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ABSTRACT
Crowdsourced data can effectively observe environmental and urban ecosystem processes.
The use of data produced by untrained people into flood forecasting models may effectively
allow Early Warning Systems (EWS) to better perform while support decision-making to
reduce the fatalities and economic losses due to inundation hazard. In this work, we develop
a Data Assimilation (DA) method integrating Volunteered Geographic Information (VGI) and
a 2D hydraulic model and we test its performances. The proposed framework seeks to extend
the capabilities and performances of standard DA works, based on the use of traditional
in situ sensors, by assimilating VGI while managing and taking into account the uncertainties
related to the quality, and the location and timing of the entire set of observational data. The
November 2012 flood in the Italian Tiber River basin was selected as the case study. Results
show improvements of the model in terms of uncertainty with a significant persistence of the
model updating after the integration of the VGI, even in the case of use of few-selected
observations gathered from social media. This will encourage further research in the use of
VGI for EWS considering the exponential increase of quality and quantity of smartphone and
social media user worldwide.
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1. Introduction

Hydrologic and hydraulic modeling for rainfall-runoff
and river flow routing simulations are currently imple-
mented within Early Warning Systems (EWS) for
managing and mitigating the devastating impact of
floods in urban ecosystems (e.g. Krzhizhanovskaya
et al. 2011; Alfieri, Pappenberger, and Wetterhall 2014;
Girons Lopez, Di Baldassarre, and Seibert 2017). EWS
generally incorporate Data assimilation (DA) algo-
rithms for managing the uncertainty of physically
based river channel flow simulations towards more
accurate and timely efficient forecasting of flood wave
propagation along fluvial valleys. DA supports hydro-
dynamic modeling for making optimal use of the dif-
ferent and diverse water stage observation systems.
Assimilation of river flow observations (McLaughlin
2002; Moradkhani et al. 2005; Liu and Gupta 2007)
and remotely sensed data (Matgen et al. 2010;
García-Pintado et al. 2013) constitute the two main
components of DA-based EWS. However, while in-
channel levee-protected river high flows are easier to
forecast using 1D hydraulic models, especially in
gauged systems, several challenges affect DAwhen deal-
ing with over-bank distributed floodplain flow propa-
gation. This issue is mainly affecting ungauged basins
but also gauged rivers considering the lack or uncer-
tainty, when available, of distributed out-of-channel

water level sensors and remotely sensed information.
In this regard, remote sensing technology is progressing
at an unprecedented pace with radar and optical images
that are available with Earth Observation (EO) data and
platforms that capture flood dynamics from the global
to the local scale. Nevertheless, flood modeling is still
a pivotal asset of EWS considering that EO data are not
timely available for the satellite orbit revisit time and
vegetation cover that impact optical images. As a result,
research on novel DA frameworks that integrate out-of-
channel flood flow observations, making optimal use of
all the diverse potential water observation information
is, thus, crucial for more effective and accurate numer-
ical simulations supporting EWS in understanding and
forecasting hazardous events.

Among the innovative source of inundation obser-
vations, data gathered by citizens, or crowdsourced
data, are characterized by great potential, but also
a significant challenge. Georeferenced information pro-
duced by citizens is now largely and freely available
thanks to the spreading of smartphones and social
media users, even in developing countries (Hilbert
2016). Spatial information is voluntarily collected by
citizens and published online using social networks
(e.g. Facebook, Instagram, etc.). Additionally, the
increasing number of custom-made platforms and
web applications is demonstrating the need and
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importance of user-driven flood observations (e.g.
Horita et al. 2015). This novel source of data seems to
be very promising for supporting flood forecasting from
global to local scales, but significant efforts are still
needed before using such data in practice. Several pro-
jects tested the use of water observations taken by
citizens for water resource and risk management (e.g.
Buytaert et al. 2014; Van Meerveld, Vis, and Seibert
2017), but the use of crowdsourced data for real-time
flood forecasting have not been fully explored yet.

Flickr and Twitter seem the most used social media
for getting crowdsourced information related to disas-
ters, allowing all public data to be found and extracted
using their Application Programming Interfaces (API).
Images captured from video streams by Youtube are
also used. In this context, the analysis and interpretation
of the media content for organizing, collecting, posi-
tioning and extracting relevant information is an active
research topic with specific regard to the extraction of
geotagged information from social media streams (e.g.
Schindler et al. 2008; Luo et al. 2011).

Different definitions and acronyms are usually
used to refer to water, territorial and environmental
monitoring data gathered and disseminated by citi-
zens. Volunteered Geographic Information (VGI,
Goodchild 2007) refers to the general principle of
citizens volunteering for collecting georeferenced
information and is commonly used within the geos-
patial and GIS communities. Other definitions and
acronyms are also adopted without strictly consider-
ing the spatial reference, such as Crowdsourced Data
(CD), User Generated Content (UGC). For a more
comprehensive list see Table 1. In this manuscript, we
select and use the acronym VGI.

