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ABSTRACT OF THE DISSERTATION 

COLOR-BASED SURFACE REFLECTANCE SEPARATION FOR SCENE 

ILLUMINATION ESTIMATION AND RENDERING  

by 

Mouncef Lahlou 

Florida International University, 2011 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

Given the importance of color processing in computer vision and computer graphics, 

estimating and rendering illumination spectral reflectance of image scenes is important to 

advance the capability of a large class of applications such as scene reconstruction, 

rendering, surface segmentation, object recognition, and reflectance estimation. 

Consequently, this dissertation proposes effective methods for reflection components 

separation and rendering in single scene images. Based on the dichromatic reflectance 

model, a novel decomposition technique, named the Mean-Shift Decomposition (MSD) 

method, is introduced to separate the specular from diffuse reflectance components. This 

technique provides a direct access to surface shape information through diffuse shading 

pixel isolation. More importantly, this process does not require any local color 

segmentation process, which differs from the traditional methods that operate by 

aggregating color information along each image plane.  

Exploiting the merits of the MSD method, a scene illumination rendering technique is 

designed to estimate the relative contributing specular reflectance attributes of a scene 

image. The image feature subset targeted provides a direct access to the surface 
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illumination information, while a newly introduced efficient rendering method reshapes 

the dynamic range distribution of the specular reflectance components over each image 

color channel. This image enhancement technique renders the scene illumination 

reflection effectively without altering the scene’s surface diffuse attributes contributing to 

realistic rendering effects. 

As an ancillary contribution, an effective color constancy algorithm based on the 

dichromatic reflectance model was also developed. This algorithm selects image 

highlights in order to extract the prominent surface reflectance that reproduces the exact 

illumination chromaticity. This evaluation is presented using a novel voting 

scheme technique based on histogram analysis.  

In each of the three main contributions, empirical evaluations were performed on 

synthetic and real-world image scenes taken from three different color image datasets. 

The experimental results show over 90% accuracy in illumination estimation contributing 

to near real world illumination rendering effects. 
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CHAPTER I 

Introduction 

1.1  General Statement of the Problem Area 

In computer vision and image processing, the modeling of surface reflectance remains of 

vital importance for purposes involving surface analysis and image understanding. By 

separating objects’ surface reflectance properties, powerful Lambertian-based methods 

can be effectively applied for object tracking, pattern classification, reconstruction and 

object recognition in real-world scenarios. They are also extremely useful for the more 

subtle tasks of shape from shading, binocular stereo vision, and motion vision. Scenarios 

that are considered by many algorithms often assume that only diffuse reflections are 

present, while specular ones are often considered to be negligible.  However, specular 

reflections confuse many vision problems since they produce image attributes that do not 

bind directly with the intrinsic surface properties such as shape and spectral reflectance. 

Thus, methods that successfully separate both reflectance components diffuse and 

specular in images are highly desired for advancing current technology that suffers from 

the unyielding effects of this complex reflectance occurrence. 

 

1.2  Research Problem 

The main research problem of this dissertation is in determining a new mathematical 

framework in terms of both a domain of analysis as well as in the way real-world 

illumination could be determined through the RGB color model.  A singular research 

problem that remains elusive and is addressed in this dissertation is in the development of 
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an efficient separation method based on the Eigen-decomposition transformation plane in 

order to isolate the diffuse and specular reflectance information from color images.  

Secondary contributions in developing this new framework emanate from the facts that 

through this new transformation plane it now becomes possible to estimate real-world 

elimination as well as contend with the problem of color constancy. 

 

1.3  Signification of the Study 

The significance of this study relates directly to augmenting our understanding of the two 

key concepts in radiometry, illumination and reflectance. In so doing, the notion of color 

constancy is elucidated as well.  These key concepts are intrinsically linked to advancing 

major research domains in computer vision and computer graphics. These include object 

recognition, motion vision, stereo vision, shape from shading and structure from motion, 

to name a few. 

 

1.4 Structure of the Research 

Chapter 2 provides the background on illumination and all the related factors that 

contribute to understanding the color model, particularly the RGB (Red-Green-Blue) 

model and how through such model one can characterize the specular and diffuse 

information and its power spectral density.  The key concepts that relate to the research of 

this dissertation are summarized within the confines of radiometry and photometry as 

means to gauge an appreciation of electromagnetic radiation measurements, including 

visible light.  This chapter also includes an overview of the illumination spectral power 
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distribution, surface spectral reflectance, and essential camera properties within the 

context of this dissertation. 

Chapter 3 addresses the separation of reflection components in scene images as means to 

improve the effectiveness of the aforementioned applications. Unlike many of the 

existing methods whose applications remain limited to the reflectance component, the 

proposed approach suggests the possibility of decomposing surfaces into two-distinct 

reflectance constituents solely based on color image information. The main contribution 

at this research stage is attributed to the development of an efficient separation method 

based on the Eigen-decomposition transformation plane, we call the mean shift 

decomposition, which is then used to isolate the diffuse and specular reflectance 

information from color images. The dissimilarities between the diffuse and specular 

reflectance distributions projected in this normalized color space become apparent and 

can be readily isolated.  What is most important is developing appropriate rendering 

methods that benefit the scenes’ illumination distributions while conserving their surface 

diffuse reflectance unaffected, leading to realistic illumination effects. 

This novel process can be very useful in many applications that involve refining indoor 

and outdoor scenes environment appearance in the fields of computer graphics and 

computer vision. This proposed method is evaluated for its practical merit on several 

real‐world illumination spectrums used to render scenes of both indoor and outdoor 

images.  This method is also implemented on both synthetic and real-world images for 

visual appreciation as well as for gauging the different realistic rendering that take into 

account the concept of illumination. 
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Chapter 4 introduces a novel scene illumination rendering technique based on the 

specular/diffuse separation concepts described in Chapter 3.  Ancillary contributions of 

this chapter on the basis of the framework established in chapter 3 include:  (1) the 

development of a complementary method to estimate the illumination reflectance 

component using the Mean-Shift Decomposition (MSD) technique that was described in 

Chapter 3; and (2) the establishment of a linear transformation method, similar to the 

methods involving changing the dynamic range of histograms as used in image 

enhancement techniques, in order to achieve effective illumination rendering. 

Implementation of this approach on synthetic and real-world scenes demonstrate that the 

proposed rendering method can produce real world illumination effects that can be 

appreciated under different thresholds that can be preset or manually changed by the user. 

The obtained "real" rendered results of this method are compared with many different 

indoor and outdoor real world illuminations spectral distributions for comparative 

purposes. 

In chapter 5, the approach considered was derived more as a supplementary contribution 

by estimating illumination chromaticity in images based on the dichromatic reflectance 

approach introduced in Chapter 3. The aim was to prove that by projecting image 

reflectance into the inverse-intensity chromaticity space, image highlights can be selected 

which are then evaluated using histogram analysis to sift only those prominent surface 

reflectances that replicate the exact illumination chromaticity. The illumination 

chromaticity is estimated through the intersection of the first and second eigenvectors of 

the orthogonal basis of the principal component analysis. In so doing, the process no 

longer necessitates any type of preprocessing generally needed to isolate the reflectance 
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highlight. The significant aims that have been attained in this chapter include: (1) a 

voting-scheme that assumes a small set of surface reflectance to be used as means to 

characterize the most prominent image pixels that best reflect the illumination 

chromaticity; and (2) the estimation of the illumination chromaticity accomplished by 

projecting the intersection of the first and second orthogonal bases onto the image 

chromaticity axis of the illumination chromaticity is IIC-space. 

Chapter 6 concludes with a retrospective on the major contributions that are made 

through this dissertation and provides directions for future research. This includes a 

potential resolution to the automatic setting of thresholds as an alternative to the intersect 

of the first two eigenvectors in seeking a more accurate estimation of the real-world 

illumination; and the determining the distance separating the targeted new location of the 

specular pixel in the diffuse reflectance distribution and its current location. 
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CHAPTER II 

Background 

2.1 Introduction 

The natural ability of the human visual system to perceive the color of objects as being 

relatively constant under different illumination conditions, a phenomenon known as color 

constancy, is a remarkable processing feat that has attracted the attention of several 

researchers in the last decades. Visual systems matching this ability of perceiving natural 

scenes under varying illuminations still struggle in determining new paradigms that could 

emulate this phenomenon.  It is this important issue that served as motivation to this 

dissertation work. In machine vision, the appearance of object surfaces is a crucial 

requirement for various applications in image rendering, illumination estimation, object 

recognition, etc. Objects, especially dielectric objects, have the property of exhibiting 

highlights in their surface, as will be seen in the next chapter, the objects’ surface 

properties can be divided into two distinct reflectance components, diffuse reflectance 

and specular reflectance.  

When an object is illuminated by a light source, based on its surface intrinsic properties, 

the light rays hit the object surface at some point. Some of the light ray bundles 

immediately reflect back into the air, while other rays penetrate the surface body. The 

penetrated light rays are called diffuse or body reflection, and the reflected light is called 

specular or interface reflection. Unlike diffuse reflections, specular reflections discerned 

from objects depend on illumination and viewing directions explaining their variant 

appearance. However, diffuse reflections depend only on illumination directions as 



7 
 

indicated by their intensities. As a consequence, the first objective of this dissertation is to 

decompose objects reflectance components and then acquire diffuse only surface 

reflectance. This practice of recovering specular free object surfaces is believed to 

positively advance the operation of machine vision applications, which are often 

confused by the specular reflections. However, The capability of recovering the correct 

object surface color is limited to the knowledge of the actual illumination conditions in 

which the object scene was exposed. The illumination color changes can affect the 

appearance of the color descriptors governing the object surfaces. For objects exhibiting 

highlights, estimating the illumination color is important in order to accurately retrieve 

the image components representing the surface diffuse reflectance. These color constancy 

approaches and reflection-components separation are analyzed based on the physical 

appearance of object surfaces under real-world conditions. Therefore, it is important to 

consider understanding the physical interactions occurring between the illumination, 

surface reflectance, and device recordings such as digital cameras.  

 

2.2 Illumination Spectral Power Distribution 

The visible light spectrum is a portion of the electromagnetic radiation identified as a 

natural agent to stimulate human vision. Light is composed of a number of energy 

packets known as photons that travel in a straight direction and oscillate at a certain 

orientation at a spectrum of wavelength, and are visible within a range of 380 nm to 780 

nm. All light sources emit several spectral power distributions containing all physical 

data describing the light color. These spectral distributions can be approximated using 

finite linear basis functions expressed as: 
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E(λ) = eiEi (λ)
i
            (2.1) 

where ܧሺߣሻ is the light spectral power distribution, ܧ௜ሺߣሻ is a basis function, and ݁௜ are 

the coefficients of the basis functions for ݅ ∈ ሼ1, … , ݊௕ሽ, where ݊௕ is the number of basis 

functions. In practice, three to five basis functions are sufficient to model most daylight 

spectra.  

 

2.3 Reflectance Basis functions 

The surface spectral reflectance describes the ability of an object to reflect illumination 

spectral distribution. It is defined as the ratio between the reflected spectral power 

distribution and the incident spectral power distribution. Similarly to illumination 

characteristics, reflectance can also be approximated using a finite set of linear basis 

functions. If the space of reflectance is decomposed into a finite set of ݉௕ basis functions ࢏ࡾ with ݅ ∈ ሼ1, … , ݉௕ሽ, then the reflectance ܴሺߣሻ for a given wavelength λ can be written 

as: 

R(λ) = riRi (λ)
i
                     (2.1) 

where ݎ௜ are the coefficients of the basis functions. Generally, these basis functions are 

obtained by performing principle component analysis (PCA).  

