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ABSTRACT OF THE DISSERTATION 
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by 
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Worldwide declines in populations of large elasmobranchs and the potential 

cascading effects on marine ecosystems have garnered considerable attention. Far less 

appreciated are the potential ecological impacts of changes in abundances of small to 

medium bodied elasmobranchs mesopredators.  Crucial to elucidating the role of these 

elasmobranchs is an understanding of their habitat use and foraging ecology in pristine 

conditions.  I investigated the trophic interactions and factors driving spatiotemporal 

variation in abundances of elasmobranch mesopredators in the relatively pristine 

ecosystem of Shark Bay, Australia.  First, I describe the species composition and seasonal 

habitat use patterns of elasmobranch mesopredator on the sandflats of Shark Bay.  

Juvenile batoids dominated this diverse community and were extremely abundant in 

nearshore microhabitats during the warm season.  Stomach content analysis and stable 

isotopic analysis revealed that there is a large degree of dietary overlap between common 

batoid species.  Crustaceans, which tend to be found in seagrass habitats, dominated 

diets.  Despite isotopic differences between many species, overlap in isotopic niche space 

was high and there was some degree of individual specialization.  I then, investigated the 
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importance of abiotic (temperature and water depth) and biotic (prey and predator 

abundance) factors in shaping batoid habitat use.  Batoids were most abundant and tended 

to rest in shallow nearshore waters when temperatures were high.  This pattern coincides 

with periods of large shark abundance suggesting batoids were seeking refuge from 

predators rather than selecting optimal temperatures.  Finally, I used acoustic telemetry to 

examine batoid residency and diel use of the sandflats.  Individual batoids were present 

on the sandflats during both the warm and cold seasons and throughout the diel cycle, 

suggesting lower sandflat densities during the cold season were a result of habitat shifts 

rather than migration out of Shark Bay.  Combined, habitat use and dietary results 

suggest that batoids have the potential to seasonally impact sandflat dynamics through 

their presence, although foraging may be limited on the sandflats.  Interestingly, my 

results suggest that elasmobranch mesopredators in pristine ecosystems probably are not 

regulated by food supply and their habitat use patterns and perhaps ecosystem impacts 

may be influenced by their predators. 
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Most elasmobranchs are upper trophic level predators (Cortés 1999, Ebert and 

Bizzarro 2007).  As such, it is often assumed that they play an important role in 

community structure through top down control (but see Heithaus et al. 2010).  Although 

large-bodied sharks (>2m total length), as apex predators, have been shown to induce 

behavioral changes in their prey (e.g., Heithaus et al. 2007) and have been suggested to 

influence population sizes of potential prey (e.g., Myers et al. 2007, Ferretti et al. 2010), 

the vast majority of elasmobranchs are not apex predators and their role in marine 

ecosystems is less clear than that of apex predators. 

These small to medium-sized elasmobranchs are both predators and prey 

(mesopredators) and, therefore, provide a link between apex predators, such as large 

sharks, and lower trophic levels.  Thus, they may play an important ecological role in 

transmitting indirect effects of top predators (e.g., Heithaus et al. 2008, 2010).  

Unfortunately, elasmobranch mesopredators have not received much attention in the 

literature.  One group in particular that has been largely neglected is the batoids (skates 

and rays), despite the fact that there are more species of batoids than all other groups of 

elasmobranchs combined (Ebert and Compagno 2007).  Despite a relatively scant 

literature, several studies have suggested that batoids may be important components of 

soft-bottom and vegetated marine systems, not only through predation, but also 

bioturbation (Orth 1975, VanBlaricom 1982, Thrush et al. 1991, 1994, Peterson et al. 

2001, Myers et al. 2007). 

Given the lack of information on the ecological role of batoids and their potential 

to be influential in marine systems, the goal of this dissertation is to provide information 

on the habitat use and foraging ecology of a batoid community in a relatively pristine 
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ecosystem.  This information is necessary to provide the blueprint of future studies on the 

ecological role of batoids because it identifies key interspecific interactions of the batoid 

community and the spatiotemporal scale at which they might occur.  I conducted this 

work in Shark Bay, Western Australia, because the bay has a large population of batoids 

and as a World Heritage Site, there are minimal anthropogenic impacts.  In addition, 

Shark Bay has served as a model system for studying the ecological role of the tiger 

shark, Galeocerdo cuvier (Heithaus et al. 2007), a known batoid predator, allowing for 

examination of the interactions of batoids and their predator. 

I begin by reviewing the trophic ecology of elasmobranchs in coastal systems in 

Chapter II.  I consider their interactions as predators, prey, and competitors.  A version of 

this chapter is scheduled to appear in “Treatise on Estuarine and Coastal Science: Trophic 

Structure of Estuaries and Coasts.” 

 Chapter III introduces the field system by describing the elasmobranch 

community of Shark Bay’s nearshore sandflats.  I explore seasonal patterns of 

microhabitat use by the most common batoids on the sandflats.  A version of this chapter 

appears in the journal, Marine Biology.  

 In Chapter IV, I examine the foraging ecology of rays including the potential of 

dietary niche partitioning within the batoid community.  I used traditional stomach 

content analysis and stable isotopic analysis to assess resource overlap.  A version of this 

chapter appears in the journal, Marine Ecology Progress Series.  

Chapter V explores the factors that influence the microhabitat use by batoids.  

Previous work on elasmobranchs has suggested that variation in water temperature may 

play a critical role in foraging habitat use.  In Shark Bay, the sandflats are thermally 
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dynamic, allowing for tests of behavioral thermoregulation theory as well as traditional 

foraging models based on the abundance of prey and presence of predators. 

In Chapter VI, I extend the studies of population-level habitat use during daytime 

to individual habitat use patterns across the diel cycle. I use acoustic telemetry to 

elucidate diel habitat use and residency to the study site by individual rays from several 

species and compare these data to patterns observed using boat-based surveys. 

 Overall, this work provides valuable information on the habitat use and foraging 

ecology of an understudied and potentially important guild of predators in soft-bottomed 

communities.  This information will guide future work on the role of batoids in marine 

systems. 
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Synopsis 

Coastal elasmobranchs tend to be upper level predators, which may exert top-down 

impacts on the systems they inhabit, but surprisingly little is known of their trophic 

ecology.  In this chapter I review the trophic interactions of coastal elasmobranchs as 

prey, predators, and competitors.  I also explore factors that affect these relationships, and 

elasmobranch interactions within key coastal habitats. 

 

Introduction 

Elasmobranch fishes are conspicuous predators in many coastal ecosystems.  They do not 

exhibit the diversity of forms and feeding morphology of teleosts, but elasmobranchs 

occupy a number of potentially ecologically important roles including those of benthic 

predators – highlighted by the dorso-venterally flattened batoids (rays and skates) – and 

large-bodied and long-lived predators – typified by the sharks.  Recent reviews have 

suggested that sharks, rays, and skates can play an important role in the dynamics of 

coastal communities, but a critical role is not universal (Heithaus et al. 2008, 2010).  

Several factors continue to hamper our ability to fully document and understand the 

ecological role of elasmobranchs.  First, despite the presumed importance of 

elasmobranchs in marine systems, our understanding of elasmobranch trophic 

relationships remains limited.  For many species we have very limited knowledge of 

elasmobranch diets, especially species that are not captured in commercial fisheries.  For 

those species for which I have dietary data, in relatively few cases have studies 

investigated the variation in these diets in space and time, which is critical to 

understanding the ecological importance of these fishes.  Also, although we traditionally 
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think of trophic interactions being limited to situations in which a predator kills its prey, 

ecologists now recognize that non-consumptive effects of predators (e.g., anti-predator 

behavior, predator-induced habitat shifts) may be equally important to direct predation 

(e.g., Werner and Peacor 2003, Schmitz et al. 2004, Heithaus et al. 2008, Creel and 

Christensen 2008).  Studies of elasmobranchs have generally overlooked the importance 

of these nonconsumptive effects. 

Enhancing the importance of studies of elasmobranch trophic interactions, yet 

greatly complicating them, is the well documented decline of many large-bodied shark 

species (e.g., Musick et al. 1993, Baum et al. 2003, Baum and Myers 2004, Shepherd and 

Myers 2005, Clarke et al. 2006, Robbins et al. 2006, Myers et al. 2007, Heithaus et al. 

2007a, Ferretti et al. 2008), in response to growing demand for shark fins and meat and 

high levels of shark bycatch in many fisheries.  In fact, it may already be too late to 

document the major trophic interactions and impacts elasmobranchs might have exerted 

under natural conditions in many locations.  However, large-bodied sharks are not the 

only elasmobranch taxa with populations in flux.  Some areas that have experienced 

dramatic declines in large-bodied sharks have seen increases in medium and small sized 

elasmobranchs, presumably as a result of decreases in predator and competitor 

populations (e.g., Myers et al. 2007, van der Elst 1979, Heithaus et al. 2010).  In other 

locations, medium and small-bodied coastal elasmobranchs have decreased as a result of 

targeted fisheries and bycatch (Stobutzki et al. 2002).  

Given the ongoing numerical changes in many elasmobranch populations 

worldwide and the potential impacts on their prey and communities, developing our 

understanding of the trophic relationships of sharks and other elasmobranchs is crucial to 
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our knowledge of how marine systems function.  In this chapter I consider some of the 

factors influencing the trophic interactions of elasmobranchs, how these interactions may 

affect community processes and survey elasmobranch species most likely to play 

important roles in a variety of coastal ecosystems. 

 

Elasmobranchs As Prey 

Although they are often considered apex predators, most elasmobranchs are 

relatively small bodied (<1m in length) and as mid-size predators are not truly top 

predators in systems.  In fact these individuals and also the juveniles of large coastal 

species are often at risk from larger predators, especially large sharks (Heithaus 2004).  

These elasmobranch “mesopredator” species and life-history stages, however, could be 

important in coastal systems both through direct effects on their prey and habitats (see 

below) and in transmitting indirect top-down effects of their predators in a manner 

similar to terrestrial mesopredators (Heithaus et al. 2008, Ritchie and Johnson 2009). 

With a few possible exceptions, however, it is unlikely that energy flowing through 

elasmobranch mesopredators supports a large biomass of large predators.   

Some large sharks appear to be important and consistent predators of 

elasmobranchs in coastal systems.  Cortés (1999) calculated the standardized diet 

composition for 149 species of sharks from 23 families.  Of the species examined, 

chondrichthyans (elasmobranchs and chimaerids) were found in the diets of 51 species 

and 13 families.  For 15 species at least 10% of the diet was chondrichthyan and at least 

25% chondrichthyan in 7 species [great hammerhead shark Sphyrna mokarran (41.7%); 

broadnose sevengill shark Notorynchus cepedianus (40.7%), bignose shark Carcharhinus 
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altimus (36.7%), great white shark Carcharodon carcharias (35.7%), bull shark 

Carcharhinus leucas (35.4%), bramble shark Echinorhinus brucus (33.3%) sand tiger 

shark Carcharias taurus (31.2%), and pigeye shark Carcharhinus amboinensis (28.0%)].  

For these species the high proportion of elasmobranchs in the diet is relatively consistent 

between regions.  For example, elasmobranchs make up a large component of the diet of 

broadnose sevengill sharks from southern Africa, California, north Patagonia (Argentina), 

and southeastern Australia (Ebert 1991, Ebert 2002, Lucifora et al. 2005, Braccini 2008) 

and of the diet of sand tiger sharks from the northwest Atlantic, South Africa, and north 

Patagonia (Gelcleichter et al. 1999, Smale 2005, Lucifora et al. 2009).  Great 

hammerhead sharks appear to be extremely adept at feeding on elasmobranchs, including 

more elasmobranchs in their diets than other large sharks (Cortés 1999).  Elasmobranchs, 

especially batoids, were common in the stomach contents of great hammerhead sharks in 

northern Australia and South Africa (Stevens and Lyle 1989, Cliff 1995), with 

elasmobranch frequency of occurrence in stomachs reaching 82% in the South African 

sharks (Cliff 1995).  Further emphasizing the importance of batoids in the diets of great 

hammerhead sharks are reports of captured individuals with up to 50 stingray barbs 

embedded in their mouths, throats and tongues (Compagno 1984) and observations of 

great hammerhead sharks using their unusually shaped head to pin down batoids during 

capture and prey handling (Strong et al. 1990, Chapman and Gruber 2002). 

The importance of elasmobranchs as diet items for large sharks varies within 

some species that regularly consume other elasmobranchs.  Indeed, some species show a 

high degree of regional variability in the importance of elasmobranchs to their diets.  For 

example, in South Africa, sharks and rays were a large component of the diet of dusky 
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sharks Carcharhinus obscurus greater than 100cm in PCL length (Dudley et al. 2005).  

However in Western Australia they were only infrequently found in the stomachs of 

dusky sharks <200cm FL (Simpfendorfer et al. 2001a) and in the northwest Atlantic from 

a sample composed primarily of small dusky sharks (<125cm TL), elasmobranchs were 

of intermediate importance and only rays were found in stomach contents (Gelsleichter et 

al. 1999).  Similar variability has been observed in sandbar sharks Carcharhinus 

plumbeus.  Elasmobranchs were extremely rare in the diets of sandbar sharks in northern 

Australia and Hawaii (Stevens and McLoughlin 1991, McElroy et al. 2006), but were 

much more commonly found in sandbar shark diets in South Africa, the northwestern 

Atlantic, and of juveniles (>90cm PCL) in Chesapeake Bay, USA (Stillwell and Kohler 

1993, Cliff et al. 1988, Ellis and Musick 2007).  In tiger sharks Galeocerdo cuvier, the 

proportion of elasmobranchs in the diet varies with location and size.  In Australia and 

New Caledonia, elasmobranchs are not frequently found within the stomach contents of 

tiger sharks, although within Australia there is regional variation with elasmobranchs 

comprising a slightly larger proportion of the diet in Western Australia (Simpendorfer 

1992, Lowe et al. 1996, Heithaus 2001b, Simpefendorfer et al. 2001b).  In the main 

Hawaiian Islands, elasmobranchs become increasingly important prey with increasing 

tiger shark length and had the highest frequency of occurrence (42%) of all prey items in 

sharks >300cm total length (Lowe et al. 1996).   Regional differences in the importance 

of elasmobranchs as prey are likely the result of variation in the availability of 

elasmobranch and other prey species since many of the large sharks that consume other 

elasmobranchs are generalized piscivores and may feed opportunistically.      
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Elasmobranchs also are prey of other large predators.  Notably, killer whales 

Orcinus ocra off New Zealand’s North Island may specialize in feeding on 

elasmobranchs, with elasmobranchs making up a larger part of the diet than previously 

thought.  During over 80% of research encounters with killer whales, whales successfully 

captured and consumed sharks and rays and in many cases multiple elasmobranchs were 

consumed (Visser 1999, 2005).  Observations of feeding killer whales and extreme tooth 

wear also suggest that sharks may be an important component of killer whale diets in the 

northeast Pacific (Ford et al. 2011).  In some systems, pinnipeds may also be a threat to 

small elasmobranchs.  During approximately 30h of visual surveys around Seal Island in 

False Bay, South Africa, juvenile Cape fur seals captured 17 puffadder shysharks 

Haploblepharus edwardsii.  Although seals proceeded to play with instead of consuming 

the sharks, six of the 18 sharks were killed with three ultimately consumed by black-

backed kelp gulls Larus dominicanis vetula (Martin 2004).  Elasmobranchs have also 

been recorded from the diets of crocodilians, pinnipeds and dolphins, but do not 

constitute an important prey group for any of these predators (Gunter 1942, Condit and 

Le Boeuf 1984, Rasmussen and Schmidt 1992, Tamarack 1993).  In a review of the diets 

of 60 skates, Ebert and Bizzarro (2007) found that, when present, elasmobranchs 

generally made up less than 1% of the standardized diet composition. Chondrichthyans 

(elasmobranchs plus chimeras) were found in the diets of 19 of the skates and even made 

up 26.7% of the diet of the Norwegian skate Dipturus nidarosiensis.   

 Free-swimming elasmobranchs are not the only life stages at risk of predation.  

Many elasmobranchs lay eggs, some of which may take over a year to develop and hatch.  

Egg cases have been found in the stomachs of several elasmobranch species (e.g., 
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Gelcleichter et al. 1999, Ellis and Musick 2007, Lucifora et al. 2009), but the main 

elasmobranch egg-case predator appears to be gastropods, which can bore through the 

leathery egg case (Cox and Koob 1993, but see Powter and Gladstone 2008).  Although 

egg-case predation has been observed in few studies (see Bor and Santos 2003), predation 

rates have been estimated at 3-90% (Grover 1972, Cox and Koob 1993, Smith and 

Griffiths 1997, Cox et al. 1999, Lucifora and Garcia 2004, Powter and Gladstone 2008, 

Hoff 2009).  Given that some skates can produce >140 eggs per year (Holden 1975, 

Lucifora and Garcia 2004), these rates of predation may result in a large transfer of 

energy. 

 It should come as no surprise that elasmobranchs have evolved a number of traits 

to avoid being eaten.  These include morphological traits such as the venomous barbs of 

myliobatiforms (stingrays) and the spines of heterodontids (horn sharks) and most 

squaliform (dogfishes) sharks, life history traits, and behavioral traits such as swell sharks 

Cephaloscyllium spp., swallowing large volumes of water to increase their body size.  

Some antipredator behaviors are also likely to influence the spatial and temporal patterns 

of elasmobranch mesopredator trophic interactions.   

Group formation, for example, may modify prey encounter and removal rates 

(e.g., Hake and Ekman 1988, Valone 1993, Brown and Alexander 1994), and many 

elasmobranch mesopredators form groups that are likely a response to predation risk.  

Cowtail rays Pastinachus atrus (formerly P. sephen), for example, are more likely to 

group when visibility is low and therefore their ability to detect a predator is reduced 

(Semeniuk and Dill 2005).  Juvenile scalloped hammerhead sharks Sphyrna lewini and 

juvenile blacktip sharks Carcharhinus limbatus also form small aggregations that might 
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reduce predation risk (Holland et al. 1993, Heupel and Simpfendorfer 2005).  Cownose 

rays Rhinoptera bonasus groups can contain several hundred individuals and groups of 

up to 5 million have been reported in Chesapeake Bay, USA (Blaylock 1989, Blaylock 

1993). 

Habitat selection to reduce the risk of predation can have far-reaching 

consequences for the spatial and temporal patterns of trophic interactions by 

mesopredators.  Like a multitude of other taxa, elasmobranch mesopredators generally 

show strong preferences for safe habitats, even at the cost of reduced energy intake rates.  

Indeed, the use of shallow coastal habitats as nursery areas by many temperate, 

subtropical, and tropical sharks – in which they often fill the role of upper trophic level 

predators – is almost surely a response to the risk imposed by larger sharks further 

offshore (see Heupel et al. 2007, Heithaus 2007 for reviews).   For example, Morrissey 

and Gruber (1993) found that juvenile lemon sharks Negaprion brevirostris in the 

Bahamas select shallow habitats, likely to avoid predators.  Similarly, juvenile blacktip 

reef sharks Carcharhinus melanopterus at Palmyra Atoll (Papastamatiou et al. 2009), 

juvenile lemon sharks at Atol das Rocas, Brazil (Wetherbee et al. 2007), and blacktip 

sharks at Terra Ceia Bay, Florida (Heupel and Hueter 2002), prefer sheltered shallow 

habitats where the risk of predation is low even when prey availability was not relatively 

high.  In Shark Bay, Australia, the preference for extremely shallow waters by giant 

shovelnose rays Glaucostegus typus and whiprays Himantura spp., is seasonal, occurring 

during the warm season when large shark abundance is high (Vaudo and Heithaus 2009). 

The use of nursery grounds has often been assumed to be driven by a combination 

of high resource availability and low predation rates, but recent work suggests that 
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although these areas provide relative safety, competition may be intense (see reviews in 

Heithaus 2004, 2007, Heupel et al. 2007).  For juvenile scalloped hammerhead sharks in 

Kaneohe Bay, Hawaii, estimates of the maintenance ration (the amount of food needed 

by an individual to maintain its body weight) measured via oxygen consumption and food 

conversion (Lowe 2002, Duncan 2006) exceed estimates of daily ration determined by 

gastric evacuation rates and stomach content data (Bush and Holland 2002).  In fact, 

weight loss in recaptured individuals and a general decrease in body condition by 

individuals over time occur (Duncan and Holland 2006).  Given that sharks are not 

meeting their maintenance requirements, it is not surprising that prey densities within this 

nursery are low (Bush 2003).  However there are fewer large sharks in Kaneohe Bay than 

in surrounding areas (Clarke 1971, Crow et al. 1996) supporting the hypothesis that this 

nursery ground is used primarily to minimize predation risk.  Movements and habitat use 

of juvenile lemon and blacktip sharks also are more consistent with predator avoidance 

than resource acquisition (Morrissey and Gruber 1993, Heupel and Hueter 2002).  Life 

history traits of sharks that use nurseries vary from those that do not.  Species that use 

nurseries tend to be proportionally smaller at birth and have slower growth rates relative 

to species that do not use nurseries or use more open nurseries (Branstetter 1990).   

Predation-risk sensitive habitat selection may also be influenced by body 

condition (asset-protection principle: Clark 1994).  Under condition- (or state-) dependent 

foraging, which has been observed in a variety of taxa (e.g., Hays et al. 2001, Kotler et al. 

2004, Aubret and Bonnet 2005, Heithaus et al. 2007b), individuals with high body 

conditions will forgo high-risk foraging sites even if these sites offer higher energetic 

returns.  Such condition-dependent behavior is likely to occur in elasmobranchs, but had 
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been largely overlooked.  Southern stingrays Dasyatis americana found at tourist 

provisioning sites in Grand Cayman tended to have lower body conditions than rays at 

non-tourist sites (Semeniuk and Rothley 2008).  These tourist sites represent a riskier 

habitat in terms of injuries incured from boat traffic and higher predation rates by sharks.  

Semeniuk and Rothley (2008) attributed the poorer body condition of rays at the tourist 

sites to the long-term affects of ray provisioning, however, these data are also consistent 

with the rays exhibiting condition-dependent behavior.  Individuals in poor condition, 

whose survival may be dependent on a high-energy return, are more willing to forage at 

the high-risk, but profitable, locations (i.e., provisioning sites). 

 

Elasmobranchs As Predators 

Trophic Level 

 All elasmobranchs are carnivores and tend to occupy higher trophic levels than 

other fishes. Most information on trophic levels in elasmobranchs is based on stomach 

content analysis, although in recent years stable isotopic analysis has also been used and 

yielded similar estimates for species that have been studied (Estrada et al. 2003, 2006, 

Kerr et al. 2006).  Cortés (1999) calculated standardized diet compositions (a 

proportional breakdown of prey categories based on a weighted average of data from 

multiple quantitative dietary studies of a particular species and takes into account the 

number of stomachs examined in each study) of 149 species of sharks (most of which 

were coastal species) and concluded that sharks tend to be tertiary consumers (trophic 

level > 4), occupying similar trophic levels to marine mammals and slightly, but 

significantly, higher than seabirds.  With the notable exception of whale sharks 
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Rhincodon typus and basking sharks Cetorhinus maximus, trophic level in sharks is 

positively correlated with body size (Cortés 1999).  However, high trophic levels are not 

universal among sharks.  Sharks in the order Orectolobiformes (carpet sharks) tended to 

occupy lower trophic levels (trophic level 3.6) than species in other orders, as did the one 

member of the order Heterdontiformes (horn sharks) examined (trophic level 3.2) (Cortés 

1999).  Both of these orders are primarily composed of benthic coastal sharks that 

frequently feed on benthic invertebrates.  Not surprisingly, the two zooplanktivorous 

sharks (whale and basking sharks) also feed at a relatively low trophic level (trophic level 

3.2-3.5).   

Standardized diet compositions and trophic levels of batoids have only been 

systematically examined for skates.  Skates tended to occupy similar but slightly lower 

trophic levels than sharks, but like sharks show a positive relationship between body size 

and trophic level (Ebert and Bizzarro 2007).  Skates, unlike other batoids, are usually 

associated with the deeper waters of continental slopes, although in cooler areas some 

species occupy the continental shelf and inshore waters.  Despite habitat differences 

between skates and other batoids, available data suggest similar diets and therefore 

coastal batoids likely occupy similar trophic levels.  Myliobatids (eagle rays) and 

rhinopterids (cownose rays), however, tend to include more molluscs in their diets (e.g., 

Smith and Merriner 1985, Gray et al. 1997, Jardas et al. 2004, Yamaguchi et al. 2005, 

Collins et al. 2007) and mobulids (manta rays) are filter feeders (Last and Stevens 2009) 

so they should be found at lower trophic levels than other batoids.                

 Although published values of elasmobranch trophic levels likely provide a fair 

estimate at higher taxonomic levels, some care is required when interpreting trophic 
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levels between species or for a species between locations.  When using stomach contents 

to determine trophic position, stomach contents are typically grouped into broad 

taxonomic categories for ease of interpretation and because not all prey items can be 

identified to species.  As a result taxonomically similar but trophically distinct prey items 

will be combined.  In addition, the trophic level of each prey category is usually 

represented as an average of trophic levels found in the literature for species within that 

prey category.  These factors will result in predators that feed predominantly within the 

same taxonomic group having similar standardized trophic levels, regardless of their true 

trophic levels.  For example, large shark that feeds predominantly on large predatory 

fishes will have a similar standardized trophic level as a small shark that has a 

proportionally similar diet, but feeds on smaller and lower trophic level fishes.  

Calculating trophic position using stable isotopic analysis (generally δ15N) does not 

require diet information, thereby avoiding these issues, but is not without complications 

(See Heithaus et al. 2010 for a brief review of stable isotope analysis considerations).  

Calculating trophic levels from isotopic signatures requires the appropriate isotopic 

baseline and knowledge of isotopic fractionation rates, which are likely to be system and 

species specific, respectively (Post 2002, McCutchan et al. 2003, Vanderklift and 

Ponsard 2003).  Sensitivity analyses have demonstrated that trophic level estimates are 

very sensitive to fractionation rates and moderately sensitive to methods of determining 

isotopic baselines (Post 2002).  In the only currently published study on isotopic fraction 

rates in elasmobranchs, Hussey et al. (2010) found fractionation of 2.43‰ for muscle in 

sand tiger sharks, which is lower than the 3.4‰ suggested by Post (2002) and used by 

Estrada et al. (2003, 2006) and Kerr et al. (2006). 
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Feeding Guilds 

Despite the similarity in trophic levels among sharks and other elasmobranch 

groups, prey type and size classes can vary considerably within and among species.  

Coastal sharks and batoids can be placed into five broad dietary guilds: piscivores, 

teuthivores, invertevores, zooplanktivores, and a guild of larger sharks that feed on 

teleosts and various other megafauna (i.e., elasmobranchs, birds, reptiles, and marine 

mammals). 

Many of the mid to large-sized (i.e., > 100 cm total length) coastal elasmobranchs 

are primarily piscivorous.  Piscivory characterizes carcharhinids (requiem sharks), which 

are the most abundant coastal sharks (Cortés 1999, Wetherbee and Cortés 2004).  In 

many of these species, the frequency of occurrence of teleosts in stomach contents may 

exceed 90%.  The proportion of the diet that is composed of fish may also exceed 90% in 

many torpediniform rays (electric rays) (e.g., Bray and Hixon 1978, Abdel-Aziz 1994, 

Capape et al. 2007).  Within this guild, prey sizes are often relatively small (<20% TL of 

the predator) [e.g., copper shark Carcharhinus brachyurus (Cliff and Dudley 1992), 

nurse shark Ginglymostoma cirratum, (Castro 2000), finetooth shark Carcharhinus 

isodon, Atlantic sharpnose shark Rhizoprionodon terraenovae, (Bethea et al. 2004), sand 

tiger sharks (<2m total length) (Smale 2005)], although some species may target 

moderately-sized prey (up to 40% TL of the predator) [e.g., blacktip shark (Bethea et al. 

2004), Atlantic sharpnose shark (Bethea et al. 2006)]. 

Within the coastal pelagic realm, many elasmobranchs are teuthitrophic, feeding 

primarily on cephalopods, especially squid.  This guild is primarily composed of 

carcharhinids [e.g., blue sharks Prionace glauca (Tricas 1979)], but also includes 
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sphyrnids [e.g., smooth hammerhead Sphyrna zygaena (Smale 1991)] and lamnids 

(mackerel sharks) [e.g., salmon shark Lamna ditropis (Kubodera et al. 2007)].  

Teuthitrophic sharks, however, are not limited to pelagic waters.  For example, the 

Australian weasel shark Hemigaleus australiensis feeds primarily on benthic octopuses 

(Taylor and Bennett 2008), as does the whiskery shark Furgaleus macki (Simpfendorfer 

et al. 2001a). 

Bottom associated elasmobranch species may also eat fishes, but tend to have 

diets dominated by benthic invertebrates.  Crustaceans are the dominant invertebrate 

eaten by this guild and make up a substantial portion of the diet of many carcharhinids, 

small sphyrnids (hammerhead sharks), triakids (houndsharks), many orectolobiforms, and 

batoids (Cortés 1999, Wetherbee and Cortés 2004, Ebert and Bizzarro 2007).  Within this 

guild heterdontids (hornsharks), myliobatids, and rhinopterids are durophagous (e.g., 

Cortés 1999, Gray et al. 1997, Jardas et al. 2004, Yamaguchi et al. 2005, Collins et al. 

2007), capable of feeding on hard-bodied invertebrate prey (e.g., mollusks, echinoderms) 

and having evolved jaws that are more mineralized than other elasmobranchs to crush 

hard prey (Summers et al. 1998, 2004, Summers 2000).   

The zooplanktivores compose a relatively small guild of coastal elasmobranchs.  

Whale and basking sharks, as well as some mobulid rays frequent coastal waters to 

exploit areas of high zooplankton production and invertebrate and fish spawn (e.g., Sims 

et al. 1997, Sims and Quayle 1998, Heyman et al. 2001, Nelson and Eckert 2007, 

Sleeman et al. 2007, Taylor 2007, Dewar et al. 2008). 

Some of the largest coastal elasmobranchs, notably bull sharks, tiger sharks, great 

white sharks, and broadnose sevengill sharks may be primarily piscivorous but belong in 
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a separate guild because of their propensity to include large teleosts, elasmobranchs, and 

even marine tetrapods (marine mammals, sea turtles, sea snakes, sea birds) in their diets 

(Tricas and McCosker 1984, Cliff et al. 1989, Ebert 1991, Bruce 1992, Simpfendorfer 

1992, Lowe et al. 1996, Cortés 1999, Fergusson et al. 2000, Simpfendorfer et al. 2001b). 

Because some of these large-bodied prey species may themselves exert considerable top-

down influences on marine communities, the sharks in this feeding guild warrant special 

consideration as potentially critical species in their communities (e.g., Heithaus et al. 

2008a, 2010). 

 Placement of individual species within the abovementioned guilds is not always 

straightforward.  Like in many other fish species, ontogenetic shifts appear to be 

commonplace, but not universal, in elasmobranchs [e.g., tiger shark (Simpfendorfer 1992, 

Lowe et al. 1996), lobed stingaree Urolophus lobatus, sparsely-spotted stingaree 

Urolophus paucimaculatus, masked stingaree Trygonoptera personata (Platell et al. 

1998), broadnose sevengill shark (Ebert 2002), spiny dogfish Squalus acanthias (Koen 

Alonso et al. 2002), school shark Galeorhinus galeus (Lucifora et al. 2006), common 

stingaree Trygonoptera testacea (Marshall et al. 2008)].  Ontogenetic diet shifts may be 

associated with habitat shifts in species using nursery areas – as do many coastal 

carcharhinids, or it may simply reflect the enhanced prey available to elasmobranchs as 

their gape, jaw strength, and/or swimming ability increases.  Many diet shifts are 

accompanied by an increase in diet breadth as new items are added to the diet [e.g., bat 

ray Myliobatis californica (Gray et al. 1997), tiger shark (Lowe et al. 1996), gummy 

shark Mustelus antarcticus (Simpfendorfer et al. 2001a), smooth-hound shark Mustelus 

mustelus (Saidi et al. 2009)], although some species show reductions in diet breadth as 
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they become more specialized with increasing size [e.g., Australian weasel shark (Taylor 

and Bennet 2008), masked stingaree (Plattel et al. 1998)].  One commonly observed shift 

is from a diet based primarily on benthic invertebrates, usually crustaceans, to one 

including more fishes [e.g., leopard shark Triakis semifasciata (Talent 1976, Kao 2000), 

lobed stingaree (Plattel et al. 1998), Atlantic sharpnose (Bethea et al. 2004), sandbar 

shark (Ellis and Musick 2007), southern fiddler ray Trygonorrhina fasciata (Marshall et 

al. 2007), smooth-hound shark (Saidi et al. 2009)].  In several large coastal species, diet 

shifts are more extreme.  Increases in size are associated with an increased proportion of 

elasmobranchs in the diet of sharks such as the tiger shark (Lowe et al. 2006), broadnose 

sevengill shark (Ebert 2002, Lucifora et al. 2005), and copper shark (Lucifora et al. 

2009).  For great white sharks, broadnose sevengill sharks, and Pacific sleeper sharks 

Somniosus pacificus, increased size also results in the inclusion of marine mammals in 

the diet (Cliff et al. 1989, Ebert 2002, Lucifora et al. 2005, Sigler et al. 2006).  The 

aforementioned shifts are likely to at least in part be driven by smaller individuals being 

gape limited and too small to capture large prey.  A change in habitat is associated with 

the diet shift of spiny dogfish, in coastal Patagonian waters.  Juveniles tend to feed in the 

water column, with adults feed on demersal and benthic prey (Koen Alonso et al. 2002).  

Great white sharks show the opposite shift.  Juveniles spend a large amount of their time 

making dives to the bottom (Dewar et al. 2004, Weng et al. 2007b) where they feed 

largely on demersal prey (Casey and Pratt 1985), while adults feed on prey in the water 

column.  Ontogenetic diet shifts also occur in batoids. The diet shift observed in the 

common stingaree, may be the result of a greater ability of larger individuals to access 

buried prey.  Smaller rays feed predominantly on crustaceans, while the diet of larger 
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rays is dominated by polychaetes, which are found deeper in the substrate (Marshall et al. 