Several research works present recent findings
concerning the use of VGI for water resource and
risk management (e.g. Bonney et al. 2014). Buytaert
et al. (2014) give some examples of citizen engage-
ment in hydrology and water science specifying also
the type of data that are continuously collected by
citizens and that may serve this purpose.

Outcomes of these projects and researches are
encouraging in demonstrating the possibility of effec-
tively observing climatic and hydrologic processes
(Muller et al. 2015). Social media data have been used
for directly creating deterministic or probabilistic flood
maps from citizen-observed water levels (McDougall
2011; McDougall and Temple-Watts 2012; Fohringer
et al. 2015), stream discharges (Le Boursicaud et al.
2016; Le Coz et al. 2016), flood extent (Schnebele et al.
2014; Cervone et al. 2016; LeCoz et al. 2016; Li et al. 2018;
Rosser, Leibovici, and Jackson 2017), or just their geo-
tagged position (Eilander et al. 2016; Brouwer et al. 2017;
Poser and Dransch 2010; Triglav-Čekada and Radovan
2013; Schnebele and Waters 2014; Sun et al. 2016;
Holderness and Turpin 2015).

Crowdsourced data have been also integrated for
validating flood models. Aulov, Price, and Halem
(2014) developed a platform (AsonMaps) for a rough
estimation of water levels and flood/non-flood areas
early validation of the surge model forecasts. Fava
et al. (2014) integrated the voluntary prediction models
with short-term information, to fill the gaps of the
traditional observed data for improving the flood fore-
casting. Kutija et al. (2014) gathered information from
a web page for validating and calibrating
a hydrodynamic model. Smith et al. (2015) validated
GPU accelerated hydrodynamic modeling with crowd-
sourced information for real-time flood forecasting in
an urban environment. Yu, Yin, and Liu (2016) vali-
dated a 2D urban hydro-inundation model integrating
traditional observation with reported localized flood
incidents at the street or house level by the public.
Mazzoleni et al. (2015), Mazzoleni et al. (2018) demon-
strated the benefits of assimilating both traditional and
VGI observations with simplified hydrological and
hydraulic modeling for improving the flood prediction.
Nevertheless, further research is needed to test the
assimilation of crowdsourced data in real scenarios
adopting more advanced models and considering
other uncertainties related to VGI, such as the ones on
the location and the timing.

The principal issue affecting the use of VGI for
flood analysis is the uncertainty and low reliability
resulting from the use of such data. While VGI are
still considered as qualitative information, there is
a significant potential of using VGI as quantitative
water observation information, but the uncertainty of
the information has to be carefully evaluated. The
uncertainty analysis is expressed as a function of the
citizen technological equipment, the experience, the
credibility (e.g. random citizens versus trained volun-
teer) and any further information characterizing the
citizen-driven VGI gathering process that impact the
accuracy, completeness and precision of the water
observation (Tulloch and Szabo 2012; Bordogna
et al. 2014). Reliability assessments require ad hoc

Table 1. List of definitions for data gathered from citizens
(adapted from Assumpção et al. 2018).
Name Source

Citizen science Irwin 1995
Citizen observatory Degrossi et al. 2014
Citizen sensing Foody et al. 2013
Trained volunteers Gallart et al. 2016
Participatory data collection methods Michelsen et al. 2016
Crowdsourcing Leibovici et al. 2017
Participatory sensing Kotovirta et al. 2014
Community-based monitoring Conrad and Hilchey 2011
Volunteered geographic information Goodchild 2007
Eyewitnesses Poser and Dransch 2010
Non-authoritative sources Schnebele et al. 2014
Human sensor network Aulov, Price, and Halem 2014
Crowdsourced geographic information See et al. 2016
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statistical tools to evaluate the random error and bias
to be assigned to the observation (e.g. Bird et al.
2014). Data reliability can be assessed considering
not only the expertise and methodology that charac-
terizes the data source but also the time and the
position in which that information is sensed and
processed. To address this issue, semantic rules gov-
erning what can occur at a given location can be used
as a filter for observations (Vandecasteele and
Devillers 2013) or taking the mean and the standard
deviation of compared measurements at predefined
time windows (Mazzoleni et al. 2018).

While an exponentially increasing number of inves-
tigations are working towards a quantitative use of
crowdsourced information (Assumpção et al. 2018),
we could not find many researches attempting to
integrate VGI into DA frameworks for improving
EWS performances. Additionally, the few case studies
implementing VGI for DA-based flood forecasting
adopt simplified hydrologic and hydraulic models,
and 1D hydraulic algorithms in particular (Mazzoleni
et al. 2015, 2018). Exploiting the full potential of
citizen-driven flood hazard and risk management and
modeling systems, also integrating VGI, require
a comprehensive simulation of the floodplain spatially
distributed water dynamics that 1D hydraulic models
cannot provide. VGI and 2D hydraulic models shall
be, thus, jointly considered and implemented for DA
of EWS frameworks that effectively consider all the
diverse data sources as well as the physical and human
processes hat interplay towards more accurate and
efficient flood early warning and inundation hazard
management.

