
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-24-2011

The Development of Hardware Multi-core Test-
bed on Field Programmable Gate Array
Mohan Shivashanker
Florida International University, mohan.uvce@gmail.com

DOI: 10.25148/etd.FI11050902
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Shivashanker, Mohan, "The Development of Hardware Multi-core Test-bed on Field Programmable Gate Array" (2011). FIU
Electronic Theses and Dissertations. 395.
https://digitalcommons.fiu.edu/etd/395

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/395?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

THE DEVELOPMENT OF HARDWARE MULTI-CORE TEST-BED ON

FIELD PROGRAMMABLE GATE ARRAY

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Mohan Shivashanker

2011

ii

To: Dean Amir Mirmiran
 College of Engineering and Computing

This thesis, written by Mohan Shivashanker and entitled The Development of Hardware
Multi-core Test-bed on Field Programmable Gate Array, having been approved in respect
to style and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

 Chen Liu

Jean Andrian

Gang Quan, Major Professor

Date of Defense: March 24, 2011

The thesis of Mohan Shivashanker is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Interim Dean Kevin O’Shea
University Graduate School

Florida International University, 2011

iii

DEDICATION

 I dedicate this thesis to my parents. Without their patience, understanding, support,

and most of all love, the completion of this work would not have been possible.

iv

ACKNOWLEDGMENT

I feel pleasure and privilege to express my deep sense of gratitude, indebtedness and

thankfulness towards my advisor, Dr. Gang Quan, for his guidance, constant supervision

and continuous inspiration and support throughout the course of work. His valuable

suggestion and critical evaluation have greatly helped me in successful completion of the

work. I would like to thank the members of my committee Dr. Chen Liu and

Dr. Jean Andrian, for their support and patience. Their gentle but firm direction has been

most appreciated. I am also thankful to all those who helped me directly or indirectly in

completion of this work.

This thesis is supported in part by NSF under projects CNS-0969013, CNS-0917021 and

CNS-1018108.

v

ABSTRACT OF THE THESIS

THE DEVELOPMENT OF HARDWARE MULTI-CORE TEST-BED ON FIELD

PROGRAMMABLE GATE ARRAY

by

Mohan Shivashanker

Florida International University, 2011

Miami, Florida

Professor Gang Quan, Major Professor

 The goal of this project is to develop a flexible multi-core hardware test-bed on field

programmable gate array (FPGA) that can be used to effectively validate the theoretical

research on multi-core computing, especially for the power/thermal aware computing.

Based on a commercial FPGA test platform, i.e. Xilinx Virtex5 XUPV5 LX110T, we

develop a homogeneous multi-core test-bed with four software cores, each of which can

dynamically adjust its performance using software. We also enhance the operating system

support for this test platform with the development of hardware and software primitives

that are useful in dealing with inter-process communication, synchronization, and

scheduling for processes on multiple cores. An application based on matrix addition and

multiplication on multi-core is implemented to validate the applicability of the test bed.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ...1

2. GENERAL FRAMEWORK ..8
2.1 The Hardware Architecture ..8
2.2 The System Software Setup ...12
2.3 Hardware/Software Test Platform ...13

3. HARDWARE ARCHITECTURE DESIGN ...18
3.1 The Design of DFS ..19
3.2 The Design of Sharing Memory ..34
3.3 The Design of Inter-processor Communication ...36

4. OPERATING SYSTEM SUPPORT AND SOFTWARE PLATFORM
SETTINGS ...45
4.1 Standalone Board Support Package ...45
4.2 Building of Xilkernel Real-time Operating System...46
4.3 Scheduling..47

5. EXPERIMENTS AND RESULT ..50
5.1 Varying the Working Frequency ...50

 5.2 Debugging ..52
 5.3 Four Microblazes System Using Single PLB Bus ...53
 5.4 Four Microblazes System Using Different PLB Buses and a Shared Console......55

6. CONCLUSIONS AND FUTURE WORK ..59

LIST OF REFERENCES ...60

GLOSSARY ..64

vii

LIST OF FIGURES

FIGURE PAGE

1. Exponential Increase in Power Consumption ... 2

2. The Hardware Architecture ... 9

3. Microblaze Core Block Diagram .. 10

4. Clock Control Unit ... 11

5. Software Design Flow .. 13

6. Front view of Xilinx virtex-5 LX110T FPGA board ... 15

7. Back view of Xilinx virtex-5 LX110T FPGA board ... 16

8. Dual Microblaze Processor System .. 19

9. Schematic diagram of PLB-to-PLB Bridge .. 20

10. Homogeneous multi-core architecture with variable working frequency 21

11. Microblaze Cache Setup .. 22

12. MPMC base Configuration.. 23

13. Address Port configure for MPMC ... 24

14. MPMC Port and Pipeline configuration .. 24

15. CacheLink.vhd instantiate two FSL unit ... 26

16. Cache Link signal declaration in mpmc_xcl_if.v ... 27

17. Cache link signal assignment and instance in mpmc_xcl_if.v 28

18. Cache link signal and clock replacement of read data
interface in mpmc_xcl_if.v .. 29

19. Cache link signal and clock replacement of write data

interface in mpmc_xcl_if.v .. 30

viii

20. Sample of FSL signal assignment .. 31

21. Port signal declaration .. 32

22. Clock Control Unit declaration in file user_logic.vhd ... 32

23. File Structure of Clock Control unit ... 33

24. Clock assignment in top.vhd ... 33

25. Port declaration in Configuration Unit .. 34

26. Logic in Configuration Unit .. 34

27. Implicit Multiprocessing .. 35

28. Explicit Multiprocessing .. 35

29. Schematic Representation of XPS Mutex connection ... 37

30. Schematic Representation of Matrix Addition ... 38

31. Loading more than one image into FLASH PROM ... 39

32. Define starting address of image in FLASH PROM .. 40

33. Reset other processor before image loading ... 40

34. How to enter main program after loading ... 40

35. Boot Program Sample .. 41

36. Programming FLASH memory... 43

37. Setting RS232 serial port terminal for output ... 43

38. Overall System View ... 44

39. Software Platform Settings .. 45

40. Setting Compiler Options .. 49

41. The Timing Overhead for Varying the Working Frequencies .. 51

42. Block Diagram of Microblaze Debug Module (MDM) .. 53

ix

43. Output for matrix addition and multiplication example on 4 Microblazes system 55

44. For 4 Microblaze system using different PLB buses and a shared console 57

45. System architecture view for 4 Microblaze system with single PLB bus 58

46. System architecture view for 4 Microblaze system with individual PLB buses
connected with PLB-to-PLB Bridge and XPS Mutex ... 58

1

CHAPTER 1

INTRODUCTION

 The computer industry is switching from the single core based platform to the

multi-core. Die yield, limits in instruction level parallelism (ILP) and memory/processor

performance gap, coupled with the exponentially increased power consumption and heat

dissipation have forced this switching. Increasing the working frequency and building a

more complicated single processor is no longer an effective way to improve the

computing performance. Multi-core platforms, which facilitate the process or thread level

parallelism and can thus work at lower clock rates, can potentially deliver high

computing performance without consuming excessive power and producing prohibit heat.