 

2.4 Image Chromaticity 

Taking a set of tri-stimulus values {X, Y, Z} as the 3-D color space coordinate, the color 

of a point in the space is dependent on both the direction and magnitude of the vector. 
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Any changes in the vector’s magnitude will change the brightness of the color while 

changes in the vector’s direction will modify the color’s hue and saturation. The color 

chromaticity coordinates map tri-stimulus color channels into a two-dimensional space 

composed of hue and saturation color attributes. Therefore, colors are usually presented 

in a normalized form generally referred to as color chromaticity. The chromaticity 

components of the CIE color space are computed by normalizing each color value by the 

color sum: 

x = X

X + Y + Z
, y = Y

X + Y + Z
, z = Z

X + Y + Z
                        (2.2)

 
 

Geometrically, the initiated normalization projects all colors onto the unit plane 

X + Y + Z = 1. Therefore, the normalized coordinates {x, y, z} are independent of the 

length of the {X, Y, Z} vector, and similarly x + y + z = 1 . Even though the third 

coordinate z can be easily calculated given z = 1− x − y , throughout this dissertation, we 

will refer to the image color chromaticity coordinates using the {x, y, z} triplet form. 
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CHAPTER III 

Surface Reflectance Components Separation from Single Color Images 

Using the Mean-Shift Decomposition Technique  

3.1  Introduction 

This chapter addresses the separation of reflection components in scene images as means 

to improve the effectiveness of the aforementioned applications. Unlike many of the 

existing methods that limit their application to the reflectance component, our approach 

considers analyzing the image intrinsic properties relating to both diffuse and specular 

reflectance components. We restrict our consideration to surfaces that are well 

represented by the dichromatic reflectance model introduced by Shafer [Shafer, 1985]. 

This model suggests the possibility of decomposing surfaces into two-distinct reflectance 

constituents solely based on color image information. Our approach studies the 

dissimilarities between the diffuse and specular reflectance distributions projected in a 

normalized color space in order to isolate information about the material properties in an 

image scene while preserving the surface geometry information.  

We introduce a simple but efficient reflectance decomposition technique based in the 

Eigen-decomposition transform that we refer to as the Mean-Shift Decomposition (MSD) 

method. This technique provides a direct access to surface shape information through 

diffuse shading pixels seclusion. In addition, the proposed method does not require any 

local color segmentation process as it differentiates between both reflectance components 

through the proposed MSD method which differs from several proposed methods in the 

literature that operate by aggregating color information along each image plane.  
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3.2  Contributions 

The contributions involved in the proposed reflectance separation method reside in: 

• Analyzing and separating the image reflectance component using the Mean-shift 

decomposition technique derived based on the Eigen-decomposition transform. 

• Recovering the surface geometry information by isolating the image diffuse 

reflectance distribution. 

•  Formulating a specular reflectance removal process by shifting the specular 

reflectance components toward the decomposed diffuse reflectance distribution. 

• Evaluating the proposed algorithm on several images comprising uniform color 

surfaces, multicolor surfaces, and highly textured surfaces. 

 
 

3.3 Overview 

Section 3.4 presents a literature review on different related methods used for 

accomplishing the diffuse/specular separation task. In section 3.5, a review is given on 

several types of reflectance models used for reflection measurements.  This same section 

also describes the model as employed in the reflectance separation approach considered 

in this dissertation. Section 3.6 presents the chromaticity-color space used as a basis to 

the MSD technique. Sections 3.7 and 3.8 describe the classification of the image 

reflectance components using the MSD method and the specular removal process, 

respectively. An outline of the proposed algorithm implementation is presented in section 

3.9. Finally, we evaluate and summarize our proposed method in sections 3.10 and 3.11. 
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3.4 Related Work 

Many methods have been proposed for separating reflection components using single or 

multiple input images of non-Lambertian objects (these are objects that deviate from the 

Lambert Law which assumes that luminance of a diffuse surface is the same in all 

directions; as formulated in 1760 by J. Lambert).  

Based on color and image intensities, Sato and Ikeuchi [Sato, 1994] introduced a four-

dimensional temporal-color space to analyze the diffuse and specular reflections. Their 

method has the ability to separate the reflection components using local interactions, 

however, it requires numerous input images with variation of illuminant directions. The 

benefit of using local analysis is that it admits highly textured scenes that do not contain 

piecewise constant diffuse colors. Lin et al. [Lin, 2002] used color histogram differencing 

to identify specular reflectance with multi-baseline stereo vision. Their method makes use 

of the image pixel color stability to the field of view changes, since colors of specular 

pixels are dependent on the scene viewing positions while the diffuse pixel colors are not. 

Lin and Shum [Lin, 2001] introduced a method that uses several sparse images registered 

under different illumination positions. Their method uses the neutral interface reflection 

model that combines finite dimensional basis functions [Parkkinem, 1989] and the 

dichromatic reflectance model [Shafer, 1985] to form a closed form linear surface 

reflectance.  

Other methods based on multiple input images makes use of extrinsic cues such as 

polarizing filters to enable the recovery of a spatially-varying source colors [Nayar, 1996]. 

Wolff and Boult [Wolff, 1991] used a polarizing filter to separate both specular and 

diffuse reflection components from grey images. They noticed that diffuse reflections 
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tend to be less polarized than the specular reflections along most incident reflection 

angles. On the other hand, reflectance separation methods that use a single input image 

have also attracted several considerations from the research community. Shafer [Shafer, 

1985] introduced the dichromatic reflectance model suggesting the ability of 

decomposing an image into its specular and diffuse components based on the 

parallelogram distribution of colors in RGB space. Klinker et al. [Klinker, 1990] showed 

that the color histogram of the image diffuse reflection color forms a T-shaped 

distribution when the diffuse colors are the same along each point on an object’s surface. 

The color distribution they proposed forms linear clusters representing the diffuse and 

specular pixels. By separating these clusters, the image becomes segmented into several 

regions of homogeneous reflectance color. Later, Tan et al. [Tan, 2005] iteratively 

compared the intensity logarithmic differentiation of an input image and its specular-free 

image. Their method reduced the specular component value of each pixel iteratively by 

considering one of its neighbor pixels as having a similar diffuse component 

characteristic. Mallick et al. [Mallick, 2006] applied a family of partial differential 

equations (PDE) that iteratively erodes the specular reflectance component at each pixel. 

 

3.5 Reflection Model and Image Formation 

The use of physical reflectance measurements has shown to benefit the rendering of 

surface reflectance effectively. Such measurements can provide an ideal choice of 

parameters for existing reflectance models and can be used also to provide the basis for 

entirely other new reflectance models. For instance, the bidirectional reflectance 

distribution function (BRDF) measurement describes the reflection of an opaque surface 
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by measuring the ratio of the radiance L reflected from the surface in a certain direction 

to the incident irradiance I at a particular wavelength λ. We consider the BRDF to be a 

five-dimensional function of wavelength and imaging geometry, whose measurement 

function f can be described as: 

       (3.1) 

Where  defines the directions of the incident and reflected radiance in 

the local spherical coordinate system. A simple model that can be generated from the 

BRDF measurement is the Lambertian reflectance model where the BRDF is a constant 

function of the imaging geometry so that . Another common BRDF model 

is the dichromatic model of reflectance derived by Shafer [Shafer, 1985] to represent 

dielectric materials. According to this model, the BRDF of the surface can be 

decomposed into two additive components: (1) the specular reflectance representing the 

surface interface, and (2) the diffuse reflectance representing the surface body. This 

model assumes that each reflectance component can be expressed as being a function of 

wavelength and imaging geometry, which leads to the following expression of the 

dichromatic BRDF model observed from a surface point n: 

f (n,λ) = md (n)Sd (n,λ)E(n,λ) + ms (n)Ss (n, λ)E(n,λ)             (3.2) 

where ݉ௗ  and ݉௦  are the geometrical scale factors for the diffuse and specular 

reflectance, respectively, which depend on the surface properties and illumination 

geometry Θ. The ܵௗ and ܵ௦ components are the diffuse spectral reflectance function and 

f (Θ, λ) = dL(θr,φr )

dI(θi,φi )

Θ = (θi,φi,θr,φr )

f (Θ, λ) = f (λ)



15 
 

the specular spectral reflectance function, respectively, while ܧ is the spectral distribution 

function of the illuminant, and n is the position of the surface point in a three-dimensional 

coordinate system.  

Most methods that operate on dielectric inhomogeneous objects use the neutral interface 

reflection assumption (NIR) introduced by Lee et al. [Lee, 1990]. This assumption 

suggests that the spectral reflectance distribution of the specular reflection component ܵ௦ 

is similar to the spectral energy distribution of the incident light E [Finlayson, 2001] 

[Tominaga, 1989] [Lee, 1986]. As a result of this assumption Equation 3.2 can now be 

expressed as follows:  

f (n,λ) = md (n)Sd (n,λ)E(n,λ) + ms (n)E(n,λ)          (3.3) 

By combining the dichromatic reflectance model represented by Equation 3.3 with the 

camera intrinsic properties, the image formation equation for a surface element 

illuminated by a light source is described as follows: 

ρk (n) = md (n)Dk (n) + ms (n)Sk (n)             (3.4) 

where Dk (n) = Sd (n,λ)E(n,λ)Ck (λ)dλ
Ω
  and Sk (n) = E(n,λ)Ck (λ)dλ

Ω
  

here  ߩ௞ ൌ ሼߩ௥, ,௚ߩ  ௕ሽ is the RGB color vector response from a typical camera consistingߩ

of ݇ ൌ ሼݎ, ݃, ܾሽ measurements, and ܥ௞ ൌ ሼܥ௥, ,௚ܥ  ௕ሽ is the sensor sensitivity of the threeܥ

color channels over the range of the visible spectrum Ω. ܦ௞and ܵ௞ are the diffuse and 

specular image components respectively and are assumed to be unit length vectors ‖ܦ௞‖ ൌ ‖ܵ௞‖ ൌ 1. 
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Even though the dichromatic model was originally established to process materials such 

as glass, plastics, cloths, or even plant leaves, the model has also shown to be useful for 

applications involving human skin [Storring, 2000][Huynh, 2010][Tominaga, 2009]. 

Throughout this Chapter, we use the BRDF dichromatic model described in Equation3.4, 

and we assume that the illumination spectral power distribution is formed using a single 

and uniform illumination color E(λ) independent from the image coordinates n. We note 

that the camera properties employed for image formation ignores the read noise and gain 

factor. 

 

3.6 Image-Chromaticity Color Space 

Color space transformations have shown to help exploring the knowledge of the 

illuminant attributes in color images, which results in describing the image diffuse 

information independently [Park, 2007][Zickler, 2008][Tan, 2004]. By shifting or 

projecting image intensities into a specified color space, depending on the motivated 

application, one can linearly combine the three image color channels to obtain either one 

or two distinct diffuse channels. Zickler et al. [Zickler, 2008] proposed a color space 

referred to as SUV color space that isolates two-predominantly diffuse channels while 

retaining the entire specular components information apart. Similarly, Park [Park, 2003] 

isolated the diffuse reflectance channels while maintaining a similarity to the HSI color 

space using a linear transformation described by a matrix L and a rotational 

transformation represented by a matrix R. The two matrices are chosen such that the third 

image color axis is aligned with the illumination color, which results in revealing a 
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channel highly insensitive to specular reflections while leaving the other two remaining 

channels consisting mostly of diffuse components. On the other hand, Tan et al. [Tan, 

2005] obtained a specular free image channel using a source dependent non-linear 

transformation of the RGB space. This transformation yields a positive monochromatic 

image that depends directly on diffuse shading information. Similar to Tan and colleagues’ 

method, Yoon and Kweon [Yoon, 2006] proposed another non-linear transformation 

strictly relied on white illumination that produces also a positive grayscale image 

dominated by diffuse reflectance components and independent from specular effects.  