2008).  Some diet shifts are associated with ontogenetic structural changes.  In horn 

sharks Heterodontus francisci, jaw mineralization increases through ontogeny allowing 

larger individuals to consume hard bodied prey (Summers et al. 2004).  Great white 

sharks also exhibit a morphological change allowing them to expand their diet.  Juvenile 

great white sharks have sharply pointed narrow teeth ideal for catching fishes.  At 

approximately 3m in length, large finely serrated triangular teeth suited for cutting 

through the flesh of marine mammals replace the narrow teeth (Tricas and McCosker 

1984); this is roughly the size at which marine mammals are added to the diet (Tricas and 

McCosker 1984, Cliff et al. 1989, Bruce 1992).       

 Diets vary regionally in many coastal elasmobranch species, especially those with 

wide distributions.  Dusky sharks from the northwest Atlantic, Western Australia, and 

South Africa differed greatly in the occurrence and diversity of cephalopods and 

elasmobranchs in their diets (Gelsleichter et al. 1999, Simpfendorfer et al 2001a, Dudley 

et al. 2005).  Similar variation across large spatial scales has been observed in the sandbar 

shark (Cliff et al. 1988, Medved et al. 1988, Stevens and McLoughlin 1991, Stillwell and 

Kohler 1993, McElroy et al. 2006, Ellis and Musick 2007), tiger shark (Simpfendorfer 

1992, Lowe et al. 1996, Simpfendorfer et al. 2001b), and thornback ray Raja clavata 

(Morato et al. 2003).  Regional variability is also seen on smaller scales [e.g., grey reef 

shark Carcharhinus amblyrhynchos, milk shark Rhizoprionodon acutus, spottail shark 

Carcharhinus sorrah (Salini et al 1992), Atlantic sharpnose shark (Bethea et al. 2006), 

bonnethead shark Sphyrna tiburo (Bethea et al. 2007)].  Tiger shark diets were found to 

vary along the central Western Australian coast (Simpfendorfer et al. 2001b), while 
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across southwestern Australia the diet of the southern fiddler ray, varied regionally 

(Marshall et al. 2007).  Regional dietary differences have also been observed for juvenile 

sandbar sharks within a Virginia, USA, nursery ground (Ellis and Musick 2007).  Dietary 

differences can also be observed at small scales if species occur along a depth gradient, as 

was found for longnose skate Raja rhina off coastal central California (Robinson et al. 

2007) and sandbar sharks in Hawaii (McElroy et al. 2006).  Such spatial variation in diets 

likely is driven by variability in prey availability.  Within a coastal system, Salini et al. 

(1992) found that there was a strong correlation between the proportions of prey 

consumed by five carcharhinids and prey biomass estimates, suggesting opportunistic 

foraging. 

 Many coastal elasmobranchs shift their diets seasonally within a region [e.g., 

blacktip shark (Dudley and Cliff 1993), common stingray Dasyatis pastinaca (Ismen 

2003), southern fiddler ray (Marshall et al. 2007), marbled sand skate Psammabatis bergi 

(San Martin et al. 2007), smooth-hound shark (Saidi et al. 2009), giant shovelnose ray, 

nervous shark Carcharhinus cautus (White et al. 2004)].  Like regional diet shifts, 

temporal variation in diets may reflect variation in prey availability.  Indeed, seasonal 

increases in the availability of specific prey taxa are often accompanied by seasonal 

increases in that prey species within an elasmobranch’s diet.  For example, the diet of 

Pacific sleeper sharks in coastal Alaskan waters was dominated by teleosts during August 

and cephalopods during May.  The walleye pollock Theragra chalcogramma and salmon 

Oncorhynchus sp. that made up the bulk of the teleosts consumed had higher densities in 

coastal waters during August (Sigler et al. 2006).  Similarly, the importance of 

euphausiids in the diet of the sandpaper skate Bathyraja kincaidii varied in concert with 
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seasonal coastal upwelling that leads to enhanced productivity and higher euphausiid 

abundance (Rinewalt et al. 2007).  But not all seasonal changes are related to increased 

prey abundance.  During the summer, adult school sharks off the Argentinean coast shift 

from a generalist diet to a diet focusing on the Atlantic midshipman Porichthys 

porosissimus.   During this time, male Atlantic midshipmen maintain territories, hum and 

bioluminesce during courtship, which may increase their vulnerability to school sharks 

(Lucifora et al. 2006).  Increases in the consumption of Gulf toadfish Opsanus beta by 

lemon sharks and the only records of scarecrow toadfish O. phobetron from the diet of 

lemon sharks also occur during the breeding season of these prey species, which have 

similar breeding behaviors as Atlantic midshipmen (Wetherbee et al. 1990, Newman et 

al. 2004). 

 Because many elasmobranchs, especially sharks, are highly mobile and can exist 

with minimal food intake for relatively long periods of time, they are able to take 

advantage of widely spaced pulses of resources.  Therefore, spatial and temporal 

variations in diet compositions often are linked.  For example, tiger sharks may travel 

immense distances (e.g., Lowe et al. 2006, Heithaus et al. 2007b, Meyer et al. 2009, 

2010) and take advantage of resources that are only abundant for short periods of time.  

In the Northwestern Hawaiian Islands, tiger sharks congregate around small islands 

during the summer to take advantage of the large number of fledging albatross (Lowe et 

al. 2006), while tiger shark catch rates at the Houtman Abrolhos Islands, Western 

Australia, increase during the rock lobster fishing season and the sharks feed on large 

amounts of discarded bait (Simpfendorfer et al. 2001b).  Similarly, great white sharks 

make long distance excursions (Bonfil et al. 2005, Bruce et al. 2006, Weng et al. 2007a, 
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Domeier and Nasby-Lucas 2008) and members of the northeastern Pacific populations 

are known to return seasonally to pinniped rookeries (Anderson and Pyle 2003, Domeier 

and Nasby-Lucas 2007).  Many other coastal elasmobranchs also make seasonal 

migrations including cownose rays (Smith and Merriner 1987, Schwartz 1990), juvenile 

sandbar sharks (Grubs et al. 2007), thornback rays (Hunter et al. 2005, 2006), whale 

sharks (Taylor 1996, Wilson et al. 2001, 2006), longheaded eagle rays Aetobatus 

flagellum (Yamaguchi et al. 2005), and blacktip sharks (Castro 1996).  These movements 

can provide linkages between widely disparate systems that in some situations maintain 

ecosystem functioning (Sheaves 2009). 

 Dietary shifts at a single location over long time periods may reflect changes in 

prey communities.  Between the 1970s and late 1990s, leopard sharks at Elkhorn Slough, 

Monterey Bay, California, experienced a dramatic dietary shift and a breakdown of 

ontogenetic shifts in diets.  Crabs and clams, which were major components of the diets 

of small and large leopard sharks, respectively, are now only minor dietary components, 

while the importance of innkeeper worms Urechis caupo and fish have increased (Kao 

2000).  Increased coastal erosion and reestablishment of sea otters Enhydra lutris, which 

prey heavily on crabs and clams appear to have led to changes in the Elkhorn Slough 

invertebrate community since the 1970s (Kao 2000).  Long-term changes in prey 

communities have also resulted in a dietary shift of spiny dogfish in Patagonian waters.  

Prior to 1995, Argentine hake Merluccius hubbsi were the most important prey item for 

spiny dogfish in this region, but by 1998 Argentine shortfin squid Illex argentinus were 

the most important prey; the timing of this dietary shift coincides with dramatic decreases 

in hake stocks that resulted from overfishing and concurrent increases in squid abundance 
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(Koen Alonso et al. 2002).  Ellis and Musick (2007) also hypothesized that temporal 

differences in juvenile sandbar shark diets within a nursery ground may be related to a 

large (~70%) decrease in blue crab Callinectes sapidus stocks.  The abovementioned 

dietary shifts underscore the plasticity of coastal elasmobranchs as predators and that the 

potential impacts humans can have on coastal elasmobranch trophic relationships even in 

the absence of direct and indirect fisheries. 

 

Competition And Resource Partitioning 

 Few studies have examined the competitive interactions of coastal elasmobranchs.   

However, the results of these studies show that sympatric coastal elasmobranchs display 

varying levels of interspecific dietary overlap and therefore resource partitioning.  High 

levels of dietary overlap have been found in several sympatric coastal carcharhinids 

suggesting limited competition (Stevens and McLoughlin 1991, Salini et al. 1992, 

Simpfendorfer and Milward 1993, Heithaus 2001a).  These studies, however, were 

largely qualitative.  Using quantitative metrics Bethea et al. (2004) found high levels of 

interspecific diet overlap between juvenile carcharhinids of similar sizes, however habitat 

overlap was low, which should ameliorate competitive interactions.  Similar habitat 

partitioning of species with high dietary overlap may also be observed in the Hawaiian 

Islands.  Sandbar and grey reef sharks have high values of dietary overlap, and an inverse 

distributional relationship with sandbar sharks abundant in the main Hawaiian Islands 

and grey reef sharks abundant in the northwestern Hawaiian Islands (Papastamatiou et al. 

2006).  Quantitative methods, however, can overestimate dietary overlap if broader 

taxonomic levels are used to define the diet.  For example, moderate levels of diet 
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overlap were found between dusky, whiskery and gummy sharks although a more 

detailed qualitative examination of prey suggested each species had different feeding 

habits (Simpfendorfer et al. 2001a).  This result is consistent with findings that values of 

dietary overlap decrease as taxonomic resolution of prey items increases (Longenecker 

2007).  However, high taxonomic prey resolution coupled with high values of overlap 

does not necessarily infer high levels of competition.  High seasonal abundances of prey 

items can attract a wide variety of predators, resulting in high dietary overlap on a 

nonlimiting resource.  This situation may take place during the seasonal South African 

sardine run.  Significant dietary overlap exists between blacktip, dusky, and copper 

sharks in South Africa (Heithaus 2001a) and all are abundant during the sardine run.  In 

addition, sardines Sardinops sagax are among the dominant prey items of these sharks 

(Cliff and Dudley 1992, Dudley and Cliff 1993, Dudley et al. 2005).  Even great white 

sharks, which are seasonally abundant during the sardine run, make use of this abundant 

resource; sardines were the most common individual prey species in the great white diet 

(Cliff et al. 1989).  Despite the possibility of seasonal prey pulses which may homogenize 

diets, many studies have found that dietary resources are partitioned among sympatric 

coastal elasmobranchs (e.g., Plattel et al. 1998, Heithaus 2001a, White et al. 2004, Farias 

et al. 2006, Marshall et al. 2008) and within the Caribbean, phylogenetically similar 

species occupy different food web compartments and different trophic levels (Rezende et 

al. 2009). 

Intraspecific interactions between elasmobranchs have garnered even less 

attention.  Ontogenetic diet and habitat shifts have been suggested as a means of reducing 

intraspecific competition between size classes, but could also be the result of increasing 
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predatory ability with size and/or predation risk.  Martin et al. (2005) suggested that 

intraspecific competition might be important to great white sharks at Seal Island, South 

Africa, because up to 26 individuals have been reported at the island at a time, with up to 

four individuals attending a seal kill.  Further, intraspecific competition was suggested as 

a possible reason foraging success on seals was lower within 400m of the island, where 

the highest number of attacks occur.  It is possible that sharks launch subobtimal attacks 

because subordinate individuals are competitively displaced, and smaller sharks have 

more dispersed search patterns and lower success rates (Martin et al. 2005, 2009).  

Increased experience, however, cannot be discounted as contributing to these 

observations.      

Possible competitive interactions between coastal elasmobranchs and non-

elasmobranch taxa have seldom been examined.  Four urolophid rays (stingarees) were 

included in a study of resource use of benthic carnivorous fishes and were found to have 

significantly different diets than each other and all other fishes in the study (Plattell and 

Potter 2001).  For sharks of higher trophic levels, Heithaus (2001) examined potential 

competitive interactions of sharks and dolphins off South Africa from published diet 

studies and found significant diet overlap between several coastal sharks and common 

dolphins.  Further evidence of sharks and dolphins sharing resources comes from 

observations of sharks and dolphins feeding together on the same prey species 

(Leatherwood 1977, Corkeron et al. 1987, Acevedo-Gutierrez 2002).  In addition, shark 

abundance during these co-occurring foraging bouts may influence dolphin foraging 

success.  When bottlenose dolphins Tursiops truncatus and silky sharks Carcharhinus 

falciformis fed on the same school of fish, dolphin intake rate was negatively related to 
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shark abundance, but was unaffected by increases in dolphin abundance.  Although these 

are not all coastal examples, there is little reason to suspect shark-dolphin interactions 

differ in coastal waters (Acevedo-Gutierrez 2002).   

Interestingly, diet data suggests that some coastal elasmobranchs may not only 

compete for resources, but also may be simultaneously involved in predator-prey 

relationships (intraguild predation) (e.g., Cliff and Dudley 1991, Heithaus 2001a, Dudley 

et al. 2005, Braccini 2008).  The possibility of such interactions may even influence the 

distributions and habitat use of large elasmobranch species.  For example, killer whales 

and great white sharks consume pinniped prey, but killer whales also consume great 

white sharks.  This interaction may be responsible for the displacement of great white 

sharks from the Farallon Islands.  During the autumn of 1997 great white shark sightings 

dropped dramatically compared to previous months and years while a group of killer 

whales, which are uncommon around the Farallon Islands, frequented the area (Pyle et al. 

1999). 

 

Metabolism, Digestion And Feeding Periodicity 

Metabolic rates, rates of digestion, assimilation efficiency, and temporal patterns 

of foraging can all influence trophic interactions and the impacts of predators on 

populations of their prey.  For example, Williams et al. (2004) suggest that the impact of 

direct predation can be estimated from the population size, diets, and metabolic rates of 

predators and an understanding of prey demography. Unfortunately, because of the 

difficulties of studying elasmobranchs, there is limited information on metabolic rates, 

digestion and assimilation, and feeding periodicity of coastal elasmobranchs.  Below, I 
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briefly summarize our understanding of these factors.  See Carlson et al. (2004) and 

Cortés et al. (2008) for more detailed reviews.  

Feeding patterns can be indirectly inferred from studies of stomach contents.  The 

proportion of empty stomachs and state of digestion of consumed prey can give insights 

into feeding periodicity (Wetherbee and Cortés 2004).  A more continuous foraging 

interval should result in populations that have few individuals with empty stomachs.  

Therefore the low proportion of empty stomachs in many benthic foraging coastal 

elasmobranch populations, notably batoid populations, (e.g., Gray et al. 1997, Kyne and 

Bennett 2002, Ebert and Cowley 2003, Bethea et al. 2007, Bizzarro et al. 2007, Marshall 

et al. 2007, Marshall et al. 2008) may indicate continuous foraging.  That benthic foragers 

have relatively short intervals between meals makes intuitive sense given that these 

elasmobranchs generally prey upon species that are buried within the substrate or have 

limited mobility and are therefore primarily limited by encounter rate with prey.  The 

high and variable proportion of empty stomachs observed in many coastal shark 

populations, as well as the relatively small number prey items, most of which are in an 

advanced state of digestion (Medved et al. 1985, Cortés and Gruber 1990, Simpfendorfer 

1998, Gelsleichter et al. 1999, Simpfendorfer et al. 2001b, White et al. 2004, McElroy et 

al. 2006, Taylor and Bennett 2008, Bethea et al. 2004, Dudley et al. 2005) suggests that 

these species feed at less frequent intervals. 

 Attempts to ascertain feeding periodicity using stomach contents have included 

examination of gut fullness and the state of digestion of stomach contents.  Sharks have 

long been thought to forage primarily at night, but several studies have found that prey 

items within a single stomach are often in various states of digestion, as are prey items 
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sampled from individuals caught at the same time (e.g., Medved et al. 1985, Cortés and 

Gruber 1990, Heupel and Bennett 1998), indicating that feeding is asynchronous in many 

species.  Some species do, however, appear to show diel feeding periodicity.  Stomach 

contents suggest juvenile scalloped hammerheads and juvenile blacktip sharks consume 

more prey at night, although items are also consumed throughout the day (Bush 2003, 

Barry et al. 2008). 

 Movement patterns have often been used to infer diel foraging behavior.  Many 

species of coastal elasmobranchs exhibit diel shifts in activity (e.g., Standora and Nelson 

1977, Sims et al. 2001, Sundstrom et al. 2001, Cartamil et al. 2003, Hight and Lowe 

2007, Campos et al. 2009, Ortega et al. 2009), and these shifts have even been observed 

in species that are obligate ram ventilators and must continuously swim (e.g., McKibben 

and Nelson 1986, Holland et al. 1993, Lowe 2002, Garla et al. 2006).  The higher rates of 

movements and often co-occurring increased area use have often been interpreted as 

signs that individuals are foraging (e.g., McKibben and Nelson 1986, Sims et al. 2001, 

Sundstrom et al. 2001, Cartamil et al. 2003, Garla et al. 2006).  Interestingly, predictions 

of feeding periodicity based on analysis of stomach contents and movement patterns do 

not agree in some of the species for which both have been examined.  Studies of 

metabolic rates (Nixon and Gruber 1988) and movement patterns (Gruber et al. 1988) of 

juvenile lemon sharks suggest these animals are more active between dusk and dawn, 

although they show no feeding periodicity (Cortés and Gruber 1990).  Likewise, the 

epaulette shark Hemiscyllium ocellatum is more active at night and during crepuscular 

periods, but has no obvious feeding pattern (Heupel and Bennett 1998).   
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 Recent advances in data logger and telemetry technology have begun to elucidate 

feeding periodicity by coastal elasmobranchs.  Continuous records of gastric pH, 

measured using pH data loggers force fed to captive sharks, indicate that pH levels 

increase rapidly during feeding events, presumably because of the ingestion of basic 

seawater (Papastamatiou and Lowe 2004, 2005, Papastamatiou et al. 2007b).  In addition 

to time of feeding, meal size can also be estimated based on the length of time it takes for 

gastric pH to return to baseline levels (Papastamatiou and Lowe 2004, 2005, 

Papastamatiou et al. 2007b).  The success of using gastric pH as an indicator of feeding 

events and meal size in captive animals has led to the development of an acoustic pH 

transmitter that can be used to monitor the movements and feeding patterns of free 

ranging sharks (Papastamatiou et al. 2007a).  Although this technology will provide 

researchers with the ability to gather in situ information on the foraging behaviors of 

coastal sharks, captive studies will still be necessary to ground truth pH data because 

gastric acid secretion and therefore pH values may vary dramatically between species 

(Papastamatiou and Lowe 2005). 

 Feeding periodicity is also likely to be related to gut fullness.  Sims et al. (1996) 

reported that the return of appetite in the lesser spotted dogfish Scyliorhinus canicula was 

inversely related to the rate of gastric evacuation.  Factors influencing gastric evacuation 

rates include temperature, meal size, and prey type.  Not surprisingly for ectothermic 

organisms (although lamnids exhibit endothermy), increased temperatures speed up 

gastric evacuation rates (Cortés and Gruber 1992, Bush and Holland 2002).  Increases in 

meal size tend to decrease gastric evacuation rates, but the relationship between meal size 

and gastric evacuation rates may vary across species.  For example, doubling meal size 
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resulted in evacuation rates 2.5 times slower in lesser spotted dogfish (Sims et al. 1996), 

but in juvenile scalloped hammerhead sharks reducing meal size by a factor of 8.4 only 

cut evacuation time in half (Bush and Holland 2002).  Prey type will also affect rates of 

gastric evacuation as some prey are harder to digest than others, although this has not 

received much attention in the coastal elasmobranch literature.  Gastric evacuation times 

for juvenile sandbar sharks differed by about 20 hours for sharks fed similar size meals of 

fish and crabs (Medved 1985).  These differences may be related to differences in 

stomach contractions with varying prey types; meals of fish led to greater stomach 

contractions than meals of squid (Papastamatiou et al. 2007b).  Prey type, however, may 

not have large effects on gastric evacuation rates in all situations.  Negligible differences 

were found between the evacuation rates of shrimp and fish in juvenile scalloped 

hammerhead sharks, although meal size was small (0.5% shark’s body weight) (Bush and 

Holland 2002).  Additionally, there is still debate about which models best describe 

gastric evacuation in elasmobranchs and depending on the conditions examined, different 

models provide the best fit even within a species (Cortés 1997 and references therein).  

Overall, elasmobranch gastric evacuation rates tend to be slower than those of teleosts, 

and depending on conditions can range from approximately 5 hours to well over 100 

hours (Wetherbee and Cortés 2004).       

 Not only are gastric evacuation rates slower in elasmobranchs, total gut clearance 

times are prolonged in comparison to teleosts.  Food may be retained within the digestive 

system of elasmobranchs for period of days to weeks (up to 18 days) (Wetherbee and 

Gruber 1990, Sims et al. 1996) and like gastric evacuation, gut clearance times are 

reduced at higher temperatures (Di Santo and Bennett 2011).  Elasmobranchs have a 
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spiral valve intestine, which increases surface area for digestive functions, but is 

restricted in size within the abdominal cavity.  Limitations of the spiral valve intestine 

may require extended food retention times to maximize absorption efficiency.  

Absorption efficiency has only been examined in juvenile lemon sharks, Atlantic 

stingrays Dasyatis sabina, and whitespotted bamboo sharks Chiloscyllium plagiosum, 

with efficiencies rivaling values for carnivorous teleosts (~60-90%) (Wetherbee and 

Gruber 1993, Di Santo and Bennett 2011).  And in Atlantic stingrays, absorption 

efficiency was strongly linked to gut clearance time.  At low temperatures, when gut 

clearance was prolonged, absorption efficiency increased, despite lower absorption rates 

(Di Santo and Bennett 2011).   

 Metabolic rate is an important determinant of overall consumption by predator 

populations (Williams et al. 2004) and is the driving factor of an organism’s daily energy 

budget (Lowe 2001).  Elasmobranchs have long been thought to have relatively low 

metabolic rates, but this belief is largely derived from early work that focused on species 

that are now known to have some of the lowest metabolic rates of examined species 

(Carlson et al. 2004).  In fact, there is a great deal of interspecific variation in the 

metabolic rates of coastal elasmobranchs, much of which is associated with life-style.  

Benthic, less active species do indeed have relatively low metabolic rates [e.g., standard 

metabolic rates of 1.0 kg lesser spotted dogfish at 15°C: 38.2 mg O2 kg-1 h-1 (Sims 

1996)], but active, continuously swimming species, many of which inhabit coastal and 

estuarine waters, have metabolic rates similar to those of active teleost species [e.g., 

standard metabolic rates of 1.0 kg bonnethead sharks at 28°C: 163–181 mg O2 kg-1 h-1 

(Carlson and Parsons 2003)], while lamnids – including the coastal great white shark – 
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are endothermic and have associated high metabolic rates [e.g., standard metabolic rate of 

a 3.9 kg mako shark Isurus oxyrhynchus at 16-20°C: 240 mg O2 kg-1 h-1 (Graham et al. 

1990)].  As expected for ectothermic organisms, increases in temperature result in 

increased metabolic rates, so not surprisingly elasmobranchs found in warmer waters 

have higher metabolic rates than those from cooler regions.  The exact relationship of 

temperature with metabolic rate, however, varies from species to species.  The Q10 values 

calculated for elasmobranchs range from 1.34 over 21-29ºC for juvenile scalloped 

hammerheads (Lowe 2001) to 3.00 over 8-26ºC for bat rays (Hopkins and Cech 1994), 

although some of the variability observed may be a result of differences in length of 

acclimation to the tested temperatures.  The Q10 values for a given species may also vary 

greatly over different temperature intervals.  For example, Bat rays are extremely 

sensitive to changes in temperature between 14 and 20ºC, which they regularly 

experience; their Q10 over this range is 6.81 compared to 2.23 and 1.85 for temperature 

ranges between 8-14ºC and 20-26ºC, respectively (Hopkins and Cech 1994).  Simulations 

suggest that even minor temperature changes in temperature can have large implications 

over longer time periods.  Over a year of slightly elevated temperatures, cownose rays 

would need to increase their daily consumption rate by about 12% to maintain their body 

weight (Neer et al. 2007).     

Some coastal elasmobranchs may exploit the relationship between temperature, 

gastric evacuation/gut retention time and metabolism in thermally heterogeneous 

environments.  McLaren (1963) suggested that animals that feed in warm waters and rest 

in cooler waters can gain benefit energetically.  For elasmobranchs, cooler waters are 

associated with lower metabolic rates and longer gut clearance times.  If absorption 
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efficiency is maintained or possibly increased by food remaining in the gut longer, net 

energetic gains may be considerable (Di Santo and Bennett 2011); for example, models 

suggest daily energy costs could be reduced over 4% in lesser spotted dogfish (Sims et al. 

2006).  Behavioral patterns consistent with foraging in warm water and then moving into 

cooler waters to digest have been observed in bat rays and lesser spotted dogfish (Matern 

et al. 2000, Sims et al. 2006).  Laboratory experiments have also shown preferences for 

cooler waters after feeding in Atlantic stingrays and lesser spotted dogfish (Wallman and 

Bennett 2006, Sims et al. 2006).  Metabolic work on juvenile sandbar sharks also 

suggests that moving into cooler waters for digestion may be necessary in continuously 

active sharks because individuals may be using almost all of their metabolic scope to 

sustain routine activities (Dowd et al. 2006).           

   

Elasmobranch Impacts On Prey And Community Structure 

 Despite the large number of studies that have examined the diets of coastal 

elasmobranchs (see Cortés 1999, Wetherbee and Cortés 2004), we are only beginning to 

understand the implications of elasmobranch predation – and predation risk – on their 

communities and ecosystems (see Heithaus et al. 2008a, 2010 for reviews).  Although 

top-down effects appear to occur in some situations, they are not universal.  For the most 

part, our understanding of top-down effects of elasmobranch predation is limited by a 

lack of studies on the population biology, and responses to elasmobranch predation or 

relaxation thereof, in prey taxa.  Indeed, few authors have considered that in some 

situations elasmobranch predation could be primarily compensatory (i.e., elasmobranchs 

consume individuals that would have starved otherwise) or prey populations could be 



 39

regulated by factors other than predation (see Stevens et al. 2000, Pirano et al. 2002).  

Below I summarize some basic trends in the ecological role of elasmobranchs before 

providing more details of elasmobranch trophic interactions and ecological role in key 

coastal ecosystems. 

 Studies of batoid foraging provide some of the best evidence of the impacts of 

coastal elasmobranchs on their prey.  Batoid prey species often exhibit limited mobility 

facilitating studies of predatory effects, although most studies examining these effects 

have focused on community structure rather than effects on specific prey species (e.g., 

VanBlaricom 1982, Thrush et al. 1994).  The use of exclosures to eliminate predations by 

batoids has shown that batoids can have considerable impacts on species distributions, 

recruitment, and the structure of invertebrate communities in coastal seagrass beds and 

soft bottom habitats (see sections: Seagrass Beds and Mangroves and Unvegetated Soft 

Bottom).     

 Most of the remaining data on the impact of coastal elasmobranchs on their prey 

is derived from concurrent estimates of the catch rates of coastal elasmobranchs and their 

prey over time.  Such time-series data suggest that large coastal sharks may play an 

important role in controlling the populations of small- to midsize elasmobranchs.  For 

example, smaller sharks and batoids are found in the diets of a number of large sharks 

captured in protective gillnets off the coast of South Africa.  Declines in catch rates of 

these large sharks appear to have resulted in the proliferation of small and juvenile sharks 

between 1966 and 1976 (van der Elst 1979).  On the basis of the number of large sharks 

caught and estimated consumption rates from captive animals, van der Elst (1979) 

estimated that approximately 2.8 million small sharks escaped predation in the decade 
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following 1966.  Predatory release has also been suggested for the increases of several 

small- to midsize elasmobranchs along the eastern United States.  Time-series data 

collected from 1970 to 2005 from 17 independent research surveys showed concurrent 

declines of large coastal sharks and increases of 12 species of batoids and small sharks 

(Myers et al. 2007). 

 Despite correlations between increases in catch rates of small elasmobranchs that 

coincide with decreases in catch rates of larger sharks, it is not entirely clear that 

predatory release is the sole mechanism behind these patterns.  For example, some of the 

smaller elasmobranch species have never been recorded from the diets of the large 

coastal sharks that have declined and the distributions of some of the increasing smaller 

species do not overlap with those of the declining large-bodied sharks.  For example, in 

the Gulf of Mexico, large coastal sharks and smaller coastal elasmobranchs declined, 

while two deep-water elasmobranch species increased (Shepard and Myers 2005).  

Another curious pattern in some of the datasets for elasmobranch mesopredators is the 

rate of increases in catches.  For example, cownose rays have relatively slow life history 

parameters (age of maturity 8-10 years, one pup produced annually; Smith and Merriner 

1986, 1987) that would suggest that increases in catches cannot be explained solely by 

release from predation. Alternative, but not mutually exclusive, hypotheses for increases 

in small- to midsized coastal elasmobranchs include population redistribution, which has 

been observed in skates (Frisk et al. 2008), population increases at higher latitudes in 

response to changes in environmental conditions (e.g., Parker and Dixon 1998), 

competitive release (e.g., Link 2007), and changes in the timing of movements relative to 

sampling periods. Clearly, it is possible and perhaps likely that large coastal sharks exert 
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important top-down effects on elasmobranch mesopredators, but future research on the 

role of large sharks in regulating their populations is required. 

Future work on population regulation by sharks will need to focus not only on 

consumptive effects, but also risk effects.  Many elasmobranch prey species occupy 

habitats with lower food availability in order to minimize predation risk (e.g., Heithaus et 

al. 2007c, Frid et al. 2009, see sections: Seagrass Beds and Mangroves and Estuaries) 

and in some cases these habitat use decisions are dictated by body condition.  Healthy 

green turtles Chelonia mydas in Shark Bay, Western Australia, because they can afford 

reducing foraging opportunities, show a high level of response to the presence of tiger 

sharks in the system, moving to habitats that allow for higher probabilities of escape, 

while poor condition (emaciated) green turtles do not exhibit a habitat shift (Heithaus et 

al. 2007d).  Such trade-offs, where individuals give up foraging opportunities in order to 

be safe, have been shown both theoretically and empirically to result in populations of 

prey that are maintained at numbers below those that would occur in the absence of 

predation risk (Anholt and Werner 1995, Sinclair and Arcese 1995, Creel et al. 2007, 

Creel and Christianson 2008, Heithaus et al. 2008a, 2008b, Frid et al. 2009). 

The relaxation of risk effects may be very important in the population dynamics 

of some elasmobranch species that are prey for large sharks, but the pattern of these 

effects may be complex.   The risk of predation from large sharks, including conspecifics, 

drives the use of restricted nursery areas in numerous species and may also drive patterns 

of habitat use and grouping in elasmobranch mesopredators (see section: Elasmobranchs 

As Prey).  Because resources may be limited within the nursery grounds (or restricted 

habitat ranges), competition may be the proximal cause of population regulation within 
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nurseries, but ultimately these processes are driven by higher risk of predation outside 

nurseries (i.e., there would be enough food to support larger population sizes if animals 

did not restrict their habitat use; “foraging area hypothesis” see Walters and Juanes 

1993).  Although nursery grounds may limit direct predation on young elasmobranchs, 

direct predation may still play an important role in regulating population size for some 

coastal sharks.  Demographic analyses suggest the intrinsic rate of increase for some 

shark species are strongly influenced by the mortality rates of larger juveniles outside of 

nursery grounds (see Kinney and Simpfendorfer 2009); these juveniles are often prey of 

large coastal sharks.  

  The impacts of elasmobranch predation may be limited on teleosts and some 

invertebrates.  For example, off part of the US east coast, the mako shark appears to be an 

important predator of bluefish Pomatomus saltatrix consuming 4-14% of the population, 

although these losses did not appear to substantially influence equilibrium population size 

(Stillwell and Kohler 1982).  Ellis and Musick (2007) also concluded that the potential 

impacts of juvenile sandbar sharks by direct predation were limited because of the 

generalist nature of their diet.  Minimal impacts of direct predation by coastal 

elasmobranchs are also apparent in some ecosystem models (Stevens et al. 2000, Carlson 

2007).  For example, models of French Frigate Shoals, Hawaii, suggest reef sharks 

Carcharhinus spp. have little effect in structuring the community because their main 

prey, reef fishes, appear to be self regulated (Stevens et al. 2000).  While, in a model of 

Apalachicola Bay, Florida, where individual shark species were treated as separate 

functional groups, complementarity between shark species limited the effects of 

individual shark species loss (Carlson 2007). 
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 Impacts of some coastal elasmobranchs are not limited to their prey.  The trophic 

interactions of elasmobranchs with their prey can have cascading effects, influencing 

community dynamics and therefore the flow of energy through systems.  For example, 

ecosystem models suggest that losses of tiger sharks in French Frigate Shoals, Hawaii, 

Galapagos sharks Carcharhinus galapagensis and whitetip reef sharks Triaenodon 

obesus in the Galapagos Islands, and of several species of small-bodied sharks in the 

Northeast Venezuela Shelf could disrupt trophic cascades (Stevens et al. 2000, Okey et 

al. 2004).  Not surprisingly, like their direct impacts of their prey, ecosystems models 

suggest the importance of elasmobranchs in structuring ecosystems varies (Stevens et al. 

2000, Libralato et al. 2006).  Elasmobranchs are most likely to influence community 

dynamics in systems where they are important predators of large-bodied species, where 

they do not overlap in habitat use with large teleost predators, and where they are not 

involved in a large number of intraguild predation interactions which can buffer against 

trophic cascades (Heithaus et al. 2008a, Kondoh 2008).  Further studies on the 

importance of sharks in intraguild predation are needed because intraguild predation can 

influence the strength of trophic cascades and sharks appear to be a common participant 

in these interactions (Kitchell et al. 2002, Bascompte et al. 2005, Kondoh 2008). 