As a result, multi-core processor systems have been one of the most popular methods to

overcome the complexities for many applications within the corporate, medical, military

and other commercial markets requiring high performance and real-time processing

power. For example, Cisco today embeds in its routers a network processor with 188

cores implemented in 130 nm technology, which dissipates 35W at a 250MHz clock rate,

and produces an aggregate 50 billion instructions per second [1].

Power consumption and thermal management have been two of the most critical issues in

developing all but the most trivial computing systems. With the demand for increased

performance and decrease in size from mobile electronics to high performing game

consoles, there has been an exponential increase in power density and chip temperature,

according to SOC consumer stationary power consumption trends shown in Figure1.

2

Figure 1: Exponential Increase in Power Consumption

The power consumption has been one of the most critical constraints for multi-core

computing. The power consumption in modern processors consists of (i) the dynamic

power and (ii) the leakage power. The dynamic power is due to the transistor switching

activities during runtime, and used to be the dominant between the two. The dynamic

power is given by,

where, Pdyn is the dynamic power consumed, α is the activity factor, C is the load

capacitance, V is the supply voltage and f is the working frequency.

 Leakage power is due to the leakage current flowing through the transistor and is given

by,

3

where, Pleak is the leakage power, V is the supply voltage and Ileak is the leakage current

through the transistor. As shown above, the dynamic power consumption is quadratically

dependent on supply voltage. Thus, reducing the supply voltage can dramatically reduce

the power consumption for the processor. As a result, many processors are designed to

have the Dynamic Voltage and Frequency Scaling (DVFS) capability, i.e. being able to

dynamically vary the supply voltage and/or frequency of a microprocessor. DVFS has

proven to be one of the most effective ways to reduce the power consumption and also to

manage the thermal condition of the processor while meeting the required performance

[3, 10].

Besides power consumption, the rapidly elevated temperature in the computing system

also raises serious concerns for computing system designers. The rise in chip

temperature has significant impact on power consumption, reliability, cooling and

packaging costs. In fact, the rapid increase in cooling and packaging costs has the

potential to greatly affect the computer industry capability to deploy new systems. There

have been extensive theoretical researches conducted on power and thermal aware

computing for a multi-core platform [26, 27]. Dynamic power management techniques

have already been developed to cover a wide spectrum of system characteristics [8]. It

has been shown that, proactive use of software on top of the hardware can balance the

overall thermal profile with minimal overhead using the operating system support. There

also exists a hardware DVFS technique [7, 9] where they have proposed a novel method

of producing high speed variable fractional clock rates. Y Liu et. al. [27], have presented

a design time optimization technique for real-time embedded systems that make use of

4

DVFS to minimize peak temperature. In [26], DVFS technique is used to reduce the

overall energy consumption by exploiting both static and dynamic slack times where,

voltage and frequency is decreased below the operating level.

While a variety of power/thermal aware techniques have been proposed for a hardware

multi-core platform, most of the existing works are validated through software

simulations with simplified and idealized theoretical models. The change in computer

architecture to multi-core has complicated the use of software simulators as they are

difficult to parallelize well with greater number of processors [13]. Even though the

SPEC2k benchmark suite and Virtutech’s Simics [15] are more robust, they provide

limited application programming interface (APIs) and become extremely time consuming

as greater number of cores are added to the system. Furthermore, while the software

simulators help to simplify the problem, results may also lead to conclusions deviated

from what they really are in the practical scenarios, since the practical computing systems

need to deal with more complicated scenarios that cannot be accurately modeled in the

software simulation. Thus, it becomes necessary to test or verify the theoretical results in

a more practical environment.

While a number of commercial platforms based on multi-core architecture are reported in

the literature, such as IBM’s Cell processor [1], they are not readily available at a

reasonable price. Researchers also use current multi-core desktops for the validation

purpose [9]. However, such a “test-bed” can only be used to test theoretical research

5

based on a fixed architecture. In addition, these test beds are also limited by their

software supports and cannot be easily updated.

To design a versatile, flexible, and reusable multi-core test bed, we seek to develop such

a test bed using the FPGA technology [4]. FPGA is an integrated circuit that can be

reconfigured according to the required application by the designer. The configurable

logic cell blocks are the basic logic unit in an FPGA even though the features and number

of logic cells used vary from device to device. Today’s FPGAs are highly scalable, field

debuggable, re-configurable, have a lower cost and readily available in the market. They

can be re-programmed using the powerful and versatile developing tools commercially

available today. It has a much shorter design cycle and requires much less engineering

equipment costs compared with those for the design of Application Specific Integrated

Circuits (ASIC). The FPGA has thus been widely used in both academy and industry to

build test platforms to test design alternatives and validate theoretical research results.

For example, recent works on FPGA like Fort et al. [33] employed multi-threading to

improve utilization of soft-core processors with little dimensional costs. The FPGA based

complete system called Protoflex [15] was designed to provide similar functionality of

Simics [14] is the motivation research for us to choose FPGA as our test bed.

Project goals and objectives

The goal of our project is to develop a multi-core hardware test bed on Field

Programmable Gate Array (FPGA). Specifically, we want to develop a test platform that

can be used effectively to validate the theoretical researches on power/thermal aware

6

computing. We envisioned our test platform to have the following capabilities: (1)

Consisting of 4 or more homogeneous soft-core processors such as Microblaze system

[12]; (2) The performance enhancement, i.e., working frequency, of each core can be

dynamically varied and evaluated; (3) The multi-core platform can be supported with a

real-time operating system for ease of development and testing.

Our Contributions

From our work, we have successfully developed a hardware multi-core test-bed with a

real-time operating system booted on each core. The test platform consists of four

homogeneous soft-core processors (i.e., Microblazes system [12]). By using a customized

clock control unit in the design, we were able to dynamically vary the working frequency

i.e., improve performance of each core. As discussed before, it is desirable that both the

supply voltage and working frequency of a processor core can be dynamically varied.

However, it would be extremely expensive if not totally impossible to change the supply

voltage for a soft core on the FPGA chip. Therefore, we change the performance of the

processor only by changing its working frequency. We also considered inter-processor

communication between the processors to perform synchronization when accessing the

shared resource. Finally, an application example of matrix addition is implemented to

validate the applicability of the test-bed.

Thesis Organization:

The rest of the thesis is organized as follows. We first present the general framework of

our design. In Chapter 3, we discuss the hardware aspect in our development and present

7

our work on the design and implementation of a multi-core system with dynamically

variable frequency based on Virtex5 using FPGA development tools. Chapter 4 presents

the operating system boot up and software platform settings. The experiments conducted

and results are discussed in Chapter 5. We conclude the thesis in Chapter 6.

8

CHAPTER 2

GENERAL FRAMEWORK

 The goal of this project is to develop a multi-core hardware test-bed on FPGA that

can be used effectively to validate the theoretical research on power-aware computing

embedded system design. The system is supposed to be flexible and support different

applications. The number of processing element can be configured according to our

computational needs and the chip capacity. The flexibility of FPGA has helped us in

customizing necessary peripheral components.