In this dissertation we consider a different approach from the color transformation 

methods discussed. It is important to analyze the reflectance components distribution in 

the RGB color space to efficiently describe the correlation between those two reflection 

constituents. As mentioned in the previous section, assuming a dichromatic model object, 

the spectral reflectance distribution of the specular reflection component is similar to the 

spectral energy distribution of the incident light. Tan et al. [Tan, 2004b] introduced a new 

space transformation to analyze the relationship between illumination color and image 

intensity identified as inverse-intensity chromaticity space (IIC). Initiated mainly for 

illumination color estimation, we base our method on the IIC-space to identify the image 

pixels representing the diffuse and specular reflections. By projecting an RGB image into 

the IIC-space, the distribution of the image reflectance forms a set of straight lines 

expressed by the following equation: 

σ k (n) = r
1

ρ j (n)
j∈k


+ ω s,k (n)             (3.5) 
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where r = md (n) ω d,k (n) −ω s,k (n)( ) .
 
 

Here, ߪ௞  is the image intensity chromaticity of ߩ௞ ; ߱ௗ,௞  and ߱௦,௞  are the diffuse and 

specular reflectance chromaticity of ܦ௞  and ܵ௞  respectively. Figure 3.1.b-c show the 

distribution of the image green-channel projected on the IIC-space. These straight lines 

portraying both reflection components consist of several sets of different ݉ௗ  values 

representing the geometrical surface properties of the diffuse reflectance. These values 

depict the orientation of the reflection lines since they are associated with the gradient r 

in Equation 3.5.  

It can be observed empirically that as the object surface texture measurement is small (i.e. 

smooth surface), the diffuse reflectance distribution characterized in the IIC-space is 

relatively dense and is prone to merge with the specular reflectance components. 

However, if the object surface texture measurement is large (i.e. rough surface), the 

diffuse reflectance distribution becomes instead relatively sparse. Therefore, by 

understanding the distribution of the image reflectance properties in the IIC-space, the 

specular/diffuse separation process can be accomplished by finding the maximum 

reflectance disparities between the image pixels representing the specular and diffuse 

reflections.  

In section 3.7, we describe how these reflection line differences can be categorized to 

separate the image diffuse and specular components using a simple method, based on the 

Eigen-decomposition transformation, which we call Mean-Shift Decomposition (MSD). 

3.7 Image Reflectance Components Classification 

The ability to determine the specular highlight regions has always been an ill-posed 
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problem for several specular/diffuse separation methods. Previously, some methods 

require explicit color segmentation techniques to handle specular regions in multicolored 

surfaces especially when dealing with objects having highly textured surfaces and when 

processing single input images. In comparison to those methods, our proposed technique 

finds the maximum variance of image reflectance pixels to isolate both reflectance 

component distributions distinctly. This section introduces the Mean-shift decomposition 

method, a simple technique for specular and diffuse reflectance distribution classification 

over the IIC-space based on the Eigen-decomposition transform. Here we consider a two-

class problem where the classes are labeled to describe a diffuse reflectance class or a 

specular reflectance class.   

Consider a vector ࢞௜: Թଶ → ሾ0,1ሿ where i=1, 2, …, N, representing a sample point of the 

image reflectance components projected on the IIC-space and a matrix ࢄ denoting a set 

of all N points ࢄ ൌ ሾݔଵ, ,ଶݔ … , ேሿݔ . Our objective is to find a separation line that 

maximizes the variance of the projected reflectance data. Let ࢁ denotes the direction of 

this line defining a new orthonormal basis of the projected reflectance values. These 

points can be expressed such that: 

Y = UT X          (3.6) 

where ࢅ ൌ ሾݕଵ, ,ଶݕ … , ேሿݕ  denotes the coordinates of the reflection points in the new 

basis, here we choose ࢁࢀࢁ ൌ 1 as a constrain to maximize the reflectance variance. The 

mean of the projected reflectance components into the new basis line is ࢄࢀࢁഥ where ࢄഥ is 

the sample set mean given by: 
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X = 1

N
Xi

i=1

N

           (3.7) 

and the variance of the image reflectance components is given by: 

Var(X) = 1

N
UT Xi −UT X{ }2

i=1

N

 = UTCU                 (3.8) 

where C is the image reflection components covariance matrix defined as: 

C = 1

N
(Xi − X)(Xi − X)T

i=1

N

                 (3.9) 

By Maximizing the projected variance in Equation 3.8 with respect to U, the new 

orthogonal basis is represented by the eigenvectors of the covariance matrix C such that: 

CU = ΛU          (3.10) 

Where Λ is a diagonal matrix of decreasing eigenvalues λ and U is an orthonormal matrix 

of corresponding eigenvectors. The maximum variance separating the image diffuse and 

specular reflectance is obtained when the vector U corresponds to the highest eigenvalue. 

It is clear that the line separating the reflectance components into two distinct classes of 

diffuse and specular reflections intersects both reflection distributions, and is oriented 

according to the direction variations of the straight lines obtained by projecting the image 

into the IIC-space.  

 
The MSD method finds the correlated features associated with each reflectance 

components mainly promoted in the center of the projected image cluster. This 
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correlation occurring between both reflectance distributions rises for the fact that the 

image reflectance components projected on the IIC-space are characterized according to 

the image intensities distribution. Therefore, shifting the separation line represented by 

the direction of the new basis axis U to the center of the reflection distribution 

approximates the location that considerably relates both reflectance components in the 

IIC-space. The separation line is consequently shifted toward the center of the distance 

separating the diffuse and specular reflectance distributions means. We define the 

expression of the MSD separation line as: 

fk (n) = u
1

ρ j (n)
j∈k


− x1,k

















+ x2,k       (3.11) 

where the gradient ݑ෤  denotes the direction derived from the eigenvector of the 

orthonormal basis U corresponding to the highest eigenvalue in Λ. ̅ݔଵ,௞ and ̅ݔଶ,௞ are the 

mean of the projected image reflectance on the IIC-space corresponding to the matrix ܺ. 

The proposed separation line in Equation 3.11 can efficiently partition the reflection 

distribution into two separate reflection classes as shown in Figure 3.1.d. The specular 

reflection components represented in the image can now be easily located by mapping the 

mean value of the brightest specular blob into the IIC-space. 
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3.8 Specular Reflection Removal 

The dichromatic reflectance model suggests the possibility of decomposing an image into 

its specular and diffuse components based on image color information. After locating the 

image pixels representing the image diffuse and specular reflectance using the approach 

proposed in the previous section, in this section, we recover the diffuse properties of the 

 

 

(a) (b) 
  

(c) (d) 
  
Figure 3.1 Reflectance distribution separation over the IIC-space. (a) Input image. (b) Mapping image 
intensities of (a) over the IIC-space. (c) Separating the reflectance distribution into two distinct classes 
using the separation line (black) obtained from the proposed MSD method. (d) Classification of the 
projected image reflectance into diffuse reflectance distribution (red) and specular reflectance distribution 
(blue). 
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specular distribution components by shifting the specular reflectance distribution 

components within the diffuse reflectance distribution in the IIC-space. This process has 

the advantage of preserving the surface color information and the diffuse reflection 

properties encoded in the geometric scale factor ݉ௗ.  

Finding the shifting distance between each specular element and its new diffuse value is 

an important process for robust diffuse reflectance estimation. Let ܥ௜,௞ where i=1, 2, …, 

N, denotes the current specular reflection value projected on the IIC-space. And let 

௜ܰ,௞denotes the newly shifted ܥ௜,௞ into the diffuse reflectance distribution by a Euclidean 

distance ܦ௜ expressed as:  

Di = di,x
2 + di,y

2( )1/2
        (3.12) 

where ݀௜,௫  and ݀௜,௬  are the shifting distances over the inverse-intensity axis and image 

chromaticity respectively, Figure 3.2.a. We derive ݀௜,௫ as follows: 

di,x = 1

Ni, j
j∈k


− 1

Ci, j
j∈k


        (3.13) 

di,x = 1

Ci, j
j∈k
 − ε

− 1

Ci, j
j∈k


       (3.14) 

di,x = ε

Ci, j
j∈k
 Ci, j − ε

j∈k








       (3.15) 

and ݀௜,௬ as follows: 
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di,y =
Ci,k

Ci, j
j∈k


−
Ni,k

Ni, j
j∈k


        (3.16) 

di,y =
Ci,k

Ci, j
j∈k


−
Ci,k − ε

Ci, j
j∈k
 − ε

       (3.17) 

di,y =
ε Ci, j −

j∈k
 Ci,k








Ci, j
j∈k
 Ci, j − ε

j∈k






  

      (3.18) 

where the threshold ε defines the minimum value measured of ܥ௜,௞ and the difference of 

the maximum diffuse reflectance value of ܦ௜,௞  with respect to the minimum specular 

reflectance value of ௜ܵ,௞, expressed as follows: 

ε = (Ci,k )min + (Si,k )min − (Di,k )max         (3.19) 

 

  
(a) (b) 

  
Figure 3.2 Specular reflectance shifting process: (a) Specular reflectance components (blue) shifting 
toward the new projected value (green) in the IIC-space. (b) Specular reflectance new positioning in the 
diffuse reflection distribution. 
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3.9 Algorithm Implementation 

Algorithm 3.1 outlines the steps and general data flow of the specular reflectance 

decomposition algorithm described in this chapter. The algorithm proceeds as follows: 

during the first stage, the input image intensities are mapped to the IIC-space by 

calculating the inverse-intensity sum and the image chromaticity for every channel k 

(line1-3). The next step is to find a separation line that classifies each image intensity 

components into diffuse reflectance or specular reflectance. The means of the IIC-space 

coordinates representing the inverse image intensities and the image chromaticities are 

determined in order to find the image covariance matrix in Equation 3.9 (line 4-5) and to 

shift the separation line toward the center of the reflectance distribution (line 8).  

The final step to obtain the separation line is to calculate the gradient of the line given by 

Equation 3.11. After sorting the eigenvalues (line 7), the eigenvector direction of the 

highest eigenvalue is used as the gradient of the line separation equation. The next stage 

consists on finding the distance separating the targeted new location of the specular pixel 

in the diffuse reflectance distribution and its current location. The distance along the 

inverse-intensity axis (line 14) and the image chromaticity (line 15) are calculated for 

every specular reflectance distribution constituent. The Euclidian distance in Equation 

3.12 is then obtained before the specular value is shifted (line 16-17). Finally the three 

processed RGB channels are combined to produce a specular-free image (line 23). 
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Algorithm 3.1 Specular reflection removal algorithm flow 
Require: ܫ: ሼܫோ, ܫீ , ஻ሽܫ  RGB image {image channels} of N 
element 
Ensure: ܫௌ௣௘௖ - Specular image components  ܫ஽௜௙௙ - Diffuse image components ܫௌ௣௘௖௨௟௔௥ி௥௘௘ - Specular-free RGB image 
,ோܫ)ூ௡௩ௌ௨௠⇐ inverseSumܫ :1 ܫீ ,  (஻ܫ
2: for ݇ ∈ ܴ, ,ܩ  doܤ
 (௞ܫ)௞⇐ imageChromaticityߪ     :3
,௞ߪ)௜,௞⇐ calculMeanߤ̅     :4  ூ௡௩ௌ௨௠) // Equation 3.7ܫ
,௞ߪ)௞⇐ calculCovariaceܥ     :5  ூ௡௩ௌ௨௠) // Equation 3.9ܫ
6:     ሼߣ௞,  Equation 3.10 // (௞ܥ)௞ሽ⇐ eigenDecompositionߥ
7:     ሼߣሚ௞, ,௞ߣ෤௞ሽ⇐ sortEigenሺߥ  ௞ሻߥ
8:     ௞݂⇐ lineSeparation(ߥ෤௞,  ௜,௞) // Equation 3.11ߤ̅
 (௞ܫ)௠௔௫⇐ maxBlobܫ     :9
௠௔௫ߪ ⇐ௌ௣௘௖,௞ܫ     :10 ∈  ௞ߪ
௞ܫ ⇐஽௜௙௙,௞ܫ     :11 ∩  ௌ௣௘௖,௞ܫ
12:     for ݊ ∈ ሾ1, ܰሿdo 
 Equation 3.19 // (ௌ௣௘௖,௞ܫ)distanceThreshold ⇐ߝ          :13
14:          ݀௡,௫⇐ shiftDx(ߝ) // Equation 3.15 
15:          ݀௡,௬⇐ shiftDy(ߝ) // Equation 3.18 
,௡⇐ shiftDist(݀௡,௫ܦ          :16 ݀௡,௬) // Equation 3.12 
,ௌ௣௘௖,௞ܫ)ሚௌ௣௘௖,௞⇐ shiftSpecܫ          :17  (௡ܦ
18:      end for 
஽௜௙௙,௞ܫ ⇐௞ܫ      :19 ∪  ሚௌ௣௘௖,௞ܫ
20: end for 
஽௜௙௙,ோܫ ⇐஽௜௙௙ܫ :21 ∪ ீ,஽௜௙௙ܫ ∪  ஽௜௙௙,஻ܫ
ௌ௣௘௖,ோܫ ⇐ௌ௣௘௖ܫ :22 ∪ ீ,ௌ௣௘௖ܫ ∪  ௌ௣௘௖,஻ܫ
ோܫ ⇐ௌ௣௘௖௨௟௔௥ி௥௘௘ܫ :23 ∪ ܫீ ∪  ஻ܫ

 

 
3.10 Experimental Results and Discussions 

The proposed method was evaluated using several real and synthetic images from the 

color image dataset used in [Tan, 2005]. Different image surfaces were targeted in our 

experiment especially images consisting of uniform colored surfaces, multicolored 

surfaces, and highly textured surfaces. The images were registered using a progressive 3-

CCD digital camera SONY DXC-9000, by setting the camera correction option off. Also 
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to ensure that the output of the camera is linear to the flux of incident light, a Photo 

Research PR-650 spectrometer was used.  

