Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-24-2011

The Development of Hardware Multi-core Test-
bed on Field Programmable Gate Array

Mohan Shivashanker

Florida International University, mohan.uvce@gmail.com

DOI: 10.25148/etd.F111050902
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Recommended Citation

Shivashanker, Mohan, "The Development of Hardware Multi-core Test-bed on Field Programmable Gate Array" (2011). FIU
Electronic Theses and Dissertations. 395.
https://digitalcommons.fiu.edu/etd/395

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/395?utm_source=digitalcommons.fiu.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

THE DEVELOPMENT OF HARDWARE MULTI-CORE TEST-BED ON

FIELD PROGRAMMABLE GATE ARRAY

A thesis submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE
in
ELECTRICAL ENGINEERING
by
Mohan Shivashanker

2011

To: Dean Amir Mirmiran
College of Engineering and Computing

This thesis, written by Mohan Shivashanker and entitled The Development of Hardware
Multi-core Test-bed on Field Programmable Gate Array, having been approved in respect

to style and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Chen Liu

Jean Andrian

Gang Quan, Major Professor
Date of Defense: March 24, 2011

The thesis of Mohan Shivashanker is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Interim Dean Kevin O’Shea
University Graduate School

Florida International University, 2011

i

DEDICATION

I dedicate this thesis to my parents. Without their patience, understanding, support,

and most of all love, the completion of this work would not have been possible.

il

ACKNOWLEDGMENT
I feel pleasure and privilege to express my deep sense of gratitude, indebtedness and
thankfulness towards my advisor, Dr. Gang Quan, for his guidance, constant supervision
and continuous inspiration and support throughout the course of work. His valuable
suggestion and critical evaluation have greatly helped me in successful completion of the
work. I would like to thank the members of my committee Dr. Chen Liu and
Dr. Jean Andrian, for their support and patience. Their gentle but firm direction has been
most appreciated. I am also thankful to all those who helped me directly or indirectly in

completion of this work.

This thesis is supported in part by NSF under projects CNS-0969013, CNS-0917021 and

CNS-1018108.

v

ABSTRACT OF THE THESIS
THE DEVELOPMENT OF HARDWARE MULTI-CORE TEST-BED ON FIELD

PROGRAMMABLE GATE ARRAY

by
Mohan Shivashanker
Florida International University, 2011
Miami, Florida

Professor Gang Quan, Major Professor
The goal of this project is to develop a flexible multi-core hardware test-bed on field
programmable gate array (FPGA) that can be used to effectively validate the theoretical
research on multi-core computing, especially for the power/thermal aware computing.
Based on a commercial FPGA test platform, i.e. Xilinx Virtex5 XUPVS5 LX110T, we
develop a homogeneous multi-core test-bed with four software cores, each of which can
dynamically adjust its performance using software. We also enhance the operating system
support for this test platform with the development of hardware and software primitives
that are useful in dealing with inter-process communication, synchronization, and
scheduling for processes on multiple cores. An application based on matrix addition and

multiplication on multi-core is implemented to validate the applicability of the test bed.

TABLE OF CONTENTS

CHAPTER PAGE
1. INTRODUCTION ...coiiiiiiiiiiieiietee ettt sttt sttt s sae e 1
2. GENERAL FRAMEWORKccoitiiiiiiiiieteesieeetet ettt st 8
2.1 The Hardware ATChItECTULE.coiuiiiiieiiieieeite ettt 8
2.2 The System SOftWare SETUPcccvierieeiiieie ettt ettt 12
2.3 Hardware/Software Test Platformc.ccoooiiiiiiiiiiiieeeee 13
3. HARDWARE ARCHITECTURE DESIGNccceoiiiiiiinieieceeeeeeee e 18
3.1 The Design Of DFSoiiii et 19
3.2 The Design of Sharing MEMOTYccceeruieriierieiiienieeieeniie e esere e e see e eseee e 34
3.3 The Design of Inter-processor COMmMUNICAtION.c...cvueeruereenreerienieneeieneeneennens 36
4. OPERATING SYSTEM SUPPORT AND SOFTWARE PLATFORM
SETTINGS. ...ttt ettt et sttt ettt e bt et e satenbe et e eat e bt entesneenaeens 45
4.1 Standalone Board Support Packagecoceveviiiiiiiiiiiniinieccecieececeen 45
4.2 Building of Xilkernel Real-time Operating SyStem.............ccceevveeiieerieerieenveennens 46
4.3 SChEAUIING.....cveiiiriiitee ettt 47
5. EXPERIMENTS AND RESULTcoiiiiiieteie ettt 50
5.1 Varying the Working FreqUeNCYcccccuieriiiiiiiiiieiiecie et 50
5.2 DEDUGZING ...ttt et ettt et e ne e 52
5.3 Four Microblazes System Using Single PLB Bus..........ccccocciiiiieviinciiiniecieeen, 53
5.4 Four Microblazes System Using Different PLB Buses and a Shared Console......55
6. CONCLUSIONS AND FUTURE WORKcccceiiiiiiinieiteeceee e 59
LIST OF REFERENCES ...ttt 60
GLOSSARY ettt ettt et et et e et e te et e ssa e seenbeereeteenaenneens 64

vi

LIST OF FIGURES

FIGURE PAGE
1. Exponential Increase in Power CONnSUMPLIONc.cvvveveueeeieieieieieieieieieieiecicieecieieeeeeeenene 2
2. The Hardware ATChitECTUIEcccoceueuiuiiiiiiiieet ettt 9
3. Microblaze Core Block DIagram.........coceeueueiiieiiieriieieieicieeieicieieicieieieieieieieieieieseeseneeeaenes 10
4. Clock CONLIOl UNIt ...c.cveveuiuiieriieicieieicieieieicieicieice ittt ettt 11
5. Software Design FIOW ...t 13
6. Front view of Xilinx virtex-5 LX110T FPGA board.........c.cccovvrrrrnnnnrceeee 15
7. Back view of Xilinx virtex-5 LX110T FPGA boardcccccovvvnrnnnnnncee 16
8. Dual Microblaze Processor SYStIM.........ovuviriiiiiiriiiiiiicieececeiecieeieeeieeeeeieeseeeaeees 19
9. Schematic diagram of PLB-t0-PLB Bridgeccccoeviiiininininnnnnssereee 20
10. Homogeneous multi-core architecture with variable working frequency..................... 21
11. Microblaze Cache SETUPccccuiuiuiiiiiiiiiiiiiittt et e 22
12. MPMC base Configuration..........c.ccceeeeueuiuiiiiiiiiitieesesesesesesesesesesesesesessssssssene s 23
13. Address Port configure for MPMCcccoiniinininnnnnrsee e 24
14. MPMC Port and Pipeline CONfigUIationcocvvevereeererinicieieicieiecieeeeieeeieieieieeeeceeeeene 24
15. CacheLink.vhd instantiate two FSL UNit.......cccovvriririiiiceccceccccccccccecce 26
16. Cache Link signal declaration in mpmec_Xcl 1fV....cooooiiiiiiiiiiiicccccccceee 27
17. Cache link signal assignment and instance in mpmc_Xcl ifiv ..o, 28
18. Cache link signal and clock replacement of read data

interface i MPMC_ XCl TE Vi 29
19. Cache link signal and clock replacement of write data

interface I MPMC_ XCL TE V.o 30

vil

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Sample of FSL signal assignmentccceueueueiiiiieiiiiiieiiieieee e 31

Port signal deClaration...........c.ccoeeririririninininininrrr e 32
Clock Control Unit declaration in file user logic.vhd.........cccceeviieeieeciicciicccnes 32
File Structure of Clock Control UNit............cooeviveiriiieieieeieeiceiececceececc e 33
Clock assignment in tOP.VRdc.ceueueiiiiiiiiiiicccicccccc e 33
Port declaration in Configuration UNItc.cccceueueueieieiiiiiiiiicceeeeeseseseseseseseees 34
Logic in Configuration UNit.........cocoeviriririnnnirrnssses e 34
IMPLICTt MUIPIOCESSINE.....cecuiuinininiiiiisisisists sttt 35
EXPIICit MUIIPIOCESSINE.....cecuiuinininiiiiisisisisists sttt 35
Schematic Representation of XPS MuteX CONNECHIONc.cvuvueereimiiiiiireiiererenesenenne 37
Schematic Representation of Matrix Addition ..., 38
Loading more than one image into FLASH PROM.........ccovnnnnnnnnnnnnssesee 39
Define starting address of image in FLASH PROM.........cccoonnnnnnnnnnnnsse 40
Reset other processor before image 10adingcccovveeiennneiinnncceeeeceee 40
How to enter main program after 10adingccccceovneiinnneiiinneeeceeeeee 40
Boot Program Sample ... 41
Programming FLASH MEMOTY........cocoviiriiirriiieeccceee e 43
Setting RS232 serial port terminal for output..........cccccceiiiiiiiiiiicicccceeeee 43
OVerall SYStEM VIEWcooviviiiiiiiiiiiicieieiccececeee e 44
Software Platform SettNgS........cccovvveiviriiieieiiieeeeeeeeeecccceee e 45
Setting ComPIler OPLIONSccvveriririeieeeceee et 49
The Timing Overhead for Varying the Working Frequencies..........ccccccccececccininnnes 51
Block Diagram of Microblaze Debug Module (MDM)ccccovieiinnnccinneccneee 53

viil

43. Output for matrix addition and multiplication example on 4 Microblazes system......55
44. For 4 Microblaze system using different PLB buses and a shared console.................. 57
45. System architecture view for 4 Microblaze system with single PLB bus..................... 58

46. System architecture view for 4 Microblaze system with individual PLB buses
connected with PLB-to-PLB Bridge and XPS MuteXcccocecevvinnennenneenecreeen 58

X

CHAPTER 1
INTRODUCTION

The computer industry is switching from the single core based platform to the
multi-core. Die yield, limits in instruction level parallelism (ILP) and memory/processor
performance gap, coupled with the exponentially increased power consumption and heat
dissipation have forced this switching. Increasing the working frequency and building a
more complicated single processor is no longer an effective way to improve the
computing performance. Multi-core platforms, which facilitate the process or thread level
parallelism and can thus work at lower clock rates, can potentially deliver high
computing performance without consuming excessive power and producing prohibit heat.
As a result, multi-core processor systems have been one of the most popular methods to
overcome the complexities for many applications within the corporate, medical, military
and other commercial markets requiring high performance and real-time processing
power. For example, Cisco today embeds in its routers a network processor with 188
cores implemented in 130 nm technology, which dissipates 35W at a 250MHz clock rate,

and produces an aggregate 50 billion instructions per second [1].

Power consumption and thermal management have been two of the most critical issues in
developing all but the most trivial computing systems. With the demand for increased
performance and decrease in size from mobile electronics to high performing game
consoles, there has been an exponential increase in power density and chip temperature,

according to SOC consumer stationary power consumption trends shown in Figurel.

g

8

3

g

Fower Consunption [V}
[i*]
=]

o

2009
2010
201
2012
2013
2014
2015
2016
2017
2018
2019
020
2021
2022
2023
2024

‘.Ewtching Pover, Logi c MSuitching Pover, Menory
OLeakage Pover, Logic [OlLeakage Power, Menory

Figure 1: Exponential Increase in Power Consumption

The power consumption has been one of the most critical constraints for multi-core
computing. The power consumption in modern processors consists of (i) the dynamic
power and (ii) the leakage power. The dynamic power is due to the transistor switching
activities during runtime, and used to be the dominant between the two. The dynamic
power is given by,

Pyyn = aCV?f
where, Py, 1s the dynamic power consumed, a is the activity factor, C is the load
capacitance, V is the supply voltage and f'is the working frequency.
Leakage power is due to the leakage current flowing through the transistor and is given
by,

Preak = Vieak

where, P is the leakage power, V is the supply voltage and 7., is the leakage current
through the transistor. As shown above, the dynamic power consumption is quadratically
dependent on supply voltage. Thus, reducing the supply voltage can dramatically reduce
the power consumption for the processor. As a result, many processors are designed to
have the Dynamic Voltage and Frequency Scaling (DVFS) capability, i.e. being able to
dynamically vary the supply voltage and/or frequency of a microprocessor. DVFS has
proven to be one of the most effective ways to reduce the power consumption and also to
manage the thermal condition of the processor while meeting the required performance

[3, 10].