2.1 The Hardware Architecture

Figure 2 shows the overall hardware architecture of our system. The systems consists of

four homogeneous processing core. To support different clock speeds on each of the

processing element units during runtime, a configurable clock control unit is developed

that can be accessed through software. All four cores are connected using so called the

Fast Simplex Link (FSL) [16]. Note that since each processing core can potentially work

at different working frequencies, connecting all processing core using bus is not an option

in our case. FSL allows asynchronous communication mechanism and is therefore

selected to connect the multiple processor cores. In addition, multiple port memory

controller (DDR_SDRAM) and inter-processor communication-XPS Mutex hardware IP

[17] are also incorporated into our test bed to facilitate the memory sharing and inter

processor synchronization and communication. Each processing element consists a

Microblaze soft-core processor, a small scratch-pad memory, Local Memory Bus (LMB),

9

Processor Local Bus (PLB), a customized clock control IP and some specific peripheral

components.

Figure 2: The Hardware Architecture

Microblaze

In our project, a Microblaze core is used as the processor core. The Microblaze soft-core

processor is a 32-bit Reduced Instruction Set Computer (RISC) architecture optimized for

embedded applications. Microblaze can be user configured like pipeline depth, cache

size, embedded peripherals, and bus-interfaces. The Microblaze core block diagram is

shown in Figure 3.

10

Figure 3: Microblaze Core Block Diagram [12].

The fixed feature set of the processor includes:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• 32-bit address bus

• Single issue pipeline

In addition to these fixed features, the Microblaze processor is parameterized to allow

selective enabling of additional functionalities like floating point arithmetic,

multiplication and division.

 Customized Clock Control Unit

To dynamically vary the frequency of the processors, we built a customized IP (as shown

in Figure 4) that can control the clock for each processor core at run-time. Each

11

customized clock control IP consists of a digital clock management (DCM) unit [18] and

a configuration logic unit. The Xilinx’s DCM is a multi-function clock management unit

which supports dynamic configuration of clock frequencies ranging from 33MHz-

210MHz. For the Virtex5, the DCM unit includes a Dynamic Reconfigurable Port (DRP),

which can be used by FPGA fabric to access the configuration memory within DCM.

Figure 4: Clock Control Unit

The configuration logic translates the control signal from bus into control data for DCM,

which makes the run-time programmable clock possible. In our design, four different

clock frequencies, i.e. 40MHz, 50MHz, 66.7MHz and 100MHz, are provided and we use

the two least significant bits of the bus to select the desired frequency. The customized

clock control IP is connected with the PLB bus via the standard PLB-IPIF interface.

Bus Interfaces

There are a number of choices for Microblaze soft-core processor interconnections. It

follows the Harvard architecture with separate paths for data and instruction accesses.

Processor Local Bus (PLB) is a fully synchronous bus that provides connection to both

on-chip and off-chip peripherals and memory. The Local Memory Bus (LMB) provides

single-cycle access to on-chip dual-port Block RAM. The Xilinx Cache Link (XCL)

12

interface is intended for use with specialized external memory controllers. Memory

located outside the cache area is accessed through PLB or LMB. The debug interface is

used with the Microblaze Debug Module (MDM) and is controlled through JTAG port by

the Xilinx Microprocessor Debugger (XMD).

For our design, even though the traditional bus connection is possible, it is less attractive

due to scalability concern. An alternative is to use the logic source in FPGA to create the

Network-On-Chip (NOC) infrastructure. For example, Schelle and Grunwald [19]

implemented a switching network as interconnection for general purpose processor in a

Virtex II-pro device. One major disadvantage of this solution is the large amount of

resources it requires. Henceforth, we made use of a convenient point-to-point connection

mechanism, i.e., the Fast Simplex Link (FSL) bus, provided by Xilinx. FSL is a FIFO-

based connection and can be synchronous or asynchronous. An asynchronized

communication scheme is particularly useful in our design with different processors

running at different speeds. Each core from Xilinx supports multiple FSL buses. For

example, a Microblaze has up to sixteen FSL ports with one master and one slave

interface to connect up to sixteen different components for duplex communication, which

makes it reasonably easy and effective to build popular multi-core topologies, such as the

tree, mesh, or torus structure.

2.2 The System Software Setup

In our project, we made use of software platform settings under XPS GUI to boot the

Xilkernel RTOS into the board and configured the operating system and library files

13

according to our requirements. C code was implemented and compiled through RTOS, as

shown in Figure 5 below.

Figure 5: Software Design Flow

 2.3 The Hardware/Software Test Platform

 In order to develop the embedded system design on the chip, Xilinx has provided the

Embedded Development Kit (EDK) suite. We used EDK design suite 10.1.03 version.

Using this suite of tools we can incorporate a wide range of Hard and soft-IP cores, such

as microprocessors, interconnects, memories, and an assortment of peripherals. The main

advantage of EDK suite is that on a single environment we can perform design,

simulation, synthesis, and compilation.

In EDK embedded system design, we have two separate steps, hardware and the software

design which interact each other. Firstly, we have to develop and design the hardware

part where a custom circuitry IP core is developed using a hardware description language

14

(HDL) like verilog or VHDL. Synthesis tool translates this hardware description

language into the low level gate logic. Then, all available IP cores are combined into a

single design using the Xilinx platform studio tool. The microprocessor is connected to

all the IP cores using the bus architecture, thus allowing the entire design to be controlled

using software programs. Secondly, in order to control the microprocessor and all

connected peripheral, application software is developed where a system programmer

should correctly implement the low level details of interacting with any given peripheral.

We can install the embedded operating system on the chip design, which helps in the

development of our design.

Xilinx Embedded Development Kit (EDK) is the package for building Microblaze in

Xilinx FPGAs. It consists of two separate environments: Xilinx Platform Studio (XPS)

and Software Development Kit (SDK). As said earlier, we have used Xilinx viretx-5

LX110T FPGA board for our project. Below are the figures (Figure 6 and 7) showing the

front and back view of virtex-5 LX110T FPGA.

15

Figure 6: Front view of Xilinx virtex-5 LX110T FPGA board

The main features of this board are:

• Xilinx XCF32P Platform Flash PROMs (32 MB each) for storing large device

configurations

• Xilinx System ACE Compact Flash configuration controller

• 64-bit wide 256Mbyte DDR2 small outline DIMM (SODIMM) module

compatible with EDK supported IP and software drivers

• On-board 32-bit ZBT synchronous SRAM and Intel P30 Strata Flash

• 10/100/1000 tri-speed Ethernet PHY supporting MII, GMII, RGMII, and SGMII

interfaces

• USB host and peripheral controllers

• Programmable system clock generator

• Stereo AC97 codec with line in, line out, headphone, microphone, and SPDIF

digital audio jacks

16

• RS-232 port, 16x2 character LCD, and many other I/O devices and ports.

Figure 7: Back view of Xilinx virtex-5 LX110T FPGA board

Once we have completed the embedded design, it is translated into an implementation

suitable to the board. Here we have two phases for the implementation process: (a)

Synthesis phase and (b) Compilation phase. Under the synthesis phase, a Xilinx synthesis

tool will translate the hardware description language into a gate level description. EDK

provides Xilinx Synthesis Technology (XST) the following, which happens in the

synthesis phase: (1) System-on-Chip elaboration: It translates the HDL into a computer

readable format. (2) Soft-IP core synthesis: Converts soft-IP core into a Net list which is

a logical circuit description. (3) Physical Mapping: Maps the low-level Net list into a

physical description circuit. (4) Net list placement and routing: Physical Net lists are

placed into the FPGA and channel is established between the different components for

17

communication. (5) Bit-stream generation: Physical design is converted into a bit-level

description i.e., bit-stream files which can be downloaded into the board for execution. In

the compilation phase, the software program design is compiled from the C source and

converted into the binary format used by the microprocessor. After the software has been

compiled into a binary executable file, the hardware and software are combined into one

overall bit-stream. This bit-stream is used to initialize the SRAM with the hardware

design, and the chip memories with the software program. Thus, when the system-on-

chip is boot-strapped, any microprocessors in the system will execute the software

associated with them.

