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Abstract: The inverted Topp–Leone distribution is a new, appealing model for reliability analysis. In
this paper, a new distribution, named new exponential inverted Topp–Leone (NEITL) is presented,
which adds an extra shape parameter to the inverted Topp–Leone distribution. The graphical
representations of its density, survival, and hazard rate functions are provided. The following
properties are explored: quantile function, mixture representation, entropies, moments, and stress–
strength reliability. We plotted the skewness and kurtosis measures of the proposed model based
on the quantiles. Three different estimation procedures are suggested to estimate the distribution
parameters, reliability, and hazard rate functions, along with their confidence intervals. Additionally,
stress–strength reliability estimators for the NEITL model were obtained. To illustrate the findings of
the paper, two real datasets on engineering and medical fields have been analyzed.

Keywords: new exponential-X; stress–strength reliability; entropy; Bayesian; maximum product spacing

1. Introduction

There are several univariate continuous distributions in the present statistical litera-
ture that may be used in a range of data modeling applications. However, it appears that
the many distributions that are available are insufficient to manage the diverse data en-
countered in fields such as medicine, engineering, demography, biology, actuarial science,
economics, finance, and reliability. Statistical and applied researchers are interested in con-
structing new extended continuous distributions that are more effective for data modeling.
Adding parameters, compounding, generating, transformation, and composition are all
methods for extending well-known distributions.

In the last couple of decades, the generation of new families of continuous distributions
has attracted several statisticians to develop new models. Our interest is particularly in a
new family proposed by Huo et al. [1] called the new exponential-X (NE-X) family. The
cumulative distribution function (CDF) and probability density function (PDF) of the NE-X
family are defined as:

F(x; θ, ζ) = 1−
[

1− G(x; ζ)2

1− (1− θ)G(x; ζ)2

]θ

, (1)
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and

f (x; θ, ζ) = 2θ2g(x; ζ)G(x; ζ)

[
1− G(x; ζ)2]θ−1

[1− (1− θ)G(x; ζ)2]
θ+1 , (2)

where g(x; ζ) and G(x; ζ) are the PDF and CDF, respectively, for any baseline distribution
with the set of parameters ζ. The set of parameters ζ can contain more than one parameter
according to the type of distribution, and θ is a parameter of NE-X family where θ > 0.

Inverted or inverse distributions are important in many fields, including biological
sciences, life test problems, chemistry data, medical sciences, and so on, because of their
applicability. Inverted conformation distributions have a different structure than non-
inverted conformation distributions in terms of density and hazard functions. The reader
can consult Barco et al. [2], Abd AL-Fattah et al. [3], Hassan and Abd-Allah [4], Hassan
and Mohamed [5], Muhammed [6], Hassan and Mohamed [7], Almetwally [8], and Hassan
and Nassr [9] for discussions and applications of inverted distributions.

The inverted Topp–Leone (ITL) distribution with only one shape parameter (δ ≥ 0),
which was presented by Hassan et al. [10], is a recent, significant model among the well-
known inverted distributions. It density and hazard functions take different shapes accord-
ing to value of δ , including unimodal, right skewed, increasing, decreasing, and upside
down. The PDF and CDF of the ITL distribution are specified, respectively, as follows:

G(x; δ) = 1− (1 + 2x)δ

(1 + x)2δ
; x ≥ 0, δ > 0, (3)

and,

g(x; δ) = 2δx
(1 + 2x)δ−1

(1 + x)2δ+1 ; x, δ > 0. (4)

Some authors studied and developed new extensions and generalizations of the
ITL distribution, such as the power ITL distribution prepared by Abushal et al. [11], Ku-
maraswamy ITL distribution introduced by Hassen et al. [12], alpha power ITL distribution
presented by Ibrahim et al. [13], modified Kies ITL distribution introduced by Almet-
wally et al. [14], odd Weibull ITL distribution suggested by Almetwally [15], and half
logistic ITL distribution prepared by Bantan et al. [16].

In this paper, a new ITL distribution based on the NE-X family is proposed. We
call it the new exponential ITL (NEITL) distribution. Our motivations for presenting the
NEITL distribution are as follows: (i) to increase the flexibility of the ITL distribution for
modeling several types of data; (ii) to allow researches to obtain more flexible density and
hazard rate functions; (iii) real-world examples from medical, engineering, and other fields
demonstrate that the NEITL model outperforms other competing distributions, justifying
its implementation in these domains.

Another motivation for the present study was estimating the NEITL parameters, relia-
bility function, and hazard rate function using three estimation methods to recommend the
best estimates via a simulation study. The suggested procedures are maximum likelihood
(ML), maximum product of spacing (MPS), and Bayesian procedures. The asymptotic and
bootstrap confidence intervals are shown. Furthermore, we obtained the stress–strength
(S–S) reliability estimator assuming that both the strength (X1) and stress (X2) have NEITLs
with different shape parameters. In simulation research, statistical analysis was performed
between these methods to assess their effectiveness and to investigate how these estimators
function for various sample sizes and parameter values. Two applications showed that the
NEITL distribution provides a better fit than some other distributions.

The rest of this essay is presented as follows. In Section 2, we define the NEITL
distribution. Some of the statistical features of the NEITL distribution are determined in
Section 3. The NEITL distribution’s reliability, hazard function (HF), and S–S reliability
are covered in Section 4. Section 5 considers point estimate, asymptotic, and bootstrap
confidence intervals utilizing ML, Bayesian, and MPS estimation methods. A simulation
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experiment is presented in Section 6 to compare the performances of the estimates presented
in Section 5. Data implementations are explored in Section 7. The article is closed with
some conclusions.

2. NEITL Distribution

The two-parameter NEITL distribution is a special model of the NE-X family with the
ITL distribution as a baseline function. We get the CDF and PDF of the NEITL distribution
by replacing the CDF and PDF of the ITL model in (1) and (2), respectively.

F(x; Ω) = 1−


1−

[
1− (1+2x)δ

(1+x)2δ

]2

1− (1− θ)

[
1− (1+2x)δ

(1+x)2δ

]2


θ

; x > 0, θ, δ > 0, (5)

and

f (x; Ω) = 4θ2δx
(1 + 2x)δ−1

(1 + x)2δ+1

[
1− (1 + 2x)δ

(1 + x)2δ

] (
1−

[
1− (1+2x)δ

(1+x)2δ

]2
)θ−1

(
1− (1− θ)

[
1− (1+2x)δ

(1+x)2δ

]2
)θ+1 ; x > 0, θ, δ > 0, (6)

where Ω is a vector of parameters (δ, θ) for this distribution. Figure 1 visually displays the
PDF plots and 3-D plots of X using NEITL and parameters (Ω). The NEITL distribution
may be right-skewed and unimodal, according to the PDF plots.

Furthermore, we obtain an explicit linear representation of the density and distribution
functions by using the generalized binomial expansion. Hence, for k > 0, the k is a real
non-integer, and for z < 1 we use the following expansion with negative power:

(1− z)−k =
∞

∑
i=0

(
i + k− 1

k− 1

)
zi.

