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ABSTRACT OF THE DISSERTATION 

CHARACTERIZATION, SOURCES, AND TRANSFORMATIONS OF 

DISSOLVED ORGANIC MATTER (DOM) IN FLORIDA COASTAL 

EVERGLADES (FCE) 

by 

Meilian Chen 

Florida International University, 2011 

Miami, Florida 

Professor, Rudolf Jaffé, Major Professor 

Dissolved organic matter (DOM) is one of the largest carbon reservoirs on this 

planet and is present in aquatic environments as a highly complex mixture of organic 

compounds. The Florida coastal Everglades (FCE) is one of the largest wetlands in the 

world. DOM in this system is an important biogeochemical component as most of the 

nitrogen (N) and phosphorous (P) are in organic forms. Achieving a better 

understanding of DOM dynamics in large coastal wetlands is critical, and a 

particularly important issue in the context of Everglades restoration.  

In this work, the environmental dynamics of surface water DOM on spatial 

and temporal scales was investigated. In addition, photo- and bio-reactivity of this 

DOM was determined, surface-to-groundwater exchange of DOM was investigated, 

and the size distribution of freshwater DOM in Everglades was assessed. The data 

show that DOM dynamics in this ecosystem are controlled by both hydrological and 

ecological drivers and are clearly different on spatial scales and variable seasonally. 
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The DOM reactivity data, modeled with a multi-pool first order degradation kinetics 

model, found that fluorescent DOM in FCE is generally photo-reactive and 

bio-refractory. Yet the sequential degradation proved a “priming effect” of sunlight on 

the bacterial uptake and reworking of this subtropical wetland DOM. Interestingly, 

specific PARAFAC components were found to have different photo- and 

bio-degradation rates, suggesting a highly heterogeneous nature of fluorophores 

associated with the DOM. Surface-to-groundwater exchange of DOM was observed 

in different regions of the system, and compositional differences were associated with 

source and photo-reactivity. Lastly, the high degree of heterogeneity of DOM 

associated fluorophores suggested based on the degradation studies was confirmed 

through the EEM-PARAFAC analysis of DOM along a molecular size continuum, 

suggesting that the fluorescence characteristics of DOM are highly controlled by 

different size fractions and as such can exhibit significant differences in reactivity. 
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Introduction 
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1.1 Significance of this study 

      Dubbed as the “River of Grass,” the Everglades are undergoing the world’s 

largest wetland restoration after more than one century of anthropogenic alteration 

(http://www.evergladesplan.org/) The aim is to restore the quality, quantity, timing, and 

distribution of water flow as close as possible to its pristine state. As a unique 

oligotrophic subtropical coastal wetland, the Everglades ecosystem has provided 

diverse habitats for myriads of wild creatures for millennia of years and thus needs to 

be preserved. 

     Among diverse ecological factors, the anthropogenic effects on the Everglades  

ecosystem have altered natural biogeochemical cycles. One critical component of  

these is dissolved organic matter (DOM). This carbon-based substrate is an  

assemblage of complex organic molecules with a wide range of molecular weights  

and chemical characteristics which is ubiquitous in the aquatic environment. DOM  

plays a central role in the biogeochemical cycles of the Florida Coastal Everglades  

(FCE) as it represents a major form of organic matter in watersheds. It fuels the  

microbial loop, attenuates light intensity to protect aquatic vegetation and fauna, and  

controls primary productivity of aquatic organisms (Findlay and Sinsabaugh 2003;  

Hansell and Carlson 2002). Furthermore, DOM also influences fish migration habits,  

drinking water trihalomethane formation, metal speciation and transport, and  

hydrophobic contaminants transport and toxicity in the water bodies (Findlay and  

Sinsabaugh 2003; Stabenau and Zika 2004; Osborne et al., 2007). Although much  
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research has been devoted to DOM studies in the Everglades in recent years (Jaffé et  

al., 2004; Jaffé et al., 2008; Maie et al. 2008; Yamashita and Jaffé, 2008;Yamashita et  

al., 2010), little is known about its environmental dynamics on spatial and temporal  

scales, its reactivity and interaction with groundwater in this system. 

      Because of its heterogeneous nature, the characterization of DOM and the 

monitoring of its compositional features has been an analytical challenge for decades. 

However, various spectroscopic and chromatographic analytical techniques have been 

used successfully to study DOM. Among these are UV-Vis and fluorescence 

techniques (including 3D Fluorescence/Excitation Emission Matrix), ESI-MS, 

13C-NMR, capillary electrophoresis, pyrolysis-GC/MS, FT-ICR/MS and others (Lu et 

al., 2003; Maie et al., 2005; Jones et al., 2004; Mopper et al., 2007; Gonsior et al., 

2009). Fluorescence methods are widely used to characterize DOM because of its 

simplicity, sensitivity, low sample volume, and high throughput (Coble 1996; 

McKnight et al., 2001; Stedmon and Markager 2003; Cory and McKnight 2005;Jaffe 

et al., 2008; Jellman et al. 2010). Of particular interest in this field is the technique of 

Excitation Emission Matrix (EEM) fluorescence, which merges a series of emission 

scans from excitations over a range of wavelengths, potentially allowing for the 

complete spectral characterization of DOM samples (Coble 1996). Statistical 

treatment of the EEM data can contribute tremendously to unravel the compositional 

complexity, and parallel factor analysis (PARAFAC) is one of the most promising 

tools for this purpose.  PARAFAC is a three-way statistical model which is ideally 

suited to address the complex trilinear character of EEMs. It can decompose the EEM 
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data matrix into  trilinear terms and a residual array and separate EEMs of complex 

mixtures into their individual fluorescent components (Stedmon and Markager 2003 

& 2005; Cory and McKnight, 2005). The combination of EEM and PARAFAC has 

proven to be a very powerful tool for studying the biogeochemistry of DOM (Cory 

and McKnight, 2005; Chen et al., 2010; Yamashita et al., 2010; and others), and has 

been widely applied in this dissertation research.  

      Although the importance of estuarine and coastal waters in the global DOM 

cycling has been recognized, sources, transport, and transformation of DOM are not 

well understood. As such, the research of this dissertation has focused on investigating 

the sources, transformations, and spatial and temporal variations of DOM in the FCE 

ecosystem making use primarily of the EEM-PARAFAC technique. As such, this 

dissertation research is based on supporting the FCE LTER project, where different 

hypotheses are being tested with regards to ecosystem responses to restoration efforts. 

One part of the general hypotheses of the FCE-LTER (FCE1) that specifically 

addresses the DOM issue is: 

 

Hypothesis 2: Interannual and long-term changes in freshwater flow control the 

magnitude of nutrient and organic matter inputs to the estuarine zone, while 

ecological processes in the freshwater marsh and coastal ocean control the quality and 

characteristics of those inputs. This sub-hypothesis is followed up with specific 

questions, such as:  
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Question 4: How are the quality and/or quantity of DOM in source water altered by 

changing freshwater flow versus internal processes occurring at a given location in the 

landscape? How are local ecosystem processes controlled by changes in source water 

DOM?  

      Based on the above, the specific objectives of this project are:  

(1) To characterize Everglades surface water DOM on a spatiotemporal scale using 

EEM – PARAFAC.  

(2) To assess the reactivity of DOM in the FCE using plant and soil leachates, subject 

to photo- and bio-degradation processes;  

(3) To investigate photo- and bio-reactivity of surface water DOM in FCE in order to 

assess its labile vs refractory character with respect to its residence time for this 

particular environment;  

(4) To characterize DOM from groundwater as a potential non-biotic end-member 

source;  

(5) To characterize the molecular weight distribution of Everglades DOM using a 

combination of EEM-PARAFAC size exclusion chromatography (SEC) techniques. 

      The approaches that have been used in this project are listed below: 

(1) Surface water DOM was monitored for optical properties through UV-Vis and 

EEM/PARAFAC measurements, during a 4 year period, monthly at all 14 LTER sites;  
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(2) Biomass (sawgrass, spikerush, mangrove, periphyton, seagrass) and soil (peat, 

marl, mangrove mud and Florida Bay sediments) leachates were subjected to photo- 

and bio-incubation, and combined photo plus bio-incubations to assess reactivity of 

DOM in this ecosystem and attempt to determine source proxies;   

(3) Photo- and bio-degradation kinetics of DOM in surface water samples were 

conducted to determine DOM reactivity;  

(4) DOM characterization studies of groundwater in the FCE was performed in order 

to assess potential non-biotic source contributions to surface waters. DOM from 

groundwater samples from both the freshwater marsh and Florida Bay sites, during 

both dry and wet seasons, were characterized; 

(5) To assess DOM characteristics along a molecular weight continuum, three 

different DOM samples from the Everglades freshwater environments (peat marsh, 

marl marsh and a canal) were fractionated using size exclusion chromatography 

separation on an HPLC system and individual size fractions characterized by 

EEM/PARAFAC.  
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Chapter 2 

Spatial and temporal variation of dissolved organic 

matter characteristics in an oilgotrophic subtropical coastal wetland 
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2.1 Abstract:  

      The dynamics of dissolved organic matter (DOM) are a function of diverse 

ecological drivers such as hydrology, geomorphology, primary productivity, and of 

organic matter degradation processes. Here we present 4-yr DOM characterization 

data (total organic carbon and optical properties) from monthly surface water samples 

collected at fourteen sampling stations along two transects within the greater 

Everglades ecosystem, a subtropical oligotrophic coastal freshwater 

wetland-mangrove-estuarine ecosystem. Among other optical properties 

measurements, we applied a high throughput and sensitive spectroscopic method, 

namely Excitation Emission Matrix (EEM) fluorescence coupled with Parallel Factor 

Analysis (PARAFAC) in an attempt to assess quantitative and qualitative variations of 

DOM on both spatial and temporal scales. Eight fluorescence components were 

modeled through PARAFAC with six humic-like and two protein-like components 

being identified. The data presented clear spatial clustering and seasonal variations. 

For example, freshwater marsh DOM was enriched in higher plant and soil-derived 

humic-like compounds, while estuarine sites were more enriched in algae- and 

microbial-derived humic-like and protein-like inputs. Coastal estuarine sites were 

significantly controlled by hydrology, while DOM dynamics in Florida Bay were 

seasonally driven by both primary productivity and hydrology. Peat-based freshwater 

marsh sites could be clearly differentiated from marl-based sites based on 

EEM-PARAFAC data. Bulk DOC data and proxies like FI, SR, and a (254)* displayed 

clear spatial and seasonal variations as well. The present study highlights the use of 
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long-term optical properties monitoring as an effective technique to investigate the 

DOM dynamics in wetland ecosystems.  

 

2.2 Introduction: 

       The major impetus of long-term environmental monitoring and ecological 

restoration is often initiated by the ecosystem deterioration. Historically, the 

Everglades was a vast watershed with an area of about 28,000 km2 ranging from the 

Kissimmee River and Lake Okeechobee region to the north, down south to Florida 

Bay. Starting the 1880s, numerous canals (over 2,500 km), levees, and water control 

structures were constructed (Light and Dineen 1994). The dramatic hydrological 

alteration of the Florida Everglades during the last century, the agricultural land use 

practices in the north, and the urbanization along the east and throughout the Florida 

Keys during recent decades, have created an alarming impact on the structure and 

function of this ecosystem, resulting in hydropattern changes, eutrophication, 

hypersalinity, vegetation shifts, algal blooms, and massive seagrass dieoffs, among 

others (Robblee et al., 1991; Stober et al., 1996; Boyer et al., 2006). As one of the 

largest wetlands in the world, the Florida Everglades are undergoing an unprecedented 

ecological restoration aiming at restoring the quality, quantity, and timing of water 

flow, which will result in significant impacts on carbon and nutrient biogeochemical 

cycling and thus ecological changes to this ecosystem.  

       The Florida coastal Everglades (FCE) is a subtropical oligotrophic coastal 

wetland renowned for its oligotrophic “upside-down” characteristics (Childers et al, 
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2006), with the main source of phosphorus being supplied by the marine endmember 

rather than the terrestrial endmember (Fourqurean et al., 1992; Chen and Twilley 

1999). Dissolved organic matter (DOM) in the Florida Everglades is a particularly 

important biogeochemical component as most of the nitrogen (N) and phosphorus (P) 

(>90%) is in an organic form (Boyer and Fourqurean 1997; Boyer et al., 2006). The 

P-limited oligotrophic nature of this ecosystem makes it more sensitive to the 

nutrients changes (Noe et al., 2001; Boyer and Fourqurean 1999; Gaiser et al., 2004) 

and imposes a more urgent need to advance the understanding of DOM dynamics and 

associated nutrients in this environment.  

       The dynamics of DOM in the Everglades are complex given its variable 

sources and fate as a function of diverse factors such as hydrology, geomorphology, 

primary productivity, and organic matter degradation processes (Qualls and 

Richardson 2003; Jaffé et al., 2004; Maie et al., 2006a; Scully et al., 2004; Yamashita 

et al., 2010). The subtropical coastal wetland is characterized by a freshwater to 

marine gradient ranging from freshwater marshes, through mangrove fringe to the 

seagrass dominated Florida Bay estuary and as such is spatially very diverse. 

Furthermore, it has typical wet and dry seasons, with most of the rainfall typically 

from May to October (see http://www.evergladesplan.org/), suggesting that strong 

seasonal variations in DOM dynamics are likely.  

       Previous studies in Everglades have shown that DOM plays a central role in 

carbon and nutrients cycling since most of the N and P are in an organic form in the 

Everglades (Boyer and Fourqurean 1997; Boyer et al., 2006; Maie et al., 2006b. 
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Previous studies have shown that DOM can be autochthonously produced by local 

emergent, floating and submerged biomass (Maie et al., 2006c; Scully et al., 2004); in 

situ soil organic matter diffusion and oxidation (Yamashita et al., 2010); precipitation; 

exchange between surface and ground water (Chen et al., 2010); and canal inputs (Lu 

et al., 2003). Its quantity and quality were shown to be controlled by DOM source 

strength with differences driven by a variety of factors such as hydrology, primary 

productivity, geomorphology, seasonality, land use, and biogeochemical processes 

(Wang et al., 2002; Qualls et al., 2003; Lu et al., 2003; Jaffé et al., 2004; Maie et al., 

2006a; Yamashita et al., 2010). Despite these studies, still little information is 

available on the spatial and temporal variability of the quantity and quality of DOM in 

the Everglades, which is critical for the assessment of freshwater marsh and estuarine 

biogeochemistry in the context of ongoing Everglades’ restoration efforts and/or 

global climate change. 

       Ultraviolet-visible and fluorescence spectroscopic techniques have been  

widely used to study the dynamics of DOM in a variety of aquatic environments  

(Coble et al., 1996; Baker 2001; McKnight et al., 2001, Hudson et al., 2007;  

Jaffé et al., 2008; Shank et al., 2010; Fellman et al., 2010). Fluorescence  

techniques including excitation-emission matrix (EEM) fluorescence, not only  

have the advantages of high sample throughput and sensitivity, but also can  

differentiate different types of fluorophores (Coble et al., 1996). In recent years,   

excitation emission matrix fluorescence (EEM) combined with parallel factor analysis  

(PARAFAC) has become one of the methods of choice for DOM dynamics studies  
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because of the ability of the statistical PARAFAC model to further separate EEM  

spectra into multiple groups of fluorophores (Stedmon et al., 2003; Cory and  

McKnight 2005; Jaffé et al.,2008; Fellman et al., 2010). Thus, both spatial and  

seasonal dynamics in DOM composition have been successfully explored using  

fluorescence techniques (e.g., Jaffe et al., 2008; Borisover et al., 2009; Vouve et al.,  

2009; Omori et al., 2010; Yamashita et al., 2010). The present study investigates the  

spatial and temporal trends of DOM quantity and quality in the geomorphologically  

and seasonally heterogeneous environment of the Everglades, using bulk DOC and  

UV-Vis measurements combined with an EEM-PARAFAC components assessment  

approach. Because of the different sources and environmental conditions in each of  

the sub-environments in the Everglades, the freshwater marshes, fringe  

mangroves, and marine estuarine environments are hypothesized to have  

spatially distinct DOM characteristics (e.g., Maie et al., 2005). Seasonally  

driven variations in precipitation, hydrology, and primary productivity are  

also hypothesized to control seasonal patterns in DOM sources and characteristics  

(e.g. Maie et al., 2006a). 

 

2.3 Sampling and experimental methods 

2.3.1 Sites description 

This study was conducted in major water flow paths that drain the Everglades  

(F ig .2 .1) ,  and  represen t  permanen t  s tudy  s i tes  o f  the  FCE-LTER  

(http://fce.lternet.edu/). Water flows through the Everglades as slow sheet flow along 
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a topographic gradient of about 1 m per 56 km (Light and Dineen 1994). Vegetation 

zonation patterns are clearly defined in this ecosystem. Freshwater marsh sites are 

dominated by sawgrass, interspersed with tree islands, wet prairie and slough 

communities. Periphyton mats are ubiquitous in the oligotrophic Everglades and are 

a fundamental component base of local food webs and a regulator of nutrients 

cycling (Browder 1994). The longer hydroperiod Shark River Slough (SRS) sites are 

characterized by peat-based soil while the soils at the shorter hydroperiod Taylor 

Slough (TS) sites are less organic and marl-based freshwater marshes. Water in this 

system is largely derived from local rainfall, and from canal inputs that are regulated 

by the South Florida Water Management District (SFWMD). A fringe of mangrove 

forests is located along the coast and on islands throughout Florida Bay. Seagrass 

communities dominate the subtidal Florida Bay estuary. The upstream Everglades 

Agricultural Area (EAA) and Water Conservation Areas (WCA) are connected with 

Everglades National Park (ENP) through canals and ENP receives point-source 

inputs of WCA water through pumping stations. Groundwater-surface water 

exchange with the underlying Biscayne Aquifer is possible especially during the dry 

season when the water head is low (Price et al., 2006b). 