Figure 3.3-B shows the results of recovering the diffuse image reflectance from a uniform 

surface color image. The obtained result is achieved using only two iterations and 

correctly handles all reflectance regions altered by the specular reflections. Also, since 

the proposed method processes each channel independently, all image color channels 

recovered the surface shape efficiently. The images in this case were processed without 

making use of the illuminant color and by setting the calculated Euclidian distance D in 

Equation 3.12 to a constant value along all reflectance distribution components.  

It is important to note that this practice of keeping D constant does well only on images 

with uniform color surfaces. However, for multicolored images, this distance has to be 

calculated independently for every specular reflectance component in order to achieve 

acceptable results. In Figure 3.4, cross-sections of all input image three-color channels 

portrayed in Figure 3.3 are shown to describe the iteration process performance.  

The solid blue horizontal line in Figure 3.4.a represents the cross-section area used to 

portray the iteration results in Figure 3.4.d-f. In each iteration process, it is noticeable that 

the surface color tone is preserved and attempts to complete the signal shape of the 

diffuse reflectance components. On the third and fourth iteration, we notice the specular 

signal flattening on a nearly constant pixel value resulting in wrong reflectance 

component separation. Another experiment is performed on multicolored and 

significantly textured images as shown in Figure 3.5. Looking closely at the pear in 

Figure 3.5.a-c, we notice that the diffuse texture barely visible in the input image is 

exposed when the specular effects are removed. Similarly in Figure 3.5.d-f, the fish 
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texture is recovered while preserving the surface color of the object. Figure 3.5.g-i shows 

the results of processing several object surfaces grouped in one single image. Some of the 

surfaces are effectively recovered such as the fish object and the dole with blue scarf, 

however, other objects such as the yellow ball and some of the monster figurine surface 

were still suffering from the specular reflection effects.  

Finally, we compare our algorithm with one of the well-known specular/diffuse reflection 

separation methods in the literature proposed by Tan et al. [Tan, 2005] in Figure 3.3-A. 

The figure compares both methods’ results applied to a 3D head object with a uniform 

surface color. Both the shape surface color and the surface shade properties were 

efficiently estimated using our proposed method, similarly to Tan’s et al. method where 

the surface shape was effectively reconstructed and the specular reflections were 

perfectly removed, however, the surface color was estimated inaccurately. 

 

   

(a) (b) (c) 
 
Figure 3.3-A Reflection separation results: (a) Input image. (b) Separation result using our method. (c) 
Separation result using Tan et al. method [Tan , 2005]. 
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(a) Input image (b) Diffuse Reflection (c) Specular Reflection 

 

  
(d) Input Red Channel (e) Red Channel Diffuse 

Reflection 
(f) Red Channel Specular 

Reflection 
 

 
(g) Input Green Channel (h) Green Channel Diffuse 

Reflection 
(i) Green Channel Specular 

Reflection 
   

Figure 3.3-B Reflection separation results “Red face front view” having a uniform color surface along 
RGB color channels. 
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(j) Input Blue Channel (k) Blue Channel Diffuse 

Reflection 
(l) Blue Channel Specular 

Reflection 
 
Figure 3.3-B (Cont.) Reflection separation results “Red face front view” having a uniform color surface 
along RGB color channels. 
 

 

 
(a) (b) (c) 

 
 

  

Figure 3.4 Specular Removal process along the input image blue horizontal line. (a) Input image. (b) 
Input image after 2 iterations. (c) Input image after 4 iterations. (d) Cross-section of the image red 
channel for several iterations. (e) Cross-section of the image green channel for several iterations. (f) 
Cross-section of the image green channel for several iterations. 
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(d) 

 
 

 
(e) 

 
 

Figure 3.4 (Cont.) Specular Removal process along the input image blue horizontal line. (a) Input 
image. (b) Input image after 2 iterations. (c) Input image after 4 iterations. (d) Cross-section of the 
image red channel for several iterations. (e) Cross-section of the image green channel for several 
iterations. (f) Cross-section of the image green channel for several iterations. 
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(f) 
 

Figure 3.4 (Cont.) Specular Removal process along the input image blue horizontal line. (a) Input 
image. (b) Input image after 2 iterations. (c) Input image after 4 iterations. (d) Cross-section of the 
image red channel for several iterations. (e) Cross-section of the image green channel for several 
iterations. (f) Cross-section of the image green channel for several iterations. 
 

 

 
(a) Input Image (b) Diffuse Reflection of (a) (c) Specular Reflection of (a) 

   
Figure 3.5 Reflection separation results for input images having multicolor surfaces. 



33 
 

(d) Input Image (e) Diffuse Reflection of (d) (f) Specular Reflection of (d) 
   
   

(g) Input Image (h) Diffuse Reflection of (g) (i) Specular Reflection of (g) 
   

 
 

Figure 3.5 (Cont.) Reflection separation results for input images having multicolor surfaces. 
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CHAPTER IV 

Color based Specular Reflectance Estimation for Scene Illumination 

Rendering 

4.1  Introduction 

Given the importance of color processing in computer vision and computer graphics, 

rendering illumination spectral reflectance of image scenes is important to improve the 

capability of a large class of applications that include image editing, scene reconstruction, 

and surface segmentation, and other applications in which visual effects are simulated by 

independent processing of separating the diffuse and specular image layers. 

An image is formed as the product of the scene’s shape, illumination and reflectance. 

Many visual tasks rely only on a subset of this information and extract the targeted scene 

properties in a manner that is insensitive to the variation of the remaining ones. For 

instance 3D shape reconstruction is accurately designed by systems that have a 

significant control over the object’s illumination distribution and reflectance parameters 

such as texture and surface roughness.  Furthermore, other approaches rely on 

discriminating some of the scene properties by selecting image features that are invariant 

to the scene property chosen. This approach is often used for material based object 

segmentation under the assumption of a Lambertian scene model.  

In this chapter, we present a scene illumination rendering technique that estimates the 

relative contributing specular reflectance attributes of a scene image while preserving the 

diffuse reflectance information. We consider a class of image feature subsets that 

preserve the geometrical and photometrical information of an image scene while isolating 
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and rendering its illumination distribution properties exclusively. The image feature 

subset targeted provides a direct access to the surface illumination information. We 

introduce an efficient separation method based on Eigen-decomposition transformation to 

isolate the diffuse and specular reflectance information from color images. Solely based 

on the image color properties, our method operates over the inverse-intensity 

chromaticity space. This normalized color space has the benefit of isolating each image 

reflectance properties in a nearly distinct manner.  

The proposed decomposition method separates both reflectance properties while 

maintaining their inner intrinsic features unmarked and contributing to the realistic 

rendering effects perceived. Moreover, we show that by mathematically reshaping the 

dynamic range distribution of the specular reflectance components over each color 

channel we render the scene illumination reflection effectively without altering the 

scene’s surface diffuse attributes. 

 
 
4.2  Contributions 

To render illumination reflectance components in colored image scenes, we introduce the 

following contributions: 

• Developed a method to estimate the illumination reflectance component by means 

of the Mean-Shift Decomposition (MSD) and the Eigen-decomposition transform. 

• Evaluated the distribution of the projected image intensities on the IIC 

chromaticity space using a statistical approach on the proposed MSD method to 

separate both specular and diffuse reflectance values effectively. 



36 
 

• Established a linear transformation method similar on these distributions in order 

to achieve the illumination rendering process. 

• Demonstrated that the proposed rendering method can produce real world 

illumination effects by comparing our obtained real rendered results with many 

different indoor and outdoor real world illuminations spectral distributions. 

 
 

4.3  Related Work 

Several photometric methods have been proposed for Lambertian scenes. R-G 

chromaticity, normalized-RGB, and hue/saturation images are examples of 

representations that are dependent uniquely on the spectral reflectance of the surface and 

the spectral power distribution of the illuminant. The diffuse surface components of 

images that are represented by a dichromatic reflectance model [Shafer 1985] depend 

heavily on the material properties of the surface. However, the spectral distribution of the 

specular component is similar to that of the illuminant. This model suggests the 

possibility of decomposing an image into its specular and diffuse components based on 

its local color information.  

Operating on image reflection components has been the focus of many investigations. 

Klinker et al. [Klinker, 1988] show that when the diffuse color is the same at each point 

on an object's surface, the color histogram of its image forms a T-shaped distribution, 

with the diffuse and specular pixels forming linear clusters. They exploit this information 

to evaluate a single generalized diffuse color. In practice, this approach can be employed 

in applications in which an image is segmented into several regions of homogeneous 
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diffuse color. Also, significant improvement were suggested to be made by exploiting the 

knowledge of the illuminant color through transformations of color space [Bajcsy, 1996] 

[Tan, 2004(b)], but these methods also require an explicit segmentation of the scene into 

large regions of constant diffuse color.  

Other approaches make use of local interactions in representing the reflection 

components. Local interactions approaches accept highly textured scenes that contain 

varying diffuse colors. However, most of these methods assume the illuminant color is a 

priori known.  Tan and Ikeuchi [Tan, 2005] iteratively reduce the specular component 

effects by considering pixel neighbors that are assumed to have a related diffuse 

component.  Ping et al. [Ping, 2003] allowed for a user to specify a closed curve 

surrounding a specular region to then minimize an objective function based on local 

variations in diffuse chromaticity and specular intensity. Kawakami et al. [Kawakami, 

2005] suggest more restrictive assumptions to handle scenes with mixed illuminations. 

They assume that all shadows are hard and that illumination spectrum distributions are 

black body radiators. On the other hand, Ebner [Ebner, 2004] introduces a method mainly 

based on localized grey world assumptions. His method renders scene illumination 

effectively when objects are predominantly gray, but don’t excel when large colored 

objects are introduced. 

The structure of this chapter is organized as follows. We begin by introducing a general 

background on the image formation based on a dichromatic reflection model in Section 

4.4. In Section 4.5, we review the use of the inverse-intensity chromaticity space in our 

proposed method. In Section 4.6, a new method for separating the diffuse and specular 

components in color images is presented based on the Mean-Shift Decomposition (MSD) 
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method. A linear transformation method is proposed to render the specular reflection 

attributes depicted from the MSD method will be described in section 4.7. In Section 4.9, 

we evaluate our rendering results using different real-world illumination distributions to 

confirm the effectiveness of our proposed method. And finally in Section 4.10, we 

summarize our study. 