Additionally, we use the binomial expansion below with positive power:

(1− w)v =
∞

∑
j=0

(
v
j

)
(−1)jwj.

Let z = (1− θ)G(x; ζ)2, and w = G(x; ζ)2. Then, the linear representation of CDF for NE-X
family (1) is given by

F(x; Ω) = 1−
∞

∑
i,j=0

(
i + θ − 1

θ − 1

)(
θ

j

)
(−1)j(1− θ)iG(x; ζ)2(i+j). (7)

By applying the previous expansion (7) on ITL distribution (3), we have CDF of the NEITL
distribution in an expanded form as the following:

F(x; Ω) = 1−
∞

∑
i,j=0

(
i + θ − 1

θ − 1

)(
θ

j

)
(−1)j(1− θ)i

[
1− (1 + 2x)δ

(1 + x)2δ

]2(i+j)

, (8)

and let u = 2(i + j), and v = θ − 1. Then, the CDF of the NEITL distribution can be
rewritten as follows:

F(x; Ω) = 1−
∞

∑
i,j=0

u

∑
l=0

(
i + v

v

)(
θ

j

)(
u
l

)
(−1)j+l(1− θ)i (1 + 2x)lδ

(1 + x)2lδ . (9)
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Hence, the CDF (9) is represented as an infinite linear combination of the ITL distribution
function with parameter lδ.

In addition to the expression (9), we derive PDF expression of the NEITL distribution
distribution as follows:

Let z = (1− θ)G(x; δ)2. Then the linear representation of PDF for NE-X family (2) is
given by

f (x; Ω) = 2θ2
∞

∑
i,j=0

(
i + θ

θ

)(
v
j

)
(−1)j(1− θ)ig(x; δ)G(x; δ)u+1. (10)

Using CDF (3) and PDF (4) in (10), and binomial expansion, we obtain the following
expansion:

f (x; Ω) = 2δx
∞

∑
i,j=0

u+1

∑
l=0

Ki,j,l
(1 + 2x)δ(l+1)−1

(1 + x)2δ(l+1)+1
, (11)

where Ki,j,l =
2θ2

l+1 (
i+θ

θ )(v
j)(

u+1
l )(−1)j+l(1− θ)i. It is the PDF function of the ITL distribution

with parameter δ(l + 1).
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Figure 1. PDFs plots of the NEITL distribution.
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3. Mathematical Properties

Here, some structure properties of the NEITL distribution are investigated, such as
ordinary and incomplete moments, the quantile function and random number generation,
Rényi and ρ-entropies, and the S–S reliability model.

3.1. Ordinal Moments

The rth moment of the NEITL distribution is given by

E(Xr) = 2δ
∞

∑
i,j=0

u+1

∑
l=0

Ki,j,l

∫ ∞

0
xr+1 (1 + 2x)δ(l+1)−1

(1 + x)2δ(l+1)+1
dx

= 2δ
∞

∑
i,j=0

u+1

∑
l=0

Ki,j,l

∫ ∞

0
xr+1 (1 +

x
x+1 )

δ(l+1)−1

(1 + x)δ(l+1)+2
dx.

(12)

Using the binomial expansion in (12), we can define (1+ z)δ(l+1)−1 = ∑∞
q=0 (

δ(l+1)−1
q )zq.

Let z = x
x+1 ; 0 < z < 1. Then the rth moment of the NEITL distribution has the form

E(Xr) = 2δ
∞

∑
i,j,q=0

u+1

∑
l=0

τi,j,l,q β(r + q + 2, δ(l + 1)− r), (13)

where β(a, b) =
∫ 1

0 za−1(1− z)b−1dz and τi,j,l,q = Ki,j,l(
δ(l+1)−1

q ). Furthermore, the mth
central moment of X is given by

µ′r = E(x− µ′1)
r =

r

∑
k=0

(−1)k
(

r
k

)(
µ′1
)k

µ′r−k.

Table 1 gives some different statistical measures such as mean (µ′1), variance (σ2),
skewness (SK), and kurtosis (KU) for some values of parameters.

Table 1. Moments measures for NEITL distribution.

(δ, θ) µ′
1 σ2 SK KU

(2,3) 0.739 0.204 2.624 23.372
(3,3) 0.534 0.083 1.871 11.412
(5,3) 0.369 0.032 1.409 7.371
(5,4) 0.293 0.016 1.07 5.572
(5,5) 0.248 0.01 0.847 4.602
(1,5) 0.787 0.192 2.089 17.382
(2,7) 0.414 0.048 1.599 8.225
(3,7) 0.295 0.018 1.222 6.201

From Table 1, we conclude that the NEITL distribution is skewed to the right and lep-
tokurtic.

3.2. Incomplete Moments

The rth incomplete moment, say, ηr(y) of X, is obtained from (11) as follows:

ηr(y) = 2δ
∞

∑
i,j=0

u+1

∑
l=0

Ki,j,l

∫ y

0

xr+1

(1 + x)2δ(l+1)+2

(
1 +

x
1 + x

)δ(l+1)−1
dx

= 2δ
∞

∑
i,j,q=0

u+1

∑
l=0

τi,j,l,q β

(
r + q + 2, δ(l + 1)− r,

y
1 + y

)
,

(14)
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where β(., .t) stands for an incomplete beta function. The first incomplete moment, for
r = 1 in (14), is obtained. The famous applications of the first incomplete moment are
the Lorenz and Bonferroni curves which are defined, respectively, by Lz(m) = η1(m)

µ′1
and

Bu(m) = Lz(m)
F(m)

.

3.3. Quantile Function

The quantile function of the NEITL distribution, say, x = Q(x) = F−1(u), is derived
by inverting (5) as follows:

x =
√

v2 − v− v, (15)

where v = 1−
[

1−
√

(1−u)
1
θ −1

(1−θ)(1−u)
1
θ −1

]−1
δ

.

In particular, the first quartile, say, Q1; the second quartile, say, Q2; and the third
quartile, say, Q3 are obtained by setting x = 0.25, 0.5, and 0.75, respectively, in (15). The
Bowley’s skewness depends on quartiles as follows:

SK =
Q(0.75)− 2Q(0.5) + Q(0.25)

Q(0.75)−Q(0.5)
, (16)

where Q(.) is the NEITL quantile function. The Moor’s kurtosis is given as

KU =
Q(0.875)−Q(0.625)−Q(0.375) + Q(0.125)

Q(0.75)−Q(0.25)
. (17)

Skewness and kurtosis plots of the NEITL distribution, based on quantiles, are exhib-
ited in Figure 2.
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Figure 2. Plots of the skewness and kurtosis of the NEITL distribution.