The greatest potential for elasmobranch influences on coastal community 

structure appears to be in systems that feature high rates of batoid foraging and/or large 

sharks.  The effects may even be greater when elasmobranchs have direct effects on prey 

species that are also capable of effecting community structure (e.g., marine mammals, 

other elasmobranchs; Heithaus et al. 2008a).  At this time, we are just beginning to 
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understand how these processes operate because of the many trophic interactions and 

possible mechanisms involved. 

 

Elasmobranch Impacts On Nutrient Dynamics 

The influence of elasmobranchs on ecosystems is not limited to structuring 

community composition through predator-prey interactions.  Elasmobranchs can alter 

nutrient dynamics through bioturbation, cross-ecosystem transport of nutrients during 

migrations, movements associated with foraging forays away from refuge habitats, and 

the death of newborns in nursery areas.  In this section I briefly summarize these 

interactions.  A more detailed review can be found in Heithaus et al. (2010). 

Benthic foraging elasmobranchs, in the process of capturing prey, often turn over 

and resuspend sediment.  For example, by hydraulically jetting water from the mouth or 

gills (Gregory et al. 1979, Sasko et al. 2006), some batoids can create feeding pits up to 

40cm deep (Smith and Merriner 1985).  In areas frequented by batoids, approximately 

1% (but with maximums up to about 5%) of the area can be covered by new foraging pits 

per day (Reidenauer and Thistle 1981, VanBlaricom 1982, Sherman et al. 1983) and 

foraging pits of various ages cover up to 30% of some areas (Grant 1983).  Given that 

even small-scale resuspension events, such as those caused by benthic fishes, have 

profound effects on the reworking of the substrate surface (Yahel et al. 2002, Yahel et al. 

2008), benthic foraging elasmobranchs may play an important role in nutrient dynamics 

of at least some systems. 

Unfortunately, the direct effect of batoid bioturbation on nutrient flux has not 

been examined and in areas of high tidal reworking the volume of sediment reworked by 
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rays may be <1% of that of ripple migration (Grant 1983).  However, in areas where 

foraging pits remain for extended periods, they tend to accumulate organic matter at 

higher rates than adjacent areas (VanBlaricom 1982).  High levels of organic matter 

settling in ray pits can result in rapid remineralization of the organic matter in the 

sediments below the pits and decrease the impact of tidally driven advective porewater 

flux, which is an important process in enhancing remineralization rates and carbon 

cycling in sands (D’Andrea et al. 2002). 

Alternatively, coastal elasmobranchs may be the vector of nutrient transport 

across systems through their movements.  Many coastal elasmobranchs are wide ranging 

and given their extended food retention times (see section: Metabolism, Digestion And 

Feeding Periodicity), it is quite possible that the areas of nutrient deposition through 

waste products are not the areas were prey were consumed, effectively removing 

nutrients from one system and introducing them to another.  Through risk effects 

elasmobranchs may also mediate similar nutrient transport of their prey. For example, in 

tropical and subtropical coastal reef systems, many species seek refuge from predators 

within reefs and/or mangrove prop roots.  Many of these species forage in adjacent 

habitats, such as seagrass, therefore transferring seagrass-derived nutrients into the safer 

refuge habitats (e.g., Valentine and Heck 2005, Valentine et al. 2008).   

Natural mortality of coastal elasmobranchs, especially young-of-the-year, may 

also be a large source of nutrients especially in coastal and estuarine systems that 

function as nurseries.  Thousands of young elasmobranchs may be born in or enter 

nursery habitats each year.  Mortality rates of young-of-the-year elasmobranchs can 

exceed 90% (Heupel and Simpfendorfer 2002, Duncan and Holland 2006).  The death of 
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juvenile sharks in nursery areas will result in the addition of nutrients originally 

assimilated outside of the nursery by adult females, in a manner similar, although at a 

much smaller scale, to that of salmon in their natal streams.  In the case of bull sharks, 

which are euryhaline and known to enter rivers and estuarine systems (Martin 2005, 

Simpfendorfer et al. 2005, Heupel and Simpfendorfer 2008, Heithaus et al. 2009a, 

McCord and Lamberth 2009), these nutrient inputs may even enter the lower reaches of 

freshwater systems. 

 

Elasmobranchs As Facilitators Of Trophic Interactions 

In addition to altering nutrient dynamics, sediment reworking can facilitate the 

foraging of other species by uncovering and injuring infaunal organisms.  Although little 

work has been done with elasmobranch bioturbation, gray whale Eschrichtius robustus 

feedings pits are often swarmed by large scavenging amphipods shortly after excavation 

(Oliver and Slattery 1985) and several species of marine birds also take advantage of prey 

items uncovered and suspended by gray whales (Harrison 1979, Grebmeier and Harrison 

1992, Anderson and Lovvorn 2008).  Anecdotal evidence suggests similar interactions 

occur during elasmobranch foraging.  Several fish species including remoras, jacks, and 

cobia Rachycentron canadum are known to associate with benthic elasmobranchs and 

consume ejected prey (Smith and Merriner 1982).  Also, double-crested Cormorants 

Phalacrocorax auritus have been observed following southern stingray and capturing fish 

disturbed by the ray’s foraging (Kajiura et al. 2009).  In the case of speckled sand dabs 

Citharichthyes stigmaeus stomach contents of individuals captured feeding at ray pits 
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contained benthic prey items that are normally difficult to acquire; these prey items were 

not found in the stomachs of sand dabs not associated with ray pits (VanBlaricom 1982). 

 

Trophic Interactions Of Elasmobranchs In Coastal Ecosystems 

 In the following sections I summarize the interactions of elasmobranchs within 

various habitat types.  Ontogenetic habitat shifts and the scale of movement for many 

elasmobranch species, however, tend to link coastal habitats.  As a result, the trophic 

relationships of elasmobranchs in a given area are likely to not only be influenced by 

local conditions, but also the conditions of neighboring, and in some cases distant, areas 

and habitats.      

 

Coral Reefs 

 Coral reef habitats are home to a variety of elasmobranchs.  Batoids are not 

terribly common in coral reef habitats – especially in areas of extensive hard bottom – but 

several species such as bluespotted fantail ray Taeniura lymma, bluespotted maskray 

Neotrygon kuhlii, and blotched fantail ray Taeniurops meyeni are commonly found in 

surrounding habitats (White and Sommerville 2010).  Manta rays may also be seasonally 

common around coral reefs to make use of pulses of high zooplankton production and 

invertebrate and fish spawn (Sleeman et al. 2007, Dewar et al. 2008); whale sharks also 

exploit these zooplanktivorous pulses (Taylor 1996, Heyman et al. 2001).   

Carcharhinids tend to dominate the coral reef elasmobranch fauna, with some 

species such as grey reef sharks, whitetip reef sharks, Caribbean reef sharks 

Carcharhinus perezi, and blacktip reef sharks almost exclusively associated with coral 
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reef habitats (White and Sommerville 2010).  Many small benthic sharks are also 

common around coral reefs including some scyliorhinids (catsharks), and orectolobiform 

sharks.  Larger orectolobiform sharks including nurse and zebra sharks Stegostoma 

fasciatum are also associated with coral reefs. 

 Members from all five trophic guilds can be found in coral reef habitats, although 

most coral reef associated elasmobranchs are piscivores or invertivores.  The 

carcharhinids are generally active, medium to large sized sharks and are primarily 

piscivorous, although cephalopods, and crustaceans are also consumed to various 

degrees.  The benthic sharks found in coral reef systems tend to be less active and feed on 

a variety of benthic invertebrates, especially crustaceans, and small teleosts.  

Wobbegongs, however, which are sit-and-wait ambush predators, consume higher 

proportions of teleosts (Huveeneers et al. 2007), as do nurse sharks despite their 

reputation as crustacean specialists (Castro 2000).  Despite the physical similarity and 

broad level dietary overlap between many of the species in these guilds, resource 

partitioning is apparent.  Network analysis of the Caribbean food web shows that the 

most closely related shark species tend to occupy different compartments within the food 

web (e.g., bull sharks and blacknose sharks Carcharhinus acronotus) and that prey sizes 

differ between compartments (Rezende et al. 2009).  Partitioning of resources may be 

quite extreme among morphologically similar species.  For example, the Australian 

weasel shark, which is a carcarhiniform shark, preys almost exclusively on cephalopods, 

especially octopus, while most sympatric carcharhiniform sharks feed primarily on 

teleosts and only occasionally on cephalopods (Taylor and Bennett 2008). 



 49

 Data from unfished reefs suggest that in undisturbed coral reef systems, 

elasmobranchs make up a considerable amount of overall fish biomass.  At Kingman and 

Palmyra atolls in the tropical Pacific, top predators made up 85% and 56% of fish 

biomass, respectively.  Sharks composed 74% and 83% of the predator biomass at these 

atolls, respectively (Sandin et al. 2008, Stevenson et al. 2007).  In addition, within the 

Caribbean food web sharks are involved in a disproportionally large fraction (48%) of 

strongly interacting tri-trophic food chains, which could potentially lead to trophic 

cascades (Rezende et al. 2009, Bascompte et al. 2005).  Although within this system, 

tiger sharks and Caribbean reef sharks are involved in a large number intraguild predation 

interactions, which can buffer against trophic cascades (Kondoh 2008), over two thirds of 

the strong tri-trophic interactions involving sharks were not buffered by intraguild 

predation making them susceptible to trophic cascades (Bascompte et al. 2005).  The 

combination of high biomass and prevalence of strong trophic interactions involving 

sharks suggests that sharks may play a key role in structuring coral reef systems.  

Empirical studies, however, remain lacking. 

Computer models of French Frigate Shoals suggest most carcharhinid sharks 

actually may not have much of a structuring role in this coral reef system.  When reef 

sharks (carcharhinids not including tiger sharks) were removed from the model, changes 

in fish biomass were small (within 10% of baseline levels), largely because the large 

number of predator-prey interactions within the reef fish assemblage resulted in self-

regulation (Stevens et al. 2000).  Surveys in the northwest Hawaiian Islands also suggest 

reef sharks may have a relatively small overall effect on the structure of reef 

communities.  Although apex predator and herbivore biomass are similar in Palmyra and 
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the northwest Hawaiian Islands, shark biomass differs dramatically, with reef sharks 

accounting for 83% of top predator biomass in Palmyra, while giant trevally Caranx 

ignobilis composed 71% of top predator biomass in the northwestern Hawaiian Islands 

(Stevenson et al. 2007).  The similar community structure observed with decreased shark 

abundance may indicate that in these systems large teleost predators and sharks are at 

least somewhat functionally redundant, although the switch in predators with different 

life history patterns suggests strong implications for community structure, energy flow, 

and nutrient cycling (e.g., Gascuel et al. 2008). 

 On the other hand, tiger sharks do appear to have a structuring effect within the 

French Frigate Shoals model.  Simulated removal of tiger sharks resulted in large 

biomass changes for several species groups.  Reef sharks and sea turtles increased 9-fold 

and seabirds and monk seals also showed noticeable increases (Stevens et al. 2000).  

While these increases were the result of direct trophic interactions (predation and also 

competition for reef sharks), tiger shark removal also caused cascading effects.  Tuna and 

jack populations crashed as a result of seabird increases, which then allowed for bottom 

fish to increase because they were free from predation (Stevens et al. 2000).  The large 

difference in the effects of tiger shark and reef shark removals was likely the effect of 

dietary differences between these sharks.  Tiger sharks are larger than reef sharks and eat 

larger prey (including reef sharks, seabirds, and monk seals) that often occupy higher 

trophic levels than reef shark prey.  By feeding on high trophic level species that may 

themselves have the potential to influence the biomass of their prey, tiger sharks could 

significantly alter reef community structure. 
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 The trophic impacts of benthic elasmobranchs in coral reef systems are poorly 

understood.  Their effects on prey populations have not been examined, although small 

sharks may influence nutrient cycling rates by stirring up sediment around coral heads 

and in lagoons during foraging.  For example, while foraging for infaunal prey, epaulette 

sharks, a common benthic shark around coral reefs in northern Australia, will burrow 

their head into the sand up to their first gill slit, expelling sand from their opercular 

openings (Heupel and Bennett 1998).  Larger sharks may even physically damage reef 

structures while foraging.  On Panamanian reefs, whitetip reef sharks can cause extensive 

damage to pocilloporid corals while pursuing prey (Jimenez 1996).  The impacts of these 

behaviors on ecosystem dynamics remains unexplored. 

 Overall, the trophic impacts of elasmobranchs in coral reef systems appear to be 

largely context dependent.  In reef systems with large active teleost predators, medium-

sized reef sharks may be trophically redundant.  Models from pelagic systems also 

suggest redundancy between large active teleosts (i.e., tunas and billfishes) and sharks 

(Kitchell et al. 2002), therefore limiting cascading effects of shark losses as a result of 

compensatory responses of large teleost populations.  There are no comparable predators 

to larger species like tiger sharks, however, and such species may exert trophic impacts 

on systems regardless of the presence of large active teleost predators.  Therefore, future 

work in reef systems should consider medium and large-bodied sharks as separate guilds 

and functionally distinct. 
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Rocky Reefs 

 Carcharhiniform sharks are the most common elasmobranchs in rocky reef 

systems, although the dominant families vary geographically.  In warmer waters, 

carcharhinids and heterodontids (in the Pacific and Indian Oceans) may be common, 

while in cooler waters they are replaced by triakids, scyliorhinids and squalids 

(dogfishes).  Teleosts tend to be important dietary items for all these families, except 

heterodontids, which favor hard-bodied invertebrates.  Also, crustaceans tend to be more 

important in the diets of triakids and squalids than in carcharhinids.          

 There has been little work on the effects of elasmobranchs in rocky reef systems, 

but models of the Galapagos rocky reef system suggests they may help structure 

communities.  A variety of carcharhinid sharks are common in the Galapagos, including 

large species such as the Galapagos shark and the whitetip reef shark.  Of the 43 

functional groups within the model, sharks were found to only rank 15th in terms of 

interaction strength (the sum of all resulting relative changes in the system due to 

removal of a functional group), but ranked 3rd in terms of keystone index (interaction 

strength scaled to total biomass of a functional group) (Okey et al. 2004).  As a result, 

removal of sharks from the model resulted in several trophic cascades, with other large 

predators, such as odontocete cetaceans (i.e., dolphins), sea lions, and predatory teleosts, 

and sea turtles and marine iguanas increasing, and many commercial species and 

octopods decreasing (Okey et al. 2004).  Although these community changes seem 

dramatic, the actual impact of sharks in this system may be more extreme because shark 

biomass used in models may be well below that present historically (Okey et al. 2004).  

Indeed, there have been dramatic decreases of common rocky reef elasmobranch species 
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as a result of overfishing.  Leopard and school sharks off southern California (Pondella 

and Allen 2008), and sand tiger sharks wordwide have all declined dramatically (Musick 

et al. 1993, Otway et al. 2004, Lucifora et al. 2009). 

 Sharks may even play a role in the health of kelp forest communities.  Great white 

sharks appear to have been one of several factors that helped cause the decline of central 

California sea otter populations between 1995 and 1999 (Estes et al. 2003).  Sea otters are 

a keystone species in kelp forests.  Sea otter predation maintains urchins at relatively low 

population sizes, protecting the kelp from overgrazing; loss of otters results in increased 

sea urchin biomass, which leads to dramatic kelp loss through urchin grazing, and the 

creation of urchin barrens (Estes et al. 1978, 1998).  By extension, increased otter 

mortality from great white sharks when combined with other factors could help lower 

otter numbers below what is necessary to control urchin population sizes, altering kelp 

densities and affecting kelp forest communities. 

 Within rocky reef habitats, especially in cooler waters, elasmobranchs may supply 

an unlikely prey source to small-bodied species.  Heterodontids and scyliorhinids are 

oviparous and place their eggs in and around crevices, where they are vulnerable to 

predation by teleosts, gastropods, and other elasmobranchs (Grover 1972, Powter and 

Gladstone 2008).  Off Santa Catalina Island in southern California, at least 70% of swell 

shark Cephaloscyllium ventriosum egg cases encountered failed to survive to hatching 

with 90% of these egg cases the suffering from predation (Grover 1972).  On shallow 

rocky reefs off New South Wales, Australia, embryonic mortality rates of Port Jackson 

sharks Heterodontus portusjacksoni were even higher with 89% of egg cases suffering 

mortality with 98% of the loss because of predation (Powter and Gladstone 2008).  In 
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deeper rocky habitats, skates may also contribute to the number of egg cases found in 

these habitats.  On the basis of transect observations, Love et al. (2008) estimated 

approximately 19000 egg cases from longnose skates covered a rocky reef of about 

28000 m2 in the southern California Bight.  Of these egg cases, only 2600 were estimated 

to still contain embryos, although the proportion of non-intact egg cases that hatched 

versus died via predation or natural mortality was not assessed (Love et al. 2008). 

 

Seagrass Beds and Mangroves 

 Seagrass beds and mangrove habitats are used by a wide variety of elasmobranchs 

and individuals of many species are likely to move between these often neighboring 

habitat types.  Carcharhinids tend to dominate the elasmobranch fauna of seagrass beds 

and mangrove areas and many of these species use seagrass and mangroves as nursery 

habitats (e.g., Feldheim et al. 2002, White and Potter 2004, DeAngelis et al. 2008, Powter 

and Gladstone 2009), but adults also make use of these areas.  The importance of 

seagrass and mangroves as nursery grounds may be shown in the decreasing juvenile 

survival rate of lemon sharks in the North Sound of Bimini, Bahamas that corresponds to 

losses of mangrove and seagrass habitats as a result of coastal development (Jennings et 

al. 2008). 

Much like other systems, the sharks in seagrass and mangrove systems tend to be 

primarily piscivorous (e.g., Brewer et al. 1995, White et al. 2004, Newman et al. 2010).  

The productivity and structural complexity of the habitat, however, allows for a wide 

breadth of abundant prey species and as a result other prey types, especially crustaceans 

and cephalopods, are also commonly found in the stomachs of sharks within these 
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systems (e.g., Brewer et al. 1995, White et al. 2004, Taylor and Bennett 2008) and some 

species even specialize on non-teleost prey, such as the bonnethead shark, which feeds 

almost exclusively on crustaceans (Cortés et al. 1996, Bethea et al. 2007), and the 

Australian weasel shark, which specializes on cephalopods (Taylor and Bennett 2008).  

Although non-teleost species may be of relatively minor importance to the diets of most 

of the shark species within seagrass and mangrove habitats, the elasmobranch community 

may have a large impact on some prey types, as was observed in Groote Eylandt, 

Australia, where six carcharhinids (spottail shark, milk shark, Australian sharpnose shark 

Rhizoprionodon taylori, nervous shark, whitecheek shark Carcharhinus dussumieri, and 

grey reef shark) combined for over one third of the combined impact of all predators on 

tiger prawns Penaeus spp. (Brewer et al. 1995). 

 Seagrass is frequently found in the stomachs of sharks foraging in seagrass beds, 

but it usually makes up a very small proportion of the mass or volume of stomach 

contents and likely is consumed incidentally (Cortés and Gruber 1990, Brewer et al. 

1995, White et al. 2004, Collins et al. 2007).  The exception is the bonnethead shark.  

Cortés et al. (1996) found that in southwestern Florida 56% of bonnethead sharks 

stomachs with prey items contained seagrass and that if included as a prey item, seagrass 

made up over 12% of the IRI for these sharks.  A more recent study examining 

bonnethead shark diets across the gulf coast of Florida found that seagrass might even be 

a more important item in stomach contents.  Seagrass made up >15% of the IRI in 6 of 7 

life stage-area classes, >30% of the Index of Relative Importance (IRI) in 4 of the 7 

classes and reached a maximum of 62% of the IRI in young-of-the-year bonnethead 

sharks from northwestern Florida (Bethea et al. 2007).  Undigested seagrass was rarely 
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observed in the intestine of these animals and there has been no evidence of seagrass in 

feces of bonnethead sharks, suggesting the plant material is digested (Bethea et al. 2007).  

Whether digested seagrass is assimilated remains unknown and is the topic of current 

research efforts. 

Although the diets of many elasmobranchs in seagrass and mangrove habitats 

have been examined, the impacts of elasmobranchs on prey populations in these habitats 

are largely unknown.  Evidence from seagrass beds in the southeastern United States 

suggests that for some prey species the predatory impacts of elasmobranchs may be 

severe.  Schools of cownose rays foraging over North Carolina shoals were able to 

completely remove bay scallops Argopecten irradians concentricus from productive 

habitats creating localized population sinks (Peterson et al. 2001).  Because cownose rays 

cause the crash of bay scallop populations prior to the scallop spawning season, predation 

by cownose rays may have substantial impacts on scallop recruitment and populations 

sizes (Myers et al. 2007).  The impacts of foraging cownose schools, however, are not 

limited to their prey.  Batoid foraging and the resulting bioturbation also has the potential 

to dramatically structurally change an environment on a large scale.  While foraging, 

batoids may disturb and uproot submerged vegetation, such as seagrasses (Orth 1975, 

Valentine et al. 1994).  Cownose rays, have been implicated in the fragmentation of large 

seagrass beds in Chesapeake Bay (Hovel and Lipcius 2001) and in an extreme case were 

responsible for the destruction of approximately 90 hectares of seagrass beds in 

Chesapeake Bay and the loss of 15-30cm of sediment over the following years (Orth 

1975).  By altering these habitats, which provide habitat to many species (e.g., Travers 

and Potter 2002, Knowles and Bell 1998), batoids can be an important indirect influence 
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on the distribution and abundance of seagrass-associated species (e.g., Hovel and Lipcius 

2001).  The impacts caused by these predators, however, may vary with location.  In 

Charlotte Harbor, on the west coast of Florida, cownose rays appear to be opportunistic 

foragers, do not selectively forage in seagrass beds, and are therefore probably not 

responsible for large-scale modifications of seagrass beds and shellfish decline in this 

area (Collins et al. 2007).  In addition, the ability of batoids to uproot seagrass varies with 

species.  Valentine et al. (1994) found that southern stingrays were unable to create 

unvegetated patches within a turtlegrass Thalassia testudinum bed and only southern 

stingrays with disc widths greater than 0.9m damaged turtlegrass rhizomes at the 

turtlegrass-sand interface.  

Several species of true apex predatory elasmobranchs frequent seagrass habitats 

including bull sharks, great hammerheads, and tiger sharks.  Because these species can 

take large-bodied species that may themselves help to structure ecosystems, these species 

may be particularly critical to the dynamics of seagrass communities.  Strong risk effects 

of tiger sharks on several of their prey species have been observed in Shark Bay, Western 

Australia and these risk effects, combined with direct predation could influence 

equilibrium population sizes (see Heithaus et al. 2008a,b, Wirsing et al. 2008 for 

summaries).  When tiger sharks are abundant in Shark Bay, dolphins Tursiops aduncus, 

dugongs Dugong dugon, cormorants Phalacrocorax varius, sea snakes Hydrophis 

elegans and Disteria major, and green turtles, shift their habitat use patterns; they 

abandon dangerous but food rich habitats for habitats that allow for either increased 

escape probabilities or lower rates of encounter with tiger sharks (Heithaus and Dill 2002, 

2006, Heithaus 2005, Heithaus et al. 2007d, 2009b, Wirsing et al. 2007a,b, 2008, Kerford 
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et al. 2008, Wirsing and Heithaus 2009).  Dugongs also alter their foraging behaviors 

during periods of high tiger shark abundance from excavating nutrient rich seagrass 

rhizomes to cropping seagrass leaves, presumably to avoid creating sediment plumes that 

would inhibit vigilance (Wirsing et al. 2007c).   

The anti-predator responses of large grazers to tiger sharks in this system may 

impact seagrass communities (see Heithaus et al. 2008, 2010); the spatial pattern of 

seagrass leave nutrient composition is consistent with shifts in the spatial pattern of 

herbivory induced by tiger shark predation risk (Heithaus et al. 2007d).  Experimental 

evidence from multiple systems shows that dugongs have strong top-down effects of 

seagrass communities (e.g., Preen 1995, Masini et al. 2001) and it is therefore likely that 

tiger shark induced changes in the herbivory of large grazers affect seagrass composition 

and the faunal structure of these seagrass communities (Heithaus et al. 2008a,b).  A 

similar cascade appears to have occurred in Bermuda (Heithaus et al. 2008b).  Increased 

green turtle populations and seagrass loss have occurred (Murdoch et al. 2007) following 

large declines in shark abundance (Baum et al. 2003).  Exclosure experiments in multiple 

systems will help to elucidate the possible mechanisms of tiger shark-induced cascades.     

 

Unvegetated Soft Bottom 

 Unvegetated soft bottom habitats (“soft bottom” hereafter) lack physical structure 

and complexity and as a result much of the species diversity in these systems is infaunal.  

Fish diversity and densities also tend to be reduced compared to other habitats with more 

structure, but many elasmobranchs commonly use coastal soft bottom habitats.  Notable 

elasmobranchs often found in these areas include triakids, squatinids (angel sharks), and a 
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wide variety of batoids; all of which are bottom-associated and tend to have diets made 

up of large proportions of benthic invertebrates, especially crustaceans.  In fact, 

elasmobranch densities in some soft bottom habitats, especially those of rays, can be 

remarkably high (e.g., Plattel et al. 1998, Hoisington and Lowe 2005, Semeniuk and Dill 

2005, Vaudo and Heithaus 2009) and because of their size can make up a substantial 

proportion of total fish biomass in these systems.  For example, the round stingray 

Urobatis halleri dominated the 78 fish species caught in San Diego Bay, California, 

composing approximately 25% of the total fish biomass (Allen et al. 2002). 

While in a sandy beach system in South Africa, three species of elasmobranchs composed 

almost 83% of the biomass in a fish community of 24 species (Clark 1997). 

 Given their density and biomass in some soft bottom communities, elasmobranchs 

may play an important role as predators in these systems.  On the sandflats of Manukau 

Harbour, New Zealand, excluding seabirds and eagle rays Myliobatis tenuicaudatus from 

plots resulted in density increases of potential prey species, including clams and sea 

cucumbers.  These effects were not seen when only birds were excluded (no exclosures 

excluded rays while allowing bird predation) (Thrush et al. 1994), implicating ray 

predation as the main cause of density changes in potential prey species.  Over 31-day 

period, eagle rays within this system were estimated to consume 1.6% of the Macomona 

clam population.  Foraging, however, was focused on areas of high clam density, 

resulting in these areas suffering 4% mortality.  By focusing foraging efforts in areas of 

high prey density, the rays may help stabilize prey populations and homogenize prey 

distribution (Hines et al. 1997).   
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 There are few estimates of the numerical impact elasmobranchs in soft bottom 

habitats may have on prey population.  On the basis of prey densities and a maintenance 

ration of 3% body weight day-1, Bush and Holland (2002) estimated that in 5 months 

5000 juvenile scalloped hammerhead sharks could consume approximately 20% of the 

gobies and alpheid shrimp in Kaneohe Bay accounting for about 5.5% of the productivity 

for these species.  However, recent estimates suggest a juvenile scalloped hammerhead 

shark population closer to 8000 individuals and that individuals remain in Kaneohe Bay 

for up to 1 year (Duncan and Holland 2006), suggesting their impact may be larger.  

Impacts may be even larger in Langebaan Lagoon, South Africa.  It has been estimated 

that lesser sand sharks Rhinobatos annulatus may consume up to 77% of annual 

invertebrate production (Harris et al. 1988). 

 The impacts of elasmobranch excavation foraging are not solely limited to prey 

species.  Batoid foraging reduces meiofaunal species density within foraging pits and 

lower densities areawide are possibly the result of the continued disturbance by rays 

(Cross and Curran 2000, Cross and Curran 2004).  Recolonization of foraging pits by 

benthic invertebrates can show predictable patterns, with some species, such as 

amphipods, actively seeking out recently formed pits to exploit organic matter that 

accumulates in foraging pits.  Systems that lack small-scale disturbances, such as ray 

foraging pits, often lack these early colonist species (VanBlaricom 1982).  By allowing 

persistence of species within soft bottom communities, such rapid colonization of ray 

foraging pits may play an important role in maintaining dominance patterns (Thrush et al. 

1991). 
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Although elasmobranchs are top predators in soft bottom systems, their impacts 

are not limited to top-down effects.  Since many of the prey in these systems are infaunal 

or can bury, foraging often involves excavation.  Such foraging excavations, especially in 

areas of high elasmobranch density, can result in the turnover of large volumes of 

sediment.  Several studies have shown that in areas frequented by batoids, new foraging 

pits cover can cover 1-5% of the substrate each day (Reidenauer and Thistle 1981, 

VanBlaricom 1982, Sherman et al. 1983) and up to 30% of the substrate can be covered 

with foraging pits of various ages (Grant 1983).  Over time this can result in considerable 

sediment turnover.  Thrush et al. (1991) estimated eagle rays in Manukau Harbour can 

completely turnover an area of 700-800 m2 in 70 days.  High rates of batoid induced 

sediment turnover have also been found in Bahia La Choya, Mexico.  The combined 

bioturbation of the three batoids found in this location can rework the midflats area of the 

bay to a depth of about 20 cm in 72 days (Myrick and Flessa 1996).  However, in areas 

that receive large amounts of tidal reworking, the impacts of elasmobranch bioturbation 

may be minimal, as sediment reworked by elasmobranchs may account for <1% of that of 

ripple migration (Grant 1983). 

If the contribution of sediment reworking is large, elasmobranchs may also 

contribute to bottom-up processes within some soft bottom systems.  Although it has not 

been examined, the nutrients resuspended by elasmobranch excavations may alter 

nutrient dynamics in the water layer above the substrate surface.  In addition, organic 

matter accumulates at a higher rate within feeding pits than outside of pits (VanBlaricom 

1982).  The accumulation of organic matter with feeding pits can alter remineralization 
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rates below the pits, altering water flow through the sediment, which can alter carbon 

cycling in sands (D’Andrea et al. 2002). 

 

Estuaries 

 Many of the habitats mentioned above occur in estuaries.  However, nutrient 

inputs from freshwater and terrestrial systems in many estuarine systems support higher 

productivity than similar habitats where these inputs are absent, and therefore, enhance 

prey availability (Cruz-Escalona et al. 2007, Acha et al. 2008).  Furthermore, large 

predators are often absent from shallow or low-salinity portions of these habitats, with the 

possible exception of large bull sharks, which can tolerate low salinity waters and 

penetrate far inland into freshwater (Martin 2005, Simpfendorfer et al. 2005, Heupel and 

Simpfendorfer 2008, Heithaus et al. 2009a, McCord and Lamberth 2009). 

 A variety of shark and batoid species can be found in estuaries, with most of the 

species being piscivores or invertevores.  Carcharhiniforms (carcharhinids, sphyrnids, 

and triakids) are the dominant sharks found in estuarine waters with species such as the 

bull shark and river sharks Glyphis spp. able to spend extended periods in freshwater 

(Martin 2005, Simpfendorfer et al. 2005, Heupel and Simpfendorfer 2008, Heithaus et al. 

2009a, McCord and Lamberth 2009).  Estuarine batoids include members of the families 

Myliobatidae, Rhinopteridae, Dasyatidae (stingrays), Rhinobatidae (shovelnose rays), 

and Pristidae (sawfishes), with some stingrays (e.g., freshwater whipray Himantura 

chaophraya) and sawfish (e.g., freshwater sawfish Pristis microdon) capable of tolerating 

freshwater (Martin 2005).  In addition, several of these species can attain very large sizes 
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(freshwater whipray – 2m disc width; freshwater sawfish – 7m total length; bull shark – 

3.4m total length).     

 While many elasmobranchs use estuaries throughout the year in subtropical and 

tropical habitats (e.g., Carlisle and Starr 2009, Gray et al. 1997, Salini et al. 1992), others, 

especially in temperate waters, use estuaries and other shallow coastal habitats seasonally 

to breed (e.g., Yamaguchi et al. 2005, Hunter et al. 2006, Carlisle et al. 2007) and as 

nurseries (e.g., Simpfendorfer and Milward 1993, Gray et al. 1997, McCandless et al. 

2007).  Although the impacts of these seasonal pulses of elasmobranch predators have 

rarely been examined (see section: Unvegetated Soft Bottom), it surely increases 

predation rates on some prey species (although the impacts on populations of these prey 

is unknown), and the high mortality rates (up to 93%) of young-of-the-year 

elasmobranchs will provide an allocthonous nutrient source in these systems (Gruber et 

al. 2001, Heupel and Simpfendorfer 2002, Duncan and Holland 2006, Heithaus et al. 

2010). 

 

Open Coastal Waters 

Several coastal sharks spend considerable amounts of time in the water column 

and are often not associated with benthic habitats.  Lamnids and some large carcharhinids 

are the main groups of sharks that fall into this category.  Because of their large size, 

these sharks tend to be apex predators, feeding on large fishes, small sharks, and for some 

species, such as the great white shark, marine mammals.  In many of the more pelagic 

species, cephalopods are also an important prey item [e.g., blue sharks (Tricas 1979) and 

salmon shark (Kubodera et al. 2007)]. 
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One of the more notable trophic interactions involving elasmobranchs in this 

habitat realm is the predator-prey relationship between large sharks and marine 

mammals, in particular great white sharks and pinnipeds.  Seasonally, great white sharks 

in the eastern Pacific and South Africa gather at pinniped rookeries to take advantage of 

plentiful prey (Anderson and Pyle 2003, Martin et al. 2005, Domeier and Nasby-Lucas 

2007).  Although the predatory behaviors and factors affecting successful predatory 

events have been examined at these locations (Tricas and McCosker 1984, Tricas 1985, 

Martin et al. 2005, Hammerschlag et al. 2006, Martin et al. 2009) and pups appear to be 

targeted by the sharks (Martin et al. 2005, Laroche et al. 2008), the numerical impact of 

great white sharks on these pinniped populations remains unknown.  However, it appears 

that pinnipeds at these sites respond to the presence of great white sharks by altering their 

behavior.  For example, many of the diving behaviors of northern elephant seals 

Mirounga angustirostris off California are consistent with hypotheses of avoiding 

predation by great white sharks (Le Bouf and Crocker 1996) and at Seal Island in False 

Bay, South Africa, adult Cape fur seals Arctocephalus pusillus pusillus return to the 

island under the cover of darkness, while seal pup and shark numbers are highest at dawn 

(Laroche et al. 2008). 

