

Figure 2.4: Trilateration geometrical technique for SS or TOA 

The trilateration method [34] is the first geometrical technique derived from a 

mathematical solution in order to solve the three-dimensional trilateration problem, 

which was proposed by a Dutch mathematician and astronomer Willebrord Snellius. This 

method is able to determine the intersections (the final position of the MT) of three or 
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more globe surfaces with given centers (the known position of each base station) and 

radii (the distance decided by the SS or the TOA parameter which was extracted in the 

first phase). The operation of the trilateration method is shown in Fig. 2.4.  

 For the AOA parameter, the triangulation approach, which processes location 

estimation based on measured angles from reference nodes to the target node, is applied. 

In this method, the distance information is excluded in position estimation, but the angle 

data from two fixed reference nodes is enough to decide the location of target node, as 

shown in Fig 2.5. 

 

Figure 2.5: Triangulation geometrical technique for AOA 

 In order to determine the intersection of two hyperbola where the target unit foci on, 

a multilateration approach was developed to do location estimation relying on the TDOA 

parameter. The mutlilateration method requires data exchange between MT and at least 

three base stations. Generally, the multilateration method can achieve far more accurate 

location results, in contrast to sparse methods (trilateration, triangulation). The location 

estimation procedure is shown in Fig. 2.6. 

However, due to the existence of variances and Environmental-dependent Factors 

(EFs) such as multipath and Non-Line-of-Sight noises in imperfect wireless channels in 

the cellular network, location related parameters collected from the first step are not 
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always error-free. Thus, the direct position estimation depending on these parameters 

may not be able to determine a unique intersection. Therefore, using geometrical 

techniques in non-ideal wireless environments can only provide an approximate region of 

where the MT may be located. The other drawback of geometrical techniques is the 

lacking of efficient data fusion mechanism which makes the effective utilization of 

multiple parameters estimation hard to achieve. 

 

Figure 2.6: Multilateration geometrical technique for TDOA 

Statistical Techniques 

Similar to geometrical techniques, the statistical approach is also focusing on 

calculating the position of the MT. However, it acquires the most likely position of the 

MT from position related parameters with the presence of a theoretical framework. The 

utilization of the theoretical framework is the essential difference between geometrical 

methods. The fundamental model of the statistical approach is named as generic 

framework in (2-3, 2-4).  

In (2-3), pi is denoted as the position related parameter and function P(xi, yi) is the 
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relationship model for the true spatial coordinates of the target node and the parameter. 

i is the noise parameter for current estimation. In (2-4), there is the definition of 

relationship model in (2-3) for different position related parameters, respectively. In an 

error-free situation where i=0, the generic framework can perfectly calculate the true 

coordinates of the MT.  

                        (2-3) 

(2-4)

Unfortunately, the noise-free environment does not exist in the real world. Thus, 

researchers contributed their efforts to accurately determine the noise term in order to 

extend the generic framework. In [35-37], the serious influence of NLOS error to the 

accuracy of location estimation was evaluated and defined as the “killer issue”. In order 

to achieve high accurate location estimation result, it is necessary to correct the NLOS 

error a priori to location estimation. 

NLOS Mitigation Methods 

The first solution for mitigating NLOS errors was proposed by Wylie and Holtzman 

[38]. The first step designed in this method is a simple hypothesis testing for NLOS 

errors identification. After confirming the existence of NLOS ranging errors, a correction 

scheme is used with the assumption that there is prior knowledge of the standard 

measurement noise of the wireless environment. Wylie and Holtzman’s work verified the 

possibility of identifying and mitigating NLOS errors utilizing some simple algorithms.  
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However, this correction solution is so naive that it can only achieve limited 

improvement in NLOS ranging errors mitigation. The other drawback of this method is 

its requirement of range measurements from a user as a time series. In order to work 

efficiently, the standard deviation of NLOS range measurements needs to be greater than 

the standard deviation of LOS measurements. 

Another method proposed by Xiong et. al. [39] concentrated their efforts on reducing 

NLOS errors with the AOA parameter. The selective model identified and reduced the 

NLOS error relying on the coordination of many base stations. It first estimates the 

coordinates of MT using the LOS propagation model. Secondly, the error of the AOA 

parameter at each base station, its absolute value, and the root mean square of all errors 

are calculated. Then, every base station with large error value will be excluded from the 

sample list and the location of MT is recalculated using the maximum likelihood (ML) 

model [40-42]. The drawback of this method is that the accuracy of location estimation 

still cannot satisfy the requirement of FCC. Additionally, it fails to mitigate NLOS errors 

when more than one NLOS base station exists in the cellular network.  

In order to overcome the limitation of multiple NLOS base stations situation, Chen et. 

al. [43] proposed a Residual Weighting Algorithm (Rwgh) that used deletion diagnostics 

to compute and rank the influences of excluding NLOS base stations from the entire set. 

The main contribution of Chen’s work is its ability to mitigate the NLOS error when 

lacking NLOS measurement information. The primary drawback of Rwgh is the 

constraint that its performance will be fully degraded when all the propagation between 

MT and each base station is NLOS. 

New approaches, using the robust estimation theory such as the pseudo-median 
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estimator [44] and range measurement model [45], are able to smooth the influence of 

NLOS errors with the integration of an estimator which is insensitive to small number of 

outliers. In these approaches, the location of MT is assigned with a unique maximum 

value which can be determined by the given path loss measurements between MT and 

three or more base stations, and the likelihood function [44]. The estimated location that 

has the largest likelihood value is determined as the final location of MT.  

However, these robust methods face some constraints in a practical cellular system. 

First is that the communication channel between MT and most base stations have NLOS 

errors involved, especially when MT is far away from base station. The other drawback is 

that the number of base stations is often limited, and it is difficult to satisfy the 

requirement of the above methods. Thus, the quality of the likelihood ratio may be 

degraded. 

During the same period, Caffery et. al. [46] proposed a Linear Lines of Position 

(LLOP) algorithm to divide the nonlinear intersection problem into several linear sub 

problems in order to reduce the complexity of calculation. This novel method focuses on 

solving the NLOS problem which exists in the generic TOA based geometrical 

techniques. However, the performance of this algorithm depends on the relative location 

of MT and base stations. Furthermore, to achieve reliable results, at least four base 

stations are necessary to provide straight lines of position (LOP) data. This is difficult to 

implement in the cellular network. 

The Kalman filtering technique [47, 48] is first utilized in mitigating NLOS errors 

that exist in location estimation by Thomas, Cruickshank and Laurenson [49]. In their 

research, a robust architecture based on the biased Kalman pre-filtering of the TOA 
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parameter is designed as a crucial stage. It provides a real time TOA variance estimation 

which is able to extrapolate TOA value when the LOS path is lost. The first weak point of 

this Kalman filtering method was the use of the standard deviation of a Kalman filter’s 

estimation as the identification of the LOS/NLOS scenarios. Additionally, the simple 

combination of the using of this standard deviation and the increasing of the size of the 

covariance matrix of measurement noise vector is not efficient in mitigating NLOS error. 

These are due to the dynamic change of propagation channels in the real world where 

most mobile subscribers keep moving and their movements are unpredictable. The 

uncertain change of the velocity and the acceleration, as well as the correlation of 

measurement data, makes it quite possible to generate mismodeling errors to the Kalman 

filter estimation and degrade its reliability. Thus, the true variance in LOS and NLOS 

scenarios may not be able to be calculated through the Kalman filter.  

LOS range estimation used in NLOS environments is a novel method to reduce the 

NLOS error existing in location related parameters [50, 51]. A constrained nonlinear 

optimization scheme is the key in this method, and it can achieve good performance 

when only three base stations are available for range measurements. The geometry of the 

cell layout is used to analyze the bounds on the NLOS error and the relationship between 

the true ranges. In LOS range estimation, there is no requirement of the distinction 

between NLOS and LOS base stations. This means that at any time, the propagation 

between serving base station and MT can be LOS or NLOS, and the cumulative error in 

the range measurements of the other base stations is non-negative. Thus, the NLOS error 

can be eliminated by computing normalized scale factors which adjust the 

NLOS-corrupted range measurements close to their LOS values. Another advantage of 
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this method is that it does not require any modification to the subscriber equipment. 

However, the implementation of this method in practical systems is difficult due to the 

inefficiency of the nonlinear objective function. Furthermore, the improvement of this 

method in NLOS errors elimination cannot reach the FCC’s requirement. 

Channel-scattering model based statistical algorithms have been designed to provide 

location estimation service in NLOS environments. These models can be divided into the 

ring/disk of scatterers [52], the Gaussian scattering models [53], and the dominant 

scatterers [3] based on different scatterers used in the true range measurements estimation. 

These algorithms utilize the TOA parameter or TOA/AOA parameters and their 

distribution function with the channel-scattering model to calculate the true measured 

range. The primary advantage of the channel-scattering mode based location estimation 

approaches are that they only need three base stations in the system for providing location 

information. The channel-scattering mode also can be applied for the case of a stationary 

user. However, the applicable areas of this method are limited. Thus, it is necessary to 

characterize the scattering environment before applying the algorithm in a particular area. 

The believable factor algorithm (BFA) based method was proposed by He et. al. [54] 

in order to mitigate the influence of NLOS. In this method, the geometrical feature of cell 

layout was combined with the path loss model, the received signal strength, and the time 

of arrival (TOA) range measurements. It only requires TOA data from 3 reference base 

stations and it does not care about the propagation of each base station, including NLOS 

error or not. The believable factor is determined by the combination of the received 

signal strength (RSS) and a specific path loss model. It decides the reliability of the range 

measurement by TOA.  
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The BFA approach proposed by He et. al. did not consider the situation when there is 

no intersection between each TOA circle. Thus, in 2008, an extension method which 

integrates BFA and Kalman filter techniques at the same time to further increase the 

quality of estimated location and to reduce the influence of NLOS error is proposed by M. 

Y. Shi et. al. [55]. In this method, after identifying the existing of NLOS propagation, the 

biased Kalman filter model is utilized first to smooth the NLOS error. Then, the 

believable factor based objective function is adopted in order to further optimize the 

NLOS mitigation and MT localization. In this method, both advantages of BFA and the 

Kalman filter model can be inherited. However, the drawback of this method which is 

similar to all the typical believable factor method is the requirement of the quality of the 

selected path loss model. The highly accurate location estimation may not be attained 

when the selected path loss model cannot well approximate the real propagation 

conditions. 

B. Mapping techniques (Fingerprint techniques) 

The core feature of the mapping technique that differentiates it from non-parametric 

statistical methods is the utilization of the training data set which consists of previous 

sample records to estimate the position of the target node. Those samples contain the 

estimated signal parameters and the known spatial coordinates. Generally, the training 

phase is offline and operated before the real-time localization. A regression scheme is 

determined relying on the training data set and used to calculate the position of a given 

node.  

The first fingerprint technique, RADAR, for wireless LAN (WLAN) was proposed 

by Bahl et. al. [56] in order to locate and track users inside a building by adopting the 
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k-nearest-neighbor (KNN) model. In this method, the MT’s location is determined by 

comparing multiple data sets of previous training data with the observed signal strength 

and selecting the best matched one. The primary contribution of this method is providing 

a generic method which combines empirical techniques with the signal propagation 

model to estimate the position of a target node. However, this method lacks the ability to 

handle noisy wireless channels, which is common in the real scenario. Additionally, it 

requires large search space in order to achieve good performance. 

In order to improve the ability to tackle the noisy wireless channel, Youssef et. al. 

[57] proposed a joint clustering technique combined with a probabilistic method for 

in-building location estimation. The main contribution of Youssef’s job is that he defined 

a way to describe the tradeoffs between the accuracy of location estimation and the 

requirements of computation. In order to implement this tradeoff, two techniques, Joint 

Clustering and Incremental Triangulation, are selected and utilized together. However, 

this method still cannot reduce the computational burden of the location determination 

algorithm at an application level. 

In order to further improve previous mapping techniques, Battiti et. al. [58] proposed 

a multi-layer perceptron (MLP) architecture based neural network model. This is an 

efficient solution to estimate the position of the target node and to reduce distance error 

extracted from location related parameters by applying neural network models and 

automated learning techniques. The relationship between the observed signal strength 

parameter and the spatial coordinates of the mobile unit is analyzed by the neural network 

model based on a big number of training parameters and the nonlinear transformation of 

each unit. One advantage of this approach is that the detailed knowledge of each access 
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point (AP) is not required. However, the performance of neural network fluctuations 

depends on the structure of the network and the complexity of training samples. 

Additionally, deciding the number of hidden layer nodes is also difficult in the real world 

scenario. 

A nonparametric kernel-based estimator for location estimation was proposed by 

McGuire et. al. [59]. The propagation delay is selected as the parameter which is 

measured and analyzed in this project. The environment of this approach is not limited to 

the indoor environment but a microcell situation with both LOS and NLOS radio 

propagation. The main contribution of this approach is the definition of the mean square 

error’s lower bound of the estimated location result which the kernel-based estimator 

location estimation method can achieve. Compared to the previous parametric maximum 

likelihood estimator, this new estimator can mitigate NLOS error better. The influence of 

NLOS noise can be degraded by the robust kernel functions.  