3.4. Rényi and Other Entropies

Here, we obtain Rényi and ρ-entropies. The Rényi entropy, Ξ(b), of a random variable
X, is defined by

Ξ(b) =
1

1− b
log
[∫ ∞

0
f b(x)dx

]
, (18)

where b > 0 and b 6= 0. Using expansions in (6) and after some simplification, then f b(x)
should be written as:
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f b(x) =
∞

∑
i,j=0

(−1)j
(

b(θ + 1) + i− 1
b(θ + 1)− 1

)(
b(v)

j

)
(1− θ)i(4θ2δx)b (1 + 2x)b(δ−1)

(1 + x)b(2δ+1)

[
1− (1 + 2x)δ

(1 + x)2δ

]b+2(j+i)

. (19)

Again, using the binomial expansions more than one times leads to

f b(x) =
∞

∑
i,j,k,m=0

Ψi,j,k,mxb+m(1 + x)−δk−bδ−2b−m, (20)

where Ψi,j,k,m = (−1)j+k(b(θ+1)+i−1
b(θ+1)−1 )(b(v)

j )(b+u
k )(δk+b(δ−1)

m )(1− θ)i(4θ2δ)b. Substituting (20)
in (18) gives

Ξ(b) =
1

1− b
log

[∫ ∞

0

∞

∑
i,j,k,m=0

Ψi,j,k,mxb+m(1 + x)−δk−b(δ+2)−mdx

]

=
1

1− b
log

[
∞

∑
i,j,k,m=0

Ψi,j,k,mβ(b + m + 1, δk + b(δ + 1)− 1)

]
.

(21)

The ρ entropy, E(ρ), is defined as follows:

E(ρ) =
1

ρ− 1
log
[

1−
∫ ∞

0
f ρ(x)dx

]
; ρ > 0 and ρ 6= 0. (22)

The ρ entropy of the NEITL takes the form

E(ρ) =
1

ρ− 1
log

[
1−

∞

∑
i,j,k,m=0

Ψi,j,k,mβ(b + m + 1, δk + b(δ + 1)− 1)

]
. (23)

4. Reliability Analysis

In this section, we discus the reliability analysis in terms of hazard, survival, and S–S
reliability for the NEITL distribution.

4.1. Hazard and Survival Reliability

The survival function (SF) of the NEITL distribution is given by

SF(x; Ω) =


1−

[
1− (1+2x)δ

(1+x)2δ

]2

1− (1− θ)

[
1− (1+2x)δ

(1+x)2δ

]2


θ

; x > 0, θ, δ > 0. (24)

Figure 3 gives SF plots of the NEITL distribution for specific values of parameters.
The HF of the NEITL distribution is given by

HF(x; Ω) = 4θ2δx
(1 + 2x)δ−1

(1 + x)2δ+1

[
1− (1 + 2x)δ

(1 + x)2δ

] (1−
[

1− (1+2x)δ

(1+x)2δ

]2
)−1

1− (1− θ)

[
1− (1+2x)δ

(1+x)2δ

]2 . (25)

The HF plots of the NEITL distribution are displayed in Figure 4 to control sequence
for certain values of parameters. These figures show that the HF of the NEITL distribution
can be increasing, decreasing, or upside-down shaped.
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4.2. Stress–Strength Reliability

The stress–strength model is extensively used in reliability estimation. The S–S model
has many applications in physics and engineering, including strength failure testing,
structural modeling, estimating the deterioration of rocket motors, and modeling the static
fatigue of ceramic components. In the S–S model, reliability R measures the reliability of the
component that has strength X1 when it is subjected to random stress X2. The component
fails if the applied stress exceeds its strength: R = P(X2 < X1). For more information about
this model, see Abu El Azm et al. [17], Sabry et al. [18], Yousef and Almetwally [19], and
Hassan et al. [20]. Let X1 and X2 be two independent random variables with NEITL(δ1, θ)
and NEITL(δ2, θ) distributions, respectively. Hence, the S–S reliability is obtained, using
the same expansions in (9) and (11) with different indicators, as follows:

R = 1− A∗4θ2δ1

∫ ∞

0
x
(1 + 2x)δ1(l1+1)+l2δ2−1

(1 + x)2δ1(l1+1)+2l2δ2+1
dx

= 1− A∗
2θ2δ1

δ1(l1 + 1) + δ2l2

∫ ∞

0
2(δ1(l1 + 1) + δ2l2)x

(1 + 2x)δ1(l1+1)+l2δ2−1

(1 + x)2δ1(l1+1)+2l2δ2+1
dx

= 1− A∗
2θ2δ1

δ1(l1 + 1) + δ2l2
,

(26)

where A∗ = C1C2(
u2
l2
)(−1)j2+j1+l2+l1(1 − θ)i2+i2 , C1 = ∑∞

i1,j1=0 ∑u1+1
l1=0 (i1+θ

θ )( v
j1
)(u1+1

l1
),

C2 = ∑∞
i2,j2=0 ∑u2

l2=0 (
i2+v

v )( θ
j2
), u1 = 2(i1 + j1) and u2 = 2(i2 + j2). Plots of S–S model

for some values of parameters are given in Figure 5.
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Figure 5. Stress–strength plots of the NEITL distribution.

5. Parameter Estimation

In this section, we use different point estimation methods to estimate the unknown
parameters of the NEITL distribution. We use classical (ML and MPS) and non-classical
(Bayesian) methods. In the last few years, parameter estimation using different methods
has received great attention from many authors, such as Haj Ahmad and Almetwally [21],
Basheer et al. [22], and Almetwally [15].

5.1. Maximum Likelihood Method

Let x1, · · · , xn be a random sample from the NEITL distribution with parameters θ
and δ. The log-likelihood function of the NEITL can be written as:

l(Ω) = 4nθ2nδn
n

∏
i=1

xi
(1 + 2xi)

δ−1

(1 + xi)2δ+1 [1− Ai(δ)]

(
1− [1− Ai(δ)]

2
)θ−1

(
1− (1− θ)[1− Ai(δ)]

2
)θ+1

, (27)

where Ai(δ) =
(1 + 2xi)

δ

(1 + xi)2δ
. The log-likelihood function of the NEITL distribution is

`(Ω) =n(ln(4) + 2ln(θ) + ln(δ)) +
n

∑
i=1

ln(xi) + (δ− 1)
n

∑
i=1

ln(1 + 2xi) +
n

∑
i=1

ln[1− Ai(δ)]−

(2δ + 1)
n

∑
i=1

ln(1 + xi) + (θ − 1)
n

∑
i=1

ln
(

1− [1− Ai(δ)]
2
)
− (θ + 1)

n

∑
i=1

ln
(

1− (1− θ)[1− Ai(δ)]
2
)

.