18

CHAPTER 3

HARDWARE ARCHITECTURE DESIGN

 As explained in the previous chapter, we have used FPGA board from Xilinx. The

board is Xilinx Virtex5 XUPV5-LX110T evaluation platform [20]. The chip is

xc5vlx110t, grade ff1136, speed -1. In order to develop the embedded system design on

the chip, Xilinx has provided the Embedded Development Kit (EDK) [21] and an

Integrated synthesis environment (ISE) software design suite [23]. Using this suite of

tools, we can incorporate a wide range of hard and a soft-IP core, such as

microprocessors, interconnects, memories, and an assortment of peripherals. The main

advantage of this design suite is that on a single environment, we can perform design,

simulation, synthesis, place and routing and finally, download and debug the system.

Xilinx Intellectual Property (IP) is the building block of several Xilinx design platforms.

Various IP cores are available to address requirements of FPGA designers in Digital

Signal Processing (DSP), embedded and other connectivity application designs. The

entire used IPs version is specified in the following sections. Xilinx keep updating IPs

regularly and are available on their website but, these new IP versions have no guarantee

to work in this project.

We started with a single Microblaze processor design. The local BRAM is connected and

used to instantiate the processor with an instruction and data BRAM controllers. The

Microblaze is sitting on the PLB. The next processor was added to the system from the IP

19

catalog and provided with connections of different BRAM and BRAM controllers similar

to the first processor. A block diagram of the dual processor system is shown in Figure 8.

Figure 8: Dual Microblaze Processor System

The PLB BRAM acts as a shared memory for the two processors. Any address on the

PLB is accessible by both the Microblazes. Since Microblaze uses memory mapped I/O,

both of them can access any resource on the PLB bus. The XPS Mutex can also be used

in place of FSL for inter-processor communication between the processors.

After the hardware platform design is complete, FPGA configuration bitstream is

generated. Xilinx Platform Studio (XPS) is used to build the net list and bitstream file.

Then, the software component is set with a downloadable Executable Linked Format

(ELF) file and merged with the hardware bitsream to dynamically download onto the

board via JTAG cable connected to the FPGA.

3.1 The Design of DFS

To accommodate more numbers of Microblaze processors and to improve the system

performance, we made use of PLB bus for each individual processor and connected them

using PLB-to-PLB Bridge. The Xilinx PLB-to-PLB Bridge design allows the user to

20

tailor the bridge according to a specific application by setting certain parameters to

enable/disable features. The PLB-to-PLB Bridge is a slave on the primary and master on

the secondary PLB. We can isolate some of the slow PLB peripheral from the primary

PLB and improve the system performance. The bridge allows the Microblazes to access

the external DDR2SDRAM memory and other peripherals on different buses by mapping

to their address space.

Figure 9: Schematic diagram of PLB-to-PLB Bridge

Further, a hardware test-bed with four Microblaze homogeneous soft-cores on a same

chip of FPGA and point-to-point network topology was built (as shown in Figure 10).

Each core was made to dynamically change its working frequency using the clock control

unit (CCU) based on Xilinx’s Digital Clock Manager (DCM) [18]. A clock generator

module is used to initiate the DCM, where the clock control unit translates the control

into the DCM and generates the desired clock. The configuration and customized units

for the experiment to test the multi-core test bed is explained below.

21

Figure 10: Homogeneous multi-core architecture with variable working frequency

Configuration and Customized Units

Xilinx provides two types of processor units, hard-core PowerPC and soft-core

Microblaze. The so-called hard-core unit is basically a silicon unit integrated into FPGA.

The advantage of hard-core is the speed, but it lacks the flexibility of a soft-core unit.

The soft-core is an integrated logic design based on FPGA fabric, which make

Microblaze much more flexible. The Virtex5 board supports only microblaze processor

with speed of 125MHz. With soft-core, you can add an arbitrary number of processors,

as long as the FPGA chip has enough capacity. Besides, each processing unit could be

tailored according to need. For Microblaze, you can specify the number of the pipeline

stages, add or delete the float point unit, change the bus interface, make tradeoff between

space and throughput, and so on.

The detailed configuration for Microblaze (7.10.d) is explained as follows:

Bus Interface: Setting from BUS Interface Tab. It can also be seen and changed from

MHS file. Remember to name the 3 FSL master and slave channels.

22

Port Interface: Change the clock to the one you are going to drive the processor. By

default, it is all sys_clk_s.

Instruction Tab-Optimization (Select implementation to optimize area): This option could

make tradeoff between area and processor throughput. Enable this option when you need

to reduce the logic used by Microblaze.

Exception: Enable both data and instruction side PLB exceptions, enable illegal

instruction exception and enable unaligned data exception

Cache: Due to the current bus connection, you must enable cache to use XCL interface.

Enable both Instruction and Data caches. Also enable the option “Use cache links for all

D/I cache memory access”. Because we are going to modify the XCL interface in MPMC

in order to support different clocks. All the memory access must go through this XCL

interface, otherwise system fails. The cache tab configuration is listed as below.

Figure 11: Microblaze Cache Setup

23

Buses: Choose the appropriate number of FSL for the example project.

Multiple-port Memory Controller (MPMC) 4.03.a version: DDR2_SDRAM

Memory control unit manages the DDR2_SDRAM memory and provides multiple ports

access for processors. The basic configuration of MPMC is as follows:

Bus interface: Rename the XCL interface so that each one connected to a Microblaze

XCL bus.

Port interface: The basic ports configuration is based on the board setting. Their

corresponding user constraints are defined in the system.ucf file. The memory unit needs

a 200MHz clock to enable the DDR2. This unit also requires a 100MHz clock with a 90

degree shift, which can be generated by module Clock Generator.

Base Configuration: Set the all the ports interface to be XCL.

Figure 12: MPMC base Configuration

24

Memory Interface Tab: Choose the right part number: MT4HTF3264H-53E

Port Configuration Tab: XCL port is left default. Choose common Port Address for easy

access.

Figure 13: Address Port configure for MPMC

Advanced Tab: Set BRAM as the FIFO configuration for each Port.

Figure 14: MPMC Port and Pipeline configuration

In vhdl, we need to add source files from FSL. The added source files and structure are

listed as below:

 cachelink.vhd

25

 |---------fsl_v20.vhd

 |---------async_fifo.vhd

 |--------- async_fifo_bram.vhd

 |---------gen_srlfifo.vhd

 |---------gen_sync_bram.vhd

 |---------gen_sync_dpram.vhd

 |---------sync_fio.vhd

As you can see, cachelink.vhd is the top file of the added sources. You can view the

source by opening file cachelink.vhd. It can be treated as a wrapper. It did not add any

logic into the system. The only function it performs is creating two instance of FSL unit.

Because FSL is unidirectional, you need one pair of FSL to communicate in duplex

mode.

