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Abstract. Novel ecosystems result from a combination of altered historical abiotic regimes and new spe-
cies assemblages. In freshwater systems, novel environmental conditions often result from large-scale
changes to hydrological connectivity as well as species invasions. Novel environmental conditions may
affect the survival of aquatic fauna by altering dispersal patterns and resource fluctuations, and/or may
impose physiological constraints on native species evolutionarily adapted to particular environments. Fur-
ther, novel systems can provide insight into processes driving community structure because re-sorting or
filtering of regional biota is a likely consequence of decoupling from historical conditions. Although several
studies document the presence of novel conditions, few examine variation or gradients in novelty. The Flor-
ida Everglades is a highly invaded and hydrologically altered system characterized by a large network of
canals that compartmentalize the ecosystem and act to both increase and decrease connectivity. Little is
known about how canals in this region function as habitat for native and nonnative fishes, the extent to
which these canals may function as novel habitats, and how these habitat characteristics may influence dis-
tribution, abundance, and assembly patterns. In this study, we examined native and nonnative fish assem-
blages along a gradient of novelty, defined as the loss of wetland connectivity, influence of the natural
hydrological regime, and habitat complexity (well connected to leveed canals). As novelty increased, native
species richness and abundance strongly declined and the contribution of nonnatives increased to nearly
50%. Vast differences in community structure across the novelty gradient were strongly influenced by spa-
tial factors and secondarily by hydrological factors, while habitat and abiotic factors were of very low rele-
vance. Natives and nonnatives had opposing responses to key hydrological and habitat characteristics.
Abundance of native fishes declined with decreased connectivity to adjacent marshes and canal littoral
zone width, while nonnative fishes increased significantly in the most novel canals. Our results suggest
that the inherent loss of natural environmental conditions and subsequent replacement by novel ones can
lead to extensive changes in fish community structure. Success or failure at maintaining native assemblages
will rely heavily on natural resource manager’s ability to incorporate natural environmental characteristics
with ecosystem restoration.

Key words: anthropogenic disturbance; canals; community structure; distance-based linear models; ecosystem
novelty; Everglades; nonnatives; species invasions.
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INTRODUCTION

The synergistic effects of anthropogenic distur-
bance and species invasions can rapidly alter both
ecosystem structure and function (Milton 2003,
Root and Schneider 2006, Didham et al. 2007).
These changes can profoundly affect all levels of
ecological organization and result in the emer-
gence of biotic and abiotic conditions that bear lit-
tle to no resemblance to their natural counterparts
(Fox 2007, Kueffer 2015, Radeloff et al. 2015).
Such systems have recently generated much dis-
cussion and are often referred to as “no-analog”
or “novel” ecosystems (Milton 2003, Hobbs et al.
2006, 2013, Fox 2007, Williams and Jackson 2007).
Novel ecosystems are defined by two key charac-
teristics which include alterations to historical abi-
otic regimes and the presence of new species
assemblages, both caused by a combination of
varying degrees of environmental degradation
(e.g., land use changes) and species invasions
(Hobbs et al. 2006, 2009). Novel systems provide
an opportunity for insight into community assem-
bly processes since re-sorting or filtering of regio-
nal biotas is a likely consequence of this
decoupling from historical conditions.

In freshwater systems, anthropogenic ecosys-
tem degradation most often results from
disruptions of natural hydrological regimes and
spatially widespread disturbances (Pringle 2001,
2003, V€or€osmarty et al. 2010, Arthington 2012).
Alterations to the natural flow regime (Poff et al.
1997, Acreman et al. 2014) and aquatic species
invasions (Ricciardi and Rasmussen 1999) are
recognized as two of the most concerning global
threats to aquatic biodiversity (Dudgeon et al.
2006). Altered hydrological connectivity from
dams, impoundments, canals, and levees, cre-
ated for both water retention and diversion, can
result in novel conditions for aquatic fauna that
can limit or enhance dispersal abilities, alter
resource fluctuations, and impose physiological
constraints on native species that are evolutionar-
ily adapted to particular natural regimes (Conley
et al. 2000, Freeman et al. 2007, Franssen et al.
2013).

An estimated 40% of the Earth’s land area may
already be covered by novel ecosystems (Ellis
et al. 2010, Foley et al. 2011, Barnosky et al. 2012),
with many terrestrial examples (Cramer and
Hobbs 2002, Lindenmayer et al. 2008, Mascaro

et al. 2008, Lugo 2009, Hobbs et al. 2013). In
aquatic and marine systems, examples of novel
ecosystems are increasingly being reported (Nils-
son and Berggren 2000, Gido et al. 2009, King
et al. 2011, Pandolfi et al. 2011). For instance,
algal blooms from non-point source runoff in the
Gulf of Mexico have resulted in extensive dead
zones and novel species interactions (Rabalais
et al. 2002). Similarly, human-induced ocean acid-
ification combined with rising ocean temperatures
and pollution has left novel ecosystems in the
wake of once thriving coral reefs (Fabricius 2005,
Hoegh-Guldberg et al. 2007, Pandolfi et al. 2011).
Although these studies documented ecosystem
novelty, they provide little detailed information of
variation in novelty, in other words how truly
novel these conditions are. This variation can have
important implications for resource management,
conservation and restoration efforts. Effective
resource management requires that we under-
stand how novel conditions are, in order to apply
appropriate management targets (i.e., protect vs.
restore; Woodworth 2013, and Wuerthner et al.
2014). One potentially helpful approach is the
identification of gradients in novelty in the land-
scape as a function of varying degrees of both abi-
otic and biotic change (e.g., urbanization; King
et al. 2011).
The Everglades is a rain-fed karstic wetland

system, which due to drainage and impound-
ment, is presently bisected by an extensive net-
work of canals and levees. Built for water supply
and flood control beginning in the 1880s, nearly
2500 km of canals and levees presently surround
and cut through wetlands, impeding sheet flow
and compartmentalizing the entire ecosystem
(Light and Dineen 1994, Sklar et al. 2002). Canals
in this region offer an opportunity to better
understand how these structures function as
novel habitat for both native and nonnative
fishes and how novel conditions influence the
distribution, abundance, and assembly patterns
in fish communities. Canals likely provide per-
manent deep-water faunal refuges which were
historically rare or absent in the natural Ever-
glades ecosystem (Gunderson and Loftus 1993),
thus acting as novel aquatic habitats. Canals also
vary in their attributes, which we expect will
result in a novelty gradient (Fig. 1). Variation in
(1) their connectivity to adjacent marshes, (2) in
the influence of the natural seasonal hydrological
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regime, and (3) habitat complexity may drive
gradients in novelty that we hypothesize relate
to the degree of invasion.