This research tries to address this important miss-
ing component of VGI use for flood modeling studies

by developing a research that: (a) implement and test
a DA framework using VGI and a 2D hydraulic
model; (b) use VGI effectively for flood risk manage-
ment; and (c) use a real case study to evaluate advan-
tages and limitations of the proposed approach.

The paper is organized as follows: In Section 2 the
case study of the Tiber River is presented, with specific
subsections on input data and available VGI for the
selected flood event. In Section 3 the models and meth-
ods are described, with specific regard to the forecasting
hydrologic and hydraulic models and the DA metho-
dology, focusing on the modeling and the observational
error analysis. Results are, then, presented in Section 4
and conclusions are given in Section 5.

2. Case study

The selected case study is the Tiber River basin,
the second largest catchment in Italy. In particular, the
fluvial segment from Orte Scalo to the Castel Giubileo
dam is selected, located just upstream of the city center
of Rome in central Italy (bounding box of the domain
ranges between 42.6° and 43.85°N and 11.8°–12.9° E in
the Lazio region, Figure 1). The catchment area at the
Orte Scalo node has an extension of 5881 km2, with
several minor tributaries contributing downstream to
the main river (such as Treja, Farfa, Corese, Aja Di
Poggio tributaries), and only one main tributary repre-
sented by the Nera river (4180 km2) that lead to an
overall extension of the basin at the Castel Giubileo
downstream node of 15,086 km2. Elevations for the
entire basin range from a maximum of 2470 m above
sea level (a.s.l.) to a minimum of – 6 m a.s.l. with an
average elevation of 524 m (a.s.l.). Land use is predo-
minantly associated with cultivated lands (~55%) with

Figure 1. The Tiber River basin case study: river basin boundary and network with identification of the main boundary
conditions of the domain of interest. The right insets include images from recent flood events in the Orte-Castel Giubileo
floodplain.
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also forests (~40%) and urbanized areas (~5%). The
climatic and hydrologic regime of the Tiber River
basin is characterized by variable and intense precipita-
tion with most of the total annual rainfall (average
yearly cumulated precipitation of 1020 mm/year,
Romano and Preziosi 2013) occurring in autumn and
spring, following a Mediterranean regime. The Tiber
River is often subject of flooding conditions, which
impact the selected river segment and also the historical
city center of Rome (Tauro et al. 2016; Nardi, Annis,
and Biscarini 2018a). The hydrologic regime of the
upstream boundary condition is governed by the
Corbara dam, located 40 km from the Orte Scalo
node, and the Paglia River confluence, just downstream
of the Corbara dam, that control the flooding routing
dynamics of the Orte Scalo – Castel Giubileo fluvial
valley. This river reach is strategically important for
the flood risk management of the Rome city center,
considering the flood wave expansion and attenuation
within the Orte-Castel Giubileo floodplain.

2.1. Available material and data

The increasing frequency of inundation events in the
Tiber River basin (Brunetti et al. 2004; Fiseha et al. 2014)
motivated the development of a flood hazard modeling
and mapping updating program (also known as PS1),
that was commissioned in 2012 by Lazio Region and
Tiber River Basin Authority. The hydrologic and
hydraulic modeling study consisted in the gathering,
processing and modeling of updated topographic and
bathymetric data (Table 2) for the creation of a robust
and accurate geospatial dataset representing the geome-
try of the fluvial bottom. Additionally available datasets
consist in the river discharge/stage rating tables and
observation of recent flood events that were gathered
from the Lazio Region Civil Protection agency for the
main bridges and weirs. Land use data (Corine Land
Cover at the fourth level for the whole national territory
provided by Istituto Superiore per la Protezione e la
Ricerca Ambientale, ISPRA) were also gathered for the
hydrologic parametrization of floodplain landscape
within the domain of study. Hydraulic parameters (e.g.
roughness parameters) were calibrated using observa-
tion from recent floods to build a consistent flood wave
routing model that was implemented to simulate the
ground effect of synthetic design hydrographs for

predefined recurrence intervals (50, 200 and 500 years
return time). The different maximum potential flooding
extents were consequently identified upon the hydro-
logic forcing scenarios for urban planning and regional
zoning purposes. The hydrology and the implemented
hydraulic model, represented by a 2D hydraulic algo-
rithm, are gathered and used as reference material and
methods for this research.