      As shown in Fig.2.1, six of the study sites (SRS-1 to SRS-6) are located along 

the Shark River Slough (SRS), located along the general N-to-S water flow. While 

SRS-1, SRS-2, SRS-3 sites are all peat-based freshwater marsh sites, SRS-1 site is 

located at the S-12 structure along the Tamiami canal which controls canal inputs 

from the WCAs into the SRS. Tidal influence strongly affects SRS-6 and SRS-5, 
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Fig.2.1 Sampling transects for Shark River Slough (SRS) and Taylor  
Slough (TS) in the Florida coastal Everglades.  
 

but reaches SRS-4 with significant attenuation. As for the Taylor Slough transect, the 

water enters from the L-31 W canal controlled by the S332D pump structure, flowing 

through the freshwater marsh to the mangrove estuaries and to the subtidal Florida 

Bay estuary, a shallow, compartmentalized, lagoonal ecosystem (Briceno and Boyer 

2010). Precipitation, rather than the terrestrial runoff, is the largest source of 

freshwater to the Florida Bay estuary. The TS/Ph-6 and TS/Ph-7 sites are oligohaline 

estuarine ecotone sites which are dominated by wind forcing and hydrological 

exchange with Florida Bay since tidal action is significantly dampened by the shallow 

mud banks throughout the bay. TS/Ph-9, TS/Ph-10, and TS/Ph-11 are three sites 

situated along a NE-to-SW gradient in Florida Bay. Unlike the other 11 sites, these 
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three sites are not located along the predominant water flow path. On the basis of this 

description, the sampling sites can be categorized spatially as freshwater marsh (peat) 

SRS-1 to 3, freshwater marsh (marl) TS/Ph-1 to 3, mangrove estuarine (peat) SRS-4 

to 6, mangrove estuarine (marl) TS/Ph-6 to 7, and seagrass-dominated Florida Bay 

(FB) estuary TS/Ph-9 to 11. SRS-1 and TS/Ph-1 are the two sites most influenced by 

canal inputs. Characteristics of the vegetation, soil type, and hydrography for each site 

are summarized in Table 2.1.  

 

2.3.2 Sampling 

      Surface water samples were collected monthly from October 2002 (for DOC, 

FI1 and a254) to September 2004, and from October 2004 (DOC, FI2, a254, and all other 

optical properties described below) to September 2008 for 14 sites along the SRS and 

TS/Ph transects. Some freshwater marsh sites, especially TS/Ph sites, became dry 

during the peak of the dry season (typically between January to May) so surface water 

samples were missing occasionally for these sites in this dataset. Samples were 

collected in pre-cleaned, acid-washed, brown, high density polyethylene bottles 

(Nalgene). Containers were rinsed three times before sample collection. All surface 

water samples were filtered in the lab through pre-combusted 0.7 μm GF/F filters and 

stored in a refrigerator until analyses within one week of collection. Samples collected 

between May and October were classified as wet season, while those collected 

between November and April were classified as representative of the dry season. 
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Table 2.1 Sampling sites vegetation and soil types and hydrography. 

site Dominant DOM sources and hydrogaphy 

Latitude / 

Longitude 

Freshwater 

marsh   

SRS-1 sawgrass interspersed with Eleocharis/Panicum; 25.7463 / -80.6537 

  peat soil; seasonally driven sheetflow  

SRS-2 sawgrass interspersed with Eleocharis/Panicum; 25.5497 / -80.7852 

 peat soil; seasonally driven sheetflow  

SSR-3 sawgrass interspersed with Eleocharis/Panicum; 25.4682 / -80.8533 

  peat soil; seasonally driven sheetflow  

TS/Ph-1 sparse sawgrass marsh;  25.4239 / -80.5902 

 wetland marl; seasonally driven sheetflow  

TS/Ph-2 sparse sawgrass marsh;   25.4036 / -80.6069  

 wetland marly peat; seasonally driven sheetflow  

TS/Ph-3 sparse sawgrass marsh;  25.2524 / -80.6627 

 wetland marly peat; seasonally driven sheetflow  

Mangrove 

fringe   

SRS-4 

mangrove forest; wetland peat; seasonally 

driven 25.4098 / -80.9643 

  freshwater and tidally driven oceanic inputs  

SRS-5 

mangrove forest; wetland peat; seasonally 

driven 25.3770 / -81.0323 

  freshwater and tidally driven oceanic inputs  

SRS-6 

mangrove forest; wetland peat; seasonally 

driven 25.3646 / -81.0779 

  freshwater and tidally driven oceanic inputs  

TS/Ph-6 

mangrove forest; wetland peat; seasonally 

driven  25.2142 / -80.6491 

 freshwater and wind-driven estuarine inputs  

TS/Ph-7 
mangrove forest; wetland peat; seasonally 

driven  
25.1908 / -80.6391 

  freshwater and wind-driven estuarine inputs  

Florida Bay   

TS/Ph-9 sparse seagrass; calcitic marl; estuarine with 25.1769 / -80.4898 

  minimal tidal energy, wind-driven movement  

TS/Ph-10 seagrass; calcitic marl;  estuarine with 25.0248 / -80.6810 

  minimal tidal energy, wind-driven movement  

TS/Ph-11 seagrass; calcitic marl;  estuarine with average 24.9129 / -80.9380 

   tidal energy, some wind-driven movement   
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2.3.3 Analytical measurements of DOC, UV-Vis, EEM, and PARAFAC modeling 

The DOC concentrations were measured using the high-temperature catalytic 

combustion method on a Shimadzu TOC-V total organic carbon analyzer. The UV 

absorption coefficient at 254 nm (a (254)) was determined using a Varian Cary 50 bio 

spectrophotometer with a 1 cm quartz cuvette scanning from 240 nm to 800 nm. The 

DOC data were used to calculate the specific ultraviolet absorbance, a(254)*, which is 

an indicator of DOM aromaticity and defined as the UV absorption coefficient a(254) 

in inverse meters normalized to DOC concentration in mg/L (Hansell & Carlson 2002; 

Weishaar et al., 2003). The UV-Vis spectrum slope ratio (SR) of 275-295 nm to 

350-400 nm, a proxy for the molecular weight distribution of DOM (Helms et al., 

2008), was also determined. A Horiba Jovin Yvon SPEX Fluoromax-3 

spectrofluorometer equipped with a 150W continuous output Xe arc lamp was applied 

to measure EEMs as previously reported (Chen et al., 2010). Briefly, slits were set at 

5.7 nm for excitation and 2 nm for emission. Forty-four emissions scans were 

acquired at excitation wavelength (λex) between 240 and 455 nm at 5 nm steps. The 

emission wavelengths were scanned from λex +10nm to λex + 250 nm (i.e., between 

250 and 705 nm) in 2 nm steps (Maie et al., 2006b). Fluorescence was acquired in 

signal over reference ratio mode (S/R) to eliminate potential effects of the Xe lamp 

fluctuation. Lastly, for samples collected from October 2002 to September 2004 the 

Fluorescence Index (FI1) was determined as the ratio of the emission intensity at a 

wavelength of 450 nm to that at 500 nm, obtained with an excitation of 370 nm 

(McKnight et al., 2001). For all samples collected thereafter the ratio of the emission 
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intensity at a wavelength of 470 nm to that at 520 nm was used, as this modified FI 

(FI2) has been shown to be a more robust means to determine this parameter (Jaffé et 

al., 2008). While only the data for the 2004 to 2008 period are presented here, the 

spatial and seasonal patterns observed for the 2002 to 2004 sample set showed to be 

very similar (Parish, 2006). Additional details on the optical measurements and 

post-acquisition steps for correction and standardization procedures can be found 

elsewhere (Chen et al., 2010).  

      PARAFAC can statistically decompose EEMs into fluorescent groups 

(components), on the basis of an alternating least square (ALS) algorithm (Bro 1997). 

The mathematical equation is shown as follows (Eq.1).  

         

xijk =  =

C

c 1
aic bjc ckc + Rijk   

i = 1,…, I; j = 1,…, J; k = 1,…,K                                      (1) 

 

where x ijk is the fluorescence intensity of the ith sample at emission wavelength j and 

excitation wavelength k. The variable c defines the number of components for the 

model and R ijk is the residue that represents the residue remained after modeling or 

fitting. a ic is proportional to the concentration of the cth component in the ith sample 

(i.e. “scores”); b jc and c kc are “loadings” of the emission and excitation spectra for 

the cth component, which are linearly related to the fluorescence quantum efficiency 

at emission wavelength j and specific absorption coefficient at excitation wavelength 

k, respectively. 
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Fig.2.2 Spectral characteristics and contour plots of eight-component model for 
FCE surface water dataset (n=1394). The Dotted lines show the excitation 
loadings and the solid lines show the emission loadings. Correlation of the 
split-half validation data is indicated.  
 

The PARAFAC modeling can be obtained by both creating and validating the model 

using the complete dataset of EEMs, or by fitting the EEMs to an already established 

PARAFAC model. In the present study, a total of more than one thousand samples of 

the monthly monitoring surface water samples together with some Everglades/Florida 

Bay surface water samples collected for other studies (e.g. Yamashita et al., 2010), 
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were used to create and an Everglades surface water PARAFAC model. The analysis 

was carried out in MATLAB 7.0.4. (Mathworks, Natick, MA) with the DOMFluor 

toolbox and validated as previously described (Stedmon and Bro 2008). Eight 

EEM-PARAFAC components were obtained after parallel factor analysis (PARAFAC) 

modeling of the EEM data, consisting of six humic-like and two protein-like 

components as summarized in Table 2.2. PARAFAC component spectral 

characteristics (Fig. 2.2) and split-half validation can be found elsewhere (Chen et al., 

2010). 

 

2.4 Results and discussion: 

2.4.1 Spatial clustering and seasonality  

      To assess spatial DOM composition patterns, cluster analysis of all 

EEM-PARAFAC data from the 14 sampling sites (Fig.2.1), sampled monthly for four 

years was performed. To explore the patterns of spatial clustering first can help to 

categorize the 14 stations into several “groups” and thus aid in making this large, 

long-term, multi-station dataset more comprehensive for the following seasonality 

investigation. The data show a clear spatial clustering of the different 

sub-environments with regards to the EEM-PARAFAC composition of the DOM (Fig. 

2.3). Interestingly, the clustering observed for the TS/Ph sites was quite similar to that 

obtained previously for ultrafiltered DOM (UDOM) and characterized by 

pyrolysis-GC/MS (Maie et al., 2005). As such, the freshwater marsh sites for SRS 

(peat soils) clustered separately from TS/Ph freshwater marshes (marl soils) 
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Table 2.2 Summary of Excitation/Emission maxima, major sources, and seasonal 
and spatial patterns of EEM-PARAFAC components. 
 
 

component items 
summary of componens seasonlity and spatial 
patterns in FCE 

C1  nature: humic-like.  
 seasonality: no clear pattern 

 spatial: 
higher abundance in marsh and mangrove while 
lower in FB 

C2 nature: humic-like  
 seasonality: higher abundance in the dry season 
 spatial: highest abundances in SRS freshwater marsh sites 

C3 nature: humic-like 
 seasonality: higher abundances in wet season except for FB 

 spatial: 
higher abundance in marsh and mangrove while 
lower in FB 

C4 nature: humic-like  
 seasonality: generally slightly higher in the dry season 
 spatial: highest abundanes in FB sites  

C5 nature: humic-like.  
 seasonality: generlly higher abundances in the wet season 

 spatial: 
higher abundances in mangrove sites while lowest 
in FB  

C6 nature: humic-like  
 seasonality: generlly higher abundances in the dry season 
 spatial: relative higher abundances in FB 

C7 nature: protein-like  
 seasonality: generally higher abundances in the wet season 
 spatial: significant higher abundances in FB sites  

C8 nature: protein-like  
 seasonality: no clear pattern; wide variation  
  spatial: higher abundances in FB sites 

 

suggesting a clear distinction in their DOM composition. Similarly, SRS and TS/Ph 

mangrove sites clustered separately implying, that although vegetation cover was 

similar soil properties, inundation patterns, tidal and upstream influences may all 

contribute to compositional differences of their DOM. Lastly, the Florida Bay sites 
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expectedly all clustered separately from the freshwater and mangrove sites, as the 

DOM sources in the Bay are strongly influenced by the seasgrass communities (Maie 

et al., 2005) although some seasonal hydrological and primary productivity influences 

have also been noted (Maie et al., 2006a).  

 

     

       

 Fig.2.3 Cluster analysis (Ward method of normalized data) of 14  
 sampling sites in FCE based on the EEM-PARAFAC data of DOM. 
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      With regards to seasonality, examples for the DOC and the fluorescence 

intensity of the humic-like C1, the most abundant, ubiquitous, fluorescent component 

in Everglades DOM (Yamashita et al., 2010), are shown in Fig. 2.4a and 2.4b 

respectively, using the peat-based freshwater marsh site SRS-3 and the mangrove site 

TS/Ph-7 as examples. A consistent but opposed seasonality is observed at both sites 

during the wet and dry season, for both the DOC and C1 data, implying different 

drivers for DOM dynamics at different sites. Commonly, both parameters show higher 

values of DOC and C1 during the dry season for SRS3, while the opposite was the 

case for TS/Ph7. The higher abundance during the dry season at the freshwater marsh 

SRS-3 site may be attributed to several possible factors: First, a concentration effect  

during the dry season’s high evaporation rates and to the increased impact of canal 

water input from the WCAs during the dry season’s enhanced pumping, which would 

increment DOM loadings at SRS. Alternative hypotheses to be tested are an increased 

soil derived DOM pool and/or enhanced ground-to-surface water exchange during the 

dry season. However, the case of the mangrove estuarine site TS/Ph-7 is quite 

different. The TS/Ph-7 is located at the mouth of Taylor Slough which is severely 

affected by the hydrological exchange between the freshwater marshes and Florida 

Bay. Much higher concentration of both DOC and the humic-like DOM were 

observed during the wet season as a result of enhanced terrestrial end-member 

transport from the freshwater marsh and mangrove forest with the increased 

freshwater head, as compared to an enhanced Florida Bay water intrusion and mixing 

during the dry season, resulting in much lower DOC and particularly the humic-like 
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Fig.2.4 Examples of year-to-year trends of dissolved organic matter (6-year) and 
C1 fluorescence intensity (4-year) for freshwater marsh site SRS-3 and mangrove 
site TS/Ph-7. 2002-2004 DOC data is from Parish thesis (2006). 
 

C1 abundance. Similar distributions were observed for a(254)* (data not shown). 

Thus, hydrological processes seemed to be the dominant drivers of seasonality for 

both sites discussed above.  
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   On the basis of the above-described spatial patterns (Fig. 2.3), which seem 

derived from biomass cover characteristics and soil type and considering that 

hydrological drivers will likely influence the seasonal patterns (e.g., Maie et al.,  

 

 
Fig.2.5 Examples of seasonal variation of DOC (6-year) and Fluorescence Index 
(4-year) at peat- based freshwater marsh sites SRS1-3 based on box plots. 
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2006a; Jaffé et al., 2008), the data were reorganized into monthly averages based on 

sub-environment type. An example for the SRS freshwater sites (SRS1-3) is shown in 

Figure 2.5 representing seasonal patterns for DOC and fluorescence index (FI2, 

referred to as FI from here on).  The DOC data plotted in this modified format agree 

with the data shown previously for the seasonal distribution, where, the DOC levels 

were observed to be highest at the end of the dry to beginning of the wet season, and 

lowest values towards the end of the wet season.  Qualitatively, the FI values 

(Fig.2.5b) were higher during the dry compared to the wet season, suggesting 

enrichments in microbial and soil-derived DOM components during the dry and wet 

season respectively. Thus, the previous suggestion (see above) that high DOC levels 

during the dry season could be in part derived from higher soil inputs does not seem 

to be applicable, and concentration that result from increased evaporation and canal 

inputs (management) are more likely sources to explain this observation. However, 

canal inputs are usually characterized as high in humic-like DOM (Lu et al., 2003; 

Yamashita et al., 2010), thus suggesting that the concentration effect due to 

evaporation may be dominant. Taken together, very clear seasonal and spatial patterns 

were demonstrated across the studied landscape over a four years period. 

 

2.4.2 Cross-site and cross-season comparison of DOC, FI, SR, a(254)* 

      In an attempt to further condense the large dataset into figures that 

summarized seasonal data, sampling sites were condensed on the basis of the 

environment “type” as follows: peat-based freshwater marsh sites (SRS-1, SRS-2, 
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SRS-3), marl-based freshwater marsh sites (TS/Ph-1, TS/Ph-2, TS/Ph-3), 

SRS-mangrove sites (SRS-4, SRS-5, SRS-6), TS/Ph-mangrove sites (TS/Ph-6, 

TS/Ph-7), and estuary-FB sites (TS/Ph-9, TS/Ph-10, TS/Ph-11). In addition, seasonal 

data were combined into wet (May-October) and dry (November-April) seasons. This 

approach greatly facilitated the cross-season and cross-site comparison of DOM 

quantity and quality as shown in Fig.2.6. 