Canals exhibit a range in connectivity with
surrounding marshes (analogous to floodplains),
ranging from those that are well connected and
contain complex littoral zone habitats, to canals
with only moderate connectivity (i.e., only

connected at high water levels and/or partially
leveed), to those with no direct connectivity and
virtually no habitat resemblance to Everglades
freshwater habitats and thus higher novelty
(fully leveed on both sides and isolated from sur-
rounding wetlands; Fig. 1). Canals that are well
connected to marshes should be more influenced
by the natural wet dry pulsing seasonality of the

Fig. 1. (A) Conceptual diagram depicting hypothesized changes in fish community structure as a function of
increasing novelty in Everglades canals. Native species are represented by white symbols, while nonnatives are
represented by black symbols, and symbol size corresponds to species abundance. We expect the degree of inva-
sion to increase with increasing novelty, leading to an increasing number of nonnative species (and higher nonna-
tive abundances) and a lower number of native species (and lower abundance—at least for some native taxa). At
the highest level of novelty, we hypothesize habitat quality to decrease for native species, and for nonnative spe-
cies to dominate the community. Canals with higher novelty are characterized by lower connectivity to natural
habitats, lower influence of the natural hydrological regime, and lower habitat complexity. Novelty increases
from (B) well connected canals to (C) moderately connected canals and to (D) leveed canals.
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subtropical Everglades (Sklar et al. 2002, McVoy
et al. 2011).

We expect then canals with lower connectivity
to marshes, lower influence of the seasonal hydro-
logical regime, and lower habitat complexity to be
more novel and thus more invaded by nonnative
fish species (Fig. 1). Fish invasions have been a
persistent and prominent feature of the Ever-
glades ecosystem (Fuller et al. 1999, Kline et al.
2014). This is particularly true in canals, which
can act as a source of invasions to protected areas
such as Everglades National Park (ENP; Kline
et al. 2014). Presently, 34 nonnative fishes are con-
sidered established (i.e., they have reproductively
viable populations; Shafland et al. 2008) in south
Florida, of which 17 are established within ENP
(Kline et al. 2014). These numbers are compara-
tively large relative to the low native fish diversity
(35 species; Loftus 2000).

In this study, we examined native and nonna-
tive fish community structure in an Everglades
canal network as a function of a gradient in nov-
elty, specifically the loss of wetland connectivity,
the natural seasonal hydrology, and habitat com-
plexity—conditions not reflective of the pre-drai-
nage Everglades (McVoy et al. 2011). Our specific
objectives were to (1) examine spatiotemporal
variation in both the native and nonnative fish
communities in relation to the degree of novelty
in canals, and (2) determine the relative impor-
tance of hydrological, habitat, and spatiotemporal
factors in driving community structure patterns.
We expected that (1) increasing ecosystem novelty
would result in a change in community structure
driven by a loss in native species and replacement
by nonnatives (Fig. 1) and (2) that the relative
importance of structuring factors will differ
between native and nonnative assemblages.

We hypothesized that native species may not
be able to cope with increasingly more novel con-
ditions, resulting in niche opportunities that
allow for increased nonnative species richness
and abundance (Fig. 1). When resource dynam-
ics are altered via environmental disturbances,
niche opportunities (e.g., increased resources,
escape from enemies) may provide mechanisms
by which nonnatives can increase from low den-
sities and even become dominant (Shea and
Chesson 2002). As ecosystem novelty increases
in Everglades canals, we expected environmental
conditions to shift to those that share little

resemblance to conditions found in Everglades
marshes, resulting in a loss of native species and
replacement by opportunistic invaders that could
establish in these less favorable conditions
(Fig. 1). We also expected hydrological variables
to play a stronger role in structuring the native
community, given that this community should be
pre-adapted and thus responsive to hydrology,
particularly the strong signature of seasonal
hydrological variation (Trexler et al. 2005, Reh-
age and Trexler 2006).

METHODS

Novelty gradient across Everglades canals
We sampled five major canals (L-29, L-31N, L-

31W, C-111, and L-67A) in the central and south-
ern Everglades (Fig. 2). Canals were located
along the eastern boundary of ENP, bordering
agriculture areas to the east, and to the north of
ENP and center of Water Conservation Area 3
(WCA 3) bisecting freshwater marshes. To
account for variation in canal traits across space
and time, we classified our focal canals into nine
canal sampling units (Table 1) on the basis of
connectivity within a canal (i.e., presence of
water control structures between sections of a
canal), and to surrounding marshes (i.e., pres-
ence of levees vs. direct connectivity to adjacent
marshes; Fig. 1). When a water control structure
was present in a canal, we examined 20 years of
flow data from each structure in order to demar-
cate canal sampling units. For example, the L-29
canal is leveed in the eastern portion but not
leveed in the western portion (Fig. 2), and the
eastern and western sections of L-29 are sepa-
rated by a gravity-fed water control structure (S-
333) which moves water between them, but
likely limits the exchange of biota since at times
in any given year it is closed. Thus, we delin-
eated these two canal sections as separate canal
sampling units (Fig. 2, Table 1).
Since our focus was to understand how a gra-

dient in novelty influences fish community struc-
ture, canal sampling units were classified into
three categories (hereafter CANALTYPE): well-
connected (WC), moderately connected (MC),
and leveed (L) canals (Table 1). WC canals
(n = 3) are connected to longer hydroperiod
marshes nearly year-round, experiencing a
greater influence from the natural hydrological
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regime (i.e., seasonal rainfall patterns; Fig. 1).
MC canals (n = 3) are, on average, only con-
nected to adjacent shorter hydroperiod marshes
during the wet season and have intermediate
habitat complexity in their littoral zones. All WC
and MC canals have marsh connectivity on one
side of the canal (leveed on only one side). In

contrast, L canals (n = 3) have no direct connec-
tivity to marsh habitats, receive little influence
from the natural hydrological regime, and have
low habitat complexity since they typically lack a
littoral zone. These isolated, deep, and low-com-
plexity habitats are unlike any natural aquatic
habitat in the Everglades, and thus, we consider

Fig. 2. Map showing the nine canal sampling units spanning across the southern and central portions of the
Everglades and surrounding Everglades National Park. Sites are coded based on their connectivity to marshes:
WC, well connected canals; MC, moderately connected canals; L, leveed canals. WC canals are connected to
marshes year-round, MC canals are connected only at high water conditions, and L canals are completely discon-
nected from surrounding marsh habitats due to levees on both sides.
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them to exhibit the highest degree of novelty
along our defined gradient (Fig. 1).