Besides power consumption, the rapidly elevated temperature in the computing system
also raises serious concerns for computing system designers. The rise in chip
temperature has significant impact on power consumption, reliability, cooling and
packaging costs. In fact, the rapid increase in cooling and packaging costs has the
potential to greatly affect the computer industry capability to deploy new systems. There
have been extensive theoretical researches conducted on power and thermal aware
computing for a multi-core platform [26, 27]. Dynamic power management techniques
have already been developed to cover a wide spectrum of system characteristics [8]. It
has been shown that, proactive use of software on top of the hardware can balance the
overall thermal profile with minimal overhead using the operating system support. There
also exists a hardware DVFS technique [7, 9] where they have proposed a novel method
of producing high speed variable fractional clock rates. Y Liu et. al. [27], have presented

a design time optimization technique for real-time embedded systems that make use of

DVFS to minimize peak temperature. In [26], DVFS technique is used to reduce the
overall energy consumption by exploiting both static and dynamic slack times where,

voltage and frequency is decreased below the operating level.

While a variety of power/thermal aware techniques have been proposed for a hardware
multi-core platform, most of the existing works are validated through software
simulations with simplified and idealized theoretical models. The change in computer
architecture to multi-core has complicated the use of software simulators as they are
difficult to parallelize well with greater number of processors [13]. Even though the
SPEC2k benchmark suite and Virtutech’s Simics [15] are more robust, they provide
limited application programming interface (APIs) and become extremely time consuming
as greater number of cores are added to the system. Furthermore, while the software
simulators help to simplify the problem, results may also lead to conclusions deviated
from what they really are in the practical scenarios, since the practical computing systems
need to deal with more complicated scenarios that cannot be accurately modeled in the
software simulation. Thus, it becomes necessary to test or verify the theoretical results in

a more practical environment.

While a number of commercial platforms based on multi-core architecture are reported in
the literature, such as IBM’s Cell processor [1], they are not readily available at a
reasonable price. Researchers also use current multi-core desktops for the validation

purpose [9]. However, such a “test-bed” can only be used to test theoretical research

based on a fixed architecture. In addition, these test beds are also limited by their

software supports and cannot be easily updated.

To design a versatile, flexible, and reusable multi-core test bed, we seek to develop such
a test bed using the FPGA technology [4]. FPGA is an integrated circuit that can be
reconfigured according to the required application by the designer. The configurable
logic cell blocks are the basic logic unit in an FPGA even though the features and number
of logic cells used vary from device to device. Today’s FPGAs are highly scalable, field
debuggable, re-configurable, have a lower cost and readily available in the market. They
can be re-programmed using the powerful and versatile developing tools commercially
available today. It has a much shorter design cycle and requires much less engineering
equipment costs compared with those for the design of Application Specific Integrated
Circuits (ASIC). The FPGA has thus been widely used in both academy and industry to
build test platforms to test design alternatives and validate theoretical research results.
For example, recent works on FPGA like Fort et al. [33] employed multi-threading to
improve utilization of soft-core processors with little dimensional costs. The FPGA based
complete system called Protoflex [15] was designed to provide similar functionality of

Simics [14] is the motivation research for us to choose FPGA as our test bed.

Project goals and objectives
The goal of our project is to develop a multi-core hardware test bed on Field
Programmable Gate Array (FPGA). Specifically, we want to develop a test platform that

can be used effectively to validate the theoretical researches on power/thermal aware

computing. We envisioned our test platform to have the following capabilities: (1)
Consisting of 4 or more homogeneous soft-core processors such as Microblaze system
[12]; (2) The performance enhancement, i.e., working frequency, of each core can be
dynamically varied and evaluated; (3) The multi-core platform can be supported with a

real-time operating system for ease of development and testing.

Our Contributions

From our work, we have successfully developed a hardware multi-core test-bed with a
real-time operating system booted on each core. The test platform consists of four
homogeneous soft-core processors (i.e., Microblazes system [12]). By using a customized
clock control unit in the design, we were able to dynamically vary the working frequency
i.e., improve performance of each core. As discussed before, it is desirable that both the
supply voltage and working frequency of a processor core can be dynamically varied.
However, it would be extremely expensive if not totally impossible to change the supply
voltage for a soft core on the FPGA chip. Therefore, we change the performance of the
processor only by changing its working frequency. We also considered inter-processor
communication between the processors to perform synchronization when accessing the
shared resource. Finally, an application example of matrix addition is implemented to

validate the applicability of the test-bed.

Thesis Organization:
The rest of the thesis is organized as follows. We first present the general framework of

our design. In Chapter 3, we discuss the hardware aspect in our development and present

our work on the design and implementation of a multi-core system with dynamically
variable frequency based on Virtex5 using FPGA development tools. Chapter 4 presents
the operating system boot up and software platform settings. The experiments conducted

and results are discussed in Chapter 5. We conclude the thesis in Chapter 6.

CHAPTER 2
GENERAL FRAMEWORK
The goal of this project is to develop a multi-core hardware test-bed on FPGA that
can be used effectively to validate the theoretical research on power-aware computing
embedded system design. The system is supposed to be flexible and support different
applications. The number of processing element can be configured according to our
computational needs and the chip capacity. The flexibility of FPGA has helped us in

customizing necessary peripheral components.

2.1 The Hardware Architecture

Figure 2 shows the overall hardware architecture of our system. The systems consists of
four homogeneous processing core. To support different clock speeds on each of the
processing element units during runtime, a configurable clock control unit is developed
that can be accessed through software. All four cores are connected using so called the
Fast Simplex Link (FSL) [16]. Note that since each processing core can potentially work
at different working frequencies, connecting all processing core using bus is not an option
in our case. FSL allows asynchronous communication mechanism and is therefore
selected to connect the multiple processor cores. In addition, multiple port memory
controller (DDR_SDRAM) and inter-processor communication-XPS Mutex hardware IP
[17] are also incorporated into our test bed to facilitate the memory sharing and inter
processor synchronization and communication. Each processing element consists a

Microblaze soft-core processor, a small scratch-pad memory, Local Memory Bus (LMB),

Processor Local Bus (PLB), a customized clock control IP and some specific peripheral

components.
[DDR2 SDRAM |
Multiple port memory controller
I Cache Link I I Cache Link I I Cache Link I I Cache Link I

PLB \

PLE
BRAM
Controller

PEl PE2 PE3

h A AN
FSL 12 FSL 23

5
\ PEQ T / 7 s h
T FL_01 FSL 13

FSL_02

MB

Processor

FSL 03

Figure 2: The Hardware Architecture

Microblaze

In our project, a Microblaze core is used as the processor core. The Microblaze soft-core
processor is a 32-bit Reduced Instruction Set Computer (RISC) architecture optimized for
embedded applications. Microblaze can be user configured like pipeline depth, cache
size, embedded peripherals, and bus-interfaces. The Microblaze core block diagram is

shown in Figure 3.

Instruction-side Data-side

bus interface bus interface
Memory Management Unit (MMU)
] EN mmm
s uTLe e)
IXCL_M <';| 5 g j‘> DXCL M
8 J ALU g
IXCL_S |:ll> 3 Program |1 - = <,:| DXCL_S
i Shift]
Counter Special N
Purpose K
Registers || Barrel Shift
{} | [muttiplier
Divider
DOPB
IOPB B FPU \v/::>
Bus i — Bus
IF] Instruction |- F A
N —| Buffer] {} {} K >
Instruction
Decode |1 MFSL 0..15 or
] Register File [~ DWFSL0.15
- 32X 32b
— SFSL0..15 or
Optional MicroBlaze feature nd DRFSL 0..15

Figure 3: Microblaze Core Block Diagram [12].

The fixed feature set of the processor includes:

e Thirty-two 32-bit general purpose registers

e 32-bit instruction word with three operands and two addressing modes

e 32-bit address bus

e Single issue pipeline
In addition to these fixed features, the Microblaze processor is parameterized to allow
selective enabling of additional functionalities like floating point arithmetic,

multiplication and division.

Customized Clock Control Unit
To dynamically vary the frequency of the processors, we built a customized IP (as shown

in Figure 4) that can control the clock for each processor core at run-time. Each

10

customized clock control IP consists of a digital clock management (DCM) unit [18] and
a configuration logic unit. The Xilinx’s DCM is a multi-function clock management unit
which supports dynamic configuration of clock frequencies ranging from 33MHz-
210MHz. For the Virtex5, the DCM unit includes a Dynamic Reconfigurable Port (DRP),

which can be used by FPGA fabric to access the configuration memory within DCM.

Clk_in
|
Bus21P
MB Configuratio
PLB IPTF n Logic
Bus [iP2Bfs
User_logic
Clock Control TP
CIk out

Figure 4: Clock Control Unit
The configuration logic translates the control signal from bus into control data for DCM,
which makes the run-time programmable clock possible. In our design, four different
clock frequencies, i.e. 40MHz, SOMHz, 66.7MHz and 100MHz, are provided and we use
the two least significant bits of the bus to select the desired frequency. The customized

clock control IP is connected with the PLB bus via the standard PLB-IPIF interface.

Bus Interfaces

There are a number of choices for Microblaze soft-core processor interconnections. It
follows the Harvard architecture with separate paths for data and instruction accesses.
Processor Local Bus (PLB) is a fully synchronous bus that provides connection to both
on-chip and off-chip peripherals and memory. The Local Memory Bus (LMB) provides

single-cycle access to on-chip dual-port Block RAM. The Xilinx Cache Link (XCL)

11

interface is intended for use with specialized external memory controllers. Memory
located outside the cache area is accessed through PLB or LMB. The debug interface is
used with the Microblaze Debug Module (MDM) and is controlled through JTAG port by

the Xilinx Microprocessor Debugger (XMD).

For our design, even though the traditional bus connection is possible, it is less attractive
due to scalability concern. An alternative is to use the logic source in FPGA to create the
Network-On-Chip (NOC) infrastructure. For example, Schelle and Grunwald [19]
implemented a switching network as interconnection for general purpose processor in a
Virtex II-pro device. One major disadvantage of this solution is the large amount of
resources it requires. Henceforth, we made use of a convenient point-to-point connection
mechanism, i.e., the Fast Simplex Link (FSL) bus, provided by Xilinx. FSL is a FIFO-
based connection and can be synchronous or asynchronous. An asynchronized
communication scheme is particularly useful in our design with different processors
running at different speeds. Each core from Xilinx supports multiple FSL buses. For
example, a Microblaze has up to sixteen FSL ports with one master and one slave
interface to connect up to sixteen different components for duplex communication, which
makes it reasonably easy and effective to build popular multi-core topologies, such as the

tree, mesh, or torus structure.

2.2 The System Software Setup
In our project, we made use of software platform settings under XPS GUI to boot the

Xilkernel RTOS into the board and configured the operating system and library files

12

according to our requirements. C code was implemented and compiled through RTOS, as

shown in Figure 5 below.