Driving from the kernel-based estimator in McGuire's work, Gezici et. al. [60], 

presented a Support Vector Regression (SVR) [61, 62] based algorithm that estimates the 

position of a mobile unit relying on collected training data from a priori locations. 

Compared with conventional empirical methods, SVR utilizes structural risk 

minimization principle to overcome the limitation of the empirical risk minimization 

principle by minimizing upper bound (the highest limited value) of the expected risk. As 

an advanced regression algorithm, SVR maps the input data series into high feature space 

in order to learn the nonlinear relationship between input and output. The primary 

advantage of the SVR based method is that it achieves very accurate estimation result 

when NLOS propagation is serious.  
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However, the main drawback of the machine learning theory based method is its 

assumption of high quality and time relevant training dataset, which is too difficult to be 

achieved in cellular network, especially the outdoor environment. In order to achieve a 

very accurate location result, the main underlying assumption is that the training set 

needs to remain relevant during the whole evaluation period. It means that the 

environment should be sufficiently stable so that the measurements are associated with 

similar error statistics. 

A novel method which treats the location estimation problem as a nonlinear 

classification problem was proposed by Sun et. al. [63] in order to overcome the 

influence of NLOS propagation. This method is an extension of the conventional least 

square (LS) algorithm with advantages such as high-accuracy, real-time estimation, and 

fault-tolerance. Additionally, it can estimate the accurate position of MT without 

requiring ad-hoc infrastructure in addition to the cellular networks. The detailed 

knowledge about the locations of each base station and the environment characteristics 

has no influence on the performance of this method. The accuracy of the localization 

result only comes from a map of the monitoring space and the location information of 

some survey points.  

An extension of the previous generic SVR method [56] was proposed by Wu et. al. 

[2], which contributed their efforts on solving the data missing problem in outdoor GSM 

networks. In this research, they analyzed the serious influence of the missing data 

problem to the accuracy of the SVR based mapping technique. During the field test, they 

observed that more than 80% of the record signal strength data is incomplete. This 

feature makes the utilization of SVR learning theory based approach in the outdoor GSM 
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environment a challenge problem. A missing value insensitive kernel, Sum of 

Exponential (SoE) kernel, was introduced in order to handle the missing value problem 

and to provide accurate regression results. Furthermore, a 1-norm loss function that is 

insensitive to small deviations is applied in the standard SVR method in order to build a 

linear regression model. The significant feature of the SVR approach is its ability to 

regress on the nonlinear expansion of the original input vector but not itself. This feature 

distinguished the SVR based method from other empirical methods. Unfortunately, this 

new method is still based on the assumption that the training data set is with time relevant 

feature. Thus, a novel training data set update method is necessary in the implementation 

of learning theory based methods in outdoor cellular networks. 

Türkyılmaz [4] proposed a novel fingerprint technique, environment-aware 

RSS-based location estimation (EARBALE), which utilizes the artificial neural network 

(ANN) [64] based model to identify the radio propagation environment. This is achieved 

by using empirical data treated by preprocessing and dimensionality reduction via the 

decision tree (DT), and applying ANN based classification. After determining the 

environment feature, a matched deterministic Hata model [65] will be used, combined 

with the basis of the triangulation calculations. This is based on the observation that the 

radio propagation characteristic of different environments (urban area, suburban area, and 

open area) is significant and varied. The primary advantage of this method is its 

lightweight cost of integration onto any RSS parameter based location estimation scheme. 

The implementation of the EARBALE model only requires a small number of initiatory 

work and training processes. 

Although EARBALE provides huge resource savings for location estimation in 
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cellular networks, the use of the propagation model after the ANN based classification is 

possible to introduce variances which will degrade the accuracy of the estimated location 

results. 

2.3 17B Summary 

This chapter presented some selected research work summaries that related to 

position related parameter extraction and position estimation methods used in cellular 

networks. It can be concluded from this chapter that although many machine learning 

theory based position estimation techniques have been presented, there is a scope of 

improvement in utilizing the hybrid TOA and SS parameters and BFA to further clean the 

EFs. Additionally, no technique exists in the literature that exploits the update of training 

data sets. A generic model can be designed to perform the functionality of position 

estimation and error reduction concurrently in outdoor cellular networks. 
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CHAPTER 3  

2BCONGESTION REASON ANALYSIS BASED REAL-TIME ROUTE GUIDANCE 

SYSTEM FOR MULTI-LANE ROADS 

3.1 18BIntroduction 

In this chapter, we developed a new navigation system for reducing travel time of an 

individual driver and distributing the flow of urban traffic efficiently in order to reduce 

the occurrence of congestion. Prediction based route guidance systems show great 

improvements in solving the inefficient diversion strategy problem by estimating future 

travel time when calculating accurate travel time is difficult. However, performances of 

prediction models that are based on the historical data set degrade sharply during a 

congestion situation. 

In the metropolitan region, most congestion or traffic jams are caused by the uneven 

distribution of traffic flow that creates bottleneck points where the traffic volume exceeds 

the road capacity. Additionally, unexpected incidents are the next most probable cause of 

these bottleneck regions. Moreover, most drivers are driving based on their empirical 

experience without awareness of real-time traffic situations. This unintelligent traffic 

behavior can make the congestion problem worse. 

Data fusion (DF) technique plays an inevitable role in intelligent transportation 

systems (ITS) with the objective of reducing transportation time and gasoline 

consumption, guaranteeing passenger safety, and avoiding congestion. This technique has 

contributed in specific tasks such as advanced traveler information systems (ATIS), 

advanced driver assistant (ADAS), traffic demand estimation, traffic forecasting and 
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monitoring, network control, automatic incident detection (AID), and crash analysis and 

prevention [66]. In this paper, we concentrate our efforts on the first scenario since there 

is an increasing requirement for congestion avoidance in urban areas. 

Every year, the US wastes more than 10 billion gallons of fuel and 63 billion dollars 

due to traffic congestion [67]. Additionally, the annual travel delay that US citizens 

experience has increased fivefold within 20 years. In order to reduce the waste of time, 

fuel and money, the most important issue is to reduce the time spent in congestion during 

the trip. The shorter the time that people spend on the road, the less chance that they will 

be involved in congestion. The most straightforward method to achieve this is to build 

new roads or widen existing thoroughfares. However, construction of new roadways will 

cost millions of dollars and take long period of time, not to mention the possibility of 

causing more serious congestions during construction period. Thus, an intelligent route 

guidance system with accurate and reliable real-time traffic data would be a good option. 

This section focuses on developing a navigation system which uses the AMPRFP 

algorithm to estimate accurate travel time of each arc based on both historical traffic 

behaviors and real-time non-linear affections caused by neighboring arcs' traffic patterns. 

The performance of this system was evaluated in a multi-lane urban area. The earlier 

work of authors [68] showed that the prediction based real-time fastest path (PRFP) 

algorithm can help drivers save travel time in single lane urban traffic networks, 

especially when they experienced frequent congestion in their trip. It also can improve 

the efficiency of urban traffic management by reducing the number of congestion events. 

However, in the real world, most routes are with multiple lanes. And in this scenario, 

the cause of congestion cannot be identified simply by incidents due to the existence of 
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extra lanes that can distribute the traffic flow to bypass them. In [69], authors 

summarized that in the multi-lane urban traffic network, the congestion is mainly caused 

by the traffic volume exceeding the capacity of the arc. This is called “recurring 

congestion” which accounts for roughly half of the total congestion. The other type of 

congestion which is named “nonrecurring congestion” is caused by temporarily taking 

away part of the roadway. These new features were well considered in the building of the 

AMPRFP algorithm. 

3.2 19BRoute Guidance Techniques 

Route guidance is the real-time process of guiding the driver along the route 

generated by a route planner. In general, vehicle navigation algorithms can be classified 

into two classes, the shortest path algorithm and the fastest path algorithm. 

3.2.1 43BShortest Path Algorithm 

The first algorithm designed to provide optimal route guidance services is the 

shortest path algorithm [70]. It concerns route length as the impedance and tries to find 

the arc list with the shortest distance between the start vertex and the destination vertex. It 

was the best option in the last 20 years when the estimation of average speed and traffic 

flow of each arc was difficult. However, since the length of the arc is fixed, this system 

cannot respond to real-time changes in the route condition. 

3.2.2 44BFastest Path Algorithm 

To overcome this problem, other form of users' information, the travel time, is used 

as a measure of cost for route selection strategies. 
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A. ADVANCE Program 

One such kind of system is named ADVANCE program [71], which was an 

in-vehicle system providing route guidance in real-time. It operates in the northwestern 

portion and northwest suburbs of Chicago. In ADVANCE program, dynamic travel time 

information about expressways and local streets is used to determine the optimal routes 

for drivers. However, the estimation of travel time with high accuracy is a particularly 

difficult task especially when congestions or incidents happened. Thus, in ADVANCE 

program, arcs involved with congestions and incidents were treated as broken and were 

excluded from the arc data set. Obviously, this would introduce inefficient diversion 

strategy problem [72] into the selected optimal path. For instance, if a route will be 

blocked by an incident or congestion for 10 minutes, and the vehicle needs to take 15 

minutes to reach it, diverting this vehicle to the nearby arc which is 20 minutes away is 

not efficient. Not to mention the increase of the possibility that it may be jammed by 

incidents in other paths. 

B. Traffic Flow Forecasting 

To overcome limitations of travel time estimation, the traffic flow forecasting 

approach has received incremental attention in the past years. Messer et. al [73] 

announced the first work on travel time forecasting. Later, a dynamic route guidance 

system (DRGS) [74] was proposed for estimating and predicting travel time and then 

weighted to get optimal routes. In order to further improve the performance of the 

prediction model, researchers have applied various techniques to this problem such as 

Bayesian framework [75], Linear regression [76], Kalman filtering [77], neural networks 

[78], and kernel estimator [79].   
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Currently, people predict the travel time based on the time-varying features related to 

traffic behaviors. It means the future travel time has some level of relationship with 

historical (daily, weekly, and seasonal) traffic patterns. Unfortunately, the fluctuation of 

traffic flow caused by congestions and incidents that happened in related arcs which are 

quite different from historical records is not well considered in these prediction methods. 

3.3 20BSystem Architecture 

 The overall system architecture for the wireless real-time route guidance system is 

shown in Fig. 3.1. The system is designed to satisfy requirements of real-time traffic 

navigation at the fastest path level. There are two primary components in the system: 1) 

the mobile unit, and 2) the route guidance system server. 

 

Figure 3.1: System Architecture 
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3.3.1 45BMobile Unit 

The mobile unit is a hand-held equipment which is integrated with a GPS signal 

receiver. Its main function is to decode the real-time data sent from the server. The unit 

can be a cell phone, a PDA, or a portable GPS navigator. The mobile device is designed 

to operate simple functions. Typically, mobile units cannot support high speed and 

complex computation. Hence, in the design of our system, using the browser/server 

model (Calculation is totally done at the server side; the presentation task is implemented 

at the mobile unit side.) becomes a good option to enable the mobile unit with the support 

of the real-time route guidance service. Additionally, in order to support multi-lane 

navigation service, the localization method applied by the mobile unit is the differential 

GPS (DGPS) [80] technique which can provide lane level position estimation service. 

3.3.2 46BRoute Guidance System Server 

The guidance server can be a powerful server machine which is the most important 

part of this system. From Fig. 3.1, we can see that the server consists of four components: 

1) the input module; 2) the data collection module; 3) the path calculation module; and 4) 

the output distribution module. 

The input module is responsible for converting different types of input data to a 

standard and recognizable format for the system to process. The data collection module 

focuses on requesting real-time traffic data from the third party’s database. The real-time 

data includes: 1) average velocity of monitored arcs; 2) accident reports of the urban 

networks; and 3) current location of customers. Based on these real-time traffic data, the 

path calculation module executing the AMPRFP algorithm first estimates the travel time 
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of each arc in the traffic network. After that, it calculates the near optimal fastest path for 

the current customer. Finally, the path information is converted into suitable data types 

for different mobile units. The data is sent through the output distribution module. 