Sampling design
We used a stratified random sampling design

to allocate replicated electrofishing sampling
effort across the nine canal sampling units over
time (hydrological seasons and years). A stratified
random sampling approach offers a robust design
by accounting for variability among strata, incre-
asing precision in generating estimates of fish
abundance, and also meets the assumptions of
probability statistics (Hansen et al. 2007, Bonar
et al. 2009). At each canal sampling unit, we used
ArcGIS to designate uniquely identified fixed
sampling stations, each spaced 200 m apart
(Table 1). At each seasonal sampling event, we
randomly selected 8–10 sampling stations to sam-
ple from each canal sampling unit (and in a few
rare exceptions only five stations; Table 1), and re-
randomized for each sampling event. We con-
ducted a total of nine sampling events (3 sea-
sons 9 3 yr) over the course of the study;
seasonal sampling events included wet (June–
November), early dry (December–February), and
late dry (March–May) for each of year of the
study. Between 2010 and 2013, sampling totaled
651 samples (9 canal sampling units 9 8–10 repli-
cate samples 9 3 seasons 9 3 yr = 651 samples;
Table 1).

Across the 3 years of our study, prevailing La
Nina conditions resulted in below-average

rainfall conditions in years 1 and 2 of sampling
(Abtew et al. 2013). Climatic conditions in the
dry season of 2010–2011 (year 1) resulted in sev-
ere region-wide drought conditions with
prolonged drying and a late start to the wet sea-
son. In year 3, the system experienced above-
average rainfall conditions, and thus the wettest
conditions of the 3-year period. One site (L-31N
north) was not accessible during the wet, and
early dry samples of year 1 and late dry of year 2
(Table 1).

Electrofishing sampling effort
Fishes were collected using a boat-mounted,

generator-powered electrofisher (two spherical
anodes, one-cathode system, Smith-Root GPP 9.0,
Vancouver, Washington, USA). Electrofishing is
an effective method for sampling fishes in fresh-
water habitats, including the Everglades, and elec-
trofishing catch per unit effort (CPUE) has been
shown to provide a reliable index of fish abun-
dance (Chick et al. 1999, 2004, Moulton et al.
2002, Rehage and Trexler 2006, Zale et al. 2013).
Boat electrofishing uses a flat-bottom aluminum
boat to produce a standardized electrical field, so
that fish may be electroshocked, immobilized,
and easily collected. Each electrofishing sample
consisted of 300 s of standardized, intermittent
power application at 3000 W (Boucek and Rehage
2013). Since canal width is greater than the electric
field, a shoreline side was targeted for each sam-
ple. If a canal had marsh connectivity, then the

Table 1. Summary of electrofishing sampling effort at each of the nine canal sampling units across years: years 1
(2010–2011), 2 (2011–2012), and 3 (2012–2013).

Canal unit
name

Canal
type

Available
stations (N)

Year 1 (2010–2011) Year 2 (2011–2012) Year 3 (2012–2013)

Wet Early dry Late dry Wet Early dry Late dry Wet Early dry Late dry

L-67A WC 204 5 10 10 8 8 8 8 8 8
L-29 East WC 89 8 10 10 8 8 8 8 8 8
L-29 West WC 97 8 10 10 8 8 8 8 8 8
L-31W North MC 51 8 10 10 8 8 8 8 8 8
L-31W South MC 33 5 10 10 8 8 8 8 8 8
C-111 South MC 53 8 10 10 8 8 8 8 8 8
L-31N North† L 57 0 0 10 8 8 0 8 8 8
L-31N South L 84 8 5 10 8 8 8 8 8 8
C-111 North L 93 8 5 10 8 8 8 8 8 8
Seasonal total 58 80 90 72 72 64 72 72 72
Annual total N = 228 N = 208 N = 216

Notes: Shown are the number of electrofishing samples across the three seasonal sampling events per year. Canal units are
classified into three canal types: WC, well connected; MC, moderately connected; L, leveed.

† L-31N North was not accessible at times with no samples.
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marsh side of the canal was always sampled. If
both sides were leveed, a shoreline was randomly
selected for each sample. To ensure adequate sam-
pling across the entire canal shoreline, samples
began from two meters out from the littoral zone
edge in deep water and crossed the littoral zone
in a zigzag fashion at a 45 to 90° angle to the shore
(Guy et al. 2009).

Fish were captured by two netters positioned
at the front of the boat, and placed in a holding
tank to be later identified and enumerated by
species after each sample was completed. Elec-
trofishing targeted all fish larger than 3 cm in
length (Rehage and Loftus 2007). We used elec-
trofishing CPUE as an index of abundance. We
defined CPUE as the sum of fishes caught and
shocked in each sample, adjusted for the length
of canal shoreline sampled (measured with a
GPS unit; Boucek and Rehage 2013). Shocked
fishes included fish that were not caught by net-
ters, but readily identified and counted while
shocking. If fish identification was questionable,
fish were not included in our CPUE, nor were
fish from the opposite shoreline. Thus, elec-
trofishing CPUE consisted of the number of fish
per 100 m of canal shoreline sampled:

CPUE ¼ Fish netted þ fish shocked
distance sampled ðmÞ

� �
� 100

Habitat, abiotic, and hydrological attributes
At the beginning of each sample, we measured

habitat and abiotic conditions to examine their
influence on community structure (Appen-
dix S1). Submersed aquatic vegetation (SAV)
characteristics were measured using a 0.5-m2

quadrat every meter in a transect perpendicular
to the shoreline out to 2 m into deep water.
Within each quadrat, we measured SAV percent
cover (PCOVER) and species richness (PRICH)
as well as the average littoral zone depth
(LZDEPTH) and width (LZWIDTH). At each
sample, we also measured physicochemical con-
ditions including dissolved oxygen (DO), tem-
perature (TEMP), and ambient conductivity
(COND) with a multisonder YSI unit, and water
clarity using a Secchi disk (SECCHI).