      Cross-site and cross-season comparison of DOC, a (254)*, fluorescence index 

(FI), and spectral ratio (SR) are shown in Fig.2.7a to 2.7d. Different letters and 

asterisk * symbol, beside boxes stand for significantly different by nonparametric 

significance tests (Asymptotic significance<0.01). The DOC values ranged from 1.5 to 

46.7 mg C L-1. Peat-based freshwater marsh sites (SRS-1, SRS-2, RS-3) showed 

significant higher concentration of DOC in the dry season compared to the wet season, 

whereas marl-based freshwater sites (TS/Ph-1, TS/Ph-2, TS/Ph-3) had significantly 

lower values during the dry season (Asymptotic significance<0.01). The difference 

between the long and short hydroperiod freshwater marsh sites may in part be due to 

the periodical dry-out of the TS/Ph sites, which may result in high DOC levels at the 

early wet season due to DOC leaching when dry periphyton mats and surface souls 

become re-hydrated. DOC-based seasonality was not obvious for any of the other 

sites, suggesting different drivers control DOC at the mangrove and Florida Bay sites. 

      The a(254)* is a proxy of DOM aromaticity, and wet season peat-based 

SRS-mangrove sites have significantly higher (Asymptotic significance<0.01) a(254)*  

than all the other sites (Fig.2.6b), suggesting the higher aromaticity character of the 
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mangrove leachate which may be contributed by woody vascular plant-derived 

aromatic polyphenols (Maie et al., 2006c; Scully et al., 2004). There is a general trend  

 
 
Fig.2.6 Cross-site and cross-season comparison of 6-year’s DOC and a(254)*; 
and 4-year’s fluorescence index (FI) and Spectral ratio (SR). Different letters, or 
same letter with or without asterisk *, beside boxes stand for significantly 
different among all sub-region by nonparametric significance tests (Asymp. Sig. 
<0.01). 

       

of higher aromaticity in the wet season except for Florida Bay sites, potentially 

because increased higher plants biomass inputs (increased primary productivity) and 

soil leachates during the wet season. In addition, since such aromatic DOM is usually 
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considered more photo-reactive (Hansell & Carlson 2002 and reference therein), 

deeper water depth and shorter water residence times during the wet season could 

reduce the solar exposure as compared to that of the dry season enhancing the a(254)* 

values. Florida Bay sites showed the lowest a(254)* values, which is expected 

considering that most DOC in the bay is derived from the seagrass community and 

reported to be highly enriched in carbohydrates (Maie et al., 2005). The seasonal 

changes were also different to those observed for the other sites, with higher 

aromaticity during the dry season. However, wet/dry seasonality influences Florida 

Bay differently, as DOM dynamics in this area have been found to depend on seagrass 

primary productivity and freshwater discharge (Maie et al., 2006a; Jaffé et al., 2008; 

Maie et al., personal communication) that have a different time-dependency to that 

used here, where the later occurs during the late wet season which is part of the dry 

season as defined in this study. 

      The FI is a proxy of DOM source typically presenting lower values (1.2-1.4) 

for terrestrially derived DOM and higher values (1.6-1.9) for microbially derived 

DOM (McKnight et al., 2001; Jaffe et al., 2008). For the studied sites, the FI values 

ranged from 1.26 to 1.97 throughout the Everglades landscape (Fig.2.6c), with the 

highest values observed in Florida Bay, while the SRS mangrove sites had the lowest 

value during the wet season. With the exception of Florida Bay, the FI was significant 

higher during the dry season. The general trend of the FI was expectedly opposed to 

that of the a(254)*. Higher dry season FI values at the estuarine mangrove sites reflect 

the tidal/marine DOM inputs during that season, while the freshwater marsh sites are 
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less influenced by soil-derived DOM, and showing an enriched microbial DOM signal 

during the dry season. The short hydroperiod TS/Ph freshwater sites are more prone to 

such microbial influences, supporting the fact that they showed higher FI value than 

the other freshwater marsh and mangrove sites.  

      Slope ratio (SR) values, an optical measure inversely proportional to the 

molecular weight of DOM (Helms et al., 2008), was previously shown to increase 

along a general North-to-South transect across the Everglades, with lower SR values 

in the most northern WCAs and higher values in ENP (Yamashita et al., 2010), 

suggesting a transition from soil derived DOM to biomass derived DOM along this 

transect. Similarly, but at a smaller geographic scale, in this study an increased SR 

value across the freshwater marsh to mangrove fringe to marine estuary environments 

was observed (Fig.2.6d), suggesting a trend of decreasing molecular weight across the 

terrestrial to marine end member. There is a general trend of lower molecular weights 

during the dry season (except for the Florida Bay sites), which is consistent with the 

general trend of lower aromaticity and increased microbial sources during the dry 

season as shown before, suggesting high molecular weight (MW) soil-derived DOM 

in the wet, and lower MW microbial-derived DOM in the dry season. Higher water 

residence times, combined with more shallow water periods during the dry season 

may also enhance photo-degradation leading to a reduction in the overall molecular 

weight of the DOM (Lou and Xie 2006). However, photo-degradation of DOM has 

been reported to decrease the FI values which were observed to actually be higher 

during the dry season, thus suggesting that photo-degradation may not be the 
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determining process controlling SR values in the FCE. Higher SR values in Florida 

Bay in the wet season may be associated with high low molecular weight 

phytoplankton-derived, rather than terrestrial higher plants-derived DOM in the wet 

season as compared to in the dry season.   

 

2.4.3 Cross-site and cross-season comparison of EEM-PARAFAC components 

      With respect to the seasonal distribution of the EEM-PARAFAC components, 

these are shown in Figure 2.7a to 2.7h. In Figure 2.7a the distribution of component 

C1, a humic-like component which is ubiquitous in aquatic environments and 

abundant in biomass and soil, showed the highest relative abundance of the eight 

PARAFAC components observed. While the total EEM fluorescence corresponding to 

C1 ranged from 18.5% to 36.5% with lowest relative abundance in Florida Bay 

(Fig.2.7a), implying a significant terrestrial DOM input to all sites, no consistent 

seasonal pattern was observed. The relative abundance of C1% was a little lower for 

FB sites in wet season, while TS/Ph-mangrove sites displayed a little lower value in 

dry season because of Florida Bay water intrusions.  

      The C2 component, which is believed to be a photoproduct and/or 

photo-refractory component (Chen et al., 2010), and has also been found in high 

abundance in canal water draining agricultural areas in the northern Everglades 

Agricultural Area (EAA) (Yamashita et al., 2010), displayed a pronounced and 

uniform seasonal pattern of higher abundance in the dry season for all sites (Fig.2.7b). 

Highest abundances were observed for the freshwater marsh sites of SRS-1 to 3, 
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which are likely the most influenced by drainage from the EAA, particularly during 

the dry season (Yamashita et al., 2010). Accelerated decomposition and export of “old” 

peat derived DOM as a result of the agricultural land use may be responsible for the 

higher abundance of C2 in the dry season when more canal water from the WCAs 

enters ENP. Wang et al. (2002) found that at least some of the “old” historic 

peat-derived DOM was decomposed during their residence time in the surface water 

in the northern Everglades and transported by canals southwards. Similarly, Yamashita 

et al. (2010) reported significant canal transport of C2 from the EAA towards ENP. 

Thus it is not surprising that this component was observed at higher relative 

abundance at the SRS1 to 3 sites. In addition, enhanced influence of solar exposure 

because of shallower water depth and longer water residence time during the dry 

season could also potentially contribute further to the higher C2 abundance during the 

dry season.  

      Another humic-like component C3, which has been found to be usually less 

abundant compared to C1, showed a clearer seasonal pattern. Relative abundance of 

C3% reached as high as 28.7% during the wet season in the marl-based TS/Ph 

freshwater marsh sites, but was lower in abundance and occasionally absent for the 

Florida Bay sites (Fig.2.7c), suggesting a primary terrestrial source for this component. 

A general trend of higher C3% values in the wet season compared to the dry season, 

suggests its source from soils and/or decomposition of higher plant organic matter. FB 

sites behaved the opposite, possibly caused by the fact that water discharge to FB 

from the Everglades peaks during the latter part of the wet season (Jaffé et al., 2008).  
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      The humic-like component C4 has traditionally been termed as ‘marine 

humic-like’ (Coble 1996) but has also been found in freshwaters (Chen et al., 2010; 

Yamashita et al., 2010), and as such is generally referred to as a microbial humic-like 

component. Recently it has been detected in some higher plant tissue leachates and 

could also be produced during DOM degradation (Chen 2011, Dissertation Chapter 3). 

In this study a general trend of slightly higher abundance during the dry season was 

observed in most cases (Fig.2.8d). Such increased microbial activity during the dry 

season confirms the patterns observed for the fluorescence index (FI) data (Fig.2.7c). 

Florida Bay sites showed significantly higher abundance than the rest freshwater 

marsh and mangrove sites, suggesting a major marine end-member input for C4. 

      Component C5 is believed to be a red-shifted humic-like component, which is 

also ubiquitous in biomass and soil but generally less abundant than 

C1 in the Everglades ecosystem (Yamashita et al., 2010). It showed similar 

behavior to C1 but generally showed better defined spatial and seasonal patterns 

(Fig.2.7e), with mangroves sites having significantly higher abundance and 

Florida Bay sites the lowest. Its abundance during the wet season dominated 

over the dry season in most cases, as in the case of C3. Components similar to C5 had 

been found to be relatively enriched in soils and sediments especially in the humic 

acid fraction (Santin et al., 2009), and thus could reflect enhanced soil derived DOM 

contributions during the wet season.  

      Component C6 is known to be photosensitive and thus has been found 

enriched in Everglades groundwater compared to surface waters (Chen et al., 2010). It 
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Fig.2.7 Cross-site and cross-season comparison of relative abundance of 
EEM-PARAFAC components.  
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has also been reported to be abundant in DOM derived from soil oxidation 

from agricultural areas of the Everglades (Yamashita et al., 2010), and consequently 

can be expected to be enriched in canal waters. It was also found to be relative 

enriched in peat soil leachates and to increase during bio-incubation (Chen 2011; 

Dissertation chapter 3). A general trend of higher abundances of C6 during the dry 

season was observed in this study, suggesting enhanced canal water inputs to the 

freshwater marsh sites, increased groundwater input during the dry season when the 

water head is low, and/or increased microbial activity during the dry season (see also 

FI trends). FB sites showed relative higher abundances, consistent with the 

observation that C6 was found to be enriched in seagrass leachates (Dissertation 

chapter 3). 

      The abundance of component C7, classified as a protein-like (tyrosine-like 

and/or blue-shifted tryptophan-like) component (Chen et al., 2010; Yamashita et al., 

2010), was significantly higher at the Florida Bay sites, particularly during the wet 

season (Fig.2.7g) when the primary productivity was highest (early wet season; Jaffé 

et al., 2008) suggesting that C7 is mostly biomass-derived. The TS/Ph-mangrove sites 

showed higher values in the dry season as a result of the higher protein-like DOM 

derived from Florida Bay water intrusion, a trend also previously observed for C4 and 

FI.  

      The relative abundance of another protein-like component (tryptophan-like), 

C8 (Chen et al., 2010; Yamashita et al., 2010), was among the lowest of all EEM 

components, and as such is most sensitive to influences by the fluctuations of other 
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more abundant components. Thus, the C8 distribution (Fig.2.8h) showed large ranges 

in abundance values in the box plot, indicating sporadically big variations for this 

component at each sub-environment and suggesting a potentially different dominant 

source as compared to C7. It is not surprising that both C7 and C8 showed relative 

higher abundance at the Florida Bay sites during wet season, consistent with that 

higher abundance of protein-like DOM from the marine end-member.  

      To assess an overall spatial and temporal profile for DOM in the Everglades, 

principal component analysis (PCA) of all four year monthly monitoring 

EEM-PARAFAC data from all sites (n = 568) was carried out (Fig.2.8). The resulting 

score and loading plots are shown in Figure 2.8a and 2.8b respectively. Principal 

Component (PC) 1 accounted for 57% and PC2 accounted for another 16% of the 

variability. As illustrated in the loading plot of PCA (Fig.2.8b), PC1 was negatively 

correlated with the humic-like components C1, C3, and C5, whereas the microbial 

humic-like and protein-like components C4, C6, C7, and C8 were positively 

correlated. While PC1 seems to be a source-related variable (‘terrestrial’ vs. 

‘microbial’), PC2 seems to be controlled primarily by component C2, suggesting 

either the diagenetic status (photodegradation) of the DOM (Chen et al., 2010), or the 

influence of DOM inputs from the WCAs or agricultural soils (Yamashita et al., 

2010).  

      Hence, the PCA clustering of sample types seems to make sense in that FB 

surface water samples were dominated by microbial humic-like and protein-like 

fluorophores (i.e. showing a positive correlation with PC1), while the freshwater and  
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Fig.2.8 PCA of overall four-year monthly monitoring EEM-PARAFAC data 
(n=568). (A) score plot; (B) loading plot. 
 
 

mangrove sites seemed controlled by the humic-like components (i.e. negative  

correlation with PC1). Samples from the TS/Ph mangrove sites showed a broad 
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distribution with regards to PC1, ranging from the marine to freshwater end-members, 

suggesting a strong seasonal influence, whereby dry season samples were more 

closely influenced by FB water intrusions, while wet season samples were clearly 

hydrologically influenced by the upstream sources. Similarly, wet season freshwater 

marsh sites were more strongly influenced by humic-like components (soil sources 

during wet season) showing a more negative correlation with PC1 compared to the 

dry season samples which were found to be more microbially influenced. As for PC2, 

the influence of C2 seems to be strongest on the SRS freshwater marsh sites, as these 

are most influenced by WCA derived DOM inputs. Expectedly, this effect was 

enhanced during the dry season.  

 

2.5 Conclusions: 

      Clear variations in quantity and quality (i.e., composition) of DOM in the 

greater Everglades were observed on both spatial and temporal scales. Local 

ecological drivers such as biomass type and primary productivity as well as regional 

climatic influences such as wet and dry seasons were all found to have a significant 

effect on DOM dynamics. Hydrology is a crucial component in the Everglades as a 

physical driver controlling the water level, hydroperiod, water residence time, vertical 

and horizontal hydrological exchange, tidal mixing and salt water intrusions, which 

can all influence DOM composition and dynamics by affecting vegetation and soil 

types and patterns, and transport characteristics. The data presented above suggests 

that soil type and associated plant cover, can affect DOM quality and quantity in 



 

39 
 

wetlands. The low value of DOC in marl-based Taylor Slough freshwater sites and 

biogenetic carbonate mud-based Florida Bay (FB) sites suggested lower inputs of 

DOC as compared to soils in the peat-based freshwater marsh sites and peat-based 

mangrove sites. This difference was not only quantitative but also qualitative as 

reflected in higher microbial DOM contributions for the TS/Ph and FB sites. In 

addition, seasonal variations in primary productivity can also affect DOM quantity 

and quality. Primary productivity is higher during the summer wet season resulting in 

increased biomass leaching, exudation, and throughfall in comparison to the dry 

season. Primary productivity based changes in DOM dynamics were particularly 

strong in Florida Bay where seagrass communities are responsible for the production 

of a significant portion of the DOM pool (see also: Maie et al., 2005; Maie et al., 

2006a). Anthropogenic effects of water management in the Everglades on water depth, 

water residence time, and increased water delivery from the canals particularly during 

the dry season, all represent important drivers controlling DOM spatial and temporal 

patterns. This study exemplifies the effectiveness of applying optical properties and in 

particular EEM-PARAFAC in the assessment of DOM dynamics on large spatial and 

temporal scales. Such studies are essential to better understand potential effects of 

climate change, management, and other anthropogenic influences on carbon and 

nutrient cycling in aquatic ecosystems. This is particularly true for Everglades, a 

subtropical oligotrophic coastal wetland suffering from century-long hydrological 

alterations and ecological deterioration, but which is presently undergoing an 

unprecedented restoration effort. 
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Chapter 3 

Assessment of Photo- and Bio-reactivity of Dissolved Organic Matter from Biomass 

and Soil Leachate and Surface Water in the Florida Everglades 

using Excitation-emission Matrix and Parallel Factor Analysis 
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3.1 Abstract 

      Dissolved organic matter (DOM) is one of the largest carbon reservoirs on 

earth (~700 Gt C). While the environmental dynamics of this carbon pool have been 

widely studied, there is a paucity of detailed and comprehensive information available 

regarding contributions from different sources as well as on its photo- and 

bio-reactivity particularly for large wetland systems. An extensive suite of biomass 

and soil leachates together with surface water samples from Florida coastal 

Everglades (FCE) were investigated in an attempt to trace the sources and 

transformations of DOM qualitatively and quantitatively via excitation-emission 

matrix (EEM) fluorescence, combined with parallel factor analysis (PARAFAC) 

through controlled laboratory experiments. Qualitatively speaking, photo-degradation 

results showed that while most of the EEM-PARAFAC components displayed 

photo-decay, some displayed no apparent change or mixed decay/formation patterns, 

and a few showed photo-productions. In contrast, most EEM-PARAFAC components 

proved to be bio-refractory except for some of the components from biomass leachate. 

The sequential degradation (photo- followed by bio-degradation), showed a “priming 

effect” of light exposure on the biodegradation of DOM, and the combination of these 

two processes resulted in a DOM composition more similar to that of the natural 

surface water. Quantitatively speaking, the reactivity rate constants for each 

EEM-PARAFAC component from different source after fitting into a multi-pool first 

order kinetics model, displayed vast differences suggesting a complex composition of 

fluorophores for each PARAFAC component, most likely the result of different 
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structures, speciation and conformation, and molecular weight distributions.  The 

relative reactivity of DOM determined as labile, semi-labile and refractory from 

different sources generally displayed an order of biomass leachate > soil leachate > 

natural surface water, based on an estimated water residence time of about two 

months for the specific study area, Everglades National Park. While photo-reactivity 

seems to be potentially more important in controlling the fate of DOM in this system, 

bio-reactivity by itself was characterized as mainly refractory for the fluorescent 

DOM. This study confirms the applicability of EEM-PARAFAC components to trace 

DOM sources, degradation state, and reactivity. Furthermore, the results highlighted 

the importance of solar irradiation in wetland DOM biogeochemical cycling. In 

addition, this call for a cautious approach when direct comparisons between 

EEM-PARAFAC components in different ecosystems are performed as components 

with similar fluorescence characteristics can actually present very different photo- and 

bio-reactivity due to different structural features or speciation states.  