 

(a) Input image (b) Rendered input image with (1.0,1.0,1.5) 
  

(c) Rendered input image with (1.0,1.0,0.93) (d) Rendered input image with (0.88,1.0,1.0) 
  

Figure 4.1 Image (a) shows an outdoor scene image taken under mixed illumination. Images (b-d) portray 
the use of our proposed method to render scene illumination using different thresholds (ߟோ, ߟ ,ீߟ஻) 
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4.4 Dichromatic Reflection Model 

A Lambertian model of image formation is assumed where the illumination spectral 

power distribution ܧሺߣሻ  is incident upon a surface and whose reflectance is 

corresponding to the image pixel location as a function of the electromagnetic 

wavelength  over the visible spectrum .We also assume a uniform illumination 

color independent of spatial location , where the tri-stimulus intensity value recorded 

by the camera sensors can then be expressed as: 

ρk (λ, n) = S(λ,n)E(λ)qk (λ)dλ
Ω
         (4.1) 

where  is the spectral sensitivity of the kth linear sensor channel, k=1,2,3,  

and ρk (λ, n) = [ρ1(λ, n), ρ2 (λ, n), ρ3(λ, n)] is the triplet of sensor responses at pixel 

location .  

Shafer [Shafer 1985] proposed a reflection model represented by a linear combination of 

diffuse and specular reflections known as the dichromatic reflection model. According to 

this model, the spectral reflection distribution of the specular component at each surface 

location is the same as that of the illuminant, while the spectral reflection distribution of 

the diffuse component depends on the reflectance of the surface . Let  

denote the surface reflectance with regard to the diffuse spectral reflection and let 

 denote the surface reflectance with regard to the specular spectral reflectance, 

then the color intensity measured by the camera sensors becomes: 

ρk (λ, n) = md (n) Sd (λ, n)E(λ)qk (λ)dλ
Ω
 + ms (n) Ss (λ, n)E(λ)qk (λ)dλ

Ω
                     (4.2) 

S(λ, n)

n ∈Z 2

λ ∈R Ω

n

qk (λ) : R → R

n

S(λ, n) Sd (λ,n)

Ss (λ,n)
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here ݉ௗሺ݊ሻ and ݉௦ሺ݊ሻ  are scale factors for the diffuse and specular reflection 

respectively, and their values change depending on the geometric structure at location . 

The objective of separating the reflection components is still an ill-posed problem 

without further assumptions. Here, we assume that the camera sensors depict an exact 

Dirac delta function and the illumination is restricted such that it can be modeled by 

Planck’s law [Planck 1959]. If the camera sensor’s response characteristics are not 

narrow-band they still can be sharpened using these algorithms [Barnard, 

2001][Finlayson, 1996][Finlayson, 1994]. 

With these assumptions, Equation 4.2 can be rewritten as: 

                 (4.3) 

for simplicity, we express Equation 4.3 as: 

                     (4.4) 

where  and . 

 

4.5 Inverse-Intensity Chromaticity (IIC) Space 

Similar to most existing methods for specular and diffuse separation, our approach 

exploits the color differences between both specular and diffuse reflections as described 

in the dichromatic reflection model. Based on that model, we consider the tri-stimulus 

value recorded by the color imaging device to be a set of RGB values so that 

where . 

n

ρk (n) = md (n)S(n)d,k E + ms (n)S(n)s,k E

ρk = mdφd,k + msφs,k

φd,k = S(n)d,k E φs,k = S(n)s,k E

ρk : R3 → [0,1] k ∈{r, g, b}
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Rewriting Equation4.4 in terms of chromaticity, we let represents the 

input intensity chromaticity,  be the diffuse reflection chromaticity, 

and  be the specular reflection chromaticity. Consequently, Equation 

4.4 can be rewritten as: 

       (4.5) 

where  and  

It is also important to set the device output to be linear to the flux of incoming light 

intensity. Tan et al. [Tan, 2004(a)] proposed a method to estimate illumination 

chromaticity color by deriving the correlation between specular reflection chromaticity 

and input intensity chromaticity delineated in a space called the inverse-intensity 

chromaticity space that we abbreviate as IIC-space. The relation between these two 

components is expressed as follows: 

          (4.6) 

where  

A complete derivation of Equation 4.6 can be found in [Tan, 2004(a)]. 

 

 

σ k = ρk

ρr + ρg + ρb

ω d,k =
φd,k

φd,r + φd,g + φd,b

ω s,k =
φs,k

φs,r + φs,g + φs,b

σ k = ′mdω d,k + ′msω s,k

′md = md (φd,r + φd,g +φd,b ) ′ms = ms(φs,r + φs,g +φs,b )

σ k = α 1

ρ j
j=r,g,b


+ω s,k

α = ′md (ω d,k −ω s,k )
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This equation has an important aspect in our proposed method toward the rendering of 

the surface specular illumination. The process of separating the diffuse and specular 

components for both uniformly colored and multicolored objects or scenes relies on 

identifying the location of each reflection elements of the image within the IIC-space. As 

shown in Figure 4.2, by projecting a colored surface on the IIC-space, the diffuse and 

specular image pixels form two clusters are partially independent as can be seen in Figure 

4.2.b.  

For Equation 4.6 to be linear, it is necessary to consider the value of ࢻ to have a constant 

value, which is not always the case since its value is associated with the geometrical 

attributes of the surface diffuse reflection components that vary according to each object 

surface properties. We carry out our method based on this fact to estimate and separate 

efficiently both the diffuse and specular reflectance image features, which is viewed as an 

important pre-processing step toward the rendering of the specular illumination 

reflections.  
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4.6 Surface Reflectance Decomposition 

Some previous methods propose solving the reflectance separation problem by requiring 

the manual identification of highlights in surface regions, restrictive assumptions about 

the scene surface to be textured or untextured, or the use of physical filters e.g. polarizing 

Figure 4.2 An overview of the proposed reflectance separation method. (a) Synthetic input image. (b) 
Diffuse and specular points of the projected input image on the IIC-space. (c) A magnification of the 
portrayed projected image chromaticity values forming clusters of straight lines. (d) Resulted reflectance 
cluster separation using the proposed decomposition method. The blue line represents the separation line 
while the green and red clusters represent the specular and diffuse reflectance components respectively. 
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filters [Mallick, 2006]. The advantage of processing dichromatic surfaces on a chromatic-

intensity space is the ability to preserve the intrinsic properties of the object surface. Our 

method has the benefit of using solely image color information without involving any 

local image segmentation techniques. We begin our method by introducing a partial 

specular/diffuse separation approach to group both reflectance components into two 

distinct sets of pixel values. Then, by reshaping the dynamic range of the specular cluster 

for each color channel, we show that the specular reflection component remodel the 

illumination effect over an image scene gradually while hardly affecting the surface 

diffuse reflection constituents. 

Our objective is to find a separation line that approximates the location of the diffuse and 

specular reflectance clusters robustly. Many techniques can be adopted for this task 

[Cheng, 1995] [Kaufman, 1990] [Nishino, 2001]. However, since our method tends to be 

repetitive along all image channels, we opted for a simple yet efficient solution that 

linearly differentiates the two sets of reflectance. We thus introduce a separation method 

based on Eigen-decomposition that we call Mean-Shift Decomposition (MSD). As with 

any other Eigen-decomposition technique in multivariate data analysis, the mean-shift 

decomposition method attempts to find the correlated features associated with each 

reflectance component mainly promoted in the center of the data, Figure 4.2.b. A 

correlation matrix is specifically generated to detect the relationship between both 

reflectance components. A change in the position of the mean of both reflectance 

components synchronizes the classification of each reflectance feature within its type 

labeled to be as either a diffuse feature or a specular feature. 
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We consider the correlation matrix  of each vector set represented in the IIC-space to 

be composed of the correlation coefficients  between the vectors as . 

The eigenvalues and the eigenvectors  are defined formally using the standard 

equation: 

                                                (4.7) 

for . Generally for a vector size of  Equation 4.7 has  different 

solutions. We assume that the eigenvectors are normalized and the solutions have been 

sorted according to the eigenvalues . 

Also, transforming a matrix from its eigenvector basis, the matrix diagonal is represented 

by its eigenvalues and its trace remains invariant, therefore for the correlation matrix to 

be valid, the eigenvalues need to satisfy the relation . 

The mean-shift decomposition method separates classes forming a set of data attributes 

by synchronizing the means of the projected vector sets based on the computed 

eigenvectors directions. Here we consider a two-class problem where the classes are 

labeled to contain either diffuse reflection components or specular reflection components. 

The means of the two vector sets are given by the standard formulations of 

μx = 1

N

1

ρ j,n
j=r,g,b
n=1

N

  and μy = 1

N
σ k,n

n=1

N

 . A simple separation measure of the two classes 

would be the separation of the projected means along a weight vector . Doing so, we 

need to choose  to satisfy 

              (4.8) 

C

Ci ∈[−1,1] i = 1,..., N

λl vl

Cvl = λlvl

l = 1,..., N i = 1,..., N N

λ1 ≥ λ2 ≥ ... ≥ λN

λl = tr(C) = N

w

w

μx − μy = argmax
w

wT (μx − μy )( )
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However, this expression varies and can be made arbitrary large simply by increasing the 

magnitude of . We still can constrain the value of  to have a unit length such that 

. But a problem will rise when determining the orientation of the line that 

separates the two means. This mostly happens if the covariance of any of the two class 

distributions is not diagonal. Thus, a function that will give a large separation between 

the projected means while also giving a small variance within each class is important to 

minimize the reflectance separation line orientation error. 

From Figure 4.2.c, we note that the projected data over the IIC-space form a cluster of 

straight lines aligned in such a way that they intersect at a certain point on the image 

chromaticity axis. From Equation4.6, considering the case where  is constant, the 

oriented straight lines intersect at a single point identical to the illumination chromaticity 

 accordingly when .  Based on this fact, the line separating the 

diffuse reflectance chromaticity and specular reflectance chromaticity should be oriented 

according to the relation of the lines depicted by the projected data cluster. 

We chose the gradient of the line that separates the two class reflectance chromaticity to 

be the eigenvector of the highest eigenvalue calculated from the covariance matrix. This 

causes the separation line to be directed toward the angle that significantly describes the 

weight of each reflectance class while being proportional to the distribution of the data 

cluster. The intersection of the projected set means is then used to shift the line location 

resulting in separating the projected data cluster into two partitions Figure 4.2.d. 

We describe the expression of the MSD separation line as follows: 

w w

wi
2

i
 = 1

α

σ k = ω s,k

1

ρ j
j=r,g,b


≅ 0
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                       (4.9) 

where  represents the eigenvector with the highest eigenvalue of the covariance matrix. 

This decomposition method has the advantage of keeping the intrinsic pixel relationship 

combining the specular and diffuse image components mutually which differs from the 

concepts used for object segmentation methods. In Figure 4.7-9, we show the use of the 

MSD technique on different scene situations.  

 
 
4.7 Specular Reflection Range Modeling 

This section proposes a new method for rendering the specular illumination reflectance in 

images. The image intensity values mapped on the IIC-space are transformed by rotating 

the coordinates of the IIC-space by projecting the inverse-intensity vector set with the 

direction of the effective line partitioning the two cluster reflectance. We consider an 

approach similar to the contrast stretching transformation concept to exploit the shape of 

the specular reflection cluster. Prior to that, it is necessary to identify the partitioned 

cluster comprising the image specular components. We choose a simple reasoning for 

determining the distribution of the reflectance intensities in images, especially targeting 

the specular reflection image pixels.   