To quantify hydrological connectivity between
canals and surrounding marshes, we recorded
two hydrological parameters (Appendix S1).
First, we measured the local marsh connectivity

at the time of each sample as a categorical vari-
able (LCON; connected or not connected to adja-
cent marsh at the time of sampling). Second, we
estimated regional connectivity by calculating
the proportion of days each canal unit was con-
nected to marshes for the year prior to the date
of each sample (DCON) using stage data pro-
vided by the Everglades Depth Estimation Net-
work (http://www.sofia.usgs.gov/eden/). Data
from the closest gauges to each canal unit were
used. For both parameters, we defined a canal
unit as connected if the average marsh depth
was ≥10 cm. Marsh water depths lower than
10 cm in the Everglades have little remaining
standing water that is not uniformly distributed
across the marsh surface, making conditions
unsuitable for many fishes (Chick et al. 2004).

Statistical analyses
We used a two-step approach to examine vari-

ation and structure in canal fish communities in
relation to the degree of novelty of canals and
hydrological, habitat, and spatiotemporal dri-
vers. First, we fitted generalized linear models to
examine spatiotemporal variation in abundance
and richness of all fishes, and then of natives and
nonnatives separately. We then used multivariate
tools to test for variation in community structure
across space and time, and for the relative contri-
bution of predictor variables (hydrological, habi-
tat, and abiotic variables).
We examined spatiotemporal variation in fish

abundance and richness of all fishes, natives
only, and nonnatives only, as well as habitat and
abiotic variables, using univariate two-way
nonparametric permutational analysis of vari-
ance (PERMANOVA; Anderson 2001) to test for
the fixed effects of CANALTYPE (WC, MC, and
L) and SEASON (wet, early dry, late dry), the
random effect year (YEAR), and the interactions
of fixed effects.
To examine community structure, we con-

ducted two-way nonparametric permutational
analysis of variance (PERMANOVA; Anderson
2001, Anderson and Robinson 2003, Anderson
et al. 2008) on three assemblage models: all
fishes, natives only, and nonnatives only. Each
model was based on fourth-root-transformed (to
account for rare species) Bray–Curtis similarity
matrices (Clarke and Warwick 2001). Models
tested for the fixed effects CANALTYPE and
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SEASON, the random effect YEAR, and the inter-
actions of fixed effects. We followed significant
main effects with PERMANOVA post hoc pair-
wise comparison tests. All PERMANOVA tests
were based on 999 unrestricted permutations of
the residuals under a reduced model to obtain a
pseudo-F-statistic and subsequent P value using
type I sums of squares in PERMANOVA+ for Pri-
mer 6.0 (Anderson et al. 2008).

To examine the relationship between fish com-
munity structure and predictor variables, we
used distance-based linear models (DISTLMs;
Legendre and Anderson 1999). The DISTLM pro-
cedure is a distance-based redundancy analysis
(dbRDA) that uses multivariate multiple regres-
sions and performs a permutation test to model
the variability of an assemblage matrix against
multiple predictor variables (Anderson et al.
2008). We used DISTLMs to assess the relative
contribution of five predictor variable sets: (1)
spatial, (2) temporal, (3) hydrological, (4) habitat,
and (5) abiotic factors (Appendix S1). Spatial
variables included each canal unit (CANALU-
NIT) and CANALTYPE (WC, MC, L), temporal
factors included YEAR, and hydrological vari-
ables included the annual proportion of days
each CANALUNIT was connected to marshes
(DCON), the local connectivity of the sampled
area to adjacent marshes (LCON), and SEASON
(wet, early dry, late dry). Habitat variables
included PCOVER, PRICH, LZWIDTH, and
LZDEPTH (averaged for each sample), and abi-
otic variables included DO, COND, TEMP, and
SECCHI (Appendix S1).

Models were fitted using a stepwise selection
procedure. We used the Akaike’s information cri-
terion for selecting the most parsimonious model
corrected for small sample size (AICc), and R2 to
evaluate the % of variation explained by each
variable set (Anderson et al. 2008). We conducted
DISTLM separately for the three assemblages: all
fishes, natives only, and nonnatives only, using
Bray–Curtis resemblance matrices (Faith et al.
1987, Legendre and Gallagher 2001). Prior to anal-
ysis, all predictor variables were examined for co-
linearity to eliminate redundant variables
(r > 0.6) using principal components analysis and
draftsman plots (Legendre and Anderson 1999,
McArdle and Anderson 2001). Last, we used
dbRDA plots to visualize the results of DISTLMs
with vectors of predictor variables overlaid.

Statistical significance of predictor sets was
assessed at a = 0.05 with 999 random permuta-
tions. DISTLMs were conducted using PERMA-
NOVA+ for Primer 6.0 (Anderson et al. 2008). We
then fitted simple regressions to better under-
stand the relationship between native and nonna-
tive abundance aggregated across the nine canal
sampling units and key predictor variables identi-
fied in DISTLM analyses and dbRDAs in Sigma-
Plot 11.0, San Jose, California, USA.

RESULTS

Spatiotemporal variation in habitat and abiotic
attributes
We found marked differences across CANAL-

TYPE, SEASON, and YEAR in the littoral habitats
of sampled canals (Table 2). We detected a gradi-
ent in habitat complexity of canal littoral
zones, such that PCOVER, PRICH, LZWIDTH,
and LZDEPTH declined as the degree of canal
connectivity to surrounding marshes decreased
(Appendix S2). Overall, littoral habitats in L
canals were markedly less complex and nearly
absent, with steep banks and sparse vegetation
providing less cover for fish (Appendix S2). Aver-
age LZW and LZD decreased from 2.3 � 0.1 m
and 1.0 � 0.0 m in WC canals to an average of
0.6 � 0.1 m and 0.7 � 0.0 m in L canals, respec-
tively. Littoral zone PCOVER and PRICH declined
nearly threefold from WC canals to L canals with
MC canals showing intermediate conditions (�x%
COVER = 43.6 � 1.6 and �xPRICH = 4.0 � 0.2 to �x%
COVER = 15.3 � 1.7 and �xPRICH = 1.3 � 0.1,
respectively). Seasonally, we detected a general
shrinking of the littoral zone, especially between
the wet and the late dry, but the magnitude of this
effect was not the same across canal types
(Table 2). MC canals showed the greatest seasonal
reduction in habitat complexity (37% reduction in
COVER and 45% reduction in PRICH).
Variation in abiotic conditions was mainly a

product of seasonality and sampling YEARS and
not CANALTYPE (Table 2). Average DO levels
were lowest in the wet season (2.0 mg/L)
and highest in the late dry (4.4 mg/L). Although
lower wet season DO values were contrary to
what we would expect, previous work has found
DO to be highly correlated with phosphorus
(McCormick and Laing 2003); we suspect our
results here to be driven by phosphorus-enriched
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waters being flushed out of upstream agricul-
tural areas into canals during high water periods.
For TEMP, mean values were higher in the wet
(27.5°C) and lowest in the early dry season
(23.7°C, P ≤ 0.001).