C Code Embedded
Development Kit

Standard Embedded %
Software Development Board Support
Flow Package
| Code Entry |
l Data to Memory

| C/C++ Cross compiler |

| Linker Script |

image to FPGA

Download combined

Compiled ELF |

- Xilkernel
| TLoad Software into Flash |7

1
Debugger |<

Figure 5: Software Design Flow

2.3 The Hardware/Software Test Platform

In order to develop the embedded system design on the chip, Xilinx has provided the
Embedded Development Kit (EDK) suite. We used EDK design suite 10.1.03 version.
Using this suite of tools we can incorporate a wide range of Hard and soft-IP cores, such
as microprocessors, interconnects, memories, and an assortment of peripherals. The main
advantage of EDK suite is that on a single environment we can perform design,

simulation, synthesis, and compilation.

In EDK embedded system design, we have two separate steps, hardware and the software
design which interact each other. Firstly, we have to develop and design the hardware

part where a custom circuitry IP core is developed using a hardware description language

13

(HDL) like verilog or VHDL. Synthesis tool translates this hardware description
language into the low level gate logic. Then, all available IP cores are combined into a
single design using the Xilinx platform studio tool. The microprocessor is connected to
all the IP cores using the bus architecture, thus allowing the entire design to be controlled
using software programs. Secondly, in order to control the microprocessor and all
connected peripheral, application software is developed where a system programmer
should correctly implement the low level details of interacting with any given peripheral.
We can install the embedded operating system on the chip design, which helps in the

development of our design.

Xilinx Embedded Development Kit (EDK) is the package for building Microblaze in
Xilinx FPGAs. It consists of two separate environments: Xilinx Platform Studio (XPS)
and Software Development Kit (SDK). As said earlier, we have used Xilinx viretx-5
LX110T FPGA board for our project. Below are the figures (Figure 6 and 7) showing the

front and back view of virtex-5 LX110T FPGA.

14

RS-232 Serial Port

Power Switch

JTAG
Configuration

port

Ethernet
Port

Figure 6: Front view of Xilinx virtex-5 LX110T FPGA board

The main features of this board are:

Xilinx XCF32P Platform Flash PROMs (32 MB each) for storing large device
configurations

Xilinx System ACE Compact Flash configuration controller

64-bit wide 256Mbyte DDR2 small outline DIMM (SODIMM) module
compatible with EDK supported IP and software drivers

On-board 32-bit ZBT synchronous SRAM and Intel P30 Strata Flash

10/100/1000 tri-speed Ethernet PHY supporting MII, GMII, RGMII, and SGMII
interfaces

USB host and peripheral controllers

Programmable system clock generator

Stereo AC97 codec with line in, line out, headphone, microphone, and SPDIF

digital audio jacks

15

e RS-232 port, 16x2 character LCD, and many other I/O devices and ports.

CompactFlash
Connector

[0:08:35:01:94:00 £36 §

Figure 7: Back view of Xilinx virtex-5 LX110T FPGA board

Once we have completed the embedded design, it is translated into an implementation
suitable to the board. Here we have two phases for the implementation process: (a)
Synthesis phase and (b) Compilation phase. Under the synthesis phase, a Xilinx synthesis
tool will translate the hardware description language into a gate level description. EDK
provides Xilinx Synthesis Technology (XST) the following, which happens in the
synthesis phase: (1) System-on-Chip elaboration: It translates the HDL into a computer
readable format. (2) Soft-IP core synthesis: Converts soft-IP core into a Net list which is
a logical circuit description. (3) Physical Mapping: Maps the low-level Net list into a
physical description circuit. (4) Net list placement and routing: Physical Net lists are

placed into the FPGA and channel is established between the different components for

16

communication. (5) Bit-stream generation: Physical design is converted into a bit-level
description i.e., bit-stream files which can be downloaded into the board for execution. In
the compilation phase, the software program design is compiled from the C source and
converted into the binary format used by the microprocessor. After the software has been
compiled into a binary executable file, the hardware and software are combined into one
overall bit-stream. This bit-stream is used to initialize the SRAM with the hardware
design, and the chip memories with the software program. Thus, when the system-on-
chip is boot-strapped, any microprocessors in the system will execute the software

associated with them.

17

CHAPTER 3
HARDWARE ARCHITECTURE DESIGN

As explained in the previous chapter, we have used FPGA board from Xilinx. The
board is Xilinx Virtex5 XUPVS5-LX110T evaluation platform [20]. The chip is
xc5vIx110t, grade {1136, speed -1. In order to develop the embedded system design on
the chip, Xilinx has provided the Embedded Development Kit (EDK) [21] and an
Integrated synthesis environment (ISE) software design suite [23]. Using this suite of
tools, we can incorporate a wide range of hard and a soft-IP core, such as
microprocessors, interconnects, memories, and an assortment of peripherals. The main
advantage of this design suite is that on a single environment, we can perform design,

simulation, synthesis, place and routing and finally, download and debug the system.

Xilinx Intellectual Property (IP) is the building block of several Xilinx design platforms.
Various IP cores are available to address requirements of FPGA designers in Digital
Signal Processing (DSP), embedded and other connectivity application designs. The
entire used IPs version is specified in the following sections. Xilinx keep updating IPs
regularly and are available on their website but, these new IP versions have no guarantee

to work in this project.

We started with a single Microblaze processor design. The local BRAM is connected and

used to instantiate the processor with an instruction and data BRAM controllers. The

Microblaze is sitting on the PLB. The next processor was added to the system from the IP

18

catalog and provided with connections of different BRAM and BRAM controllers similar

to the first processor. A block diagram of the dual processor system is shown in Figure 8.

DLMB BRAM
CTRL

ILMB BRAM
CTRL

FSL

PROCESSOR LOCAL BUS (PLB)

DLMB BRAM
CTRL

ILMB BRAM
CTRL

Figure 8: Dual Microblaze Processor System
The PLB BRAM acts as a shared memory for the two processors. Any address on the
PLB is accessible by both the Microblazes. Since Microblaze uses memory mapped 1/O,
both of them can access any resource on the PLB bus. The XPS Mutex can also be used

in place of FSL for inter-processor communication between the processors.

After the hardware platform design is complete, FPGA configuration bitstream is
generated. Xilinx Platform Studio (XPS) is used to build the net list and bitstream file.
Then, the software component is set with a downloadable Executable Linked Format
(ELF) file and merged with the hardware bitsream to dynamically download onto the

board via JTAG cable connected to the FPGA.

3.1 The Design of DFS
To accommodate more numbers of Microblaze processors and to improve the system
performance, we made use of PLB bus for each individual processor and connected them

using PLB-to-PLB Bridge. The Xilinx PLB-to-PLB Bridge design allows the user to

19

tailor the bridge according to a specific application by setting certain parameters to
enable/disable features. The PLB-to-PLB Bridge is a slave on the primary and master on
the secondary PLB. We can isolate some of the slow PLB peripheral from the primary
PLB and improve the system performance. The bridge allows the Microblazes to access
the external DDR2SDRAM memory and other peripherals on different buses by mapping

to their address space.

PLB of Master Microblaze

Slave to
Primary MB

Slave to
Primary MB
PLB-to-PLB Bridge
transfer interface

PLB-to-PLB Bridge
transfer interface

Master to
Secondary MB

PLB of Slave Microblaze 1 Master to

Secondary MB

PLB of Slave Microblaze 2
Figure 9: Schematic diagram of PLB-to-PLB Bridge
Further, a hardware test-bed with four Microblaze homogeneous soft-cores on a same
chip of FPGA and point-to-point network topology was built (as shown in Figure 10).
Each core was made to dynamically change its working frequency using the clock control
unit (CCU) based on Xilinx’s Digital Clock Manager (DCM) [18]. A clock generator
module is used to initiate the DCM, where the clock control unit translates the control
into the DCM and generates the desired clock. The configuration and customized units

for the experiment to test the multi-core test bed is explained below.

20

CCU CCU

CCU d CCU

Figure 10: Homogeneous multi-core architecture with variable working frequency

Configuration and Customized Units

Xilinx provides two types of processor units, hard-core PowerPC and soft-core
Microblaze. The so-called hard-core unit is basically a silicon unit integrated into FPGA.
The advantage of hard-core is the speed, but it lacks the flexibility of a soft-core unit.
The soft-core is an integrated logic design based on FPGA fabric, which make
Microblaze much more flexible. The Virtex5 board supports only microblaze processor
with speed of 125MHz. With soft-core, you can add an arbitrary number of processors,
as long as the FPGA chip has enough capacity. Besides, each processing unit could be
tailored according to need. For Microblaze, you can specify the number of the pipeline
stages, add or delete the float point unit, change the bus interface, make tradeoff between

space and throughput, and so on.

The detailed configuration for Microblaze (7.10.d) is explained as follows:

Bus Interface: Setting from BUS Interface Tab. It can also be seen and changed from

MHS file. Remember to name the 3 FSL master and slave channels.

21

Port Interface: Change the clock to the one you are going to drive the processor. By

default, it is all sys_clk s.

Instruction Tab-Optimization (Select implementation to optimize area): This option could
make tradeoff between area and processor throughput. Enable this option when you need

to reduce the logic used by Microblaze.

Exception: Enable both data and instruction side PLB exceptions, enable illegal

instruction exception and enable unaligned data exception

Cache: Due to the current bus connection, you must enable cache to use XCL interface.
Enable both Instruction and Data caches. Also enable the option “Use cache links for all
D/I cache memory access”. Because we are going to modify the XCL interface in MPMC
in order to support different clocks. All the memory access must go through this XCL

interface, otherwise system fails. The cache tab configuration is listed as below.

~ microblaze_0 : microblaze_v7_10_d

Instuctions | Exceptions | Cache | MMU | Debug | Interuptand Reset | PVR | Buses HOL Toggle 'ﬁ Datasheet a FRiestore
Enable Instruction Cache
Instruction Cache Feature:
Size of the |-Cache in Bptes 2kB v
|-Cache Base Addiess 0x90000000 |-Cache High Addiess 0x9FFEFEEF
Enable |-Cache Wiitss Use Cache Links for Al |- Cache Memory Accesses
Instuction Cache Line Length 4 * | Number of |-Cache Address Tag Bits (]
Enable Data Cache
Data Cache Feature
Size of D-Cache in Bytes 2KE v
D-Cache Bage Address 0x90000000 D-Cache High Address 0x9FFEFEEF
Erable D-Cache ‘Wiites Use Cache Links for &1l D-Cache Memary Accesses
Data Cache Line Length a ~ | Number of D-Cache Address Tag Bits]

Figure 11: Microblaze Cache Setup

22

Buses: Choose the appropriate number of FSL for the example project.

Multiple-port Memory Controller (MPMC) 4.03.a version. DDR2 SDRAM

Memory control unit manages the DDR2 SDRAM memory and provides multiple ports
access for processors. The basic configuration of MPMC is as follows:

Bus interface: Rename the XCL interface so that each one connected to a Microblaze
XCL bus.

Port interface: The basic ports configuration is based on the board setting. Their
corresponding user constraints are defined in the system.uct file. The memory unit needs
a 200MHz clock to enable the DDR2. This unit also requires a 100MHz clock with a 90
degree shift, which can be generated by module Clock Generator.