 

4.7.1 Specular Reflection cluster Identification 

The linear partition method described in the previous section separates the projected 

image chromaticity sets into two distinct sets of clusters. However, up to this point, the 

σ k = vi (
1

ρ j
j=r,g,b


− μx ) + μy

vi
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cluster describing the constituents of the surface diffuse reflectance or surface specular 

reflectance component is still undecided. In Figure 4.2.b, the reflectance chromaticity 

values labeled were observed based on the mapping of each specular reflection 

component into the inverse-intensity chromaticity space independently. This allows us to 

consider generally where the reflection values are sited. In practice, and especially for 

complex scenes as in Figure 4.1, the distributions of the mapped image chromaticity 

values on the IIC-space are scattered and change orientation, therefore following the 

model presented in Figure 4.2.b will result in the incorrect reflectance classification.  

Simple reasoning can be used to locate the cluster consisting of specular reflection values. 

We consider first the location of the specular pixels of the intensity color image. Since the 

specular points are among the brightest pixels as inferred from the dichromatic surface 

object of a Lambertian model, we determine the location of the brightest blobs in the 

intensity color image. Mapped to the IIC-space, those pixels are mostly inclined toward 

values with intensity chromaticity nearing 

σ i,k = 1

max ρi, j
j=R,G,B









          (4.10) 

The objective of locating the cluster that contains the specular reflectance elements is 

consequently reduced to the process of locating only the most prominent specular pixels 

of the intensity color image before being mapped on the inverse-intensity chromaticity 

space. The presence of these pixels in one of the two-reflectance clusters identifies the 

cluster holding the specular components. 
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(a) 

 

(b) 

 
 
4.7.2 Specular Reflection Modeling  

The ability of rendering the illumination scenes or objects reflectance surfaces with 

different illumination effects resides in altering the dynamic range of the located image 

specular component intensities. The desired visual illumination effects are achieved by 

stretching the chromaticity intensities dynamic range of each channel by a threshold ratio ߟ ൌ ሼߟோ, ,ீߟ  ஻ሽ such that the dynamic range of the chromaticity intensities decreasesߟ

Figure 4.3 (a) Transformation of the specular components (grey) coordinates by aligning the inverse-
intensity axis of the IIC space with the reflection separation line (blue). (b) Specular components stretching 
process indicated by varying the threshold ratio ߟ ൐ 1 (red) and ߟ ൏ 1 (green). 
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when ߟ ൏ 1 or increases when the threshold ratio is ߟ ൐ 1. 

We begin by aligning the IIC inverse-intensity basis with the direction of the effective 

reflectance cluster line separation expressed in Equation 4.9, as displayed in Figure 4.3.a. 

To facilitate this projection, we assume that the origin of the new transformed coordinate 

system is the intersection point between the reflectance separation line and the inverse-

intensity sum axis. Let ߠ  be the angular quantity representing the clockwise rotation 

angle between the two coordinate systems. 

We define the transformed IIC coordinate system as follows: 

              (4.11) 

       (4.12) 

where ߪത and ߯̅ are the new coordinate basis of the projected IIC space representing the 

projected image chromaticity and the inverse sum of intensity sum of the specular 

components vectors, respectively. 

The motivation behind the proposed basis transformation is to facilitate the linearization 

of the reflection data stretching process needed for illumination modeling.  We derive an 

approach similar to the contrast stretching transformation concept [Arici, 2009][Ji, 

1994][Rahman, 2004] to exploit the shape of the specular reflection cluster. As shown in 

Figure 4.3.b the cluster forming the specular components changes in size depending on 

the value of threshold ߟ. We adopt a linear stretching mechanism to remodel the shape of 

the specular cluster.  

 

σ k = σ k cos(θ )

χ =
1

ρ j
j = R,G ,B


cos(θ)
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Let    and    be the minimum and maximum limit values of 

the projected intensity chromaticity set respectively.   

We formulize the stretching mechanism with the following expression: 

      (4.13) 

where             ξ = σ min

σ max −σ min

 

note that when    the above expression is simply 

                                    (4.14) 

From Equation 4.13, we consider the adaptation of both the maximum and minimum 

values of the specular cluster component relative to the current calculated value. Also, we 

note that the stretching mechanism occur exclusively on the projected intensity 

chromaticity vector set without requiring any changes on the inverse-intensity axis.  

 
 
4.8 Algorithm Implementation 

We begin by computing the image chromaticity values used to transform the RGB color 

space to the inverse-intensity chromaticity space using Equation 4.5. For each color 

channel ݇, we map the image chromaticity values into the ICC-space using Equation 4.6 

as shown in Figure 4.2.b. This space has the benefit of correlating the image chromaticity 

and illumination chromaticity values linearly. Therefore, given this representation, the 

problem of separating the specular and diffuse reflectance reduces to one of identifying 

the location of solely one reflectance attribute. To decompose the reflectance components 

σ min = min(σ ) σ max = max(σ )

σ new = η σ − σ min( ) + ξ σ − σ max( )

σ min = 0

σ new = ησ
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into two distinct clusters, Figure 4.2.d, we compute the eigenvectors of the highest 

eigenvalue defined from the covariance matrix determined from the image chromaticity 

vectors and the inverse-sum vectors. Then, we use Equation 4.9 to characterize the 

separation line. Upon separating the two reflection clusters it is important to designate 

which cluster represents the specular reflectance. We use Equation 4.10 to calculate the 

brightest values in the image. Mapping these values into the IIC-space reflects the 

presence of the specular components thus locating the specular reflection cluster. The 

rendering process resides in altering the values of the specular reflection components.  

The process begins by aligning the IIC inverse-intensity basis with the direction of the 

effective reflectance cluster line separation expressed in Equation 4.9, and as displayed in 

Figure 4.3.a. To facilitate this projection, we assume that the origin of the new 

transformed coordinate system is the intersection point between the reflectance separation 

line and the inverse-intensity sum axis. We use Equation 4.11 and 4.12 to represent the 

new transformed coordinate system. This axis transformation is presented to facilitate the 

linearization of the reflection data stretching process needed for illumination modeling. 

Finally we use Equation 4.13 to remodel the specular component values using the 

threshold ߟ. We repeat this process to all image color channels where for each case the 

threshold ߟ is used to adjust the specular reflectance stretching process needed to achieve 

the desired rendering effect. 

 

4.9 Experimental Results 

To verify that the proposed algorithm efficiently renders scenes with different illuminants, 

we evaluate our method using the SFU Mondrian color dataset [Barnard, 2002]. The 
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Macbeth ColorChecker® images, used in our experiment, comprise 24 different colored 

patches. The images were taken under eleven uniform illuminants simulating eight 

different daylight spectra and three fluorescent spectra using a SONY DXC-930 digital 

camera having a progressive 3 CCD sensors by setting the camera gamma correction 

option to off. Under each illuminant the corresponding camera responses were registered 

as well as the input energy spectra. For evaluation, we compared the results with the 

average values of image chromaticity of the white reference patch captured by the camera.  

Other sets of images are also used to test our method. We use images taken from the color 

constancy dataset presented in [Gehler, 2008] and other images that were randomly 

selected from the Internet. It is important to mention that our image formation model 

assumes linear image values. For processed files such as JPEG compressed images, it is 

necessary to linearize the image gamma by inverting the transformations applied by the 

camera settings and/or software. We recommend to use linear images obtained directly 

from digital camera raw files since, in some cases, the process of linearizing images 

introduces some artifacts due to quantization and pixels saturation.  

In Figure 4.4, we illustrate the results of our proposed rendering method. An illumination 

invariant color image was generated using a well-used color constancy algorithm 

[Gijsenij, 2010]. This image, Figure 4.a, has the benefit of being invariant to illumination 

changes and depicts the accurate surface color reflectance taken during the image 

registration process. We use this corrected image as our ground truth image for the 

remaining of the illumination-rendering test. For each of the 11 illuminants, we estimate 

the specular reflectance component based on the average value of the real-illuminant 

white reference image chromaticity. The threshold values used in Equation 4.13 are 
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approximated to render each input image channels of the white reference patch. This 

simulates the effects generated by the real-illuminants (as shown in the Estimated Image 

column). The image difference of both the input image and estimated illumination 

rendered input image with respect to the ground-truth image are considered to reflect the 

differences between the two illuminated images. As shown, most of the diffuse 

reflectance components generated from our method are invariant to the illumination 

changes. Furthermore, the specular reflectance components do approximate the image 

illuminant effects of each of the daylight illuminants and the tungsten illuminants. 

 

Figure 4.4 Redering the Macbeth ColorChecker® image (a) with 
different illumination effects generated using the proposed method. Note 
the specular components of the input image are affected while the 
diffuse components stay unchanged. 

(a) Illumination Invariant 
Input Image 

 

  
Input Image 

 
Input Image Difference 

 
Estimated Image 

 (࡮ࣁ ,ࡳࣁ ,ࡾࣁ)
Est. Image Difference 

 
    

(b) Philips-Ultralume (b) - (a) (c) Estimated Philips-Ulm (c) – (a) 
  (1.0114, 0.9998, 0.9867)  
    

(d) Solux 3500 (d) – (a) (e) Estimated Solux 3500 (e) – (a) 
  (1.0488, 1.0422, 1.0639)  
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(f) Solux 3500+3202 (f) – (a) (g) Estd. Solux 3500+3202 (g) – (a) 
  (0.8963, 0.9541, 1.0591)  
    

(h) Solux 4100 (h) – (a) (i) Estimated Solux 4100 (i) – (a) 
  (1.0113, 1.0147, 1.0616)  
    

(j) Solux 4100+3202 (j) – (a) (k) Estd. Solux 4100+3202 (k) – (a) 
  (0.8001, 0.9011, 1.0562)  
    

(l) Solux 4700 (l) – (a) (m) Estimated Solux 4700 (m) – (a) 
  (0.9885, 1.0092, 1.0640)  
    

(n) Solux 4700+3202 (n) – (a) (o) Estd. Solux 4700+3202 (o) – (a) 
  (0.7187, 0.8657, 1.0508)  
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(p) Sylvania 50MR16Q (p) – (a) (q) Estd. Syl 50MR16Q (q) – (a) 
  (1.0609, 1.0417, 1.0550)  
    

(r) Syl. 50MR16Q+3202 (r) – (a) (s) Est. 50MR16Q+3202 (s) – (a) 
  (0.9324, 0.9573, 1.0515)  
    

(t) Sylvania CWF (t) – (a) (u) Estimated Syl. CWF (u) – (a) 
  (0.9811, 0.9571, 1.0297)  
    

(v) Sylvania WWF (v) – (a) (w) Estimated Syl. WWF (w) – (a) 
  (1.0248, 0.9332, 0.9842)  
    
    

 

We also compare the power spectrum of each input illuminated image with the proposed 

rendered image. We estimate the power spectrum of each rendered image using the XYZ 

transformation system. The color matching functions used for the RGB-to-spectrum 

transformations are the standard CIE 1931 2-degree XYZ color matching functions as 

modified by Judd 1951 and Vos 1978 [Wyszecki1982]. These CMFs were used for both 
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the input illuminated images and the estimated rendered images since the camera CMFs 

were not provided with the dataset. Figure 4.5 shows the results comparing the estimated 

spectral power distribution for each of the 11 illuminants with the real spectral power 

distribution estimated. 

We measure the performance of the proposed illumination rendering method using the 

mean error measurements of both experiments portrayed in Figure 4.4 and Figure 4.5 as 

shown in Table 4.1. The illumination chromaticity-mean error (CME) calculates the 

average error between the estimated image specular components of the rendered image 

and the input illuminated image. Similarly, the illumination spectral error presents the 

average error of the estimated spectral power distribution of the rendered image with 

respect to the spectral power distribution of the illuminated input image. 