Spatiotemporal variation in fish relative
abundance and richness

Over 3 years, we collected 28,817 fishes: 23,771
natives (33 spp.) and 5046 nonnatives (16 spp.;
Appendix S3). Patterns of fish abundance and
species richness in Everglades canals varied sig-
nificantly as a function of both space (CANAL-
TYPE) and time (SEASON and YEAR). This was
true when considering all taxa combined, as well
as native and nonnative fishes separately
(Table 3). Total fish CPUE decreased as canals
became more novel (WC to L), particularly as a
result of reductions in native fishes (Fig. 3A). On
average, we caught 125.6 � 11.7 fish/100 m in
WC canals, 76.7 � 7.5 fish/100 m in MC canals,
and only 27.8 � 4.1 fish/100 m in L canals. The
relative ratio of native to nonnative fishes also
decreased with increased novelty. Native fishes

represented 99% of total CPUE in WC canals and
68% in MC canals, but only 53% L in canals.
Notable is the fact that in L canals, total fish
CPUE was four times lower than in WC canals,
and close to half of fish caught were nonnative
(47%). Mean nonnative fish CPUE was also simi-
lar between MC and L canals, an average of 16.7
fish/100 m (P = 0.730).
Patterns in species richness across CANAL-

TYPE generally mirrored those of CPUE
(Table 3). Total species richness (mean per 100 m
of shoreline sampled) was highest in WC canals
(8.9 spp.), intermediate in MC canals (8.1 spp.),
and lowest in L canals (5.5 spp.; Fig. 3B). As
expected, mean native richness decreased from
WC to L canals (WC = 8.3 spp., MC = 5.1 spp.,
L = 3.1 spp.). But, contrary to expectations, non-
native richness was highest in MC canals (3.1
spp.), relative to L (2.4 spp.) vs. <1 spp. on aver-
age per 100 m in WC canals.
Over time, variation in canal fish assemblages

was detected both as a function of SEASON,
YEAR, and a differential effect of SEASON and as
a function of CANALTYPE (Table 3). Seasonally

Table 2. Results of PERMANOVAs testing the fixed effects CANALTYPE (WC, MC, and L) and SEASON (wet,
early dry, and late dry), the random effect hydrological year (YEAR), and the interactions of fixed effects
(CT 9 S) on habitat and abiotic variables.

Effects by variable df F P Effects by variable df F P

PCOVER (%) DO (mg/L)
CANALTYPE (CT) 2, 622 52.1 0.005 CANALTYPE (CT) 2, 622 1.4 0.403
SEASON (S) 2, 622 3.2 0.159 SEASON (S) 2, 622 7.6 0.048
YEAR 2, 622 17.9 0.001 YEAR 2, 622 5.1 0.005
CT 9 S 4, 622 8.5 0.004 CT 9 S 4, 622 0.6 0.647

PRICH TEMP (°C)
CANALTYPE (CT) 2, 622 199.6 0.010 CANALTYPE (CT) 2, 622 2.0 0.248
SEASON (S) 2, 622 5.0 0.084 SEASON (S) 2, 622 7.1 0.043
YEAR 2, 622 12.0 0.001 YEAR 2, 622 13.6 0.001
CT 9 S 4, 622 5.3 0.026 CT 9 S 4, 622 0.8 0.531

LZWIDTH (m) COND (lS/cm)
CANALTYPE (CT) 2, 622 75.4 0.004 CANALTYPE (CT) 2, 622 1.4 0.396
SEASON (S) 2, 622 6.1 0.065 SEASON (S) 2, 622 0.4 0.730
YEAR 2, 622 6.3 0.001 YEAR 2, 622 17.3 0.001
CT 9 S 4, 622 1.4 0.291 CT 9 S 4, 622 0.7 0.567

LZDEPTH (m) SECCHI (m)
CANALTYPE (CT) 2, 622 6.9 0.077 CANALTYPE (CT) 2, 622 2.7 0.150
SEASON (S) 2, 622 8.3 0.038 SEASON (S) 2, 622 2.6 0.225
YEAR 2, 622 8.4 0.030 YEAR 2, 622 2.3 0.088
CT 9 S 4, 622 0.6 0.660 CT 9 S 4, 622 1.9 0.226

Notes: Significant results (P < 0.01) are bolded. Habitat variables include littoral percent vegetation cover (PCOVER), plant
species richness (PRICH), littoral zone width (LZWIDTH), and littoral zone depth (LZDEPTH). WC, well connected canals;
MC, moderately connected canals; L, leveed canals.

 ❖ www.esajournals.org 9 January 2017 ❖ Volume 8(1) ❖ Article e01634

GANDYAND REHAGE



and across all CANALTYPEs combined, CPUE
generally increased from an average of 33 fish/
100 m in the wet season to 83 fish/100 m in the
early dry, and to a peak abundance of 115 fish/
100 m in the late dry season (Fig. 4). This three-
to fourfold increase in fish CPUE over the dry sea-
son was primarily driven by large increases in the
native fauna, and particularly in WC canals
(Fig. 4A–C). Thus, the effect of seasonality varied
as a function of CANALTYPE (Table 3). In WC
canals, native fishes peaked in the late dry season
with a nearly 4.5-fold increase relative to the wet
season, while increases in MC canals (7.5-fold)
occurred earlier in the early dry season (�xwet =
14.2 to �xearly dry = 105.0 fish/100 m; Fig. 4B). In
contrast, we noted no seasonality in native fish
CPUE in L canals (P = 0.690).

For nonnatives, we detected no seasonality in
WC canals where nonnative numbers were very
low (<1.8 fish/100 m; Fig. 4C); however, we did
detect seasonality in MC and L canals (P < 0.001;
Fig. 4C). In MC canals, nonnative fishes incre-
ased sixfold between the wet and early dry, and
then decreased by half in the late dry, very simi-
lar to the pattern seen in native fishes. In
L canals, nonnative numbers increased by
nearly twofold between the early dry and late.