 

3.2. Introduction: 

      DOM is one of the most mobile, dynamic, and largest carbon reservoirs on 

Earth (~700 Gt C), larger than all the carbon fixed by biomass (~600 Gt C), and 

comparable to the amount of atmospheric inorganic carbon (~750 Gt C) (Siegenthaler 

and Sarmiento 1993; Jiao et al., 2010). DOM plays diverse important ecological and 

environmental roles both on local ecosystem and globally. Locally, it serves as energy 

source for heterotrophic bacteria and thus fuels the microbial loop, acts as a natural 
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sunlight attenuator and pH buffer for aquatic ecosystems. Furthermore, it is a carrier 

for organic and inorganic xenobiotics, so the dynamics of DOM can impact the 

transport and fate of environmentally significant pollutants. Globally, as one of the 

largest and mobile carbon pools on Earth, the biogeochemical cycling of DOM is 

intricately associated with nutrient and element cycling and as well climate change 

(Findlay and Sinsabaugh 2003; Hansell and Carlson 2002). 

      Degradation and transformation processes of DOM have been a fundamental 

question and a topic of particular interest to both ecologists and biogeochemists for 

decades. So far, photo- and bio-degradation are regarded as two major processes, 

working in parallel, in competition, and in concert, to transform and mineralize DOM 

(Obernosterer and Benner 2004; Hansell and Carlson 2002 and references therein). 

Heterotrophic microorganisms have long been known as DOM decomposers, and 

have a proven ability to uptake labile molecules (e.g., free amino acids and 

carbohydrates) readily and cleave certain biopolymers via exoenzymes (Benner and 

Kaiser 2010; Arnosti 2003). Microorganisms were also observed to synthesize 

refractory DOM out of simple small molecules (Ogawa et al., 2001). While the role of 

microorganisms in DOM degradation has long been recognized, the importance of 

solar irradiation was only recognized 1-2 decades ago, and triggered an intensified 

research on the DOM photo-degradation (Moran and Zepp, 2000; Moran and Covert, 

2003; Scully et al., 2004; Spencer et al., 2009; Gonsior et al., 2009; Ortega-Retuerta et 

al., 2010; Shank et al., 2010; Stubbins et al., 2010; Benner and Kaiser 2010). To date, 

studies have found solar radiation can cause photominerization (produce CO2, CO, 
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carbonyl sulfide, etc.), photoamonification (produce NH4
-), photobleaching of CDOM, 

photohumification, photoproduction of new DOM, and photoformation of reactive 

oxygen species (ROS: 1O2, HO•, etc.) (Moran and Zepp 2000; Stedmon et al., 2007; 

Housari et al., 2010; Clark et al., 2004). It has been observed that photoalterations can 

increase, decrease, or have no net effect on biodegradability of DOM depending on 

different DOM sources (Tranvik and Bertilson 2001; Moran and Zepp 2000). 

However, there is a general consensus that sunlight has “priming effect” for bacterial 

uptake on old terrestrial-derived DOM as opposite to the negative effects on fresh 

algae-derived DOM (Moran and Covert 2003).  

      Photo- and bio-reactivity of DOM have been observed to be linked to its 

inherent structure (Opsahl and Benner 1995; Benner and Kaiser 2010), and 

compositional differences and structural features of DOM have been reported as 

playing critical roles in controlling its reactivity. Detailed structure determinations by 

nuclear magnetic resonance (NMR) and mass spectroscopy (FT-ICR/MS and others), 

have provided evidence for this (Mopper et al., 2007; Koch et al., 2008; Abdulla et al., 

2010a; Abdulla et al., 2010b; Gonsior et al., 2011). The compositional variability of 

the DOM might therefore result in carbon pools of varying reactivity. As such, 

Davis and Benner (2007) quantified the concentrations of three pools of DOM, i.e., 

labile, semi-labile, and refractory, DOM on the basis of bio-reactivity of carbon- 

normalized yields of combined amino acids. They defined labile, semi-labile, and 

refractory DOM based on the timescales of biological utilization of hours-weeks, 

months-decades, and centuries-millennia, respectively. While biomolecules such as 
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amino acids and neutral sugars have been related to bioavailability of DOM (Davis et 

al., 2009), Benner and Kaiser (2010) proposed using carbon-normalized amino acids 

and lignin phenols as indicators of DOM bio- and photo-lability respectively. Recently, 

the percent of protein-like components of DOM, as defined by their excitation 

emission matrix (EEM) fluorescence, have been found to show a close correlation 

with the bioavailable dissolved organic carbon (BDOC)  pool (Balcarczyk et al., 

2009; Fellman et al., 2008, 2009a, and 2009b). Meanwhile, external factors have also 

been found to play various roles in DOM turnover rates. Physical, chemical, and 

biological conditions, such as microbial community structure and physiological status, 

temperature, availability of oxygen, sunlight, presence of photosensitizers (e.g. 

dissolved Fe, NO3
-, NO2

-) or inhibitors, pH, ionic strength and salinity, have been 

observed to be involved in affecting DOM transformation and rate (Schmitt-Kopplin 

et al., 1998; Minor et al., 2006; Marschnera and Kalbitz 2003). The underlying 

degradation pathways and mechanisms of DOM however, remain elusive although 

there are multiple proposed processes such as exoenzymatic cleavage and bacterial 

reworking, bond cleavage by UV, ring opening and/or photo-Fenton reactions and free 

radical chain reaction caused by reactive oxygen species (ROS) (Boreen et al., 2008; 

Southworth and Voelker 2003).  

      Because of their easy use and sensitivity, optical techniques have shown  

significant potential to trace the source, transformation and fate of organic  

matter in various environments (Jaffé et el., 2008; Fellman et al., 2010).  

Fluorescence spectroscopy has been successfully used to study the dynamics of DOM  
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over the past decades and opens new windows into DOM dynamics in aquatic  

ecosystems (Fellman et al., 2010; Jaffé et al., 2008; Yamashita et al., 2010). By  

decomposing the EEM data statistically into different fluorescent components,  

EEM-PARAFAC has been successfully applied in DOM studies, including the  

photodegradation and biodegradation studies (Stedmon and Markager 2005), in  

diverse environments over the past years (Stedmon et al., 2003; Cory and McKnight  

2005; Ohno and Bro 2006; Yamashita and Jaffé 2008; Fellman et al., 2009a, 2009b).   

      The Florida coastal Everglades (FCE) is one of the largest wetlands in the 

world and it is undergoing a historic restoration which aims to restore the quality, 

quantity, timing, and distribution of water flow (http://www.evergladesplan.org/). DOM in 

this P-limited oligotrophic subtropical wetland is primarily autochthonous and 

originates from the vegetation, algae, and peat and marl soil. Biomass leaching and 

soil diffusion have been demonstrated to be important sources of DOM in this 

ecosystem (Maie et al., 2006c; Scully et al., 2004; Davis et al., 2006). The majority of 

nitrogen (N) and phosphorous (P) in the Everglades are in organic forms and therefore 

associated with the DOM (Boyer et al., 1997; Boyer 2006). Therefore, the processes 

driving DOM transformation and turnover in the FCE are critical in driving local 

nutrient cycling. However, little is known about DOM reactivity and associated 

cycling in this ecosystem.  

      The goal of this study was to determine the photo- and bio-reactivity of DOM 

in the FCE qualitatively and quantitatively through an EEM-PARAFAC approach. 

The objectives were three-fold: (i) to assess the photo- versus bio- versus sequential 
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(photo + bio) degradation processes of DOM; (ii) to determine DOM degradation  

rates using EEM-PARAFAC components by comparing photo- and bio-reactivity of 

DOM derived from different sources such as biomass, soils and surface waters and (iii) 

to semi-quantitatively determine pool sizes of labile, semi-labile and refractory DOM 

(defined based on local water residence times), with the objective to assess the 

potential impact of restoration-based enhanced water delivery on DOM dynamics in 

the FCE.  

 

3.3. Sampling and experimental methods 

3.3.1 Sampling 

Senescent plant materials from Cladium jamaicense (sawgrass), Elocharis 

cellulosa (spikerush), Rhizophora mangle (red mangrove), fresh shoots of Thalassia 

testudinidum (seagrass), floating and epiphytic periphyton, top soils (including peat 

soil, marl soil, mangrove mud, and Florida Bay sediment), and surface water samples 

from different sub-environments were collected in the Florida Coastal Everglades. 

These biomass and soils are believed to be dominant sources of DOM in the FCE 

(Maie et al., 2006c; Yamashita et al., 2010a) in addition to direct inputs from 

agricultural areas (Yamashita et al., 2010). Table 3.1 summarizes the information of 

the sample characteristics and sampling stations, while Fig. 3.1 displays the locations 

of the sampling sites. The five biomass materials and corresponding surface water 

samples were obtained in July 2007 (wet season) and the four soil samples and 

corresponding surface water samples were collected in February 2008 (dry season). 
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Biomass samples were hand-picked using pre-cleaned powder-free latex gloves 

(Fisher). Top soils/sediments were collected with a pre-cleaned small shovel. Before 

collecting the surface water samples, the bottles were rinsed three times with surface 

water. The samples were placed into pre-cleaned zip lock bags (Lab Safety Supply), 

pre-combusted glass jars (I-CHEM), and pre-cleaned acid-washed brown high-density 

polyethylene bottles (Nalgene) for biomass, soil, and surface water, respectively.   

 

Table 3.1. Summary of sampling sites and sample descriptions. 

 

sample name    species/type   sample description 
     
biomass     

sawgrass (TS/Ph2)   
Cladium 

jamaicense  above water senescencent leaves 
spikerush(SRS3)  Elocharis cellulosa  above water senescencent stems 

periphyton(TS/Ph2)  
floating and 

epiphytic  entangled with utricularia 

mangrove(SRS5)  
Rhizophora 

mangle  yellow leaves picked from trees 

seagrass(TS/Ph11)  
Thalassia 

testudinidum  whole shoots 
     
soil/sediment     
SRS3 soil  wetland peat  dark and fine 
SRS5 soil  wetland peat  dark color with fine capillary roots 
TS/Ph2 soil  wetland marly peat  light color 
TS/Ph11 soil   calcitic marl   white and coarse 

 

All samples were stored on ice immediately after collection, transported to the 

laboratory within 12 hours, and stored under refrigeration until further processing. 
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Surface water was sequentially filtered through pre-combusted 0.7µm GF/F to remove 

larger particles, followed by 0.22µm filters (Durapore, Millipore) to remove the 

majority of bacteria, and then stored in refrigerator for further use within 3 days. 

Plants samples were rinsed with Milli-Q water upon arrival in the lab. Biomass and 

soil samples were stored refrigerated until leaching experiments were performed 

(within 2 days) to ensure proper preservation and minimize microbial growth (e.g., 

seagrass). 

 

3.3.2 Leaching experiments:  

      Since ionic strength is an important factor affecting DOM leaching and 

reactivity (Minor et al., 2006; Grebel et al., 2009), natural surface water from each 

corresponding site was used for the leaching experiments to better mimic the chemical 

conditions of the natural environment. The background DOM of these water was 

reduced using a pre-cleaned activated carbon filtration with Carbon-cap 150 

(Whatman) cartridges. The activated carbon column was extensively pre-washed with 

large amount of 0.01 M hydrochloric acid (certified A.C.S. plus, Fisher) and then 

followed by large amount of Mill-Q water (~80 L), until the background DOC from 

the column effluent was below 0.2 mg/L. TP, TN, and EEM were also monitored to 

ensure no potential sources of contamination or fertilization of the incubations. Three 

dead volumes of column effluent were discarded before collecting the water for 

leaching purpose. The DOM-reduced water was sequentially filtered with 0.7µm 

GF/F and 0.22µm sterile filters. The carbon column was replaced after every 8 L of 
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water to ensure maximum absorption efficiency. After completion of the leaching 

process, the remaining background DOC from the original surface water was <5% 

(DOC remaining in background / DOC initially in sample x 100%), except for TS/Ph2 soil leachate 

which was ~10%. 

      Previous studies dealing with Everglades biomass leaching have shown that 

this process was fast for senescent leaves (Maie et al., 2006c; Davis et al., 2006; 

Scully et al., 2004). Therefore, all substrates studied here were leached for a 24 hours 

period. Biomass and soil (about 20 g/L, 50 g/L, and 380g/L wet weight for higher 

plants, periphyton, and soil, respectively) were submerged into pre-combusted 4 L 

Erlenmeyer flasks containing 2 L of DOM-reduced reference water. Sawgrass and 

spikerush leaves were cut into small pieces (~3 inches) to facilitate leaching. Flasks 

were covered and wrapped with aluminum foil to avoid photo-degradation during the 

leaching process. The flasks were placed onto a shaker for soil leaching to enhance 

desorption and diffusion while they were static for the biomass (the biomass samples 

were loose in texture and light compared to soil and sediments which were heavy and 

deposited on the bottom of the flask. Thus, the latter needed the shaker to enhance 

contact time). Room temperature during the 1-day leaching experiments was about 

21°C. Chemicals commonly used to control bacterial activity were not added during 

the leaching experiments considering the relative short leaching time as well as the 

potential interfering effects on DOM optical properties. The leachates were 

sequentially filtered through 0.7µm GF/F and 0.22µm sterile filters and further diluted 

with background DOM-reduced surface water to the average UV-Vis absorbance of  
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Fig.3.1 Flow chart of leaching and photo- and bio-degradation experiments. 
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typical FCE surface water(~0.2-0.5 cm-1 at λ=280 nm). The obtained leached DOM 

samples were split into 2 aliquots, and the photo- and biodegradation experiments 

started on the same day.  

 

3.3.3 Photo-degradation experiments:  

      A bench top SunTest XLS (ATLAS) solar simulator was used for the 

photo-degradation experiments. The SunTest emits a full-spectrum between 300-800 

nm via a xenon lamp on top of the exposure chamber. The light intensity was 

measured with a spectrophotometer (Ocean Optics) on a daily basis and the lamp 

performance was found to be stable throughout the time of the experiments. The 

SunTest intensity was 765 W/m2 equivalents to mid-day sunlight on a sunny summer 

day in South Florida. One day of SunTest treatment was estimated as equivalent to 

about a 4-day sunlight dose in the FCE environment during summer. For the 

photochemical exposure experiments, the leachates were split into eighteen 150 ml 

pre-combusted beakers and covered with pre-combusted quarts covers. Three beakers 

were wrapped with layers of aluminum foil as dark controls. Fifteen 

sample-containing beakers together with three blanks were put into the water bath of 

the exposure chamber of the SunTest. The water bath was circulated pumping cool 

water to stabilize the water bath temperature (~23-26°C) during the 7-day irradiation. 

Samples were not filtered during the 7-day irradiation period considering that the 

sample volume in each beaker was shallow (~0.5 inch) and the intense irradiation was 

expected to inhibit bacterial activity. Triplicate aliquots were removed from the 
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SunTest chamber periodically on day 0, 0.5, 1, 3, and 7. Samples were filtered with 

0.22 µm filters and measurements of optical properties were performed. 

 

 
 
Fig.3.2 Comparison of SunTest irradiation intensity with natural sunlight in 
South Florida. 

 

3.3.4 Biodegradation experiments:  

      Leachate as inoculums from each site were added to the 0.7µm filtered surface 

water samples at a ratio of 1:100, in addition to final concentrations of 10 µM 

NH4NO3 and 1µM KH2PO4 to avoid N and P limitations. After complete mixing, 

leachates were split into 15 pre-combusted glass jars, which were wrapped with 

aluminum foil and then incubated in the dark for up to 28 days. Jars were opened 

every other day to aerate, and large headspaces were left to ensure enough oxygen for 
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bioincubation. Triplicate aliquots were removed periodically on days 0, 3, 7, 14, and 

28. Samples were filtered with 0.22 µm filters prior to DOC, UV-Vis, and EEM 

measurements.  

 

3.3.5 Sequential photo- and biodegradation experiments:  

   Triplicate samples removed after the 7-day photo-incubation in the SunTest 

were filtered with 0.22 µm sterile filters, spiked with an inoculum and 10 µM 

NH4NO3 and 1µM KH2PO4 as described above. After complete mixing, the samples 

were put into pre-combusted glass jars, which were wrapped with aluminum foil and 

then incubated in the dark for up to 28 days. The experiment was treated exactly like 

the direct bio-incubations. After 28 days, samples were filtered with 0.22 µm filters 

prior to DOC, UV-Vis, and EEM measurements.  

 

3.3.6 Analytical measurements:  

      DOC determinations, UV-Vis and EEM fluorescence spectra were determined 

for each sample. The UV-Vis absorbance was determined using a Varian Cary 50 bio 

spectrophotometer with a 1 cm quartz cuvette scanning from 240 nm to 800 nm. The 

EEMs were measured using a Horiba Jovin Yvon SPEX Fluoromax-3 

spectrofluorometer equipped with a 150W continuous output Xe arc lamp. Slits were 

set at 5.7 nm for excitation and 2 nm for emission. Forty-four emissions scans were 

acquired at excitation wavelength (λex) between 240 and 455 nm at 5 nm steps. The 

emission wavelengths were scanned from λex +10nm to λex + 250 nm (i.e., between 
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250 and 705 nm) in 2 nm steps (Maie et al., 2006b). Fluorescence signals were 

acquired in signal over reference ratio mode (S/R) to eliminate potential fluctuation of 

the Xe lamp. More detailed information of post-acquisition steps for correction and 

standardization can be found elsewhere (Chen et al., 2010). The DOC concentrations 

were measured using the high-temperature catalytic combustion method with a 

Shimadzu TOC-V total organic carbon analyzer. 