(a) Estimated vs. Original Philips Ultralume Illuminant 
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(b) Estimated vs. Original Solux 4100 and 4100+3202 Illuminant 
 

(c) Estimated vs. Original Solux 4700 & 4700+3202 Illuminant 
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(d) Estimated vs. Original. Syl-16Q & 16Q+3202 Illuminant 
 

(e) Estimated vs. Original Syl-CWF & WWF Illuminant 
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(f) Estimated vs. Original Solux 3500 % 3500+3202 Illuminant 
 

 
 

Additional images are shown in Figure 4.6. These images were downloaded from the 

Internet and showed some lossy-compression artifacts. We assumed that the gamma used 

for image display correction was 2.2. Despite this source of noise, our method efficiently 

separated and rendered the specular reflectance components on both images. 

We implemented our algorithm on an Intel™ Core 2 Duo processor, having a clock speed 

of 2.53GHz. The performance registered was performed based on a CPU implementation. 

For images of size 100x100 the rendering process took an average of 1.01 seconds, for 

300x300 images took an average of 9.87 seconds, for images of size 500x500 the average 

processing time was 31.01 seconds, and images of size 1000x1000 it took 112.49 seconds. 

Figure 4.5 Comparing the estimated power spectrum of eleven different illuminants with their relative real 
power spectra measured by a spectrometer. 
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We also evaluated the duration of the reflectance decomposition step and found it to take 

38% of the total simulation time for images of size 1000x1000, while the specular 

reflection-modeling step consumed 61% of the total computing time. 

 
Illuminants Spectral Est. Error (%) 

Chromaticity Mean Error 
(%)  

Philips-ulm 4.593 0.067 

Solux 3500+3202 2.373 0.276 

Solux 3500 7.474 0.582 

Solux 4100+3202 4.594 0.331 

Solux 4100 6.412 0.352 

Solux 4700+3202 5.639 0.571 

Solux 4700 5.714 0.218 

Syl_50MR16Q+3202 3.382 0.238 

Syl_50MR16Q 7.494 0.514 

Syl_CWF 3.028 0.3 

Syl_WWF 4.227 0.139 

 

 
Table 4.1 Illumination mean errors for all illuminant sources using the spectral evaluation method 

(middle) and image chromaticity method (right). 
 

 

 

(a) Input Image (b) White light rendering 
 (0.1, 0.1, 0.15) 

 
Figure 4.6 Example of rendering scenes with uniform illumination distribution using our proposed method 
with the shown thresholds. 
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(c) Yellow light rendering (d) Red light rendering 
(1.0, 1.0, 2.9) (7.9, 1.0, 1.0) 

  
  

(e) Input Image (f) Green light rendering 
 (0.95, 1.1, 0.95) 
  

(g) Yellow light rendering (h) Tungsten light rendering 
(1.12, 1.1, 1.0) (1.2, 1.0, 1.11) 

 
Figure 4.6. (Cont.) Example of rendering scenes with uniform illumination distribution using our proposed 
method with the shown thresholds. 
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Figure 4.7 Illustration of the presented 
decomposition method into specular components 
(green) and diffuse components (red) overlapped by 
the modeling process (blue). (a) Input image. (b) 
The result of rendering (a). (c) Reflectance 
separation and modeling over the red channel. (d) 
Reflectance separation and modeling over the green 
channel. (e) Reflectance separation and modeling 
over the blue channel. 

 
(a) Input image 

 

  

 

(b) Rendered image (c) Red channel 
ோߟ  ൌ 1.1 
  

(d) Green channel (e) Blue channel ீߟ ൌ ஻ߟ 1 ൌ 1 
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Figure 4.8 Illustration of the presented 
decomposition method into specular components 
(green) and diffuse components (red) overlapped by 
the modeling process (blue). (a) Input image. (b) 
The result of rendering (a). (c) Reflectance 
separation and modeling over the red channel. (d) 
Reflectance separation and modeling over the green 
channel. (e) Reflectance separation and modeling 
over the blue channel. 

 
(a) Input image 

 

  

(b) Rendered image (c) Red channel 
ோߟ  ൌ 1.0 
  

(d) Green channel (e) Blue channel ீߟ ൌ ஻ߟ 1.0 ൌ 2.9 
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Figure 4.9 Illustration of the presented 
decomposition method into specular components 
(green) and diffuse components (red) overlapped by 
the modeling process (blue). (a) Input image. (b) 
The result of rendering (a). (c) Reflectance 
separation and modeling over the red channel. (d) 
Reflectance separation and modeling over the green 
channel. (e) Reflectance separation and modeling 
over the blue channel. 

 
(a) Input image 

 

  

(b) Rendered image (c) Red channel 

ோߟ  ൌ 0.88 
 

(d) Green channel (e) Blue channel ீߟ ൌ ஻ߟ 1.0 ൌ 1.0 
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CHAPTER V 

Color constancy based dichromatic objects reflectance decomposition 

5.1  Introduction 

The human visual system possesses a powerful capability in determining objects’ surface 

color properly despite large changes in scene illumination. Our color perception takes 

place by estimating the actual object’s surface spectral reflectance regardless of the light 

color affecting the object’s illumination reflectance. This visual ability in determining the 

true surface color appearance of objects is called color constancy. Computer vision 

systems, on the other hand, still can’t accomplish this task without prone errors. Thus, 

finding methods that can recover the actual color of object surfaces correctly can benefit 

many applications for image retrieval, object rendering, color-based object recognition, 

reflectance estimation, etc. 

Many color constancy methods have been proposed in literature and can be categorized 

into two separate groups, statistics-based approaches and physics-based approaches. The 

first group consists of algorithms that correlate information acquired in a learning phase 

with possible information related to the image features such as light sources or 

reflectance distributions of objects in natural image scenes. Gamut mapping algorithm 

[Forsyth, 1990] is one of the first methods to use this kind of approach. This algorithm 

assumes for a given illuminant only limited number of colors can be observed. The set of 

possible color values for canonical illuminant, generally a white illuminant, is called the 

canonical gamut. The gamut mapping method establishes a linear map from a pre-learned 

distribution of colors (canonical gamut) to the color distribution of a given image. Other 
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derivations of the gamut mapping approach have been proposed such as the Gamut-

constrained illuminant estimation [Finlayson, 2006], Color-by-Correlation [Finlayson, 

2001], and derivative-based gamut mapping [Gijsenij, 2010]. Other statistics-based 

approaches employ Bayes’s rule to estimate the illumination distribution using standard 

methods such as minimum-mean-squared error (MMSE), maximum-local-mass 

estimation (MLM), or maximum-a-posteriori (MAP) method [Brainard, 1997][Brainard, 

2006]. For these methods, the illuminant spectra distribution and the surface reflectance 

distribution are linearly modeled with a Gaussian basis. For instance, the color-by-

correlation method [Barnard, 2000][Brainard, 1997] characterizes all plausible observed 

image colors by finding a correlation matrix of a set of known illuminants.  

Furthermore, simpler approaches that assume spatial statistics of image colors can be 

related to the Grey-world hypothesis [Brooks, 1985], which assumes that the surface 

reflectance spatial average in a scene is achromatic, the Grey-edge hypothesis [van de 

Weijer, 2005], which similarly assumes that the average edge in a scene image is also 

achromatic, and the spatial correlation approach introduced by Chakrabarti et al. 

[Chakrabarti, 2010], which estimates the illuminant color by measuring the spatial 

correlations that exists between image points.  

Different from the methods based on the first approach, physics-based color constancy 

approaches analyze the physical process of the light reflected from surfaces. 

Understanding this process in which light interacts with the surface reflectance was the 

objective of many scientists. Based on the surface reflectance of the input image, physics-

based methods can be derived by assuming that the image surface reflectance is either 

completely diffuse, or follow the dichromatic model introduced by [Shafer, 1985]. Based 
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on Shafer’s model, the dichromatic color constancy methods solve the illumination 

estimation problem by analyzing the surface reflectance and estimating the color of the 

specular reflections emitted from object surfaces. Lee’s method in estimating the 

illumination reflectance [Lee, 1986] uses image highlights of at least two surface colors. 

The illumination reflectance is estimated by finding an intersection of two or more 

dichromatic lines in the chromaticity space. However his method requires a heavy 

segmentation of the surface color representing the reflection highlights as a preprocessing 

step. Similar to Lee’s methods, Lehman and Palm [Lehmann, 2001] developed a 

technique that assumes a uniform color surface in each image highlight region.  

The proposed methods performs well on restricted images with uniform color surfaces 

however, highly textured surfaces show some inaccuracy in estimating the illumination 

chromaticity. Finlayson and Schaefer [Finlayson, 2001] found that the chromaticities of 

common light sources all follow closely to Planckian-locus of blackbody radiators. They 

were able to estimate the chromaticity of the illuminant simply by intersecting the 

dichromatic line with the Planckian locus. Recently, Tan et al. [Tan, 2004] obtained a 

direct correlation between the illumination chromaticity and image chromaticity by 

analyzing image highlight regions. Using this relation, they estimated illumination 

chromaticity by counting the number of intersections image chromaticity lines projected 

on the Hough space for both uniform and non-uniform surfaces.  

In this chapter we estimate illumination chromaticity in images based on the dichromatic 

reflectance approach. By projecting image reflectance into the inverse-intensity 

chromaticity space, we select image highlights by separating the diffuse and illumination 

reflectance distributions using the Mean-shift-decomposition technique presented in 
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chapter III. These highlights are then evaluated to sift only the prominent surface 

reflectance that reflects the exact illumination chromaticity using histogram analysis. The 

resulted surface reflectance are then again assessed using the MSD, and the illumination 

chromaticity is estimated by intersecting the first and the second orthogonal basis of the 

newly calculated covariance matrix. Our method has the advantage of not using any 

preprocessing color segmentation technique to isolate the reflectance highlight.  

 

5.2  Contributions 

The illumination chromaticity of each image color channel is estimated using the 

following considerations:  

• By assuming a dichromatic model, the illumination highlights reflecting the 

illumination chromaticity are obtained using the Mean-shift-decomposition 

methods introduced in chapter-III. 

• A voting-scheme that assumes a small set of surface reflectance is used to 

characterize the most prominent image pixels that reflects the illumination 

chromaticity color based on histogram analysis. 

• The illumination chromaticity is estimated by projecting the intersection of the 

first and second orthogonal bases onto the image chromaticity axis of the IIC-

space. 

• We assess our method on a large dataset comprising real-world natural images.  
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5.3  Overview 

Section 5.4 presents a literature review of the main methods used for color constancy. 

Section 5.5 discusses the model used as a basis in the method presented in this chapter. 

Section 5.6 describes the mapping model used to generate canonical images corrected by 

the method introduced in this chapter. Section 5.7 proposes a voting scheme method used 

for selecting the prominent specular reflectance component. Section 5.8 presents the 

illumination chromaticity estimation in an image. In section 5.9, we evaluate our 

proposed method using real world images. Section 5.10 concludes this chapter with a 

summary of the proposed color constancy method. 

 

5.4 Dichromatic Reflectance Model 

The combination of matte reflectance with a geometry dependent highlight component is 

well defined by the dichromatic reflectance model described in section 3.5. In real world, 

based on their surface properties, most objects can be categorized into two groups: 

homogeneous and inhomogeneous objects. Homogenous objects such as glass, metals, 

and crystals have a uniform refractive index through their surface and produce mainly 

specular reflectance. However, inhomogeneous objects such as ceramics, acrylics, and 

plastics have varying refractive indices in their surface and consequently this kind of 

objects present both diffuse and specular reflectance. Color constancy methods based on 

the dichromatic reflectance model estimate the color of the light source by analyzing 

specular objects’ highlights. As seen in chapter III, for surfaces that are well-represented 

by the dichromatic reflectance model, the spectral reflectance distribution of the specular 
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component is assumed to be similar to the spectral energy distribution of the incident 

light, while the spectral reflectance distribution of the diffuse component is assumed to 

depend on the material properties describing the object surface. This assumption termed 

as the neutral interface reflection assumption is adopted by many color constancy 

methods based on the dichromatic reflectance model. Similarly, we ground our work on 

this assumption to estimate the illumination color chromaticity. 