Temporal patterns in species richness generally
followed CPUE patterns (Table 3), with more
species caught in the dry season but variation in
the timing of peak richness (early vs. late dry
season), and minor seasonality in L canals
(Fig. 4D–F). Native fish richness (mean per sam-
ple) peaked in the early dry season in MC canals
(6.2 vs. 3.9 spp. in the wet season, P < 0.01), but
in the late dry in WC canals (9.4 vs. 6.6 spp. in
wet season, P = 0.03; Fig. 4E). Nonnative rich-
ness showed seasonality only in MC canals,
peaking in the early dry season (3.8 in early dry
vs. 2.1 in wet, P = 0.01) and matching the behav-
ior of native richness in MC canals. In L canals,
we observed a significant but small-magnitude
SEASON effect for native species richness
between the early and late dry seasons (2.6–3.6
spp., P = 0.034), and no seasonality in nonnative
richness (P > 0.152).

Spatiotemporal variation in fish community
structure
As a whole, fish community structure showed

marked dissimilarity as a function of all effects
tested (Table 3). However, the influence of these
structuring drivers varied between the native
and nonnative components of the fauna. For

Table 3. Results of PERMANOVAs testing the main fixed effects CANALTYPE (WC, MC, and L), SEASON (wet,
early dry, and late dry), the random effect YEAR (HY1, HY2, and HY3), and the CANALTYPE 9 YEAR inter-
action on total CPUE, species richness, and fish composition.

Effects by assemblage

CPUE Species richness
Composition (Bray–Curtis

dissimilarity)

df F P F P df Pseudo-F P (perm)

All taxa
CANALTYPE (CT) 2, 622 31.9 0.010 23.1 0.024 2, 621 16.5 0.004
SEASON (S) 2, 622 26.1 0.012 34.5 0.038 2, 621 3.5 0.044
YEAR 2, 622 16.8 0.001 13.6 0.001 2, 621 8.7 0.001
CT 9 S 4, 622 9.5 0.004 5.1 0.032 4, 621 2.5 0.004

Natives only
CANALTYPE (CT) 2, 622 57.5 0.005 74.5 0.005 2, 610 11.5 0.009
SEASON (S) 2, 622 19.5 0.011 22.6 0.034 2, 610 4.0 0.021
YEAR 2, 622 11.9 0.001 12.8 0.001 2, 610 9.7 0.001
CT 9 S 4, 622 8.4 0.010 4.1 0.045 4, 610 2.7 0.001

Nonnatives only
CANALTYPE (CT) 2, 622 47.0 0.025 52.7 0.004 2, 472 13.4 0.002
SEASON (S) 2, 622 9.1 0.036 8.4 0.047 2, 472 1.4 0.318
YEAR 2, 622 10.8 0.001 4.3 0.014 2, 472 1.1 0.362
CT 9 S 4, 622 11.6 0.004 8.9 0.003 4, 472 3.2 0.001

Notes: Significant results (P < 0.01) are bolded. PERMANOVA models were run separately for all taxa, native fishes only,
and nonnative fishes only. WC, well connected canals; MC, moderately connected canals; L, leveed canals.
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native fishes, community dissimilarity was dri-
ven by both spatial and temporal stressors, while
nonnative community structure was more spatial
than temporally influenced; only CANALTYPE
and the CANALTYPE 9 SEASON interaction
were significant effects (Table 3).

Relative contribution of predictor variable sets
The best fitted DISTLMs explained 40.8%,

36.9%, and 33.4% of the variation in commu-
nity structure across all fishes, natives only,

and nonnatives only assemblages, respectively
(Fig. 5A). For all three groups, spatial factors
(CANALUNIT and CANALTYPE) consistently
explained a much larger proportion of the vari-
ance relative to the other variable sets (32.1% for
all fishes, 26.7% for natives, and 26.9% for nonna-
tives). Second in importance, although explain-
ing a much smaller proportion of the variation,
were hydrological variables across the three
groups (5.1%, 6.5%, and 3.6%, respectively),
while temporal, habitat, and abiotic variables
explained a minimal amount of variance (<2%;
Fig. 5A). Habitat variables were only important
predictors for the all fishes and natives only
models (P = 0.001). Abiotic variables had slightly
greater explanatory power for nonnatives than
for natives (1.9% vs. 1.3%), whereas hydrological
variables explained more variance for natives
than for nonnatives (6.5% vs. 3.6%).
The dbRDA ordinations were considered to be

a good representation of fish community struc-
ture since axes 1 and 2 combined represented
63.4%, 67.5%, and 59.3% of the fitted variation in
all fishes, natives only, and nonnatives only
models (Fig. 5B–D). Three continuous variables
were identified as explaining the most variation
in community structure in all three analyses
(Fig. 5B–D). The hydrological variable DCON
independently explained the most variance
consistently for all three models (16.1% all
fishes, 13.3% natives only, 8.5% nonnatives only).
Among the habitat and abiotic variables, LZW
explained the most variation (5.7%) in the natives
model, but DO independently explained the
most variation (2%) in the nonnatives model
(Fig. 5C, D). Regressing CPUE as a function of
DCON, LZW, and DO showed varying relation-
ships with respect to native vs. nonnative fishes.
Native fishes were more abundant as connec-
tivity to surrounding marshes increased and
followed a linear relationship, whereas nonna-
tives decreased with connectivity in a nonlinear
fashion (Fig. 6A, B). Similarly, natives and non-
natives also exhibited opposing relationships as
a function of habitat complexity (LZW; Fig. 6C,
D). Natives were more abundant as the width of
the littoral zone increased, while the opposite
was true for nonnatives. No significant
relationship was detected for both native and
nonnative abundance as a function of DO
(Fig. 6E, F).