Base Configuration: Set the all the ports interface to be XCL.

w DDR2 _SDRAM 32Mx32: mpmc_v4 03 a

Base Configuration | Memony Interface | Port Configuration | Advanced HBL Toogle [#e Datashest a Restare

Poit Type Configuiation

MPMC Module Interface

PORTO PORT1 PORT2 PORT3 PORT4 PORTS PORT6 PORT7

XCL w XCL w XCL A4 XCL A4 XCL A4 XCL A4 XCL L XCL L Leftustify

Comman Addresses

Base Addr 0x90000000 SDMA Register Base Address 0xFFFFFFEF

ﬁ The pinout of MPMC must be compatible with MIG [Memory Interface Generator). please see MPMC data sheet for more information.
Fo craate a funciional MPMC, use theza fabs:

Baze Configuration: sefect fae poif fype for each acfive porf and remove wiused porfs befween achie pors

Mamon: infarface . sefeci fhe mamon: parf and configura e memony seffings

Poit Configurafion sef #e requied porf paramefers

Fha Advanced fab confamns addiional MPMT configuration aplioms amd & inanded for advancad users o

Figure 12: MPMC base Configuration

23

Memory Interface Tab: Choose the right part number: MT4HTF3264H-53E

Port Configuration Tab: XCL port is left default. Choose common Port Address for easy

acCcCEsSs.

Baze Configuration | Memory Interface | Poart Configuration | Adwvanced

Addresses Configuration | Data Path Configuration | Asbitration | ECCAPMAPHY || Misc

Usze Cormon Port Addresses

Baze Addr 030000000

Figure 13: Address Port configure for MPMC

Advanced Tab: Set BRAM as the FIFO configuration for each Port.

« DDR2_SDRAM_32Mx32: mpmc_v4_03 a

Base Configuration Memony Interface Part Configuration Advanced HBL Toggle S Datasheet a Restore

Addresses Configuration | Data Path Configurstion | Arbitration | ECC/PMAPHY | Misc
General Pipeline Settings

“wirite TML Pipeline Fead Pipeline b ax Fanout o ~

Port Specific Settings

Part Part 0 Part 1 Part 2 Part 3 Part 4 Part & Part 6 Part 7
Read FIFO Config | BRAM R BRAM R4 BRAM R4 BRAM R4 BRAM ~ BRAM w BRAM w BRAM -
‘wiite FIFO Config | BRAM v BRAM v BRAM v BRAM v BRAM ~ BERAM - BERAM - BRAM ~
Fead Memary Fipeling

Read Port Pipeline

Write Memory Pipeline

‘wiiite Poit Pipeline

Address Ack Pipeline

Figure 14: MPMC Port and Pipeline configuration

In vhdl, we need to add source files from FSL. The added source files and structure are

listed as below:

cachelink.vhd

24

--------- fsl v20.vhd

[E—— async_fifo.vhd

e async_fifo bram.vhd

e gen_srlfifo.vhd

|-=mmmmmm- gen_sync_bram.vhd

|-=mmmmmm- gen_sync_dpram.vhd

|---mmmme- sync_fio.vhd
As you can see, cachelink.vhd is the top file of the added sources. You can view the
source by opening file cachelink.vhd. It can be treated as a wrapper. It did not add any
logic into the system. The only function it performs is creating two instance of FSL unit.
Because FSL is unidirectional, you need one pair of FSL to communicate in duplex

mode.

25

239 =1 0 £=sl w20

240 generic map |

241 C_EXT REZET HIGH =» l,--hctive HIGH
242 C_ASTNC_CLES =r l,--kaync

243 C_IMPL_STYLE =» 0,--Using LUT RAM
244 C_USE CONTROL =» 1,--Enable control bit
245 C_F3L DWIDTH =» 32,

246 C_F3L DEPTH =» 1@,

247 C_READ CLOCE PERIOD =» 10)

248 porec map |

249 -— Clock and reset =signals

250 F3L_Clk =» F3L_A4 clk,

251 SY3_Rst => S5Y5 A clk,

252 F3L Rst =»> FSL 0 Rst,

253

254 —— F3L master signals

255 F3L N Clk => F3L A M CLE,

258 F3L_N Data => F3L_A M DATA,

257 F3L_M Control => F3L_ AL M Control,

258 F3L_M Write => F3L_A M Urite,

259 F3L M Full =» F3L_A M Full,

260

261 —— F3L slave =ignals

262 F3L 3 Clk => F3L B 5 Clk,

263 F3L 3 Data => F3L B 3 Data,

264 F3L_3 Control => F3L_E_3 Control,

Z65 F3L_3_ Read => F3L_EB_ 3 Read,

266 F3L_3 _Exists => F3L_EB_3 Exists,

267

268 —— FIFQ status =ignals

Z69 F3L Full => F5L 0 Full,

270 F3L_Has Data => F3L_0 Has Data,

271 F3L Control IRQ => F3L 0 Control IRQ |
272

273

274

275 f=l 1 f=l w20

276 generic map |

277 C_EXT REZET HIGH =» l,--hctive HIGH
278 C_ALSYNC CLES =r 1l,-—-ksync

279 C_IMPL STYLE =» 0,--Using LUT RAHN
280 C_USE_CONTROL =» 1l,--Enshle control birt
281 C_F3L_DWIDTH =» 3Z,

282 C_F3L_DEFTH =r 1la,

283 C_READ CLOCKE PERIOD =x» 10)

284 port map |

285 —-— Clock and reset signals

286 F3L Clk =» F3L E clk,

287 3Y3 Rst =»> B3Y3 B clk,

288 F3L PBst =»> F3L 1 Rst,

Figure 15: CacheLink.vhd instantiate two FSL unit
Fsl_v20 and others file are copied from Xilinx’s fsl v2.11.a. The entire source files can
be found from Xilinx ISE’s IP library. For the verilog, all you need to take care is the file

mpmc_xcl_if.v (If you want to create your own mpmc_xcl_if.v, be sure to change the file

26

property to write/read from read only). This file provides the XCL interface to the
external memory access. The original interface conforms to Xilinx’s FSL bus interface.
The inserted cachelink.vhd unit also conforms to FSL bus interface. The only difference
lies in the clock because; each side is synchronized to different clock. In simple way, you
can deem the cache link as an asynchronous FIFO with XCL interface.

At first, you need to introduce some intermediate signal between the inserted unit and the

original FSL interface as shown below.

=270

i R N S NN NSNS RN EEEEN RN RN RN N
272 fSiDbeclare of cachelink intermediate wires

273 NN E NN RN RN RN
=274

275 fi8ignal for FSL bus internal interface

276 wire FSL_4 5 Clk; i

277 wire [0:31] FSL_L S Data; 7 0-31)
Z7a wire FEL_ L 5 Control; i

279 wire FEL_L 5 Read; i

Za0 wire F3L_L 5 Exists: i

281 wire FSL_&4 M Clk; i
282 wire [0:31] FSL_L M Data; J10-31)
283 wire FEL_ .4 M Control; i

Zo4 wire FEL_L M Write; i

285 wire FSL_A M Full; i

286 S Interal F3L signal

287 wire F3L_int 3 Clk: i
288 wire [0:31] FSL_int S Data; /4 (0-31)
289 wire F3L_int 3 Control: I
290 wire F3L_int 3 Read: I
291 wire F3L_int 3 Exists: £

292 wire F3L_int M Clk: iy
293 wire [0:31] FSL_int M Data: £ 10-31)
294 wire F3L_int M Control: I
295 wire F3L_int M Write: I
296 wire F3L_int M Full: iy
297

Figure 16: Cache Link signal declaration in mpmc_xcl if.v

Second, assign intermediate signals and instantiate the cache link unit.

27

301

302 ms=ign FSL_A M _Daca = F3L_int_35_Daca;

303 assign FSL_A M Comtrol = FS5L_int 5 Control:

304 msm=ign F5L_inc_M Data = FSL_A_S_Daca;

ans assign FSL_int M Control = FSL_A 5 Control:

J06

o7 assign F5L int M Wrice = FSL A % Exists £ (!FSL_int M Full):
308 msm=ign FSL_A S Read = F3L_A S Exiscs £6 (!FSL_inc M _Full):
309

310 assign FEL_A M Wrice = (! FSL_A M _Full)&s F3L_int_5_Exists ;
RS assign FSL_int 5 Read = (! FS5L_A M _Full)ss FSL_int_35_Exista ;
31z

313 /S aszaign FS5L_A 5 Clk =Clk:

314 // assign FSL_A M Clk =Clk:

315 /S/Change Clk to Clk_HPHC

316 ass=ign FSL_A S Clk =Clk MPNC:

3w assign FS5L_A M Clk =Clk_HPHC:

318

319 cachelink #1(

320 -C_BASEADDR(C_BASEADDR) ,

321 .C_'.‘II'GH.H.EI IR I;C_HIG-I{J.DDF.J

322]

323 ®cl_cachelink(

324 /¢ FSL_k CLRICLE), M1

325 J/Change Clk to Clk HMPHC

3z6 JFSL_A Clk(Clk MPHC], AT
3z7 .F3L A Rat (Rat), i1

azg J4.FSL_ R 3 Clk{Clk), 1

3z9 S/Change Clk to Clk_MPHC

330 JFSL_A S Clk(Clk_MPMC), i
331 JF3L_A_5 Daca(FSL_A_S_Daca), F/0 (0=31)

332 FSL_A 5 Control (FSL_A 5 Control), Fi0

333 JF3L_A_5 Fead{FSL_A_S_FRead), i1

3134 JFSL A 5 Existcs (FSL_A 5 Exists), ffo

335 JF3L_A_H_ClR(F3L_A_35 C1K), F I

EET (FEL_A M Data(FS5L_A M Data), AT [0-31)

337 F3L_A_H_Control (FSL_i_M_Control], I

R LFSL_A M Wrice(FSL_A M ¥oite), fi1

339 JF3L_A_H Full{FSL_A M Full}, fo

340

341 .F3L_E_Clk(Read Data F3L 5 Clk), AT
142 .FSL_B_Rat (Rat), £l

343 .F3L_E_5 Clk(Read Daca FSL 3 Clk], A

344 .FSL_B_S5_Data(Read Data_FSL_5_Data), Ff0 (0=31)
345 .F3L_E 5 Control(Read Daca FSL 3 Control), ffo
346 FSL_B_5_FRead(Read_Data_FSL_5_Read), frl
347 F3L B S5 Exiscs=(R=ad Dara F3L 2 Exi=cs). F]

Figure 17: Cache link signal assignment and instance in mpmc_xcl if.v

Third, modify the original read interface. Replace old signals with the new one from
cache link. In addition, modify the original write interface. Note the clock signal need to
be replaced carefully. Assigning a wrong clock signals will make the system very

difficult to debug.