(28)

The ML estimators are obtained by solving the following equations:

∂`(Ω)

∂θ
=

2n
θ

+
n

∑
i=1

ln
(

1− [1− Ai(δ)]
2
)
−

n

∑
i=1

ln
(

1− (1− θ)[1− Ai(δ)]
2
)
−

(θ + 1)
n

∑
i=1

[1− Ai(δ)]
2

1− (1− θ)[1− Ai(δ)]
2 ,
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and

∂`(Ω)

∂δ
=

n
δ
+

n

∑
i=1

ln(1 + 2xi) + (v)
n

∑
i=1

2[1− Ai(δ)]Ai(δ)ln
[
(1+2xi)

(1+xi)
2

]
1− [1− Ai(δ)]

2 − 2
n

∑
i=1

ln(1 + xi)

+
n

∑
i=1

Ai(δ)ln
[
(1+2xi)

(1+xi)
2

]
1− Ai(δ)

− 2(1− θ)(θ + 1)
n

∑
i=1

ln
[1− Ai(δ)]Ai(δ)ln

[
(1+2xi)

(1+xi)
2

]
1− (1− θ)[1− Ai(δ)]

2 .

These equations cannot be solved explicitly; hence, a nonlinear optimization algorithm
such as the Newton Raphson method is used.

5.2. Maximum Product Spacing

According to Cheng and Amin [23], the maximum product spacing method is an
efficient estimation method that has proved to have some advantages with respect to other
point estimation methods. Thus, we use MPS in this section to have point estimation of the
unknown parameters of the NEITL distribution. This can be obtained by solving equations
resulted from taking partial derivatives of logarithm of product spacing function G(Ω)
which is written as:

G(Ω) =
n+1

∏
i=1

[ 1− [1− Ai−1(δ)]
2

1− (1− θ)[1− Ai−1(δ)]
2

]θ

−
[

1− [1− Ai(δ)]
2

1− (1− θ)[1− Ai(δ)]
2

]θ
 1

n+1

,

and the logarithmic function of G(Ω)

log G(Ω) =
1

n + 1

n+1

∑
i=1

ln

[ 1− [1− Ai−1(δ)]
2

1− (1− θ)[1− Ai−1(δ)]
2

]θ

−
[

1− [1− Ai(δ)]
2

1− (1− θ)[1− Ai(δ)]
2

]θ
. (29)

The MPS estimators of Ω are obtained by differentiating the log-product equation
(Equation (29)) with respect to each parameter separately. We can solve the nonlinear sys-
tem of equations by using any iterative technique, such as conjugate-gradient algorithms.
Over the last few years, the estimation parameters of such models have been improved un-
der censoring schemes—for instance, by Almetwally et al. [24] and El-Sherpieny et al. [25].

5.3. Bayesian Estimation

Bayesian method provide statistical inferences that are based on the prior distri-
bution and loss function that are chosen. All parameters are treated as random variables
with certain distributions, termed the prior distribution in this method. We must choose
one if prior information is not available, which is frequently the case. The independent
gamma distributions are our priors of choice because prior distribution selection plays
such an essential role in parameter estimation. The joint prior distribution can be written
as follows:

π(Ω) ∝ θa1−1δa2−1e−(b1θ+b2δ). (30)

The joint posterior density function of Ω is obtained from (27) and (30):

π(Ω|x) = `(x|Ω).π(Ω)∫
Ω `(x|Ω).π(Ω)dΩ

, (31)

where `(x|Ω) ∝ θ2nδ2n ∏n
i=1

(1+2xi)
δ−1

(1+xi)2δ+1 [1− Ai(δ)]

(
1−[1−Ai(δ)]

2
)θ−1

(
1−(1−θ)[1−Ai(δ)]

2
)θ+1 . Then, the posterior

NEITL distribution is
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π(Ω|x) ∝ θ2n+a1−1δ2n+a2−1e−(b1θ+b2δ)
n

∏
i=1

(1 + 2xi)
δ−1

(1 + xi)2δ+1

[
1− (1 + 2xi)

δ

(1 + xi)
2δ

] (
1− [1− Ai(δ)]

2
)θ−1

(
1− (1− θ)[1− Ai(δ)]

2
)θ+1 . (32)

The conditional posterior distribution is as follows:

π(θ|δ, x) ∝ θ2n+a1−1e−b1θ
n

∏
i=1

(
1− [1− Ai(δ)]

2
)θ−1

(
1− (1− θ)[1− Ai(δ)]

2
)θ+1 , (33)

and

π(δ|θ, x) ∝ δ2n+a2−1e−b2δ
n

∏
i=1

(1 + 2xi)
δ−1

(1 + xi)2δ+1 [1− Ai(δ)]

(
1− [1− Ai(δ)]

2
)θ−1

(
1− (1− θ)[1− Ai(δ)]

2
)θ+1 . (34)

The loss function, on the other hand, is crucial in Bayesian approaches. The symmetric
and asymmetric loss functions are used to create the majority of Bayesian inference pro-
cesses. The Bayes estimators of Ω, say, (θ̂B, δ̂B), based on a squared error loss function, are
given by

p̂B−SEL(θ, δ) = E(θ,δx)[p(θ, δ)]

=
∫ ∞

0

∫ ∞

0
p(θ, δ)× π(Ω|x)dθdδ. (35)

It is noted that the integrals given by (35) cannot be obtained explicitly. Due to that, we
used the Markov chain Monte Carlo technique (MCMC) to find approximate values of inte-
grals (35). Many studies have used the MCMC technique, such as El-Sherpieny et al. [26],
Almongy et al. [27], Haj Ahmad et al. [28], Bantan et al. [29], Almetwally et al. [24], Al-
Omari et al. [30], Al-Babtain et al. [31], and Hassan and Zaki [32].

6. Simulation

A simulation study has been conducted to examine the performances of point es-
timates in terms of their average estimates (AE), mean squared errors (MSE), interval
estimates, and lengths of confidence interval (L.CI). The simulation study was carried out
with various parameter values and sample sizes. This section is divided into two parts.

For the first reliability analysis: The parameters of the NEITL distribution were
(θ; δ) = (0.5; 0.5) and (0.5; 3) for the results in Table 2 and (θ; δ) = (3; 0.5) and (3; 3) for the
results in Table 3. The sample sizes were n = 30, 80, and 150, respectively. We selected time
(Q) to determine the HF and SF of the NEITL distribution where R1 = SF(Q = 0.25; Ω̂),
R2 = SF(Q = 0.35; Ω̂), H1 = HF(Q = 0.25; Ω̂), and H2 = HF(Q = 0.35; Ω̂). The various
simulation results are based on a total of 10,000 repetitions. The Bayes estimates are based
on 10,000 samples and were derived using the MCMC approach. In Tables 2 and 3, the AE,
MSEs, and L.CI of the various approaches are displayed.

Secondly, we estimated the reliability of the S–S model. The parameters of the NEITL
distribution were (θ1; δ1; θ2; δ2) = (0.6; 0.75; 0.65; 2.5) is case 1 and (0.6; 0.75; 2.65; 2.5)—see
Table 4; and (θ1; δ1; θ2; δ2) = (2; 1.75; 2.5; 2.5) is case 3 and (0.6; 2.75; 2.65; 2.5) is case
4—see Table 5. The sample sizes of S–S model were (n, m) = (25, 30), (80, 70), and (150,
120), respectively.
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Table 2. Accuracy measures for parameters of the NEITL distribution, and reliability analysis for different periods of time
for θ = 0.5.