2.2. Crowdsourced data

The 2012 flood event was selected as a reference test
case. VGI from structured volunteering projects (e.g.
phone apps, custom web apps) are not available for the
study domain. Nevertheless, social network users are
generally very active considering the high density of
population that characterizes the Tiber fluvial valley in
the proximity of the city of Rome. Unconventional data
sources, Youtube, in particular, were used. Twitter
Search API was also queried, but valuable information
for a DA implementation was not found. From the
several available video streams, a small subset of videos
of the flooding was found of particular interest in the
visual observation of water levels in recognizable loca-
tions. The detailed georeferencing of the images was
possible using the tags of the posts and also bymatching
the crowdsourced picture with google street view. The
geocoding of the captured media location was, thus,
finalized and a small number (less than 20) of flood
observation nodes were identified within the computa-
tional domain in correspondence of three urbanized
areas (Orte Scalo, Torrita Tiberina and Monterotondo)
that were severely affected by the Tiber River flooding
(Figure 2). Additional-crowdsourced images were gath-
ered from the internet, news articles and social network
(Twitter in particular), providing additional-
crowdsourced material, even if the selected flood event
took place six years earlier than this work. The presented
web crawling activity, with youtube video extraction
combined with internet search using as keywords the
date, the place and common hashtags (e.g. #Tiber,
#flood), supported the identification of a total of three
water observations (Table 3) to be considered suitable
for being used as potentially quantitative observation for
the proposed procedure.

The selected VGI are characterized by uncertain-
ties in their spatial and temporal localization. The

Table 2. Topographic data sources and layers.
Data
type Name

Data
format Data content

Resolution
specs. Notes/source

Vector Surveyed cross
sections

Shapefile N/A N/A Sparse and inconsistent covering in space and time/
Tiber River basin authority

Raster Lidar DTM ASCII
grid

Digital Terrain model of the fluvial buffer
for the entire domain

1 m Minister of environment PST dataset

Raster Regione Lazio
DTM

ASCII
grid

Digital Terrain model of the entire basin 5 m Regione Lazio
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positions of the VGI images were verified by visual
comparison with Google Maps Street View images.
For these locations, high-resolution digital terrain
elevation of the LiDAR data was available for evalu-
ating the elevation in dry condition. A visual analysis
of the water depths by the comparison of wet (VGI
images) versus dry (Google Maps Street View images)
conditions of the affected areas was performed.

The methodology can be replicated in near real
time for the same purpose adopting the Application
Programming Interface (API) of the social media plat-
form that allow to filter geotagged information select-
ing keywords related to the flood event. This process
can be automatized using semantic filtering and deep
learning. Tkachenko, Jarvis, and Procter (2017)
demonstrated the potential of using polysemous tags
of images in the Flickr database as support of early
warning of an event before its outbreak. Brouwer et al.

(2017) used the Twitter streaming API for spatially
and semantically filter tweets related to the analyzed
flood event. Jiang et al. (2018) adopted transfer learn-
ing and lasso regression for waterlogging depth extrac-
tion from video images. An advanced algorithm for
extracting information from the twitter platform for
disaster response was recently developed, such as
TAGGS (de Bruijn et al. 2018).

3. Models and methods

3.1. Flood modeling

The selected inundation model is based on the com-
bination of a hydrological rainfall-runoff model and
of a 2D river flow routing algorithm.

The hydrologic model is based on the Instantaneous
Unit Hydrograph (IUH) rainfall-runoff model imple-

menting the width function (WF); theWF characterizes
the shape of the runoff response to the unit precipitation
pulse by analyzing the travel time distribution of surface
runoff at the basin scale (Grimaldi, Petroselli, andNardi

Figure 2. Location of the crowdsourced images selected for the November 2012 Tiber River flood event.

Table 3. Selected VGI images.
No. Location Source Date – Time

1 Orte Scalo Youtube 14/11/2012–10:00 am
2 Torrita Tiberina Youtube 14/11/2012–09:00 am
3 Monteronondo Youtube 14/11/2012–13:30 am
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2012). In particular, the WFIUH implements DEM-
based terrain analysis, interpolation and processing for
simulating the runoff response to the precipitation input
using a IUH that is expressed as a function of the
geomorphic structure of the river network and prede-
fined surface flow dynamics (i.e. channel and hillslope
surface flow velocities assigned as a function of catch-
ment feature morphologic and land use properties)
(Rodríguez-Iturbe and Valdes 1979; Grimaldi, Teles,
and Bras 2004, Grimaldi, Teles, and Bras 2005;
Petroselli and Grimaldi 2018). This hydrologic model,
that was calibrated using real events, is able to transform
rainfall observations, gathered from the Tiber basin
monitoring network, into a runoff for estimating the
hydrograph to be used as upstream boundary condi-
tions for the hydraulic routing model.

The selected 2D river flow routing algorithm is the
FLO-2D PRO software. It is a physically based process
model able to simulate the flood wave routing over
unconfined flow surfaces (2D equations) using the
dynamic wave approximation to the momentum equa-
tion (O’Brien, Julien, and Fullerton 1993). FLO-2D
routes the flood hydrograph on the gridded floodplain
surface simulating the channel flow propagation and
the channel-floodplain overbank exchange, and the
interaction of floodplain flow dynamics with urban
features and obstructions (e.g. levees, culverts, bridges,
embankments, buildings). FLO-2D is a volume conser-
vation model, using the Manning coefficient to repre-
sent terrain roughness, solving the De Saint Venant
equations. FLO-2D is defined as a Quasi-2D model
considering that the channel is represented using cross
sections and a 1D geometry linked to the unconfined
gridded surface where the flow, overflowing from the
1D channel, is propagated using a fully dynamic 2D
wave routing.