26

Figure 15: CacheLink.vhd instantiate two FSL unit

 Fsl_v20 and others file are copied from Xilinx’s fsl_v2.11.a. The entire source files can

be found from Xilinx ISE’s IP library. For the verilog, all you need to take care is the file

mpmc_xcl_if.v (If you want to create your own mpmc_xcl_if.v, be sure to change the file

27

property to write/read from read only). This file provides the XCL interface to the

external memory access. The original interface conforms to Xilinx’s FSL bus interface.

The inserted cachelink.vhd unit also conforms to FSL bus interface. The only difference

lies in the clock because; each side is synchronized to different clock. In simple way, you

can deem the cache link as an asynchronous FIFO with XCL interface.

At first, you need to introduce some intermediate signal between the inserted unit and the

original FSL interface as shown below.

Figure 16: Cache Link signal declaration in mpmc_xcl_if.v

Second, assign intermediate signals and instantiate the cache link unit.

28

Figure 17: Cache link signal assignment and instance in mpmc_xcl_if.v

Third, modify the original read interface. Replace old signals with the new one from

cache link. In addition, modify the original write interface. Note the clock signal need to

be replaced carefully. Assigning a wrong clock signals will make the system very

difficult to debug.

29

Figure 18: Cache link signal and clock replacement of read data interface in
mpmc_xcl_if.v

30

Figure 19: Cache link signal and clock replacement of write data interface in
mpmc_xcl_if.v

If all these source files are changed for particular experiment, we need to add these

source file in the pao files. (The .pao file is introduced in Platform Specification Format

Reference Manual, which can be found at

http://www.xilinx.com/support/documentation/sw_manuals/edk63i_psf_rm.pdf. Besides,

Xilinx’s XAPP 967 gives the detail to create an IP, which is available at

http://www.xilinx.com/support/documentation/application_notes/xapp967.pdf). The

declaration in pao file will help the parser recognize these files and compile them before

use.

31

Fast Simplex Link (FSL)

As explained in the previous chapter, FSL is a fast connection between 2 processors. It is

a uni-direction channel, so you should use a pair for duplex communication. It supports

asynchronous communication between two clock domains. The base version is 2.10.a.

The lasts version 2.11.a would cause some implementation error, so we stick to the older

version. Any later version should be tested before you integrated it into the system.

Base configuration: Set this unit run in asynchronous mode. The depth of FIFO can also

be configured from 1 to 32. You can tailor the depth according to communication need.

Port Configuration: In each FSL channel, you should assign a master clock,

FSL_M_CLK, to transmitter end and a slave clock, FSL_S_CLK, to the receiver. There

is another clock FSL_CLK, which only used in synchronous communication. You can

ignore it in this project. There are some other handshake signals in the port section. For

their usage, you can refer to FSL datasheet. Here is an example:

Figure 20: Sample of FSL signal assignment

Clock Control Unit

The clock unit is based on Xilinx’s dynamic programmable Digital Clock Manager

(DCM). The detail of the clock generation can be found in the DCM datasheet and

manual. The data interface is PLB. Clock control unit has a PLB slave interface. The

processor can program this unit via PLB bus. The function of this unit is to translate the

32

control word, and write the control into DCM unit, and generate the desired clock. There

is no need to configure this unit. The customization work is given in the following.

There are two version of clk_control. In /ProjectName/pcore, clk_control_v2_01_a and

clk_control_v3_01_a. The former one is obsolete unit. We only used the latter unit. The

user ports are declared in mpd file, which can be found in /ProjectName/pcore/

clk_control_v3_01_a/data.

Figure 21: Port signal declaration

In file user_logic.vhd, the design unit is declared like this.

Figure 22: Clock Control Unit declaration in file user_logic.vhd

For the design source file, you can see files like this. The clk_control.vhd and

user_logic.vhd are generated by system template. The design top unit, top.vhd is

instantiated in user_logic.vhd. The top.vhd calls drp_control.vhd for logic control,

dcm1.vhd for clock generation. The sample.vhd is for debug purpose.

33

Figure 23: File Structure of Clock Control unit

The decode logic is included in top.vhd and the following code specify the desired

clock. You can change it to other clock frequency or you can modify them to support

more clock choices.

Figure 24: Clock assignment in top.vhd

Configuration Unit

This is also a simple customized unit to facilitate the multiple processor programs

loading. The purpose is to enable the main processor (program loading processor) to reset

the other processor when the program loading from flash to DDR2 is done. The added

ports are declared at the beginning of user_logic.vhd.

34

Figure 25: Port declaration in Configuration Unit

The basic logic is shown in the following figure. The mbctrl_rst is the output reset signal.

This unit controls the reset signal by the data (Bus2IP_Data) from main processor. In this

way, the main Microblaze can reset the other processors and release them after program

loading.

Figure 26: Logic in Configuration Unit

3.2 The Design of Sharing Memory

A. Implicit Multiprocessing

In this method, a single copy of operating system runs and controls any number of

processors in the system (as shown in Figure 27). Parallelism between the processers is

35

hidden by an operating system and hardware. The Microblaze processor does not support

cache coherency and hence the implementation of cache coherency in software

application has a very large impact.

Figure 27: Implicit Multiprocessing

B. Explicit Multiprocessing

Another method of achieving multi-processor systems is to run every Microblaze with its

own copy of RTOS. The Microblazes will have their private own address zones within

the shared memory and the shared memory region with protocols. Since a different RTOS

sits on each of the processor it leads to lot of memory space.

Figure 28: Explicit Multiprocessing

36

However, for more number of processors using shared BRAM is not supported, so we

make use external memory controller MPMC. To enable large test programs and data

sizes, we divide the external memory (DDR2_SDRAM) into several memory sections

and one shared section. Each private memory section is associated with one processor

and can only be accessed by that processor. The shared memory section, on the other

hand, can be accessed by all processor cores.

3.3 The Design of Inter-processor Communication

A. XPS Mutex

In multiple processors XPS Mutex helps in synchronization when accessing shared

resources. The mutex core has a configurable number of mutexes and writes to lock

scheme. The mutex provides a mechanism for mutual exclusion to enable one processor

to gain access to the shared resource. The shared resource in our project is the on board

RS 232 UART interface where all the processors redirect their STDOUT to this shared

console. Without synchronization, the console output would become useless. Hence, each

processor locks XPS Mutex core before doing any output and then unlocks when done.

The XPS Mutex IP currently available can support up to 8 processors. The connection of

XPS Mutex to the PLB of individual processors is shown in figure below. The current

XPS Mutex IP supports up to 8 PLB or FSL interfaces.

37

Figure 29: Schematic Representation of XPS Mutex Connection

B. XPS Mailbox

In a multi-processors environment, Processors need to communicate the data among

them. The mailbox IP helps passing these simple messages (< a few 100 bytes) from one

processor to another in a FIFO fashion. These mailboxes have a bi-directional

communication channel and can be connected through PLB or FSL interface (similar to

Figure 29). Apart from sending the data between processors, the mailbox can also be used

to generate interrupts between the processors. The XPS Mailbox has two interfaces that

are used to connect to the rest of the system. Both of these interfaces can be

independently configured to use PLB or FSL bus.