θ = 0.5 MLE MPS Bayesian

δ n AE MSE L.CI AE MSE L.CI AE MSE L.CI

0.5

30

θ 0.0875 0.2002 1.7121 0.0813 0.2001 1.7009 0.0419 0.0635 0.8738

δ 0.1646 0.2306 1.7411 0.0731 0.1905 1.6706 0.0400 0.0429 0.7872

Q = 0.25
R1 0.7500 0.0035 0.2262 0.7498 0.0032 0.2173 0.7359 0.0053 0.2714

H1 0.0043 1.29 × 10−6 0.0039 0.0041 9.11 × 10−7 0.0038 0.0042 1.49 × 10−6 0.0048

Q = 0.35
R2 0.6369 0.0051 0.2735 0.6489 0.0047 0.2651 0.6336 0.0078 0.3286

H2 0.0021 2.11 × 10−7 0.0016 0.0018 1.75 × 10−7 0.0017 0.0021 3.09 × 10−7 0.0021

80

θ 0.1093 0.1784 1.6000 0.1621 0.1722 1.5607 0.0177 0.0215 0.5545

δ 0.0822 0.1284 1.3681 0.0518 0.1230 1.2400 0.0243 0.0203 0.5598

Q = 0.25
R1 0.7458 0.0011 0.1265 0.7494 0.0010 0.1258 0.7415 0.0014 0.1317

H1 0.0040 3.51 × 10−7 0.0022 0.0039 3.13 × 10−7 0.0021 0.0040 3.84 × 10−7 0.0022

Q = 0.35
R2 0.6423 0.0016 0.1526 0.6472 0.0015 0.1516 0.6392 0.0021 0.1612

H2 0.0020 7.01 × 10−8 0.0010 0.0019 6.27 × 10−8 0.0010 0.0020 8.26 × 10−8 0.0010

150

θ 0.1014 0.1627 1.5310 0.1412 0.1521 1.4619 0.0038 0.0068 0.3083

δ 0.0627 0.0951 1.1839 0.0498 0.0910 1.1253 0.0103 0.0062 0.3008

Q = 0.25
R1 0.7472 0.0006 0.0966 0.7494 0.0006 0.0967 0.7469 6.11 × 10−4 0.0940

H1 0.0040 2.06 × 10−7 0.0016 0.0039 1.93 × 10−7 0.0016 0.0039 1.61 × 10−7 0.0016

Q = 0.35
R2 0.6440 0.0009 0.1147 0.6468 8.65 × 10−4 0.1146 0.6461 9.27 × 10−4 0.1181

H2 0.0020 4.39 × 10−8 0.0008 0.0019 4.07 × 10−8 0.0008 0.0019 3.49 × 10−8 0.0007

3

25

θ 0.0128 0.2007 1.7037 0.0140 0.0135 0.4524 0.0197 0.0086 0.3640

δ −0.0015 0.2298 1.7140 −0.0693 0.1306 1.3911 −0.0178 0.0681 1.0029

Q = 0.25
R1 0.7429 0.0032 0.2212 0.7535 0.0030 0.2148 0.7390 0.0037 0.2296

H1 0.2805 0.0043 0.2533 0.2671 0.0038 0.2412 0.2841 0.0049 0.2588

Q = 0.35
R2 0.6427 0.0047 0.2688 0.6562 0.0045 0.2625 0.6384 0.0054 0.2772

H2 0.2851 0.0036 0.2344 0.2722 0.0033 0.2234 0.2882 0.0042 0.2387

80

θ 0.0233 0.0136 0.4482 0.0007 0.0029 0.2101 0.0067 0.0028 0.2001

δ −0.0012 0.1313 1.2926 −0.0189 0.0360 0.7405 −0.0068 0.0308 0.6843

Q = 0.25
R1 0.7475 0.0009 0.1203 0.7529 0.0009 0.1185 0.7466 0.0011 0.1252

H1 0.2740 0.0012 0.1339 0.2673 0.0011 0.1318 0.2745 0.0014 0.1406

Q = 0.35
R2 0.6473 0.0014 0.1464 0.6542 0.0014 0.1457 0.6464 0.0016 0.1538

H2 0.2791 0.0010 0.1257 0.2732 0.0010 0.1228 0.2800 0.0012 0.1319

150

θ 0.0034 0.0035 0.2332 −0.0017 0.0018 0.1679 0.0032 0.0016 0.1496

δ 0.0063 0.0746 1.0707 −0.0065 0.0224 0.5869 −0.0042 0.0150 0.4773

Q = 0.25
R1 0.7494 0.0006 0.0971 0.7528 0.0006 0.0961 0.7484 0.0007 0.0962

H1 0.2716 0.0008 0.1083 0.2675 0.0008 0.1069 0.2724 0.0009 0.1075

Q = 0.35
R2 0.6495 0.0009 0.1189 0.6538 0.0009 0.1182 0.6484 0.0010 0.1185

H2 0.2774 0.0007 0.1012 0.2736 0.0007 0.0996 0.2782 0.0008 0.1013
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Table 3. Accuracy measures for parameters of the NEITL distribution, and reliability analysis for different periods of time
for θ = 3.