 Great white sharks are not the only shark species with the potential to influence 

pinniped populations.  Off Sable Island, Canada, predation by sharks on harbor seal 

Phoca vitulina pups and mature females accounted for at least 50% of the decline in 

production for that was observed between 1993 and 1997 and is responsible for much of 

the decline in this seal population (Lucas and Stobo 2000, Bowen et al. 2003).  And in 

Prince William Sound, Alaska, empirical data and theoretical models suggest harbor seals 



 65

and Stellar sea lions Eumetopias jubatus underutilize resources in deep water to avoid 

predation by Pacific sleeper sharks (Frid et al. 2007, 2008, 2009).  Models of sleeper 

shark-harbor seal interactions also suggest the potential for a trophic cascade in the 

northeastern Pacific (Frid et al. 2008).  Model removal of sharks from this system results 

in seals shifting their foraging behavior to exploit profitable deeper water fish, releasing 

shallow water fish from predation.  Because of the densities of harbor seals in the 

northeastern Pacific, loss of sharks from this system has the potential for causing 

substantial changes in the teleost community. 

 The importance of trophic cascades induced by coastal elasmobranchs in open 

coastal waters has also been suggested based on a combination of time-series and 

experimental data.  Myers et al. (2007) proposed that overfishing of large sharks in the 

open coastal waters of the northwestern Atlantic started a cascade that has resulted in the 

collapse of the North Carolina bay scallop population.  The loss of large sharks from 

coastal waters is thought to have released cownose rays from predation, resulting in a 

population expansion and the larger migrating ray population caused the collapse of the 

bay scallop population in seagrass habitats through consumption.  The declines of large 

shark population are widely acknowledged and the ability of cownose rays to cause major 

habitat disturbances has previously been observed (e.g., Orth 1975 see section: Seagrass 

Beds and Mangroves) and field experiments have shown that cownose rays can collapse 

local scallop populations (Peterson et al. 2001, Myers et al. 2007).  Whether predatory 

release has caused an increase in cownose rays, however, has drawn criticism.  In 

addition to some of the questions raised previously, there is some degree of mismatch in 

the timing of the decrease of bay scallop populations (1980s) and increases in ray catches 
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(1990s).  In the late 1980s, prior to the reported increase in rays, scallop losses caused by 

a red tide outbreak resulted in well below average scallop recruitment for several years 

(Summerson and Peterson 1990, Peterson and Summerson 1992).  As a result, the recent 

impacts of cownose rays may not be the sole cause of scallop population collapse but 

may exacerbate continuing declines.  Despite criticism of this example, given the 

worldwide declines in large coastal shark populations, the possibility of such a cascade 

highlights the importance for research on the importance of shark predation and risk 

effects, as well as their role in driving habitat. 

 

Conclusions 

Despite their reputation as apex predators in marine systems and the prevalence of 

teleosts in the diets of most species studied, coastal elasmobranchs occupy a variety of 

trophic positions ranging from zooplanktivores to apex predators.  Most coastal 

elasmobranchs, however, fill the role of mid to upper level predators in the systems they 

occupy.  Unfortunately, because of the difficulty of working with these animals, both in 

the wild and in captivity, little else is known about the trophic relationships of most 

coastal elasmobranchs.  As a result, it is hard to generalize their impacts and expand on 

the role of elasmobranchs in coastal systems, which appears to be system- and taxa-

specific.  Therefore, lumping sharks into a single guild will likely result in misleading 

conclusions.  Indeed, studies in other taxa suggest that even considering individuals of 

single populations to be trophically identical can result in misunderstandings of a species 

role in their communities (e.g., Bolnick et al. 2003, Quevedo et al. 2009).  The prevalence 

and importance of individual specialization in trophic interactions is just beginning to be 
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explored for elasmobranchs (Matich et al. 2011) and is an important area for future 

investigations. 

 Elasmobranch diet studies are numerous and a crucial first step in the 

understanding of coastal elasmobranch trophic ecology, but in most cases the diet of a 

species’ full size range has not been examined and many diet studies are limited in their 

geographic scope.  Future work, however, will need to extend well beyond diet studies.  

Internal factors, such as digestive and metabolic rates play a crucial role in the trophic 

relationships of elasmobranchs because they determine feeding periodicity and daily 

ration.  Unfortunately, these topics are difficult to study in elasmobranchs and therefore 

have received little attention.  Recent technological advances, particularly in the realm of 

telemetry, however, are now making these avenues of research viable and will hopefully 

expand our knowledge of elasmobranch feeding behavior.  This information can then be 

combined with movement data and the increasingly popular stable isotope analysis to 

determine where and in which food chain elasmobranchs are feeding, allowing for a more 

thorough assessment of elasmobranch trophic relationships and impact. 
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Abstract 

Dramatic declines in populations of large elasmobranchs, as well as the potential 

release of elasmobranch mesopredators, have led to interest in the ecological role of this 

group of fishes.  The first step to elucidating their ecological importance, however, is an 

understanding of elasmobranch community structure. Such studies are relatively 

uncommon, especially in communities where human impacts are thought to be low.  I 

used visual surveys and a variety of capture methods to determine spatial and temporal 

variation in the species composition of a sandflat elasmobranch community in the 

relatively pristine ecosystem of Shark Bay, Australia.  Overall, juvenile batoids 

dominated the community.  Eleven elasmobranch species (10 batoids, 1 shark) were 

found to inhabit the sandflats during the cold season (June-August) and 21 species (12 

batoids, 9 sharks) were recorded during the warm season.  The overall density of 

elasmobranchs occupying the sandflat was also higher during the warm season.  

Nearshore areas, especially during the warm season, supported the highest densities of 

elasmobranchs overall as well as the dominant species (giant shovelnose ray, 

Glaucostegus typus, and reticulate whipray, Himantura uarnak).  Such high 

elasmobranch abundance may be driven by a combination of factors including prey 

availability, predator avoidance, and behavioral thermoregulation.  The high species 

richness and density of elasmobranchs in such a restricted area suggests that 

elasmobranch mesopredators could exert strong top-down impacts in nearshore 

environments in the absence of human impacts, but raises questions of how resources are 

partitioned among apparently similar species in this system. 
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Introduction 

Declines of large sharks (>2m TL) have been well publicized and investigations 

into their ecological importance have been widely recognized as being important 

(Heithaus 2004; Myers et al. 2007; Heithaus et al. 2008, 2010).  However, less attention 

has been paid to elasmobranch mesopredators – smaller species at intermediate trophic 

levels including sharks and batoids (skates and rays) –, which also may be ecologically 

important (e.g., VanBlaricom 1982; Thrush et al. 1991, 1994; Peterson et al. 2001).  

Mesopredators provide a crucial link between top predators and lower trophic levels and 

can play important roles in the dynamics of a variety of systems.  The most dramatic 

examples of the role of mesopredators come from systems where top predators have been 

eliminated.  Under these conditions, mesopredator populations can show increases 

through what has been termed “mesopredator release” (Soule et al. 1988), resulting in the 

decrease of prey species of mesopredators (e.g., Rayner et al. 2007; Berger and Conner 

2008).  While many elasmobranch populations have declined worldwide (e.g., Musick et 

al. 1993; Stobutzki et al. 2002; Baum et al. 2003), some elasmobranch mesopredators 

appear to have increased in areas where populations of large sharks have declined 

(Shepard and Myers 2005; Myers et al. 2007).  Myers et al. (2007) suggested that the 

removal of large sharks in the northwest Atlantic Ocean triggered a trophic cascade 

whereby cownose rays underwent a population expansion, which played an important 

role in the collapse of commercial scallop populations.  Therefore, studies of 

elasmobranch mesopredators – particularly in relatively pristine ecosystems – are 

important for understanding the dynamics of coastal ecosystems and drafting appropriate 

management plans (e.g., Heithaus et al. 2008). 
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 Understanding spatial and temporal variation in community structure is a 

necessary first step to understanding the ecological role of elasmobranchs.  For example, 

the importance of a particular elasmobranch species in a community will likely depend 

on the presence and identity of competitors and/or predators in the community (e.g., 

Kitchell et al. 2002; see Heithaus et al. 2008 for a review).  Unfortunately, relatively few 

quantitative studies of elasmobranch community structure exist (Heithaus et al. 2007a).  

These studies are of particular value in pristine ecosystems where it is possible to 

elucidate the interactions and ecological roles of predators in the absence of historical and 

ongoing anthropogenic effects and begin to develop general predictions about how 

systems are likely to respond to management (Sinclair et al. 2007; Heithaus et al. 2008). 

 Shark Bay, Western Australia has been used as a model system for understanding 

the ecological role of tiger sharks (Galeocerdo cuvier) in a relatively pristine ecosystem 

(Heithaus et al. 2007b).  Largely overlooked, however, is the diversity of elasmobranch 

mesopredators (but see White et al. 2004), many of which inhabit the nearshore shallows.  

To begin to assess the ecological importance of elasmobranch mesopredators in Shark 

Bay, I investigated spatial and temporal variation in the abundance and species 

composition of the elasmobranch community inhabiting nearshore sandflats.  In addition, 

I examined the size distributions and microhabitat preferences of common species. 

 

Materials And Methods 

Study Site 

Shark Bay, Western Australia (25°45´S, 113°44´E), which was designated a 

World Heritage Area in 1991, is a large (ca. 13,000 km2) semi-enclosed bay on the 
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central west coast of Australia (Fig. 1).  Because of its remote location and World 

Heritage status, fishing pressure within the bay is low and most of the bay’s large and 

diverse marine vertebrate populations have probably been minimally impacted by 

humans (Heithaus et al. 2007b and references therein).  As a result Shark Bay may be one 

of the world’s least impacted seagrass ecosystems.  

Shark Bay is relatively shallow throughout with expansive shallow sandflats 

adjacent to shore with fringing shallow seagrass beds (<4 m).  The bay also features 

numerous offshore banks (<4 m) predominantly covered by seagrasses.  Deep areas (6-15 

m) are primarily covered by sand or silt, but may contain sparse stands of seagrass. 

The nearshore shallow sandflat habitat, where I conducted this study (~8.3 km2), 

can be divided into three general microhabitats.  These include sandflats adjacent to shore 

that are intertidal during at least a portion of the year and are less than one meter deep.  

Shallow subtidal sandflats (1-2 m) are found further offshore, but landward of areas with 

patchy seagrass (1-3 m).  Hereafter, these microhabitats will be referred to as “nearshore” 

(~1.0 km2 of the study site), “sand” (~3.3 km2 of the study site), and “patchy” (~4.0 km2 

of the study site), respectively. 

Mean monthly sea-surface temperature over deep water varies seasonally between 

16-27C in Shark Bay, although sandflat water temperature are often more extreme (14-

31C).  Because many of the large mobile species in Shark Bay display seasonal 

abundances that drop substantially at temperatures below 20C (Heithaus 2001), I 

divided the year into the “warm” season (September-May; mean monthly water 

temperatures are above 20C) and the “cold” season (June-August; mean monthly water 

temperatures are below 20C). 
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Study Methods 

The shallow and clear waters of Shark Bay’s sandflats permit visual identification 

of elasmobranchs to the species level while boating (Fig. 2), so I assessed elasmobranch 

microhabitat use and community composition using belt transects.  I established two 1.5-

km long transects for each microhabitat type on the Cape Rose Flats (Fig. 1) and ran 

them in a 4.5-m vessel at a speed of 5-6 km h-1.  All elasmobranchs within 5 m or, early 

in the study, 10 m of the transect were identified to species and their locations were 

recorded.  Transect width was permanently reduced when seasonal changes in visibility 

rarely allowed for the expanded width, but regularly allowed for the reduced transect 

width.  Because of the sedentary nature of most of the animals I surveyed and their 

tendency to not flee until the last moment, there should be little to no bias toward seeing 

more animals during the wider transects.  I haphazardly chose the direction and order of 

transects and no transect was run more than once per day.  Transects were only conducted 

in Beaufort wind conditions of two or less and when glare off the water and turbidity did 

not affect sighting conditions.  Between March 2006 and October 2007, I conducted 190 

transects (22 cold season, nearshore; 31 cold season, sand; 32 cold season, patchy; 35 

warm season, nearshore; 37 warm season, sand; 33 warm season, patchy).  To ensure that 

rare and frequently swimming species, which were often seen in the study site but rarely 

seen during transects, were accounted for I began recording the species identification and 

location of all elasmobranchs observed on the Cape Rose Flats regardless of whether or 

not I were on transect in October 2006.   

To verify species identifications and provide a preliminary examination of the 

size structure of elasmobranchs on the sandflats, I captured elasmobranchs using 
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longlines and nets.  Between September 2005 and November 2006, 71 longline sets were 

completed during daylight hours in all three microhabitat types (although mostly in 

nearshore and sand microhabitats) on the Cape Rose Flats.  Longlines ranged from 125 to 

250m in length with hook numbers ranging from 21 to 51 hooks.  I used a combination of 

11/0 and 13/0 circle hooks baited with squid.  Typically 13/0 circle hooks outnumbered 

11/0 circle hooks by a ratio of 2:1.  These hook sizes were chosen on the basis of the size 

of animals observed in the field.  Numerous small elasmobranchs with small mouths 

(e.g., bamboo sharks) were captured, suggesting that hook size did not limit catches of 

rays and smaller sharks. Soak times ranged from 0.5 to 3.5 h with an average soak time of 

1.69  0.65 h (mean  SD).  In March 2006, I began opportunistically sampling animals 

using nets.  Once sighted, I either circled animals with a gillnet deployed from a boat or 

captured them with a dipnet.  Captured animals were measured (total length or disc 

width), sexed, and maturity of males was determined by assessing clasper calcification 

(Carrier et al. 2004). 

 

Analyses 

I analyzed differences in community composition across season and microhabitat 

using a two-way analysis of similarity (ANOSIM).  Prior to analysis, relative abundance 

data from transects were fourth root transformed and used to construct a Bray-Curtis 

similarity matrix.  Ordination of the Bray-Curtis similarity matrix was achieved using 

non-metric multidimensional scaling (NMDS).  Upon finding significant differences 

between treatments, I conducted a similarity percentages (SIMPER) analysis to identify 

which species contributed most to the observed differences.  Transects on which no 
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elasmobranchs were observed were removed from these analyses, as were species that 

appeared on fewer than 5% of transects.  As a result 122 transects were used for analyses 

(13 cold season, nearshore; 19 cold season, sand; 20 cold season, patchy; 33 warm 

season, nearshore; 19 warm season, sand; 18 warm season, patchy).  Because individuals 

of morphologically similar species could not always be identified to species before I lost 

visual contact (i.e., they swam off before species identification could be confirmed or 

could not always be distinguished when buried), I pooled some species categories into 

groups for these analyses to ensure that all individuals of dominant species were 

included. The three maskray species (Neotrygon spp.) were combined to form one group.  

The reticulate whipray (Himantura uarnak) and pink whipray (H. fai) were grouped and 

all small carcharhinds also comprised a mixed species group.   Finally, the blackspotted 

whipray (H. astra) and brown whipray (H. toshi) were grouped for all analyses because 

they have often been confused in the literature and the blackspotted whipray was 

described after the completion of my fieldwork (Last et al. 2008).  Photographs of 

captured animals confirm that both species were present during my study (W. White, 

personal communication). 

 Using univariate analyses, I further investigated the effect of season and 

microhabitat on the overall abundance of elasmobranchs and the species identified by 

SIMPER as playing a large role in community structure.  Because of the large number of 

zeros in the dataset, these analyses were conducted using conditional models.  This 

technique modeled the response in two states (presence/absence and abundance 

dependent upon presence).  First, the presence of a species on an individual transect was 
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modeled using a logistic regression, and then zero-truncated, log transformed abundance 

data were analyzed with a generalized linear model. 

 To further investigate the possibility of interspecific variation in distributions 

across the sandflat, all elasmobranch sightings (transect and non-transect) after October 

2006 were plotted on a map of the Cape Rose Flats using ArcView 3.2a and distance to 

nearest shore was calculated for each sighting.  Sightings were used as the unit of 

measure instead of number of individuals because some of the species (particularly the 

pink whipray) were observed in groups and were not necessarily independent 

occurrences.  Because I did not record my time spent in each habitat, microhabitat use 

patterns of each species cannot be examined using these data; however, interspecies 

comparisons of relative habitat use are possible because given the narrow range of depths 

encountered and slow speeds used while traversing the flats, the probability of sighting 

each species should not vary much with distance from shore.  I binned the calculated 

distances in 100-m intervals and conducted a Chi-square test of homogeneity for distance 

to nearest shore.  As a result of the low number of sightings during the cold season, I 

performed this analysis on only the warm season data and only species that were sighted 

>50 times were included. 

 

Results 

Community Structure 

Twenty-one species from ten families were recorded from the nearshore sandflats 

of Shark Bay’s Eastern Gulf (Table 1).  Between October 2006 and October 2007, 18 of 

these species (12 batoids, 6 sharks) from nine families were observed on the Cape Rose 
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Flats.  Of the 1,157 elasmobranchs observed during this time period, batoids accounted 

for 92.4% of these individuals.  The giant shovelnose ray (Glaucostegus typus) was the 

dominant elasmobranch observed on the sandflats (31.1% of individuals).  Other 

prominent species (>10% of individuals) on the sandflats were the pink whipray (14.2%), 

whitespotted eagle ray (Aetobatus narinari, 12.1%), reticulate whipray (11.7%), and 

cowtail stingray (Pastinachus atrus, formerly P. sephen, 10.1%). 

Most individuals were sighted singly, although the giant shovelnose ray, reticulate 

whipray, and cowtail ray were occasionally observed resting in single or multispecies 

groups (animals were considered to be part of a group if they were <1 m from another 

individual) or looser aggregations (animals separated by >1 m), particularly in nearshore 

microhabitats.  The only species that was regularly seen in groups was the pink whipray, 

with groups making up 42.4% of sightings (25 of 59).  Groups of pink whiprays, which 

were observed resting and swimming together, ranged from two to at least 25 individuals 

with 68% of groups containing fewer than six individuals. 

Species composition varied between the warm and cold seasons (Fig. 3).  While 

all species observed during the cold season were present during the warm season, ten 

species were only observed in the warm season (Table 1), including two major predators 

of elasmobranch mesopredators – the tiger shark (n = 3 sightings) and great hammerhead 

shark (Sphyrna mokarran, n = 2 sightings).  Of the species only observed during the 

warm season, the smooth nose wedgefish (Rhynchobatus laevis) was sighted most often 

(n = 22 sightings).  Of species present during both seasons, the blackspotted/brown 

whipray group increased in proportion during the warm season (two-proportion tests, z = 

2.16, all P = 0.03), while the maskray complex was the only group that made up a higher 
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proportion of individuals during the cold season (two-proportion tests, z = 2.28, P = 

0.02). 

During transects, 630 elasmobranchs from 15 species and seven families were 

sighted (of the 21 species and 10 families present in the area) (Table 1).  Batoids 

accounted for 73% of the observed species (11/15) and 86.7% of individuals (546/630).  

The giant shovelnose ray was the dominant elasmobranch on transects making up 48.1% 

(303/630) of individuals.  The only other species with more than 50 individuals sighted 

on transect were the reticulate whipray, nervous shark (Carcharhinus cautus), and the 

blackspotted/brown whipray group.  Combined these five species made up 84% of 

individuals sighted on transects.  Within the reticulate/pink whipray group, 59 of the 66 

identified individuals were reticulate whiprays, while 58 of 61 identified carcharhinids 

were nervous sharks. 

 Overall community structure was influenced by season and microhabitat 

(ANOSIM, R = 0.131, P = 0.003 and R = 0.138, P = 0.001, respectively) with all three 

microhabitats differing from each other (ANOSIM pairwise comparisons, R: 0.064- 

0.222, all P ≤ 0.022).  The NMDS plot revealed that many of the warm season transects 

formed a large group in the center of the ordination space, indicating a high degree of 

similarity (Fig. 4).  Nearshore transects made up the majority of this group.  Cold season 

and sand transects, on the other hand were widely dispersed throughout the ordination 

space.  The SIMPER analysis revealed that differences in the abundance of the giant 

shovelnose ray and reticulate/pink whipray group contributed the most to the observed 

patterns of community composition with these species groups each contributing >20% of 
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the observed dissimilarity and >45% of the observed dissimilarity combined for all 

pairwise comparisons. 

 The presence of elasmobranchs on a transect was influenced by an interaction 

between season and microhabitat (logistic regression, 2 = 11.15, df = 2, P = 0.004).  The 

highest probability of encountering an elasmobranch was on nearshore transects during 

the warm season (Table 2).  When elasmobranchs were present, densities were also 

affected by a season x microhabitat interaction (GLZ, 2 = 9.73, df = 2, P = 0.008) with 

densities highest nearshore during the warm season (Fig. 5).  Maximum elasmobranch 

density on these transects was 29.3 animals ha-1 and on five of the 35 warm season, 

nearshore transects densities were greater than 10 animals ha-1.  Giant shovelnose rays 

were present throughout the year; microhabitat was the only factor influencing their 

presence on transect (logistic regression, 2 = 20.31, df = 2, P < 0.001).  The probability 

of encountering a giant shovelnose ray was highest on nearshore transects (Table 3).  

Similarly, microhabitat was the only factor that influenced density when giant shovelnose 

rays were present (GLZ, 2 = 10.51, df = 2, P = 0.005).  Nearshore densities (maximum 

density 22.7 animals ha-1) were higher than densities in patchy microhabitats (Fig. 6).  

The season x microhabitat interaction influenced the presence of the reticulate/pink 

whipray group (logistic regression, 2 = 31.13, df = 2, P < 0.001).  The probability of 

encountering a reticulate/pink whipray decreased with distance from shore in the warm 

season and increased with distance from shore in the cold season (Table 4).  When 

present densities of the reticulate/pink whipray group were influenced by season (GLZ, 
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2 = 6.46, df = 2, P = 0.011) with higher densities during the warm season with a 

maximum density of 5.3 animals ha-1 (Fig. 7)  

The distance from shore at which sightings occurred differed among giant 

shovelnose rays, reticulate whiprays, whitespotted eagle rays, cowtail stingrays, and 

blackspotted/brown whipray group, nervous sharks and pink whiprays (chi-square 2 = 

114.44, P = 0.042, Fig. 8).  Whitespotted eagle rays and pink whiprays tended to be 

found less often than expected in nearshore microhabitats and more often further offshore 

(subtidal sand microhabitats) than other species.  Indeed, substantially fewer than 

expected whitespotted eagle rays were found within 200 m of shore, and far more 

between 300-500 m from shore.  Pink whipray sightings were more common than 

expected slightly closer to shore (200-300 m offshore).  Giant shovelnose rays had higher 

relative abundances than expected at distances of 100-200 m from shore.  Cowtail 

stingrays and nervous sharks, while matching expected frequencies close to shore, were 

slightly overrepresented at distances associated with patchy seagrass and the 

blackspotted/brown whipray group was sighted slightly more often than expected at 

distances corresponding to the sand microhabitat.  Although not enough individuals were 

encountered to be included in the analysis, smooth nose wedgefish occurred most often 

greater than 300m from shore (sand and patchy microhabitats) with the majority of 

animals sighted between 300 and 600 m from shore, while tiger and great hammerhead 

sharks tended to be sighted between 500 and 1000 m from shore. 
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Elasmobranch Captures 

In 3,324.8 hook hours, I captured 62 elasmobranchs from 6 species and 4 families 

on longlines.  The CPUE was 1.7  3 animals 100 hook-1 h-1 and did not differ between 

seasons (two-sample t-test, t = 0.13, P > 0.05).  Giant shovelnose rays made up 80.6% of 

the longline catch.  The other species captured were the reticulate whipray (6.4%), 

blackspotted whipray (4.8%), nervous shark (3.2%), brown-banded bamboo shark 

(Chiloscyllium punctatum, 3.2%), and milk shark (Rhizoprionodon acutus, 1.6%). 

As a result of the low capture rate and limited number of species captured on 

longlines, netting became the primary method of capture in 2006.  From September 2005 

through January 2009, 430 elasmobranchs from 17 species and seven families were 

captured in nearshore sandflats habitats (Table 1).  The the basis of clasper calcification, 

mature males were captured from eight species.  In elasmobranchs, females tend to 

mature at larger sizes than males  (e.g., Cope 2006; Smith et al. 2007), so if size of the 

smallest mature male is used as a conservative estimate of size at maturity for females, 

most captured individuals from common species (blackspotted/brown whipray – 40.0%, 

nervous shark – 42.9%, whitespotted eagle ray – 57.1%, reticulate whipray – at least 

70.9%, giant shovelnose ray – 90.4%, cowtail stingray – at least 98.7%, and pink whipray 

– 100%) were immature.  For the giant shovelnose ray and nervous shark the proportion 

of immature individuals is likely to be higher because small individuals (as young as 

Age-0) that could not be captured easily were regularly observed.  On the basis of 

captures, only brown-banded bamboo sharks (83% mature) and the undescribed maskray 

species (94%) appear to regularly use the shallow nearshore habitats as adults.   
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For most species, sex ratios did not differ from 1:1.  Three species however, did 

differ significantly from 1:1.  The brown-banded bamboo shark showed a male bias, with 

no females caught in nearshore microhabitats (one-proportion test, P < 0.001).  On the 

other hand, the reticulate whipray (1:2.4, M:F) and the undescribed maskray species 

(1:3.2) both displayed a female bias (one-proportion test, P = 0.003, and P = 0.049, 

respectively). 

 

Discussion 

The elasmobranch diversity in the nearshore shallow waters of Shark Bay is 

strikingly high.  I recorded 21 species from ten families in an area of only ca 8 km2 that 

contains relatively little habitat variation that might allow increased diversity through 

habitat specialization (Tews et al. 2004).  Combining these records with the species 

recorded from unvegetated, seagrass, and mangrove-lined habitats 13 km from my study 

area by White and Potter (2004), a total of 28 species from 13 families have been 

recorded from the western coast of Shark Bay’s eastern gulf from the shoreline to the 

seagrass beds at depths of about 3 m.  During the summer of 1990, systematic benthic 

trawls throughout the Gulf of Carpentaria (300,000 km2) on Australia’s north coast, 

recorded only 27 species from ten families (Blaber et al. 1994).  Furthermore, Shark 

Bay’s nearshore waters contain at least 34% of the elasmobranch species that are known 

to occur in the region of Australia’s northern prawn fishery, which covers 1,000,000 km2 

and a wider variety of habitats (Stobutzki et al. 2002).  On the basis of other records from 

the wider Shark Bay region (including the Western Gulf), at least 13 more elasmobranch 

species and four families (Hutchins 1990; Connor and Heithaus 1996; Heithaus 2001; 
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Heithaus 2004; unpublished data) are present, suggesting that Shark Bay is a biodiversity 

hotspot for elasmobranchs like it is for teleost fish (Black et al. 1990; Hutchins 1990). 

Indeed, Shark Bay also appears to have greater elasmobranch diversity than 

similar areas in other parts of the world.  Everglades National Park (ENP), USA, is at 

roughly the same latitude and has similar habitats to Shark Bay, but with greater habitat 

diversity.  Historically 27 elasmobranch species have been recorded from the waters of 

ENP, however, Wiley and Simpfendorfer (2007) only recorded 13 species despite year 

round sampling throughout ENP across multiple habitat types and using a variety of 

capture techniques.  The difference in diversity between these two areas may be a result 

of Shark Bay’s location in the Indo-West Pacific region.  The Indo-West Pacific is a 

hotspot of diversity and at a smaller scale contains many of the most diverse 

chondrichthyan faunas in the world (Compagno et al. 2005; White et al. 2006; Last and 

Stevens 2009).  My study suggests that for elasmobranchs this hotspot continues into the 

subtropical waters of Western Australia. 

The high elasmobranch species diversity in this area is coupled with high 

densities.  The maximum density recorded on a transect was approximately 30 

individuals ha-1.  While these densities may not be as high as densities found in other 

nearshore environments (Platell et al 1998; Hoisington and Lowe 2005), most of the 

animals over the Cape Rose Flats in Shark Bay are much larger (50-100 cm DW vs. 15-

30 cm DW).  As a result elasmobranch biomass may be closer than densities would 

indicate and Shark Bay elasmobranch biomass might even exceed these other areas at 

times. 
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While elasmobranchs were sighted throughout the year, there was a strong 

seasonal pattern to occurrence and density.  Ten of the 21 species observed during this 

study were only seen during the warm season (Table 1) and of the remaining species, all 

but the giant shovelnose ray, were infrequently seen during the cold season.  Although 

differences were found between microhabitats in community structure, the most common 

elasmobranchs on the nearshore sandflat were found across all three microhabitat types 

and showed little evidence of microhabitat partitioning during the warm season at the 

scale examined.  As a result, community differences between season and microhabitat 

combinations were largely a result of patterns of presence and changes in density of 

common species.  Giant shovelnose rays were sighted more often and in higher 

abundances on nearshore transects and the presence of reticulate whiprays varied with 

habitat and season, but were most common on nearshore transects during the warm 

season. 

Seasonal variation in abundance and habitat shifts are not uncommon in 

elasmobranchs (e.g., Smith and Merriner 1987; Heithaus 2001; Wirsing et al. 2006) and 

seasonal movement of elasmobranchs into shallow waters has been reported in Shark Bay 

(White and Potter 2004).  These types of movements are often associated with changes in 

water temperature (e.g., Casey and Kohler 1992; Heithaus 2001), so the influx of new 

elasmobranch species onto the sandflats during the warm season was not surprising.  In 

fact, Shark Bay is near the southern limit of the distribution of all of the species that were 

only observed during the warm season (Last and Stevens 2009), indicating that the cooler 

water temperatures during the cold season may preclude these species from using the bay.  
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It is also possible, however, that they are present in Shark Bay during the cold season but 

only make use of sandflats when waters are relatively warm. 

 Reticulate whiprays shifted their relative use of microhabitats between warm and 

cold months.  During the cold season, reticulate whiprays were rarely seen in the 

nearshore microhabitat and occurred more often in the patchy microhabitat, while during 

the warm season they were abundant nearshore and their overall density dropped in 

patchy habitats.  Such a dramatic shift over such a small area indicates a seasonal shift in 

the relative benefits of occupying these two microhabitats to the reticulate whipray.  The 

warm season increase in the occurrence and abundance of other elasmobranchs in the 

nearshore microhabitat suggests that this area is strongly preferred and the benefit of 

occupying it may be similar across species. 

The use of the nearshore microhabitat by so many species during the warm season 

could have a substantial impact on the community found there.  Indeed, ray feeding pits 

are numerous in the nearshore microhabitat during the warm season and can number over 

500 on a transect (unpublished data).  Ray feeding at this scale not only removes prey 

items, but also through the turnover of sediment, can alter invertebrate communities 

(Thrush et al. 1991, 1994).  Although the number of feeding pits suggests ample 

resources in the nearshore microhabitat, a study of the invertebrate community of Shark 

Bay’s sandflats reveals an impoverished fauna (Wells et al. 1985).  Given the low 

biomass of potential prey, elasmobranchs may be partitioning available resources (Platell 

et al. 1998; White et al. 2004; Marshall et al 2008), cropping populations of highly 

productive prey, or this microhabitat may provide some other benefit.  These possibilities 

need to be examined further to understand the dynamics of this system. 
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During the warm season, nearshore waters tend to be warmer than those available 

in other habitats (unpublished data).  It has been suggested that elasmobranchs can 

behaviorally exploit local thermal heterogeneity for physiological gains (Economakis and 

Lobel 1998; Matern et al. 2000, Wallman and Bennett 2006; Hight and Lowe 2007).  

Such behaviors may help explain microhabitat use by elasmobranchs in Shark Bay and 

warrant examination. 

Interestingly, for most species the nearshore waters of Shark Bay appear to be 

used primarily by immature individuals.  On the basis of the minimum size of mature 

males captured, the vast majority of individuals observed on the flats were immature.  No 

mature male reticulate whipray, pink whipray, or cowtail stingrays were captured and 

only one male giant shovelnose ray was mature, although larger, possibly mature animals 

are occasionally seen.  Maturity data for the pink whipray outside of Shark Bay (White 

and Dharmadi 2007) suggest that all individuals I captured were immature.  I did, 

however, capture several immature individuals exceeding published size at maturity from 

the reticulate whipray, giant shovelnose ray, and cowtail stingray.  In Indonesia, sizes at 

maturity for these species are 82-84 cm DW, 150-180 cm TL, and 96-100 cm DW, 

respectively (White et al. 2006; White and Dharmadi 2007).  Regional variation in life 

history parameters such as size at maturity is common in elasmobranchs and size at 

maturity is a parameter that tends to be larger at higher latitudes (Cope 2006; Frisk and 

Miller 2009), so size at maturity in Shark Bay should be similar or larger than that at 

lower latitudes (e.g., White et al 2002). 

 Similarly, White and Potter (2004) found that most of the sharks they captured in 

the shallow waters of Shark Bay adjacent to mangrove habitats were immature, and many 
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still possessed umbilical scars.  As a result they concluded that the nearshore, shallow 

waters served as a nursery ground for lemon sharks (Negaprion acutidens), spinner 

sharks (Carcharhinus brevipinna), blacktip sharks (Carcharhinus limbatus), and milk 

sharks.  My data suggest that these waters may also be important juvenile habitat and 

serve a nursery function for giant shovelnose rays, reticulate whiprays, pink whiprays, 

and cowtail stingrays.  The observed habitat use may be a result of predator avoidance.  

Tiger sharks are seasonally abundant in Shark Bay (Wirsing et al. 2006), although 

sightings on the sandflats are less common than on offshore seagrass beds (M. Heithaus, 

personal observation) and relatively rare in nearshore microhabitats. 