 

5.5 Diagonal Model Transformation 

Color constancy is defined as correcting an image taken under an unknown light source 

so it appears to be taken under a canonical light source. This chromatic transformation 

can be considered as a module of the Chromatic Adaptation Transform (CAT) [Fairchild, 

2005]. A first step will be to estimate the color of the illumination source, followed by a 

transformation of the original image [Hordley, 2006]. This color adaptation is modeled 

using a linear transformation based on the von Kries chromatic model, which states that 

chromatic adaptation is an independent gain regulation of the three sensors in the human 

visual system. By assuming a narrowband sensor sensitivity, in this chapter we use the 

von Kries chromatic model [von Kries, 1970], also known as the diagonal model, to 

transform all colors of the input image taken under an unknown light source to colors as 

they appear under a canonical light source without applying any spectral sharpening 

methods [Finlayson, 1994] or changing the color basis [Chong, 2007]. The diagonal 

model used is defined by the following expression: 

Ik,t = Du,t Ik,u             (5.1) 

where ݇ ൌ ሼݎ, ݃, ܾሽ is the input image color channel, ܫ௨ is the input image taken under an 
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unknown spectral illuminant u, ܫ௧  is the transformed input image using the estimated 

canonical illuminant c, and ܦ௨,௧ is a diagonal matrix which maps the input image ܫ௨ to the 

transformed image ܫ௧ as follows: 
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        (5.2) 

This model approximates well the illuminant changes and has been adapted by several 

color constancy methods [West, 1982] [Finlayson, 1994] [Funt, 2000] [Tan, 2004], 

[Kawakami, 2005] [Gijsenij, 2011].  

 

5.6 Surface Reflection Selection 

The MSD method decomposes image reflectance components projected on the IIC-space 

into two separate reflectance sets representing the diffuse and specular reflectance 

distributions. In this section, we retrieve the most prominent surface reflectance points 

from the set of specular reflectance components obtained from the MSD decomposition 

technique to define the illumination chromaticity. Omer and Werman [Omer, 2004] 

noticed that natural scenes images are dominated by a small set of surface color and 

applied this assumption to applications targeting object segmentation and image 

compression. Similarly, we use this hypothesis to extract a small set of surface 

reflectance components that delineates the image illumination chromaticity. 

We begin by constructing a histogram ܪ௞  representing the specular reflectance 

distribution of each image chromaticity channel. The histogram tells us how many 

specular components have a particular chromaticity intensity for a given color channel k. 
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Let ݊௕ denotes the number of buckets in the histogram and ܪ௞ሺ݆ሻ the number of specular 

reflectance components in each color channel k that have intensity j. Instead of choosing 

the reflectance component with the maximum intensity [Finlayson, 2002], we find the 

local maxima intensities in the histogram. We process the specular reflectance 

components starting with the highest local maxima intensity value, for a given reflectance 

component ࢞௜, where i=1, 2, …, N, from the specular reflectance distribution projected on 

the reflectance histogram, if the value of ࢞௜  fall within the histogram bucket interval 

satisfying: 

Hk ( jmax ) − Hk ( jmax + δ ) ≤ 0   and    Hk ( jmax ) − Hk ( jmax −δ ) ≥ 0               (5.3) 

where ݆௠௔௫ is the intensity of the histogram buckets representing the local maxima values, 

and δ is a rational threshold defining the number of selected histogram buckets ݊௕, we 

say that the specular reflectance ࢞௜ is selected to represent the specular points for 

illumination chromaticity estimation. The reflectance components that were selected 

satisfying Equation 5.3 are marked and the remaining unmarked reflectance elements are 

then used for a second turn voting round to depict the second most popular reflectance 

components. This process continues along all local maxima intensities to form a smaller 

set of specular reflectance distribution ሚܵ௞. This technique works well for many typical 

images, however in certain situations, particularly outdoor scenes, the presence of noise 

in the surface reflectance distribution is inevitable. In these cases, instead of processing 

the specular reflectance components starting with the highest local maxima value it is 

practical to begin with the local maxima intensities that assemble the most specular 

reflectance components within the threshold δ. This ensure that the new specular 
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reflectance distribution ሚܵ௞ contains values that do not take account the highest specular 

reflectance intensities. 

 

5.7 Illumination Chromaticity Estimation 

In the previous section we described a method to derive a set of surface reflectance points 

that govern the scene illumination reflectance distribution, in this section we estimate the 

illumination chromaticity by analyzing the changes influencing the spread of the derived 

specular reflectance set ሚܵ௞. We make use of the MSD method presented earlier to find the 

correlation attributes associated in ሚܵ௞. By finding the first and second orthogonal bases of 

the reflectance set ሚܵ௞  using Equation 3.6, the equations of the lines describing the 

variance between each specular reflectance component are expressed as follows: 

 

f1,k (n) = v1,k

1
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j∈k

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f2,k (n) = v2,k
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where ଵ݂,௞  and ଶ݂,௞  are the line equations representing the first and second orthogonal 

basis respectively, the gradients ݒ෤ଵ,௞ and ݒ෤ଶ,௞ depict the direction of the first and second 

eigenvector of the orthonormal basis vector U corresponding to the first and second 

highest eigenvalue in Λ, and ݑଵ,௞  and  ݑଶ,௞  are the means of the projected reflectance 
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components set ሚܵ௞ on the IIC-space. Then, by projecting the point intersecting both basis 

lines on the IIC-space chromaticity axis, the illumination chromaticity of each color 

channel is determined as follows: 

Ψk = f1,k (n)∩ f2,k (n)                 (5.6) 

 

5.8 Experimental Results 

We assess the performance of the proposed color constancy method on two different 

datasets of colorful images. One contains images registered under controlled indoor 

illumination [Barnard, 2002], and the other contains images of outdoor scenes registered 

under real world conditions [Ciurea, 2004]. The first dataset consists of images taken 

under eleven uniform illuminant sources simulating eight different daylight spectra and 

three different fluorescent spectra. The second dataset contains approximately 11,000 

images registered under an ambient illuminant having a neutral grey sphere attached to 

the camera. This sphere is used as a ground-truth to estimate the illuminant color in the 

scene. The goal of our experiment is to determine the accuracy of the retrieved scene 

illuminant. For all images in the datasets, we measure how close the estimated illuminant 

is equivalent to the actual color of the scene using the angular error evaluation: 

ε = cos−1 eg ⋅ee

eg ⋅ ee









                               (5.7) 
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where ௚݁  and ݁௘  are the color of the light source and the color of the estimated 

illumination respectively, and || . || denotes the Euclidean norm. 

The following figure compares the result of using the proposed color constancy method 

with other proposed method in the literature including Shade of Grey [Finlayson, 2004], 

Grey Edge [van de Weijer, 2005], and Grey World [Brooks, 1985]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input image Ideal correction 
  

Proposed method (1.38°) Shade of grey (7.55°) 
  

Grey Edge (5.16°) Grey World (11.13°) 
  

Figure 5.1 The results of the proposed algorithm compared to other color constancy methods on the real-
world dataset. The illumination angular error is shown under each image. 
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Input image Ideal correction 
  

Proposed method (2.32°) Shade of grey (3.03°) 
  

Grey Edge (2.85°) Grey World (5.25°) 
  

Figure 5.2 The results of the proposed algorithm compared to other color constancy methods on the real-
world dataset. The illumination angular error is shown under each image. 
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Input image Ideal correction 
  

Proposed method (0.21°) Shade of grey (1.63°) 
  

Grey Edge (2.12°) Grey World (8.53°) 
  
 
 
Figure 5.3 The results of the proposed algorithm compared to other color constancy methods on 
the controlled indoor illumination dataset. The illumination angular error is shown under each 
image 
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Input image Ideal correction 
 

  

Proposed method (5.72°) Shade of grey (24.28°) 
 

  

Grey Edge (23.65°) Grey World (33.11°) 
 

  

Figure 5.4 The results of the proposed algorithm compared to other color constancy methods on the 
controlled indoor illumination dataset. The illumination angular error is shown under each image. 
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CHAPTER VI 

Conclusion 

 

This dissertation established a new mathematical framework for the separation of 

specular and diffuse reflectance in color images, which was the research focus of Chapter 

3. This framework integrated the principal component analysis with a newly introduced 

mean-shift decomposition technique that resulted in key analyses of the inverse-intensity 

chromaticity space and in subtle but powerful variations of its dynamic range. This 

approach relies mainly on image reflectance correlations in defining a suitable linear 

expression that separates a scene image into two distinct sets of image reflectance 

representing the diffuse and specular image pixels. As structured, the approach described 

relies solely on image color information of dichromatic surfaces without requiring 

segmentation procedures, which is viewed here as a major contribution.  

The results in applying this mathematical framework for the separation of specular and 

diffuse reflectance in color images clearly reveal distinct characteristics of the specular 

and the diffuse pixels, which only add credence to the merit of this new method. More 

importantly, Chapter 3 proved that the method used for iteratively eroding the specular 

component at each pixel shows a realistic outcome that even in the histogram of these 

pixels intensity distribution, one could see a continuity akin to a same real-world object 

but without its specular content.  In other words the rendering after removal of the 

specular component is true like.  In fact, it was almost astounding how natural the 

Specular Removal process seemed when a cross section of a given image is observed (i.e., 

the color distribution in a given image line that goes through the diffuse and into the 
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image part where the specular part has been removed). This natural rendering is 

maintained as was proven in all three channels (Red, Green and Blue). 

Furthermore, a scene illumination rendering technique based on the specular/diffuse 

separation concept was newly developed solely based on local color information, The 

results obtained showed that the suggested method renders any type of scenes with 

surfaces represented by the dichromatic reflectance model.  These results serve as 

additional evidence to the merits of the Mean-Shift Decomposition technique that was 

devised to separate the image reflection components based on the image chromaticity 

constituent distribution in the Inverse-Intensity Chromaticity Space.  These results were 

obtained while still maintaining the inner intrinsic image components unmarked, 

contributing significantly to the realistic renderings that were accomplished.  

This research endeavor also showed that by remodeling the shape of the specular 

reflection cluster, it became possible to render the illumination attributes characterizing 

any illuminated scene image. Finally, the possibility is also given for rendering different 

illumination effects depicting real-world lighting conditions.  

In view of these findings, this dissertation also laid out the framework for a novel color 

constancy method based on the dichromatic reflectance model. This showed that by 

extracting the most prominent reflectance components in a scene image, the proposed 

method was able to determine a good approximation of the canonical illuminant. The 

MSD introduced in chapter III was again used as an integrated module to decompose the 

image reflectance components into two distinct clusters, one representing the diffuse 

reflectance distribution and second representing the specular reflectance distribution. In 

addition, the specular reflectance components were evaluated using an innovative voting 
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scheme to extract the most dominant reflectance component reflecting the true illuminant 

chromaticity. This small set of reflectance was then analyzed to find the reflectance 

components that correspond most to the illumination color. Experimental results show a 

good improvement over the most used color constancy methods found in literature.  

Recall that in the axis transformation that was  to facilitate the linearization of the 

reflection data stretching process needed for illumination modeling, thresholds to 

remodel the specular component values.  This process was important in order to achieve 

the desired rendering effect. Although the results were near ideal, the threshold values 

were approximated to render each input image channels of the white reference patch. 

This simulates the effects generated by the real-illuminants (as shown in the estimated 

image column).  It would have been even more appealing if such thresholds were 

mathematically generated on the basis of the inverse-intensity chromaticity space, a space 

that was used to analyze the relationship between illumination color and image intensity. 

Furthermore, another important issue that was not fully resolved in this dissertation is the 

definition of the exact distance that estimates the shifting interval between each specular 

element and its new diffuse value, an important step for better diffuse reflectance 

estimation. 

Another important step that needs further consideration is the exploration of applications 

where specular illumination reflections are restricted. Different chromaticity based 

decomposition methods need to be investigated more thoroughly to accurately 

disassociate both reflections components for this kind of illumination situations. 
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