The Matrix Addition Example on the system

Initially, the dual Microblaze processor system was tested with matrix addition example

with booted real-time operating system, xilkernel. Using inter-processor communication

technique, a system with two processes that uses a shared BRAM and an external

memory DDR2SDRAM to accommodate the OS xilkernel, is built. The master

38

Microblaze has the data on which matrix addition is to be performed. It writes the data to

the shared BRAM. The slave Microblaze waits and keeps on checking whether a

particular bit is set or not flagging that data has been written completely. Then the slave

Microblaze starts reading the data. Once completed it calculates and writes the result to a

different location on the shared BRAM memory. The master Microblaze then calculates

the final result and displays the result on the hyper terminal window (RS232 UART).

\

Figure 30: Schematic Representation of Matrix Addition

Output Display RS232UART

The serial output is supposed to print out computation result. The baud rate can be

configured in this IP. Due to the limit of computer serial output, the highest baud rate can

be set to 112k. In addition, the parity and bit number should be set the same as with the

computer serial terminal.

39

Boot loader

The scratch pad memory within a PE unit is limited. The Xilinx’s EDK boots only one

processor at a time. To boot all four Microblazes, we need to customize the bootloader

and configure other programs like link script. Also, the flash programmer is supposed to

program the main program into the flash. Boot loader is the program in charge of

program loading from flash memory into DDR2_SDRAM. As we have multiple

programs to load, we also need to customize the default bootloader, so that they can load

all the images into DDR_SDRAM. After the program loading, it needs to notify the other

processor, so that they can jump into the memory. The default boot loader only loads one

image. The following code reloads multiple copies of program images from flash:

Figure31: Loading more than one image into FLASH PROM

40

The starting address of each image can be found in header file blconfig.h.

Figure 32: Define starting address of image in FLASH PROM

Before the program loading, reset all other processor via Configuration control unit.

Figure 33: Reset other processor before image loading

After the program loading, reset other processors, and jump into starting address of new

program. The jump start address is predefined.

Figure 34: How to enter main program after loading

Boot Program

Here we can boot load the program in the processors other than the main processor

during the loading period. The main purpose for Boot Program is to enter the main

program address. Because Configuration unit already resets other processors during load,

Boot Program only need to jump to the correct main program. For MicroBlaze_0, the

initialized program is bootlaoder. Because processor ‘0’ is in charge of program loading.

41

For the other processor, you still need to initialize a program, which can wait for the

ready signal from Microblaze_0. When the boot loader finishes the program loading, it

will reset other processor, the Boot Program restart and enter the specified address. The

address is predefined in the boot program. Define the starting address and jump into the

address after release.

Figure 35: Boot Program Sample

Linker Script

 The linker script is the file which allocates memory space for the program. You need to

assign the sections, manage the heap and stack. What’s more important, you need to

specify the loading address for the other program. By default, loading address is the

starting address of the DDR2_SDRAM. For multiple processors program loading, the

latter will overlap the previous one if they share the same starting address. So the linker

script file must be modified to avoid this overlap.

42

For other processors, after the basic configuration, you need to modify the orginal

address and the length of the DDR2_SDRAM should be customized. Correct address and

length should be calculated as well.

Flash Programmer

Flash programmer can write the main program into FLASH memory, but each program

must be written into different address. And there must be enough space between

programs to avoid overlap. Please note you need to instantiate debug module and

download the bit stream before you use flash programmer. The detail can be found in

Xilinx’s manual.

 The following is the flash programmer sample setting. As you can see, the offset is

set to be ‘0x90000000’. For other processor, you need to set an offset, which is used in

the boot loader. This offset should be consistent with your offset setting in header file

blconfig.h of boot loader.

43

Figure 36: Programming FLASH memory

Setup HyperTerminal:

The hyper terminal connections are set as shown in the figure below. We have to make

sure that the RS232 UART and the hyper terminal connections are same.

Figure 37: Setting RS232 serial port terminal for output

44

The overall hardware architecture of our design through Xilinx EDK platform studio is as
shown below.

Figure 38: Overall System View.

45

CHAPTER 4

OPERATING SYSTEM SUPPORT AND SOFTWARE PLATFORM SETTINGS

 As explained earlier, we want to boot up our hardware with real-time operating

system in order to implement different power/thermal scheduling policies for ease of

development and testing. Therefore, under XPS GUI we configured operating system and

library as shown in Figure 39 below. The RTOS used in our project is explained in the

following section.

Figure 39: Software Platform Settings

4.1 Standalone Board Support Package

The Board Support Package (BSP) is the lowest layer of software modules used to access

processor specific functions. When there is no operating system in our design, the library

generator automatically builds the standalone BSP in the project library [22]. The

standalone BSP is designed for use when an application accesses board/processor

features directly and is below the operating system layer. Initially, the multi-core

46

Microblaze was tested with the standalone BSP and implemented to perform

synchronization when accessing a shared resource.

4.2 Building of Xilkernel Real-time Operating System

Xilkernel is a small, robust and modular kernel that provides scheduling multiple

execution contexts. It is a free software library integrated within the Xilinx embedded

development kit (EDK) tool [5]. It is a simple embedded processor kernel that can be

customized to a large degree for a given system. It supports the core features required in a

lightweight embedded kernel, with a POSIX API [22]. Xilkernel IPC services can be

used to implement higher level services (such as networking, video, and audio) and

subsequently run applications using these services.

The main advantages of using xilkernel are:

• Breaking down tasks as individual applications and implementing them on an

operating system

• It enables us to write the code at an abstract level, instead of at a small, micro-

controller level

• Highly scalable kernel (inclusion or exclusion of functionality as required) and

• Complete kernel configuration (deployment within minutes from inside of Xilinx

platform studio of EDK) [5, 12].

•

Xilkernel includes the following key features:

• A POSIX API targeting embedded kernels

• Core kernel features such as:

47

 POSIX threads with round-robin or strict priority scheduling

 POSIX synchronization services - semaphores and mutex locks

 POSIX IPC services - message queues and shared memory

 Dynamic buffer pool memory allocation

 Software timers

 User level interrupt handling API

• Highly robust kernel, with all system calls protected by parameter validity checks

and proper return of POSIX error codes

• Statically creating threads that startup with the kernel

• System call interface to the kernel

• Support for creating processes out of separate executable Executable Link Files

(ELF)

4.3 Scheduling

In computer multitasking, multi-processing operating system and real-time operating

systems, the key concept is scheduling. Scheduling is the process of deciding how to

commit available resources between varieties of available or possible tasks. In xilkernel

RTOS, we can make use two types of scheduling techniques: Round robin scheduling and

Priority based scheduling. However, for our project we made use of only round robin

scheduling.

A. Round robin scheduling:

Round robin is one of the simplest scheduling algorithms available for processes or

threads in an operating system. They assign time slices to each process or thread in equal

48

proportion and in circular order. They handle the processes or threads without any

priority.

B. Priority based scheduling:

Using priority based scheduling, we can assign higher priority to processes or threads that

are more important than other processes. The process or thread with the highest priority

will have the control over the CPU when it is available.

In our project, to gain exclusive access to a resource, when multiple threads are created

and each of them want to send debug information to the serial I/O interface, we made use

of mutexes in real-time concepts. Mutexes are a synchronization mechanism between

threads.

Mutexes are a type of synchronization between threads because even though thread 2 has

a higher priority it has to wait on an event (unlock) of thread 1. It means that while T1 is

using the UART and hence locks the mutex, T2 has to wait to use the UART. Like this

we ensure exclusive access to the UART resource.