θ = 3 MLE MPS Bayesian

δ n AE MSE L.CI AE MSE L.CI AE MSE L.CI

0.5

30

θ 0.0044 0.4520 2.6372 −0.3054 0.4210 2.2450 −0.0197 0.0670 0.9916

δ 0.0215 0.1230 1.3740 0.1181 0.0898 1.0801 0.0240 0.0115 0.3713

Q = 0.25
R1 0.7461 0.0038 0.2451 0.7479 0.0033 0.2276 0.7375 0.0046 0.2388

H1 0.4116 0.0115 0.4159 0.4015 0.0097 0.3852 0.4261 0.0140 0.4222

Q = 0.35
R2 0.6466 0.0056 0.2970 0.6508 0.0051 0.2775 0.6367 0.0065 0.2943

H2 0.4372 0.0112 0.4083 0.4220 0.0095 0.3776 0.4495 0.0138 0.4233

80

θ −0.0571 0.2683 2.0189 −0.1001 0.0945 1.1397 −0.0118 0.0279 0.6472

δ 0.0404 0.0381 0.7487 0.0270 0.0103 0.3833 0.0098 0.0029 0.2039

Q = 0.25
R1 0.7470 0.0010 0.1241 0.7505 0.0009 0.1192 0.7455 0.0011 0.1232

H1 0.4056 0.0028 0.2067 0.3995 0.0027 0.2031 0.4099 0.0033 0.2120

Q = 0.35
R2 0.6472 0.0015 0.1515 0.6517 0.0014 0.1477 0.6449 0.0017 0.1532

H2 0.4296 0.0027 0.2046 0.4232 0.0027 0.2019 0.4345 0.0033 0.2125

150

θ 0.0134 0.0735 1.0617 −0.0557 0.0382 0.7353 −0.0086 0.0117 0.4165

δ 0.0038 0.0044 0.2605 0.0118 0.0028 0.2036 0.0040 0.0014 0.1387

Q = 0.25
R1 0.7493 0.0005 0.0885 0.7510 0.0005 0.0877 0.7486 0.0006 0.0927

H1 0.4029 0.0015 0.1520 0.3993 0.0015 0.1506 0.4042 0.0017 0.1597

Q = 0.35
R2 0.6494 0.0008 0.1103 0.6518 0.0008 0.1095 0.6486 0.0009 0.1161

H2 0.4279 0.0015 0.1521 0.4237 0.0015 0.1506 0.4290 0.0017 0.1601

3

25

θ 0.7823 3.2109 6.3225 −0.1464 0.3771 2.3388 −0.0035 0.0587 0.9477

δ 0.0619 3.2238 7.0377 0.2793 0.6266 2.9050 −0.0072 0.0667 1.0296

Q = 0.25
R1 0.7490 0.0031 0.2172 0.7527 0.0026 0.1984 0.7515 0.0017 0.1578

H1 2.3694 0.3144 2.1952 2.3050 0.2756 2.0555 2.3288 0.1847 1.6417

Q = 0.35
R2 0.6495 0.0046 0.2665 0.6554 0.0040 0.2485 0.6528 0.0027 0.2000

H2 2.8692 0.4192 2.5313 2.7668 0.3667 2.3667 2.8072 0.2489 1.9051

80

θ 0.3595 1.3131 4.2674 −0.0903 0.1382 1.4145 −0.0080 0.0269 0.6306

δ 0.0021 1.2808 4.4386 0.1369 0.2231 1.7731 −0.0052 0.0276 0.6449

Q = 0.25
R1 0.7513 0.0010 0.1262 0.7519 0.0008 0.1126 0.7519 0.0007 0.0992

H1 2.3306 0.0959 1.2146 2.3116 0.0863 1.1484 2.3194 0.0739 1.0318

Q = 0.35
R2 0.6518 0.0016 0.1545 0.6532 0.0013 0.1420 0.6528 0.0011 0.1260

H2 2.8178 0.1231 1.3759 2.7823 0.1157 1.3265 2.7978 0.1002 1.2029

150

θ 0.2715 0.9255 3.6196 −0.0411 0.0771 1.0772 −0.0064 0.0098 0.3843

δ 0.0304 1.1950 4.2856 0.0627 0.1185 1.3276 −0.0006 0.0108 0.3920

Q = 0.25
R1 0.7514 0.0006 0.0982 0.7515 0.0004 0.0829 0.7510 0.0003 0.0653

H1 2.3255 0.0533 0.9045 2.3185 0.0465 0.8429 2.3267 0.0303 0.6728

Q = 0.35
R2 0.6519 0.0009 0.1180 0.6523 0.0007 0.1044 0.6514 0.0005 0.0825

H2 2.8103 0.0657 1.0047 2.7942 0.0620 0.9720 2.8067 0.0409 0.7801
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Table 4. Accuracy measures for parameters of the NEITL distribution, and reliability analysis for different periods of time
for case 1 and case 2.

Case MLE MPS Bayesian

n, m AE MSE L.CI AE MSE L.CI AE MSE L.CI

1

25, 30

θ1 0.0616 0.1473 1.4864 0.1520 0.1840 1.5742 0.0335 0.0437 0.7637

δ1 0.1833 0.3414 2.1768 0.0562 0.2808 2.0675 0.0211 0.0481 0.8245

θ2 0.0443 0.0724 1.0414 0.0726 0.0649 0.9579 0.0079 0.0134 0.4490

δ2 0.1103 0.7321 3.3293 −0.1033 0.5550 2.8949 −0.0034 0.0622 0.9261

R 0.8257 0.0008 0.1057 0.8188 0.0009 0.1048 0.8198 0.0026 0.1168

80, 70

θ1 0.0510 0.1108 1.2910 0.0995 0.1361 1.3942 0.0248 0.0156 0.4902

δ1 0.1207 0.2031 1.7038 0.0646 0.1908 1.6953 0.0008 0.0223 0.5705

θ2 0.0097 0.0211 0.5689 0.0351 0.0307 0.6739 0.0091 0.0053 0.2729

δ2 0.0776 0.2878 2.0828 −0.0305 0.3172 2.2068 −0.0074 0.0334 0.7208

R 0.8316 0.0003 0.0692 0.8281 0.0003 0.0697 0.8300 0.0003 0.0694

150, 120

θ1 0.0364 0.0790 1.0937 0.0613 0.0888 1.1441 0.0034 0.0051 0.2641

δ1 0.0905 0.1390 1.4189 0.0609 0.1388 1.4424 0.0072 0.0071 0.3124

θ2 0.0146 0.0185 0.5302 0.0266 0.0235 0.5929 0.0011 0.0024 0.1825

δ2 0.0424 0.2233 1.8467 −0.0125 0.2486 1.9558 0.0088 0.0104 0.4007

R 0.8333 0.0002 0.0528 0.8310 0.0002 0.0534 0.8319 0.0002 0.0459

2

25, 30

θ1 0.0439 0.1438 1.4778 0.1211 0.1711 1.5518 0.0366 0.0404 0.7013

δ1 0.1944 0.3157 2.0686 0.0782 0.2577 1.9680 0.0241 0.0491 0.8161

θ2 0.2202 0.5042 2.6489 −0.1283 0.2027 1.6934 −0.0028 0.0540 0.8770

δ2 −0.0569 0.4444 2.6064 0.1952 0.3302 2.1209 0.0008 0.0512 0.8629

R 0.9413 0.0006 0.0964 0.9350 0.0009 0.1055 0.9419 0.0014 0.0843

80, 70

θ1 0.0483 0.1344 1.4775 0.1200 0.1689 1.5422 0.0326 0.0373 0.6871

δ1 0.1839 0.3006 2.0270 0.0759 0.2500 1.9394 0.0248 0.0469 0.8096

θ2 0.2154 0.4842 2.5963 −0.1161 0.1949 1.6714 −0.0023 0.0509 0.8596

δ2 −0.0524 0.4238 2.5462 0.1866 0.3088 2.0538 0.0008 0.0469 0.8333

R 0.9420 0.0006 0.0915 0.9362 0.0008 0.0996 0.9423 0.0013 0.0827

150, 120

θ1 0.0203 0.0837 1.1326 0.0384 0.0833 1.1222 0.0276 0.0364 0.6734

δ1 0.1220 0.1737 1.5636 0.0861 0.1475 1.4688 0.0382 0.0469 0.8254

θ2 0.0302 0.0668 1.0074 −0.1569 0.2685 1.9378 0.0046 0.0487 0.8573

δ2 −0.0076 0.0753 1.0761 0.2513 0.4349 2.3923 −0.0051 0.0533 0.8637

R 0.9456 0.0001 0.0351 0.9436 0.0001 0.0364 0.9495 0.0001 0.0314

Tables 2–5 present the results, which highlight some interesting facts. As the sample
size gets larger, the estimates get more accurate, demonstrating that they are asymptotically
unbiased. Furthermore, the MSE decreases as the sample size increases in all cases, demon-
strating that the various estimates are consistent. When comparing the various estimates,
we can observe that in the majority of cases, the Bayes estimates have the lowest MSE. MPS
estimate is a good alternative for ML estimate (MLE). The L-CI for the estimates approach
zero as the sample size (n) increases, indicating that the CI for the largest sample size is
the shortest CI. The greater the time we tested (Q), the lower the HF and SF values. When
estimating the reliability of the S–S model in most cases, we received large values close to
one, which indicates the quality of the model used.
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Table 5. Accuracy measures for parameters of the NEITL distribution, and reliability analysis for different periods of time
for case 3 and case 4.