3.3.3 47BReal-Time Traffic Data Collection 

Current techniques for real-time traffic information collection can be mainly divided 

into two categories: inductive loop sensors and probe based methods. Using inductive 

loop sensors, the speed can be estimated by comparing the distance between vehicles 

crossing them within a unit of time (60 second is the standard value used in the United 

States). This method can provide reliable real-time traffic data. However, the cost of 

building this network so expensive that the government has to sacrifice the secondary and 

tertiary roads, and focus on only some of the main highways and freeways. For instance, 

in Kansas City, the installation of a sensor system on a 70mile highway costs about $15 

million. Thus, one possible way to solve this problem is to use cellular phones as probes 

to provide traffic information, since more than 80% of drivers will keep their cell phones 

open during the whole trip. This is achieved by routinely transmitting mobile phones' 

position information, in an anonymous format, back to the network to calculate traffic 

flow information using triangulation, cell sector statistics, or pattern matching algorithms 

[81]. Even when no voice connection is established, this process can still operate based 

on the characteristic of the cellular network. This is a good way to provide full coverage 

real-time traffic monitoring services in the urban city. 
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3.3.4 48BMoving Status Identification 

In our AMPRFP algorithm, the detailed moving status of an individual vehicle, 

especially the leading vehicle, is critical to identifying the cause of congestion. For 

instance, without the knowledge of the moving direction of a leading vehicle which 

caused the congestion in current arc, the possible travel time of this arc cannot be 

calculated. However, the collection of this kind of information is difficult until the 

development of the Vehicular Ad-Hoc Network (VANET). The main goal of VANET is 

providing safety and entertainment information for passengers [82]. This is achieved by 

two components: the in-vehicle device and the roadside unit (RSU). The in-vehicle 

devices are some special electronic devices installed inside vehicles to provide Ad-Hoc 

Network connectivity. RSU acts as the wireless LAN access point to provide 

communications with other infrastructures. Vehicles involved in VANET will 

periodically broadcast their driving status (like driving direction, driving speed, current 

location, etc) through dedicated short-range communications (DSRC) channel. This 

one-way or two-way wireless channel is designed specifically for automotive use with 

75MHz of spectrum in the 5.9GHz band in the USA [82]. This information will be 

received by associated vehicles and RSUs to support real-time services, such as 

intersection collision avoidance, road sign alarms, and in-place traffic view. Thus, as 

shown in Fig. 3.1, when the leading vehicle is close to the end of the current arc, its 

driving information can be collected by the RSU installed along the roadside and then 

sent to the route guidance server to construct traffic views of the whole system. 
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3.3.5 49BCongestion Detection 

In three phase traffic theory [83], the congested traffic is defined as the situation 

when the speed of a vehicle is lower than the minimal speed in free flow. The threshold 

value of the minimal speed can be calculated using equation (3-1). 

                          (3-1) 

In (3-1), qmax is the maximum flow rate (in vehicles per hour) of an arc that can be 

achieved in the free flow. Parameter kcrit is the corresponding critical density (in vehicles 

per mile). If the average velocity of an arc is higher than vmin, the traffic condition of this 

arc can be identified as free flow while in the reverse situation; this arc is detected as 

been congested. 

In real urban networks, the vmin of each arc is varied. In order to standardize the 

definition of congestion and to reduce the complexity in the design of the AMPRFP 

algorithm, based on empirical research results, vmin in freeway is defined as 45mph [69]. 

In local arterial and city roads, the definition of vmin is 

                 (3-2) 

where k is the current density (in vehicles per mile) of arc i, c is the total capacity (in 

vehicles per mile) of i, and vi
limit is the speed limit of i [84]. 

3.4 21BAMPRFP Algorithm 

With the fast development of real-time traffic data monitoring technology introduced 

before (section 3.3.3), it is possible to receive accurate and on-time traffic information 

and maintain the overview of the whole urban traffic network. For instance, in traditional 
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time estimation techniques, the jammed or incident involved arcs were treated as broken 

and excluded from the route list temporarily. However, in the AMPRFP algorithm, those 

jammed arcs will not be simply excluded, but they will be assigned predicted travel time 

based on the analysis of the reason of congestion. This is the key idea of the design of 

this algorithm. 

3.4.1 50BRelated Research 

In order to provide optimal routes for drivers to reduce their travel period, the chief 

concern is to identify a specific weight parameter that can be used for evaluation. In this 

research, we selected the estimated travel time of each arc in each time point (defined as 

every second) as this parameter. An efficient shortest cost algorithm is also important to 

the quality of the evaluation job. Additionally, in order to generate high quality travel 

time data, the careful selection of a prediction method is necessary and will be discussed 

later. 

A. Shortest Cost Algorithm 

[70] tests the performance of the most famous shortest path algorithms using real road 

networks data. From their conclusion, we learned that the Dijkstra's Approximate 

Buckets Algorithm (DIKBA) shows superior performance in solving one-to-one or 

one-to-some shortest cost problem. Dijkstra's algorithm was conceived and designed by 

Dutch scientist Edsger Dijkstra in 1959 [85]. It performs well when people try to solve 

single-source shortest path problems in a network without negative edges. The operation 

of DIKBA is shown below in pseudocode. In Algorithm 1, V and E represent the set of 

vertices and edges in the graph respectively. s is defined as the source node while d[v] is 
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the tentative distance of v. (v, u) is the edge connecting vertex v and u and d_between(v, u) 

shows the distance between them. Bucket B is an array that stores a group of vertices in 

each element B[i]. Vertices in B[i] satisfy that d[v] � [i!, (i + 1)!] where ! is a positive 

real number that denotes the bucket width.  
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In our research, most drivers in the urban traffic network need to reach their 

destinations in the shortest possible time, and most people demand a single destination at 

each time. Thus, it is a one-to-one shortest cost problem and so DIKBA is an appropriate 

choice. 

B. Prediction Model 

In order to avoid traffic congestion with real-time and reliable traffic information, the 

key point is to predict and estimate the travel time of each arc. In 1973, Messer, Dudek 

and Friebele [73] announced the possibility of time prediction in their work. After that, 

many researchers [75-79] have concentrated their efforts on improving the accuracy of 

the predicted time. 

SVR  

Support vector regression (SVR) is one of the most important applications of the 

support vector machine (SVM) theory and was developed by Vapnik [61, 62]. The core 

concept of SVR is its general belief that the divisibility of data can be more distinct after 

transferring data to a high-dimensional feature space [62]. The advantage of SVR, that 

makes it superior than conventional empirical methods, is its ability to minimize the 

upper bound of the expected risk to improve significantly the generalized performance of 

regression. 

Pioneering work by Wu et al. [79] found out that the computation of travel time has a 

tight relationship with vehicle speed, traffic flow, occupancy, weather condition, and 

traffic incidents. All of these increase the complexity and difficulty of accurate travel 

time prediction. The key idea behind the SVR algorithm based travel time prediction 

method is that it considers the future value of travel time correlating with the time-variant 
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historical data set. In [86], travel time is split into three categories: historical, current, and 

predictive. There are linear relationships existing between them, which are shown in Fig. 

3.2. 

 

Figure 3.2: Travel Time Relationship 

The relationship between the predicted travel time and the training data can be 

demonstrated using equation (3-3). Suppose there is a training set of travel time 

where and n is the number of training samples. As 

defined in SVR, there is a mapping function  that can transfer the input space into a 

high-dimensional feature space F. We need to build a linear function f(), which can 

model each transferred data  to its associated travel time period . The predicted 

travel time period  at the future time point  is: 

                  (3-3) 

In order to get the result from (3-3), we need to decide the vector w and the offset 

scalar . This is achieved during the learning process. First we define the !-intensive 

loss function l as: 

                          (3-4) 

Since ! cannot always cover otherwise infeasible limitations of the convex optimization 

problem, slack variables and are applied to simplify l. 

                            (3-5) 
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Additionally, the linear function f() needs to satisfy Mercer's condition [62], which means 

the training process needs to solve following optimization problems: 

                  (3-6) 

                     (3-7) 

The new introduced parameter C is used to balance the flatness of the linear function 

and its ability to tolerate deviations. The value of C is assigned before the training phase. 

In order to achieve a better balance, we set C as 1000. Next, after maximizing the 

corresponding dual problem [62], w can be solved in equation (3-8). 

                (3-8) 

In (3-8), two new parameters are introduced:  is the lagrange multiplier and  is its 

estimation. Bring (3-8) to (3-1), we have: 

             (3-9) 

where k() is the kernel function used to determine the quality of the space transfer and to 

simplify the calculation. The variable b can be calculated based on the 

Karush-Kuhn-Tucker (KKT) conditions [62] shown in (3-10). 

             (3-10) 

Based on the result of [77, 79], it can be concluded that SVR is most suitable for this 

system. And in this research, the mySVM software kit [87] was chosen to operate all the 

SVR experiments. 
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Kernel Function  

As a kernel based mapping algorithm, SVR can augment the training data to a 

high-dimensional feature space using the kernel function. During the development of 

SVR theory, different kernels were designed to be applied in different applications. In 

previous research [68], we only considered the performance of SVR with the dot kernel, 

which is the simplest one to be integrated, but has a lower accuracy level and less ability 

to deal with missing values. Thus, in the new experiment, we compared the performance 

of other kernels shown in Table 3.1, such as the polynomial kernel, the Radial Basis 

Function (RBF) kernel, and the Analysis of Variance (ANOVA) kernel, using the field 

test data without congestion. The detail of field tests can be seen in following section. 

Table 3.1: Kernel Functions 

 
[After trying several combinations of and D, we finally concluded that set D=3 and =0.3 can achieve 

the best prediction result.] 

In Fig. 3.3(a), the ability to provide accurate prediction results of these four kernel 

functions is evaluated by comparing the predicted travel time with the measured travel 

time at the same time point for the same arc and same direction. From this figure, we can 

learn that the polynomial kernel provides the most dynamic prediction results. However, 

it is difficult to identify which kernel is the best due to performance variance. Therefore, 

two statistical methods, relative mean errors (RME) and root-mean-squared errors 

(RMSE) are introduced to further compare their performances. 
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(a) original value comparison 

 

(b) RME & RMSE for different kernel 

Figure 3.3: Prediction performance of different kernel functions. (a), (b). 

In (3-11) and (3-12), n is the size of time points sampled in the experiment.  is the 
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actual travel time of arc j at time point i and  is the predicted travel time at the same 

arc and at the time point i. 

                  (3-11) 

                  (3-12) 

In (3-11) and (3-12), n is the size of time points sampled in the experiment.  is the 

actual travel time of arc j at time point i and is the predicted travel time at the same 

arc and at the time point i.

After evaluating the result in Fig. 3.3(b), we conclude that the ANOVA kernel is able 

to provide the most accurate prediction results. The RME and RMSE values of using the 

ANOVA kernel are about 4.45% and 12.5% respectively. These results are close to the 

simulation result of [79], which is also based on real highway traffic data. 

3.4.2 51BAMPRFP Algorithm

With the fast development of real-time traffic data monitoring technology introduced 

before (section 3.3.3), it is possible to receive accurate and on-time traffic information 

and maintain the overview of the whole urban traffic network. For instance, in traditional 

time estimation techniques, the jammed or incident involved arcs were treated as broken 

and excluded from the route list temporarily. However, in the AMPRFP algorithm, those 

jammed arcs will not be simply excluded, but they will be assigned predicted travel time 

based on the analysis of the reason of congestion. This is the key idea of the design of 

this algorithm. 
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A. Traffic Pattern Classification  

Based on three phase traffic theory [83], we divided the route condition into four 

categories. 

Free Flow Phase  

The first category is the free flow phase. This is the situation when there are vehicles 

(the traffic density " > 0) moving normally with the average speed (vavg) in an arc, and 

this average speed is larger than the minimum threshold of the traffic congestion level 

(vmin). The travel time period (p) can be estimated using: 

                   (3-13) 

                   (3-14) 

where l is the length of the selected arc. 

Empty Flow Phase 

Different from three phase traffic theory, we add an additional category, the empty 

flow phase, which is different from the free flow phase because there is no vehicle in the 

arc (" = 0) and so no average speed can be detected. Thus, the same equation (3-13) is 

used by replacing only vavg with the maximum speed (or speed limit: vlimit) of this arc. 

Synchronized Flow Phase 

Third, the synchronized flow phase is defined as the situation where congestions 

happen in the arc. In this situation, as analyzed in section 3.3.5, the traffic speeds in both 

lanes are very slow (" > 0 and 0 < vavg<vlimit), and the travel time is difficult to estimate. 

Additionally, the velocities in neighboring lanes have the synchronization feature due to 

the lane changing behavior of drivers. 
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Traffic Jam 

Fourth case is that of a traffic jam happening in the arc. All vehicles in the arc cannot 

move (vavg  0). The road density is reaching the maximum value ( ). 

Considering the above categories, it is obvious that the accuracy of travel time 

estimation drops significantly during the synchronized flow phase and the traffic jam 

phase. Thus, in the next part, we introduce a congestion reason analysis method to 

approximately calculate the travel time during these two phases. 

B. Multi-Lane Congestion Analysis 

In the congestion situation, factors that need to be considered include the quality of 

time-variant historical data, moving pattern of current arc, and the real-time traffic 

condition of neighboring arcs. These factors will influence the accuracy of the estimated 

travel time. After analyzing the characteristics of traffic patterns during congestion in the 

multi-lane urban traffic network, we classify reasons for congestion into following types. 

Reason I: Incident 

In multi-lane road systems, most incidents blocked only part of the arc but not all of 

it. Thus, the traffic volume rose because of the temporary disruptions in the arc and 

caused the sharp reduction of the travel speed. Such kinds of incident include: a broken 

vehicle, construction, weather, a crash, etc. The traffic pattern is shown in Fig. 3.4. In this 

situation, in order to calculate the possible travel time at time instance t, we need to 

consider the releasing time of the incident. This is due to the assumption that the 

congestion can be released after the incident is removed. After the incident is cleaned, the 

capacity of the current arc can be recovered and the traffic pattern will changed to the 
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free flow phase. However, the average speed during that time cannot be estimated. 

Therefore, the formula for travel time estimation can be defined as (3-15): 

 

Figure 3.4: Incident caused road congestion. 