49

Once we have finished adding all the required IP cores and other peripherals we have to

set the platform for software application. The xilkernel Real-Time Operating System

(RTOS) is selected and configured according to the application requirements i.e., mutex

enabled and then the board support package is generated using library generator. The

library generator uses the configuration information and the hardware design net list to

setup complete software application. The xilkernel sources, make files and other scripts

are built with conditional code to generate the correct software based on the hardware

described in EDK XPS GUI. The compiler options are set to link against the xilkernel

RTOS to obtain the ELF file and then, downloaded to the board.

Figure 40: Setting Compiler Options

50

CHAPTER 5

EXPERIMENTS AND RESULT

 Once the hardware system and all the software platform settings are configured

according to the required applications, we can obtain the output on the hyper terminal. In

our case, as discussed in the previous chapters we considered the Matrix addition

example and the utilization of XPS Mutex hardware IP for multi-processors to achieve

synchronization when accessing shared resources.

5.1 Varying the Working Frequency

Several interesting parameters were investigated with profiling. This includes the

frequency transition and the timing overhead. The frequency switching overhead, i.e.,

the time required to change the processor frequency from one to another, was measured

by inserting Xilinx’s ChipScope Integrated Logic Analyzer (ILA) core into the design

and sampling the IP internal signals via JTAG connection. The timing diagram is shown

in Figure 40. The clk_in is the input and clk_out is system clock. The lock signal indicates

the DCM working status: it goes low when reconfiguration starts, and goes high when

stable output is available. Therefore, the interval when lock goes low represents the

frequency switching overhead. The overhead is quite constant and not much dependent to

the starting and ending frequencies.

51

Case (i) The switching overhead is approximately 9 to 10 cycles.

Case (ii) The switching overhead is approximately 6 to 7 cycles.

Case (iii) The switching overhead is approximately 12 to 14 cycles.

 Figure 41: The Timing Overhead for Varying the Working Frequencies

52

The overall system resource utilization summary table is shown in Table 1. When

considering whole design, the utilization rate of slices may exceed 100% because the

system only provides estimation based on subsystem utilization.

Device resource

Utilization on FPGA Virtex5 Device:
XC5VLX110T-1FF1136

Used Available Percentage

No. of slice registers 32684 69120 47%

No. of slice LUTs 38543 69120 56%

DCM 4 4 100%

Number of fully used LUT pairs 3 13 23%

No. of BUFG/BUFGCTRLs 3 32 9%

No. of bonded IOBs 28 640 4%

Table 1: Resource Utilization Summary

5.2 Debugging

In order to enable more number of processors to download the ELF file, we have to make

use Xilinx Microblaze Debug Module (MDM) in our design. MDM enables JTAG-based

debugging of one or more Microblaze processors. The present Xilinx MDM IP of XPS

GUI supports up to eight Microblaze processors. They are also helpful in achieving

synchronized control for multiple Microblazes used. Xilinx MDM supports a JTAG-

based UART with a configurable AXI4-Lite or PLB interface. The main advantage of

MDM is connecting to the chipscope Integrated CONtroller (ICON) cores through

BSCAN signals.

53

Figure 42: Block Diagram of Microblaze Debug Module (MDM)

From the Xilinx’s Microprocessor Debug (XMD) shell we connect the JTAG based

UART to MDM, and then download the ELF file to the respective processors to run the

system and display the output.

5.3 Four Microblazes system using single PLB bus

For the matrix addition and multiplication example we considered different hardware

setups. Firstly, a single PLB bus was shared by all the processors with one master

Microblaze and three slave Microblaze processors (as shown in Figure 45). We made use

of external memory to write and read data by different processors.

54

Initially, we considered a simple addition example and later a 3X3 matrix multiplication

example to increase the workload of the processors. All the data required for computation

of addition or multiplication is entered into master processor then it distributes the data

evenly between the three slave processors. The slave processors compute the addition or

multiplication and send the result back to master processor. After retrieving the results

from the slaves, the master processor computes the total result and displays the output on

the hyper terminal (as shown in Figure 43).

1 initial = 0;
2 s = initial << 30;
3 CLK_CONTROL_mWriteReg (BASEADDR,0,s);
4 while (1)
5 {
6 getfsl(temp, 0);
7 temp++;
8 putfsl(temp, 1);
9 //Matrix calculations during transition
10 for (i=0; i<3; i++) {
11 for (j=1; j<3; j++) {
12 mat[i][j] = 2*i * temp - j *temp ;
13 }
14 }
15 }

Code line1-3 configures the clock control unit. As the MicroBlaze adopts little-endian
bus, we should shift the data before write it into registers. Line 3 calls a register write
function and write configuration into custom IP.

Line 6-8 is passing the FSL data from one processor to another. The getfsl and putfsl are
blocking FSL read and write.

Line 10 -14 is the for loop calculation.

For the simplicity, we keep the processor in the while loop from line 4 to line 15, which
is matrix calculation. The code is expected to keep the processor busy.

55

Figure 43: Output for matrix addition and Multiplication example on 4 Microblazes
system

56

5.4 Four Microblazes system using different PLB buses and a shared console

Secondly, we made use of PLB buses for each of the processor which are internally

connected by PLB-to-PLB Bridge as explained in the previous chapter. XPS Mutex

hardware IP was used to attain the synchronization for shared console RS232 UART

between the 4 Microblaze processors. We also made use of a XPS Mailbox between the

two processors to enable inter-processor communication. Since the mailbox is suited for

small sized messages (< a few 100 bytes), we considered FSL bus for a 4 Microblazes

system considering fast communication ability in them.

As we can see in the block diagram above, the hardware mutex IP is connected to all the

processors through individual PLB buses. Whenever a processor wants to display the

output, it locks the mutex thereby no other processor can access the resource for output

display. All the processors rendezvous between each other to synchronize their output to

RS232 console as shown in Figure 44. You can see the change of the state in the

processors when synchronizing or accessing resource one after the other in cyclic

manner.

57

 Figure 44: For 4 Microblazes system using different PLB buses and a shared console

58

Figure 45: System architecture view for 4 Microblaze system with single PLB bus

Figure 46: System architecture view for 4 Microblazes system with individual PLB buses
connected with PLB-to-PLB Bridge and XPS Mutex.

59

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

 The adaptivity is critical for multi-core architecture, which has the great potential to

meet the increasingly demanding performance requirements but also needs to satisfy the

stringent resource constraints. Multi-core processors have become the mainstream

computing research. We have developed a flexible, reusable, and versatile multi-core test

bed on FPGA that can be used effectively to validate the theoretical research on

power/thermal aware computing. We expect that this test bed can lead to new findings

and research directions in our power/thermal computing research.

We need to manually partition the codes and map them into processors. This makes the

program model very difficult for parallel computing. Further work on parallel

programming is expected to improve both the productivity and efficacy of this system.

We are watching closely for the DVS features in the new generations FPGA products.

While changing the frequencies helps to vary the performance, this has not transformed

to its real benefit, i.e., more effective power/energy conservation.

Due to inaccuracy in the simulator and not being able to dynamically vary the voltage in

the present FPGAs, we are not able to develop more complicated power/thermal models

with scheduling policies. In our design, only a 4-MicroBlaze point-to-point network

topology is integrated and no float-point unit is added in the system. It would be

interesting to integrate more processors and float-point units. Besides, some connections

other than FSL, like network on chip, are also considerations for future work.