 The insights I gained into the elasmobranch community of Shark Bay would not 

have been possible without the use of visual survey techniques, which appear to provide a 

more accurate depiction of elasmobranch faunas in shallow, clear waters.  Previous 

studies have used both hook-and-line and gillnets to sample elasmobranchs, which are 

unlikely to capture batoids.  For example, White and Potter (2004) noted that despite 

being abundant, giant shovelnose rays were caught in low numbers by gill netting and 

attributed low catch rates to their slow-moving and benthic nature.  My own longline sets 

were successful at catching giant shovelnose rays, but little else.  Longlines only caught 

six of the 21 species observed and overrepresented the contribution of giant shovelnose 

rays to the nearshore elasmobranch community by a factor of 2.6 (81% vs. 31%).  In 

addition, longline catch rates were low for all elasmobranchs, despite a high abundance 

of animals observed in the area, including specimens that were routinely observed resting 

in the vicinity of my longlines, or even swimming over them. 
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 Bias is always a concern for studies of fish density and my visual sampling 

method appeared to minimize these concerns compared to other, more invasive, methods.  

The large size of most elasmobranchs in Shark Bay helped to eliminate sighting bias and 

even species that bury could easily be spotted and identified under favorable conditions 

(i.e., clear water and low wind).  Using these methods, I added an additional 13 

elasmobranch species (9 of them batoids) to the elasmobranchs White and Potter (2004) 

captured in nearshore shallow waters of Shark Bay.  Visual surveys do, of course, have 

limitations; depth, water clarity, cover (e.g., dense seagrass), sea state, and cloud cover all 

affect the observer’s ability to detect and identify an individual.  In addition, many 

elasmobranchs are more active nocturnally than diurnally (e.g., Holland et al. 1993; 

Cartamil et al. 2003; Vaudo and Lowe 2006) and may use the surveyed areas only at 

night.  Such animals may be underrepresented or absent from visual surveys which can 

only effectively be conducted during daylight hours.  Despite these limitations, visual 

surveys have proven to be extremely useful for investigating shallow water elasmobranch 

mesoconsumer communities, especially for the batoids. 

In conclusion, I found that the nearshore elasmobranch community of this pristine 

environment is diverse, comprised mainly of batoids, and the nearshore sandflats may 

function as a nursery ground for a variety of elasmobranch species.  Interestingly, despite 

high species diversity, I saw little evidence of habitat partitioning, particularly during the 

warm season when several species, including the most numerically dominant, preferred 

the nearshore microhabitat.  On the basis of these findings, information on the diet of 

these species and their prey is needed to help determine the impact if any these 
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mesopredators may have on shaping this community and further study will be required to 

elucidate the factors that drive microhabitat use patterns of these species. 
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Table 1 Seasons of occurrence and capture records for elasmobranch species recorded on the nearshore sandflats of Shark 

Bay, Australia 

Family Species Cold Warm 
# 

captured 
# 

Male 
Male size 

range (cm) 
Smallest mature 

male (cm) 
# 

Female 
Female Size Range 

(cm) 

Hemiscyllidae Chiloscyllium punctatum a  X 12 12 52-82 62 - - 

Orectolobidae Orectolobus hutchinsi b  X 1 - - - 1 90 

Stegostomatidae Stegostoma fasciatum a  X - - - - - - 

Carcharhinidae Carcharhinus cautus a X X 14 5 50.5-97 96 9 52-117 

 Carcharhinus limbatus  X 1 - - - 1 74 

 Galeocerdo cuvier  X - - - - - - 

 Negaprion acutidens  X 1 94 - - - - 

 Rhizoprionodon acutus a  X 2 2 43.5-82 82 - - 

Sphyrnidae Sphyrna mokarran  X - - - - - - 
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Table 1 continued 

Family Species Cold Warm 
# 

captured 
# 

Male 
Male size 

range (cm) 
Smallest mature 

male (cm) 
# 

Female 
Female Size Range 

(cm) 

Rhinobatidae Glaucostegus typus a X X 126 61 62-232 206 60 69-213 

Rhynchobatidae Rhynchobatus laevis a  X 3 1 224 Not assessed 2 200-217 

Rhinidae Rhina ancylostoma  X - - - - - - 

Dasyatidae 
Himantura astra and H. 

toshi a 
X X 25 14 23-72 54 11 24-80 

 H. fai a X X 61 26 58-100 - 35 62-100 

 H. uarnak a X X 55 16 65-86 - 39 34-113 

 Neotrygon kuhlii a X X 6 3 21-31 31 3 19-27 

 Neotrygon leylandi a X X 2 - - - 2 19-22 

 Neotrygon sp. a X X 17 4 23-26 23 13 19.5-31 

 Pastinachus atrus a X X 83 45 39-116 - 38 36-133 
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Table 1 continued 

Family Species Cold Warm 
# 

captured 
# 

Male 
Male size 

range (cm) 
Smallest mature 

male (cm) 
# 

Female 
Female Size Range 

(cm) 

Myliobatidae Aetobatus narinari a X X 21 6 131-155 131 15 64-139 

 

a indicates species sighted on transects  

b captured on nearshore sandflat other than Cape Rose Flats 
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Table 2 Logistic regression for factors influencing the presence of elasmobranch on transects.  Reference conditions for the odds 

ratios are the warm season and sand microhabitat 

Predictor Coefficient SE P Odds Ratio 
Lower 95% Confidence 

Limit 

Upper 95% Confidence 

Limit 

Constant 0.0541 0.3289 0.869    

Cold 0.4055 0.4941 0.412 1.50 0.57 3.95 

Nearshore 2.7493 0.7991 0.001 15.63 3.26 74.85 

Patchy 0.2513 0.4819 0.602 1.29 0.50 3.31 

Cold x 

Nearshore 
-2.8411 0.9811 0.004 0.06 0.01 0.40 

Cold x Patchy -0.2000 0.7082 0.778 0.82 0.20 3.28 

       

 Cold 
Predicted Probability of 

Occurrence 
 Warm 

Predicted Probability of 

Occurrence 
 

 Nearshore 0.59  Nearshore 0.94  

 Sand 0.61  Sand 0.51  

 Patchy 0.62  Patchy 0.58  
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Table 3 Logistic regression for factors influencing the presence of the giant shovelnose ray (Glaucostegus typus) on transects.  

Reference condition for the odds ratios is the sand microhabitat 

Predictor Coefficient SE P Odds Ratio 
Lower 95% Confidence 

Limit 

Upper 95% Confidence 

Limit 

Constant -0.6712 0.2563 0.009    

Nearshore 1.2102 0.3756 0.001 3.35 1.61 7.00 

Patchy -0.4481 0.3855 0.245 0.64 0.30 1.36 

       

    Predicted Probability of Occurrence   

   Nearshore 0.63   

   Sand 0.34   

   Patchy 0.25   
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Table 4 Logistic regression for factors influencing the presence of reticulate/pink whipray (Himantura uarnak/H. fai) on transects.  

Reference conditions for the odds ratios are the warm season and sand microhabitat 

Predictor Coefficient SE P Odds Ratio 
Lower 95% Confidence 

Limit 

Upper 95% Confidence 

Limit 

Constant -1.1350 0.3832 0.003    

Cold 0.0789 0.5615 0.888 1.08 0.36 3.25 

Nearshore 1.6611 0.5188 0.001 5.26 1.90 14.56 

Patchy -1.1676 0.7166 0.103 0.31 0.08 1.27 

Cold x 

Nearshore 
-3.650 1.219 0.003 0.03 0.00 0.28 

Cold x Patchy 1.8442 0.9008 0.041 6.32 1.08 36.96 

       

 Cold 
Predicted Probability of 

Occurrence 
 Warm 

Predicted Probability of 

Occurrence 
 

 Nearshore 0.05  Nearshore 0.63  

 Sand 0.26  Sand 0.24  

 Patchy 0.41  Patchy 0.09  

 



 127

 

Fig. 1 The study was conducted in the Eastern Gulf of Shark Bay, Australia (a,b).  c) The 

shallow flats of Cape Rose were divided up into six 10-m wide belt transects representing 

three microhabitats (nearshore sand - black, subtidal sand - gray, and patchy seagrass - 

white) 
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Fig. 2 Clear waters and calm winds provide excellent sighting conditions on the Cape 

Rose Flats.  Pictured is a group of five pink whiprays (Himantura fai).  A buried whipray 

(H. uarnak or H. fai) is located in the lower left corner 
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Fig. 3 Relative abundances of elasmobranch taxa on the shallow flats of Shark Bay.  

Species richness increases during the warm season although there is little change in the 

relative abundance of most species 
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Fig. 4 Non-metric multidimensional scaling plot of community similarity of the 

elasmobranch fauna of a nearshore sandflat. Warm x nearshore transects tended to show 

greater community similarity than other season x microhabitat combinations.  Open 

symbols are the cold season and filled symbols are the warm season.  Triangles, circles, 

and squares are nearshore, sand, patchy microhabitats, respectively 
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Fig. 5 The influence of microhabitat and season on overall elasmobranch density.  

Densities are back-transformed from values used in GLZ with 95% CI.  White and gray 

bars represent the cold and warm seasons, respectively.  Bars with different letters are 

significantly different at P <0.05 
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Fig. 6 The influence of microhabitat on giant shovelnose ray (Glaucostegus typus) 

density.  Densities are back-transformed from values used in GLZ with 95% CI.  Bars 

with different letters are significantly different at P <0.05 
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Fig. 7 The influence of season on reticulate/pink whipray (Himantura uarnak/H. fai) 

density.  Densities are back-transformed from values used in GLZ with 95% CI.  Bars 

with different letters are significantly different at P <0.05 
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Fig. 8 Variation in relative abundances of elasmobranchs with increasing distance from 

shore.  Lines represent individual species’ deviations from a homogeneous distribution 

across all species.  Positive values indicate higher abundances of animals than expected, 

while negative values indicate fewer animals than expected 
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Abstract 

Understanding mesopredator trophic interactions is crucial to understanding the 

dynamics of food webs because mesopredators provide the link between apex predators 

and lower trophic levels.  Using stable isotopic analysis and stomach content analysis, I 

examined dietary niche overlap within a diverse elasmobranch mesopredator community 

in Shark Bay, Western Australia.  Isotopic values (δ13C and δ15N) were consistent with 

most species being highly dependent on a seagrass-based food web.  Differences were 

observed between the mean isotopic values of species, but there was a great deal of 

overlap in the isotopic niche space used by the community when examined at the level of 

individuals.  Stomach contents also suggest dietary overlap among the diets of Himantura 

spp. and Glaucostegus typus, which contained many of the same prey species, primarily 

crustaceans typically associated with seagrass habitats, although in different proportions.  

Diet data also suggest that despite having similar isotopic values to other species, 

Pastinachus atrus appears to feed on sandflat-associated species.  In this community, 

variation within the groups examined, possibly because of to individual specialization, 

appears to result in high resource overlap and may be a key component allowing for high 

diversity in this system and is perhaps crucial to understanding the role of mesopredators 

in community trophic dynamics. 

 

Introduction 

In recent years, the loss of apex predators has received a great deal of attention 

because of the potential these predators have to influence systems through top-down 

control (Pace et al. 1999, Heithaus et al. 2008).  In fact, many ecosystems have 
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experienced fundamental changes in structure and function because of apex predator loss 

(e.g., Terborgh et al. 2001, Ripple and Beschta 2006).  These changes are typically 

mediated by mesopredators, predators of intermediate trophic levels, which provide a 

crucial link between upper and lower trophic levels (Ritchie and Johnson 2009).  

Therefore, given the role mesopredators likely play in determining structure and function 

of ecosystems, an understanding of the dynamics of mesopredator interactions is crucial 

to elucidating the potential effects of predation in systems. 

Despite the importance of mesopredators in other ecosystems, elasmobranch 

mesopredators (i.e., small sharks and batoids) have often been neglected because focus 

has been placed on elasmobranch top predators (i.e., large sharks) (Heithaus et al. 2010).  

Batoids, in particular, have received relatively little attention in coastal communities, 

although they may influence community structure through predation and bioturbation 

(VanBlaricom 1982, Thrush et al. 1994, Peterson et al. 2001).  For example, cownose ray 

foraging can result in widespread loss of shellfish and has been implicated as a factor in 

the collapse of a commercially important scallop fishery (Peterson et al. 2001, Myers et 

al. 2007).  The trophic relationships of batoids may, therefore, be important in the 

systems they inhabit.  

Shark Bay, Western Australia supports a diverse community of elasmobranch 

mesopredators, especially batoids (White and Potter 2004, Vaudo and Heithaus 2009).  

Interestingly, many of the batoid species in Shark Bay have similar patterns of seasonal 

abundance and microhabitat use (Vaudo & Heithaus 2009) and large numbers of batoid 

foraging pits pocket the areas of high batoid use (Vaudo unpublished data).  However, 

previous studies of the sandflat community of Shark Bay have revealed a depauperate 
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invertebrate fauna (Wells et al. 1985, Black et al. 1990).  The scarcity of potential prey in 

an area of high batoid density in which batoids are clearly foraging suggests that batoids 

may be partitioning available food resources.  To date, there have been few studies 

examining resource partitioning in batoids (but see Platell et al. 1998, Bizzarro et al. 

2007, Marshall et al. 2008).  Such studies are necessary to assess the potential ecological 

impacts of individual species as well as batoid communities. 

Traditionally, studies of dietary resource partitioning have relied on stomach 

content analysis; however, such analysis is not without its limitations.  Animals often 

have empty stomachs and collected stomach contents represent only a snapshot of what 

an animal has eaten recently.  This snapshot of the diet may also be skewed as a result of 

differences in the digestibility of prey; hard to digest prey may remain in the stomach for 

longer periods of time (Hyslop 1980).  Stable isotopic analysis (δ13C and δ15N), although 

providing lower taxonomic resolution, has several benefits over stomach content analysis, 

such as reflecting the assimilated material within the diet as opposed to ingested material 

and representing the long-term foraging of an individual (Peterson and Fry 1987).  As a 

result of these advantages and the ease of tissue collection, stable isotopic analysis has 

become an increasingly popular tool in studies of animal ecology.  The goal of the 

present study was to examine the trophic niches of the members of the Shark Bay 

nearshore elasmobranch community with an emphasis on batoids and to investigate the 

possibility of dietary resource partitioning using these two complementary methods. 
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Materials And Methods 

Study Site and Sample Collection 

Shark Bay, Western Australia (25°45´S, 113°44´E), located approximately 800 

km north of Perth, is a large (ca. 13,000 km2) semi-enclosed bay on the central west coast 

of Australia and contains some of the world’s most extensive seagrass shoals (Walker 

1989).  Adjacent to the shore are expansive shallow sandflats with fringing shallow 

seagrass beds (<4 m). 

 Elasmobranchs are abundant in the shallow sandflat habitats and adjacent seagrass 

beds of Shark Bay during the warm season (September-May), although most species are 

also observed in the cold season (June-August), indicating that populations are probably 

residential (Vaudo and Heithaus 2009).  Fishing effort was focused on these nearshore 

habitats within 12 km of the Monkey Mia Dolphin Resort.  I captured elasmobranchs 

between September 2005 and February 2009 using a combination of longline fishing (for 

brown-banded bamboo sharks Chilosyllium punctatum and giant shovelnose rays 

Glaucostegus typus) and netting techniques as detailed in Vaudo and Heithaus (2009).  

All but 14 of 234 stable isotope samples (see below) and 3 of 154 gastric lavage attempts 

(see below) were from the warm season.  For analyses, maskrays Neotrygon spp. (N. 

leylandi, N. kuhlii, and Neotrygon cf. ningalooensis) were grouped because of the limited 

number of animals captured.  Blackspotted whipray Himantura astra and brown whipray 

H. toshi were also grouped for all analyses because they have often been confused in the 

literature (Last et al. 2008).  Photographs of captured individuals confirmed that both 

species were present (W. White, personal communication).  All individuals were 

measured (total length [TL] or disc width [DW]), sexed, and a fin clip was taken from the 
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trailing edge of the pelvic fin (trailing edge of dorsal fin of nervous sharks Carcharhinus 

cautus, C. punctatum, G. typus and smoothnose wedgefish Rhynchobatus laevis) for 

stable isotope analysis.  As part of other stable isotopic studies a variety of primary 

producers (algae, including epiphytes, and seagrasses) were collected from the study site 

between March 2007 and July 2008 and used to determine the carbon source for these 

elasmobranchs.  Primary producer samples (algae: warm season n = 29, cold season n = 

29; seagrass: warm season n = 62, cold season n = 19) were collected by hand and 

scraped clean of any epiphytes prior to processing.  Filter feeding bivalves (i.e., mussels, 

pen shells, oysters and scallops; n = 45) were collected to represent the phytoplankton 

resource pool.  All samples were frozen until processing.  

When possible, I collected stomach contents by gastric lavage.  During gastric 

lavage, an individual was inverted over a collection bin and a 2-cm diameter plastic tube 

was inserted into its stomach via the mouth.  The free end of the plastic tubing was 

connected to a 3800 l h-1 bilge pump, which was lowered over the gunwale into the water 

and activated.  As the stomach filled with water, the tubing was gently moved around the 

stomach to facilitate flushing.  When it appeared that no further contents would be 

collected, the tubing was removed from the individual’s stomach.  Stomach contents were 

recovered from the collection bin and frozen until processing.  The large size range (<1 - 

~50 cm long) of items collected via gastric lavage suggests that this technique was 

adequate for sampling the diets of these individuals. 
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Stable Isotope Analysis 

Prior to processing, I thawed and then washed samples in distilled water.  The 

samples were then dried in a dehydrator for at least 48 h and then ground into a fine 

powder.  The ground samples were then stored in a desiccator until analysis.  Samples 

were analyzed for δ13C and δ15N at the Yale Earth System Center for Stable Isotopic 

Studies.  Homogenized trout standards analyzed at the same time as my samples had 

standard deviations ranging from 0.10-0.19‰ for δ13C and 0.02-0.08‰ for δ15N.  As 

elasmobranch samples had low C:N ratios (2.59 ± 0.13, mean ± SD) and previous studies 

have found that elasmobranch body tissue has low lipid content (Devadoss 1984, Hussey 

et al. 2010), I did not correct δ13C values for the effects of lipids.   

 To investigate the relationship of size and the observed isotopic values of 

elasmobranchs, I used linear regression.  For some species, the relationship between size 

and isotopic values appeared nonlinear.  I split these species into size classes based on 

apparent breakpoints in the plotted data and treated size classes separately for all further 

analyses. 

I plotted the individuals for each elasmobranch species or size class in δ13C-δ15N 

space (“isotopic niche space”) and calculated the quantitative metrics suggested by 

Layman et al. (2007a).  The total area (TA) occupied by each species is a proxy for the 

isotopic trophic diversity within that species and was calculated as the area of the convex 

hull that encompasses all individuals.  The mean distance to the centroid (CD) represents 

the average degree of trophic diversity within the species and was calculated by 

determining the distances of each individual from the bivariate mean of all individuals.  

The mean nearest neighbor distance (NND) and standard deviation of nearest neighbor 
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distances (SDNND) represent the density and evenness of individual packing within the 

isotopic niche space, respectively, and were calculated using the distances between each 

individual and all other individuals.  I also calculated the mean distance of individuals to 

all other individuals (ND) and the standard deviation of all neighbor distances (SDND) as 

another measure of individual packing.  These additional metrics were calculated because 

if individuals are aggregated in several clusters, NND and SDNND will not represent the 

clustering, resulting in inaccurate estimates of evenness (Quevedo et al. 2009).  I 

calculated all distances and areas for these analyses using the Animal Movement Analyst 

Extension (AMAE) (Hooge and Eichenlaub 2000) for ArcView GIS 3.2a. 

 This approach allowed for interspecific comparisons and assessment of overlap in 

isotopic niche space.  To assess whether I had adequately sampled the intraspecific 

variability and therefore the full isotopic niche space used by a species, I used AMAE 

(Hooge and Eichenlaub 2000) to conduct bootstrap analyses (n = 200) examining the 

mean TA across varying sample sizes.  If the curves from the resulting sample size vs. 

TA graphs reach an asymptote, the number of individuals sampled is considered 

sufficient for describing the isotopic niche space used.  To determine if a curve reached 

an asymptote, I used the method devised by Bizzarro et al. (2007).  I performed a linear 

regression on the final four endpoints of the curve to determine if the slope was 

significantly different from zero.  If the slope did not differ from zero, I concluded that 

the curve had reached an asymptote.    

 To provide estimates of source carbon proportions for each elasmobranch species 

(i.e., the food webs being used) in this system, I used MixSIR (Semmens and Moore 

2008).  The model MixSIR is a Bayesian-mixing model that accounts for variation in 
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isotopic fractionation and sources values (Moore and Semmens 2008).  I assumed three 

resource pools: seagrass, macroalgae, and phytoplankton (estimated using planktivorous 

bivalves as a proxy).  The number of trophic transfers between resource pools and 

elasmobranchs was estimated by calculating a standardized trophic level for each species 

with diet data as described by Ebert and Bizzarro (2007).  For species lacking sufficient 

diet data, trophic level values were estimated from published diet information or from 

similar species (Darracott 1977, Stead and Bennett 2008, Schluessel et al. 2010).  

Isotopic fractionation (δ13C: 0.96 ± 1.68‰; δ15N: 2.75 ± 1.64‰; Caut et al. 2009) was 

scaled to the number of trophic transfers minus one.  For the last trophic transfer, I used 

fractionation values calculated from an elasmobranch (δ13C: 0.86 ± 0.28‰; δ15N: 2.43 ± 

0.27‰; Hussey et al. 2010).  One million iterations were used for each species group. 

 

Stomach Content Processing and Analysis 

 Prey items were identified to the lowest possible taxonomic level, counted, and 

blotted dry, and all items of a given taxon were weighed collectively.  To facilitate 

analyses, prey were grouped into nine prey categories (see Table 3).  The shrimp-like 

crustaceans could not be identified because of their small size and state of digestion, but 

appear to all be the same species. 

Diets were quantified for each species using three measures: frequency of 

occurrence (%FO, proportion of stomachs containing prey that contain a given prey 

category), numerical abundance (%N, proportion of the total number of prey items that 

belong to a given prey category) and gravimetric abundance (%W, proportion of the total 

weight of all prey items that belong to a given prey category).  From these three measures 
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I calculated the index of relative importance (IRI, Pinkas et al. 1971) for each prey 

category as IRI = %FO × (%N + %W).  For interspecific comparisons, the IRI of each 

prey category was divided by the sum of all IRI values (%IRI, Cortés 1997). 

Dietary overlap was calculated for %N, %W, and %IRI using Schoener’s overlap 

index (Schoener 1970).  Values for this index range from 0 to 1, with 0 representing no 

overlap and 1 representing complete overlap.  Overlap values of ≥0.6 are generally 

considered biologically significant (Wallace 1981); however, because this cutoff is 

arbitrary, I also used null models to determine if overlap values were higher than 

predicted by chance.  The null models create distributions of simulated overlap values by 

reshuffling the values for each species.  Observed values of overlap differ from those 

predicted by chance if they are in the highest or lowest 2.5% of the simulated distribution 

(i.e., P < 0.05).  For each null model I ran 1000 simulations in EcoSim v. 7.72 (Gotelli 

and Entsminger 2009) using the RA3 algorithm for randomization (niche breadth 

retained/zero states reshuffled). 

 I also calculated %N and %W at the individual level so I could assess dietary 

differences between species using a 1-way analysis of similarity (ANOSIM).  Prior to 

running the ANOSIM, these data were standardized, square-root transformed and used to 

construct a Bray-Curtis similarity matrix.  Upon finding significant dietary differences 

between species, I conducted a similarity percentages (SIMPER) analysis to identify 

which prey categories contributed most to the observed differences.  The analyses 

ANOSIM and SIMPER were performed using PRIMER 6. 
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Results 

Stable Isotope Analysis 

 Relationships between size and isotopic values were found for three species.  For 

Glaucostegus typus, the relationship was linear across the whole size range sampled for 

both δ13C (negative relationship) and δ15N (positive relationship) (regression, t = -2.99, p 

= 0.005 and t = 3.81, p = 0.001, respectively).  As a result, I divided G. typus into two 

size classes based on the mean size of sampled individuals: ≤150 cm TL and >150 cm 

TL.  With the exception of three points, δ13C and δ15N values for pink whiprays 

Himantura fai appeared to stabilize once individuals reached a size larger than 65 cm 

DW.  When the three aforementioned points were excluded, there was no relationship 

between δ13C and δ15N values and size for individuals >65 cm DW (regression, t = 0.35, 

p = 0.732 and t = -1.30, p = 0.204, respectively), so H. fai was split into two sizes classes: 

≤65 cm DW and >65 cm DW.  For cowtail rays Pastinachus atrus, there appeared to be a 

natural break in the data at a size of 60 cm DW for both δ13C and δ15N.  For individuals 

greater than 60 cm DW there was no relationship between size and δ15N (regression, t = 

1.25, p = 0.228), although there was a negative relationship with δ13C (regression, t = -

3.57, p = 0.002).  Despite the relationship with size and δ13C, I split P. atrus into two 

groups using 60 cm DW as the dividing point. 

Species differed with regard to their average location in isotopic niche space 

(MANOVA, F = 31.28, p < 0.001).  The observed differences were a result of differences 

in both δ13C and δ15N (ANOVA, F = 32.51, p < 0.001 and F = 24.46, p < 0.001, 

respectively; Fig. 1, Table 1).  Glaucostegus typus ≤150 cm TL (δ13C = -6.54 ± 0.99‰, 

mean ± SD) was the most enriched in 13C, while Chiloscyllium punctatum (δ13C = -11.84 
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± 1.13‰) was the least enriched.  Rhynchobatus laevis (δ15N = 8.90 ± 0.76‰) had the 

highest δ15N value and Neotrygon spp. (δ15N = 5.93 ± 1.04‰) had the lowest value. 

The curves generated to examine the effect of sample size on TA reached an 

asymptote for the reticulate whipray Himantura uarnak and both size classes of 

Pastinachus atrus and Glaucostegus typus, indicating that most of the individual 

variation within isotopic signatures was captured (Fig. 2).  An asymptote was also 

reached for H. fai >65 cm DW with and without the three anomalous values.  Therefore, 

for these species, sample sizes were likely adequate to estimate δ13C range, δ15N range, 

and TA for the size range examined.  For the remaining species examined, δ13C range, 

δ15N range, and TA are likely to be underestimated.  Anomalous values, however, may 

have affected the bootstrap results for the Indo-Pacific spotted eagle ray Aetobatus 

ocellatus (formerly A. narinari) and Chiloscyllium punctatum.  Despite a visual 

inspection that would not indicate values reaching an asymptote for A. ocellatus, 

variability within the four endpoints resulted in a slope not different than zero 

(regression, t = 2.12, p = 0.168).  Reanalysis after removal of an individual with an 

unusually high δ15N value resulted in the endpoints having a slope that differed from zero 

(regression, t = 7.77, p = 0.016), indicating that an asymptote had not been reached (Fig. 

2).  For C. punctatum, the slope of the best-fit line through the four endpoints differed 

from zero (regression, t = 8.64, p = 0.013); when an individual with an unusually high 

δ13C value was removed from the bootstrap analysis, the slope no longer differed from 

zero.  Most of the variability within C. punctatum may, therefore, have been sampled. 

For the species groups with adequate sample sizes to estimate examined TA, 

values ranged from 2.41 units2 (Glaucostegus typus ≤150 cm DW) to 7.67 units2 
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(Pastinachus atrus <60 cm DW) (Table 1).  Despite a sample size not large enough to 

adequately describe TA, Aetobatus ocellatus had the largest TA (19.96 units2) even when 

the anomalous values were excluded (12.83 units2).  The percentage of nonoverlapping 

space (portion of isotopic niche space based on TA that is not shared with another species 

group) occupied by each species group ranged from 0% (Carcharhinus cautus, P. atrus 

>60 cm DW, G. typus >150 cm TL and the Himantura astra/H. toshi group) to 43.10% 

(Chiloscyllium punctatum) (Table 1, Fig. 3) with the percentage of individuals of a 

species occupying the nonoverlapping space ranging from 0% (C. cautus, P. atrus >60 

cm DW, G. typus >150 cm TL and the H. astra/H. toshi group) to 47.62% (C. punctatum) 

(Table 1, Fig 3). 

 Of the adequately sampled groups, δ13C ranges varied from 3.29‰ (Pastinachus 

atrus >60 cm DW) to 5.82‰ if all Chiloscyllium punctatum values were included or 

5.6‰ (Himantura uarnak) if the anomalous C. punctatum was excluded (Table 1).  

Aetobatus ocellatus had the largest δ13C range (7.14‰) despite the fact that it may be 

underestimated.  Aetobatus ocellatus also had the largest range in δ15N (4.69‰), although 

this is the result of an individual with an unusually large δ15N value.  For groups with 

adequate sample sizes, the smallest δ15N range belonged to Glaucostegus typus ≤150 cm 

TL (1.27‰; Table 1) and P. atrus <60 cm DW had the largest range.  With the exception 

of A. ocellatus, all groups had similar CD values (ANOVA, F = 3.00, p = 0.001; Fig. 4).  

I found a greater number of interspecies differences in NND (ANOVA, F = 6.64, p < 

0.001; Fig. 4) and ND (ANOVA, F = 18.92, p = 0.001; Fig. 4).  SDNND ranged from 

0.14 units (H. fai >65 cm DW) to 0.68 units (A. ocellatus; Table 1) and SDND ranged 

from 0.68 units (P. atrus >60 cm DW) to 1.52 units (A. ocellatus; Table 1). 
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On the basis of published estimates of isotopic fractionation, calculated 

elasmobranch trophic levels and the assumption that elasmobranchs are limited to 

phytoplankton, algal and seagrass resource pools in Shark Bay, most of the 

elasmobranchs examined are highly dependent on the seagrass-based food web.  The 

median contribution of the seagrass resource pool to elasmobranchs ranged from 35% 

(Chilosyllium punctatum) to 85% (Glaucostegus typus ≤150 cm TL) and for ten of the 13 

groups, seagrass contribution exceeded 50% (Table 2). In the three species divided into 

size classes, the contribution from the seagrass food web increased with size for 

Pastinachus atrus and Himantura fai, while it decreased for G. typus. 

 

Stomach content analysis 

I recovered stomach contents from 114 animals (17 Glaucostegus typus ≤150 cm 

TL, 34 G. typus >150 cm TL, 10 Himantura fai ≤65 cm DW, 27 H. fai >65 cm DW, 14 

H. uarnak, 6 Pastinachus atrus, and 6 H. astra/H. toshi).  The proportion of lavaged 

individuals from which I collected stomach contents was similar across species (63% G. 

typus ≤150 cm TL, 72% G. typus >150 cm TL, 100% H. fai ≤65 cm DW, 75% H. fai >65 

cm DW, 69% H. uarnak, 60% P. atrus, and 75% H. astra/H. toshi). 

 Because of small sample sizes for Himantura astra/H. toshi and Pastinachus 

atrus, quantitative analyses were only performed for H. fai ≤65 cm DW, H. fai >65 cm 

DW, H. uarnak, Glaucostegus typus ≤150 cm TL and G. typus >150 cm TL.  For these 

species groups, crustaceans dominated the diet in all four metrics.  In particular, penaeid 

shrimp appear to be quite important; they were found in >60% of samples from each 

species group (Table 3).  In addition, for H. uarnak, H. fai (both sizes classes) and G. 



 154

typus ≤150 cm TL, penaeids made large contributions to %N, %W, and %IRI (Table 3).  

Penaeids and brachyuran crabs made similar contributions to the diets of G. typus ≤150 

cm TL, and brachyurans dominated the diet of G. typus >150 cm TL based on %IRI 

(Table 3).  Crabs were found in 82% of G. typus samples (both size classes) and despite 

making up 10% (≤150 cm TL) and 6% (>150 cm TL) of prey items by number, they 

composed 51% (≤150 cm TL) and 67% (>150 cm TL) of prey items by weight (Table 3).  

Portunid crabs made up the majority of crabs consumed by all three species, but adult 

blue crabs Portunus pelagicus were only found in the contents of G. typus.  Additionally, 

shrimp-like crustaceans (~1 cm in length) were only found in G. typus and in large 

numbers, making them the most numerous prey items in the diets of G. typus (both size 

classes).  Prey items collected from the stomachs of H. astra/H. toshi matched those of 

the other Himantura spp., while the stomach contents of P. atrus differed dramatically.  

Polychaetes, including tubeworms, made up the bulk of collected P. atrus stomach 

contents and holothuroideans were also collected; holothuroideans were not found in the 

contents of any other species. 

 I found high values of dietary overlap between Himantura uarnak and both size 

classes of H. fai.  Overlaps between the three groups for %N and %IRI were biologically 

significant (Schoener’s index >0.6; Table 4) as was the overlap in %W between both size 

classes of H. fai.  Overlaps in %W between both size classes of H. fai and H. uarnak 

were much lower as a result of the higher mass of polychaetes found in H. uarnak.  The 

polychaetes found in stomachs of H. uarnak, however, all came from one individual.  

Removal of this individual from the data set resulted in significant overlap in %W 

between H. uarnak and both sizes classes of H. fai (H. fai ≤65 cm DW: Schoener’s index 
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= 0.89 and H. fai >65 cm DW: Schoener’s index = 0.76).  Null models confirmed that 

%N overlap values between H. fai size classes, overlap values between H. fai size classes 

and H. uarnak for %N and overlap values for H. fai ≤65 cm DW and H. uarnak for %IRI 

were higher than predicted by chance (Table 4).  When the H. uarnak containing the 

large mass of polychaetes was removed, the overlap value for %W between H. uarnak 

and H. fai ≤65 cm DW was higher than predicted by chance (p < 0.001), but the overlap 

in %W for H. uarnak and H. fai >65 cm DW was not (p = 0.118).  Neither Himantura 

spp. showed high overlap with either size class of Glaucostegus typus for any metric 

(Table 4), nor were values higher than predicted by chance (Table 4).  High values of 

overlap for all indices were found between the two size classes of G. typus and were 

supported by null models (Table 4).   