        (3-15) 

In the other situation, if there is just a single lane or the incident blocked the whole arc, 

shown in Fig. 3.5, the travel time of this arc is relied on when the incident can be released. 

Thus the travel time is measured approximately using the maximum time period required 

to solve this event. Using approximate value is based on the assumption that the time 

need to solve the incidents is much longer than the time for a vehicle to drive through this 

route. Thus it is acceptable to ignore the travel time but consider the time period used to 

solve the incident only. 

 

Figure 3.5: Incident caused road jam. 
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Reason II: Change of road architecture 

 

Figure 3.6: Merge lane caused road congestion. 

The changing of route architecture, which reduces the road's capacity, may also be an 

important reason for congestion. This happens when a lane merge exists in the connection 

of two arcs or during part of an arc. The situation can be identified in Fig. 3.6. 

Unfortunately, in this situation, the congestion will remain until the number of vehicles in 

this arc is reduced and reach the minimum density of the two architectures. To calculate 

the travel time in this situation, the following formula can be used: 

                        (3-16) 

Reason III: Recurring 

Sometimes there is no significant cause of congestion. In high density traffic, even a 

tiny disturbance such as getting too close to the other vehicle or braking too fast, can be 

quickly amplified into self-sustaining traffic congestion. For instance, sometimes when 
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you are driving on a highway and the traffic suddenly slows down, you inch along for a 

long period, thinking that there must be some accidents that caused this congestion. 

However, suddenly all the cars ahead of you take off at high speed and there is nothing in 

front. Meanwhile, the cars behind you are still congested. 

 

Figure 3.7: Recurring caused road congestion. 

In this case, generally, a wave spread phenomenon can be observed. The congestion 

is spreading to the reverse direction of the current arc. A specific feature of recurring 

congestion is that at any time instance, we can identify the top vehicle of the congested 

queue. Ahead of this point, vehicles are accelerating to the normal speed, which is larger 

than vlimit. Based on this phenomenon, the travel time in this arc can be estimated based 

on the length of the congested queue. Suppose there are n vehicles blocked behind the 

congested point, shown in Fig. 3.7, the travel time of this arc at current time point can be 

calculated in (3-17): 

       (3-17) 

C. Incident Detection & Clearance 

Incidents, as one of the most important reasons for congestion [69], have great effect 

on the accuracy of travel time prediction and estimation. Generally, the source of 
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incidents that will cause travel time delay can be divided into two groups: planned events 

and unplanned events. Planned events are those actions that have a specific plan of 

execution time, position, and duration. For instance, the construction and police actions 

are two typical types of such events. Since the occurrence time and event duration are 

known in advance, we can use these data directly in the AMPRFP algorithm to decide 

pincident. However, for unplanned events, such as a vehicle collision or an obstruction, it is 

difficult to decide their occurrence time and duration for clearance. In this system, we 

detect this kinds of incident rely on accident reports. From [88], we learned that the 

maximum period for clearing an incident is 90 minutes due to the implementation of the 

Rapid Incident Scene Clearance (RISC) program. This threshold value combined with 

reported occurrence time of each incident is used to calculate the approximate incident's 

duration pincident. 

D. Traffic Light Control 

Traffic light control is a critical technique in maintaining the smooth movement of 

traffic flow and protecting the safety of pedestrians and drivers when they cross 

intersections. It also has an impact on travel time prediction and estimation. The 

traditional method to control the period of traffic light is called fixed time control. In this 

method, a timer is used to ensure each phase of the signal continues for a constant 

duration and repeats regardless of real time traffic situations. In order to improve the 

efficiency of the traffic light in controlling intersection traffic flow, the dynamic control 

method, with the support of computer and detector technologies, has become popular in 

current urban traffic networks. The dynamic control system can adjust timing and 

phasing of a signal to meet the change of traffic conditions in order to minimize the delay 
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of vehicles passing the intersection. In this research, we focus on forecasting the travel 

time of arcs that involved in congestion due to various reasons. Therefore, the dynamic 

control method is not appropriate due to the need of also predicting the future traffic 

condition of arcs before determining the signal's duration. It will introduce extra error 

because of the double prediction. Thus, in this research, we applied the fixed time control 

strategy in the design of the AMPRFP algorithm and the synthetic experiment. Based on 

[89], the average signal cycle length in Florida is 2 min. This value is incorporated with 

the iterative travel time estimation method to decide the travel time. 

E. Iterative Travel Time Estimation 

 

Figure 3.8: Real world example of a congested route. 

When there is no incident or recurring happening in the arc, congestions and jams are 

generally caused by vehicles in the head of the arc which cannot move to their desired 
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arcs. One real world example that can illustrate this situation is shown in Fig. 3.8. 

Assume at time t, car2 in lane II (ln2) demands to go straight and enter the arc in front. 

While at the same time, car1 in lane I (ln1) needs to turn right to the right arc. 

Unfortunately, both the front arc and the right arc are experiencing congestion for some 

reasons (described in above part). Thus, the travel time of the arc where car1 and car2 are 

located is hard to estimate because it strongly relates to the time when car1 or car2 can 

recover from the jam. Either one of them can drive forward; vehicles in the lane can 

continue moving and even vehicles in the other lane can move by changing their lane. 

Suppose the travel time of two lanes where car1 and car2 are headed at time t are  

and . They can be estimated using equation (3-13, 3-15, 3-16, or 3-17). Then 

equation (3-18) and (3-19) can be used to calculate the travel time of p. 

                   (3-18) 

                   (3-19) 

F. Fastest Path Selection 

Finally, after updating the travel time for every arc, the fastest path can be calculated 

using the DIKBA. In this way, we not only reduce the travel time by guiding drivers to 

avoid most of the incidents and traffic congestions, but also by alleviating inefficient 

diversion strategy problems [72]. 

3.5 22BExperiment Setup 

The simulation environment of the previous paper [68] was randomly chosen from 

the available data. It came from a small city, which was not convincing for representing 

the congestion problem in the big city. Thus, in the design of this experiment, we 
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carefully chose one of the busiest regions in Jacksonville to be the simulation 

environment. As the 10th biggest city in the United States, there are more than 1 million 

residents living and working in Jacksonville. Also, based on the data of [90], Jacksonville 

is the 49th most congested metro city all over the country. Thus, setting our test area in 

Jacksonville can make our conclusion adaptable to the big city scenario. 

3.5.1 52BData Preparation 

 

Figure 3.9: Field Test Area from FL511.COM. 

The experiment includes two sections: the field test and the synthetic experiment. In 

the field test, we focus on evaluating the ability of our AMPRFP algorithm in predicting 

accurate travel time during a congestion situation. The traffic data is provided by the 
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Florida Department of Transportation (FDOT). On their website, shown in Fig. 3.9, they 

constantly update the collected average speed from loop detectors that are deployed at 

I-95, I-10, and I-295 Highways. This data is updated once every 1 minute. Due to various 

reasons, the traffic data may be missed or corrupted. Thus, after analyzing the two month 

data collected from FDOT (from May 23rd, 2010 to June 29th, 2010), we choose a better 

portion of the data set between May 24th, 2010 and June 20th, 2010. During this period, 

there are no data missing. The data from the first three weeks are used as the training set, 

while the data of last 7 days are used as the testing set. By comparing the average speed 

data and the incident reports during the test period, we select three congestion events that 

the reason of congestion can be decided based on the available information shown in 

Table 3.2. 

Table 3.2: Congestion Information 

Event Location Reason 

Congestion #1 I-95 SB from I-10 to Butler Blvd 
Planned construction in Duval on 
I-95 south at Fuller Warren, 2 left 
lanes blocked. 

Congestion #2 I-95 SB from I-10 to Butler Blvd Crash in Duval on I-95 north beyond 
Butler. 

Congestion #3 I-10 EB from I-295 to I-95 Crash in Duval on I-10 east at 
US-17, center lane blocked. 

 

In order to test the performance of our system in local arterial, a synthetic experiment 

was designed. In the simulation, we selected one of the most congested areas in 

Jacksonville based on the National Traffic Scorecard 2008 Annual Report [91]. As shown 

in Fig. 3.10, the area is formed by 118 arcs and 86 vertices. The maximum length of these 

arcs is 0.19 mi and the shortest length is 0.002 mi. The maximum number of lanes for 

each direction is 3. In order to make the simulation result more distinctive, we created a 
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worse scenario where 60% of arcs in this area are with a traffic volume close to their 

maximum capacity. The direction, destination, location, and other related information of 

each vehicle and the incident's schedule for this area are generated randomly. 

Additionally, the total number of accidents, constructions, and so on is set to be a little 

higher than the historical maximum. 

 

Figure 3.10: Simulation Area Map. 

A famous microscopic traffic simulation software, namely TranSims, was used to 

operate the simulation. A C# program was developed to corporate with TranSims by 

calculating route lists for sampled vehicles using the AMPRFP algorithm, the shortest 

path algorithm, and the TFP algorithm. The default fixed-time control strategy of traffic 

lights in TranSims was selected to simplify the process of the simulation. The 

implementation of ANOVA based SVR was done using a mature software for SVM 
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research named mySVM [87]. Parameters were selected relying on empirically favorable 

values: C = 1, 000; ! = 0.01; D = 3; # = 0.3. 

3.5.2 53BComparison of algorithms 

In order to better present the performance of our system, some comparisons are 

necessary. In the simulation, the performance of the AMPRFP algorithm was compared 

with the traditional shortest path algorithm and the travel time based fastest path (TFP) 

algorithm. 

A. Traditional Shortest Path Algorithm 

As the classical route guidance algorithm, the shortest path algorithm plays a very 

important role in the navigation area [70]. It is very famous and has had large market 

share over a long period. The reason it is so popular is that it matches people's daily 

behavior. Most people always try to reach their destination by following the approximate 

shortest route learned from their experience. This is normal driving behavior. Also, in 

good traffic conditions, the shortest path can help them save money and time. 

B. TFP Algorithm 

The TFP algorithm, which is originated from the ADVANCE program [71], tries to 

search the entire road network and look for a path which has the shortest travel time to 

finish. It is helpful when used to decide the highest quality route. Hence, it can explore 

alternative paths efficiently to provide the optimal result for complex routing challenges. 

In the simulation, the TFP algorithm was abstracted to one suitable for the simulation 

while keeping most of its navigation features. 
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3.6 23BSystem Evaluation Results 

In this section, we analyze the results of the field test and the synthetic experiment in 

order to demonstrate the effectiveness and superiority of our proposed AMPRFP 

algorithm. 

3.6.1 54BSimulation Experiment I (Travel Time Estimation with Congestion) 

As shown in section 3.4.1 (B), we found that the SVR prediction algorithm can 

achieve high accuracy when no congestion and no incident happened. However, the main 

goal of this system is to improve the ability of guiding drivers to save travel time without 

increasing the burden of the global traffic condition of the urban traffic network. This 

requires accurate travel time estimation when congestions and incidents happened. 

 

(a) Travel time estimation results for different algorithms for congestion #1 
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(b) Travel time estimation results for different algorithms for congestion #2 

 

(c) Travel time estimation results for different algorithms for congestion #3 

Figure 3.11: Comparison of travel time difference using different travel time 

estimation algorithms (a), (b), (c). 
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In this experiment, we compare the performance of the SVR prediction algorithm 

and our AMPRFP algorithm in estimating travel time along congestion and incident 

situation. During the testing period, we selected three congestions, which happened on 

I-95 SB from I-10 to Butler Blvd and I-10 EB from I-295 to I-95 on different days of this 

week. The causes of these congestions were able to be decided by incidents that 

happened on the arc, or the adjacent arc, which was also monitored by the FDOT. 

The experiment results, involve the predicted travel time over short distances (4.5 

miles and 7.9 miles), are shown in Fig. 3.11. As expected, the SVR algorithm cannot 

reflect the sudden change of traffic patterns that are quite different from the past average. 

Admittedly, there is a time-lagged phenomenon for AMPRFP algorithm at the beginning 

of each change because of the impossibility of accurate prediction of the occurrence of 

incidents. Nevertheless, the curve of the AMPRFP algorithm follows the change of the 

actual travel time and has less predicted errors. The results in Table 3.3 show the RME 

and RMSE of these two algorithms. They demonstrate that the AMPRFP algorithm is 

able to reduce both RME and RMSE for at least 50% of those achieved by SVR 

algorithm for all three congested situations. 

Table 3.3: Predicted Results in RME and RMSE of Different Algorithms 

RME SVR [%] AMPRFP [%] 
Congestion #1 27.34 14.3 
Congestion #2 24.38 10.17 
Congestion #3 23.56 5.21 

 

RMSE SVR [%] AMPRFP [%] 
Congestion #1 28.98 20.65 
Congestion #2 26.13 12.24 
Congestion #3 29.99 8.81 
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3.6.2 55BSimulation Experiment II (Ability for Reducing Travel Time) 

In this experiment, we randomly take 10% of the sample vehicles from the whole car 

list. The path searching algorithm is set as the shortest path algorithm, the TFP algorithm, 

and the AMPRFP algorithm respectively. To make the result more rigid, all tests have the 

same initial settings. 