Case MLE MPS Bayesian

n, m AE MSE L.CI AE MSE L.CI AE MSE L.CI

3

25, 30

θ1 0.7656 3.1827 6.3231 0.0110 0.7518 3.4021 0.0212 0.0454 0.8269

δ1 0.1439 1.7960 5.2283 0.2880 0.7248 3.1438 −0.0114 0.0521 0.8734

θ2 0.9499 4.4971 7.4397 −0.0677 0.5883 2.9978 0.0097 0.0520 0.8664

δ2 0.1369 3.2851 7.0917 0.3426 1.0036 3.6939 −0.0015 0.0648 0.9911

R 0.7228 0.0037 0.2406 0.7202 0.0036 0.2337 0.7198 0.0034 0.2146

80, 70

θ1 0.3765 1.3337 4.2840 0.0197 0.3368 2.2759 0.0025 0.0171 0.4865

δ1 0.0930 0.9049 3.7147 0.1322 0.3505 2.2643 0.0035 0.0202 0.5197

θ2 0.3805 1.4584 4.4973 −0.0547 0.3464 2.2996 0.0025 0.0249 0.6042

δ2 0.0725 1.2650 4.4042 0.2302 0.5551 2.7805 −0.0022 0.0294 0.6962

R 0.7256 0.0013 0.1402 0.7219 0.0012 0.1354 0.7202 0.0013 0.1402

150, 120

θ1 0.2757 0.9253 3.6162 0.0430 0.2072 1.7780 0.0036 0.0088 0.3603

δ1 0.0914 0.7308 3.3352 0.0487 0.1931 1.7136 −0.0055 0.0083 0.3559

θ2 0.3190 1.1487 4.0149 −0.0215 0.2164 1.8236 0.0057 0.0095 0.3781

δ2 0.0404 1.0387 3.9961 0.1224 0.3149 2.1490 −0.0092 0.0106 0.4029

R 0.7243 0.0008 0.1076 0.7217 0.0007 0.1031 0.7218 0.0006 0.0964

4

25, 30

θ1 0.0873 0.1165 1.2946 0.1136 0.1002 1.1594 0.0204 0.0163 0.4498

δ1 0.0713 1.1009 4.1077 −0.1877 0.8136 3.4619 −0.0133 0.0745 0.9809

θ2 0.5909 2.0654 5.1406 −0.0731 0.4676 2.6679 −0.0043 0.0520 0.8618

δ2 −0.0785 1.3511 4.5506 0.2558 0.6836 3.0852 0.0041 0.0580 0.9599

R 0.9248 0.0005 0.0878 0.9246 0.0005 0.0888 0.9207 0.0009 0.0962

80, 70

θ1 0.0788 0.0696 0.9878 0.0535 0.0363 0.7175 0.0081 0.0040 0.2443

δ1 −0.0753 0.6112 3.0534 −0.1039 0.3955 2.4339 −0.0091 0.0302 0.6873

θ2 0.2045 0.5337 2.7519 −0.0618 0.2220 1.8330 −0.0037 0.0227 0.5760

δ2 −0.0210 0.4744 2.7013 0.1593 0.3110 2.0972 −0.0036 0.0235 0.5869

R 0.9266 0.0002 0.0554 0.9259 0.0002 0.0557 0.9245 0.0002 0.0552

150, 120

θ1 0.0477 0.0317 0.6736 0.0271 0.0158 0.4820 0.0040 0.0020 0.1743

δ1 −0.0626 0.3421 2.2817 −0.0505 0.2179 1.8211 0.0010 0.0113 0.4141

θ2 0.0683 0.2062 1.7614 −0.0761 0.1350 1.4107 0.0043 0.0095 0.3757

δ2 0.0123 0.2282 1.8738 0.1348 0.1905 1.6290 −0.0017 0.0111 0.4077

R 0.9260 0.0001 0.0419 0.9257 0.0001 0.0421 0.9258 0.0001 0.0395

7. Application of Real Data

To demonstrate the NEITL model’s flexibility and applicability in practice, two real
life datasets are analyzed in this section. The NEITL distribution is compared to the ITL,
exponentiated Lomax (EL), exponentiated exponential (ExEx), Weibull (W), Kumaraswamy
Weibull (KW), modified Kies ITL (MKITL), and odd Weibull ITL (OWITL) distributions
for the first batch of data. The NEITL distribution is compared to the ITL, EL, ExEx, W,
KW, Kumaraswamy ITL (KIT), MKITL, and OWITL distributions for the second dataset.
The approach of maximum likelihood was used to estimate the unknown parameters of
the specified models for the two real datasets. To compare all of the models, the following
statistics are used: Kolmogorov–Smirnov (KS), Cramer–von Mises (CVM), Anderson–
Darling (AD), Akaike information criterion (AIC), and Bayesian information criterion (BIC).
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7.1. Survival Times

Bjerkedal [33] observed and reported the survival periods (in days) of 72 guinea pigs
infected with virulent tubercle bacilli in the first dataset. These data are as follows: 0.1,
0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08,
1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59,
1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31,
2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, and 5.55.

MLEs, SE, KS, CVM, AD, AIC, and BIC values for the first dataset are summarized in
Table 6. The NEITL model has the least values for the statistical measures among all fitted
models, as shown in the table.

As a result, the NEITL model might be the best option. Figure 6 shows the estimated
CDF, estimated PDF, and PP plot of the fitted NEITL model, respectively.
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Figure 6. PDF, CDF, and PP plot of the NEITL distribution:Survival Times.

Table 6. MLE with SE and other metrics: Survival Times.