28

360
36l
362
363
364
365
366
387
368
368
370
371
372
373
374
375
378
377
378
378
380
381
382
383
384
385
386
387
388
388
390
391
392
393
394
385
398
397

ici=1=1

IE NN NN
/¢ Handle Read Data Path Jignals
IE NN NN

xcl read data #(

.C_PI DATA VIDTH {C_PI DATA WIDTH),
.C_PI RDWDADDE WIDTH {C_PI RDWDADDR WIDTH],
.C_PI RDDATA DELAY {C_PI RDDATA DELAY),
.C_LINESIZE {C_LINESIZE),
.C_MEM SDR DATA WIDTH (C_MEM SDR DATA WIDTH),
.C_READ FIFO PIPE {P_READ FIFO PIPE),
.C_RDFIFO EMPTY PIPE {P_RDFIFO EMPTY PIFE]

1

¥l read data 0

S .Clk (C1lk) ., f7I

/#Change Clk to Clk MPMC

.Clki{Clk MPHC), ST

.Clk_MEMC (Clk_MPMC), AT

.R=t {Rst), f40T

.Clk_PI Ensble {clk_pi_ensble), AT

.FI_RAFIFO Data (PI_RAFIFO Data), // I [C_PI DATA WIDTH-1:0]

.PI_RAFIFO Pop (PT_RAFIFO Pop), P

.PI_RAFIFO RdUdiddr (PI RAFIFO RAUdAddr), // I [C_PI RDWDADDE WIDTH-1:0]

.PI_RAFIFO_Empty (PT_RAFIFO Empry), AT

.PI RAFIFC Flush {PI_RAFIFQ Flush), A

.Target_Word {access_data[26:291), AT
£ Commwent the old port mapping
I .Read Data Exists {Fead Data F3L % Exists), FF A
A .Read Dats Control (Read Data FSL S Control), J// O
I .Read Data {Fead Data F3L % Data), FF A
A .Read Dats Read (Read Data FSL S Read), fT
I Jtart of new mapping

.Read Dats Exists (FSL_int 5 Existcs), fo

.RBead Data Control (FSL_int & Control), // ©

.Read Data(F3L_int 5 Data), fo

.Read Data Read (FSL_int 3 Read), AT

.Read Start {read start), fA0T

.Read Done {read done) FF A

Figure 18: Cache link signal and clock replacement of read data interface in
mpmc_xcl if.v

29

== N NN NN NSNS
400 /¢ Instantiate F3IL FIFOs
E (I R N NN NSNS NSNS

402

403 /{ Aooess F3L FIFO

404 SRL16E access_fifo[0:32] |

405 /4 CLE(CLE] ,

406 féChange Clk to Clk MPHC

407 .CLE({Clk_MPMC), 4T
408 S/ .CE(Access_FSL M Write),

409 /S .Di{Access FSL M Control, booess FSLOM Datal),
410 fé3tart of change

411 LCE(F3L_int M Write),

412 .D{{FSL_int M Control, FSL int M Data}),
413 Jlend of change

414 LA0raccess raddr[0]),

415 Lhl{access_raddr[1]),

416 LAz jaccess raddr[Z]) .,

417 L3 (access_raddr[3]),

418 .Qf{{access_control i, access data i})

419 I

420

421 /¢ Acoess FIL read counter

422 mpme_rdentr access raddr cntr |

423 Al orelk(Clk),

423 f{Chanyge Clk to Clk MPHC

425 relk(Clk MPHC) , fAT
426 kst (Rst),

427 .renfaccess_ren i),

428 // Lwen(Aceess FSLOM Write),

4z0 J/Change

430 wen (F3L_int M Write),

431 «raddr (access_raddr) ,

432 S/ .full (keeess FSLOM Full),

433 // Change

434 .full(FSL_int M Full),

435 .Bxists{access_exists_1)

436 1z

437

Figure 19: Cache link signal and clock replacement of write data interface in
mpmc_xcl if.v

If all these source files are changed for particular experiment, we need to add these

source file in the pao files. (The .pao file is introduced in Platform Specification Format

Reference Manual, which can be found at

http://www.xilinx.com/support/documentation/sw_manuals/edk63i_psf rm.pdf. Besides,

Xilinx’s XAPP 967 gives the detail to create an IP, which is available at

http://www .xilinx.com/support/documentation/application_notes/xapp967.pdf). The
declaration in pao file will help the parser recognize these files and compile them before

use.

30

Fast Simplex Link (FSL)

As explained in the previous chapter, FSL is a fast connection between 2 processors. It is
a uni-direction channel, so you should use a pair for duplex communication. It supports
asynchronous communication between two clock domains. The base version is 2.10.a.
The lasts version 2.11.a would cause some implementation error, so we stick to the older
version. Any later version should be tested before you integrated it into the system.

Base configuration: Set this unit run in asynchronous mode. The depth of FIFO can also
be configured from 1 to 32. You can tailor the depth according to communication need.
Port Configuration: In each FSL channel, you should assign a master clock,
FSL M CLK, to transmitter end and a slave clock, FSL S CLK, to the receiver. There
is another clock FSL CLK, which only used in synchronous communication. You can
ignore it in this project. There are some other handshake signals in the port section. For

their usage, you can refer to FSL datasheet. Here is an example:

= FaldT
FSL_Control_IRG Mo Connection |0
FSL _Haz Data Mo Connection |0
FSL_Full Mo Connection |0
FSL_S_Clk sps_ckl_s Sl
FSL_t_Clk awg_clk_s el
SY'S_Rst ays_rst_g]
FSL_Clk sys_clk_s ol

Figure 20: Sample of FSL signal assignment

Clock Control Unit

The clock unit is based on Xilinx’s dynamic programmable Digital Clock Manager
(DCM). The detail of the clock generation can be found in the DCM datasheet and
manual. The data interface is PLB. Clock control unit has a PLB slave interface. The

processor can program this unit via PLB bus. The function of this unit is to translate the

31

control word, and write the control into DCM unit, and generate the desired clock. There
is no need to configure this unit. The customization work is given in the following.

There are two version of clk control. In /ProjectName/pcore, clk control v2 01 a and
clk _control v3 01 a. The former one is obsolete unit. We only used the latter unit. The
user ports are declared in mpd file, which can be found in /ProjectName/pcore/

clk control v3 01 a/data.

37 ## Ports

38 PORT clk_in = ™", DIR =1

39 PORT clk0 = "', DIR = O

40 PORT clk20 = "', DIR = O

41 Port clkix = "', DIR = O

4z PORT clk _out = "', DIR = O

43 PORT lock = "", DIR = 0O

44 PORT wuax = "", DIR = O, VEC = [1:0]

Figure 21: Port signal declaration
In file user logic.vhd, the design unit is declared like this.

——-U2ER =ignal declarations added here, &=z needed for user logic

signal mux_ i : =td logie wector (13 downto 0):
component top i=
Port [clk in : in STD_LOGIC:
—-comment clk sam
—-clk_sam : out std logie:
clk0 :oout std logic:
o 1k90 roout std logice:
clkZx roout std logice:
clk out oout std logie:
rst rin STD_LOGIC:
T : in std logie wector (13 downto 0O):
lock roout STD_LOGIC):

end component;

Figure 22: Clock Control Unit declaration in file user logic.vhd
For the design source file, you can see files like this. The clk control.vhd and
user_logic.vhd are generated by system template. The design top unit, top.vhd is
instantiated in user logic.vhd. The top.vhd calls drp control.vhd for logic control,

deml.vhd for clock generation. The sample.vhd is for debug purpose.

32

Laok in: | vhdl

e ;_ﬁlclk_n:n:nntrn:nl.vhd

_aﬁ wu|deml whd

ty Recent ;_ﬁldrp_n:n:nntrn:nl.vhd

Dn:n::iJments ;_ﬁlsample.vhd
il ;_ﬁltcup.vhd

;_ﬁluser_lugic.vhd
Desktop

Al
Figure 23: File Structure of Clock Control unit
The decode logic is included in top.vhd and the following code specify the desired

clock. You can change it to other clock frequency or you can modify them to support

more clock choices.

219 process (olkin)

220 hegin

ZZ21 if(clkin'event and clkin ='1'] then

zz22 if mux_reg /=mwux then

223 start <= '1';

Z24 case mux is

Z25 when "01"™ => multiply<="00001"; divide<="00100"; --40H
Z26 when "10" => multiply<="00001"; diwvide<="00011"; --501
227 when "11" =»> multiply<="00001"; divide<="00010"; --&6.7H
228 ——when "OO0" => multiply<="00001"; divide<="00101": --33.3H
Z29 when others =»> multiply<="00001"; divide<="00001"; --100H
230 end case;

231 else

z3z start <= '0';

233 end if;

234 end if:

235 end process;

Figure 24: Clock assignment in top.vhd

Configuration Unit

This is also a simple customized unit to facilitate the multiple processor programs
loading. The purpose is to enable the main processor (program loading processor) to reset
the other processor when the program loading from flash to DDR2 is done. The added

ports are declared at the beginning of user logic.vhd.

33

- pe

98 [

99 -— ADD U3ER PORT3 BELOW THIZ LINE --------—-——m—mm e

100 --U3ER ports added here

101 -— ADD USER PORTS ABOVE THIZ LINE ---—-------——--—-—-

102 mh_reset tin std logicy--input MicroBlaze reset

103 mbhetrl rat toout std logic;-- output controlled MieroBlaze reset
1n4 —— T WMAT FOTT RFLOW THTS TL.TMF

Figure 25: Port declaration in Configuration Unit

The basic logic is shown in the following figure. The mbctrl rst is the output reset signal.
This unit controls the reset signal by the data (Bus2IP_Data) from main processor. In this

way, the main Microblaze can reset the other processors and release them after program

loading.
1435 begin
144
145 ——U3EER logic implementation added here
146
147 process (BusZIP_Clk) is
145 begin
149 if BusiIP_Clk'event and BusZIP_Clk = '1' then
150 if EBuszZIP_Reset = '1' then
151 ctrl <= '0';
152 else
153 if BuszZIP_WrCE(0O) = '1' then
154 ctrl <= BusZIF_Data(0):
155 else
156 ctrl <= ctrl;
157 end if:
158 end if;
159 end if;
160 end process;
161
162 process (BuszIP_Clk) is
163 begin
164 if BusZIP_cClk'ewvent and Busz2IP_Clk ='1' then
165 if etrl = '1' then
166 mhotrl rst <= '1';
187 else
168 nbctrl rst <= mb_reset;
169 end if;
170 end if;
171 end process;
172
173

Figure 26: Logic in Configuration Unit

3.2 The Design of Sharing Memory
A. Implicit Multiprocessing
In this method, a single copy of operating system runs and controls any number of

processors in the system (as shown in Figure 27). Parallelism between the processers is

34

hidden by an operating system and hardware. The Microblaze processor does not support
cache coherency and hence the implementation of cache coherency in software

application has a very large impact.

Master
MB

Xilkernel Memory

Processor Local Bus

Application
Memory

USB,
Serial /O,
Ethernet

Figure 27: Implicit Multiprocessing

B. Explicit Multiprocessing

Another method of achieving multi-processor systems is to run every Microblaze with its
own copy of RTOS. The Microblazes will have their private own address zones within
the shared memory and the shared memory region with protocols. Since a different RTOS

sits on each of the processor it leads to lot of memory space.

Xilkernel Memory

Application
Memory

Processor Local Bus (PLB)

Xilkernel Memory

USB,
Serial /O, Application
Ethernet Memory

Figure 28: Explicit Multiprocessing

35

However, for more number of processors using shared BRAM is not supported, so we
make use external memory controller MPMC. To enable large test programs and data
sizes, we divide the external memory (DDR2 SDRAM) into several memory sections
and one shared section. Each private memory section is associated with one processor
and can only be accessed by that processor. The shared memory section, on the other

hand, can be accessed by all processor cores.

3.3 The Design of Inter-processor Communication

A. XPS Mutex

In multiple processors XPS Mutex helps in synchronization when accessing shared
resources. The mutex core has a configurable number of mutexes and writes to lock
scheme. The mutex provides a mechanism for mutual exclusion to enable one processor
to gain access to the shared resource. The shared resource in our project is the on board
RS 232 UART interface where all the processors redirect their STDOUT to this shared
console. Without synchronization, the console output would become useless. Hence, each
processor locks XPS Mutex core before doing any output and then unlocks when done.
The XPS Mutex IP currently available can support up to 8 processors. The connection of
XPS Mutex to the PLB of individual processors is shown in figure below. The current

XPS Mutex IP supports up to 8 PLB or FSL interfaces.

36

PLB of MBE 0

PLE of ME 1

PLB of MB 2

PLB of MB 3

Figure 29: Schematic Representation of XPS Mutex Connection

B. XPS Mailbox

In a multi-processors environment, Processors need to communicate the data among
them. The mailbox IP helps passing these simple messages (< a few 100 bytes) from one
processor to another in a FIFO fashion. These mailboxes have a bi-directional
communication channel and can be connected through PLB or FSL interface (similar to
Figure 29). Apart from sending the data between processors, the mailbox can also be used
to generate interrupts between the processors. The XPS Mailbox has two interfaces that
are used to connect to the rest of the system. Both of these interfaces can be

independently configured to use PLB or FSL bus.