 Using ANOSIM, I found differences in the dietary compositions by numerical 

abundance between Himantura fai >65 cm DW and both Glaucostegus typus size classes 

(G. typus ≤150 cm TL: R = 0.479, P < 0.001 and G. typus >150 cm TL: R = 0.209, p < 

0.001).  The SIMPER analysis revealed that differences in the abundance of penaeid 

shrimp (27.9% of dissimilarity), shrimp-like crustaceans (25.0% of dissimilarity) and 

brachyuran crabs (21.5% of dissimilarity) contributed the most to the observed difference 

between H. fai >65 cm DW and G. typus ≤150 cm TL. Penaeids and brachyurans (34.0% 

and 25.8% of dissimilarity, respectively) contributed the most to differences between H. 

fai >65 cm DW and G. typus >150 cm TL.  H. fai ≤65 cm DW and H. uarnak also 

differed from G. typus ≤150 cm TL (R = 0.324, p = 0.004 and R = 0.310, p = 0.002, 

respectively).  Glaucostegus typus ≤150cm TL differences from H. fai ≤65cm DW and H. 

uarnak were primarily the result of differences in abundances of penaeids (31.9% and 
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27.8% of dissimilarity, respectively), shrimp-like crustaceans (27.1% and 26.3% of 

dissimilarity, respectively) and brachyurans (26.1% and 22.7% of dissimilarity, 

respectively).  Analysis by weight revealed that differences existed between all 

Himantura groups and both G. typus size classes (ANOSIM, R = 0.185 – 0.408, p = 

0.001 – 0.032).  Brachyuran crabs and penaeid shrimp contributed the most to the 

observed differences making up 30.1 – 41.5% of the observed dissimilarities.    

  

Discussion 

 Despite the diversity and abundance of the nearshore elasmobranch community of 

Shark Bay (Vaudo and Heithaus 2009), many of the species appear to occupy similar 

trophic positions based on their diets.  In fact, most species occupied very little unique 

isotopic niche space (TA), although mean isotopic values did differ between species.  In 

addition, mixing models suggest that most of the elasmobranch community is highly 

dependent on a seagrass carbon source.  Prey, however, may not necessarily come from 

the seagrass beds.  Many invertebrates from the sandflats, including shrimp, have δ13C 

values similar to those of seagrass (Heithaus, unpublished data), indicating that seagrass 

may provide an important carbon source for the sandflats via detrital pathways.  

However, despite the number of elasmobranch, especially batoid, sightings and batoid 

feeding pits on the nearshore sandflats during the warm season (September – May; 

Vaudo and Heithaus 2009), seagrass beds may provide the primary foraging grounds for 

this elasmobranch community on the basis of the depauperate sandflat prey base of Shark 

Bay (Wells et al. 1985, Black et al. 1990) and stomach content analysis (see below).  The 

fact that the seagrass beds in Shark Bay may be supporting a diverse and abundant batoid 
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community further emphasizes the importance of seagrass bed production in marine 

systems (Heck et al. 2008) and in this system extends it to a group of species that are not 

typically associated with seagrass. 

 However, despite the overall similarity in mean isotopic niche position and high 

degree of overlap in observed δ15N and δ13C values, subtle differences were observed 

between species.  Not surprisingly, the Neotrygon spp. and Aetobatus ocellatus on 

average had lower δ15N, often indicative of feeding at a lower trophic level.  The 

Neotrygon spp. are much smaller than the other batoids in the system (maximum size = 

~30 cm DW) and as such are limited to smaller prey (Darracott 1977), which are 

generally low level consumers.  Aetobatus ocellatus, on the other hand, tends to be one of 

the larger batoids observed in the nearshore flats growing to over 3m DW (usually less 

than 2 m DW within my study site), but tends to feed on low order consumers such as 

gastropods and bivalves (Schluessel et al. 2010).  Feeding on such low-level consumers 

should result in the lower δ15N values observed.  The high contribution of the seagrass 

resource pool in A. ocellatus could mean that individuals in Shark Bay are not as 

dependent on bivalve prey as previously thought or that the bivalves eaten are 

detritivores.  Several detritivorous bivalves are found in the shallow waters of Shark Bay.  

Further diet studies on A. ocellatus in Shark Bay are required to investigate these 

possibilities. 

 Albeit based on only four individuals, Rhynchobatus laevis had the highest δ15N 

values and the lowest δ13C values of the batoids examined.  Mixing models suggest that 

these values may be the result of R. laevis being less dependent on the seagrass food web 

than other batoids in the system.  Rhynchobatus laevis is also a large mobile species (up 
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to 3 m TL) with a body that more closely resembles pelagic sharks than it does most 

batoids, and as a result its size and motility open up the possibility of it feeding on larger 

more mobile prey, which may have higher δ15N values than smaller benthic prey species; 

teleost prey have frequently been found in the diet of congeners (Darracott 1977).  In 

addition, it is the only species examined that I have not observed in the study area during 

the cold season (June – August; Vaudo and Heithaus 2009), so its isotopic signature is 

reflective of prey not only from the study site, but also from areas where it spends the rest 

of the year, which may exhibit different baseline carbon and nitrogen values. 

 The two shark species from the shallow flats tended to have higher δ15N values 

and lower enrichment of 13C, although their values were not distinct from many of the 

batoid species.  The trend toward higher δ15N values for Carcharhinus cautus and 

Chiloscyllium punctatum is likely the result of the higher proportion of fish in their diets.  

Teleosts make up ~70% of the diet of C. cautus by number and volume in Shark Bay 

(White et al. 2004) and ~30% of the IRI of C. punctatum in other locations (Stead and 

Bennett 2008), although the mixing models also suggest that these species are less reliant 

than the batoids examined on the seagrass food web, which had a lower δ15N baseline. 

Interestingly, isotopic values from the most common elasmobranchs 

(Glaucostegus typus, Himantura spp., and Pastinachus atrus) on the nearshore flats of 

Shark Bay were similar, although there were differences between species groups with 

regard to mean δ15N and δ13C values.  H. fai ≤65 cm DW and P. atrus >60 cm DW had 

the highest and lowest δ15N values of these groups, respectively and differed by 2.4‰.  

The δ15N range of the rest of these elasmobranchs was only 1.1‰, emphasizing their 
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similarity.  The δ13C range of these common elasmobranchs was 2.7‰, with G. typus 

<150 cm TL the most enriched in 13C and P. atrus < 60cm DW the least enriched. 

 Despite the abovementioned similarities, I did find isotopic differences between 

size classes for two of the three species divided by size.  Pastinachus atrus size classes 

differed in both δ15N and δ13C values, while Himantura fai size classes only differed in 

δ15N values.  For both species, the smaller size classes were more enriched in 15N and 

mixing models suggested an increased reliance on seagrass carbon with increased size, 

implying an ontogenetic shift in foraging behavior.  Like many fish species, such shifts 

have been observed in batoids using stomach content analysis (e.g., Bizzarro et al. 2007, 

Marshall et al. 2008). 

 The high overlap in isotopic niche space and dependence on seagrass-derived 

carbon observed for the most common species derived from stable isotope analysis were 

supported by traditional stomach content analysis.  With the exception of Pastinachus 

atrus stomach contents, the breadth of species found in the stomach contents of 

Glaucostegus typus and the Himantura spp. (all size classes) was similar and these prey 

species are not typically found the sandflats of Shark Bay (Wells et al. 1985, Black et al. 

1990, Vaudo unpublished data).  Some of the species, such as juvenile penaeid shrimp, 

which made up large proportions of the diets of G. typus, H. fai, and H. uarnak, are well 

established seagrass-associated species (Coles et al. 1987, Kenyon et al. 1997) and 

previous work in Shark Bay has shown that crustaceans are common in seagrass habitats 

and rare on the sandflats (Wells et al. 1985).  Even though diet breadth was similar for G. 

typus and the Himantura spp., there was some evidence of resource partitioning.  Diet 

overlap was low between G. typus and both Himantura spp. for all size classes due to the 
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differences in the proportions of prey categories consumed, although overlap was higher 

than expected by chance for G. typus ≤150 cm TL and both H. fai ≤ 65cm DW and H. 

uarnak.  Both size classes of G. typus consumed a larger proportion of crabs and because 

of its larger size, G. typus >150 cm TL was able to make use of a resource not available 

to the Himantura spp.: adult blue crabs Portunis pelagicus.  Similar partitioning of food 

resources has been noted in several sympatric elasmobranchs, including batoids (Platell et 

al. 1998, White et al. 2004, Marshall et al. 2008).   

Within a species, dietary overlap was high and greater than predicted by chance.  

Despite the high overlap and indistinguishable δ15N and δ13C values between size classes, 

Glaucostegus typus may experience an ontogenetic shift in diet; crabs were almost twice 

as important in the diets of large individuals.  This diet shift is consistent with a previous 

study on the diet of G. typus (White et al. 2004).  Despite a difference in the δ15N values 

of Himantura fai, I was not able to detect evidence of an ontogenetic diet shift based on 

stomach contents.  This may be a result of the small number of H. fai <65 cm DW 

stomachs examined or could possibly reflect habitat differences in the bay, such that prey 

items (i.e., penaeid shrimp) are more dependent on the algal carbon pool in areas used by 

small H. fai. 

 Although sample sizes were small, the presence of tubeworms and sea cucumbers 

from the sandflats and absence of crustaceans in Pastinachus atrus >60 cm DW stomach 

contents suggests that P. atrus >60 cm DW forages differently than other batoids in the 

system, including P. atrus <60 cm DW, which differed isotopically from larger 

individuals.  It may also explain the large number of foraging pits found on the sandflats 

during the warm season and the different jaw morphology of this species.  However, 
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despite foraging on soft bodied invertebrates, P. atrus >60 cm DW had similar nitrogen 

and carbon values to Himantura uarnak, which feeds predominantly on crustaceans.  The 

isotopic similarity of these species despite dietary differences underscores the importance 

of using these methods together during studies of foraging ecology because several types 

of diet can lead to similar and indistinguishable positions in isotopic niche space.  In this 

case, stable isotopic analysis suggests that P. atrus >60 cm DW and H. uarnak are both 

dependent on seagrass-derived carbon and may occupy similar trophic levels, but cannot 

differentiate between the diets of these two species or the habitats in which they feed. 

 Many studies have found that resource partitioning is a common feature within 

marine fish communities (e.g., Beyst et al. 1999, Darnaude et al. 2001, Guedes and 

Araujo 2008).   For example, Platell and Potter (2001) examined a guild of 18 benthic 

carnivores and found that in only one of 153 pairwise diet comparisons species did not 

differ and those two species occupied different depth distributions.  Dietary partitioning 

is also well established in several elasmobranch species (e.g., White et al. 2004, Marshall 

et al. 2008), including sympatric, congeneric batoids (Platell et al. 1998).  Although 

differences in diet and isotopic niche space were observed for some species and size 

classes, given the abundance and diversity of batoids in Shark Bay, the similarity in 

isotopic niche space and diet breadth within this guild of predators is surprising. 

 High values of dietary overlap within a guild of sympatric predators would 

suggest that prey are not limiting.  Several studies have found that dietary breadth is 

inversely related to prey abundances, with predator diets skewed toward abundant prey 

species and competition relaxed when prey are abundant, leading to dietary similarity 

(Croxall et al. 1999, Tinker et al. 2008).  Such occurrences happen seasonally in some 
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systems as prey species undergo dramatic seasonal pulses in abundance (e.g., Lucena et 

al. 2000).  Although present in Shark Bay year round, batoids are only abundant on the 

nearshore flats and therefore catchable during the warm season (September-May; Vaudo 

and Heithaus 2009), so I was unable to examine if the diets of batoids in Shark Bay only 

converge seasonally. 

Alternatively, if batoid populations are below that which could be supported by 

prey resources, prey may effectively be an unlimited resource throughout the year.  Shark 

Bay is a relatively pristine system and is home to large populations of batoid predators 

(tiger and hammerhead sharks).  Risk and direct predation effects from predators can 

maintain prey populations below the carrying capacity set by their prey (Creel et al. 2007, 

Heithaus et al. 2008), and if this is the case in Shark Bay, batoid populations may be 

released from prey limitation, allowing for dietary convergence at the population level 

and maintaining high levels of batoid diversity. 

 Similarities at the group level, however, may mask underlying individual 

variation within each group.  Although often ignored, individual variation appears to be a 

common feature in many systems (Bolnick et al. 2003) and isotopic values suggest that 

varying levels of individual specialization are found within the batoid populations of 

Shark Bay.  Although inherent variability of isotope values (i.e., variability associated 

with physiological differences in diet-tissue fraction between individuals rather than 

dietary differences) has not been explicitly examined in elasmobranchs, the observed 

variation in δ15N and δ13C for Shark Bay elasmobranchs exceeds the variation observed 

in fish species such as the European sea bass Dicentrarchus labrax under controlled 

conditions (e.g., Sweeting et al. 2007, Barnes et al. 2008); this suggests that the variation 
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in elasmobranch isotope values is due to dietary differences between individuals.  The fin 

tissue used for isotopic analysis should turn over at a slower rate compared to more 

metabolically active tissues such as blood or muscle, which turn over slowly in 

elasmobranchs (0.0083 and 0.0041 d-1, respectively; MacNeil et al. 2006) and therefore 

represent a long-term average of assimilated materials.  As a result, differences in 

isotopic values should represent long-term consistent dietary differences, further 

suggesting individual specialization within these populations.  Bootstrap techniques 

suggest that even more variation, and thus greater individual specialization, exists within 

this community for many species. 

 The amount of trophic diversity (CD), density (NND and ND) and evenness 

(SDNND and SDND) in trophic space, all measures that provide insight into individual 

specialization, were similar across groups, with some exceptions.  Groups with low 

sample sizes and those that were not adequately sampled according to bootstrap analysis, 

including Aetobatus ocellatus and multispecies groups, tended to show the most 

individual specialization in isotopic values (higher values of CD, NND, ND, SDNND and 

SDND).  This may be a result of sample size (i.e., not enough sampling to fill in the gaps) 

or the fact that groups contained multiple species, or in the case of A. ocellatus, may 

reflect increased plasticity associated with jaw morphology.  Aetobatus ocellatus is the 

only species examined that has plate-like teeth capable of crushing bivalve and gastropod 

shells, allowing for a more variable diet. 

 While individual specialization is generally thought to reduce competition, the 

individual variability observed in isotopic values results in high degrees of overlap 

between species and limited areas of unique isotopic niche space, despite differences 
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between species means.  This suggests that analyses focusing on central tendency may be 

misleading and miss important population aspects such as individual variation and a large 

degree of overlap in species isotopic niche spaces.  I advocate the use of stable isotope 

metrics, such as those presented by Layman et al. (2007a), at the population or 

subpopulation level because they can elucidate often ignored intrapopulation variability 

(Layman et al. 2007a) and would facilitate comparisons within systems that could 

provide new insights into food web dynamics and the implications of declines in top 

predators or other anthropogenic changes to communities (e.g., Layman et al 2007b).  

The high degree of variability also underscores a need to be mindful of sample size.  

Sample size has been shown to be an important concern in isotopic studies of ontogenetic 

shifts in trophic position (Galván et al. 2010) and, as seen in this study, isotopic metrics 

such as δ13C range, δ15N range, and TA may also be sensitive to sample size. Some of the 

species groups examined were not adequately sampled to capture the full extent of the 

group’s variability.  This is particularly important for large predators, for which 

conclusions are often made from small sample sizes due to logistical concerns. 

Overall, I found that despite its diversity, the elasmobranch community of the 

nearshore sandflats of Shark Bay occupies a relatively small area of isotopic niche space 

within the Shark Bay food web and is heavily dependent on seagrass-derived carbon.  

Within this isotopic niche space, I found that isotopic differences and dietary differences 

exist between species, although the batoid species examined consumed the same prey.  

Isotope values and diet data also suggest that individual specialization, although rarely 

considered in elasmobranchs (Heithaus et al. 2010, but see Matich et al. 2010), may play 
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an important role in the foraging ecology of elasmobranchs and may be crucial to 

understanding the ecological role of these predators. 
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Table 1 Summary of isotopic metrics and body size range for elasmobranchs caught in the nearshore waters of Shark Bay, 

Western Australia.  Size ranges for Glaucostegus typus, Rhynchobatus laevis, Carcharhinus cautus, and Chiloscyllium punctatum 

are total lengths (TL).  Size ranges for all other species are disc widths (DW).  Mean values with different letters are significantly 

different at p < 0.05. SDNND: standard deviation of nearest neighbor distances; SDND: standard deviation of neighbor distances; 

TA: total area 

Species n 

Size 

range 

(cm) 

Mean δ15N (± 

SD) (‰) 

δ15N 

range 

(‰) 

Mean δ13C (± SD) 

(‰) 

δ13C 

range 

(‰) 

SDNND SDND TA 
%  of TA 

unique 

% of 

individuals in 

unique space 

(# of 

individuals) 

Aetobatus 

ocellatusa 
16 

64 – 

155 
6.45 ± 1.07 g, h 4.69 -9.38 ± 1.99 b, c 7.14 0.68 1.52 19.96 25.88 12.50 (2) 

Glaucostegus 

typus ≤150 cm 
17 

62 – 

148 
7.27 ± 0.34 e, f, g 1.26 -6.54 ± 0.99 f 3.48 0.28 0.82 2.41 20.04 35.29 (6) 

Glaucostegus 

typus >150 cm 
21 

151 – 

232 
7.58 ± 0.34 d, e 1.40 -7.71 ± 1.07 d, e, f 3.55 0.16 0.84 2.58 0.00 0.00 (0) 

Himantura 

astra / H. 

toshia 

10 
44 – 

76 
7.51 ± 0.92 c, d, e, f 2.48 -8.88 ± 1.41 c, d, e 4.55 0.44 1.29 2.48 0.00 0.00 (0) 

Himantura fai 

≤65 cma 
8 

62 – 

65 
8.81 ± 0.86 a, b 2.95 -9.12 ± 1.26 b, c, d 3.81 0.49 1.02 3.41 9.45 12.50 (1) 
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Table 1 continued 

Species n 

Size 

range 

(cm) 

Mean δ15N (± 

SD) (‰) 

δ15N 

range 

(‰) 

Mean δ13C (± SD) 

(‰) 

δ13C 

range 

(‰) 

SDNND SDND TA 
%  of TA 

unique 

% of 

individuals in 

unique space 

(# of 

individuals) 

Himantura fai 

>65 cm 
39 

66 – 

100 
7.51 ± 0.83 e 3.66 -7.57 ± 1.18 d, e, f 4.70 0.14 1.39 6.10 7.60 12.82 (5) 

Himantura 

uarnak 
37 

34 – 

113 
6.81 ± 0.54 f, h 2.17 -6.93 ± 1.23 f 5.60 0.26 1.05 7.48 13.34 21.62 (8) 

Neotrygon 

spp.a 
9 

19 – 

30 
5.93 ± 1.04 h 2.70 -9.96 ± 1.58 b, c 4.27 0.57 1.17 7.50 19.23 44.44 (4) 

Pastinachus 

atrus <60 cm 
27 

38 – 

58 
7.94 ± 0.90 b, c, d, e 3.75 -9.28 ± 0.88 c 3.76 0.30 0.85 7.67 9.58 7.41 (2) 

Pastinachus 

atrus >60 cm 
20 

65 – 

133 
6.40 ± 0.48 h 1.91 -7.41 ± 0.86 e, f 3.29 0.27 0.68 3.61 0.00 0.00 (0) 

Rhynchobatus 

laevisa 
4 

200 – 

224 
8.90 ± 0.76 a, b, c 1.78 -11.54 ± 0.87 a, b 1.89 0.18 0.69 0.67 1.65 25.00 (1) 

Carcharhinus 

cautusa 
5 

50.5 – 

91 
8.72 ± 0.70 a, b, c, d 1.83 -10.10 ± 0.72 a, b, c 1.77 0.55 0.69 1.34 0.00 0.00 (0) 

Chiloscyllium 

punctatumb 
21 

52 – 

82 
8.79 ± 0.50 a 2.00 -11.84 ± 1.13 a 5.82 0.50 1.02 6.03 43.10 47.62 (10) 

 
a Bootstrap sampling indicated that sample size was not adequate to fully describe TA (i.e., TA, δ13C range and δ15N range may be underestimated) 
b Includes an anomalous value which may have led to higher values for δ13C range, TA, and overlap with other groups 
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Table 2 Estimated trophic positions of and median (5th – 95th percentile) contributions of basal resource pools to elasmobranchs 

caught in the nearshore waters of Shark Bay, Western Australia.  Resource pool values used for the MixSIR model are shown 

below.  Filter-feeding bivalves were used as a proxy for the phytoplankton resource pool and considered one trophic level higher 

than the basal level (i.e., trophic level 2)   

   Resource Pool  

Species Estimated trophic level Phytoplankton Algae Seagrass 

Aetobatus ocellatus 3.16 0.15 (0.02 – 0.27) 0.14 (0.02 – 0.32) 0.71 (0.61 – 0.80) 

Glaucostegus typus (≤150 cm) 3.50 0.05 (0.00 – 0.14) 0.09 (0.01 – 0.21) 0.85 (0.75 – 0.93) 

Glaucostegus typus (>150 cm) 3.51 0.08 (0.01 – 0.20) 0.17 (0.03 – 0.29) 0.74 (0.66 – 0.83) 

Himantura astra / H. toshi 3.53 0.16 (0.03 – 0.31) 0.17 (0.02 – 0.37) 0.66 (0.54 – 0.78) 

Himantura fai (≤65 cm) 3.52 0.14 (0.02 – 0.30) 0.27 (0.05 – 0.48) 0.59 (0.43 – 0.74) 

Himantura fai (>65 cm) 3.52 0.07 (0.01 – 0.17) 0.16 (0.05-0.26) 0.77 (0.70 – 0.84) 

Himantura uarnak 3.53 0.06 (0.01 – 0.14) 0.10 (0.01 – 0.19) 0.84 (0.78 – 0.91) 

Neotrygon spp. 3.53 0.25 (0.07 – 0.38) 0.08 (0.01 – 0.27) 0.65 (0.55 – 0.78) 

Pastinachus atrus (<60 cm) 3.53 0.20 (0.09 – 0.31) 0.19 (0.07 – 0.33) 0.63 (0.53 – 0.68) 

Pastinachus atrus (>60 cm) 3.53 0.09 (0.01 – 0.19) 0.09 (0.01 – 0.21) 0.81 (0.73 – 0.90) 

Rhynchobatus laevis 3.78 0.41 (0.15 – 0.62) 0.22 (0.03 – 0.52) 0.36 (0.18 – 0.54) 

Carcharhinus cautus 4.10 0.31 (0.09 – 0.51) 0.18 (0.02 – 0.45) 0.49 (0.33 – 0.66) 

Chiloscyllium punctatum 3.78 0.48 (0.37 – 0.58) 0.18 (0.06 – 0.29) 0.35 (0.28 – 0.42) 

 Resource pool values Filter-feeding bivalves Algae Seagrass 

 δ13C (‰) (mean  ± SD) -17.49 ± 1.70 -15.47 ± 2.58 -9.41 ± 1.32 

 δ15N (‰) (mean  ± SD) 4.39 ± 0.68 3.52 ± 0.74 0.77 ± 1.62 
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Table 3 Importance of dietary components (± SD) based on frequency of occurrence (%FO), numerical abundance (%N), 

gravimetric abundance (%W), and index of relative importance (%IRI). TL: total length; DW: disc width  

 

Glaucostegus typus 
≤150 cm TL 

n = 17 
size range: 81 – 150 cm TL 

 

Glaucostegus typus 
>150 cm TL 

n = 34 
size range: 156 – 232 cm TL 

 

Himantura fai 
≤65 cm DW 

n = 10 
size range: 62 – 65 cm DW 

Prey category %FO %N %W %IRI  %FO %N %W %IRI  %FO %N %W %IRI 

Brachyuran crab 
82.4 
± 9.3 

10.0 
± 2.0 

51.1 
± 5.7 

34.5  
82.4 
± 6.5 

6.4 ± 
0.8 

67.2 
± 2.4 

61.6  
30.0 ± 
14.5 

2.9 ± 
1.6 

3.1 ± 
4.3 

1.0 

Penaeid shrimp 
82.4 
± 9.3 

31.6 
± 3.1 

35.7 
± 5.4 

38.0  
64.7 
± 8.2 

20.6 
± 1.4 

8.1 ± 
1.4 

18.8  
90.0 ± 

9.5 
96.2 
± 1.9 

96.6 
± 4.6 

98.9 

Shrimp-like 
crustacean 

58.8 
± 

11.9  

52.4 
± 3.3 

2.7 ± 
1.8 

22.2  
20.6 
± 6.9 

69.2 
± 1.6 

2.3 ± 
0.8 

15.0  0.0 0.0 0.0 0.0 

Alpheid shrimp 0.0 0.0 0.0 0.0  
5.9 ± 
4.0 

1.4 ± 
0.4 

3.3 ± 
0.9 

0.3  0.0 0.0 0.0 0.0 

Amphipod 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Teleost 
47.1 

± 
12.1 

6.1 ± 
1.6 

10.6 
± 3.5 

5.8  
20.6 
± 6.9 

1.4 ± 
0.4 

18.3 
± 2.0 

4.1  0.0 0.0 0.0 0.0 

Polychaete 0.0 0.0 0.0 0.0  
11.8 
± 5.5 

0.5 ± 
0.2 

0.0 ± 
0.1 

0.1  0.0 0.0 0.0 0.0 

Cephalopod 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Holothuroidean 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Other 0.0 0.0 0.0 0.0  
14.7 
± 6.1 

0.7 ± 
0.3 

0.7 ± 
0.4 

0.2  
10.0 ± 

9.5 
1.0 ± 
1.0 

0.4 ± 
1.5 

0.1 
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Table 3 continued 

 

Himantura fai 
>65cm DW 

n = 27 
size range: 66 – 100 cm DW 

 
Himantura uarnak 

n = 11 
size range: 41 – 99 cm DW 

 
Himantura astra / H. toshi 

n = 6 
size range: 54 – 80 cm DW 

Prey category %FO %N %W %IRI  %FO %N %W %IRI  %FO 

Brachyuran crab 
29.6 
± 8.8 

2.2 ± 
0.7 

2.7 ± 
1.9 

1.0  
36.4 

± 
14.5 

18.3 
± 3.6 

20.9 
± 8.3 

12.5  50.0 ± 20.4 

Penaeid shrimp 
88.9 
± 6.1 

92.1 
± 1.3 

73.0 
± 5.1 

96.2  
100.
0 ± 
0.0 

59.1 
± 4.6 

33.2 
± 9.7 

81.4  50.0 ± 20.4 

Shrimp-like 
crustacean 

0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 

Alpheid shrimp 
3.7 ± 
3.6 

1.1 ± 
0.5 

2.8 ± 
1.9 

0.1  0.0 0.0 0.0 0.0  16.7 ± 15.2 

Amphipod 
3.7 ± 
3.6 

0.2 ± 
0.2 

0.0 0.0  
9.1 ± 
8.7 

12.2 
± 3.1 

0.8 ± 
1.9 

1.0  0.0 

Teleost 
3.7 ± 
3.6 

1.3 ± 
0.5 

5.0 ± 
0.0 

0.2  0.0 0.0 0.0 0.0  0.0 

Polychaete 0.0 0.0 0.0 0.0  
9.1 ± 
8.7 

6.1 ± 
2.2 

42.6 
± 

10.1 
3.9  16.7 ± 15.2 

Cephalopod 
3.7 ± 
3.6 

0.4 ± 
0.3 

7.8 ± 
3.1 

0.2  0.0 0.0 0.0 0.0  16.7 ± 15.2 

Holothuroidean 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0  0.0 

Other 
33.3 
± 9.1 

2.6 ± 
0.8 

8.4 ± 
3.2 

2.4  
18.2 

± 
11.6 

4.3 ± 
1.9 

2.5 ± 
3.2 

1.1  0.0 
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Table 3 continued 

 
Pastinachus atrus 

n = 6 
size range: 73 – 95 cm DW 

Prey category %FO 

Brachyuran crab 0.0 

Penaeid shrimp 0.0 

Shrimp-like 
crustacean 

0.0 

Alpheid shrimp 0.0 

Amphipod 0.0 

Teleost 0.0 

Polychaete 66.7 ± 19.3 

Cephalopod 0.0 

Holothuroidean 33.3 ± 19.3 

Other 50.0 ± 20.4 
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Table 4 Pairwise comparisons of the diets for Glaucostegus typus, Himantura fai, and H. uarnak.  Values for Schoener’s index of 

overlap (%N / %W / %IRI) are in the lower half of the matrix.  Bold values are considered biologically significant (>0.60).  p-

values from null model simulations are in the upper half of the matrix.  Bold values indicate that corresponding overlap values in 

the lower matrix are higher than those predicted by chance.  TL: total length; DW: disc width 

 
Glaucostegus typus  

≤150 cm TL 

Glaucostegus typus  

>150 cm TL 

Himantura fai  

≤65 cm DW 

Himantura fai  

>65 cm DW 
Himantura uarnak 

Glaucostegus typus  

≤150 cm TL 
 <0.001 / 0.008 / <0.001 0.204 / 0.234 / 0.098 0.318 / 0.308 / 0.104 0.292 / 0.138 / 0.058 

Glaucostegus typus 

 >150 cm TL 
0.81 / 0.72 / 0.72  0.238 / 0.418 / 0.266 0.196 / 0.532 / 0.318 0.378 / 0.510 / 0.316 

Himantura fai  

≤65 cm DW 
0.34 / 0.39 / 0.39 0.24 / 0.12 / 0.20  0.004 / 0.094 / 0.058 0.042 / 0.264 / 0.042 

Himantura fai  

>65 cm DW 
0.35 / 0.43 / 0.39 0.26 / 0.19 / 0.20 0.95 / 0.76 / 0.97  0.030 / 0.354 / 0.076 

Himantura uarnak 0.42 / 0.54 / 0.51 0.28 / 0.30 / 0.32 0.63 / 0.37 / 0.83 0.64 / 0.38 / 0.83  
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Fig. 1 δ13C – δ15N biplot of the nearshore elasmobranch community of Shark Bay (mean 

± SE) in isotopic niche space.  See Table 1 for statistical contrasts among species 
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Fig. 2 Size of isotopic niche space (total area: mean ± SE) from bootstraps in relation to 

the number of individuals sampled for the nearshore elasmobranch community of Shark 

Bay.  Himantura fai ≤65 cm DW (disc width) is shown in gray to increase its visibility 
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Fig. 3 All elasmobranch individuals plotted in isotopic niche space.  Black lines outline 

the convex hulls of the individual species groups illustrating a high degree of overlap in 

isotopic niche space  
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Fig. 4 Centroid distance (CD), nearest neighbor distance (NND), and neighbor distance (ND) (mean distance ± SE) for nearshore 

elasmobranch community of Shark Bay.  Values with different letters are significantly different at p < 0.05. TL: total length; DW: 

disc width
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Abstract 

Habitat use decisions by consumers have the potential to shape ecosystems.  

Understanding the factors that influence habitat use is therefore critical to understanding 

ecosystem function.  This understanding is especially important for mesoconsumers 

because they provide the link between upper and lower tropic levels.  I examined the 

factors influencing microhabitat use patterns of marine mesoconsumers (juvenile giant 

shovelnose rays Glaucostegus typus, reticulate whiprays Himantura uarnak, and pink 

whiprays H. fai) in a coastal ecosystem with intact predator and prey populations and 

marked spatial and temporal thermal heterogeneity.  Using a combination of belt 

transects and data on water temperature, tidal height, prey abundance, predator 

abundance and ray behavior, I found that giant shovelnose rays and reticulate whiprays 

were most often found resting in nearshore microhabitats, especially at low tidal heights 

during the warm season.  Patterns of microhabitat use did not match predictions derived 

from distributions of prey. Although at a course scale, ray distributions appeared to match 

predictions of behavioral thermoregulation theory, fine-scale examination revealed a 

mismatch.  The preference for the shallow nearshore microhabitat at low tidal heights 

during periods of high predator abundance (warm season) suggests that this microhabitat 

may serve as a refuge, although it may come with metabolic costs due to higher 

temperatures.  The results of my study highlight the importance of predators in the habitat 

use decisions of mesoconsumers and that within thermal gradients other factors, such as 

predation risk, must be considered in addition to behavioral thermoregulation to explain 

habitat use decisions. 
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Introduction 

Habitat selection is one of the myriad decisions mobile organisms must make on a 

daily basis, and is critical in determining ecological dynamics at multiple scales (e.g., 

Morris 2003).  Habitat use decisions are dependent on the interplay of a variety of 

factors.  Resource quality and abundance often vary with habitat and can influence 

energy intake rates, thereby driving habitat use for consumers, which, all else being 

equal, often attempt to maximize energy intake rates by selecting habitats with abundant, 

high-quality resources (Stephens and Krebs 1986).  Predation risk and competition, on 

the other hand, may cause consumers to abandon otherwise productive habitats (e.g., 

Werner and Hall 1979; Lima and Dill 1990; Brown and Kotler 2004; Abramsky et al. 

2005).  Reproductive behaviors can also influence habitat choice because habitats may 

vary in their benefits for spawning or the rearing of young (e.g., Andren 1990, Claramunt 

et al. 2005, Schofield et al. 2009). 

 Physiology – and how it varies across abiotic conditions - will also play a large 

role in habitat selection because physiological constraints may restrict access to some 

habitats or modify relative costs and benefits of habitats such that habitat use patterns do 

not match expectations derived simply on food supplies.  This phenomenon may be 

especially important in aquatic systems.  Salinity tolerances play a large role in the 

distribution and habitat use of organisms in estuarine systems (e.g., Armstrong 1997; 

Barletta et al. 2005), as does the ability to tolerate hypoxic conditions (e.g., Eby and 

Crowder 2002; Heithaus et al. 2009).  One of the most important environmental factors 

that interacts with an organism’s physiology, however, is environmental temperature 
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because it is a key determinant of physiological performance within poikilothermic 

organisms (Dunham et al. 1989). 

 Although non-optimal temperatures can negatively impact organisms, many 

poikilotherms can maintain a preferred temperature in a heterogeneous thermal 

environment by altering their behaviors, such as habitat choice (e.g., Adolph 1990).  

Because the optimal temperatures are likely to vary among metabolic processes, 

organisms may also gain energetically by shuttling between habitats of different 

temperatures (McLaren 1963; Wurtsbaugh and Neverman 1988; Sims et al. 2006).  Thus, 

habitat choice within a thermal gradient may be temperature- and behavior-dependent. 