Fig. 12 shows the comparison of the time difference between the shortest path 

algorithm and the TFP algorithm, the shortest path algorithm and the AMPRFP algorithm, 

and the TFP algorithm and the AMPRFP algorithm respectively. The time difference of 

car i following three algorithms is set as , 

, and  respectively. Therefore, in Figs. 

12(a),(b), vehicles guided by the TFP algorithm and the AMPRFP algorithm show more 

efficient performance than vehicles guided by shortest path algorithm due to their ability 

in avoiding congestion rely on real time traffic data.  

 

(a) Shortest Path Algorithm vs. TFP Algorithm 
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(b) Shortest Path Algorithm vs. AMPRFP Algorithm 

 

(c) TFP Algorithm vs. AMPRFP Algorithm 

Figure 3.12: Comparison of travel time difference using different route guidance 

algorithms (a), (b), (c). 

In order to further analyze the performance of the TFP algorithm and the AMPRFP 
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algorithm since they both override the shortest path algorithm, in Fig. 12(c), the results of 

these two methods are compared. It is clear that the TFP algorithm has fewer 

opportunities to save travel time for drivers due to the inefficient diversion strategy 

problem.  

Table 3.4 Comparison of the Ability to Reduce Travel Time Using Different 

Guidance Algorithm 

Algorithm Improvement Ratio [%] Max Reduced Time [min] 
Shortest Path Algorithm 40.94 2.20 

TFP Algorithm 59.06 14.80 
 

Algorithm Improvement Ratio [%] Max Reduced Time [min] 
Shortest Path Algorithm 29.13 0.68 

AMPRFP Algorithm 70.87 14.97 
 

Algorithm Improvement Ratio [%] Max Reduced Time [min] 
TFP Algorithm 30.71 1.02 

AMPRFP Algorithm 69.29 2.33 
 

Additionally, shown in Table 3.4, as expected, the sampled vehicles using the 

AMPRFP algorithm have a 70.87% and a 69.29% chances to reduce their travel time 

compared with other two algorithms. The data also demonstrates that compared to the 

shortest path algorithm, using the AMPRFP algorithm can improve the performance of 

the guidance system by about 2.3 times. By comparison, the TFP algorithm can only 

improve the performance of the guidance system by 1.5 times. 

3.6.3 56BSimulation Experiment III (Urban Network Congestion Management) 

The global optimization problem is also a very important parameter for estimating 

the quality of the proposed route guidance system. In the urban traffic network, most arcs 
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are connected with each other. Therefore, the change of traffic volume in one arc will 

also influence the traffic situation in others. A guidance system is not efficient if it can 

only solve the congestion problem of one driver but cause more congestions in other 

areas of the network. Therefore, in this case, we test the ability of congestion 

management for guidance systems that applying the TFP algorithm and the AMPRFP 

algorithm. The shortest path algorithm is not involved in this comparison because it only 

does route selection based on static parameters. 

 

Figure 3.13: Comparison of route congested condition when using different route 

guidance algorithm. 

In Fig. 3.13, the ratio of congested routes  in the urban 

network during simulation using the AMPRFP algorithm and the TFP algorithm are 
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compared. With the same initial traffic condition, we observed that, at the beginning, the 

congested ratio of the TFP algorithm experiences a sharp increase. This is due to the TFP 

algorithm based system excluding congested arcs and guiding vehicles to the other arcs. 

In contrast, the system using AMPRFP algorithm does not roughly give up those 

congested routes but estimates the approximate travel time based on the analysis of the 

reason of each congestion. Thus, congestions in the whole network are solved slowly but 

constantly. Since the TFP algorithm based system will not send any vehicles to congested 

areas, after a period, the traffic density in those arcs reduced and the congestion ratio 

dropped too. During this period, the congestion ratio of TFP dropped faster than 

AMPRFP due to the release of traffic capacity in congested arcs. However, this 

phenomenon stopped when a new incident happened at sample time 47. The congestion 

ratio of TFP increased slightly since the number of vehicles in the urban network is less 

than in the beginning. While at the same time, the congestion ratio of AMPRFP 

continued to decrease along with the descent in the number of vehicles. During the entire 

simulation, only 20% of the time the system using the TFP algorithm had less congestion 

ratio compare to the AMPRFP algorithm based system. Additionally, the figure showed 

that the AMPRFP algorithm is able to distribute traffic flow more efficiently and more 

smoothly than the TFP algorithm. These results match our expectations of this system. 

3.7 24BSummary 

Real-time route guidance systems are required due to the continuing increase of 

demands of avoiding congestion, saving time, and saving money. As an extension of our 

previous work [68], in this paper, we have developed a congestion reason analysis based 
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real-time wireless route guidance system based on the AMPRFP algorithm to improve the 

traffic efficiency of a complex environment—a multi-lane urban area. This proposed 

system is developed to reduce the travel time of drivers’ trip and to help them avoid 

congestion. It is also designed to overcome the inefficient diversion strategies problem by 

using real-time traffic data and the time prediction method. 

The results of the field test show that our proposed AMPRFP algorithm, based on 

congestion reason analysis and iterative travel time prediction, can significantly increase 

the accuracy of predicted travel time during congestion situation by about 100%. This 

achievement solves the problem of current travel time prediction methods in that their 

performance drops sharply during congestion when they mainly rely on historical training 

data. 

Additionally, the results of numerous simulation runs show that our system, which 

combined the historical traffic behaviors with the real-time non-linear effects caused by 

the neighboring arcs' traffic patterns, can achieve a dramatic trip time reduction. The 

performance of this system is more efficient than the one using the shortest path 

algorithm and the TFP algorithm by about 70.87% and 69.29% respectively. The results 

also show that the system can help to distribute traffic flow more rationally for the whole 

urban area and to improve the global optimization performance. Furthermore, it is able to 

release congestion more constantly than the system using TFP algorithm. 

The disadvantage of this method is the time-lagged problem illustrated in Fig. 3.11. 

The predicted travel time based on AMPRFP algorithm will experience a delayed 

response to the change of the actual travel time in congestion involved scenarios. This is 

due to the time required for the analysis of reason of congestion after its occurrence. 
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Additionally, the highway patrol and emergency responders need extra time to verify the 

report of incidents using traffic cameras. This may be solved by employing new traffic 

monitor systems in the urban network that can provide nearly real time incident detection 

services. 
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CHAPTER 4  

3BCELLULAR NETWORK LOCATION ESTIMATION VIA RSSI-BASED DATA 

CLEAN ENHANCED SCHEME 

From chapter 3, we learnt that the AMPRFP algorithm based route guidance system 

can improve the traffic efficiency and help drivers avoiding congestion in urban traffic 

networks. One parameter which is essential to the success of the AMPRFP algorithm is 

the real-time traffic information. However, in the real-world, there is no efficient method 

to collect this information especially in local arterials. 

In this chapter, we propose a data clean enhanced scheme to improve the accuracy of 

cellular network localization which is the important foundation of Floating Car Data 

(FCD) [92].  

4.1 25BMotivation 

Cellular network based context-aware applications and location based services (LBSs) 

have drawn significant attention in both research and industry for many years. A key 

aspect that influences the quality of context-aware applications and LBSs is the 

localization accuracy of the mobile terminal (MT). The empirical location estimation 

method, also known as the fingerprint method, is a popular location estimation technique 

proposed for providing high accuracy position results. According to this method, the 

observed signal is compared with signals of known locations in the database. The closest 

location is determined to be the position of the unknown target. Most of the proposed 

algorithms for this method focus on predicting coordinate vectors of an unknown location 

using various prediction models and the empirical data. However, the efficiency of this 
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method is questionable and no paper shows efforts on comparing the coordinates-based 

prediction method with the distance-based prediction method. In this paper, we present a 

data clean scheme enhanced empirical learning algorithm (DCSEEL) for improving the 

accuracy of the cellular network-based localization technique. It first minimizes the error 

that exists in the estimated distance between the target point and each reference base 

station (BTS). Then the trilateration method [10] is used to calculate joints according to 

these distances. Unqualified joints will be excluded through a direction filter (DF). The 

proposed algorithm is proved to outperform the coordinates based fingerprint techniques 

and is able to provide more accurate position results. 

4.2 26BBackground 

4.2.1 57BLocation Estimation Technologies 

Location estimation is an emerging application in which noisy position-related 

parameters are measured from multiple channels to derive the location of the MT. The 

primary motivation of location estimation comes from the Federal Communications 

Commission (FCC) mandated requirement to provide location information for emergency 

services via Wireless Enhanced 911 in order to protect the health and safety of people 

and property. Additionally, the continuing increase of the demand of commercial LBSs 

and context-aware applications such as museum tour-guides, hospital health-care, and 

advertisement services, also play a key role in stimulating the development of a more 

accurate localization technique. 

The global positioning system (GPS) had been recognized as one of the most 

successful localization techniques for many years [93]. However, its widespread use has 
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been limited by its reliance on special hardware which is not available in most mobile 

units. Furthermore, in metropolitan areas, the access to GPS signals is often constrained 

by the lack of direct line of sight (LOS) to satellites. Other handset-based solutions, such 

as Wi-Fi-based localization [94] and augmented sensor-based localization [95], have the 

same problem in that they require installing specialized hardware components to support 

cellular network localization services which are not widely applied in many phones. Thus, 

research for cellular network-based location estimation, which aims to be executable on 

all cellular phones, has drawn sustained attention in recent years. 

The primary challenging aspect of network-based location estimation in cellular 

networks is to impute the channel noises which attenuate the field strength and spread the 

obstructed path of the transmitted waves. The source of that noise includes absorption, 

scattering, reflection, refraction, diffraction, multipath, and Non-Line-of-Sight (NLOS), 

which are defined as the Environmental-dependent Factors (denoted as EFs) [2]. Various 

research groups addressed this challenge and proposed different solutions to improve the 

accuracy of estimated location results [10]. These algorithms can be classified into two 

categories: a) signal propagation model approach [15, 96] and b) fingerprint approach [2, 

4, 56, 59, 97]. All approaches try to minimize errors that exist in position related 

parameters caused by EFs. However, to build a universal propagation model for various 

environments relying on physical parameters of the received signal is quite difficult due 

to the complexities and diversity of environmental factors. This disadvantage has led 

more researchers to concentrate their efforts on developing fingerprint approaches. 

Fingerprint methods avoid the design of complex propagation model and are able to 

provide very accurate position estimation results even in a challenging environment. This 
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is achieved by using the empirical data observed in the training phase, compared to 

received position-related parameters at an unknown position. These parameters include 

radio signal strength (RSS), angle of arrival (AOA), time of arrival (TOA), and time 

difference of arrival (TDOA). Although time-involved parameters (TOA and TDOA) are 

more reliable than the signal-involved parameter (RSS), the installation requirement of 

location measurement units (LMU) at each BTS to provide precise time synchronization 

constrains its application. Therefore, RSS is selected as the qualified parameter due to 

characteristics such as common availability, economical efficiency, and compatibility. 

4.2.2 58BCoordinates-based Approaches 

Before introducing the detail of proposed DCSEEL algorithm, we briefly present the 

background of current coordinates-based approaches for cellular network location 

estimation. Three representative algorithms, namely Cell-ID, K Nearest Neighbors (KNN) 

deterministic fingerprint method, and Support Vector Regression (SVR) model-based 

fingerprint method, are used for comparison with the proposed algorithm. 

A. Cell-ID 

Cell-ID positioning concerns the location of the associated BTS as the location of the 

MT. In the cellular network, most phones constantly measure the signal strength from 

surrounded BTS's and record the closest 8 BTS's. The BTS which provides the strongest 

signal strength will be selected as the associated BTS to support general phone services. 

This method is very simple and does not need extra equipment in both the cell tower and 

the handset. It even works well in phones that cannot record closest reference BTS's but 

only the associated BTS. However, the accuracy of this method varied along with the 



 84 

change of the cell size. Additionally, since the majority of cellular network cells are 

projected from an antenna with a spread of 120 degrees, the signal coverage area of a 

BTS may focus at a corner but not the center. Currently, Google's MyLocation and 

Ericsson Labs' mobile location API are using Cell-ID method to provide location services 

for mobile subscribers. 

B. KNN 

Generally, the process of KNN deterministic fingerprint technique can be divided 

into two phases: offline training phase and online tracking phase [56]. During the training 

phase, the measured signal strength of each BTS at different sample points with known 

coordinates is stored in pairs in the database. This is finished by selected subscribers 

whom periodically report the scanned cell tower ID, RSS, and their current GPS 

locations. 

The KNN classification algorithm is executed in the tracking phase to classify 

training samples based on the closest fingerprint signature in the feature space. In order to 

implement it, the new signal reading is used to search the fingerprint database in order to 

find k closest samples with known locations. Then the coordinates of the current target 

are assigned as the weighted average position of its k nearest neighbors. This method can 

provide better localization result compare to Cell-ID in lower density areas, however, a 

large database is required to store training data set and a long offline training period is 

necessary. 

C. SVR 

Model-based fingerprint approaches focus on developing a model to define the 

relation function f(S) between the signal strength and spatial coordinates which satisfy 
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. The set  is the whole signal strength vector where sqi represents 

the RSS signature of BTS q at sample point i. The set  contains one of the 

spatial coordinates xi or yi of the ith sample. The variable set  is defined as the 

offset scalar and satisfies . 