The Matrix Addition Example on the system

Initially, the dual Microblaze processor system was tested with matrix addition example
with booted real-time operating system, xilkernel. Using inter-processor communication
technique, a system with two processes that uses a shared BRAM and an external

memory DDR2SDRAM to accommodate the OS xilkernel, is built. The master

37

Microblaze has the data on which matrix addition is to be performed. It writes the data to
the shared BRAM. The slave Microblaze waits and keeps on checking whether a
particular bit is set or not flagging that data has been written completely. Then the slave
Microblaze starts reading the data. Once completed it calculates and writes the result to a
different location on the shared BRAM memory. The master Microblaze then calculates

the final result and displays the result on the hyper terminal window (RS232 UART).

Data to Data
Master slave MB to be

Calculated
MB v by slave

Partition

read by
Result to master
Master MB

Shared BRAM

Figure 30: Schematic Representation of Matrix Addition

Output Display RS232UART

The serial output is supposed to print out computation result. The baud rate can be
configured in this IP. Due to the limit of computer serial output, the highest baud rate can
be set to 112k. In addition, the parity and bit number should be set the same as with the

computer serial terminal.

38

Boot loader

The scratch pad memory within a PE unit is limited. The Xilinx’s EDK boots only one
processor at a time. To boot all four Microblazes, we need to customize the bootloader
and configure other programs like link script. Also, the flash programmer is supposed to
program the main program into the flash. Boot loader is the program in charge of
program loading from flash memory into DDR2 SDRAM. As we have multiple
programs to load, we also need to customize the default bootloader, so that they can load
all the images into DDR_SDRAM. After the program loading, it needs to notify the other
processor, so that they can jump into the memory. The default boot loader only loads one

image. The following code reloads multiple copies of program images from flash:

1z0 //Load the image for ME3

121 print (" Start of Image 3%rin"):

1zz flbuf = (uint8_t*)FLASH IMAGE BAZEADDERI;

123 retd = load exec ()

124 print (" End of Image 3hYrhn™):

125

1za J/Notify the ME3_Boot to Jump into the program address
127 Sépucfal(1,2]:

1za5

129 /#/Load the image for MEZ2

150 print (" 3Itart of Image Zhrin"):

131 flbuf = (uintd t*) FLASH IMAGE BASEALDDERZ;

132 reti = load exec)

133 print (" End of Image 2hVrhn™:

154 J/Notify the MEZ Boot to Jjuwnp into the program address
135 dépucfsl(1,1);

136

137 ffLoad the image for ME1

138 print (" Start of Image 14vrin"):

139 flbuf = (uint8_t*)FLAZH IMAGE BAZEADDERIL;

140 retl = load exec ()

141 print (" End of Image 14Vrhn™):

142 S fNotify the ME1l Boot to Juwnp into the program address
143 Jipuct=li1,0);

144

145 //Load the image for MEO

146 ffMake sure the last image is for MEO

147 print (" Start of Image Ohrhn"):

145 flbuf = (uintd t*)FLASH IMAGE_EBASEADDR;

149 ret = load exec ()

150 print (" End of Image OVrhn™ :

151 A4 laddr = fuintd_t *) IPAR DDR_SDRALM MPMC EBASELDDE :
152 A %laddr) () f/start the program

15843

Figure31: Loading more than one image into FLASH PROM

39

The starting address of each image can be found in header file blconfig.h.

#define
#idefine
#define
#define

[[- VR S

FLASH IMAGE EBASEADDR { XPAR_FLASH MEMO BASEADDR+ Ox50000000)//Program for MBO

FLASH IMAGE BASEADDR1 { EPAR_FLASH MEMO_BASEADDR + Ox91000000)//Program for MEBL
FLASH IMAGE EBASEADDRZ { XPAR_FLASH MEMO BASELDDR + 0Ox92000000)//Progrsm for MBZ
FLASH IMAGE EBASEADDR3 { XPAR_FLASH MEMO BASELDDR + 0Ox393000000)//Progrsm for MB3

Figure 32: Define starting address of image in FLASH PROM

Before the program loading, reset all other processor via Configuration control unit.

109
110
111
11z
113
114
115

//reset other MicroBElazes

val = 1 ;

shift = wal<<3i:

CONFIG CTRL mWriteReg (XPAR CCNFIG CTRL_ O EASEADDE,O0,shift):

Figure 33: Reset other processor before image loading

After the program loading, reset other processors, and jump into starting address of new

program. The jump start address is predefined.

154
155
156
157
158
159
160
161
162
163
154
165
156

Boot Program

//Release other MicroElazes

wal = 0 ;

shift = wval<<3l:

CONFIG CTEL mWriteReg(XPAR CONFIG CTEL_O BASEADDE,O,=shifr):

fAJump to the starting address of MEO
func_ptr = PROG_START ADDR;

func_ ptr():

f% If we reach here, we are in error #/

Figure 34: How to enter main program after loading

Here we can boot load the program in the processors other than the main processor

during the loading period. The main purpose for Boot Program is to enter the main

program address. Because Configuration unit already resets other processors during load,

Boot Program only need to jump to the correct main program. For MicroBlaze 0, the

initialized program is bootlaoder. Because processor ‘0’ is in charge of program loading.

40

For the other processor, you still need to initialize a program, which can wait for the
ready signal from Microblaze 0. When the boot loader finishes the program loading, it
will reset other processor, the Boot Program restart and enter the specified address. The
address is predefined in the boot program. Define the starting address and jump into the

address after release.

24

25 fldefine PROG_START ADDR ¥PAR DDR SDRAM MPHC BASEADDR + 0x01000000 //Starting address of HB1 app
26

2t

28 int {ffunc_ptr) f);

29

30 int main (void) {

31

32 int m;

33

34 fune_ptr = FROG START ADDR:

35

36 f/gecfslim, 1);

37

38 // Jwmp to start execution code at the address
K= FROG_START ADDR

40 func_prri{):

41

42 1

Figure 35: Boot Program Sample

Linker Script

The linker script is the file which allocates memory space for the program. You need to
assign the sections, manage the heap and stack. What’s more important, you need to
specify the loading address for the other program. By default, loading address is the
starting address of the DDR2 SDRAM. For multiple processors program loading, the
latter will overlap the previous one if they share the same starting address. So the linker

script file must be modified to avoid this overlap.

41

For other processors, after the basic configuration, you need to modify the orginal
address and the length of the DDR2 SDRAM should be customized. Correct address and

length should be calculated as well.

Flash Programmer

Flash programmer can write the main program into FLASH memory, but each program
must be written into different address. And there must be enough space between
programs to avoid overlap. Please note you need to instantiate debug module and
download the bit stream before you use flash programmer. The detail can be found in

Xilinx’s manual.

The following is the flash programmer sample setting. As you can see, the offset is
set to be ‘0x90000000°. For other processor, you need to set an offset, which is used in
the boot loader. This offset should be consistent with your offset setting in header file

blconfig.h of boot loader.

42

& Program Flash Memory r?‘

File To Prograrm: |execulable elf srec | D

Auto-convert file to bootioadable | SREC format when programming fash
Processor Instance: microblaze_0

Flazh Memary Properties

Instance Mame: ‘ FLASH_c_mem0_bazeaddr -

Base Address: 0x83000000 Size: 8 Mbytes Bus 'width: 32 bits

Program at Dffset: |0x30000000

Scratch Memory Properties

Instance Mame: ‘ ilmb_cntlr ~

Base Address: 0x00000000 Size: 8 kbytes

Create Flash Bootloader Application

SW application Project: |bootloader_0

Boatioader File Format: SREC

Hate

FPGa& must be pre-programmed with a bitstream from an EDK. design containing an EMC
peripheral connected ta Flash Memary

[aK] [Cancel] [Help]

Figure 36: Programming FLASH memory

Setup HyperTerminal:

The hyper terminal connections are set as shown in the figure below. We have to make

sure that the RS232 UART and the hyper terminal connections are same.

= COM1 Properties

N FDI[EEttlngs‘
Bits per second: | 9600 -
septi
Flow conrol. | [T ~
Restore Defauls
ok | [Cancel | [Appy |

Figure 37: Setting RS232 serial port terminal for output

43

The overall hardware architecture of our design through Xilinx EDK platform studio is as
shown below.

i

Figure 38: Overall System View.

44

CHAPTER 4

OPERATING SYSTEM SUPPORT AND SOFTWARE PLATFORM SETTINGS

As explained earlier, we want to boot up our hardware with real-time operating
system in order to implement different power/thermal scheduling policies for ease of
development and testing. Therefore, under XPS GUI we configured operating system and
library as shown in Figure 39 below. The RTOS used in our project is explained in the

following section.

« Software Platform Settings

Pracessar Infarmation
Processor Instance; | microblaze 0
Softwars Platform Configuration for 05: zilkernel +4.00.a
05 and Libraries
- Mame Current Value Default Value Type Description e
Drivers
(=) willkerrel
sysintc_spec wps_intc_0 |none pernipheral_instance S pecify the instance name of the inl
stdaut debug_madule |none peripheral_instance 5pecify the instance name of the st
stdin debug_rmodule |hohe peripheral_inztance Specify the instahce name of the st
enhanced_features true + |false bool Configure enhanced features of the
config_debug_support true v |falze baol Control various debugging features
copyoutfiles falze + |falze boal Copy 05 files to user specified direc
config_elf_process
config_bufmalloc: b v |falze baol Configure buffer memory pool alloca
config_shm falze w |falze baol Configure shared memory support in
config_msgg true + |falze bool Configure rmessage queue suppart i
1 rrnfin sema triie w |falem bl M rficn re semanhore sonno i e
<

Figure 39: Software Platform Settings

4.1 Standalone Board Support Package

The Board Support Package (BSP) is the lowest layer of software modules used to access
processor specific functions. When there is no operating system in our design, the library
generator automatically builds the standalone BSP in the project library [22]. The
standalone BSP is designed for use when an application accesses board/processor

features directly and is below the operating system layer. Initially, the multi-core

45

Microblaze was tested with the standalone BSP and implemented to perform

synchronization when accessing a shared resource.

4.2 Building of Xilkernel Real-time Operating System
Xilkernel is a small, robust and modular kernel that provides scheduling multiple
execution contexts. It is a free software library integrated within the Xilinx embedded
development kit (EDK) tool [5]. It is a simple embedded processor kernel that can be
customized to a large degree for a given system. It supports the core features required in a
lightweight embedded kernel, with a POSIX API [22]. Xilkernel IPC services can be
used to implement higher level services (such as networking, video, and audio) and
subsequently run applications using these services.
The main advantages of using xilkernel are:
e Breaking down tasks as individual applications and implementing them on an
operating system
e [t enables us to write the code at an abstract level, instead of at a small, micro-
controller level
e Highly scalable kernel (inclusion or exclusion of functionality as required) and
e Complete kernel configuration (deployment within minutes from inside of Xilinx

platform studio of EDK) [5, 12].

Xilkernel includes the following key features:
e A POSIX API targeting embedded kernels

e Core kernel features such as:

46

= POSIX threads with round-robin or strict priority scheduling
= POSIX synchronization services - semaphores and mutex locks
= POSIX IPC services - message queues and shared memory
* Dynamic buffer pool memory allocation
= Software timers
= User level interrupt handling API
e Highly robust kernel, with all system calls protected by parameter validity checks
and proper return of POSIX error codes
e Statically creating threads that startup with the kernel
e System call interface to the kernel
e Support for creating processes out of separate executable Executable Link Files

(ELF)

4.3 Scheduling

In computer multitasking, multi-processing operating system and real-time operating
systems, the key concept is scheduling. Scheduling is the process of deciding how to
commit available resources between varieties of available or possible tasks. In xilkernel
RTOS, we can make use two types of scheduling techniques: Round robin scheduling and
Priority based scheduling. However, for our project we made use of only round robin
scheduling.