60

LIST OF REFERENCES

[1] Krste Asanovíc, Rastislav Bodik, Bryan Catanzaro, Joseph Gebis, Parry Husbands,
Kurt Keutzer, David Patterson, William Plishker, John Shalf, Samuel Williams, and
Katherine Yelick, “The Landscape of Parallel Computing Research: A View from
Berkeley”, Dec 2006.

[2] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Veluswamy, Karthik
Sankaranarayanan and David Tarjan, University of Virginia “Temperature-Aware
Computer Systems: Opportunities and challenges”.

[3] Osman S. Unsal, and Israel Koren, “System-Level Power-Aware Design Techniques
in Real-Time Systems”, proceedings of the IEEE, Vol. 91, No. 7, July 2003.

[4] Katarina Paulsson, Michael Hubner, Jurgen Becker, “Dynamic Power Optimization
by exploiting self-reconfiguration in Xilinx Spartan 3-based systems”.

[5] Xilinx platform studio user guide, UG113 (v4.0), February 2005.

[6] Xilinx Embedded systems tools reference manual, UG111 (v6.0) June 2006.

[7] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli, “Dynamic frequency
scaling with buffer insertion for mixed working loads”. IEEE transactions on computer
aided design of integrated circuits and systems, vol.21, No.11, November 2002.

[8] Bishop Brock and Karthick Rajamani, “Dynamic power management for embedded
systems”. Proceedings of IEEE international SoC conference September 2003.

[9] Kumar, A. Li Shang, Li-Shiuan Peh, Jha, N.K. ”System-Level Dynamic Thermal
Management for High-Performance Microprocessors” in proceedings of Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on Volume: 27 pp 96-108,
2008.

[10] G. Magklis, G. Semeraro, D.H. Albonesi, S.G. Dropsho, S. Dwarkadas, and M.L.
Scott, “Dynamic frequency and voltage scaling for a multiple clock-domain
microprocessor”. IEEE Micro, vol. 23, no. 6, pp. 62–68, Nov/Dec 2003.

[11] Vasanth Asokan, “Dual Processor Reference Design Suite” Xilinx (v1.3) October 6,
2008.

61

[12] Xilinx Micro-kernel on a MicroBlaze processor using Xilinx EDK tool.

[13] K. Asanovi´c et al. A view of the parallel computing landscape. Commun. ACM,
52(10):56–67, 2009.

[14] M. M. K. Martin et al. Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset. SIGARCH Computer Architecture News, 33(4):92–99, 2005.

[15] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.
Hogberg, F. Larsson, A. Moestedt, and B. Werner., “Simics: A full system simulation
platform,” in IEEE Computer, 2002.

[16] Xilinx LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c) DS449 April 19,
2010.

[17] Xilinx XPS Mutex (v1.00c) DS631 June 24, 2009.

[18] Xilinx Digital Clock Manager (DCM) Module DS485 April 24, 2009.

[19] G.Schelle, D.Grunwald, “Onchip interconnect exploration for multicore processors
utilizating FPGAs” 2nd Workshop on Architecture Research using FPGA Platforms,
2006

[20] http://www.xilinx.com/products/devkits/XUPV5-LX110T.htm

[21] http://www.xilinx.com/ise/embedded/edk.htm

[22] http://www.xilinx.com/support/documentation/sw_manuals/edk10_oslib_rm.pdf.
Operating System and document collections.

[23] http://www.xilinx.com/ise/design_tools/

[24] J.Wawrzynek et al “RAMP: A Research Accelerator for Multiple Processors”
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-158.pdf

[25] P. Choudhary, D.Marculescu, “Hardware based frequency/voltage control of voltage
frequency island systems” Proc. IEEE/ACM Intl. Conference on Hardware-Software
Codesign and System Synthesis (CODES-ISSS), Seoul, South Korea, Oct. 2006

62

[26] Min Bao, Alexandru Andrei, Petru Eles, Zebo Peng “On-line Thermal Aware
Dynamic Voltage Scaling for Energy Optimization with Frequency/Temperature
Dependency Consideration” DAC’09, July 26-31, 2009, San Francisco, California, USA

[27] Yongpan Liu, Huazhong Yang, Robert P. Dick, Hui Wang, Li Shang “Thermal vs
Energy Optimization for DVFS-enabled Processors in Embedded Systems” proceedings
of the 8th international symposium ISQED’07

[28] L.Shang, A.Kaviani, K.Bathala “Dynamic power consumption in Virtex II FPGA
family” Proc. ACM/SIGDA tenth international symposium on Field-programmable gate
arrays, 2002, pp. 157 - 164

[29] W. Eatherton, “The Push of Network Processing to the Top of the Pyramid,”
keynote address at Symposium on Architectures for Networking and Communications
Systems, Oct. 26–28, 2005.

[30] J.Chen, C.Kuo, “ Energy-Efficient Scheduling for Real-Time systems on Dynamic
Voltage Scaling (DVS) Platforms” 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications(RTCSA 2007) Aug. 2007, pp28-38

[31] G.Quan, X.Hu, “Minimum energy fixed-priority scheduling for variable voltage
processors” Proc. Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2002, pp.782-787

[32] G. Quan and X. Hu, “Energy efficient DVS schedule for fixed-priority real-time
systems," Proc. 38th Design Automation Conference, 2001

[33] Blair Fort, Davor Capalija, Zvonko G. Vranesic and Stephen D. Brown, “A
Multithreaded Soft Processor for SoPC Area Reduction” 14th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM'06)

[34] J.Hennessy and D.Patterson, Computer Architecture: A Quantitative Approach, 4 th
edition, Morgan Kauffman, San Francisco, 2007

[35] Chip Multi Processor Watch http://view.eecs.berkeley.
Edu/wiki/Chip_Multi_Processor_Watch

[36] M.LaPedus, “To save power, embedded tries multicore” EE times, Issue 1481, June
25, 2007 pp. 1-6T.

63

[37] J.Becker, M. Huebner, and M. Ullmann, “Power estimation and power measurement
of Xilinx Virtex FPGAs: Trade-offs and Limitations” Proc.16th Symposium on
Integrated Circuits and Systems Design, September 2003, pp. 283- 288

[38] J. Suh, D.I. Kang and S. P. Crago. “Dynamic power management of multiprocessor
systems”. In International Parallel and Distributed Processing Symposium, pages 97–
104, 2002.

64

GLOSSARY

BRAM Block Random Access Memory

BSP Board Support Package

CLB Configurable Logic Blocks

EDK Embedded Development Kit

ELF Executable Linked Format

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

IP Intellectual Property

ISE Integrated Synthesis Environment

LMB Local Memory Bus

MDM Microprocessor Debug Module

MHS Microprocessor Hardware Specification

MMU Memory Management Unit

MSS Microprocessor Software Specification

NOC Network on Chip

PLB Processor Local Bus

RISC Reduced Instruction Set Computer

RTOS Real-Time Operating System

XCL Xilinx Cache Link

XMD Xilinx Microprocessor Debug

	Florida International University
	FIU Digital Commons
	3-24-2011

	The Development of Hardware Multi-core Test-bed on Field Programmable Gate Array
	Mohan Shivashanker
	Recommended Citation

	The Development of Hardware Multi-core Test-bed on Field Programmable Gate Array