 Understanding how various biotic and abiotic factors influence habitat use of 

organisms, and their relative importance, is crucial to understanding systems because 

habitat use patterns structure the spatial and temporal pattern of interspecific interactions.  

Such a functional understanding of habitat selection is particularly important at this time 

in order to predict the consequences of large-scale and ongoing changes in abiotic 

conditions (e.g., climate change, frequency and intensity of hypoxic events; Rahmstorf et 

al. 2007; Diaz and Rosenberg 2008) as well as biotic ones (e.g., overfishing and habitat 

modifications; Lotze et al. 2006).  Of particular interest is the dynamics of habitat use by 

mesoconsumers (consumers of intermediate trophic position), which provide the link 

between upper and lower trophic levels and can play a major role in ecosystem structure 

and function through their habitat choice (Heithaus et al. 2008, Ritchie and Johnson 

2009).  For example, habitat use changes and the resulting foraging patterns of elk Cervus 

elaphus since the reintroduction of wolves Canis lupus are hypothesized to be responsible 

for the recovery of riparian communities, including beaver and bird populations, and 
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ecosystem function in Yellowstone National Park, USA (reviewed in Ripple and Beschta 

2004) and microhabitat use changes in a grassland food web induced by elevated 

temperature have been shown to transform a two predator system into an intraguild 

predation system resulting in the loss of one of the predator species with indirect effects 

on plant species composition (Barton and Schmitz 2009). 

 Marine mesoconsumers, however, have received less attention than their 

terrestrial counterparts, although they may also play important roles is community 

structure (Paine 1966; VanBlaricom 1982; Myers et al. 2007).  And for some 

mesoconsumer species, such as winter skate Leucoraja ocellata, recent local population 

increases have been attributed to distributional shifts possibly in response to temperature 

and changing trophic dynamics (i.e., large-scale habitat shifts; Frisk et al. 2008).  

Examining the interplay of environmental factors (biotic and abiotic) on habitat use of 

marine mesoconsumers is necessary to elucidate the potential impacts of these mid-

trophic level organisms, the functioning of marine ecosystems, and their management. 

As a remote and minimally impacted system, Shark Bay, Western Australia, 

provides an ideal setting for the examination of factors influencing the habitat use of 

mesoconsumers (Heithaus et al. 2007b).  Shark Bay’s sandflats include three distinct 

microhabitats that are likely to differ in resource abundance, temperature, and 

accessibility by an intact population of large predators.  In addition, mesoconsumers 

(rays) are abundant and show clear seasonal microhabitat preferences (Vaudo and 

Heithaus 2009).  The goal of the current study was to investigate mesoconsumer 

microhabitat use in relation to environmental factors (both biotic and abiotic) to 

determine the dynamics of habitat use by individual species as well as community 
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structure in this system.  Specifically, I examined ray abundance relative to prey 

abundance, predation risk and predictions based on behavioral thermoregulatory theory. 

 

Materials And Methods 

Study site 

Shark Bay (25°45´S, 113°44´E) is a large (ca. 13,000 km2) semi-enclosed bay on 

the central west coast of Australia.  In addition to vast seagrass shoals, Shark Bay 

contains several shallow expansive nearshore sandflats with fringing seagrass beds.  

Within the sandflat habitat of the Cape Rose Flats, three microhabitats have been defined 

(Fig 1).  With increasing distance from shore, I have designated the microhabitats as 

nearshore, sand, and patchy.  Briefly, nearshore microhabitats are adjacent to the 

shoreline and intertidal, sand microhabitats have depths of 1-2 m, and patchy 

microhabitats are 1-3 m deep and are covered with patchy seagrass.  A more detailed 

description of the study site can be found in Vaudo and Heithaus (2009).  Throughout the 

year, juvenile rays of several species make extensive use of these sandflats, particularly 

the nearshore microhabitat during Shark Bay’s warm season (September to May) when 

sea surface temperatures are greater than 20°C (Vaudo and Heithaus 2009).      

 

Ray Abundance and Behavior 

To assess habitat use, I established two 1.5-km long belt transects within each 

microhabitat (Fig. 1).  Between March 2006 and October 2007, I conducted transect 

sampling using the methods described in Vaudo and Heithaus (2009).  Sampling occurred 

between 800 and 1600 h when environmental conditions did not impair sighting 
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conditions.  At the beginning and end of each transect I recorded the sea surface 

temperature and the predicted tidal height and the means of each of these respective 

values were used for analyses.  All rays within 5 m (or 10 m early in the study; see Vaudo 

and Heithaus 2009) of the transect line were identified and recorded.  When possible, I 

also recorded the behaviors of sighted rays prior to any visible disturbance by the vessel 

and the number of ray feeding pits present on transect.  While excavating prey from 

sediments, rays leave distinctly shaped feeding pits that can be used to indicate areas of 

foraging activity.  These feeding pits can persist for periods of time ranging from tidal 

cycles to weeks, depending on tide and weather conditions (Grant 1983; Myrick and 

Flessa 1996).  It is unlikely, however, that the same pits were counted on successive 

passes along the transects because of 1) substantial transport of sediment within all three 

habitats due to wind and currents; 2) the large variation in the number of feeding pits 

from day to day along transects; and 3) the interval between resampling of transects (at 

least 24 hours and usually over a week).  Similarly, on the basis of movements of 

acoustically tagged rays (unpublished data), it is unlikely that individual rays were 

resighted on consecutive passes of a given transect. In addition to recording rays while on 

transect, after October 2006 the species, positions and behaviors of all elasmobranchs 

sighted on the Cape Rose Flats were recorded (i.e., those encountered while moving 

between transects). 

 Because the transect dataset contained a large number of zeros and is therefore 

highly skewed, I analyzed ray abundance using conditional models.  I first modeled data 

using a logistic regression for presence/absence.  Ray abundance from the zero-truncated 

data set was then log-transformed and analyzed with a generalized linear model to assess 
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factors influencing ray abundances when they were present on a transect.  I performed 

these analyses for the giant shovelnose ray Glaucostegus typus and the combined group 

of reticulate Himantura uarnak and pink whiprays H. fai [it was not always possible to 

distinguish between these two species, although the vast majority are reticulate whiprays 

(see Vaudo and Heithaus 2009)] because they were the most common rays on the 

sandflats and previous work identified them as playing a large role in elasmobranch 

community structure (Vaudo and Heithaus 2009). 

I analyzed behavioral data for giant shovelnose rays and whiprays using chi-

square tests of homogeneity.  Homogeneity of behaviors across habitats was examined.  

The limited number of observations for whiprays in the patchy microhabitat and cold 

season restricted analyses of these species to nearshore and sand microhabitats in the 

warm season.  Larger sample sizes of giant shovelnose rays allowed for comparisons 

within each behavior across seasons. 

 

Prey Abundance 

To examine the role of prey on ray habitat use, I examined the abundance of 

potential prey across microhabitats.  Giant shovelnose rays and whiprays in Shark Bay 

have diets dominated by crustaceans and also commonly include polychaetes (Vaudo and 

Heithaus in review), so I focused on these taxa.  I sampled prey during July 2006 and 

2007 (cold season) and September 2006 and March 2007 (warm season).  I divided each 

transect into five equal-area zones and then during each sampling period, selected a 

random location from each zone and collected two sediment cores (0.15 m diameter x 0.2 

m deep) from each location.  Within the patchy microhabitat, 70% of cores were sampled 
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from sand substrate and 30% from seagrass substrate.  I sieved each sample through 1-

mm mesh to collect potential prey and pooled samples from each location.  Potential prey 

were sorted by taxa and biomass was recorded as wet weight.  Prey biomass data were 

analyzed using conditional models. 

 

Thermal Heterogeneity 

To examine whether variation in water temperature was related to ray 

microhabitat use, I evaluated thermal heterogeneity across the Cape Rose Flats using 

three temperature loggers (HOBO Water Temp Pro v2, Onset Computer Corporation, 

accuracy: 0.2°C, resolution: 0.02°C) placed across the sandflat to record bottom 

temperatures (Fig. 1).  Water temperatures were logged every 30 min from 23 April 2007 

until the end of the study.  I analyzed temperature data with a general linear model, using 

season and location as factors and day as a blocking factor nested within season.  Because 

the temperature data span two different warm seasons, I considered each warm season 

separately. 

 

Predator Abundance 

To examine whether predator abundance was related to ray microhabitat use, I 

assessed tiger shark Galeocerdo cuvier catch rates throughout the study.  I conducted 

shark fishing using the methods described in Wirsing et al. (2006).  Up to ten drumlines, 

each with a single 13/0 Mustad Shark Hook baited with Australian salmon Arripis 

truttaceus or local fish when Australian salmon was not available were fished at a depth 

of 0.7-2.0 m.  Lines were spaced 300-400 m apart and were checked approximately every 
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2 h.  I calculated soak time as the time between when the hook was set and retrieved.  If 

bait was missing or a shark was caught, I considered bait removal to take place halfway 

between the previous check and time the missing bait or shark was observed.  I analyzed 

tiger shark catch rates using conditional models. 

 

Results 

Ray Abundance and Behavior 

Giant shovelnose ray presence across the sandflat was affected by temperature, 

tidal height, microhabitat x temperature and temperature x tidal height interactions (G = 

46.61, d.f. = 7, P < 0.001).  Giant shovelnose ray occurrence tended to decrease with 

distance from shore, and except temperatures lower than ~16°C, decreased with tidal 

height (Table 1).  When present, giant shovelnose ray abundance was influenced by 

microhabitat, tide and habitat x temperature and habitat x temperature x tidal height 

interactions (2 = 35.81, d.f. = 8, P < 0.001).  Highest abundances occurred in the 

nearshore microhabitat and within this microhabitat increased with temperature and 

decreasing tidal height (Fig. 2a).  In sand and patchy microhabitats, densities tended to 

increase with decreasing tidal height and temperature (Fig. 2a). 

 Whipray presence was related to microhabitat, temperature, tidal height, 

microhabitat x temperature and temperature x tidal height interactions (G = 41.02, d.f. = 

7, P < 0.001).  At temperatures below ~18°C the probability of encountering whiprays on 

transects increased with tidal height and distance from shore.  This pattern reversed 

during warm periods (Table 2).  When whiprays were present, their abundance was 

influenced by temperature and microhabitat x temperature, microhabitat x tidal height, 
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temperature x tidal height and microhabitat x temperature x tidal height interactions (2 = 

36.41, d.f. = 11, P < 0.001).  Within the nearshore microhabitat, whipray densities 

increase with increasing temperature and decreasing tidal height, while in the patchy 

microhabitat densities increase with temperature and tidal height (Fig. 2b).  Whipray 

densities tend to increase within the sand microhabitat with increasing temperature and 

decreasing tidal height, but also with increasing tidal height at low temperatures (Fig. 2b).    

Visibility allowed for the quantification of feeding pits on 58 transects (18 

nearshore, 22 sand and 18 patchy) during Shark Bay’s warm season.  The number of 

feeding pits was highest within the nearshore microhabitat and decreased with distance 

from shore [nearshore: 66 (43.3, 240.5); sand: 18 (5.9, 38.0); patchy: 2 (0, 6.4); median 

(95% CI)] (Kruskal-Wallis H = 23.63, d.f. = 2, P < 0.001; post hoc Mann-Whitney U-

test, all comparisons P < 0.012;). 

Three behaviors (resting, swimming, and foraging) were observed for 750 giant 

shovelnose rays and whiprays.  Only two individuals, however, appeared to be foraging 

when first encountered and were dropped from further analyses as a result of the small 

sample size.  Throughout the year, a large majority of giant shovelnose rays and reticulate 

whiprays across all microhabitats were resting.  Pink whiprays, however, were more 

often observed swimming (Table 3). 

 For reticulate whiprays during the warm season, there was no difference in the 

proportions of swimming and resting individuals across nearshore and sand microhabitats 

(2 = 0.70, d.f. = 1, P = 0.40).  However, during the warm season there were more resting 

pink whiprays found in the nearshore microhabitat and fewer found in the sand habitat 

than expected (2 = 17.15, d.f. = 1, P < 0.001).  During the warm season, swimming giant 



 193

shovelnose rays were observed less often in nearshore microhabitats, more often in sand 

microhabitats, and resting rays were observed less often in sand microhabitats than 

expected based on the assumptions of homogenous behaviors across microhabitats (2 = 

14.53, d.f. = 2, P = 0.001).  For the cold season, however, there was no evidence of the 

frequencies of resting and swimming giant shovelnose rays differing across microhabitats 

(2 = 4.64, d.f. = 2, P = 0.10). 

 For giant shovelnose rays, the number of resting individuals exceeded 

expectations based on assumptions of homogeneity of behaviors in sand and patchy 

microhabitats during the cold season, while there were fewer resting individuals in the 

nearshore microhabitat; this pattern was reversed in the warm season (2 = 55.21, d.f. = 2, 

P < 0.001).  For swimming giant shovelnose rays, there were slightly fewer than expected 

individuals in cold season-nearshore microhabitats because individuals were fairly evenly 

distributed during the cold season.  Fewer individuals than expected were observed in the 

warm season-patchy microhabitats and slightly more individuals than expected were 

observed in the patchy microhabitat during the cold season (2 = 10.56, d.f. = 2, P = 

0.005). 

 

Prey Abundance 

Polychaete presence was not influenced by season or microhabitat (G = 8.13, d.f. 

= 5, P = 0.15).  When polychaetes were present, their biomass differed with microhabitat 

(F = 3.64, d.f. = 2, P = 0.03) with lower biomass found in patchy microhabitats (wet 

weight: 6.52 ± 0.97/1.15 g m-2; mean ± lower standard error/upper standard error) than in 

sand microhabitats (11.44 ± 1.50/1.73 g m-2) (Tukey’s test t = 2.62, P = 0.03).  Although 
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biomasses estimates within nearshore microhabitats (10.06 ± 1.33/1.54 g m-2) did not 

differ statistically from the other microhabitats, they were more similar to values from 

sand microhabitats.   

Crustacean occurrence during invertebrate surveys was influenced by season with 

a higher probability of occurrence during the warm season (warm season: 57%; cold 

season: 29%) (G = 15.11, d.f. = 5, P = 0.01).  Crustacean biomass differed between 

seasons and microhabitats (F = 6.56, d.f. = 1, P = 0.01 and F = 4.08, d.f. = 2, P = 0.02, 

respectively).  Biomass was higher in the cold season (cold season: 3.84 ± 1.62/2.79 g m-

2; warm season: 0.71 ± 0.22/0.31 g m-2) (Tukey’s test t = 2.56, P = 0.01) and higher in 

patchy microhabitats (6.63 ± 3.12/5.88 g m-2) than in sand microhabitats (0.61 ± 

0.27/0.50 g m-2) (Tukey’s test t = 2.73, P = 0.02).  Nearshore microhabitat values were 

intermediate (1.11 ± 0.41/0.66 g m-2), but more similar to sand microhabitat values. 

 

Thermal Heterogeneity 

Temperatures on the sandflat ranged from 12.4 °C to 29.7 °C.  Because of 

autocorrelation between consecutive temperature readings, further analysis of the water 

temperature data was restricted to the reading taken at 12:00 each day.  Temperature 

differences were driven by an interaction between season and location (F = 11.39, d.f. = 

4, P < 0.001).  Overall, water temperatures were cooler across the sandflat during the 

cold season (Tukey’s tests, all P < 0.001).  During the cold season, temperatures were 

highest in the interior of the sandflat.  The two warm seasons had opposite patterns; 

during the warm season at the beginning of the year (February – May), temperatures 

tended to be coolest nearshore, while during the second warm season (September – 
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October), temperatures were highest nearshore (Fig. 3).  The temperature gradients 

(nearshore - offshore) across the sandflat for February – May, June – August, and 

September – October ranged from -5.1 to 2.6°C, -4.3 to 4.9°C, and -4.5 to 6.2°C, 

respectively. 

 

Predator Abundance 

The probability of catching at least one tiger shark per day was higher during the 

warm season (91%) than during the cold season (41%) (G = 13.46, d.f. = 1, P < 0.001).  

In addition, for days in which sharks were caught, catch rates of tiger sharks were higher 

in the warm season (0.05 ± 0.01 sharks hour-1) than cold season (0.03 ± 0.01 sharks   

hour-1; t = 2.21, d.f. = 21, P = 0.039). 

 

Discussion 

Many factors contribute to the habitat choice of organisms.  Given the variety of 

biotic and abiotic factors involved, it is likely that these factors will influence habitat 

choice in different and perhaps even contradictory ways.  Understanding how these 

factors interact to affect habitat choice, however, is necessary to elucidate the role of 

organisms within systems and how systems may respond to abiotic and biotic changes.   

Both giant shovelnose ray and whipray presence and abundance varied with 

microhabitat, water temperature, and tidal height.  At moderate to higher temperatures, 

typical of the warm season, frequency of occurrence of both groups decreased with 

distance from shore and also decreased with increasing tidal height.  The magnitude of 

the decrease also increased with temperature such that in the warmest months, rays were 
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rarely found in sand and patchy microhabitats during higher tides.  In addition to 

increases in occurrence, both groups also increase in abundance with increases in 

temperature in the nearshore microhabitat.  The nearshore microhabitat, therefore, 

appears to be important for these animals when temperatures are high and increases in 

importance with decreasing tidal height. 

Further suggesting the importance of the nearshore microhabitat to Shark Bay’s 

rays is the prevalence of ray feeding pits in this microhabitat.  Approximately 44% of 

nearshore transects contained over 100 feeding pits (0.007 pits m-2) with a maximum of 

574 feeding pits (0.04 pits m-2) on a transect pass.  The nearshore microhabitat, however, 

does not contain the highest prey biomass.  Polychaete abundance does not differ 

between nearshore and sand microhabitats, and crustaceans, which are the most important 

component of the diets of giant shovelnose rays and whiprays in Shark Bay (White et al. 

2004; Vaudo and Heithaus 2011), had higher biomasses during the cold season and in 

patchy microhabitats.  Previous studies on the invertebrate fauna of Shark Bay’s 

nearshore environment also suggest that potential giant shovelnose ray and whipray prey 

are more likely to be found in the seagrass beds than on the sandflat (Wells et al. 1985; 

Black et al. 1990).  The lack of prey in a microhabitat used by rays for foraging indicates 

that some other factor besides prey abundance is driving microhabitat choice of the rays, 

although the possibility that ray foraging has decreased prey abundance warrants 

investigation. 

 In many systems, competition drives habitat use resulting in inferior competitors 

foraging in less productive habitats (e.g., Werner and Hall 1979; Abramsky et al. 2005).  

Crustaceans, especially penaeid shrimp, which are important to the diets of giant 
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shovelnose rays and whiprays (White et al. 2004; Vaudo and Heithaus 2011), are also  

important to the diets of a wide variety of fishes (e.g., Salini et al. 1990; Brewer et al. 

1995) suggesting competition for crustacean prey may occur.  If rays are inferior 

competitors, they may be displaced from the habitats with the highest abundance of prey, 

creating the mismatch in microhabitat and prey biomass observed.  However, despite 

their high abundance in the nearshore microhabitat, rays were rarely observed foraging 

during the day and were most often resting.  Further, the prey most often encountered in 

the nearshore microhabitat are rarely found in the stomach contents of giant shovelnose 

rays and whiprays (Vaudo and Heithaus 2011; Vaudo unpublished data), suggesting the 

nearshore microhabitat is not an important foraging habitat for these species; therefore, 

selection of the nearshore microhabitat is not likely to be the result of competitive 

displacement.  The large number of feeding pits in the nearshore habitat may be the result 

of foraging cowtail stingrays Pastinachus atrus; the polychaetes that dominate nearshore 

and sand microhabitats were frequently encountered in the stomach contents of cowtail 

stingrays (Vaudo and Heithaus 2011). 

 The nearshore microhabitat is also the shallowest of the sandflat microhabitats 

and therefore experiences the greatest temperature fluctuations across the sandflat.  These 

temperature fluctuations may lead to the thermally heterogeneous nature of the nearshore 

environment observed during this study.  In addition, the sandflat is likely to differ in 

temperature from the deeper areas of Shark Bay.  Given that rays are poikilothermic and 

that the thermoelectric properties of the gel of the ampullae of Lorenzini may allow 

elasmobranchs to detect temperature differences of as little as 0.001°C (Brown 2003), 
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microhabitat choice may be a means of behavioral thermoregulation to exploit thermal 

gradients. 

 Like in other poikilotherms, behavioral thermoregulation has been suggested to 

explain the behaviors of several elasmobranch species.  Because elasmobranch 

development occurs more rapidly at higher temperatures (Harris 1952), it has been 

suggested that aggregations of female elasmobranchs in warm waters were capitalizing 

on increased embryonic development rates to decrease gestation times (Economakis and 

Lobel 1998; Hight and Lowe 2007).  This claim has been further bolstered by 

experimental evidence that pregnant females prefer warmer temperatures (Wallman and 

Bennett 2006) and proof that such aggregations are composed of pregnant females (Mull 

et al. 2010).  Similar behaviors have also been suggested in breeding female loggerhead 

turtles Caretta caretta within a thermally heterogeneous environment (Schofield et al. 

2009).  The sandflat populations of giant shovelnose rays, reticulate and pink whiprays, 

however, are almost entirely composed of juveniles (Vaudo and Heithaus 2009) and 

cannot benefit in this manner. 

Juveniles may be able to benefit by seeking out warmer waters to aid in digestion 

as has been observed in a variety of teleosts (e.g., Wurtsbaugh and Neverman 1988; 

Ward et al. 2010).  Higher temperatures lead to increased rates of gastric evacuation in 

elasmobranchs (Cortes and Gruber 1992; Bush and Holland 2002), which is associated 

with the return of appetite (Sims et al. 1996).  Shorter gastric evacuations times would 

allow individuals to resume feeding sooner, increasing intake rates and ultimately may 

lead to higher growth rates (Wurtsbaugh and Neverman 1988). While temperatures on the 

sandflats are likely higher than temperatures in deeper waters during the warm season, 
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rays do not appear to seek out the warmest microhabitats on the sandflat.  If the thermal 

heterogeneity patterns observed in 2007 are consistent from year to year, microhabitat 

choice should differ between the latter portion of the warm season preceding the cold 

season and the beginning of the following warm season.  No such changes are apparent in 

the data.  During the cold season, rays are also least often observed in the warmest 

sandflat microhabitat. 

Energetic gains could also be realized by shuttling between warm and cool 

waters. By moving into cooler waters, rays could reduce their standard metabolic rate and 

conserve valuable energetic resources.  Resting and energetically expensive processes, 

such as digestion, should therefore take place in cool waters.  Such an energy 

conservation strategy has been used to explain the movement patterns of bat rays 

Myliobatis californica (Matern et al. 2000) and small-spotted catshark Scyliorhinus 

canicula (Sims et al. 2006).  Experimental and energetic data also support the use of this 

strategy in elasmobranchs.  When presented with a thermal gradient, Atlantic stingrays 

Dasyatis sabina sought out cooler waters after feeding (Wallman and Bennett 2006) and 

a temperature increase of 0.9°C was enough to drive small-spotted catsharks away from a 

food patch between feedings (Sims et al. 2006).  Further, examinations of Atlantic 

stingray gut evacuation and absorption rates across a range of temperatures show that 

decreases in evacuation rate (i.e., food staying in the gut longer) as a result of lower 

temperatures more than offset concomitant decreases in absorption rates resulting in 

higher overall absorption (Di Santo and Bennett 2011).  Such a strategy might also be 

necessary for some active elasmobranchs such as juvenile sandbar sharks Carcharhinus 
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plumbeus, for which routine metabolic rate may approach 100% of their metabolic scope 

(Dowd et al. 2006).   

Interestingly, habitat use by rays in Shark Bay does not follow this pattern.  With 

increasing temperatures, ray abundance increases on the sandflat and the vast majority of 

giant shovelnose rays and reticulate whiprays on the sandflat are resting, despite cooler 

waters being available.  Even on the finer scale within the sandflats these rays fail to 

conform to the proposed energy conservation strategy.  Giant shovelnose rays and 

whiprays were most common in the nearshore microhabitat, although it is the warmest 

microhabitat for at least portions of the warm season. 

Thermoregulation via behavioral mechanisms, however, is not without costs 

(Huey and Slatkin 1976).  And some costs, such as predation risk, may outweigh the 

benefits of thermoregulation.  Predation risk has been shown to alter the 

thermoregulatory behaviors of reptiles (Diaz et al. 2005; Webb and Whiting 2005; 

Herczeg et al. 2008) and although it is often overlooked as a potential driver of 

elasmobranch habitat use, may influence microhabitat choice by giant shovelnose rays 

and whiprays during portions of the year.  The increase in ray abundance in the nearshore 

microhabitat coincided with an observed increase in catch rates of tiger sharks during this 

study, which mirrored previously observed seasonal increases of tiger and great 

hammerhead sharks Sphyrna mokarran in Shark Bay (Wirsing et al. 2006; personal 

observation), both of which are ray predators (Stevens and Lyle 1989; Simpfendorfer et 

al. 2001).  During the warm season these large sharks are abundant in Shark Bay and can 

be sighted swimming over the sandflats (Vaudo and Heithaus 2009).  Further suggesting 

that predation risk plays a role in ray microhabitat use is the increase in ray densities 
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within the nearshore microhabitat with decreasing tidal height.  The dorsoventrally 

flattened rays can easily move into the very shallow nearshore waters at low tidal heights, 

but tiger and great hammerhead sharks are restricted by depth, thereby creating a refuge 

habitat.  At higher tidal heights, however, ray predators can access nearshore 

microhabitats and closely approach the shoreline, which may actually constrain escape 

options for rays.  Preference for shallow waters for predator avoidance has been 

suggested for other elasmobranchs including juvenile lemon sharks Negaprion 

brevirostris (Morrissey and Gruber 1993; Wetherbee et al. 2007) and juvenile blacktip 

reef shark Carcharhinus melanopterus (Papastamatiou et al. 2009).  The presence of anti-

predator grouping behaviors in Shark Bay by cowtail stingray Pastinachus atrus 

(Semeniuk and Dill 2005; 2006), which are similar in size to reticulate and pink 

whiprays, further suggests that use of the nearshore microhabitat may be an anti-predator 

behavior.   

 Although such anti-predator behaviors may result in fewer individuals being 

eaten, the consequences of anti-predator behaviors can lead to reductions in population 

size (Nelson et al. 2004; Creel et al. 2007) and may be exacerbated by temperature 

effects.  By using the sandflats during the warm season, the rays may experience higher 

temperatures than they would select in the absence of predators and for at least portions 

of the warm season the nearshore waters are the warmest waters available.  Although the 

increased metabolic rate resulting from the higher temperature can result in higher growth 

rates if coupled with increased energy intake (see above), rays are likely to lose foraging 

opportunities by resting in the nearshore refuge.  As a result, rays selecting the nearshore 

microhabitat to minimize predation risk will probably realize lower growth rates because 
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of the higher metabolic costs combined with decreased foraging opportunities (Fig. 4). 

Decreasing growth rates have been observed in a variety of fish species with increasing 

temperatures (e.g., Hofmann and Fischer 2003; Saoud et al. 2008) and safer habitat 

choices (e.g., Harter and Heck 2006).  Some individuals may even experience weight loss 

during the warm season, which may explain occasional sightings of gaunt rays on the 

sandflats (personal observation).  

 Anti-predator behaviors are common in nature and, as mesoconsumers, rays are 

likely to influence the behaviors of their prey as well.  Therefore, the presence of tiger 

and great hammerhead sharks in Shark Bay may indirectly affect lower trophic levels 

through the alteration of ray microhabitat and foraging area choice.  Yet, the role of tiger 

sharks in the Shark Bay ecosystem is not limited to affecting rays and potentially their 

prey.  The presence of tiger sharks also influences the behaviors of bottlenose dolphins 

Tursiops aduncus, pied cormorants Phalacrocorax varius, green turtles, dugongs Dugong 

dugon, bar-bellied sea snake Hydrophis elegans and olive-headed snakes Disteria major 

in Shark Bay (Heithaus and Dill 2002; Heithaus 2005; Heithaus et al. 2007a; Kerford et 

al. 2008; Wirsing et al. 2008; Wirsing and Heithaus 2009; Dunphy-Daly et al. 2010).  

And in the cases of green turtles and dugongs, both large seagrass grazers, have the 

potential to influence the structure of seagrass beds (Heithaus et al. 2007a; Wirsing et al. 

2008).  The effect of large sharks on rays reinforces that in this system large sharks 

appear to be keystone species and that their influence may extend beyond the seagrass 

beds where they are commonly observed and into the sandflats.  Further studies are 

required to elucidate the potential indirect effects of tiger sharks mediated by changes in 

the behavior of ray mesoconsumers. 
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 The possibility that large sharks may impact structure of neighboring habitats they 

do not regularly use by altering the habitat use of potential prey is of particular concern 

given worldwide shark declines (Musick et al. 1993; Stobutzki et al. 2002; Baum et al. 

2003) and warrants further attention.  My study also highlights the potential effect of 

global climate change on mesoconsumers.  Climate change has the potential to alter 

interaction strengths affecting trophic cascades (Barton et al. 2009).  In this system, rays 

may incur temperature related costs as a result of choosing safe habitats.  Increasing 

temperatures may reduce the benefit of nearshore waters to the point that they are no 

longer a viable refuge.  In addition to higher metabolic costs associated with higher 

temperatures, rays would experience greater exposure to predators, both of which would 

negatively affect ray populations and potentially have cascading effects.  Refuge loss has 

been observed in experimental work from a grassland food web that contains two 

spatially segregated predatory spiders.  One of the spider species shifted habitats in 

response to increased temperatures and became prey of the other spider and ultimately 

altered the structure of the system (Barton and Schmitz 2009). 

 Despite microhabitat use by giant shovelnose rays and whiprays that roughly 

mimics reported cases of behavioral thermoregulation, predation risk appears to drive the 

observed microhabitat choice in Shark Bay. Because of the high temperatures 

experienced in the nearshore microhabitat, the benefits of predation-sensitive 

microhabitat choice by rays may be diminished because of the higher metabolic costs 

incurred.  Because both sets of behaviors can benefit poikilothermic organisms, but 

depending on the thermal environment may predict similar or different habitat choices, it 

is necessary that studies of habitat use of mesoconsumers in thermally heterogeneous 
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environments consider both temperature and predation risk, especially considering 

ongoing environmental change such as large predator decline and climate change. 
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Table 1 Logistic regression of the factors influencing the presence of giant shovelnose rays Glaucostegus typus on transects.  

Predicted probabilities per microhabitat for selected temperatures and tidal heights are presented as follows: nearshore/sand/patchy 

Predictor Coefficient SE P Odds Ratio 
Lower 95% 

Confidence Limit 
Upper 95% 

Confidence Limit 

Constant -13.135 6.391 0.040    

Nearshore -3.851 2.512 0.125 0.02 0.00 2.92 

Patchy -3.094 2.758 0.262 0.05 0.00 10.09 

Temperature 0.8120 .3216 0.012 2.25 1.20 4.23 

Tidal Height 9.187 4.393 0.036 9773.87 1.78 5.36*107 

Nearshore * 
Temperature 

0.2855 0.1277 0.025 1.33 1.04 1.71 

Patchy * 
Temperature 

0.1134 0.1329 0.394 1.12 0.86 1.45 

Temperature * Tidal 
Height 

-0.5874 0.2223 0.008 0.56 0.36 0.86 

  Predicted Probability of Occurrence   

   Temperature (°C)    

  15 20 25   

 1 0.463 / 0.359 / 0.122 0.917 / 0.633 / 0.430 0.993 / 0.841 / 0.803   

Tidal Height (m) 1.5 0.510 / 0.403 / 0.144 0.754 / 0.324 / 0.173 0.901 / 0.253 / 0.207   

 2 0.557 / 0.449 / 0.169 0.461 / 0.117 / 0.055 0.367 / 0.021 / 0.016   
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Table 2 Logistic regression of the factors influencing the presence of whiprays Himantura uarnak and H. fai on transects.  

Predicted probabilities per microhabitat for selected temperatures and tidal heights are presented as follows: nearshore/sand/patchy 

Predictor Coefficient SE P Odds Ratio 
Lower 95% 

Confidence Limit 
Upper 95% 

Confidence Limit 

Constant -21.717 7.441 0.004    

Nearshore -10.615 3.199 0.001 0.00 0.00 0.01 

Patchy 4.799 2.914 0.100 121.44 0.40 36727.18 

Temperature 1.1455 0.3763 0.002 3.14 1.50 6.57 

Tidal Height 15.417 5.164 0.003 4.96*106 199.38 1.23*1011 

Nearshore * 
Temperature 

0.5763 0.1589 <0.001 1.78 1.30 2.43 

Patchy * Temperature -0.2425 0.1468 0.098 0.78 0.59 1.05 

Temperature * Tidal 
Height 

-0.8534 0.2649 0.001 0.43 0.25 0.72 

  Predicted Probability of Occurrence   

   Temperature (°C)    

  15 20 25   

 1 0.020 / 0.128 / 0.319 0.611 / 0.387 / 0.375 0.992 / 0.732 / 0.435   

Tidal Height (m) 1.5 0.070 / 0.352 / 0.634 0.408 / 0.217 / 0.208 0.862 / 0.124 / 0.038   

 2 0.219 / 0.668 / 0.865 0.232 / 0.108 / 0.103 0.245 / 0.007 / 0.002   
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Table 3 Proportion (95% confidence interval) of resting giant shovelnose rays Glaucostegus typus, reticulate whiprays Himantura 

uarnak, and pink whiprays H. fai for each season and microhabitat.  Sample size is presented after the slash    

 

 

  Cold    Warm   

 Nearshore Sand Patchy  Nearshore Sand Patchy 
All 

microhabitats 

Glaucostegus 

typus 

87.0 (75.1, 

94.6) / 54 

86.5 (74.2, 

94.4) / 52 

69.2 (48.2, 

85.7) / 26 
 

82.7 (77.5, 87.1) 

/ 260 

62.9 (49.7, 74.8) 

/ 62 

61.1 (35.8, 

82.7) / 18 

78.2 (73.4, 

82.5) / 339 

Himantura fai 
25.0 (0.6, 80.6) 

/ 4 

0.0 (0.0,95.0) / 

1 
-  

38.6 (26.0, 52.4) 

/ 57 

8.3 (3.1, 17.3) / 

72 

100.0 (50.0, 

100.0)  / 1 

22.3 (15.5, 

30.4) / 130 

Himantura uarnak 
87.5 (47.4, 

99.7) / 8 

100.0 (65.2, 

100.0) / 7 

87.5 (47.4, 

99.7) / 8 
 

84.7 (75.3, 91.6) 

/ 85 

77.8 (57.7, 91.4) 

/ 27 

66.7 (22.3, 

95.7) / 6 

82.2 (74.1, 

88.6) / 118 
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Fig. 1 The study site on the Cape Rose Flats, Shark Bay, Western Australia.  The inset 

shows the location of the Cape Rose Flats within Shark Bay.  The study site was divided 

into six transects representing nearshore (black), sand (gray), and patchy (white) 

microhabitats.  Black circles represent the location of temperature data loggers 
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Fig. 2 Contour graphs of predicted a) giant shovelnose ray Glaucostegus typus and b) 

whipray Himantura spp. densities (animals ha-1) with tidal height, water temperature, and 

microhabitat 
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Fig. 3 Seasonal temperatures (mean ± standard error) per microhabitat for the time period 

between 23 April 2007 and 14 October 2007.  Bars with different letters are significantly 

different at P < 0.01 
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Fig.4 Conceptual model illustrating how use of sandflat habitats can result in decreased 

growth rates for rays.  When large shark abundance is high, rays shift from productive 

habitats, which allow for large rations, to safe sandflat habitats with limited prey 

resources, resulting in smaller rations.  Sandflat habitats are also warmer, resulting in 

increased metabolic costs and possibly lower assimilation efficiency  

 

Response 
 To Risk 

Seagrass Habitat 
Large Ration 

Sandflat Habitat 
Small Ration
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Abstract 

Movement patterns and habitat use are important in determining the ecological 

role of species.  Understanding these patterns for marine mesopredators are particularly 

important because they link upper and lower trophic levels, but often are overlooked.  