A. Round robin scheduling:

Round robin is one of the simplest scheduling algorithms available for processes or

threads in an operating system. They assign time slices to each process or thread in equal

47

proportion and in circular order. They handle the processes or threads without any
priority.

B. Priority based scheduling:

Using priority based scheduling, we can assign higher priority to processes or threads that
are more important than other processes. The process or thread with the highest priority

will have the control over the CPU when it is available.

In our project, to gain exclusive access to a resource, when multiple threads are created
and each of them want to send debug information to the serial I/O interface, we made use
of mutexes in real-time concepts. Mutexes are a synchronization mechanism between

threads.

Lock
Priority l

L

T2 Loek [| wait | |

unlock

T1 |

v
—+

Mutexes are a type of synchronization between threads because even though thread 2 has
a higher priority it has to wait on an event (unlock) of thread 1. It means that while T1 is
using the UART and hence locks the mutex, T2 has to wait to use the UART. Like this

we ensure exclusive access to the UART resource.

48

Once we have finished adding all the required IP cores and other peripherals we have to
set the platform for software application. The xilkernel Real-Time Operating System
(RTOS) is selected and configured according to the application requirements i.e., mutex
enabled and then the board support package is generated using library generator. The
library generator uses the configuration information and the hardware design net list to
setup complete software application. The xilkernel sources, make files and other scripts
are built with conditional code to generate the correct software based on the hardware
described in EDK XPS GUI. The compiler options are set to link against the xilkernel

RTOS to obtain the ELF file and then, downloaded to the board.

= Compiler Options

Campiler Toolz: mb-gec

Erwiranmant Debug and O ptimization Fathz and Optionz

All paths hould be relative to project directory. Separate multiple options with a
SpaACE.

Search Paths

Libraries to Link against (-]

willernel

Other Compiler Options to Append

These options will be appended to the compiler command line

Figure 40: Setting Compiler Options

49

CHAPTER 5
EXPERIMENTS AND RESULT
Once the hardware system and all the software platform settings are configured
according to the required applications, we can obtain the output on the hyper terminal. In
our case, as discussed in the previous chapters we considered the Matrix addition
example and the utilization of XPS Mutex hardware IP for multi-processors to achieve

synchronization when accessing shared resources.

5.1 Varying the Working Frequency

Several interesting parameters were investigated with profiling. This includes the
frequency transition and the timing overhead. The frequency switching overhead, i.e.,
the time required to change the processor frequency from one to another, was measured
by inserting Xilinx’s ChipScope Integrated Logic Analyzer (ILA) core into the design
and sampling the IP internal signals via JTAG connection. The timing diagram is shown
in Figure 40. The c/k_in is the input and c/k_out is system clock. The lock signal indicates
the DCM working status: it goes low when reconfiguration starts, and goes high when
stable output is available. Therefore, the interval when lock goes low represents the
frequency switching overhead. The overhead is quite constant and not much dependent to

the starting and ending frequencies.

50

100Mhz 50Mhz

System/clk control/clk in MWUWUULDJGUUUWUN

System/clk control/clE_out | | | | | l | | | | I

Systen/clk_control/lock [|

System/clk_control/mux 00 IDI.

Sysbulclk_cmt:ulmlh_clt” || || || ” ” || | | | | | | | I | | |

Case (1) The switching overhead is approximately 9 to 10 cycles.

100 Mhz 33.33 Mhz
System/clk_control/clk_in WL
Systen/clk_control/elk out 1[N NNNIN 1
System/clk_control/lock | i
Systen/clk_control/mux 0oy o1
systen/clk_control/plb_clk LTUTULIITUIUILL | ULyt

Case (i1) The switching overhead is approximately 6 to 7 cycles.

200 Mhz

100 Mhz
System/clk_control/clk_in ([T AT I T M |
System/clk_control/clk_out
System/clk_control/lock Ll 1]
Systen/clk_control/mux 00 :I['Ell
Systen/clk_control/plb_cik |[TTUTMRAUURTUTAPLRALRIMITL 1 | ULy

Case (ii1) The switching overhead is approximately 12 to 14 cycles.

Figure 41: The Timing Overhead for Varying the Working Frequencies

51

The overall system resource utilization summary table is shown in Table 1. When
considering whole design, the utilization rate of slices may exceed 100% because the

system only provides estimation based on subsystem utilization.

Utilization on FPGA Virtex5 Device:
Devi XCS5VLXI110T-1FF1136
evice resource
Used | Available Percentage

No. of slice registers 32684 | 69120 47%

No. of slice LUTs 38543 | 69120 56%

DCM 4 4 100%

Number of fully used LUT pairs 3 13 23%
No. of BUFG/BUFGCTRLs 3 32 9%
No. of bonded IOBs 28 640 4%

Table 1: Resource Utilization Summary

5.2 Debugging

In order to enable more number of processors to download the ELF file, we have to make
use Xilinx Microblaze Debug Module (MDM) in our design. MDM enables JTAG-based
debugging of one or more Microblaze processors. The present Xilinxk MDM IP of XPS
GUI supports up to eight Microblaze processors. They are also helpful in achieving
synchronized control for multiple Microblazes used. Xilinxk MDM supports a JTAG-
based UART with a configurable AXI4-Lite or PLB interface. The main advantage of
MDM is connecting to the chipscope Integrated CONtroller (ICON) cores through

BSCAN signals.

52

MDM

¢ > MBDEBUG_O
MicroBlaze

- Debug v
Control
MBDEBUG_7

MDM MicroBlaze
)B(;%::l Control/ Trace Core [€ > XMTC
Status Interface

J UART L - S_AXI/SPLB

Control

Figure 42: Block Diagram of Microblaze Debug Module (MDM)

From the Xilinx’s Microprocessor Debug (XMD) shell we connect the JTAG based
UART to MDM, and then download the ELF file to the respective processors to run the

system and display the output.

5.3 Four Microblazes system using single PLB bus

For the matrix addition and multiplication example we considered different hardware
setups. Firstly, a single PLB bus was shared by all the processors with one master
Microblaze and three slave Microblaze processors (as shown in Figure 45). We made use

of external memory to write and read data by different processors.

Input
Data

Output
Result

53

Initially, we considered a simple addition example and later a 3X3 matrix multiplication
example to increase the workload of the processors. All the data required for computation
of addition or multiplication is entered into master processor then it distributes the data
evenly between the three slave processors. The slave processors compute the addition or
multiplication and send the result back to master processor. After retrieving the results
from the slaves, the master processor computes the total result and displays the output on

the hyper terminal (as shown in Figure 43).

initial = 0;
s = initial << 30;
CLK CONTROL mWriteReg (BASEADDR,0,s);
while (1)
{
getfsl(temp, 0);
temp+-+;
putfsl(temp, 1);
//Matrix calculations during transition
10 for (i=0; 1<3; i++) {
11 for (j=1;j<3; j++) {
12 mat[i][j] = 2*1 * temp -] *temp ;
13 }
14 }
15 }

0NN N kW

O

Code linel-3 configures the clock control unit. As the MicroBlaze adopts little-endian
bus, we should shift the data before write it into registers. Line 3 calls a register write
function and write configuration into custom IP.

Line 6-8 is passing the FSL data from one processor to another. The getfsl and putfsl are
blocking FSL read and write.

Line 10 -14 is the for loop calculation.

For the simplicity, we keep the processor in the while loop from line 4 to line 15, which
is matrix calculation. The code is expected to keep the processor busy.

54

“& 9600 - HyperTerminal Q@@l

File Edit WYiew Call Transfer Help
-2 5 0B &
—— Entering the main function in the MASTER processor —— A
These numbers are to be added to each other:
1 2 3 4& 5 6 7 8 9 18 11 12 13 14 15 16 17

18 19
The HMaster processor is distributing data. ..
{1)The slavel adds up the following numbers...

0

1

2

3

&

éZ)The slave? adds up the following numbers. ..
6

3

8

9

{g)The slaved adds up the following numbers...
11

12

13

14

{g)The master adds up the following numbers...{local calculations)
16

17

18

19

slavel result = 18

slave? result = 35

slave3 result = 60

master result = 85

total result = 190

Done :-)

“& 9600 - HyperTerminal
File Edit View Call Transfer Help

E Zg OB E

—— Entering the main function in the MASTER processor ——
These numbers are to be multiplied:

48151924 2812 7316611151823 17 4 368 121719 2518 11 20 22
15935181927 8618219 712 13171126 2511 9 510 18 22 28 6

The Master processor is distributing data...
The slavel multiplies the following numbers. ...

68151924 2812 73166111518 23174 3

The slave? multiplies the following numbers. ...

681217192518 11 260 22 1593 51819 27 8

The slaved multiplies the following numbers. ...

1821 9712131711 262511951018 22 28 6
The Master adds up the total result after multiplication from slaves....

439 228 273 1140 608 840 348 210 302
slave? result = 384 454 294 986 10825 695 809 860 520
slave3d result = 753 660 5% 521 451 357 1052 1025 507
Total result = 1576 1342 1161 2567 2134 1897 2209 2180 1329

slavel result

Done

Figure 43: Output for matrix addition and Multiplication example on 4 Microblazes
system

55

5.4 Four Microblazes system using different PLB buses and a shared console

Secondly, we made use of PLB buses for each of the processor which are internally
connected by PLB-to-PLB Bridge as explained in the previous chapter. XPS Mutex
hardware IP was used to attain the synchronization for shared console RS232 UART
between the 4 Microblaze processors. We also made use of a XPS Mailbox between the
two processors to enable inter-processor communication. Since the mailbox is suited for
small sized messages (< a few 100 bytes), we considered FSL bus for a 4 Microblazes

system considering fast communication ability in them.

Displays
OUTPUT on
Hyper Terminal

As we can see in the block diagram above, the hardware mutex IP is connected to all the
processors through individual PLB buses. Whenever a processor wants to display the
output, it locks the mutex thereby no other processor can access the resource for output
display. All the processors rendezvous between each other to synchronize their output to
RS232 console as shown in Figure 44. You can see the change of the state in the
processors when synchronizing or accessing resource one after the other in cyclic

mannecr.