 

3.3.7 PARAFAC model fitting and residue components validation:  

      PARAFAC is a statistical tool based on an alternating least square (ALS) 

algorithm. It can statistically decompose EEMs into fluorescent groups (components). 

The mathematical equation is shown as follows (Eq.1).  

         

xijk =  =

C

c 1
aic bjc ckc + Rijk   

i = 1,…, I; j = 1,…, J; k = 1,…,K                                      (1) 

 

where x ijk is the fluorescence intensity of the ith sample at emission wavelength j and 

excitation wavelength k. The variable c defines the number of components for the 

model and R ijk is the residue that represents the residue remained after modeling or 

fitting. a ic is proportional to the concentration of the cth component in the ith sample 

(i.e. “scores”); b jc and c kc are “loadings” of the emission and excitation spectra for 

the cth component, which are linearly related to the fluorescence quantum efficiency  
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at emission wavelength j and specific absorption coefficient at excitation wavelength 

k, respectively.  

      There are two ways to apply PARAFAC modeling, i.e., either by creating and 

validating the model using the complete dataset of EEMs (e.g., Stedmon et al., 2003; 

Ohno and Bro, 2006) or by fitting the EEMs to an already established PARAFAC 

model (e.g., Yamashita and Jaffé, 2008a). Here all biomass and soil leachates and 

surface water EEMs were fitted to an existing Everglades/Florida Bay surface water 

PARAFAC model which had been well established using 1394 surface water samples. 

The PARAFAC component spectral characteristics and split-half validation data can 

be seen in Chen et al. (2010). The analysis was carried out in MATLAB 7.0.4 

(Mathworks, Natick, MA) with the DOMFluor toolbox (Stedmon and Bro, 2008). 

Residues or residual components obtained by subtracting the modeled EEMs from the 

original EEMs, were picked out through “peak-picking” for biomass and soil leachate. 

A residue was considered as a PARAFAC component if it featured actual 

spectroscopic patterns and further validated only if its signal was at least three times 

the background noise as follows (2): 

 

       Residue peak signal % > 3 x noise%                          (2) 

 

where noise % was calculated using the average residue values for the FCE surface 

water which represents the average normal noise residue.  
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3.3.8 Multi- and single-pool kinetics modeling and PCA statistics:  

      A multi-pool decay model is superior to a simple exponential decay model 

considering a heterogeneous nature of DOM (Hopkinson et al., 2002). Another study 

on soil organic matter bio-degradation also successfully applied a multi-pool decay 

model (Feng and Simpson 2008). This model was applied in the present study, where 

two non-linear regression models, including a four - parameter and a five - parameter 

model, were tested and the four-parameter first order decay kinetics model was found 

to best fit the data generated during the DOM decomposition experiments (Eq.3).  

 

Ct=a*e -k1 
t + b*e -k

2
 t                                          (3) 

 

where Ct is the total DOM concentration or fluorescence intensity at time t, a and b are 

two constants related to relative sizes of pool 1 (labile or semi-labile) and pool 2 

(semi-labile or refractory) pools. k1 and k2 are two decay rates of pool 1 and pool 2, 

respectively. This two pool (labile and refractory) model can either be used directly as 

is, or customized to specific environmental conditions. As such, by substituting time t 

with defined time ranges of what is specifically defined as labile and refractory 

fractions, the sizes of labile DOM (L-DOM) and refractory DOM (R-DOM) can be 

obtained. The size of a semi-labile (S-DOM) fraction can then be obtained by 

subtracting the % L-DOM and % R-DOM from total DOM. This approach was used 

here and described later in the text. The fitting was conducted with a non-linear 

least-squares fitting (SigmaPlot 2001). All fittings passed the constant variance test 
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with p < 0.05 and commonly showed almost prefect r2 values, suggesting that this 

model was ideally suited for this data set. 

      Half-lives were calculated through the following equation for first-order decay 

(Eq.4): 

            

t 1/2 = In2 / k                                                (4) 

 

where t 1/2 represents half-life and k stands for decay rate.  

      In contrast to the decomposition process, a single pool first order production 

kinetic model was found to better fit the production process of the EEM-PARAFAC 

components. The equation is as follows (Eq.5): 

 

Ct=a*e kt                                                    (5) 

 

where Ct is the total DOM concentration or fluorescence intensity at time t, a is a 

constant and k is the growth rate. The non-linear growth fittings had also passed the 

constant variance test with p <0.05. 

      Principal component analysis (PCA) statistics were carried out using a JMP 

program (SAS) with correlation mode.  
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3.4 Results and discussions  

3.4.1 EEM-PARAFAC modeling results 

      The EEM data obtained from the biomass and soil leachate and surface water 

degradation studies were fitted into a previously established 8-component PARAFAC 

model for FCE surface water (Chen et al., 2010) as shown in Table 3.2. This approach 

can facilitate the comparison among surface water, biomass leachate, and soil leachate 

to an already existing PARAFAC model. The 8 components were assigned as six 

humic-like and two protein-like based on the comparison of spectral characteristics 

with previous studies (Yamashita and Jaffé 2008a; Cory and McKnight 2005; 

Stedmon et al., 2003). While the humic-like components C1, C5, and C7 were found 

to be ubiquitous to all the samples from different sources, the remaining five 

components were absent in some source materials (Fig.3.3). The most noticeable 

absence was that of C2, which is a humic-like component believed to be photoproduct 

and/or photorefractory (Chen et al., 2010), and has been found in high abundance in 

DOM derived from agricultural soils (Yamashita et al., 2010a). C2 was absent in all 

the initial biomass leachates and also initial marly soil leachates, suggesting that it is 

not produced from biomass sources but possibly form organic rich wetland soils in 

addition to the already established oxidation of agricultural soils or drained peat 

environments from the EAA. The next noticeable absence is that of C3,  

which is also a humic-like component and was not found in initial mangrove, 

periphyton, and marly soil leachates. C4, a traditionally termed marine 

humic-like component, was absent in the initial seagrass and mangrove leachates, 
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Table 3.2 Major sources and reactivity of EEM-PARAFAC components. 

 

component Ex/Em max(nm) Summary of nature,sources,and reactivity 

C1 <260 (345)/462 humic-like.  

  ubiquitous component; abundant in soil, SW, and biomass 

    photoreactive; biorefractory for soil leachate and SW 

C2 <260/454 humic-like  

  absent in the 4 higher plants;  

    photoproduction & photodecay 

C3  <260 (305)/416 humic-like 

  biomass, soil, and photoproduction from mangrove leacahte 

    photoproduction & photodecay 

C4  <260 (305)/376 humic-like  

  

abundant in spikerush leachate, soil leachate, and surface 

water 

    photoreactive 

C5 <260 (405)/>500 humic-like.  

  ubiquitous component; rich in soil and SW 

    photoreactive; biorefractory for soil leachate and SW 

C6 <260(325)/406 humic-like  

  abundant in soil leachate, seagrass, and groundwater 

    very photoreactive; C6% tended to go up during bioincubation 

C7 275/326 protein-like  

  abundant in seagrass 

    photoreative; bioreactive for biomass leachate and SW 

C8 300/342 protein-like  

  abundanat in periphyton; bioproduction 

    photoreactive. less bio-reactive  

R1-P 275/305 protein-like; more abundant in biomass leachate; very reactive 

R2-P 310/440 protein-like? more abundant in biomass leachate; very reactive 

R3-P/S 410/468 humic-like; in both biomss and soil leachate; very reactive 

R1-S 370/468 humic-like; abundant in FB sediement leachate; very reactive 

R2-S <260/468 humic-like;  more abundant in soil leacahte; very reactive 

 

while the protein-like C8 was absent in initial sawgrass, seagrass, and mangrove 

leachates.  
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Fig.3.3 Comparison of relative EEM-PARAFAC composition of DOM from 
different source materials (biomass leachates, soil leachates and surface waters). 
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In addition to these eight components, established from a surface water DOM 

database, three residue peaks (residual PARAFAC components) were identified and 

validated as described above for biomass leachate and another three for soil leachate. 

The characteristics of all the components were summarized in Table 3.2.  

      Since the residues were not observed in surface water samples, they are 

suggested to be highly labile and do not accumulate in the natural environment. 

Therefore, the focus of discussion will be placed on the 8 commonly observed and 

environmentally more stable PARAFAC components. 

 

3.4.2 Qualitative assessment of DOM photo- and bio-reactivity  

      In an attempt to compare the different effects of photo-, bio- and sequential 

degradation processes using EEM-PARAFAC data, a principal component analysis 

(PCA) approach was utilized to include the wide array of data from different sources 

and during different degradation processes. The relative abundance of 

EEM-PARAFAC data, including the residual PARAFAC components (R), for initial, 

7-day photo-degradation, 28-day biodegradation, and sequential 7-day photo- 

followed by 28-day biodegradation were loaded into principal components analysis 

for both the biomass leachates and the soil leachates (Figs.3.4a and 3.4b respectively). 

Typical surface water PARAFAC distributions for both freshwater (Everglades) and 

marine (Florida Bay) FCE environments were also included. The two PCA graphs 

displayed different clusters but similar trends, suggesting that DOM origins and 

composition control the diagenetic status and degradation process. For biomass 
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leachate vs. surface water graphs (Fig. 3.4a), principal component 1 (PC1) explained 

46.8% of the variance, whereas principal component 2 (PC2), accounted for a further 

20.8% of the variance. For soil leachate vs. surface water graphs (Fig. 3.4b), PC1 

explained 50.6% of the variance, whereas PC2, accounted for a further 20.6% of the 

variance. For both biomass and soil leachate graphs, a similar transformation patterns 

were observed. 

Principal component 1 (PC1) was controlled by DOM source where humic-like 

components dominated surface water composition and positively correlate with PC1, 

while the labile residual components and C7 dominated the leachates’ composition 

and correlate negatively with PC1. PC2 seems indicative of diagenetic effects 

resulting from both photo- and bio-degradation. C3 is located on the PCA graph 

suggestive of a role of a photo-degradation intermediate, while C6 and C8 seem to act 

as biodegradation intermediates. Periphyton behaved differently from the other 

biomass samples, which is not surprising considering is an assemblage of algae, 

microbes, and detritus rather than vascular plants like sawgrass, spikerush, mangrove, 

and seagrass, and presented the least significant photo- or bio-degradation changes 

based on the PCA plot. Sequential photo- and bio-degradation proved to be most 

effective in changing the leachates’ DOM fluorescence characteristics into EEMs 

more similar to those of the natural surface water DOM. This was typified by the 

seagrass leachate clustering closely with Florida Bay surface water after sequential 

degradation. This is consistent with previous findings that sunlight has “priming effect” 

for bacterial uptake on terrestrial-derived DOM (Tranvik and Bertilson 2001; Qualls  
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Fig. 3.4 Principal components analysis of biomass leachate vs. surface water (a) 
and soil leachate vs. surface water (b) during photo-, bio- and sequential photo 
plus bio degradation based on EEM-PARAFAC data. Score plots are on the left 
and loading plots are on the right; C = EEM-PARAFAC components; R = 
EEM-PARAFAC residues; FB SW = Florida Bay surface water. Arrows indicate 
the directions of transformations. 
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and Richardson 2003; Moran and Covert 2003).  An interesting result from this 

study is the general indication that C3 may serve as a proxy for a photo-degradation 

intermediate while C6 and C8 could serve that function for the bio-degradation 

process. 

 

3.4.3 Quantitative assessment of DOM photo- and bio-reactivity:  

      A multi-pool model was used by Hopkinson et al., 2002 to determine the  

reactivity of different fractions of DOM (i.e., labile and refractory fractions). This 

approach was superior to a simple exponential decay model assuming a homogeneous 

nature of DOM. Similar modeling approaches have been used for soil organic matter 

(Feng and Simpson 2008). In this study, a four-parameter multi-pool first order decay 

kinetic equation (Eq. 3; Feng and Simpson 2008) and a single pool first order growth 

kinetic equation (Eq.5) were found to produce the best fit for the data and therefore 

were used to quantify the kinetics of decay or production during both photo- and bio- 

degradation. Figures 3.5A, 3.5B, 3.5C, and 3.5D show some representative examples 

of the modeling trends for the photo- and biodegradation data of UV absorbance at 

254 nm (A254) and eight EEM-PARAFAC components.  Data for half-lives of labile 

(pool-1) and semi-labile (pool-2) fractions for each A254 and EEM-PARAFAC 

components of all the samples can be found in Table 3.3A.  

      The two organic matter pools model provided to be an excellent fit for the 

decay data observed in this study. However, there were a variety of different 

behavioral patterns observed between the photo- and bio-degradation kinetics,  
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Fig. 3.5A Examples of absorbance at 254 nm (A254) photo-degradation patterns 
and kinetics data fitted into a multi-pool first-order decay model. SW=surface 
water. 
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between different samples and sample types, and between different PARAFAC 

components, significantly complicating the data presentation and interpretation.  

Reaction kinetics showed profiles for exponential decay and increase followed by 

decrease for A254, and exponential decay, exponential generation, no observable 

change through time or variable decreases and increments for EEM-PARAFAC 

components throughout the incubation periods. This high degree of variability, not 

only in time dependent patterns but also quantitatively regarding variations in rate  

constants (or half-lives) for the same PARAFAC components depending on sample 

type, was an intriguing finding, and will be discussed in more detail below. In general, 

decay curves for the photo-degradation kinetics most commonly resulted in 

significantly higher rate constants for the degradation of pool-1, the presumably more 

labile DOM pool compared to those obtained for pool-2, the more refractory pool. 

However, the pool size, although variable, was usually higher for the more labile pool 

(pool-1; 58% on average) compared to the more refractory pool-2 for fluorescent 

DOM (FDOM).However, the opposite was observed for the chromophoric DOM 

(CDOM) as evidenced by the A254 trends (pool-2; 68% on average), implying a 

larger fraction of FDOM is photo-labile compared to the CDOM. Similar observations 

were true for the bio-degradation kinetics, although for the most part the half-lives 

were much longer for this degradation process (see below) and decay kinetics were 

less common that for photo-degradation. For the bio-degradation process, patterns 

showing no significant change over time were more common compared to decay 

patterns. While photo-degradation half-lives were on the order of 101 hours for  
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Table 3.3A Photo- and bio-degradation trends and kinetics data of UV 
absorbance at 254 nm (A254 nm). 
 
 

A254 nm   trend t1/2,1 (hrs) t1/2, 2 (hrs) pool1% pool2% R2 
        

photodegradation         
sawgrass  ↑   ↓      
spikerush  ↑   ↓      
periphyton  ↓ 2.1E+00 5.8E+02 24  76  1.0 
mangrove  ↑   ↓      
seagrass  ↑   ↓      

SRS3 soil  ↓ 4.0E+01 5.3E+10 48  52  1.0 
SRS5 soil  ↓ 2.4E+01 2.3E+11 38  62  1.0 

TS/Ph2 soil  ↓ 1.8E+01 8.1E+02 36  64  1.0 
TS/Ph11 soil  ↓ 9.9E+00 1.3E+11 45  55  1.0 

SRS3-SW  ↓ 2.4E+01 3.5E+02 15  85  1.0 
SRS5-SW  ↓ 2.8E+01 1.2E+11 27  73  1.0 

TS/Ph2-SW  ↓ 2.1E+01 4.0E+02 29  71  1.0 
TS/Ph11-SW  ↓ 3.0E+01 5.4E+10 40  60  1.0 

C111-SW  ↓ 3.1E+01 1.6E+11 23  77  1.0 
Average-A254   2.3E+01 7.5E+10 32  68  1.0 

        
biodegradation         

sawgrass  ↑   ↓      
spikerush  ↑   ↓      
periphyton  ↓ 1.5E+03 1.8E+03 46  54  1.0 
mangrove  ↑   ↓      
seagrass  ↑   ↓      

SRS3 soil  →      
SRS5 soil  →      

TS/Ph2 soil  ↓ 1.4E+01 3.9E+03 13  87  1.0 
TS/Ph11 soil  ↓ 3.4E+01 1.3E+04 36  64  1.0 

SRS3-SW  →      
SRS5-SW  →      

TS/Ph2-SW  →      
TS/Ph11-SW  →      

C111-SW  →      
Average-A254     5.1E+02 6.1E+03 32  68  1.0 

Note: ↑=increase; ↓=decrease;  →=no obvious change;  
 values are rate constant k (hrs-1) instead of half-life  

  in case of increase.     
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pool-1, those for pool-2 were as high as 1011 hrs. Differences in photo-degradation 

half-lives for pool-1 corresponding to different PARAFAC components ranged from 

not significantly different to about a factor of 10 higher for the soil and SW samples. 

Differences between biomass leachates, soil leachates and surface waters, but for 

pool-2 were harder to assess as these were highly variable ranging from 101 to 1011 

across the different sample types. Specifically, trends and tendencies for A254 and 

different PARAFAC components were as follows.  