Many proposed algorithms [2, 10, 56] have contributed to developing model-based 

fingerprint techniques to solve cellular network localization problems. Along with them, 

the SVR algorithm shows advanced performance by utilizing kernel-based learning 

methods and the structural risk minimization (SRM) principle [2]. The key concept of 

SVR is its general belief that data can be more divisible when transferred to a 

high-dimensional feature space [62] and the nonlinear relationship between the input and 

the output can be more significant. The other important feature of the SVR approach is 

that the regression process only applied on the nonlinear expansion of the original input 

vector. This feature helps to maintain the property of the input vector. Compared with 

conventional empirical methods, the goal of SVR is to improve the generalized 

performance of regression by minimizing the upper bound of the expected risk but not the 

observed training error.

During the training phase, for a BTS q involved in the interested area, we assume 

there is an input vector stored in the database, where , and n is 

the number of training samples collected in previous war driving. In order to build a 

generalized model relying on the dataset Sq, a 1-norm loss function l, which is insensitive 

to slight deviations, is applied. Given a mapping function , the input space Rn is 

transferred to the high-dimensional feature space F. We build a linear function f, to model 
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every transferred data to one of its associated coordinates (we use yi as an 

example, xi takes the same procedure). The linear function can be written as: 

                  (4-1) 

Then the next step is to decide the vector wq and the constant variable b during the 

learning process. First we define the -intensive loss function l as: 

       (4-2) 

To simplify (4-l), slack variables  and  are introduced to cover otherwise infeasible 

limitations of the convex optimization problem. Thus the loss function can be written as: 

(4-3)

Since the linear function has the following characteristics: 1) for all training samples 

,  f  has no more than  deviation exists with the matched known location 

vector Y; 2) f needs to be as flat as possible, which means the Euclidean norm of wq 

needs to be minimized. These characteristics can be implemented by solving following 

optimization problems: 

                (4-4) 

                    (4-5) 

                    (4-6) 
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In (4-4), the parameter C is used to balance the flatness of f and its ability to tolerate 

deviations. Its value is given before the training phase. After maximizing the 

corresponding dual problem, the vector wq can be represented by following expansion: 

                    (4-7) 

Then the linear function can be 

(4-8)

where k is the kernel function that determined the quality of mapping. 

In the tracking phase, new signal readings will be mapped into the feature space and 

the trained linear function will be used to predict the possible value of corresponding 

coordinates. 

4.3 27BDCSEEL Algorithm 

4.3.1 59BMotivation 

One of the critical problems of current empirical learning methods is that the 

geometry feature (latitude, longitude, etc.) of position-related parameters is not well 

considered. In a geometrical map, two main parameters, distance and angle, comprise the 

position of a unique point. Therefore, in the cellular network, signal strength defines the 

irregularly shaped area that is centered by the referenced BTS. However, using the 

coordinates-based fingerprint method, a particular target point surrounded the selected 

BTS is determined only based on the received signal strength. Unless the density of 

training samples are extremely high and can totally cover all places in the testing area, 
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these methods are facing potential risks in locating a wrong position due to the 

incompleteness of the training dataset. 

 
(a) Distance Comparison 

 
(b) Distance Error Comparison 

Figure 4.1: Comparison of distance from sample point to BTS by different methods: 

(a), (b). 
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Unlike the coordinates-based fingerprint method, the data clean enhanced method 

tries to minimize the errors by relying on received signal strength and historical data. In 

this way, more accurate distances will be predicted and joints of these less error spheres 

will narrow down the error range of the estimated final position. 

Fig.4.1 compares the distance calculated by the predicted coordinates by SVR and 

the target coordinates and the distance predicted using SVR directly. The detail of the 

synthetic experiment process will be introduced in the following section. From Fig.1.1.(a), 

we can figure out that the distance results predicted by SVR directly are closer to the real 

distance between the sample point and the BTS than the distance calculated by the 

predicted coordinates. In Fig.1.1.(b), the distance error of these two methods also shows 

the same phenomenon, since the black bar which represents the distance error of 

coordinates based method has more opportunities override the distance error of the data 

clean enhanced method.  

Table 4.1: Performance Comparison of Predicted Distance Error 

Round ID MAE_COOR [m] MAE_DC [m] Ratio [%] 
1 123.3314352 88.32736274 65.75 
2 126.9837609 85.32129866 69.00 
3 128.1812705 85.06334425 66.75 

 

Table 4.1 shows the ratio of this comparison for 3 rounds, each round took 50 

samples, each sample compared the distance error with its 8 reference BTS’s. In this table, 

the MAE_COOR represents the mean absolute error of the coordinates-based method 

while MAE_DC means the mean absolute error of the data clean enhanced method. The 

result shows that in over 65% of instances in each round, the distance error decided by 

coordinates based method is bigger than the data clean enhanced method. This result 
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gives us confidence that data clean enhanced method is superior and is possible to 

provide better localization results. 

4.3.2 60BOptimal Performance 

In order to further verify the inference that the data clean enhanced fingerprint 

method can perform better than the coordinates-based fingerprint method, we try to 

compare the optimal result achieved by these two methods. The optimal result means to 

find out the combination of points or joints which average coordinates has the least 

distance to the real position of the test sample. An optimal filtering algorithm, modified 

from Dijkstra’s algorithm [85], was developed to determine the optimal result.  
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In the first step, we model the map of all joints of a sample point s as an undirected 

graph G(V,E), where the set V of the graph’s vertices indicates joints and an edge 

between vertex i and j represents the distance between s and the average point excludes 

joint i and j and vice versa. The operation of the optimal filtering algorithm is 

summarized in the following pseudocode. lat[i] and lon[i] represent the latitude and 

longitude of joint i while alat[i] and alon[i] represent the average latitude and longitude 

of the group of joints without joint i respectively. r[i] records the excluded joints list that 

contribute to the reduction of distance error cost[i]. 

 
(a) Urban 

 
(b) Suburban 
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(c) Rural 

Figure 4.2: Comparison of optimal localization results: (a), (b), (c). 

We take 150 samples for each environment: urban, suburban, and rural. In Fig.4.2, 

the gray line represents the position error of the estimated optimal location of each 

sample applying coordinates-based SVR, while the black line shows the position error of 

our data clean enhanced SVR. From this figure, it is obvious that the position error of the 

coordinates based SVR is more variable and fallible than the data clean enhanced SVR. 

In the three environments, more than 95% of the optimal results of data clean enhanced 

SVR are less than coordinates-based SVR. The detail data comparison is shown in Table 

4.2. 

Table 4.2: Predicted Position Error in Optimal Situation 

Enviroment MAE_COOR [m] MAE_DC [m] Ratio [%] 
Urban 26.2981555 1.920268944 97.33 

Suburban 43.03683765 3.890516306 94.67 
Rural 164.3599499 13.54529953 96.67 

4.3.3 61BInitial Direction Decision 

In the previous section, we show the encouraging optimal localization results that can 

be achieved with the knowledge of the target point. However, in the real world, the 
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position of a sample point is unknown. Therefore, determining an efficient parameter in 

lieu of the target position is critical to the performance of our DCSEEL. Since the final 

goal of this method is to clean out inappropriate joints from the whole joints group, in the 

geometric phase, the most important problem is to find a method to lead the average point 

close to the target point following a specific path. In other words, if we can find the 

direction from the original average point calculated by the whole group of joints to the 

target point, then the joints that need to be cleaned are those that will make a contribution 

in maintaining the average point following this initial direction to approach the sample 

point. As shown in Fig.4.3, for example, the direction from Avg1 to target which is 

marked with the dashed line, is set to be the initial direction. Avg2, Avg3, and Avg4 are 

average points follow initial direction and will get closer to the target, while Avg5 which 

go against the initial direction has a bigger location error compare with Avg4. 

 
Figure 4.3: Initial Direction. 
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In order to determine the initial direction, a cluster method is applied. Every time we 

decide the average point of the selected group of joints J. After this, we calculate the 

distance between each joint to the average point and the average distance among these 

distances. All joints in J with a distance larger than the average distance will be excluded. 

The whole process is repeated until the new average point change direction. Finally, the 

initial direction is determined. 

4.3.4 62BDirection Filtering (DF) 

The initial direction decision process is able to decide the direction from the original 

average point to the target. However, this method is so crude that it cannot achieve high 

quality results. Therefore, a DF method is used to construct the remaining set R by 

excluding all joints that will contribute to the movement of the average point in R close 

to the target. This is achieved by combining the moving direction and the moving 

distance together to decide which joints should be excluded and when to terminate this 

process. At the beginning, where R = J, we calculate the average coordinates for each 

joint by excluding j from R. Then, we want to find

                           (4-9) 

where D(j) is the distance between the average point excluding j to the previous average 

point j*, following the initial direction. This method has benefits such as helping the 

average point to avoid frequent fluctuation and reducing complexity of the design of this 

filtering method. 

An auxiliary parameter, mainD, defined as the sub-direction with the max offset in 

horizontal or vertical orientation. This parameter is important in overcoming the 



95

over-fitting problem and in deciding the time to terminate the whole filtering process. If 

the mainD maintains the same value until no average point of joint  falls onto the 

initial direction, the DF process is terminated and the average point decided by R is the 

final estimated position. Otherwise, if the mainD changed more than once, the 

over-fitting strategy is triggered and only joints excluded in the first two mainD phases 

are removed and other joints will be kept. To illustrate this, let us consider the same 

example depicted in Fig.4.3. The movement of the average point from Avg1 to Avg4 is 

following the initial direction. However, from the figure we can learn that Avg3 already 

goes across the target point in the initial direction and the farther the average point moves, 

the bigger distance error will be achieved. Therefore, the result of the DF method, 

represented by black triangles, illustrates a smoother movement and can achieve less 

distance error. 

4.4 28BSynthetic Experiment 

In this section, we study the ability of DCSEEL in reducing localization errors and 

compare its performance to other localization algorithms.

4.4.1 63BSet Up and Methodology 

To assess the performance of DCSEEL, we select some RSSI-based cellular location 

estimation methods, such as the Cell-ID, 3NN, and SVR, as reference algorithms. The 

synthetic data generator is designed by using the generative propagation model STA-EM 

which was proposed in [96]. The simulation area for signal acquisition is set to be a 

square region with a size of 1,000m2. From [2], we learned that the MT in the testing area 

may receive signals from BTS’s located in the surrounding area which is larger than the 
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testing field. Thus, we deployed the reference BTS’s in a 5,000m2 area and set the testing 

field to be the center of this area. In order to test the performance of our proposed 

algorithm in different situations, three test neighborhoods, an urban area, a suburban area, 

and a rural area were created. Based on the field test data of [98] in Seattle, the city with 

the densest distribution of cellular towers in the US, we set the average cell density of the 

urban environment as 66cells/Km2 and the suburban area as 26cells/Km2. For the rural 

area which is not tested in [98], the average cell density is set as 2cells/Km2 which is 

similar to the records of the Everglades National Park area in Florida. These setting 

include nearly all situations of the outdoor cellular network from the densest area to the 

sparsest area. 

For each testbed, 3 instances of simulation were executed. And for each round, there 

were 2000 samples generated in advance for training purposes. Then 50 samples were 

created as the test samples. The position of each sample was selected randomly from the 

testing field and 8 signal readings from reference BTS’s were calculated by the STA-EM 

model. In this research, the problem of missing values is not considered and we assume 

that at every time, the sample MT can always hear 8 signals from surrounded BTS’s. 

Parameters in SVR are specified in the following manner: The kernel function used 

in SVR is selected as the analysis of variance (ANOVA) due to its advanced performance 

over other kernel functions such as dot, polynomial, and radial. Parameters of ANOVA, d 

and , are specified by the test in [68] in order to achieve optimal testing results. Other 

parameters were selected relying on empirically favorable values: C = 1, 000; ! = 0.01. 

The implementation of ANOVA based SVR is using a mature software for SVM research 

named mySVM [87]. 



 97 

4.4.2 64BAbility in Reducing Localization Error 

As mentioned in section 4.3.2, optimal results of the data clean enhanced method 

show great improvement in reducing localization error compared with the 

coordinates-based method. However, achieving optimal results is impossible due to the 

lack of knowledge of target. In this section, we explore the suboptimal result of our 

proposed DCSEEL and the traditional coordinates based method.  

 
(a) Urban 

 
(b) Suburban 
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(c) Rural 

Figure 4.4: Performance of data clean enhanced method and coordinates based 

fingerprint method: (a), (b), (c). 

Figs.4.4 (a),(b),(c) show the median localization error for each round in different 

testbeds: urban, suburban, and rural. These metrics provide evidence that in urban, 

suburban, and rural environments, the DSCEEL can provide more accurate localization 

results and the rate of improvement is no less than 40% in both urban (round1: 42.55%; 

round2: 58.2%; round3: 40.77%;) and suburban areas (round1: 43.53%; round2: 40.7%; 

round3: 56.62%;) and no less than 10% in rural areas (round1: 21.39%; round2: 21.83%; 

round3: 10%;). These results prove the previous assessment that the data clean enhanced 

fingerprint method is better than the coordinates-based method. The improvement 

dropped in the worst case of the rural area due to lower density of cell towers which 

increases the difficulties in cleaning errors that exist in received signal strength. 
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4.4.3 65BComparison with Other Techniques 

In this section, we compare the overall performance of DCSEEL, in terms of 

cumulative distribution function (CDF) of localization error, to other representative 

algorithms described in Section 4.2.2. 