Fig. 3. Total catch per unit effort (CPUE) (no. of fish/
100 m; A) and species richness (B) for all fishes
(scale pattern bars), natives only (white bars), and non-
natives only (gray bars) across the CANALTYPE
novelty gradient; WC, well connected canals; MC,
moderately connected canals; L, leveed canals. Shown
are means � SE.
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DISCUSSION

Human-caused modifications to both abiotic
conditions and biotic composition are increas-
ingly leading to novel ecosystems (Milton 2003,
Hobbs et al. 2006, 2009, 2013, Williams and Jack-
son 2007), and possibly to gradients in such nov-
elty that directly relate to the degree of alteration
(King et al. 2011). We hypothesized a gradient in
novelty in Everglades canals that related to

variation in canal traits and to the degree of fish
invasion, such that not all man-made canals are
created equal. We expected a lower invasion rate
in canals with higher connectivity (i.e., year-
around) to nearby marshes and higher habitat
complexity, and thus lower novelty, and a higher
invasion rate associated with canals with low
connectivity to marshes (higher novelty). Our
findings matched this prediction well for native
taxa, but the pattern deviated for nonnative

Fig. 4. Catch per unit effort (CPUE; no. of fish/100 m; A–C) and species richness (D–F) by SEASON for all
fishes, natives only, and nonnatives only across the CANALTYPE novelty gradient; WC, well connected canals;
MC, moderately connected canals; L, leveed canals. Shown are means � SE.
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fishes. Native fish communities were more abun-
dant and speciose as novelty decreased (WC
> MC > L canals). However, nonnative abun-
dance was lowest in WC canals, but similar
between MC and L canals. Nonnative richness

was lowest in WC canals and, contrary to predic-
tions, peaked in MC and was intermediate in L
canals. Community structure differed vastly as a
function of CANALTYPE, and this structure was
primarily influenced by spatial factors and to a

Fig. 5. Summary of distance-based linear models (A) showing the contribution of spatial, temporal, hydro-
logical, habitat, and abiotic predictor variable sets in explaining differences in fish community structure for each
assemblage model. Distance-based redundancy ordinations of the (B) all fishes model, (C) natives only model,
and (D) nonnatives only model showing the independent contribution of predictor variables (Appendix S1) from
the most parsimonious models (P < 0.01 significance). Vectors represent the direction and strength of each pre-
dictor variables relationship against the dbRDA axes. WC, well connected canals; MC, moderately connected
canals; L, leveed canals; dbRDA, distance-based redundancy analysis
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Fig. 6. Best fit regression models (linear and quadratic) fitted to native (A, C, and E) and nonnative (B, D,
and F) fish abundance (no. of fish/100 m) against the top hydrological (% days connected to the marsh the year
prior), habitat complexity (littoral zone width), and abiotic variables (dissolved oxygen) that explained the most
independent variation in community structure from distance-based linear models/redundancy analysis (see
Fig. 5). Regressions were fitted to the nine canal sampling unit seasonal means. CPUE, catch per unit effort.
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much lesser extent by other factors (hydrological,
habitat, and abiotic). Importantly, we noted con-
trasting responses between native and nonnative
fish abundance and key hydrological and habitat
factors. Across sampling events, native fish
abundance was positively related to the hydro-
logical connectivity of canals to surrounding
marshes and size of the canal littoral zones, while
the opposite was true for the nonnative fishes.

The most salient finding of our study was that
spatial factors appeared to be the most signifi-
cant driver of assembly patterns in canal fishes.
The location of a canal and the marsh it bisects,
as well as the degree of canal connectivity to the
marsh habitat, appeared to have a strong influ-
ence on fish assemblages. This finding agrees
with previous work showing that anthropogenic
gradients can result in a divergence in fish com-
munities. For instance, Slawski et al. (2008)
found that urbanization in the upper Des Plaines
River watershed had a strong influence on fish
species composition, shifting from cool-water
riverine specialist to warm-water riverine gener-
alist as urbanization in undammed tributaries
increased. However, in our study we expected
that given the relatively uniform nature of canals
as aquatic habitats (i.e., extensive with similar
depth and width and relatively low structure
except for littoral zones), we would see a high
degree of biotic homogenization across the canal
domain sampled (e.g., McKinney and Lockwood
1999, Rahel 2002). Gido et al. (2009) found that in
the novel habitat of reservoirs, patterns of fish
community structure were homogenous across
drainage basins and more so relative to natural
stream assemblages. In contrast, our Everglades
canal fish community was markedly spatially
segregated, with distinct fish assemblages along
canals and even along sections of the same canal,
despite the fact that all sites were part of an inter-
connected canal network.

This high degree of heterogeneity detected in
both the native and nonnative fish assemblages
points to the potential for (1) limited dispersal
abilities in fish species, (2) the ability of water
control structures and water management to pre-
vent fish movement and thus increase hetero-
geneity, and/or (3) an overwhelming effect of the
surrounding marsh characteristics and not canals
per se to drive the community structure of canal
fish communities. Recent work in Everglades

canals comparing movement patterns between
native largemouth bass and nonnative Mayan
cichlids showed similar and relatively small lin-
ear movements within canals (<1 to 4 km), but
did detect higher frequencies of movement over
greater distances from canals into adjacent
marshes in the nonnative Mayan cichlid (Parkos
and Trexler 2014).
Human alterations to aquatic systems can

lower habitat quality by disrupting natural geo-
morphologic processes, spatial heterogeneity
patterns, and the natural fluctuation of resources
(Ligon et al. 1995, Humborg et al. 1997, Poff
et al. 1997, Rosenberg et al. 2000, Bunn and
Arthington 2002). In Everglades canals, native
fish richness and abundance declined sharply as
hydrological and habitat complexity became
more novel with extremely low numbers in the
most novel L canals. We suspect this pattern is
indicative of poorer habitat quality for natives as
canal littoral zones become smaller and less com-
plex, and as productivity and prey availability
associated with the loss of connectivity to
marshes are reduced. Although canals may pro-
vide deep, suitable habitat for larger taxa, it is
the connectivity to marshes and the presence of
littoral zones that enhance fish numbers (includ-
ing prey), as told by the larger increases in fish
abundance in the dry season as surrounding
marshes went dry. More complex littoral zones
within reservoirs can support a higher diversity
in fish communities and have a greater potential
for maintaining native populations, especially
juveniles that use these areas to avoid predation
(Fernando and Hol�c�ık 1991, Matthews et al.
2004).
The higher native species richness and abun-

dance and lowest degree of invasion in WC
canals, and conversely the highest degree of
invasion in L canals, are congruent with the bio-
tic resistance hypothesis (Elton 1958) and its
more recent formulation of the diversity–invasi-
bility hypothesis (Tilman 1999). These hypothe-
ses postulate that invasive species are expected
to fail to invade or have reduced invasion success
in more diverse communities. This is due to a
lack of open niche opportunities, lower reso-
urces, and/or increased competition or other
antagonistic interactions as the number of native
species and previous invaders increases (Shea
and Chesson 2002, Levine et al. 2004). In aquatic
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systems, studies have found evidence in support
of this hypothesis (e.g., Stachowicz et al. 1999,
Dunstan and Johnson 2004). However, other
mechanisms may also be operating (e.g., Moyle
and Marchetti 2006). For instance, Henriksson
et al. (2015) found that the presence of one single
species (i.e., species identity hypothesis; Crawley
et al. 1999, Emery and Gross 2007) better expl-
ained Arctic char invasion success into Swedish
lakes compared to native species richness or the
community saturation level.