 

A254: While exponential photo-bleaching were observed for all the surface water, soil 

leachates, and periphyton leachate, the four vascular plants leachate displayed 

photo-humification first followed by photo-bleaching. Photo-humification was 

previously reported in literature at UV absorbance 325 nm for Antarctic Ocean water 

(Ortega-Retuerta et al., 2010). Half-lives of photo-degradation for pool-1 were quite 

similar for soil leachate and surface water sample types, with an average of 2.3x101 

hours, and 7.5x1010 for pool-2. Periphyton leachate has relative short half-lives of 2.1 

hours for pool-1 and 5.8x102 hours for pool-2 as compared to the higher plants 

leachates. For biodegradation, vascular plants’ leachates showed a pattern similar to 

the photo-degradation pattern of initially increase followed by a decrease, possibly 

caused by biopolymerization as observed in another study (Jee et al., 2010). Most 

bio-degradation data showed no change over the incubation period except for a few 

samples with half-lives for pool-1 on the order of 101 to 103 hours and pool-2 at 

103-104 hours. Generally, A254 data showed approximately 32% of the CDOM as 
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photo-reactive on an order of 101 hours, while ca. 68% was more refractory with 

half-lives on an order of 102 hours for periphyton and TS2 soil leachates and TS2 

surface water, and an order of 1010-1011 hours for the rest soil leachates and surface 

water.  

C1:  Half-lives for pool-1 were quite similar for the three sample types with an 

average of 1.2x101 hours, and 1.9x102 for pool-2. Two samples, namely mangrove 

leaf leachate and the mangrove soil leachate had half-lives on the order of 1010 for 

pool-2 suggesting that these materials are highly refractory on the basis of the 

experimental procedures used here. Most bio-degradation data showed no change 

over the incubation period except for a few samples with half-lives for pool-1 on the 

order of 101 to 102 hours and pool-2 at 103-1011 hours suggesting a high degree of 

refractory character of C1 to biodegradation processes. Generally, C1 has been 

observed as the most abundant PARAFAC component throughout the Everglades 

(Yamashita et al., 2010a) suggesting it’s ubiquitous in the Everglades and of a 

refractory character. 

C2: Data for C2 are extremely variable. Photo-degradation data showed mainly no 

change throughout the photo-exposure period since this component was absent in 

most of the biomass samples. C2 was observed to increase with time of exposure for 

the periphyton leachate, and the soil/sediment leachates of TS2 and TS11. 

Photo-decay was observed only for SRS5 and TS11 SW samples. Biodegradation of 

C2 was only observed for the SRS5 soil sample at half-lives of 5.9x101 and 3.5x103  

 



 

71

 

 

Fig. 3.5B Examples of absorbance at 254 nm (A254) biodegradation patterns and 
kinetics. SW=surface water. 

 

hours for pool-1 and pool-2 respectively. While C2 has been suggested to be a 

photoproduct or a photorefractory component (Chen et al., 2010) it has also been 

observed in high abundance in DOM exported from agricultural areas (Yamashita et 

al., 2010a). Our data seems to confirm that its source is more likely from soils than 



 

72 
 

biomass and that with a few exceptions it seems quite resistant to degradation 

processes. 

C3: This humic-like component was observed to be mainly following exponential 

decay patterns when exposed to sunlight. Again, half-lives for the labile pool were 

significantly lower compared to the more refractory pool-2. A generation of this 

compound was observed only for the mangrove leaf leachate showing half-lives of 

3.3x101 and 2.6x1010 hours for pool-1 and pool-2 respectively. The significantly 

larger half-lives of pool-2 suggest that this pool would accumulate in the Everglades 

environment, and in fact C3 is very commonly observed throughout this ecosystem. 

This tendency to accumulate during photo-degradation (based on the refractory 

character of pool-2) may explain the location of C3 in the PCA plot of figure 3.4. 

Regarding bio-degradation the data obtained does not provide any consistent patterns. 

Decay curves were only observed for spikerush and SRS5 soil leachates, showing 

only a labile pool for the spikerush leachate at 9.4x101 hours half live and 4.0x101 and 

3.0x1011 for pools 1 and 2 for SRS5 soil respectively.  

C4: This component has been assigned a microbial/marine humic-like character. It 

presents mainly exponential decay patterns when exposed to sunlight with 

significantly longer half-lives for pool-2 compared to pool-1 at 5.9x109 and 1.8 x101 

hours respectively. Similar to the other components shown above, the biodegradation 

data seemed quite inconsistent and no clear patterns could be determined. Decay 

curves were only observed for spikerush and periphyton leachates with half-lives of  
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Fig. 3.5C Examples of EEM-PARAFAC components photo-degradation patterns 
and kinetics data (average of triplicate) fitted into a multi-pool first-order decay 
model Ct=a*e -k

1
 t + b*e -k

2
 t (a and c-h); and a single pool first-order growth 

kinetic model Ct=a*e kt (b). SW = surface water. 
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 9.7x101 and 2.4x1010 hours for pool-1 and pool-2, respectively.  

C5: This humic-like component has a very similar behavior to that observed for C1 

and C3 in that it presented mainly exponential decay curves for the photo-degradation 

experiment with half-lives for pool-2 being much higher than for pool-1 and on the 

order of 1010 hours. Only two samples, namely sawgrass and mangrove leachates 

showed any degree of biodegradation with half-lives of ca. 2.6x101 for pool-1 and 

7.7x1011 and 5.1x102 for pool-2 from sawgrass and mangrove leachate respectively. 

C6: This component has been assigned a microbial humic-like character, and has been 

reported as photosensitive (Chen et al., 2010). The photo-degradation patterns of C6 

were quite consistent with decay patterns resulting in an average half-life of 3.8x101 

hours for pool-1 and significantly larger values ranging from 102 to 1011 hours for 

pool-2.  The highest photo-degradation rate was observed for seagrass (95% with a 

half live of 8.3 x 10-6 hours) and mangrove leachates with only one, labile pool 

represented (half live 16 hours). Bio-degradation profiles resulted mostly in increases 

in the abundance of C6 during the incubation or in some instances not much change 

over time, suggesting a high degree of microbial generation of this component. The 

abundance of C6 is therefore likely a reflection of the source strengths with regards to 

the competing photo-exposure. This is in agreement with the fact that C6 was reported 

as enriched in groundwater compared to surface water in the Everglades (Chen et al., 

2010).  

C7: This component has been assigned a protein-like character, and as such is 

expected to present some sensitivity to exposure to sunlight. In fact, C7 was observed 
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to decrease exponentially in abundance when exposed to sunlight resulting in an 

average half-life of 3.2x101 hours for pool-1 and a range from 101 to 1011 hours for 

pool-2. Biodegradation patterns were surprising as protein-like components in surface 

waters are commonly observed to be quite bioavailable (Fellman 2008, 2009a, 2009b). 

Here, only the biomass leachates and two of the soil leachates, namely those from 

TS2 and TS11, the two most microbially influences locations, showed clear decay 

patterns during bio-incubation, while the other soil leachates and the SW samples 

showed no significant change over the time of incubation. The biomass leachate 

samples presenting half-lives of 2.6x102 and 1.9x103 hours for pool-1 and pool-2 

respectively. This suggests that the bioavailability of C7 is quite variable and DOM 

source dependent. As such, the abundance of C7 as a proxy for bioavailability needs 

to be considered with care (see below).  

C8: Similar to C7 this component has also been assigned a protein-like character, and 

its response to photo- and bio-degradation was in many aspects similar to that of C7. 

While the photo-degradation showed the expected decay curves for 8 out of 13 

samples, with half-lives of 3.9x101 hours for pool-1 and 1.3x1010 hours for pool-2, 

similar to C7, the bio-degradation patterns were quite different. Unlike the common 

exponential decay patterns observed for C7 for the biomass leachates, C8 showed in 

most cases a combination of decreases and increases throughout the degradation 

process, suggesting that competing degradation and generation processes control the 

abundance of this component in the environment. Similar suggestions have previously 

been reported in the literature based on field data (Yamashita et al., 2008b, 2010b) and 
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C8 may in fact have a net accumulation in the environment after photo- or 

bio-degradation of DOM. As such it seems to justify its location on the PCA plot 

shown in figure 3.4.  

      It was reported that the decay half-lives of plant leachate in Everglades ranged 

from about 4 to 347 days for bulk DOC with 28-day dark bio-degradation (Scully et 

al., 2004). In another study for more specific type of compounds, half-lives of ~10-20 

hours for most humic peaks and refractory characters for most protein peaks were 

found during photo-degradation experiments for Southern California coastal water 

(Clark et al., 2008).  

      Recently, Shank et al. (2010) reported a photo-bleaching rate of ~60-90 hours 

for CDOM (absorption coefficient at 305 nm a305) produced from yellow and orange 

mangrove leaves. In contrast, half-lives for the refractory FDOM pool estimated here 

are orders of magnitude longer than 14C - based average age of ~4000 to 6000 years 

for deep ocean refractory DOC (Williams and Druffel 1987; Bauer et al., 1992). 

However, considering that 14C-dating provides an average age for the sampled DOC 

pool, the actual half-lives may cover a much larger range. DOM is an assemblage of 

mixtures of compounds, comprising supramolecular assemblages which have not been 

clearly identified with regards to their actual structure (Sutton and Sposito 2005).  

Such variety in the molecular speciation of DOM may result in highly variable 

reactivity, which could span the whole gamut of the time continuum. Little is known 

about this subject, but it would explain why individual PARAFAC components from 

different sources feature such different degradation patterns and degradation kinetics.  
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Table 3.3B Examples of degradation trends and kinetics data.  

 

 

items photodegradation biodegradation
trend t1/2,1 (hrs) t1/2, 2 (hrs) pool1% pool2% R2 trend t1/2,1 (hrs) t1/2, 2 (hrs) pool1% pool2% R2

EEM-PARAFAC

C5-saw grass  ↓ 1.2E+01 4.4E+10 46 54 1.0 ↓ 2.4E+01 7.7E+11 22 78 1.0

C5-spikerush  ↓ 7.9E+00 1.4E+11 33 67 0.9 ↑   ↓

C5-periphyton  ↓ 1.7E+02 1.7E+02 49 51 0.9 ↑   ↓

C5-mangrove  ↓ 4.2E+00 8.6E+09 83 17 1.0 ↓ 2.8E+01 5.1E+02 70 30 1.0

C5-seagrass  ↓ 1.5E-04 3.4E+10 44 56 0.9 ↑   ↓

C5-SRS3 soil  ↓ 1.9E+01 3.9E+02 67 33 1.0 →

C5-SRS5 soil  ↓ 1.7E+01 2.1E+10 70 30 1.0 →

C5-TS/Ph2 soil  ↓ 5.9E+00 1.5E+02 51 49 1.0 →

C5-TS/Ph11 soil  ↓ 4.5E+00 3.7E+02 72 28 1.0 →

C5-SRS3-SW  ↓ 5.0E+00 1.0E+02 41 59 1.0 →

C5-SRS5-SW  ↓ 5.4E+00 1.4E+02 69 31 1.0 →

C5-TS/Ph2-SW  ↓ 2.0E+01 3.5E+02 54 46 1.0 →

C5-TS/Ph11-SW  ↓ 7.5E+01 4.1E+10 60 40 1.0 →

C5-C111-SW  ↓ 1.8E+01 3.3E+02 33 67 1.0 →

Average-C5 2.6E+01 2.0E+10 55 45 1.0 2.6E+01 3.9E+11 46 54 1.0

C6-saw grass  ↓ 8.8E+00 8.8E+00 49 51 1.0 ↑ k: 7.1E-04 0.9

C6-spikerush zero ↑ k: 1.9E-03 0.6

C6-periphyton ↓ 1.3E+02 1.3E+02 50 50 0.9 ↑ k: 1.4E-03 0.6

C6-mangrove ↓ 1.6E+01 1.6E+01 58 42 0.8 ↑   ↓

C6-seagrass ↓ 8.3E-06 4.8E+09 95 5 1.0 ↓ 1.3E-04 3.5E+11 52 48 1.0

C6-SRS3 soil ↓ 2.1E+01 4.7E+02 75 25 1.0 →

C6-SRS5 soil ↓ 1.2E+01 2.0E+10 75 25 1.0 →

C6-TS/Ph2 soil ↓ 5.7E+00 1.3E+02 62 38 1.0 ↑ k: 1.2E-04 0.4

C6-TS/Ph11 soil ↓ 5.6E+00 3.0E+02 34 66 1.0 ↑ k: 5.4E-04 0.9

C6-SRS3-SW ↓ 3.6E+00 9.2E+01 40 60 1.0 →

C6-SRS5-SW ↓ 6.5E+00 4.1E+02 41 59 1.0 →

C6-TS/Ph2-SW ↓ 1.2E+01 1.5E+02 39 61 1.0 →

C6-TS/Ph11-SW ↓ 2.5E+02 2.5E+02 54 46 1.0 ↑ k: 3.6E-04 0.9

C6-C111-SW ↓ 2.0E+01 1.7E+02 30 70 1.0 →

Average-C6 3.8E+01 1.9E+09 54 46 1.0 1.3E-04 3.5E+11 52 48 1.0

C7-saw grass ↓ 3.5E+00 1.2E+02 45 55 1.0 ↓ 3.1E-02 2.7E+04 38 62 1.0

C7-spikerush ↓ 1.6E+01 8.9E+01 61 39 1.0 ↓ 1.3E+02 5.3E+09 86 14 0.9

C7-periphyton ↓ 9.4E+00 1.0E+02 56 44 1.0 ↓ 9.6E+00 3.1E+02 30 70 1.0

C7-mangrove ↓ 5.1E+00 1.5E+02 65 35 1.0 ↓ 2.6E+01 3.3E+02 64 36 1.0

C7-seagrass ↓ 1.2E+01 9.0E+01 47 53 1.0 ↓ 5.6E-03 3.3E+02 79 21 1.0

C7-SRS3 soil ↓ 3.1E+01 2.8E+09 72 28 1.0 →

C7-SRS5 soil ↓ 1.7E+02 1.7E+02 50 50 0.8 →

C7-TS/Ph2 soil ↓ 2.7E+01 4.5E+09 55 45 0.8 ↓ 1.2E+03 1.2E+03 48 52 0.9

C7-TS/Ph11 soil ↓ 8.4E+00 2.8E+02 84 16 1.0 ↓ 3.1E+01 1.1E+03 50 50 1.0

C7-SRS3-SW ↓ 3.3E+01 2.1E+10 66 34 1.0 →

C7-SRS5-SW ↓ 3.9E+01 2.6E+10 49 51 1.0 →

C7-TS/Ph2-SW ↓ 4.5E+01 1.0E+11 37 63 0.5 →

C7-TS/Ph11-SW ↓ 3.2E+01 7.3E+10 42 58 1.0 →

C7-C111-SW ↓ 1.5E+01 2.1E+10 32 68 0.8 ↓ 1.2E-02 6.7E+03 27 73 1.0

Average-C7 3.2E+01 1.8E+10 54 46 0.9 1.8E+02 6.6E+08 53 47 1.0

Note: ↑ =increase; ↓ =decrease;  → =no obvious change;

values are rate constant k (hrs-1) instead of half-life in case of increase.
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      This study used not only the bulk CDOM (A254) but also PARAFAC to 

decompose EEMs into different components so as to better characterize the detailed 

reactivity for multiple “types” of DOM. In addition, multi-pool degradation modeling 

divided the fluorophores in each component into three lability-based pools. 

Quantification of photo- and bio-reactivity for each pool of each EEM-PARAFAC 

component originated from different sources provided more detailed reactivity 

information than quantifying bulk parameters such as DOC. Furthermore, different 

half-lives (orders of multitude) were observed for even a same component from 

different sources, suggesting the mixture nature of the fluorophores in each 

component, most likely the result of different structures, speciation and conformation, 

and molecular weights. This call for a cautious approach when direct comparisons 

between EEM-PARAFAC components in different ecosystems are performed as 

components with similar fluorescence characteristics can actually present very 

different photo- and bio-reactivity due to different structural features or speciation 

states. 

 

3.4.4 Reactivity comparison of biomass leachate, soil leachate, and surface water  

      The EEM-PARAFAC components of FCE DOM were further sub-classified 

into 3 reactivity categories according to the half-lives calculated based on the 

maximum estimated residence time of a conservative tracer about 2 months for 

Everglades National Park as follows: The DOM pools were classified as labile 

(L-DOM) by replacing the term t (time) in equation 3 for 4 days; semi-labile 
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Fig.3.6 Examples of comparison of photo- (7 days) and bio-reactivity (28 days) of  
EEM-PARAFAC components for biomass leachate, soil leachate, and surface 
water in FCE. (Labile: t1/2 < 4 days; semi-labile: t1/2 between 4-60 days; and 
refractory: t1/2 > 60 days).  