For the presented case study, a grid resolution equal to
150 m was set, interpolating topographic data from high
resolution 1-meter LiDAR dataset. This resolution
proved to be a good compromise between computational
effort and accuracy of results (Peña and Nardi 2018). In
situ surveyed cross sections were adopted for represent-
ing the geometry of the river channel. Boundary condi-
tions were assigned considering both the flow
measurements in the upstream part of the Tiber River
and the flow hydrographs from 15 ungauged basins
simulated by the adopted WFIUH hydrologic model.
The computational domain was optimized adopting
a hydrogeomorphic model (Nardi, Vivoni, and
Grimaldi 2006; Nardi et al. 2018b; Morrison et al. 2018)
according to Annis et al. (2019) approach.

The distribution of the Manning values for the
floodplain surface within the study domain was eval-
uated using reference values extracted from literature
(varying between 0.02 and 0.20 m–1/3s) associating
roughness conditions to land use classes of the
Corine Land Cover project at the fourth level

provided by the Italian Institute for Environmental
Protection and Research (ISPRA) for the whole
Italian country. Manning values of the channel were
calibrated and validated considering three flood
events (2012 flood event for calibration; 2005 and
2010 flood events for validation) and four stage
gauges stations (Ponte Felice, Stimigliano, Nazzano,
Ponte del Grillo) comparing the observed water
depths with the simulated ones. Reasonable values
of Nash-Sutcliffe-Efficiency coefficients (NSE varying
between 0.4 and 0.9), Pearson correlations
(0.85–0.98) and Bias (0.98–1.10), were obtained con-
firming the validity of the calibration procedure.
However, lower values of NSE (0.2–0.4) for the 2005
and 2010 event were obtained for Nazzano and Ponte
del Grillo stations.

3.2. DA model

In this work, the Ensemble Kalman Filter (EnKF)
method (Evensen 2003) is applied to the selected
Quasi-2D hydraulic model. The EnKF model is
a sequential DA method that estimates the unknown
model state (e.g. flood flow depth) based on the
available observations at each time step. Specifically,
the updated probability density function (pdf) of the
model state is given by a combination between the
data likelihood and the forecasted pdf of the model
states by means of a Bayesian update. The forecast
(a priori) state error covariance matrix is approxi-
mated propagating the ensemble of the model states,
considering its uncertainties, from the previous time
step. At the same time, an ensemble of observations
at each update time is generated according to their
error distribution introducing a noise term. If a set of
observations ytþ1 is taken at time t þ 1, these can be
assimilated into the model. The observation for the
i-th ensemble member can be expressed as:

ŷitþ1 ¼ ytþ1 þ ηitþ1; ηitþ1,N 0;Ry
tþ1

� �
(1)

where ytþ1 ¼ H xtþ1; θð Þ is the observation at time
t +1, H . . .ð Þ is a propagator that links the state vari-
ables to the measured variables providing the expected
value of the output given the model state and para-
meters. ηitþ1 is the noise, considering a random normal

distribution with zero mean and variance Ry
tþ1, usually

considered time dependent.
The state variable xi�tþ1 of forecast model in the

EnKF, for the i-element of the ensemble at a time t þ
1 can be expressed as:

xi�tþ1 ¼ M xiþt ; Iit; θi; t
� �þ wi

t i ¼ 1; . . . ; n (2)

where xiþt is the ith updated ensemble member at time
t, wi

t is the model error of the ith ensemble member,
generated randomly. The forcing input Iit and the
parameters θi of the ith ensemble member are
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generated starting from the deterministic value and
adding a random normal error with zero mean and
a certain variance, namely Iit ¼ It þ N 0; SIt

� �
and

θi ¼ θþ N 0; Sθ
� �

. From the a priori estimate of the
state variable �x�tþ1, the posterior estimate �xþtþ1 is cal-
culated using the observation ytþ1 performing a linear
correction with the Kalman filter to the forecasted
state ensemble members:

xiþtþ1 ¼ xi�tþ1 þ Ktþ1 yitþ1 � ŷitþ1

� �
(3)

where Ktþ1 is the Kalman gain matrix, expressed as:

Ktþ1 ¼ P�
tþ1H

T

HP�
tþ1HT þ Ry

tþ1

(4)

where P�
tþ1 is the ensemble covariance matrix; H is

the observation transition operation and Ry
tþ1 is the

variance of the observation error.
In this work, the state variable xt is the water depth

in a specific location of the computational domain. In
case of crowdsourced information, like a photo depict-
ing water depths or a quantitative description of flood
depths from any web content, the state variable can be
located both in the channel or more likely in the
floodplain. The non-linear function (. . .) introduced
in Equation (2) is the hydraulic model engine, whose
forcing term It is the ensemble of the flow hydro-
graphs, and the parameters θ are the channel and
floodplain roughness. The model error wt is estimated
considering the uncertainties related by the input for-
cing and the model parameters. The observation yt is
a water depth value gathered from the VGI. For this
reason, the observation transition operation H is an
identity matrix, being a direct relation between state
variable and observation. The perturbation vt to be
assigned to the observation ensemble is strongly
dependent on the nature of the observation, as
described in Section 3.4. The correction of the model
states in the 2D hydraulic domain is enforced into the
floodplain cell where the observation is located, but
also to both the closest channel cell and to the flood-
plain cells that are hydraulically connected to the
channel cell. A propagation of the correction upstream
and downstream is, thus, performed adopting a gain
function similar to Madsen and Skotner (2005) since
the correction of only one channel cell would bring
instability to the flood wave routing model. This cor-
rection propagation model is also weighted by imple-
menting a spatially varying correction factor that
varies as a function of the distance of the corrected
location. Specifically, the correction propagation func-
tion weights are proportional to the inverse of the
distance between the analyzed channel cell and the
channel cell connected to the floodplain cell where
the observation is located. In the following subsections,
the procedure for taking into account the model errors
(Section 3.3) and the observation errors (Section 3.4)

in order generate the ensembles of the forecast state
variables and the observations to be implemented in
the EnKF framework are illustrated. Section 3.4 pre-
sents one of the main novelty of the proposed work,
concerning the approached tested for managing the
uncertainties of VGI into the DA flood EWS approach.

3.3. Errors of the flood forecast model

The EnKF takes in to account the uncertainty related
to the model errors through a realization of the
model results and in particular by perturbing:

the forcing input given by the static sensors and the
hydrologic model;

the model parameters that is the channel rough-
ness expressed by the Manning values.
Following Weerts and El Serafy (2006), the i-element of
the hydrologic input at time t is generally expressed
with as follows:

Qs
t;i ¼ QS

t þ N 0;Rtð Þ (5)

where QS
t is the flow value given by the observation

or by the hydrologic model, N 0;Rtð Þ is a noise term
normally distributed with zero mean and the variance
Rt that depends on the type of hydrologic input and
can be expressed as:

Rt ¼ αt � Qtrue
tð Þ2 (6)

where αt is the coefficient of variation related to the
uncertainty of the input discharge.

The uncertainty related to discharge observation
(αStS;t) is given by the sum of two different compo-
nents (Clark et al. 2008): the estimation of the water
level from the static sensor (EWL) and the transfor-
mation of the water level into discharge with the
rating curve (ERC). In this case study, αStS;t has
been imposed equal to 0.12, considering the flow
rating curve component equal to 0.1 (Weerts and El
Serafy 2006) and the component due to the water
level estimation equal to 0.02 (Mazzoleni et al. 2015).

The uncertainties affecting the hydrologic model,
like the value of the coefficient of variation αI , are
related to different factors, such as the measured rain
and its distribution at the basin scale, the simplified
modelling of the flow routing, the neglected physical
process (e.g. groundwater flow), the mud and debris
flow, the antecedent soil moisture conditions among
others. After a calibration analysis of the abovemen-
tioned hydrologic model for four small-gauged basins
during the 2012 flood event, here not reported for
sake of brevity, the coefficient of variation αI is
assumed to equal to 0.3. The uncertainty related to
the model parameters is considered as follows (Clark
et al. 2008; McMillan et al. 2013):

psi ¼ ps þ U �εP � ps;þεP � psð Þ (7)
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where psi is the perturbed model parameter for the
i-element of the ensemble, ps is the model parameter
and εP is the fractional parameter error. In this case,
the channel roughness has been chosen as the per-
turbed parameter and εP is assumed equal to 0.25.
This constrains the value Manning of the channel
between 0.30 and 0.50 m–1/3s.

3.4. Observation errors in crowdsourced data

The observation errors related to VGI are character-
ized by three different factors: location error, timing
error and the water depth estimation error.

3.4.1. Location error (errVGIloc )
DA models normally consider the location of obser-
vation ascertain. This is reasonable for typical ocea-
nographic or hydrologic measurement methods, so
the issue related to a potential location error is still
not much investigated in the literature. Locational
information of VGI, for example, tweets, can be
uncertain because geotags are available for only
a very small number of tweets and may significantly
differ from the actual location of the observation
(Hahmann, Purves, and Burghardt 2014).