Estimation SE KS CVM AD AIC BIC

ITL δ 2.0225 0.2384 0.2989 0.0942 0.6663 229.6917 231.9684

NEITL
θ 60.9983 19.8002

0.0902 0.0776 0.4946 193.1635 197.7168
δ 0.0299 0.0549

EL

α 3.7415 0.8152

0.0978 0.0766 0.4949 195.2402 202.0702β 37.0309 60.7818

λ 31.2893 54.2759

ExEx
α 15.4717 20.7674

0.2194 0.2209 1.2910 210.8807 215.4340
β 0.0240 0.0334

W
α 1.8173 0.1583

0.7439 0.0865 0.5852 195.8812 200.4345
β 0.2856 0.0544

KW

α 0.7474 0.6138

0.0917 0.0878 0.5351 196.6326 205.7393
β 0.9899 1.0882

λ 3.0474 3.9283

θ 1.7871 6.0095

MKITL
α 1.4212 0.1359

0.1015 0.1272 0.7577 194.5589 199.1122
β 1.1937 0.0725

OWITL

α 1.8048 0.2146

0.0969 0.0873 0.5415 195.0995 201.9295β 25.9044 64.9941

λ 0.2721 0.3106
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7.2. Example of Reliability of the S–S Model

Nelson [34] (Ch. 10, Table 4.1) calculated the time it takes for an insulating fluid to
break down under high voltage stress in minutes. The failure times were observed in
groups of ten insulating fluids, with each group reporting data on ten of them. Consider
the following two sets of failure time data samples presented as follows for the purpose of
showing the methods of inference outlined in the preceding sections:

Group 1: 0.31, 0.66, 1.54, 1.70, 1.82, 1.89, 2.17, 2.24, 4.03, and 9.99.
Group 2: 0.49, 0.64, 0.82, 0.93, 1.08, 1.99, 2.06, 2.15, 2.57, and 4.75.

MLEs, SE, KS, CVM, AD, AIC, and BIC values for the data of Group 1 and Group 2
are summarized in Tables 7 and 8. The NEITL model resulted in the best values for the
statistical measures among all fitted models, as shown in theses tables. Table 9 provided
MLE, MPS, and Bayesian estimates for reliability of the S–S model.

As a result, the NEITL model might be the best option. Figures 7 and 8 show the
estimated CDFs, estimated PDFs, and PP plot of the fitted NEITL model, respectively.

Table 7. MLE with SE and other metrics: Group 1.

Estimation SE KS CVM AD AIC BIC

ITL δ 1.5750 0.4981 0.3141 0.0984 0.5089 41.4301 41.7327

NEITL
θ 0.4244 0.4225

0.2129 0.0924 0.4806 41.4921 42.0973
δ 5.6463 5.1060

EL

α 2.6559 2.0932

0.2181 0.0928 0.4831 43.5499 44.4577β 3.4714 4.0843

λ 3.4753 6.7246

ExEx
α 1.0925 0.7304

0.2348 0.1133 0.6265 43.3593 43.9644
β 0.3309 0.3558

W
α 1.1585 0.2641

0.5557 0.0968 0.5082 42.9958 43.6010
β 0.3042 0.1512

KW

α 1.7884 2.5890

0.2187 0.0959 0.4999 45.6162 46.8265
β 0.4544 1.7933

λ 8.9793 52.9562

θ 1.3099 10.1035

KITL

α 1.5511 0.5350

0.2242 0.0944 0.4895 43.5807 44.4885β 10.1497 9.1324

λ 0.3556 1.1931

MKITL
α 1.0353 0.2709

0.2523 0.1036 0.5577 42.1597 42.7649
β 0.9040 0.1948

OWITL

α 1.3963 0.3356

0.2173 0.0943 0.4919 43.5921 44.4998β 55.1455 193.5675

λ 0.0780 0.1781
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Table 8. MLE with SE and other metrics: Group 2.

Estimates SE KS CVM AD AIC BIC

ITL δ 2.0929 0.6618 0.2130 0.0520 0.2973 32.7512 33.0537

NEITL
θ 0.8260 1.5968

0.2018 0.0405 0.2400 31.6464 32.2516
δ 3.8521 8.1014

EL

α 7.0316 22.8576

0.2174 0.0527 0.2983 33.3300 34.2377β 3.1443 7.0486

λ 1.1988 6.2228

ExEx
α 6.3206 23.1429

0.1789 0.0621 0.4414 33.7072 34.3124
β 0.0589 0.2375

W
α 1.5527 0.3675

0.7012 0.0505 0.3002 32.4143 33.0195
β 0.3519 0.1683

KW

α 7.7574 0.0025

0.2124 0.0411 0.2415 33.5910 34.8013
β 0.9910 0.0025

λ 70.4798 59.0513

θ 0.1124 0.0366

KITL

α 6.3918 26.4265

0.2233 0.0501 0.2878 33.0906 33.9984β 0.2378 0.8625

λ 12.4011 40.8768

Table 9. MLE, MPS, and Bayeisan for reliability of the S–S model.

MLE MPS Bayesian

Estimates SE R Estimates SE R Estimates SE R

θ1 0.4246 0.4226

0.6123

0.4143 0.4163

0.6345

0.5423 0.3812

0.6743
δ1 5.6440 5.1041 5.4284 4.9402 6.6363 4.5001

θ2 0.8312 1.6372 0.8312 1.2626 1.1196 0.8512

δ2 3.8267 8.2125 3.8267 7.4954 4.8956 3.8509
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Figure 7. PDF, CDF and PP plot of the NEITL distribution: Group 1.
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Figure 8. PDF, CDF, and PP plot of the NEITL distribution: Group 2.

Figures 9 and 10 show convergence plots of MCMC for parameter estimates of the
NEITL distribution.
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Figure 9. Trace, proposed distribution, and convergence of MCMC results for θ1, δ1.
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Figure 10. Trace, proposed distribution, and convergence of MCMC results for θ2, δ2.

8. Conclusions

A new two-parameter lifetime model, named “new exponential inverted Topp–Leone”,
is introduced in this paper. The new distribution gives more flexibility and wide appli-
cability compared to the existing models. It appears that the shape of the distribution
depends on the values of the parameters. Some of the novel hazard rates that can be
used are: decreased, constant hazard rate, increasing hazard rate, upside down (reversed
bathtub shape), and increasing-constant hazard rate. Several mathematical and distri-
butional properties, such as ordinal moments, incomplete moments, quantile function,
Renyi, and ρ entropies, were described in detail. The new density is a linear combination
of the well-known inverted Topp–Leone density. The reliability of stress strength was
calculated. Using Bayesian and non-Bayesian estimation methods, the parameters of the
NEITL distribution were estimated. In simulation research, statistical analysis was used to
compare these methods in order to evaluate their effectiveness and investigate how these
estimates perform for different sample sizes and parameter values. The simulation results
indicate that the Bayes estimate performed the best in the smaller MSE sense. In most cases,
we received large values near to one when calculating the S–S model’s reliability, indicating
that the model is of good quality. Furthermore, we propose using MPS estimation instead
of ML estimation. To demonstrate the use of the novel distribution, two real-life datasets
from the engineering and medical fields were studied. In addition, the use of these data in
the stress–strength model has been validated. We hope that this distribution could be used
in more areas.
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