       

(SL-DOM) for residence times between 4-60 days and the refractory pool (R-DOM) 

for above 60 days. The days above are “equivalent” days and 1 SunTest day was 

estimated to be equivalent to 4 days in natural environment. % L-DOM and % 
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R-DOM were calculated by substituting the time t with 4 and 60 equivalent days, 

respectively, and % SL-DOM was obtained by subtracting the sum of % L-DOM and % 

R-DOM from a total 100%. Since the actual photo-degradation were 28 equivalent 

days and bio-incubation were 28 actual days, the calculations here were estimations 

based on the assumption that the exponential decay trends will continue extrapolating 

to longer time scales. Fig.3.6 shows some representative examples of biomass, soil 

and surface water comparison of % L-DOM, % SL-DOM, and % R-DOM during 

photo- and biodegradation. Additional data are presented in Appendix. The results 

show that solar irradiation alone was very powerful in degrading fluorescent DOM as 

opposite to bio-incubation alone, which only displayed some effects on the biomass 

leachates. This is consistent with the finding in northern Everglades that microbial 

degradation of DOM was very slow (Qualls and Richardson 2003). The 

EEM-PRAFAC components featured a wide range of half-lives and general 

degradation trends were not readily observable in this large dataset. In order to 

facilitate data interpretation, PCA analyses were performed after loading the % 

L-DOM, % SL-DOM, and % R-DOM of the EEM-PARAFAC components. To 

simplify the analyses, the humic-like C1 and protein-like C7 only were selected for 

the PCA as representatives of the potentially photo-reactive humic-like fractions and 

the potentially bio-labile protein-like fractions and were also present in all the samples 

as stated before. Using this approach, general trends became clear as illustrated in 

Fig.3.7. Principal component 1 (PC1), which represents the reactivity scale with the 

labile fraction on the right-hand side and the refractory fraction on the left, accounted  
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Fig.3.7 PCA comparison of photo- and bio-reactivity of humic-like C1 and 
protein-like C7 among three sources (biomass leachate, soil leachate, and surface 
water) based on relative abundance of the labile, semi-labile, and refractory 
pools. (Color code for photodegradation: biomass; soil leachate; SW; color code 
for biodegradation: biomass; soil leachate; SW; SW = surface water.  
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for 80% of the variability, while PC2, representing the semi-labile fraction vertically,     

accounted for 20% of the variability. Both components showed a more positive 

correlation with PC1 for the photo-degradation data compared to the biodegradation 

data, suggesting a higher propensity to photo-degradation than bio-degradation. 

Patterns observed for C1 showed a general reactivity trend of biomass > soil > SW 

(excluding the periphyton leachates which don’t seem very photo-reactive), and a 

significant overlap between the data for the soil and SW samples. C7 also showed a 

general similar trend to that of C1, except for TS11 sediment, which showed a high 

degree of labile character similar to the biomass leachates. In general, the trends in 

photo-degradation were mostly from labile to semi-labile for the C1 (positive 

correlation with PC2) while a slight shift to a more refractory character was observed 

for C7 (both positive correlation with PC2 and negative correlation with PC1).  With 

regards to bio-reactivity, both C1 and C7 had similar trends with a shift from 

semi-labile to labile (negative correlation with PC1) along the biomass to soil to 

surface water reactivity gradient.  

 

3.4.5 Correlation of biodegradable DOC versus protein-like components:  

      Yamashita and Tanoue (2003) observed good correlations between protein-like 

EEM-PARAFAC components and aromatic amino acids, and proposed that 

protein-like components could be useful indicators as not only aromatic amino acids 

but of the total hydrolysable amino acids (THAA) in bulk DOM. In this respect, other 

authors have suggested that some optical properties such as the protein-like  
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Fig.3.8 Correlation of % BDOC loss versus each and the sum of two protein-like 
EEM-PARAFAC components. Symbols represent: ∆ biomass leachate; ◊ soil 
leachate; O surface water. 
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fluorescence, could be used as proxies for the biodegradable DOC fraction (BDOC) 

(Fellman et al., 2008, 2009a, and 2009b; Balcarczyk et al., 2009).  In the present 

study the correlation between % BDOC loss and % C7 alone, % C8 alone, and the 

sum of the two protein-like components % (C7 + C8), showed that while protein-like 

components C7 and C8 were found to be reasonably well and not correlated with % 

BDOC loss respectively (R2 = 0.66 and 0.19, for C7% and C8%, respectively), the 

sum of C7% and C8% showed the best correlation (R2 = 0.92; Fig. 3.8). Similar linear 

correlations have been reported for biodegradation of DOM in surface waters 

(Balcarczyk et al., 2009). However, in this case the correlation represents a range of 

samples from biomass leachates, soil leachates and surface waters. In this correlation 

the surface water samples were clustered on the lower part of the line, but did not 

show any linear correlation among them. While the correlation shown in Figure 3.8  

suggests that the % C7+C8 can be used as a proxy for BDOC over a wide range of 

DOM sources, its direct application as a proxy for surface waters of the Everglades 

seems unlikely and may be controlled by local environmental dynamics. This lack of 

correlation seems to be consistent with the observation by Maie et al. (2007) in 

Everglades that a protein-like peak-T (excitation/emission maximum at 280/325 nm) 

can be a mixture of protein-like and polyphenol-like fluorescence, in which case the 

application of this parameter as a bioavailability proxy has severe limitations. 

Alternatively, in ecosystem like the Everglades where terrestrial DOM is dominant, 

protein-like structures might be encapsulated and thus “shielded” in the three 

dimensional structure of the DOM (Yamashita and Jaffe, 2008a) and consequently are 
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less available for bacterial uptake. In addition, relatively high amounts of dissolved 

black carbon in Everglades DOM (up to 25% C; Jaffé unpublished) can also serve as a 

means of reducing DOM bioavailability.  

 
 
3.5 Conclusions and Environmental implications:    

      (1) Qualitative assessment of DOM reactivity: An interesting result from this 

study is the general indication that C3 may serve as an indicator of the degree of 

photo-degradation, as it becomes enriched during this process. Similarly, C6 and C8 

could serve that function for the bio-degradation process. Sequential photo- followed 

by bio-degradation proved to be most effective in changing the leachates’ DOM 

fluorescence characteristics into EEMs more similar to those of the natural surface 

water DOM. This is consistent with previous findings that sunlight has “priming 

effect” for bacterial uptake on terrestrial-derived DOM (Tranvik and Bertilson 2001; 

Qualls and Richardson 2003; Moran and Covert 2003).   

      (2) Quantitative assessment of DOM reactivity: The two organic matter pool 

model provided to be an excellent fit for the decay data observed in this study. A 

variety of different behavioral patterns were observed between the photo- and 

bio-degradation kinetics, between different samples and sample types, and between 

different PARAFAC components.  Reaction kinetics showed profiles for exponential 

decay and increase followed by decrease for a254, and exponential decay, exponential 

generation, no observable change through time or variable decreases and increments 

for EEM-PARAFAC components throughout the incubation periods. It is intriguing 
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that observe this high degree of variability in degradation patterns and associated rate 

constants (or half-lives) even for the same PARAFAC components depending on 

sample type and source. This suggests that the mixture nature of the fluorophores in 

each component, most likely the result of different structures, speciation and 

conformation, and molecular weights is causing this effect. This calls for a cautious 

approach when direct comparisons between EEM-PARAFAC components in different 

ecosystems are performed as components with similar fluorescence characteristics can 

actually present very different photo- and bio-reactivity due to different structural 

features or speciation states.  

      In general, decay curves for the photo-degradation kinetics most commonly 

resulted in significantly higher rate constants for the degradation of the more labile 

pool-1 compared to those obtained for the more refractory pool-2. However, the pool 

size was usually higher for pool-1 compared to pool-2 for fluorescent DOM (FDOM), 

but just the opposite for chromophoric DOM (CDOM) as evidenced by a254 trends, 

implying that a larger fraction of the FDOM is photo-reactive compared to CDOM. 

Similar observations were true for the bio-degradation kinetics, although for the most 

part the half-lives were much longer for this degradation process where decay kinetics 

were less common that for photo-degradation, and patterns showing no significant 

change over time were more common. While photo-degradation half-lives were on the 

order of 101 hours for pool-1, those for pool-2 were as high as 1011 hrs. Differences in 

photo-degradation half-lives for pool-1 corresponding to different PARAFAC 

components ranged from not significantly different to about a factor of 10 higher for 
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the soil and SW samples. Differences between biomass leachates, soil leachates and 

surface waters for pool-2 were harder to assess as these were highly variable ranging 

from 101 to 1011 across the different sample types, again suggesting a highly 

heterogeneous character regarding reactivity of the FCE DOM  

      (3) DOM reactivity comparison among sources: By further sub-classifying the 

EEM-PARAFAC components of FCE DOM into 3 reactivity categories according to 

the half-lives calculated based on the maximum estimated water residence time of 

about 2 months for FCE, patterns observed for the humic-like components (C1) 

showed a general reactivity trend of biomass > soil > SW, excluding the periphyton 

leachate, and a heavy overlap between soil and SW samples. Protein-like components 

(C7) also showed a general similar trend to that of C1, except for TS11 sediment. 

These general trends are not unexpected as biomass leachate DOM can be expected to 

have more reactive components compared to those in surface waters, who have 

already been actively exposed to environmental conditions. As such, soil leachates 

serve as intermediates in this reactivity continuum. The important implication of this 

finding is its application in carbon cycling modeling once source strengths (biomass 

versus soils) for FCE DOM can be quantitatively estimated.    

      (4) Correlation of BDOC with EEM-PARAFAC components: The correlation 

between % BDOC loss and % C7 alone, % C8 alone, or the two protein-like 

components % (C7 + C8), showed that the latter had a good correlation with it (R2 = 

0.92; Fig. 3.8). However, in this case the correlation represents a range of samples 

from biomass leachates, soil leachates and surface waters. The surface water samples 
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were clustered on the lower part of the line, but did not show any linear correlation 

among them. While similar correlations for surface water DOM have clearly shown 

the application of the protein-like fluorescence in BDOM assessments, this does not 

seem to apply to the FCE DOM. It is likely that differences in DOM speciation (i.e. 

formation of supramolecular associations, molecular stacking and 3D structures of the 

DOM) may control the bio-availability of the protein-like carbon compounds to the 

microbial community (e.g. Yamashita and Jaffe, 2008).  

      (5) Implications for FCE wetland restoration: The results obtained through this 

study have environmental implications both for local Florida Everglades and for the 

global environment. Based on the reactivity study the FDOM in the FCE seems 

mainly controlled by its photo-reactivity and to a much lesser extent to the 

bio-reactivity. It is important to mention that this applies for the FDOM in general, 

and is not necessarily transferable to the DOC. While the latter was observed to 

decrease by 0.0-68.2% over the 28 day incubation, much of this decrease may be 

caused by the respiration on non-FDOM components such as carbohydrates (see 

Fig.A-2). However, other studies agree that the BDOM in the FCE is quite limited. 

Half-lives determined for both photo- and bio-degradation of the FDOM fraction 

suggest that at least the biodegradation process is limited by the elevated fraction of 

refractory FDOM based on present day water residence times in Everglades National 

Park. While the Everglades are undergoing an unprecedented historic restoration 

which aims to enhance among others the water flow throughout the system, such 

enhanced water delivery is expected to result in higher water depth, longer 



 

89 
 

hydroperiod and shorter water residence times in the freshwater marsh and mangrove 

forest area, and more water delivery into Florida Bay and Gulf of Mexico coastal area. 

As sunlight penetration will be attenuated with water depth, DOM in deeper water and 

soil will be less exposed to UV irradiation. Similarly, shorter water residence time will 

reduce the time for degradation of the DOM further.  The combined effects of higher 

water depth and shorter water residence time are expected to deliver not only more 

terrestrial-derived but also less refractory DOM into coastal area. While the potential 

effects of this enhanced reactivity character of the allochthonous DOM in coastal 

regions including Florida Bay remain unknown, the difference with present day 

conditions is difficult to assess as the magnitude of enhanced water delivery remains 

difficult to estimate at this time in the restoration process.  

(6) General implications for PARAFAC applications: The significant differences 

and observed variability in DOM photo- and bio-reactivity from different sources is a 

reminder that cautions should be taken when comparing EEM-PARAFAC data in 

different ecosystems, as components with very similar fluorescence spectra may 

actually feature significantly different speciation and structures potentially resulting in 

vastly different photo- and bio-reactivity. More research in this area is needed to 

better constrain the limitations of this technique in comparative ecosystem studies and 

in particular for the application of EEM-PARAFAC based reactivity proxies.  
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Chapter 4 

Study of dissolved organic matter from groundwater and  

surface water in the Florida coastal Everglades 
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4.1 Abstract  

      Dissolved organic matter (DOM) in groundwater and surface water samples 

from the Florida coastal Everglades (FCE) were studied using Excitation Emission 

Matrix fluorescence modeled through Parallel Factor Analysis (EEM-PARAFAC). 

DOM in both surface and groundwater from the eastern Everglades S332 basin 

reflected a terrestrial-derived fingerprint through dominantly higher abundances of 

humic-like PARAFAC components. In contrast, surface water DOM from 

northeastern Florida Bay featured a microbial-derived DOM signature on the basis of 

the higher abundance of microbial humic-like and protein-like components consistent 

with its marine source. Surprisingly, groundwater DOM from northeastern Florida 

Bay reflected terrestrial-derived source except for samples from the Nest Key (NK) 

well, which mirrored a combination of terrestrial and marine end-member origin. 

Furthermore, surface water and groundwater displayed effects of different degradation 

pathways such as photo-degradation and bio-degradation as exemplified by two 

PARAFAC components seemingly indicative of such degradation processes. Finally, 

Principal Component Analysis (PCA) of the EEM-PARAFAC data was able to 

distinguish and classify most of the samples according to DOM origins and 

degradation processes experienced, except for a small overlap of S332 surface water 

and groundwater, implying rather active surface-to-ground water interaction in some 

sites particularly during the rainy season. This study highlights that EEM-PARAFAC 

could be used successfully to trace and differentiate DOM from diverse sources across 

both horizontal and vertical flow profiles, and as such could be a convenient and 
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useful tool for the better understanding of hydrological interactions and carbon 

biogeochemical cycling. 

 

4.2 Introduction 

      Dissolved organic matter (DOM) is an assemblage of heterogeneous organic 

molecules that is ubiquitous in aquatic ecosystems and plays diverse biogeochemical 

and ecological roles (Findlay and Sinasbaugh 2003). As such, DOM has been shown 

to be a driver in microbial loop dynamics and a controlling factor in light availability 

to aquatic organisms, it can negatively impact water treatment processes and serve as 

a media for the transport of trace metals and organic pollutants, among others (Lu & 

Jaffé 2001; Cai et al.,, 2000; Findlay & Sinsabaugh 2003; Yamashita & Jaffé 2008).  

      DOM is derived primarily from the decaying of organisms such as plants or 

algae. It is often classified into humic substances and biochemically defined 

non-humic substances such as proteins, carbohydrates and lipids. Generally speaking, 

DOM from marine and aquatic sources is more enriched in aliphatic structures while 

DOM from terrestrial/higher plant sources features more conjugated structure and 

higher aromaticity (e.g., Maie et al., 2005). While aliphatic structures in DOM tend to 

affect fluorescence spectra through a blue-shift, highly conjugated structures tend to 

be characterized by more red-shifted spectra (Coble 1996). These characteristics have 

successfully been used to differentiate terrestrial/higher plant derived DOM from 

marine/microbial sources (e.g., Coble, 1996; McKnight et al., 2001).  



 

93

 

 

Fig.4.1 Conceptual diagram depicting sources of DOM in FCE ground water and 
surface water. CGD=coastal groundwater discharge; SGD=submarine 
groundwater discharge. Arrow sizes are not proportional to flux size.  
 
 

      Diagenetic processes, such as photodegradtion and biodegradation, can also 

alter DOM structure and composition (Obernosterer & Benner 2004; Zhang et al., 

2009). Suboxic or anoxic environments, often typical for groundwater, favor 
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microorganism-catalyzed reactions which can alter the nature of DOM through redox 

reactions. Humic substances in DOM can be directly or indirectly involved in 

microorganism-catalyzed redox reactions, either as electron shuttles or in some cases 

as terminal electron acceptors (Scott et al., 1998; Peretyazhko & Sposito, 2006; 

Ratasuk et al., 2007; Jiang & Klapper, 2008). Cory & McKnight (2005) reported a 

reduced form of quinone and several partly reduced semiquinone fluorophores in 

reducing lake environments. They also found that the increase of a reduced form of 

quinone was concurrent with a decrease of an oxidized counterpart below the oxycline. 

Such studies have been possible thanks to the application of excitation-emission 

matrix with parallel factor analysis (EEM-PARAFAC) modeling. As such, this 

technique has ample potential to aid in the better understanding of DOM dynamics in 

groundwater and associated surface-to-groundwater exchange. However, only few 

reports have appeared in the literature regarding the use of fluorescent DOM as a 

natural tracer of groundwater sources, flow, and effects of pollution or land use (Baker 

& Genty, 1999; Baker, 2001; Baker, 2002; Lapworth et al., 2008). The main objective 

of this study was to apply EEM-PARAFAC to the assessment of DOM dynamics in 

groundwater from the Florida coastal Everglades (FCE) ecosystem.   

      The FCE is one of the largest wetlands in the world and is undergoing an 

unprecedented ecological restoration aiming at restoring its historic quality, quantity, 

and timing of water flow (see http://www.evergladesplan.org/). A salinity gradient 

extends along FCE from freshwater marshes in the north, across a mangrove fringe 

along the coast, to the estuarine environments of Florida Bay and the Gulf of Mexico 
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to the south. Environmental deterioration of this ecosystem due to changes in water 

quality and water delivery poses increasing urgency for biogeochemical and 

hydrological research. Most of the nitrogen and phosphorus in the Everglades are in 

an organic form (Boyer et al., 1997; Boyer, 2006), and thus associated with DOM. 

The objectives of the Comprehensive Everglades Restoration Plan (CERP) are to 

store large amounts of water underground (see http://www.evergladesplan.org/).  Yet 

little information is available regarding DOM dynamics in ground waters of the 

greater Everglades ecosystem, although active recharge-discharge interactions have 

been shown to exist (Aiken & McKnight et al., 1985; Corbett et al., 1999; Corbett et 

al., 2000; Price et al., 2006a; Price et al., 2006b; Harvey et al., 2006). 