Using acoustic telemetry, I examined coarse-scale diel and seasonal movements within a 

guild of co-occurring elasmobranch mesopredators on the shallow sandflats of Shark 

Bay, Western Australia.  The two most common species, giant shovelnose rays, 

Glaucostegus typus, and reticulate whiprays, Himantura uarnak, were most often 

detected in nearshore microhabitats and were regularly detected day and night, as well as 

during both the warm and cold seasons, although reticulate whiprays tended to frequent 

the monitored array over longer periods.  Pink whiprays, H. fai, and cowtail stingrays, 

Pastinachus atrus, which tend to be more active species, were also detected during the 

day and night, but were far less frequently detected on the sandflats.  Overall, there was 

no apparent spatial or temporal partitioning of the sandflats, but residency to the area did 

vary among species.  In addition, presence throughout the year, suggests that previously 

observed differences in seasonal abundance are likely a result of seasonal changes in 

habitat use rather than large-scale migrations.  While diurnal use of the sandflats may be 

motivated by predation risk, particularly during the warm season, nocturnal use of the 

flats may potentially provide energetic benefits because of slower metabolism associated 

with lower temperatures.  Continuous use of the sandflats by this ray community suggests 

that rays have the potential to be a structuring force on this system.  
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Introduction 

Understanding patterns of habitat use and movement are critical for understanding 

the ecological role of species because they determine the spatiotemporal pattern of 

species interactions (e.g., Morris 2003), and identify areas that may be critical for species 

conservation.  Such as understading is especially important for elasmobranchs, which 

tend to occupy upper trophic levels (Cortés 1999, Ebert and Bizzarro 2007) and as a 

result may play an important role in many ecosystems (Heithaus et al. 2010).  Therefore, 

studies of their habitat use and movement are potentially important for understanding 

marine community dynamics.  Such studies have taken on a greater importance in light of 

dramatic declines in the abundance of large sharks populations (e.g., Musick et al. 1993, 

Baum et al. 2003) and possible increases in population sizes of smaller-bodied 

elasmobranchs (Sheperd and Myers 2005, Myers et al. 2007, Feretti et al. 2010) that may 

transmit top-down effects to lower trophic levels.   

 Movement patterns of several elasmobranchs have been examined using a variety 

of tagging and telemetry methods, but studies have tended to focus on large predators 

(e.g., Andrews et al. 2010, Jorgensen et al. 2010, Meyer et al. 2010), commercially 

important species (e.g., Conrath and Musick 2010, King and McFarlane 2010, Sulikowski 

et al. 2010), species with conservation concerns (e.g., Skomal et al. 2009, Whitty et al. 

2009, Simpfendorfer et al. 2010), or in easily accessible coastal shark nurseries (e.g., 

Heupel and Hueter 2002, Heupel et al. 2004, Carlson et al. 2008).  Little attention has 

focused on the movements of batoids (e.g., rays) – (but see Cartamil et al. 2003, Vaudo 

and Lowe 2006, Collins et al. 2007, 2008) – even though they have the potential to be 
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ecologically and economically important (VanBlaricom 1982, Thrush et al. 1991, 1994, 

Peterson et al. 2001).   

Shark Bay, Western Australia, which because of its limited anthropogenic 

impacts, has served as a model system for investigating the role of tiger sharks, 

Galeocerdo cuvier (Heithaus et al. 2007), also provides habitat to a wide diversity of 

elasmobranch mesopredators, especially rays (White et al. 2004, Vaudo and Heithaus 

2009).  Previous work has shown that based on visual surveys, several of the most 

abundant ray species display similar daytime behaviors, patterns of seasonal abundance 

and microhabitat use on Shark Bay’s sandflats (Vaudo and Heithaus 2009, Chapter V).  

In addition, there is a large degree of dietary overlap among the most abundant rays 

(Vaudo and Heithaus 2011).  It remains unknown, however, whether these species might 

partition habitats through interspecific variation in seasonal and diel patterns of the use of 

sandflat habitats.  Understanding these patterns of ray sandflat habitat use will help 

provide insights into how and at what scales rays may influence sandflat community 

dynamics under near pristine conditions.  The goal of this study was to investigate 

coarse-scale residency patterns of individual rays and diel patterns of habitat use of 

prominent ray species found on Shark Bay’s sandflats using passive acoustic telemetry. 

 

Materials And Methods 

Study Site 

Shark Bay, Western Australia (25°45´S, 113°44´E), located approximately 800 

km north of Perth, is a large (ca. 13,000 km2) semi-enclosed bay containing vast seagrass 

shoals and several expansive shallow nearshore sandflats with fringing seagrass beds.  
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Several ray species frequent these sandflats throughout the year and are extremely 

abundant during the warm season (September-May) when water temperatures exceed 

20°C (Vaudo and Heithaus 2009).  Within the Cape Rose Flats (~8.3 km2), I have 

previously defined three microhabitats: nearshore, sand and patchy.  Nearshore 

microhabitats are adjacent to the shoreline and intertidal, sand microhabitats have depths 

of 1-2 m, and patchy microhabitats are 1-3 m deep and are covered with patchy seagrass 

(Vaudo and Heithaus 2009).   

 

Acoustic Monitoring 

To examine diel and seasonal use of the Cape Rose Flats by individual rays, I 

used acoustic monitoring.  Rays were captured using longlines and netting techniques 

described in Vaudo and Heithaus (2009).  Once captured, rays were measured (disc width 

or total length), externally tagged with a coded acoustic transmitter (V16-5H-R4k, delay: 

30-90s; V16-5H-R64k, delay: 60-180s, Vemco Ltd) attached to an M-tag, and released at 

the site of capture.  Ray processing time did not exceed 5 min and all individuals swam 

away from the release location in a manner similar to untagged rays within a few minutes 

of release.     

 Between 16 May 2006 and 26 January 2007, I used an array of 14 omni-

directional automated acoustic receivers (VR2, Vemco Ltd) providing nearly full 

coverage of the Cape Rose Flats (Array 1, Fig 1) to estimate fidelity to these flats.  In an 

attempt to elucidate movements at a microhabitat scale, I changed the arrangement of 

receivers to create larger overlap in receiver detection areas.  The resulting array (Array 

2, Fig 1), consequently, provided coverage of only the western edge of the Cape Rose 
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Flats (Array 2, Fig 1).  The second receiver array was in place from 27 January 2007 to 

27 February 2008. 

 I conducted range testing of acoustic receivers on the Cape Rose Flats prior to 

designing Array 1 and within both arrays.  All range tests took place during the warm 

season.  During range tests, I towed an acoustic transmitter across the flats and using a 

VR60 acoustic receiver (Vemco Ltd) and GPS recorded the time and position of my 

vessel every time the transmitter emitted a signal. Transmitter position was compared to 

detections recorded by the automated acoustic receivers. 

Bottom water temperatures were recorded within Array 2 using three temperature 

loggers (HOBO Water Temp Pro v2, Onset Computer Corporation, accuracy: 0.2°C, 

resolution: 0.02°C) placed across the sandflat (Fig. 1).  Water temperatures were logged 

at midnight and noon from 12 February 2007 (23 April 2007 for the logger furthest from 

shore) until 31 December 2007.  I analyzed temperature data using season, time of day 

and location as factors and day as a random blocking factor.  Temperature data spanned 

two separate warm seasons, so I considered each warm season separately. 

 

Acoustic Monitoring Data Analysis 

I grouped the detections of each individual ray on each receiver into half hour 

bins.  Because detection frequencies of acoustic transmitters are affected by a variety of 

environmental factors (Heupel et al. 2006, Simpfendorfer et al. 2008) and therefore using 

uncorrected detection frequencies could potentially lead to incorrect inferences about 

animal behavior (Payne et al. 2010), I considered only the presence of individuals on 

receivers as opposed to the total number of detections on receivers.  For each ray, I 
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assigned each half hour block to a microhabitat type based on the combination of 

receivers that ray was detected on during that block.  To examine the effects of season 

[warm (September-May) and cold (June-August)], time of day [daytime (sunrise-sunset) 

and nighttime (sunset-sunrise)], and microhabitat on each species’ total number of time 

blocks spent within the array, I used a standard least squares model with individual as a 

random factor.  Most rays were tagged on different days, so we divided the number of 

time blocks by the time at liberty for each ray.  Because it is not possible to differentiate 

between rays that never return to the array and those that may have lost their transmitters 

outside of the array, time at liberty was defined as the number of days between the day of 

tagging and the last detection.  Length of stay on days rays were present was also 

examined in the same manner as total time within the array, using the number of time 

blocks per day as the dependant variable. 

 

Results 

Range Tests 

Prior to establishing Array 1, during range tests conducted at tidal heights >1.5m 

and under light winds, I measured a maximum detection range of 920m.  Within the 

maximum detection range, 55 of 88 (62.5%) transmitter signals were detected.  Within 

500m of the acoustic monitor, 49 of 67 (73.1%) transmitter signals were detected.  Range 

tests within Arrays 1 and 2 took place during tidal heights ~1-2m and tended to take place 

when visibility conditions on Cape Rose Flats did not allow for other work.  Poor 

visibility conditions were most often the result of winds causing Beaufort sea states of 

greater than three.  Within Array 1 only 47 of 476 (9.9%) of signals with 500m of a 
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receiver were detected.  Individuals receivers detected 0-44.4% of signals emitted within 

500m.  Seventy-two of 182 (39.6%) of signals within 500m of a receiver were detected 

within Array 2 and one detection was made from a distance of 708m.  Individuals 

receivers within Array 2 detected 0-51.9% of signals emitted within 500m. 

 

Array 1 

Between 21 May 2006 and 9 November 2006, I tagged nine reticulate whiprays, 

Himantura uarnak (73-113 cm disc width), within Array 1.  On the basis of body size, all 

were immature, with the possible exception of the largest individual.  Reticulate whiprays 

were detected over periods ranging from 17-171 days (85.67 ± 50.46 days; mean ± SD) 

and all four individuals tagged prior to September 2006 were detected during the cold 

season (June-August).  The total amount of time reticulate whiprays were present on the 

flats was influenced by the interaction between time of day and microhabitat (F = 6.73, p 

= 0.012; Fig 2).  Regardless of time of day, rays spent more time in the nearshore 

microhabitat than the other two microhabitats, but the use of nearshore areas was greatest 

at night.  Length of stay was longer at night than during the day (F = 123.48, p < 0.0001; 

nighttime = 6.4 ± 0.2, daytime = 4.7 ± 0.2 half hr blocks; mean ± SE), during winter (F = 

11.14, p = 0.013; warm = 4.1 ± 0.5, cold = 7.0 ± 0.5 half hr blocks), and in nearshore 

microhabitats (F = 14.29, p = 0.0005; Fig 3).  During the warm season, reticulate 

whiprays were detected on 72.5-100% of days between tagging and their last detection.  

Rays that were present in the cold season were detected on 54.9-100% of days prior to 

their last detection. 
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We tagged eight juvenile giant shovelnose rays, Glaucostegus typus (151-205 cm 

total length), between 6 June 2006 and 21 October 2006.  Shovelnose rays were detected 

within the receiver array for periods of 2-90 days (22.6 ± 28.6 days; mean ± SD), which 

was less than that of reticulate whiprays (Mann-Whitney U-test, W = 108.0, p = 0.011).  

Time x season (F = 9.07, p = 0.024) and time x microhabitat (F = 7.20, p = 0.011) 

interactions influenced the total amount of time shovelnose rays spent within the array.  

During the warm season, there were no diel differences in the amount of time shovelnose 

rays were detected on the flats, but shovelnose rays were detected for more time at night 

during the cold season (Fig 4).  During the day, there was no spatial variation in the 

amount of time that shovelnose rays were detected, but at night, rays used nearshore areas 

more often (Fig 5). Shovelnose ray length of stay within the array was longer at night (F 

= 8.46, p < 0.026; nighttime = 5.8 ± 0.7, daytime = 4.0 ± 0.7 half hr blocks; mean ± SE) 

and in nearshore microhabitats (F = 4.37, p = 0.048; Fig 6).  From the date of their 

tagging to the date of their last detection, shovelnose rays were present on 46.7-100% of 

days during the cold season and 18.0-100% of days during the warm season.  

 

Array 2 

Malfunctions of automated receivers within Array 2 limited my ability to assign 

time blocks to microhabitats after 22 April 2007, so quantitative analyses involving 

microhabitat were limited to the time period between 27 January 2007 and 22 April 2007 

(warm season) and species with at least five tagged individuals during that time period. 

 We tagged two additional reticulate whiprays (108 and 94 cm disc width) on 18 

and 19 February 2007.  These rays were detected within Array 2 over periods of 42 and 
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295 days.  Both rays were detected during both daytime and nighttime periods and the ray 

detected over a period of 295 days, remained in the area throughout the cold season, 

being detected on 96.7% of cold season days.  Overall rays were detected 84 and 100% of 

days between tagging and the date of their last detection. 

 On 20 February 2007, I tagged three giant shovelnose rays (182-201 cm total 

length.  I detected these rays for periods ranging from 15 to 185 days and were present 

during daytime and nighttime periods.  All the shovelnose rays had left the array by the 

end of April, but one individual returned in mid-August for 5 days during a period of 10 

days.  The shovelnose rays present in the array for 15 and 59 days were detected on 100% 

of days.  The ray that returned during the cold season was present on 80.6% of the 62 

days prior to its cold season return and 29.7% of days overall.  

 Between 20 February 2007 and 6 April 2007, I tagged five juvenile pink 

whiprays, H. fai (84-100 cm disc width).  These rays were detected for periods ranging 

from 7 to 112 days (34.80 ± 44.06 days; mean ± SD) and all of the pink whiprays had left 

the array before the start of the cold season.  During the cold season one individual 

returned to the array for a 3-day period after a 2-month absence and then again for 2 days 

after about 3 weeks.  Pink whiprays were detected on 50.0-85.7% of days prior to their 

last warm season detection.  On the basis of the limited data available for pink whiprays, 

I found no effect of time of day (F = 0.25, p = 0.641) or microhabitat (F = 0.638, p = 

0.558) on the total time spent within the array.  Similarly, I found no effect of time of day 

(F = 0.001, p = 0.976) or microhabitat (F = 0.98, p = 0.419) on length of stay. 

 Nine cowtail stingrays, Pastinachus atrus (a mix of juveniles and possible adults: 

89-133cm disc width) were tagged between 17 February 2007 and 29 March 2007.  
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Cowtail stingrays were detected in the array for periods of 4-189 days (32.9 ± 58.8 days; 

mean ± SD), with only one ray detected after early April.  This individual was not 

detected during the cold season, but was detected briefly in early September.  Between 

tagging and their last detection within the array prior to the cold season, cowtail stingrays 

were recorded on 9.0-70.0% of days.  With limited data for cowtail stingrays, I found no 

effect of time of day (F = 0.83, p = 0.388) or microhabitat (F = 0.85, p = 0.447) on the 

total time spent by these animals within the array.  Similarly, I found no effect of time of 

day (F = 1.75, p = 0.235) or microhabitat (F = 1.02, p = 0.439) on length of stay. 

 

Temperature 

Midnight temperatures ranged from 15.2-28.0 °C, 13.9-22.2 °C, and 16.6-27.3 °C 

for the late warm (February-May), cold, and early warm (September-December) seasons, 

respectively.  Noon temperatures ranged from 16.7-29.2 °C, 14.4-22.8 °C, and 17.9-29.0 

°C for the late warm, cold, and early warm seasons, respectively.  The interaction 

between season, time of day and location resulted in temperature differences (F = 11.27, 

p <0.001).  Mean cold season temperatures were >3°C lower than warm season 

temperatures and daytime temperatures were warmer than nighttime temperatures except 

at the location furthest from shore.  Mean temperatures tended to increase with distance 

from shore during the late warm season and cold season, while offshore temperatures 

were cooler during the days in the early warm season (Fig 7).   
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Discussion 

 Working in Shark Bay’s nearshore sandflats presented some problems for 

acoustic monitoring.  Shallow waters coupled with tidal effects and Shark Bay’s regular 

windy conditions can severely hamper signal detection (Finstad et al. 2005, Heupel et al. 

2006).  These conditions may be most problematic in the nearshore microhabitat, which 

has the shallowest waters.  As a result these environmental factors, especially wind, and 

the presence of the vessel itself may have contributed to the low rates of detection 

observed during range tests.  The high volume of detections of several animals over 

extended periods suggests an underestimation of receiver detection efficiency, although 

spotty detection patterns within the arrays also suggests that at times detection efficiency 

may have been compromised by environmental conditions.  Although not examined, such 

variation in detection efficiency may have a seasonal component, as the warm season 

tends to be windier than the cold season in Shark Bay and the lowest tides take place 

early in the warm season.  Because of the apparent variability in detection efficiency, I 

used a conservative approach to animal presence by using time blocks that had detections 

as my variable as opposed to using the total number of detections in time blocks, which 

has been used in other studies (e.g., Collins et al. 2007, Meyer et al. 2007, Carlson et al. 

2008, Collins et al. 2008).  Given that more detections were recorded in the nearshore 

microhabitat than any other microhabitat despite the higher likelihood of missed signals 

and the conservative approach I used, my results are robust.  In addition, the variable 

detection efficiency combined with the open nature of the arrays and long periods of ray 

movements that were extremely limited or nonexistent (i.e., continuous periods of up to 

days detected at a single receiver) prevented examination of diel movement rates.  
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Previous studies of Shark Bay’s sandflat ray community have shown that rays are 

abundant during the warm season, especially in nearshore microhabitats, and that ray 

densities decrease in the cold season (Vaudo and Heithaus 2009).  Acoustic monitoring 

showed somewhat similar spatial patterns but provide new insights into seasonal patterns 

of habitat use and abundance.  Shovelnose rays, Glaucostegus typus, and reticule 

whiprays, Himantura uarnak, that I monitored spent the most time in nearshore 

microhabitats.  However, rays were often detected on the sandflats during the cold season 

and interestingly, season did not influence the total amount of time these species were 

detected on the sandflats when they were present.  In fact, on days reticulate whiprays 

were detected, they were recorded for more time on the sandflats during the cold season, 

although these results may be confounded by receiver detection efficiencies.  The 

continued presence of individual shovelnose rays and reticulate whiprays on the sandflats 

during winter, therefore, suggests that the observed decrease in densities of these species 

in winter may be a result of differences in habitat use (i.e., more time spent in deep 

habitats not sampled here or during visual surveys) during the cold season rather than 

migration out of Shark Bay, which would have resulted in no detections during the cold 

season.  On the basis of dietary information (Vaudo and Heithaus 2011), examination of 

potential prey densities on the sandflats, ray behaviors, and large shark densities, I 

suggested that increased ray densities during the warm season might be a method of 

avoiding predation from tiger sharks, Galeocerdo cuvier, and great hammerhead sharks, 

Sphyrna mokarran, which are common in Shark Bay during the warm season, rather than 

exploiting available prey or thermal heterogeneity (Chapter V).  It is possible, however, 

that nocturnal use of the flats could be thermally motivated.  Nearshore microhabitats, 
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which were used most frequently, tended to be the coolest at night and rays may benefit 

energetically by residing in cooler water, especially if they have been feeding (Matern et 

al. 2000, Sims et al. 2006, Wallman and Bennett 2006, Di Santo and Bennett 2011).  

Energy conservation associated with use of cool waters may be extremely important in 

light of the high temperatures experienced during the day, especially in the warm season 

(Chapter V) and requires further study.     

 Of the two most common species, reticulate whiprays showed a more consistent 

presence on the Cape Rose flats than other species.  Seven of the nine whiprays 

monitored with Array 1 were detected over the course of two months, two rays were 

present for over five months, and all were present at least 72% of days between tagging 

and their last detection.  Further, within the smaller area covered by Array 2, the 

reticulate rays were present for 42 and 295 days, and they were present for at least 84% 

of days.  These data suggest that at least on the scale of months juvenile reticulate 

whiprays make relatively limited movements.  Shovelnose rays spent much less time on 

Cape Rose flats, with five animals from Array 1 detected for less than two weeks and 

only one shovelnose ray detected for over one month.  One of the shovelnose rays from 

Array 2, however, was detected for 59 consecutive days.  Juvenile shovelnose rays, 

therefore, may be more nomadic than reticulate whiprays.  However, it is unlikely that 

shovelnose rays move great distances.  Indeed, two shovelnose rays last present at the end 

of the cold season (late August) returned briefly the following March and one shovelnose 

ray from Array 2 returned after a four-month absence.  Additionally, shovelnose rays 

tagged with dorsal fin tags were spotted on flats near Monkey Mia, ~10 km southeast of 

the Cape Rose flats, over one year after being tagged on the Cape Rose Flats (Vaudo 



 233

personal observation), further suggesting that shovelnose rays may have larger home 

ranges than whiprays, but still remain within the eastern gulf of Shark Bay.  Limited 

movements over similar timescales have been observed in other rays that spend large 

amounts of time resting on the bottom (Vaudo and Lowe 2006, Simpfendorfer et al. 

2010) and even in more mobile elasmobranch species, juveniles have often shown 

restricted movements (e.g., Morrissey and Gruber 1993, Garla et al. 2006, Wetherbee et 

al. 2007). 

 Pink whiprays, H. fai, and cowtail stingrays, Pastinachus atrus, are less 

frequently observed on the flats of my study area (Vaudo and Heithaus 2009) and, not 

surprisingly, were detected for shorter periods of time. Most individuals were detected 

over periods of less than two weeks and present for <70% of days.  Array 2, however, did 

not provide full coverage of the Cape Rose flats, so it is possible individuals left the array 

but remained on the flats.  Cowtail stingrays may exhibit movement patterns similar to 

those observed for the shovelnose rays.  Cowtail stingrays are known to move into the 

shallow nearshore waters of Shark Bay’s sandflats to rest in groups (Semeniuk and Dill 

2005), but are also more often seen swimming than reticulate whiprays (Vaudo 

unpublished), which may indicate a more active lifestyle.  Cowtail stingrays appear to 

forage more heavily on sandflat-associated prey than other ray species that I studied 

(Vaudo and Heithaus 2011) and, therefore, may be responsible for many of the feeding 

pits observed on the sandflats (Vaudo and Heithaus 2011).  Prey densities on the 

sandflats, however, are low (Wells et al 1985, Chapter V), which may require cowtail 

stingrays to forage over large areas to locate adequate prey resources. 
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Pink whiprays appear to be more active than the other rays monitored.  

Approximately 75% of pink whiprays observed within the study site were swimming 

(Chapter V), therefore, it is not surprising that individuals would not remain within the 

detection range of the array for long, especially considering the size of Array 2.  Other 

mobile rays, such as cownose rays, Rhinoptera bonasus, have been known to use areas 

approximately three times larger than the Cape Rose flats over the course of a single day 

(Collins et al. 2007).  Pink whiprays are also the only species regularly observed 

swimming in groups within the study area (Vaudo and Heithaus 2009) and large groups 

(>30 individuals) have been observed foraging together (Heithaus personal observation).  

Such group feeding may rapidly deplete prey within an area (Peterson et al. 2001) 

necessitating movements to new areas. 

Although residency to the Cape Rose flats varied between species, all species 

were regularly present on the flats during the day and night, despite daytime behaviors 

and diets that would suggest moving into seagrass habitats at night to forage (Vaudo and 

Heithaus 2011, Chapter V).  Further, some reticulate whiprays continued to visit the 

sandflats during the cold season and overall, giant shovelnose rays were detected for 

longer periods of time on the sandflats during cold season nights than any other time of 

the year, indicating that the shallow waters of the sandflats may serve as more than just a 

refuge from predators, which are most abundant during the warm season, although even 

low predator abundances could trigger anti-predator behaviors (Heithaus and Dill 2002).  

The continued use of the sandflats, especially nearshore microhabitats, by rays combined 

with the high densities often observed (Vaudo and Heithaus 2009) suggests that rays may 

play an important role in the structure of the sandflat community, not limited to predatory 
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effects because rays’ benthic nature contributes to bioturbation, reworking sediments and 

potentially altering nutrient dynamics (Thrush et al. 1991, Myrick and Flessa 1996, Yahel 

et al. 2008).  Understanding the role this ray community plays will require more detailed 

information of ray movements and behaviors, especially during the night, which acoustic 

monitoring does not allow.  Knowledge of the fine-scale movements and the factors 

affecting movements of this ray community combined with manipulative experiments to 

determine ray effects on prey communities and nutrient flux could provide important 

insights into the dynamics of tropical and subtropical nearshore soft bottom ecosystems. 
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Fig. 1 This study was conducted on the Cape Rose Flats, Shark Bay, Western Australia.  

White dots represent acoustic receiver locations for Array 1 (21 May 2006 – 9 November 

2006).  Black dots are the locations of acoustic receivers for Array 2 (27 January 2007 – 

8 February 2008).  Asterisks indicate receivers with temperature loggers 
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Fig. 2 Spatial and diel variation in total detection time (mean ± SE) of reticulate 

whiprays, Himantura uarnak within Array 1.  Bars with different letters are significantly 

different at P < 0.05
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Fig. 3 Spatial and diel variation in reticulate whiprays, Himantura uarnak, length of stay 

(mean ± SE) in Array 1.  Bars with different letters are significantly different at P < 0.05 
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Fig. 4 Effect of season and time of day on total detection time (mean ± SE) of giant 

shovelnose rays, Glaucostegus typus, within Array 1.  Bars with different letters are 

significantly different at P < 0.05 
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Fig. 5 Effect of time of day and microhabitat on total detection time (mean ± SE) of giant 

shovelnose rays, Glaucostegus typus, within Array 1.  Bars with different letters are 

significantly different at P < 0.05
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Fig. 6 Spaial and diel variation in giant shovelnose ray, Glaucostegus typus, length of 

stay (mean ± SE) in Array 1.  Bars with different letters are significantly different at P < 

0.05 
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Fig. 7 Spatial, seasonal, and diel variation in water temperatures (mean ± SE) on the 

Cape Rose sandflat between 12 February 2007 and 31 December 2007.  Bars with 

different letters are significantly different at P < 0.05 
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 Despite considerable interest in the behavior and ecology of large sharks, 

relatively little research has been focused on smaller-bodied elasmobranch 

mesopredators, especially batoids.  This is a potentially important oversight since batoids 

have the potential to exert top-down impacts of their own (VanBlaricom 1982, Thrush et 

al. 1994, Peterson et al. 2001, Myers et al. 2007) and, therefore, transmit indirect effects 

of apex predators (Myers et al. 2007, Ritchie and Johnson 2009).  In my review of 

elasmobranch trophic relationships in Chapter I, I found that studies have primarily 

focused on elasmobranch diets and there is little information available on how 

elasmobranchs interact with or effect their predators and prey.  Further impeding an 

understanding of the ecology and importance of batoids and other elasmobranch 

mesopredators is the lack of systems with relatively undisturbed populations of batoids 

and their predators (large sharks).  By examining a batoid community in an isolated, near 

pristine system, I was able to examine habitat use patterns and foraging ecology of 

several batoid species and the biotic and abiotic factors that could potentially influence 

these behaviors in the absence of major anthropogenic impacts. 

I found that the batoid community of Shark Bay is very diverse (Chapter II), with 

12 species found on the nearshore sandflats of Shark Bay during my study, including a 

species that at the time of my fieldwork was undescribed.  With at least 18 species of 

batoids, Shark Bay supports species richness similar to that found in much larger areas, 

like Australia’s Gulf of Carpentaria (Blaber et al. 1994).  Batoids on the sandflats of 

Shark Bay were mostly juveniles and, surprisingly, the most common species of batoids 

displayed similar patterns of seasonal abundance and microhabitat use, with densities 
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increasing in nearshore microhabitats during Shark Bay’s warm season (September to 

May).   

 In addition to having similar daytime microhabitat use patterns, the most common 

species have a great deal of dietary overlap, feeding primarily on crustaceans, which are 

most abundant in seagrass habitats (Chapter III).  Stable isotopic analysis showed that 

within species there was considerable variation, most of which could not be attributed to 

ontogenetic dietary shifts, hence there may be varying levels of individual specialization 

within these populations.  Further, these batoid populations are highly dependant on 

seagrass derived carbon.  The combination of similar microhabitat use patterns and diets 

contrasts with predictions for populations that are limited primarily by food – where 

greater niche segregation would be expected in diets or habitat use – and raises the 

intriguing possibility that populations are regulated by other factors such as predation. 

 With information on diet and behaviors observed during surveys, I was then able 

to assess the factors that may affect habitat use in Chapter IV.  By examining water 

depth, thermal heterogeneity, and the abundance of predators and prey, I showed that 

daytime batoid microhabitat use during the warm season is likely related to predator 

avoidance.  Choosing to rest in shallow waters (the nearshore microhabitat) as a means of 

avoiding predators, however, appears to represent an energetic tradeoff.  Not only are the 

batoids using microhabitats with limited food availability, but these habitats are also 

often the warmest microhabitats available, which for poikilothermic species such as 

batoids will result in increased metabolic rates and therefore costs, but can lead to faster 

growth rates if energy intake increases at a higher rate than metabolism. 
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 Acoustic monitoring data presented in Chapter V also supports the hypothesis that 

use of the sandflats is related to batoid predators.  Individual batoids use the sandflats 

throughout the diel cycle and during the cold season (June to August), suggesting that 

lower abundances of batoids on the sandflats during the cold season are likely a result of 

habitat shifts (i.e., movements into deeper waters where visual surveys and acoustic 

monitoring were not practical) rather than a seasonal migration out of Shark Bay.  

Overall, the nearshore sandflats of Shark Bay appear to act as a nursery habitat for 

juvenile batoids, providing protection from the seasonally abundant tiger shark, 

Galeocerdo cuvier, and great hammerhead (Sphyrna mokarran) populations.  Given the 

large number of batoids within the system and their use of the sandflats throughout the 

diel cycle, batoids have the potential to influence the sandflat community of Shark Bay, 

especially during the warm season.  Interestingly, their largest impact is not likely to be 

the result of their foraging activities, but rather bioturbation because they often bury in 

the sand while resting.  Bioturbation could displace and remove meiofauna (VanBlaricom 

1982, Cross and Curran 2000) as well as resuspend nutrients within the sediments (Yahel 

et al. 2008), potentially altering nutrient dynamics and ultimately community 

composition. 

The use of the nearshore sandflats as a refuge may also alter the dynamics 

between batoids and their non-sandflat associated prey.  The large amount of time batoids 

spend resting on the sandflats to avoid predation risk equates to lost foraging 

opportunities.  Such risk effects can maintain mesopredator populations below the 

carrying capacity set by their prey (Heithaus et al. 2008), effectively releasing 

mesopredators from prey limitation.  When resources are abundant, species face lessened 
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competitive pressures and are able to use the same resources, which may in part explain 

the high dietary overlap observed among the dominant batoid species and may be a 

contributor to the high batoid diversity observed.            

Also of interest is the relationship between Shark Bay’s batoids and temperature.  

Although the batoids can tolerate the highest water temperatures found in Shark Bay, the 

relationship between their metabolic rates and temperature are unknown.  Batoids 

undoubtedly incur higher metabolic costs in warm water (Du Preez et al. 1988, Hopkins 

and Cech 1994), which can negatively affect growth rates unless increased feeding can 

offset the higher costs (Wurtsbaugh and Davis 1977, Russell et al. 1996).  Depending on 

the metabolic costs of inhabiting high temperatures, increasing global temperatures could 

at some point in the future eliminate the shallow waters of the nearshore microhabitat as a 

viable refuge from predators, altering the interactions between batoids and large sharks 

and, ultimately, the dynamics of nearshore communities. 

Top-down pressure from large sharks does appear to play an important role in 

Shark Bay’s batoid community.  Throughout the warm season, juvenile batoids select 

habitats that provide protection from large sharks (i.e., habitats too shallow for large 

sharks to enter).  Batoids may then impact these shallow habitats through bioturbation 

and limited foraging; therefore, large sharks, through their interaction with batoids, may 

indirectly affect the dynamics of Shark Bay’s shallow sandflats, despite not normally 

having access to these areas.  Thus, my study provides further evidence for the 

importance of apex predators and how their interactions with mesopredators can shape 

systems.  
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