 
(a) Urbna 

 
(b) Suburban 
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(c) Rural 

Figure 4.5: CDF’s of distance error for different techniques under different 

environments: (a), (b), (c). 

Shown in Fig.4.5, the CDF of localization error estimated by different algorithms in 

different environments are compared. It can be seen from Fig.4.5(a) that in the urban 

environment, where the density of cellular cells is very high, the Cell-ID method has 

similar performance at the probability space [0, 0.6] to DCSEEL over other localization 

methods. From the probability space [0.6, 1], DCSEEL performs better than cell-ID 

method. For two RSSI-based fingerprint methods, SVR shows better performance than 

the 3NN method due to its ability in minimizing the upper bound of the expected risk and 

improving the generalized performance. It is distinct from Figs.4.5 (b) and (c) that in both 

suburban and rural environments, the DCSEEL provides the best performance among the 

four compared algorithms. The performance of the Cell-ID method dropped sharply when 

the density of cell towers decreased remarkably. Two fingerprint methods, SVR and 3NN, 
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maintain a constant performance in these two environments, since the accuracy of these 

two methods highly depends on the quality of the training dataset. 

4.5 29BSummary 

In this paper, the problem of location estimation in outdoor cellular networks has 

been addressed. A data clean scheme enhanced RSSI-based empirical learning algorithm 

for cellular mobile terminals was developed and tested. We presented the details of the 

scheme and how it constructs the remaining set based on joints of predicted distance 

spheres. Our results show that DCSEEL can provide accuracy improvement with an 

average value of 47.17% in urban areas, 46.95% in suburban areas, and 17.74% in rural 

areas. We also studied the general performance of DCSEEL with other techniques by 

comparing the CDF of them. The DCSEEL also shows advanced performance in both 

environments. 
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CHAPTER 5  

4BFAST NORMALIZED CROSS-CORRELATION ENHANCED FLOATING CAR 

DATA ESTIMATION  

 In this chapter, we propose a novel Floating Car Data (FCD) estimation method 

to improve the efficiency and accuracy of the cellular probe based speed estimation 

technique. A fast matching algorithm which focuses on reducing the computational cost 

of the matching phase in the correlation algorithm based cellular probe speed estimation 

[7] is investigated. 

5.1 30BMotivation 

This paper introduces a fast matching algorithm to reduce the computational cost of 

the matching phase in the correlation algorithm based cellular probe speed estimation [7].  

As mentioned in Chapter.3, traffic congestion avoidance in urban areas becomes 

critical due to the fast development of cities and the persistent increase of the number of 

motor vehicles all over the world. The annual urban mobility report [67] showed that the 

waste of gasoline in the United States is more than 10 billion gallons every year. The 

total cost of economic inefficiency at the same period exceeds 63 billion dollars due to 

traffic congestion. To relieve congestion, one simple method is to build more routes and 

to widen existing ones. However, this method is quite expensive due to the requirement 

of a long construction period and a huge budget. Therefore, the most effective method to 

solve the congestion problem is to build intelligent transportation systems which can 

manage the traffic smartly. In our previous work [68], we concluded that with the support 

of real-time traffic information, the intelligent transportation system is able to efficiently 
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reduce the travel time of drivers and suppress the occurrence of traffic congestion. 

Additionally, real-time traffic speed is essential in current intelligent transportation 

systems for identifying traffic congestion and providing high quality navigation services. 

Therefore, the development of an efficient real-time traffic information collection method 

is urgent and important.  

The correlation algorithm shows superior performance over the localization 

algorithm and the handoff algorithm in both highways and local arterial. According to 

this method, the recorded handset’s signal strength profiles are compared with training 

traces at the same road. The speed scale, which is determined by the stretch or 

compression rate of the matched training trace, is used to identify the speed of the target 

mobile probe. However, a critical issue of the current correlation algorithm, the time 

efficiency, was not investigated and discussed. We addressed these challenges by 

converting the matching process into a 1-dimensional (1-D) curve matching problem [99] 

and introducing the fast normalized cross-correlation (FNCC) algorithm [8] to reduce the 

computational cost. For a matching duration of size N and a training trace of size M, the 

time complexity of matching phase can be reduced by the Fast Normalized 

Cross-Correlation (FNCC) algorithm from 3N(M - N) additions/subtractions and 2N(M - 

N) multiplications to 9Mlog(M) additions/subtractions and 6Mlog(M) multiplications by 

applying fast convolution algorithms and sum-table technology. Experiment results 

concluded that 97% computational cost of the Pearson product Moment Correlation 

Co-efficient (PMCC) algorithm based matching method can be saved by implementing 

the FNCC method. The proposed algorithm is proved to outperform the PMCC method [9] 

and is able to maintain the accuracy of the estimated speed at the same time. 



 104 

5.2 31BReal-Time Traffic Data Collection Techniques 

5.2.1 66Bin-situ Technology 

The most widely used methods for real-time traffic data collection is the “in-situ” 

technology [92], which focus on collecting traffic information through various kinds of 

detectors with fixed locations along the roadside. Based on the observation method, this 

technology can be divided into two groups: intrusive and non-intrusive. The sensor or 

data recorder are placed on or in the road for intrusive methods. Some popular intrusive 

approaches are the pneumatic road tube [92], the inductive loop sensors [100], and the 

magnetic loops [92].  

In contrast, the non-intrusive methods collect road data using remote methods, 

including the manual counts [101], the passive and active infrared detectors [102], the 

passive magnetic detectors [103], the microwave (Doppler) radar [104], and the video 

image detection [105].  

Due to the direct access of the monitored road, the “in-situ” technology is able to 

provide highly accurate traffic flow and speed data with less positioning error. However, 

the huge cost of the installation and the maintenance of detector systems limit the 

coverage of this system which is valid only in major freeways and highways. For instance, 

in Kansas City, the installation of an inductive loop sensor system for 70-mile highway 

cost about $15 million [92]. In order to cover more fractions of highways and local 

arterial at lower cost, the Floating Car Data (FCD) technology [92] was proposed. 
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5.2.2 67BFCD Techniques 

Different from the “in-situ” technology, which uses fixed detectors, FCD 

concentrates its effort on collecting real-time information from moving objects over the 

entire traffic network. The most important superiorities of FCD are the low cost 

implementation and the easy deployment along the road network due to its characteristic 

that does not require additional hardware installed on the roadside. However, since there 

is a lacking of predefined position of each floating probe, the location error cannot be 

ignored and the system needs further support of advanced localization technologies. 

Recent studies [80] have shown that GPS can achieve localization accuracy within 10m 

and is able to provide lane level localization services. Although GPS-based techniques 

show advanced performance in reducing position deviation, some drawbacks of it, which 

will influence its implementation, cannot be ignored. First, the number of GPS-equipped 

devices is still too small to satisfy the requirement for monitoring an entire city. Second, 

the high power consumption characteristic of GPS-equipped devices also limits the 

implementation of it on providing persistent real-time traffic information. Additionally, 

the accuracy of GPS dropped sharply in some special places or weather conditions, such 

as the urban canyon, cloudy weather, etc. 

In order to overcome limitations of GPS-based speed estimation methods, cellular 

probe based approaches become particularly attractive due to its seamless coverage in the 

city and its small usage of battery. Many companies and organizations, including 

CELLINT, DELCAN, APPLIED GENERICS, AIRSAGE, and GLOBIS DATA, built a 

number of test projects for justifying the performance of cell phone FCD systems in the 

real world [106]. Most of their systems are based on the localization algorithm [107] or 
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the handoff algorithm [108], which tried to record the position of sampled points and 

calculate the average speed using the distance between two samples divided by the 

sampling period as shown in Fig.5.1. Unfortunately, the localization error of current 

cellular network location estimation methods is still too big to provide high quality speed 

results. 

 

(a) Localization Algorithm 

 
(b) Handoff Algorithm 

Figure 5.1: Current cellular probe speed estimation algorithms: (a), (b). 
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5.3 32BCorrelation Algorithm based Cellular Probe Speed Estimation 

Different from the previous localization algorithm and the handoff algorithm shown 

in Figs.5.1(a),(b), Chandrasekaran et al. [7] first proposed a novel correlation algorithm 

based cellular probe speed estimation method, which determines speed by matching the 

test signal strength trace with the scaled training trace at a certain road and a specific 

point. The performance of the correlation algorithm based method is proved to be 

superior to the other two approaches in both highways and local arterial. It also works 

without the limitation of phone models and the network service carriers. In the following 

sections, we will give a deep introduction about this algorithm. 

5.3.1 68BSignal Strength vs. Speed 

In Chandrasekaran’s paper [7], they discovered that the tracing of signal strength 

captured in a road with different speed showed an amount of stretching or compression in 

its scale. 

As shown in Fig.5.2, a field test at the same road with constant speed was executed. 

For trace 1, the driving speed is about 25mph. The other two traces, trace 2 and trace 3, 

are both with speed of 50mph. It can be seen that the wave of two signal traces for the 

same speed are quite similar to each other. The signal wave of trace 1, which has speed of 

25mph, shows a similar feature of the other two traces, except for being stretched by a 

scale factor of 2. This illustrates that the average signal strength at one position of a road 

remains relatively steady, even when there are signal variations. Similar phenomenon 

was also reported previously in [98] for stationary handsets and in Gundlegard’s research 

[108]. 
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Thus, in this step, the training trace of each road at speed V needs to be obtained in 

advance (this can be achieved when service carriers try to determine their coverage). 

Then, the n scaled version of the training trace can be generated. The number n is an 

integer which represents the maximum speed (we assign n = 80 in this research which 

represents 80mph) and the length of each step is set as 1mph. This scaled version depends 

on the accuracy of the system’s demand. 

 
Figure 5.2: Relationship between the Signal Strength and the Speed. 

5.3.2 69BMatching Phase 

The core component of the correlation algorithm is the matching phase which 

focuses on comparing the input testing trace with the n scaled versions of the training 

trace at the same road and the same start point. In [7], the PMCC [109] was selected to 

estimate the matching level between each scaled training trace and the testing trace. The 

equation of the PMCC is shown in (5-1): 

                      (5-1) 
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where  and  belong to two signal traces X and Y with the same length of N. The 

PMCC has high accuracy in determining the correlation of two objects. However, since it 

needs to calculate the correlation of all discrete nodes in the trace, the computational cost 

is very high that does not qualify for supporting real-time speed estimation services under 

the network based architecture. 

Furthermore, this method requires the knowledge of the exact start point since the 

length of the two objects needs to be the same. This is quite difficult to be achieved in the 

cellular network using the network based location estimation algorithm. In [7], 

Chandrasekaran provided a method by defining a searching range S (shown in Fig.5.3) to 

overwhelm the error that exists in the localization result. For the urban area, the 

localization error is within 100m range centered with the estimated position. Thus, the 

value  is an integer value calculated by (5-2) 

                         (5-2) 

As shown in Fig.5.3, the start point is varied within the searching range S. And the 

PMCC value r(i) of each start point i is calculated independently. Unfortunately, this 

method is still not efficient in reducing the computational time of the matching phase. 

5.4 33BFast Matching Algorithm 

5.4.1 70BMotivation 

In the PMCC algorithm, the calculation of the coefficient for each point in the 

searching range S contains many redundancies. In order to make the process more 

efficient, we convert this problem into a whole-to-part matching problem. As illustrated 
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in Fig.5.3, it can be seen that the testing trace is potentially embedded in one scaled 

version of the training trace. Thus, we do not need to simply repeat the same matching 

process for each start point but to treat the training trace as a whole curve and do 

comparison with these two. 

 

Figure 5.3: Example of 1-D whole-to-part curve matching. 

5.4.2 71BNormalized Cross Correlation 

Normalized cross correlation (NCC) [8] is famous in image-processing applications 

due to its ability in normalizing the brightness of the template image t(i) (size is N) and 
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the reference image f(i) (size is M). Different from the cross correlation (CC), NCC 

limited the output value v(I) lies in a standard area [-1, 1]. Additionally, the length of two 

objects, N and M, do not need to be the same. In most cases, the length of the reference 

image is larger than the template image, which waives the start point limitation of the 

PMCC. The formulation to calculate the NCC between two figures in each sample index 

 is 

                  (5-3) 

This process can be seen as the template curve sliding along the reference one, as the 

same example shown in Fig.5.3.  and  are mean values of the template image and the 

reference image, respectively. As shown in the right part of Fig.5.3, the larger the value 

v(I), the better the match is. Once we find the position I with the maximal output, we can 

decide the relative alignment of the two curves easily. 

However, since NCC needs to check all sample indexes in the reference image, the 

computational cost is quite high that contains 2N(M - N) multiplications and 3N(M - N) 

additions/subtractions. Therefore, an efficient method to reduce the time complexity of 

NCC is necessary, especially when applying it to provide real-time services. 