Along those lines, differences in native fish
abundance between WC and MC canals likely
reflect the variation in fish prey productivity of
the marshes they bisect. WC canals connect to
longer hydroperiod marshes almost year-round,
which have been shown to have higher fish
abundances than the shorter hydroperiod mar-
shes that connect to MC canals only during the
wet season (Chick et al. 2004, Green et al. 2006).
Additionally, canal connectivity to marsh species
pools with different community structure may
have contributed to the observed patterns in this
study. For instance, Parkos et al. (2011) docu-
mented differences in fish community structure
in WCA 3A marshes that connect to WC canals
compared to fishes within ENP marshes which
connect to moderately connected canals.

Variation in the degree of marsh connectivity
across canals also likely influences the role of
canals as dry-down refuges. In pulsing systems,
seasonal variation in rainfall drives patterns of
inundation and thus habitat availability for fishes
and other aquatic taxa, such that fish survival is
highly dependent on refuge size, the intensity of
the dry-down period, and mobility (Magoulick
and Kobza 2003, Robson et al. 2013). The recur-
rent pattern of seasonal drying in Everglades
marshes is a major driver of fish community
dynamics as fish move to both natural (i.e., alliga-
tor holes, solution holes, and estuarine mangrove
creeks; Loftus and Kushlan 1987, Kobza et al.
2004, Rehage and Loftus 2007, Parkos et al. 2011)
and artificial (i.e., canals; Rehage and Trexler
2006) refuges as water levels recede. In this study,
we saw further evidence of the use of canals as
dry-down habitats. Fish abundance increased by
fivefold in WC and sevenfold in MC in the dry
season, with no such increases observed in L
canals. The timing of these increases in abundance
varied among CANALTYPE, matching what we

would expect from the hydroperiod of surround-
ing marshes. In MC canals, abundance of natives
peaked sooner reflecting earlier drying of the sur-
rounding shorter hydroperiod marshes followed
by reductions by ~50% in the late dry season,
likely attributed to predation.
Similar decreases in fish abundance later in the

dry season have been documented in mangrove
creeks, which serve as important dry-down habi-
tats in the southern Everglades, and which have
been attributed to predation by the larger pisci-
vores. For example, Boucek and Rehage (2013)
found that the arrival of a marsh prey subsidy in
southern Everglades mangrove creeks during the
onset of the dry season resulted in fitness gains
for both marsh (largemouth bass) and estuarine
(snook) consumers. Interestingly, nonnative taxa
showed a similar increase in MC canals, indicat-
ing that they are also likely entering canals from
marshes as native fishes do, but their numbers
did not experience a decrease later in the season.
In WC canals, seasonal increases occurred later
in the dry season. Although canals may be lower
quality habitats because of the high abundance
of predators and low habitat complexity, they
could provide better habitat in extreme droughts,
playing a greater role in the re-colonization of
marshes during these events and under the
increased frequency of such events with climate
change.
For nonnatives, a notable pattern was the

increase in their relative contribution as novelty
increased, representing nearly 50% of total fish in
L canals. We hypothesize that this finding relates
to the fact that these leveed canals provide lower
quality habitats for native fishes, lowering com-
petition or biotic resistance (Lowry et al. 2013)
and thus favoring the establishment of oppor-
tunistic invaders. Otherwise, given the known
broad environmental tolerances of nonnative
fishes (Moyle and Marchetti 2006), nonnative
taxa may be better able to withstand the less
favorable conditions of L canals. In lotic systems,
novel conditions have often been linked to shifts
in assemblages from natives to phenotypically
plastic and more tolerant nonnatives (Weaver
and Garman 1994, Onorato et al. 1998, Walters
et al. 2003). The extremely low contribution of
nonnatives in WC canals may relate to variation
in the role of canals as thermal refugia. Prior to
the beginning of this study in 2010, a severe cold
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snap led to a large mortality event for tempera-
ture sensitive taxa (Adams et al. 2012, Matich
and Heithaus 2012), including nonnatives such
as the Mayan cichlid, blue tilapia, and spotfin
spiny eel (Boucek and Rehage 2014, Rehage et al.
2016). We suspect nonnatives contributed to a
larger although still small part of the fish com-
munity in WC canals prior to the 2010 cold snap.
Unpublished records from the Florida Fish and
Wildlife Conservation Commission point to non-
natives accounting for about 8.1% of fishes
caught in the L-67A canal (2006–2009), a WC
canal sampled in this study. Temperature records
from the cold snap indicated that in WC canal
units, the pattern of water flow (from marshes
into canals) reached low temperatures in the
range of lethal limits of many nonnatives (e.g.,
Schofield et al. 2010, Schofield and Huge 2011),
while canals elsewhere remained warmer
(J. Kline, personal communication).

Environmental disturbance is often implicated
as a key factor in facilitating species invasions
(D’Antonio et al. 1999, Bando 2006, Clark and
Johnston 2011). Disturbance can facilitate inva-
sion by releasing resource opportunities, escape-
ment from natural predators, or indirectly
reducing native species abundance and thus
resources consumption (Davis et al. 2000, Shea
and Chesson 2002). Previous work in aquatic sys-
tems also points to the relation and feedback
between hydrological disturbance and invasions
(Marchetti et al. 2004, Leprieur et al. 2008). Not
unlike these studies, we documented opposing
relationships between marsh connectivity and
the abundance of native vs. nonnative taxa.
These relationships suggest, at minimum, that
natives and nonnatives are responding to the
natural hydrology of the system in different
ways. Kiernan et al. (2012) showed that restora-
tion of the natural hydrological regime can lead
to the recovery of natives in heavily invaded Cal-
ifornia streams. Whether Everglades restoration
could have the same detrimental effects on non-
natives to the benefit of native taxa is not known
and merits further work. Regardless, canals are
permanent features of the Everglades landscape,
since most of this conveyance network that pro-
vides water supply and flood control and
reroutes water delivery into natural areas will
remain in place after ecosystem restoration. Our
results suggest that the inherent loss of natural

environmental conditions and subsequent rep-
lacement by novel ones may result in wholesale
changes in fish community structure.
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