If the VGI is a picture, even if the geotagged
position is in a wrong place, the image could provide
landmarks to place the correct position of the obser-
vation, whose location error can be lower than the
resolution of the large-scale hydraulic model, thus
negligible. If the VGI is a text message from a social
platform or it is an image without any recognizable
landmark, the geotagged position of the VGI can vary
considerably depending on its type (McClanahan and
Gokhale 2015; Brouwer et al. 2017). The perturbation
of the VGI observation given by the positioning error
for the i-element of the ensemble can be expressed as
a noise error normally distributed with zero mean
and variance RVGI

loc :

errVGIloc;i ¼ N 0;RVGI
loc

� �
(8)

In the adopted hydraulic model, this error can be
implemented moving the position of the cells to
which a VGI observation is assigned considering the
number of times the location error of the i-element of
the ensemble is greater than the resolution of the
model both for x and y coordinates (Figure 3):

XVGI
i ;YVGI

i

� � ¼ XVGI þ N 0;RVGI
loc

� �
;YVGI

�
þN 0;RVGI

loc

� �Þ (9)

where XVGI and YVGI are the North and East coordi-
nates of the geotagged VGI.

The variance RVGI
loc varies depending on the type of

geotagging. Considering a similar approach suggested
by Sengupta et al. (2012), for the time step in which an
observation is assimilated, if the location of the

observation related to i-element of the ensemble
XVGI
i ;YVGI

i

� �
is different to XVGI;YVGIð Þ, the observa-

tion at this location is derived considering how it could
be if an observation at XVGI

i ;YVGI
i

� �
is assimilated.

Hence, the water depth at a location XVGI;YVGIð Þ is
given by:

WDþ
XVGI ;YVGIð Þ;tþ1 ¼ WDþ

XVGI
i ;YVGI

ið Þ;tþ1

þ WD�
XVGI ;YVGIð Þ;tþ1 �WD�

XVGI
i ;YVGI

ið Þ;tþ1

� �

(10)

In other words, the observation at the original loca-
tion XVGI;YVGIð Þ is measured starting from the
observation at the perturbed location XVGI

i ;YVGI
i

� �
and considering the reciprocal water level differences
before the updating step of the DA. The selected VGI
data, being images in which landmarks are clearly
visible, are affected by a low location error whose
variance is imposed equal to RVGI

loc = 100.

3.4.2. Timing error (errVGItime)
The timing error, that is the error of assigning a specific
time to a VGI information, is characterized by two
components: (a) The error related to the wrong time
set in the device: this error is not more than few seconds
or few minutes and can be negligible. (b) The lag time
between the information acquisition and the user post-
ing time. For (b), if the VGI data has not text reporting
the exact time of the information to be used or this
information is imprecise, the time between the infor-
mation acquisition and its sharing by the user can be
considerably high, i.e. several hours. In order to take
into account this error, the proposed approach tests an
error-induced timing of the VGI.

The time step related to the VGI observation of the
i-element of the ensemble can be perturbed using the
following expression:

tVGIi ¼ tVGI þ N 0;RVGI
time

� �
(11)

where N 0;RVGI
time

� �
is a noise error normally distribu-

ted with zero mean and variance RVGI
time[hours].

If at time step tk the i-element of the ensemble is
affected by a VGI observation, its correspondent per-
turbed observation is directly given by Equation (7).

Figure 3. Example of perturbation error due to location for
VGI observation.
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If the i-element of the ensemble is not affected by an
observation at time tk but it has been already affected
by the observation at time tk�1, its water depth obser-
vation at time tk should be the value assumed in case
of a correction given by Equation (7) at time tk�1.
Lastly, if the i-element of the ensemble is not affected
by an observation at time tk but it will be affected by
the observation at time tkþ1, its water depth observa-
tion at time tk should be the value assumed by its
variable if no updating has been performed to that
simulation at time tk (Figure 4). In this work, the
variance RVGI

time associated with the time location
related to the VGI images has been imposed equal
to 30 min for each image.

3.4.3. Water depth derivation (errVGIwd )
Water surface elevation has been derived by adding
the water depth observed from VGI data to the local
ground elevation (Fohringer et al. 2015; Brouwer
et al. 2017). Water depths can be derived both from
image interpretation or from text messages describing
the flood dynamics. Brouwer et al. (2017) observed
that water depths mentioned by tweet messages are
generally higher than the water depths derived from
the visual interpretation of the photographs, with
errors lower than 55 cm. However, a statistical test
could not confirm the mean error in water depth was
any different from zero, so the water depth estimation
errors have been simulated using a normal distribu-
tion with zero mean and a standard deviation of
20 cm.

The water surface elevation has been derived as
a sum of the terrain elevation given by the LiDAR
DTM and the depth deduced by the visual interpreta-
tion of the image. The perturbation of the water

surface elevation for the i-element of the ensemble
is assigned as follows:

errwse;i ¼ N 0;RDEMð Þ þ N 0;RDepth
� �

(12)

where RDEM is the variance related to the DEM error,
assigned equal to 0.3 m and RDepth is the variance of
the water depth derivation from visual interpretation,
assigned equal to 0.2 m, as in Brouwer et al. (2017).
However, a lower limit of 0.05 m has been assigned
for the water depth derivation in order not to have
negative or zero values of water depths. The water
depth has been deduced comparing the images dur-
ing the flood with the same images get in dry condi-
tions from Google Street View.