5.4.3 72BFast Normalized Cross-Correlation 

The problem of the NCC is its high computational cost. This is due to the 

implementation of the exhaustive search, which entail the template image contrasted with 

every possible comparison within a pre-specified searching range. In order to improve the 

efficiency, Lewis et al. [8] proposed a fast normalized cross-correlation method (FNCC) 
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by using pre-calculated sum-tables in the denominator and using the Fast Fourier 

Transform (FFT) in the numerator. This is based on the fact that most calculations are 

redundant due to the exhaustive search of the reference image and high overlap between 

the template images. In the following section, we will discuss the optimization of the 

denominator and the nominator, respectively. 

A. Denominator 

The denominator includes two sections: the standard deviation of the template image 

and the standard deviation of the compared image along the reference figure. For the 

template image, the value of the standard deviation in , is a constant 

which can be calculated in time 3N in advance. Therefore, the time complexity of the 

denominator can be reduced by optimizing the calculation process of the following 

expression: at each sample index I.

Assume we have  and the M value of F can be calculated in 

advance. Using the sum-table method, these quantities can be efficiently computed using 

the following formulations: 

                (5-4) 

                (5-5) 

with s(i) = s2(i) = 0 when i < i1. The energy of the reference image can be directly 

calculated as

               (5-6) 
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Then the number of operations for computing the  can be 

reduced to some additions under this feature. The construction of the sum-table takes 

approximately 3M operations. This number is much less than the computational cost of 

the NCC, which is about 3N(M - N). 

B. Numerator 

After solving the problem of denominator, the next process is to find a way to reduce 

the computational time of the numerator. First we use  and 

 to rebuild the formula of the numerator: 

                (5-7) 

This equation is similar to the definition of the convolution of two images. Therefore, 

(5-7) can be transferred to (5-8): 

                   (5-8) 

Based on the convolution theorem, the Fourier transform of (5-8) can be converted to the 

multiplication of the Fourier transform of these two images, which is shown in (5-9). 

                  (5-9) 

Then we can use the inverse Fourier transform to get the value of the numerator(I) at 

each sample index. 

The benefit of treating the numerator as a convolution is that we can apply the FFT 

algorithm to reduce the complexity of the direct ‘spatial’ computation in (5-7) to 9MlogM

addition/subtraction and 6MlogM multiplication. This method works faster when N 

approaches M and both M and N are large enough. In [7], Chandrasekaran proved that 

when N = 200, the average performance of the correlation algorithm can be optimized. 
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Therefore, in this application, we set N = 200 and M - N varies in [6, 90] rely on the 

speed scale chosen for comparison. The superiority of FNCC needs to be verified. 

5.5 34BExperiments and Evaluations 

In this section, we study the ability of FNCC in reducing computational cost for 

providing matching service and compare its performance to the PMCC matching 

algorithms. 

5.5.1 73BSet Up and Methodology 

In this research, we used the same field test data collected in Chandrasekaran’s 

research [7]. In order to derive speed information from the cellular probe’s physical 

parameters, the received signal strength (RSS) of monitored handsets was selected due to 

its characteristics, such as common availability, economical efficiency, and compatibility. 

In Chandrasekaran’s project, they used GPS enabled HTC Typhoon phones running the 

Intel-POLS [110] software on the AT&T network and the T-Mobile network to record 

RSS. A Holux GPSlim236 GPS receiver was used to log the ground truth location 

information which can be applied to pair the signal tracing from the handset. The signal is 

recorded every second. 

In [7], it focused on evaluating the accuracy of the estimated speed using the 

proposed correlation algorithm in different situations, such as highway, local arterial, and 

constant speed trace. Based on previous mathematical analysis of the PMCC and the 

FNCC in section 5.2 and 5.3, we learned that the FNCC can achieve the same accurate 

performance in template matching as the PMCC method. This was also proved by our 

experiments which compared 100 samples for 16 speed traces, as shown in Table 5.1. 
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Thus, in this research, we concentrated our efforts on evaluating the computational cost 

of these two approaches in the matching phase. We selected the constant speed trace, 

which was taken from a driving on a 5 mile stretch of road to simplify the experiment. 

Table 5.1: Speed and Searching Range Matching List 

5mph 90s 10mph 46s 15mph 30s 20mph 24s 
25mph 18s 30mph 16s 35mph 14s 40mph 12s 
45mph 10s 50mph 10s 55mph 10s 60mph 8s 
65mph 8s 70mph 8s 75mph 6s 80mph 6s 

 

The experiment was processed on our ThinkPad T61 laptop. The detail parameters of 

the testbed are: Intel Core(TM)2 Duo CPU 2.10GHz, 2GB RAM, 80GB Hard drive. 

Matlab was used to implement both the PMCC and the FNCC. For each speed scale, we 

randomly chose 100 samples with 200s length as the testing trace. The searching range is 

selected from Table 5.1. The location difference is randomly chosen from [0m, 100m] for 

the urban scenario based on the conclusion that the median localization error is around 

96m [7]. 

5.5.2 74BSearching Range Influence 

Due to the requirement of M and N, we use the field test data to evaluate the 

performance of the FNCC method and the PMCC method. We selected the speed scale 

from 5mph to 80mph steps by 5mph. 

As shown in Figs.5.4 (a),(b),(c), the computational cost of the PMCC is much larger 

than the FNCC for all speed scale from 5mph, which has the largest searching range (S = 

90s) to 80mph, which has the least searching range (S = 6s). This difference is shrunken 

when the speed increased. When we compare the computational cost at 80mph, which 
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has only 6s searching range, we observed that the PMCC is most close to the FNCC but 

still consumed more than 6 times of the calculation period.  

 
(a) 5mph 

 
(b) 40mph 
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(c) 80mph 

Figure 5.4: Comparison of computational time of PMCC and FNCC at different 

searching range: (a), (b), (c). 

 
Figure 5.5: Comparison of average computational cost of PMCC and FNCC vary 

with speed. 
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Then we compared the average computation time of 100 tests for each speed, which 

is illustrated in Fig.5.5. It can be seen that the FNCC provides stable performance due to 

its operation time, which is dominated by the numerator that has a time complexity of 

O(MlogM). Contrarily, the computation time of the PMCC is hugely influenced by the 

value of the searching range S. This result matches the mathematical analysis result in 

Section 5.3. 

5.5.3 75BAbility in Reducing Computational Cost 

Table 5.2: Total Time Consumption for Two Algorithms 

 PMCC (s) FNCC (s) Efficiency 
Total Time Consumption 0.1206 0.0034 34.0640 

 

Table 5.2 shows the average operating time of the matching phase for 100 tests, 

which includes the comparison of the test trace with 80 scaled training traces. The 

traditional PMCC method consumed about 0.1206s to finish the matching process. The 

FNCC method, which uses the sum-table and the FFT techniques, can distinctively 

reduce the computational cost to only 0.0034s for finding the highest correlated training 

trace. The improvement of the total efficiency is over 34 times, which means that about 

97% calculation time can be saved. This is very important, especially when we expect to 

use centralized method to estimate the real-time speed of each route using cell phone 

probes. 

5.6 35BSummary 

In this chapter, we concentrate our efforts on improving the efficiency of the 

matching phase of the correlation algorithm, which is an important extension of 
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Chandrasekaran’s work [7]. Based on our survey, this is the first research focused on 

solving the computational efficiency problem of the correlation algorithm based cellular 

probe’s speed estimation. In order to reduce the time complexity of the matching phase, 

we first convert this problem into a 1-D curve matching problem. The testing trace is 

used as the template curve. The training trace that starts from the estimated position at the 

same road combined with the searching range as the reference curve. A fast normalized 

cross-correlation algorithm is introduced and evaluated. We present details of the FNCC 

and how it constructs the sum-table to save the computing time. Our results show that the 

FNCC can improve the efficiency of the matching phase by about 34 times in urban areas. 

In other words, using the FNCC method, more than 97% computational period can be 

saved by reducing the redundant operations in both the numerator and the denominator. 

Additionally, from Fig.5.5, we can learn that the length of searching range has a positive 

influence in the computational cost. This illustrates that the FNCC can have steady 

performance in urban, suburban, and rural environments. 
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5BCHAPTER 6 

6BCONCLUSIONS AND FUTURE WORKS 

6.1 36BConclusions 

This dissertation presents a novel congestion mitigating system, challenging the 

conventional dynamic route guidance system (DRGS) [74] that weighted the directly 

predicted travel time to get optimal path. The major contributions made by this 

dissertation are summarized as the following: 

1. This study extends the empirical prediction model by investigating the influence of 

real-time traffic flow fluctuations that were caused by congestions and incidents that 

happened in related arcs to improve the quality of the forecasted travel time. The 

causation of congestion in an arc is analyzed by implementing the multi-lane congestion 

analysis mechanism. The list of related arcs and their real-time traffic conditions are 

calculated and sent to the iterative travel time estimation model to do a loop prediction 

process relying on the SVR predictor [79]. The aggregation of SVR, the multi-lane 

congestion analysis mechanism, and the iterative travel time estimation model represses 

the fluctuation of adjacent traffic flow inflict by unpredictable incidents and traffic 

behaviors.  

2. This dissertation compares the performance of the traditional coordinates based 

empirical learning algorithm [2] with the distance based learning algorithm in localizing 

mobile terminals in outdoor cellular networks. The distance based approach shows 

superior performance in reducing the errors that exist in the location related parameters 

and in improving the efficiency of the utilization of geometrical features. The upper 



 121 

bound of the expect risk of distance errors are mitigated relying on the historical training 

data set. After calculating the joints of these distances through the trilateration algorithm 

[10], a direction filter is developed to clean the remaining data set. The upper bound of 

data clean enhanced method illustrates that using distance instead of coordinates can 

provide significant improvement in the empirical location estimation algorithm. 

3. Finally, this dissertation extends the work of Chandrasekaran [7] by utilizing the 

1-D curve matching technique [99] and the fast normalized cross-correlation algorithm 

[8]. The major contribution achieved in this research is the minimization of 97% of the 

computational time of the matching phase without debasing the accuracy level of the 

estimated correlation. This prominent achievement paves a path to provide high quality 

real-time traffic data for large scale traffic infrastructure. 

6.2 37BFuture Works 

The primary highlight of this dissertation includes three research areas: predicted 

travel time based congestion avoidance, data clean scheme enhanced localization, and 

efficient correlation estimation. 

The real-time congestion mitigating system designed in this study exploits our 

AMPRFP algorithm to improve the traffic efficiency of the urban traffic network. 

However, the predicted travel time based on AMPRFP algorithm has a potential for 

experiencing a delayed response to the change of the actual travel time in congestion 

involved scenarios. This is due to the time required for the analysis of reasons for 

congestion after it occurs. Additionally, the highway patrol and emergency responders 

need extra time to verify the report of incidents using traffic cameras. This may be solved 
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by employing new traffic monitor systems in the urban network that can provide nearly 

real-time incident detection services. 

In order to support this real-time congestion mitigating system, some assistant 

models which are important in further improving the efficiency and the applicability of 

this system need to be developed in the future.  

The traffic light control plays an important role in deciding the estimated or predicted 

travel time. In this research, in order to simplify calculation, we assume all traffic lights 

in the simulated area use fixed time control strategy. Nevertheless, along with the 

development of ITS, the dynamic control strategy that can cooperate with real-time 

traffic conditions to adjust the timing and phasing of traffic signals is widely employed in 

urban transport infrastructure. This advanced control strategy is able to minimize the 

delay of vehicles and pedestrians going through the intersection. Therefore, one future 

work of this project is to consider the incorporation of our real-time route guidance 

system with the dynamic control strategy. 

AMPRFP algorithm relies heavily on the detailed moving status of an individual 

vehicle, especially the leading vehicle. This data is critical to identify the cause of a 

congestion happened in a route. However, the collection of this kind of information is 

difficult due to the lacking of sharing mechanisms between vehicles. One possible 

solution for this problem is the implementation of the Vehicular Ad-Hoc Network 

(VANET) in the urban traffic network. Vehicles involved in VANET will periodically 

broadcast their driving status, such as driving direction, driving speed, and current 

location, through the dedicated short-range communications (DSRC) channel. This 
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information can be used or relayed by other automobiles and road side units (RSUs). In 

order to make VANET practical, many technical issues need to be resolved.  

Additionally, the development of new techniques for collecting real-time traffic data 

for local arterial is necessary due to their contributions to the quality of forecasted travel 

time. In this dissertation, we demonstrate the importance of the cellular network in 

supporting real-time traffic data collection service. The accuracy of the estimated position 

of the cellular probe is critical to the performance of cellular probe based FCD. In chapter 

4, we illustrated the upper bound that can be achieved using the data clean enhanced 

learning algorithm. It is obvious that our DCSEEL algorithm can be improved by deeply 

exploring the position information concealed in each joint. Furthermore, the influence of 

missing data situation to the DCSEEL algorithm, which is common in the outdoor 

cellular environment, needs to be investigated. 

Although the FNCC can significantly reduce the computational cost in the matching 

phase, the mechanism that requires comparing the input signal profile with 80 speed scale 

training traces is quite inefficient in practice. Therefore, to design a 1-D curve matching 

algorithm that can ignore the scale parameter in the temporal domain is essential in 

raising the performance of the matching process.  
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