56

107 % Bendeszvous first to enable co-ordinated output *f

105 #if XPAR CPU ID == 0O

109 *sharedstate = 0x3;

110 while [(*sharedstate '= 0x0 &£& *sharedstate !'= 0x1 && *sharedstate '= 0xZ)
111 H

112 #Helse if

113 XPAR_CPU ID == 1

114 *sharedstate = 0OxzZ;

115 while [(*sharedstate '= 0x0 &£& *sharedstate !'= 0xl1 &% *sharedstate '= 0x3)
116 ;

117 #Helsze if

118 ZPAR CPU_ID == 2

119 *zharedstate = 0x1;

120 while [(*sharedstate '= 0x0 &£& *sharedstate != 0x2 && *sharedstate '= 0x3)
121 ;

122 gelse if

123 | ZPAR_CPU_ID == 3

124 while [(*zharedstate '= 0xl && *sharedstate != 0x2 &% *sharedstate '= 0xX3)
125 ;

126 printf ("donehrhn"):

127 *sharedstate = 0Ox0;

128 #endif

“& 9600 - HyperTerminal i
File Edit Wiew Cal Transfer Help

0& & =DE =

Multiprocessor Synchronization Demo!
Desc -- CPUB CPUL CPU2 and CPU3 will synchronize their output to this
console using KPS Mutex Locks.
SHAREDCOWSOLE: CPU® CPU1 CPU2 and CPU3 rendezvousing...done
CPU(3) -- Changing sharedstate from 0 to 4000,
CPU(2) —- Changing sharedstate from 4000 to 3000.
CPU{1) — Changing sharedstate from 3000 to 2000.
CPU{B) — Changing sharedstate from 2000 to 1000.
CPU{3) — Changing sharedstate from 1000 to 4001.
CPU{2) — Changing sharedstate from 4001 to 3001.
CPU{1) —- Changing sharedstate from 3001 to 2001.
CPU({@) -- Changing sharedstate from 2001 to 1001.
CPU({3) -- Changing sharedstate from 1001 to 4002.
CPU(2) -- Changing sharedstate from 4002 to 3002.
CPU({1) -- Changing sharedstate from 3002 to 2002.
CPU({@) -- Changing sharedstate from 2002 to 1002.
CPU({3) -- Changing sharedstate from 1002 to 4003.
CPU{2) — Changing sharedstate from 4003 to 3003.
CPU{1) — Changing sharedstate from 3003 to 2003.
CPU{B) — Changing sharedstate from 2003 to 1003.
CPU{3) — Changing sharedstate from 1003 to 4004.
CPU{2) — Changing sharedstate from 4004 to 3004.
CPU{1) -- Changing sharedstate from 3004 to 2004.
CPU(@) -- Changing sharedstate from 2004 to 1004.
CPU({3) -- Changing sharedstate from 1004 to 4005.
CPU(2) -- Changing sharedstate from 4005 to 3005.
CPU{1) -- Changing sharedstate from 3005 to 2005.
CPU{B) — Changing sharedstate from 2005 to 1005.
CPU{3) — Changing sharedstate from 1005 to 4006.
CPU{2) — Changing sharedstate from 4006 to 3006.
CPU{1) — Changing sharedstate from 3006 to 2006.
CPU{B) — Changing sharedstate from 2006 to 1006.
CPU{3) -- Changing sharedstate from 1006 to 4007.
CPU{2) -- Changing sharedstate from 4007 to 3007.
CPU{1) -- Changing sharedstate from 3007 to 2007.
CPU{@) -- Changing sharedstate from 2007 to 1007.
CPU{3) -- Changing sharedstate from 1007 to 4008.
CPU{2) -- Changing sharedstate from 4008 to 3008.
CPU(1) -- Changing sharedstate from 3008 to 2008.
CPU{B) — Changing sharedstate from 2008 to 1008.
CPU{3) — Changing sharedstate from 1008 to 4009.
CPU{2) — Changing sharedstate from 4009 to 3009.
CPU{1) — Changing sharedstate from 3009 to 2009.
CPU{B) —- Changing sharedstate from 2009 to 1069.
SHAREDCONSOLE: CPU{3) Ends
SHAREDCONSOLE: CPU({2) Ends
SHAREDCONSOLE: CPU(1) Ends
SHAREDCONSOLE: CPU(@) Ends

Figure 44: For 4 Microblazes system using different PLB buses and a shared console

57

Aavvyyy

mb_ott

"SR
i
eyyywyY

I

Figure 46:

System architecture view for 4 Microblazes system with individual PLB buses
connected with PLB-to-PLB Bridge and XPS Mutex.

58

CHAPTER 6
CONCLUSIONS AND FUTURE WORK

The adaptivity is critical for multi-core architecture, which has the great potential to
meet the increasingly demanding performance requirements but also needs to satisfy the
stringent resource constraints. Multi-core processors have become the mainstream
computing research. We have developed a flexible, reusable, and versatile multi-core test
bed on FPGA that can be used effectively to validate the theoretical research on
power/thermal aware computing. We expect that this test bed can lead to new findings

and research directions in our power/thermal computing research.

We need to manually partition the codes and map them into processors. This makes the
program model very difficult for parallel computing. Further work on parallel
programming is expected to improve both the productivity and efficacy of this system.
We are watching closely for the DVS features in the new generations FPGA products.
While changing the frequencies helps to vary the performance, this has not transformed

to its real benefit, i.e., more effective power/energy conservation.

Due to inaccuracy in the simulator and not being able to dynamically vary the voltage in
the present FPGAs, we are not able to develop more complicated power/thermal models
with scheduling policies. In our design, only a 4-MicroBlaze point-to-point network
topology 1is integrated and no float-point unit is added in the system. It would be
interesting to integrate more processors and float-point units. Besides, some connections

other than FSL, like network on chip, are also considerations for future work.

59

LIST OF REFERENCES

[1] Krste Asanovic, Rastislav Bodik, Bryan Catanzaro, Joseph Gebis, Parry Husbands,
Kurt Keutzer, David Patterson, William Plishker, John Shalf, Samuel Williams, and
Katherine Yelick, “The Landscape of Parallel Computing Research: A View from
Berkeley”, Dec 2006.

[2] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Veluswamy, Karthik
Sankaranarayanan and David Tarjan, University of Virginia “Temperature-Aware
Computer Systems: Opportunities and challenges”.

[3] Osman S. Unsal, and Israel Koren, “System-Level Power-Aware Design Techniques
in Real-Time Systems”, proceedings of the IEEE, Vol. 91, No. 7, July 2003.

[4] Katarina Paulsson, Michael Hubner, Jurgen Becker, “Dynamic Power Optimization
by exploiting self-reconfiguration in Xilinx Spartan 3-based systems”.

[5] Xilinx platform studio user guide, UG113 (v4.0), February 2005.
[6] Xilinx Embedded systems tools reference manual, UG111 (v6.0) June 2006.

[7] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli, “Dynamic frequency
scaling with buffer insertion for mixed working loads”. IEEE transactions on computer
aided design of integrated circuits and systems, vol.21, No.11, November 2002.

[8] Bishop Brock and Karthick Rajamani, “Dynamic power management for embedded
systems”. Proceedings of IEEE international SoC conference September 2003.

[9] Kumar, A. Li Shang, Li-Shiuan Peh, Jha, N.K. ”System-Level Dynamic Thermal
Management for High-Performance Microprocessors” in proceedings of Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on Volume: 27 pp 96-108,
2008.

[10] G. Magklis, G. Semeraro, D.H. Albonesi, S.G. Dropsho, S. Dwarkadas, and M.L.
Scott, “Dynamic frequency and voltage scaling for a multiple clock-domain

microprocessor”’. IEEE Micro, vol. 23, no. 6, pp. 62—68, Nov/Dec 2003.

[11] Vasanth Asokan, “Dual Processor Reference Design Suite” Xilinx (v1.3) October 6,
2008.

60

[12] Xilinx Micro-kernel on a MicroBlaze processor using Xilinx EDK tool.

[13] K. Asanovi'c et al. A view of the parallel computing landscape. Commun. ACM,
52(10):56-67, 2009.

[14] M. M. K. Martin et al. Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset. SIGARCH Computer Architecture News, 33(4):92-99, 2005.

[15] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.
Hogberg, F. Larsson, A. Moestedt, and B. Werner., “Simics: A full system simulation
platform,” in IEEE Computer, 2002.

[16] Xilinx LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11c) DS449 April 19,
2010.

[17] Xilinx XPS Mutex (v1.00c) DS631 June 24, 2009.

[18] Xilinx Digital Clock Manager (DCM) Module DS485 April 24, 2009.

[19] G.Schelle, D.Grunwald, “Onchip interconnect exploration for multicore processors
utilizating FPGAs” 2nd Workshop on Architecture Research using FPGA Platforms,
2006

[20] http://www xilinx.com/products/devkits/XUPV5-LX110T.htm

[21] http://www xilinx.com/ise/embedded/edk.htm

[22] http://www.xilinx.com/support/documentation/sw_manuals/edk10 oslib_rm.pdf.
Operating System and document collections.

[23] http://www xilinx.com/ise/design_tools/

[24] J.Wawrzynek et al “RAMP: A Research Accelerator for Multiple Processors”
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-158.pdf

[25] P. Choudhary, D.Marculescu, “Hardware based frequency/voltage control of voltage
frequency island systems” Proc. IEEE/ACM Intl. Conference on Hardware-Software
Codesign and System Synthesis (CODES-ISSS), Seoul, South Korea, Oct. 2006

61

[26] Min Bao, Alexandru Andrei, Petru Eles, Zebo Peng “On-line Thermal Aware
Dynamic Voltage Scaling for Energy Optimization with Frequency/Temperature
Dependency Consideration” DAC’09, July 26-31, 2009, San Francisco, California, USA

[27] Yongpan Liu, Huazhong Yang, Robert P. Dick, Hui Wang, Li Shang “Thermal vs
Energy Optimization for DVFS-enabled Processors in Embedded Systems” proceedings
of the 8" international symposium ISQED’07

[28] L.Shang, A.Kaviani, K.Bathala “Dynamic power consumption in Virtex II FPGA
family” Proc. ACM/SIGDA tenth international symposium on Field-programmable gate
arrays, 2002, pp. 157 - 164

[29] W. Eatherton, “The Push of Network Processing to the Top of the Pyramid,”
keynote address at Symposium on Architectures for Networking and Communications
Systems, Oct. 2628, 2005.

[30] J.Chen, C.Kuo, “ Energy-Efficient Scheduling for Real-Time systems on Dynamic
Voltage Scaling (DVS) Platforms” 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications(RTCSA 2007) Aug. 2007, pp28-38

[31] G.Quan, X.Hu, “Minimum energy fixed-priority scheduling for variable voltage
processors” Proc. Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2002, pp.782-787

[32] G. Quan and X. Hu, “Energy efficient DVS schedule for fixed-priority real-time
systems," Proc. 38" Design Automation Conference, 2001

[33] Blair Fort, Davor Capalija, Zvonko G. Vranesic and Stephen D. Brown, “A
Multithreaded Soft Processor for SOPC Area Reduction” 14th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM'06)

[34] J.Hennessy and D.Patterson, Computer Architecture: A Quantitative Approach, 4 th
edition, Morgan Kauffman, San Francisco, 2007

[35] Chip Multi Processor Watch http://view.eecs.berkeley.
Edu/wiki/Chip_Multi Processor Watch

[36] M.LaPedus, “To save power, embedded tries multicore” EE times, Issue 1481, June
25,2007 pp. 1-6T.

62

[37] J.Becker, M. Huebner, and M. Ullmann, “Power estimation and power measurement
of Xilinx Virtex FPGAs: Trade-offs and Limitations” Proc.l6th Symposium on
Integrated Circuits and Systems Design, September 2003, pp. 283- 288

[38] J. Suh, D.I. Kang and S. P. Crago. “Dynamic power management of multiprocessor
systems”. In International Parallel and Distributed Processing Symposium, pages 97—

104, 2002.

63

GLOSSARY

BRAM Block Random Access Memory

BSP Board Support Package

CLB Configurable Logic Blocks

EDK Embedded Development Kit

ELF Executable Linked Format

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

1P Intellectual Property

ISE Integrated Synthesis Environment
LMB Local Memory Bus

MDM Microprocessor Debug Module

MHS Microprocessor Hardware Specification
MMU Memory Management Unit

MSS Microprocessor Software Specification
NOC Network on Chip

PLB Processor Local Bus

RISC Reduced Instruction Set Computer

RTOS Real-Time Operating System
XCL Xilinx Cache Link

XMD Xilinx Microprocessor Debug

64

	Florida International University
	FIU Digital Commons
	3-24-2011

	The Development of Hardware Multi-core Test-bed on Field Programmable Gate Array
	Mohan Shivashanker
	Recommended Citation

	The Development of Hardware Multi-core Test-bed on Field Programmable Gate Array