4. Results

Here we present a comparative analysis of the inun-
dation modeling using the proposed approach mak-
ing use of the error correction procedure (updated
model) as respect the model run without the correc-
tion procedure (non-updated model). Figure 5(b)
shows the spatial distribution of the differences
between the mean water depths of the updated as
compared to the no updated simulations. The vertical
correction along the water profile is also represented
in Figure 5(d), while the temporal variation is shown
in Figure 5(c). The persistence of the correction is
about 8 h. Further results of the performance analysis
are reported in Table 4.

These outcomes suggest that a more significant
effect of VGI data for improving the model perfor-
mance can be obtained with the largest number of
observation data, spatially but also temporally distrib-
uted at least every few hours, considering that the

Figure 4. Scheme of the perturbation of the ensemble considering the timing error. The continuous lines are the forecasting
variables; the dashed lines are the auxiliary simulations to set each time step the value of the observation for every ensemble.
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effect of each observation persists for several hours
after its assimilation in the framework.

The correction of the water levels does not con-
siderably affect the flood extension considering the
mean values of the water surface elevation. For exam-
ple, at 9:00 am on 14/11/2012, namely at the time of
the correction of the VGI data from Torrita Tiberina,
the increasing of the flooded areas after the correc-
tion is only equal to 0.079 km2. Figure 5(b) shows the
spatial distribution of the mean water level correc-
tions at the time of the Torrita Tiberina VGI

acquisition. The performances of the overall simula-
tion, in terms of Nash–Sutcliffe efficiency and Person
Correlation, are calculated considering four different
stage gage stations (Figure 6). Since the corrections
are local and persist for few hours, the performance
improvement in case of updated simulation, com-
pared to the no updating, is almost negligible for
the first two stations (in the upstream part of the
basin). On the other hand, a slight improvement
can be appreciated in the downstream part of the
basin.

The effect of the correction procedure is minor, an
expected result considering the number of injected
VGI observations into the DA procedure, but the aim
of the tests, concerning the computational efficiency
and accuracy increase of the 2D flood routing model,
is encouraging. The proposed methodology imple-
menting a DA-based state variables updating process
allowed the 2D hydraulic model to be quite stable
after each correction. This seems promising towards
the adoption of larger spatially distributed datasets of
VGI during flood events.

Figure 5. (a) Location of the VGI image in Torrita Tiberina. (b) Map of the water level correction at the time of the Torrita
Tiberina VGI acquisition (09:00 14/11/2012). (c) Hydrograph of the mean water depths at the Torrita Tiberina channel cell. (d)
Mean water surface elevation profile considering the updated and no updated simulations.

Table 4. Comparison of the means of the observed, simulated
and updated water levels at the location of the VGI
observations.

Location Date – Time

Mean water levels (m)

Observed Simulated Updated

Orte Scalo 14/11/
2012–10:00am

10.43 9.44 9.56

Torrita
Tiberina

14/11/
2012–09:00am

11.74 10.26 10.35

Monterotondo 14/11/
2012–13:30am

17.11 16.45 16.72
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5. Conclusions

In this work, VGI data are used in a DA framework
to investigate potential improvements in the perfor-
mances of 2D hydraulic models for flood forecasting.
A new methodology was tested for taking into
account all the sources of uncertainties of the citizen
information, including the timing and location
errors. This work was motivated by the need for
investigating new sources of information to cope
with data scarcity issues that affect river basin flood
risk management and mitigation globally. In fact,
while expensive ground monitoring systems (i.e.
gauges) seem inaccessible, especially in developing
countries, citizen data are rapidly spreading in
urban areas worldwide (Statista 2017). Nevertheless,
a reliability assessment of VGI observation is a key
factor for their successful integration into flood
hazard forecasting models.

A case study was developed for testing the pro-
posed approach and the November 2012 flood event
in the Tiber River basin was selected for the avail-
ability of traditional flood observations, VGI together
with a calibrated detailed topographic, hydrologic
and hydraulic model. The available flood modeling
was integrated into a novel DA framework using the
EnKF in order to consider the uncertainty related to
the VGI observation. Results show slight, but consis-
tent improvements in the performance of the flood
simulations assimilating VGI, an expected result con-
sidering the few VGI injected into the model. This
encourages the development of additional tests for
evaluating the potentially improved performances in
case studies with a larger number of VGI data.
Integration of spatially distributed VGI in floodplain
domains with other sources of information such as
stage gages and satellite remotely sensed data can be
a challenge for improving the flood forecasting.
Moreover, additional analysis of the timing and loca-
tion errors that characterize these kinds of informa-
tion using a richer data environment for their

validation could give more support on the modeling
of their probability distribution.
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