      The sources of DOM to surface water in the FCE include: (1) autochthonous 

production by organisms such as emergent, floating, and submerged vegetation and 

periphyton; (2) oxidation of soil organic matter; (3) precipitation; (4) exchange with 

underlying ground water; and, (5) canal inputs. Possible inputs of DOM to 

groundwater include: (1) recharge from the overlying surface water; (2) groundwater 

flow from upstream of the FCE (3) desorption from the soils/sediments en route of 

percolating waters to the aquifer; (4) upward diffusion from deeper aquifers (Reese & 

Cunningham 2000); and (5) possible input from the ocean side due to sea water 

intrusion. To better assess these surface-to-ground water dynamics for DOM, .we 

applied EEM-PARAFAC in an attempt to discriminate DOM sources and quality 

among surface water and groundwater from different locations in the Florida coastal 

Everglades, and in the process, trace the hydrological interactions between surface 
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and groundwater. These are the first data of their kind for the greater Everglades 

ecosystem.  

 

4.3 Sampling and experimental methods  

4.3.1 Sites description  

      The eastern border of Everglades National Park and the north-east section of 

Florida Bay were selected as the study sites for this project (Fig.4.2).  The region is 

immediately underlain by the Biscayne Aquifer, one of the most permeable karst 

aquifers in the world (Parker et al., 1955). The aquifer extends from Palm Beach 

County in the north to under Florida Bay and the Florida Keys in the south, and forms 

a wedge-shaped with a thin edge along its western boarder and thickening in and 

southeast direction to over 65 m along the coastline (Fish and Stewart, 1991; Bradner 

et al., 2005; Parker et al., 1955). The geology of the Biscayne aquifer is dominantly 

marine and freshwater carbonates deposited during the Pleistocene, overlain by recent 

deposits of peat and marl (Cunningham et al., 2006),  The inorganic water chemistry 

of the Biscayne Aquifer beneath the FCE is dominantly calcium-bicarbonate typical 

for groundwater in contact with limestone, except for along the coastline where 

seawater intrudes into the aquifer and shifts the groundwater chemistry to a 

sodium-chloride-type of water (Harvey and McCormick, 2009; Price et al., 2006a). 

The shallow groundwater (<30 m) in the Biscayne Aquifer beneath the FCE has been 

dated using tritium/helium age dating techniques to be less than 30 years (Price et al.,  
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2003). The 14C-derived age of humic material isolated from groundwater from the 

Biscayne aquifer was found to be an average 683(±50) years (Thurman, 1985).  

      The study sites include the S332 (25.422 ºN, 80.590 ºW) basin area of ENP in 

the north and Florida Bay in the south.  The S332 basin area was historically a part 

of the natural wetlands of the Everglades, but was farmed for a time, and has since 

been incorporated into a water treatment basin. Most surface water flow in the basin is 

controlled through pumps that transfer water from the adjacent L31 canal. This water 

is allowed to drain slowly from the basin into the headwaters of Taylor Slough, the 

natural surface water flow-way in the region, or to infiltrate into the groundwater 

table.   

Fig.4.2 Sampling sites in Florida coastal Everglades (FCE). Groundwater and 
surface water were collected from S332 basin area and Northeastern FL Bay. 
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The purpose of the basin is to retain nutrients (phosphorus and nitrogen) that may be 

in the canal water prior to its release to Taylor Slough.   

      Florida Bay is a coastal lagoon lying between the southern tip of the Florida 

mainland and the Florida Keys (Fourqurean and Robblee, 1999). Here several sites 

were studied including Little Madeira Bay (LMB; adjacent to the outflow of the 

Taylor River) and Shell Key (SK), located on the coastal side of Florida Bay, where 

fringe mangrove forests are the dominant vegetation. Offshore sites include Nest Key 

(NK), FB9, and FB24, sites covered by a thin layer of calcitic marl underling a 

blanket of seagrass. Two sites were located along the Florida Keys, namely the 

Buttonwood (BW) and Bay Side (BS) sites, both are in proximity of mangrove and 

urban environments.  

 

4.3.2 Sampling 

      Groundwater from more than 20 wells (3.6 to 10.2 m in depth) in S332 basin 

was collected quarterly between September 2006 and September 2007.  In addition, 

groundwater from 12 wells at five sites, scattered throughout northeastern Florida Bay 

(Fig.4.1), were collected in September 2007. At four of the sites, groundwater samples 

were pumped from both shallow (depth = 4.6-6.1 m) and deep (depth = 8.2-19.8 m) 

wells (LMB, SK, BS, BW) while at NK groundwater was collected from a deep 

(depth = 11 m) well only. Prior to sampling of each well, they were purged of at least 

3 well volumes using a high flow pump. During purging, specific water quality data, 

such as salinity, pH, and dissolved oxygen, were monitored until stable readings using 
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an Orion meter (Table 1). Samples were pumped using a low flow peristaltic pump 

and filtered through a 0.45 µm filter (HDPE, MilliPore groundwater sampling capsule) 

in situ. A syringe was attached to the end of the filter, and water samples were 

collected in glass Vacutainer tubes which were first pre-cleaned in dilute (10 %) HCl, 

flushed with helium and then evacuated with a vacuum pump in an attempt to remove 

O2. Collected samples were stored in a cooler with ice, transported to the lab on the 

same day, and then stored in a refrigerator for measurements within 3 days.  

      Surface water samples were collected monthly between October 2004 and 

September 2008 for TS1 (in S332 basin) and FB9 sites and from October 2004 to 

September 2006 for the FB24 site. The TS1 site became dry during dry season 

(typically between January to May) so samples were primarily collected during the 

wet season. The FB9 and FB24 sites were selected since they are close to the 

groundwater sites and representative of marine surface water. Samples were collected 

in pre-cleaned, acid-washed, brown high density polyethylene bottles (Nalgene). 

Containers were rinsed three times before sample collection. All surface water 

samples were filtered in the lab with pre-combusted 0.7 µm GF/F filters and stored in 

a refrigerator until analyses within one week of collection.  

 

4.3.3 Analytical measurements 

      The DOC concentrations were measured using the high-temperature catalytic 

combustion method with a Shimadzu TOC-V total organic carbon analyzer. Samples 

were acidified to pH<2 with 3N hydrochloric acid and were purged with CO2 free air 
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to remove inorganic carbon before measurements. DOC data were used to calculate 

the specific ultraviolet absorbance, a (254) *, which is an indicator of DOM 

aromaticity and defined as UV absorption coefficient a(254) in inverse meters 

normalized to DOC concentration in mg/L (Hansell & Carlson, 2002, Weishaar et al., 

2003). Due to very low levels of dissolved Fe in South Florida waters a(254) * values 

were not corrected for Fe interference (Weishaar et al., 2003). The a (254) was 

determined using a Varian Cary 50 bio spectrophotometer with a 1 cm quartz cuvette 

scanning from 240 nm to 800 nm. The UV-Vis spectra were also used for inner filter 

correction for the EEMs according to McKnight et al. (2001) and to determine the 

slope ratio (SR) of 275-295 nm to 350-400 nm, as a proxy for the molecular weight 

distribution of DOM (Helms et al., 2008). 

     The EEMs were measured using a Horiba Jovin Yvon SPEX Fluoromax-3 

spectrofluorometer equipped with a 150 W continuous output xenon arc lamp. Slits 

were set at 5.7 nm for excitation and 2 nm for emission. Forty-four emissions scans 

were acquired at excitation wavelength (λex) between 240 – 455 nm at every 5 nm 

steps. The emission wavelengths were scanned from λex + 10 nm to λex + 250 nm (i.e.: 

between 250 – 705 nm) at 2 nm steps (Maie et al., 2006b). The 44 individually 

scanned spectra were concatenated to form EEMs. All fluorescence signals were 

acquired in signal over reference ratio mode (S/R) to eliminate potential fluctuation of 

the xenon lamp. Several post-acquisition steps were also carried out for correction and 

standardization: (1) inner filter effect correction using UV-Visible data according to 

McKnight et al., (2001); (2) instruments biases correction were performed using 
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specific excitation and emission correction files provided by the manufacturer; (3) 

blank subtraction using Milli-Q water was performed; (4) daily fluorescence intensity 

variations were corrected using the area under the Milli-Q water Raman peak at 

excitation 350 nm (Cory & McKnight 2005); (5) finally, all fluorescence 

measurements were converted to quinine sulfate units (QSU). The Fluorescence Index 

(FI) was determined as the ratio of the emission intensity at a wavelength of 470 nm 

to that at 520 nm, obtained with an excitation of 370 nm.  

      For groundwater samples, caution was taken to avoid O2 exposure and 

possible DOM oxidation before or during EEM measurements. As described above, 

the samples were collected in vacuumed tubes and transferred to a sealable cuvette in 

an inert Argon gas box for measurements.  

 

4.3.4 Parallel Factor Analysis (PARAFAC) 

      PARAFAC is a statistic model used to decompose multi-way data into 

different components. It is derived from an alternating least square (ALS) algorithm. 

Thus, PARAFAC can statistically decompose EEMs into fluorescent groups 

(components). There are two ways to apply PARAFAC modeling, i.e., by creating and 

validating the model using the complete dataset of EEMs (e.g., Stedmon et al., 2003; 

Ohno and Bro, 2006) or by fitting the EEMs to an already established PARAFAC 

model (e.g., Yamashita and Jaffé, 2008; Fellman et al., 2009). The groundwater EEMs 

were fitted to an existing Everglades/Florida Bay surface water PARAFAC model 

which had been well established using 1394 surface water samples (Fig. 2) (Maie et 
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al., personal communication). The analysis was carried out in MATLAB 7.0.4. 

(Mathworks, Natick, MA) with the DOMFluor toolbox (Stedmon and Bro, 2008). No 

obvious residues were found after fitting the groundwater EEMs to the established 8 

components model, indicating that this model was applicable to groundwater DOM 

studies and that the fluorophores were similar between groundwater and surface water 

in the collected samples. The PARAFAC component spectral characteristics and 

split-half validation data are shown in Figure 2.2. 

 

4.4 Results & Discussions 

4.4.1 Water chemistry and optical parameters 

      Both surface water and groundwater from the S3321 area were fresh as 

indicated by low salinity values (Table 4.1). While both surface water and 

groundwater from FB had salinity > 30 (Table 4.1). The pH measurements ranged 

from 6.9 to 8.4 for all samples. FB groundwater had generally lower pH values 

compared to FB surface water. Dissolved oxygen values for all the groundwater 

samples were less than 1 mg/L compared to 6.3 (±1.9) mg/L for surface samples, 

implying suboxic conditions in the studied wells.  

      Bulk DOC data showed S332 surface water had a highest average value, 

followed by S332 groundwater, and FB surface water. DOC values for FB 

groundwater were not determined due to sample volume limitations, and only TOC 

(unfiltered samples) data were available for the latter. The TOC values were used as 

equivalent to DOC for comparison purpose. Under this assumption, FB groundwater 
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had the lowest DOC values compared to the other surface and groundwater samples, 

indicating possible removal or dilution processes such as absorption by sediments 

and/or aquifer materials, bio-degradation processes, or dilution by low DOC water 

from underneath. DOC for the S332 surface water showed a much larger range  

 

Table 4.1 Summary of water chemistry and optical parameters.  
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(9.9±6.3 mg/L) than at the other sites, suggesting a bigger seasonal change for this 

site than groundwater and also FB surface water.  

      The a(254)* data confirm previous reports (Maie et al., 2005; Maie et al., 

2006a) that Florida Bay surface water DOM is characterized by low aromaticity, in 

accordance with its microbial DOM origin and potential degradation effects due to 

intense solar radiation on the shallow waters of the Bay. The S332 surface water 

DOM showed the highest absorption coefficient a(254) values and several FB 

groundwater sites such as the BW site also displayed comparably elevated values. BS 

groundwater samples were observed having the highest slope ratio SR value of 1.5 for 

the shallow well (6.1 m) and 1.6 for the deep well (13.7 m), as compared with 1.0-1.3 

for all the other samples, indicative of smaller molecular weight for DOM in this site. 

The FI values ranged from 1.4 to 1.6, with S332 surface water samples having the 

lowest values, consistent with their terrestrial (higher plant/soil) origin.  

    

4.4.2 Classification of water samples via PCA 

     The EEM data were fitted to a previously established 8-component PARAFAC 

model for Florida Everglades surface water DOM (n=1394). The advantage of using 

this model is that it can facilitate the direct comparison between FCE groundwater 

and surface water. No obvious residues were obtained from this model for this dataset. 

The spectral characteristics and contours of the modeled PARAFAC components are 

presented in Figure 2.2. From the comparison of spectral characteristics of each 

component (Fig.2.2) with those reported in previous studies (e.g., Stedmon and 
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Markager, 2005; Cory and McKnight, 2005; Yamashita et al., 2008; Murphy et al., 

2008; Santín et al., 2009), components 1, 2, 3, 5, and 6 were assigned as terrestrial 

humic-like components.  Component 4 was assigned as a microbial (marine) 

humic-like component while C7 and C8 were protein-like components with the 

former tyrosine-like (and/or blue-shifted tryptophan–like) and the latter 

tryptophan-like. The trends in the absolute and relative abundance of 

EEM-PARAFAC data across a terrestrial to marine gradient will be discussed in detail 

later (see Fig. 4.4 below).  

In an attempt to use the PARAFAC data as a fingerprinting tool for DOM source 

and quality, the relative abundance of all the EEM-PARAFAC components for all 

groundwater and surface water samples studied here (see Table 4.1 for definitions and 

calculations), were used for Principal Component Analysis (PCA). The PCA graph 

display (Fig.4.3) produced different clusters, suggesting that samples could be 

classified according to DOM origins and different environmental conditions. Principal 

component 1 explained 66% of the variance, whereas principal component 2, 

accounted for a further 18% of the variance. The differences among these clusters are 

likely controlled by a variety of factors including DOM source strength, degree of 

diagenetic degradation, hydrological conditions and redox state.  

 

4.4.3 Effects of DOM sources and precursor types 

      Potential sources of DOM in groundwater and surface water in the FCE have 

been discussed earlier, and should play a central role in the PCA classification of the 
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samples. From the loading plots of Fig.4.3 (B), S332 surface water, S332 groundwater, 

and most FB groundwater (except for NK site) seemed mostly controlled by the 

loadings of the terrestrial humic-like components (C1 and C5), while Florida Bay 

surface water samples displayed more marine/microbial humic-like and protein-like 

signatures (C4, C7, and C8). The PC1 of NK site from FB fell in the middle between 

the terrestrial and marine end-members, suggesting combined effects from both  

 

 

 

Fig.4.3 PCA for EEM-PARAFAC results of all the surface and ground water 
samples. (A) Score plot (B) loading plot. sha = shallow. 
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sources. Thus, PC1 seems to control the clustering based on DOM source. In contrast, 

for PC2 surface water samples seemed more controlled by the loadings of components 

C2 and C3 while the groundwater samples were more dependent on the component 

C6. FB groundwater featured either extremely low levels or absence of components 

C2 or C3, with the exception of the BW site. Thus, PC2 seems dependent on both 

photo- and bio-degradation of DOM as described below.  

      Most samples types clustered separately on the PCA plot of the 

EEM-PARAFAC data (Fig. 4.3), and as such were distinguishable based on their 

fluorescence characteristics. The exceptions were several surface freshwater samples 

from June, July, and August, and several groundwater samples from the S332 basin 

which were overlapping at the freshwater surface to groundwater clusters. This would 

not be surprising considering that the Biscayne aquifer is shallow and highly 

permeable, and the sources of groundwater recharge in the S332 basin are primarily 

from the overlying surface water in the wet season and from interactions with canals 

that penetrate the Biscayne Aquifer in the dry season (Price et al., 2006a; Genereux 

and Slater, 1999). Harvey et al. (2006) found that surface water and groundwater 

‘actively exchanged’ in the central Everglades, and estimated the storage depth of 

interactive groundwater as 3.1 m after adjustment for the porosity of different soil 

types. This was consistent with our observations that the DOM samples from wells at 

depths of around 3.1 m were more similar in their optical properties to surface water 

than those of most of the deeper wells. Some deeper well samples also fell within this 

region, probably due to specific site characteristics such as sinkholes and conduits of 
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higher porosity allowing for pathways of preferential flow (Cunningham et al., 2006). 

Geochemical evidence of surface water interactions with deeper wells in the vicinity 

of the S332 basin was also reported by Price et al. (2003) and Wilcox et al. (2004), 

and explained by vertical and horizontal conduits in the karst limestone allowing for 

rapid infiltration of surface water or rainwater to deeper depths.   

 

4.4.3.1 Diagenetic effects by photo- and biodegradation 

      As stated above, photo-induced transformations of biomass and soil derived 

DOM from Florida coastal Everglades may be an important degradation pathway 

(Scully et al., 2004; Maie et al., 2008), and could be significant on a relatively short 

timescale. In contrast to the intense sunlight exposure to surface waters, especially in 

FB, light is not available in the subsurface. Hence, the groundwater DOM is expected 

to be less photo-degraded than the surface water. This may explain why the relative 

abundance of C2, which has been considered to be a photoproduct or a 

photorefractory component (Chen unpublished data; Stedmon et al., 2007), was sparse 

in groundwater but more abundant in surface water as seen from Fig.4.4. Therefore, 

the distribution of samples along PC2 may in part be controlled by the loadings of the 

photo-produced component C2.  

      On the other hand, in addition to photo-exposure, DOM is also subjected to 

microbial degradation. Maie et al. (submitted) found the inverse relationship between 

relative abundance of C3 and C6 in the FB and suggested that C6 might be a 

degradation product of C3. Based on the data shown in Figure 3.3, and assuming that 
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component C6 is in fact a microbial degradation product, it seems that groundwater 

DOM is more prone to biodegradation than that of surface waters, and in fact Analysis 

of Variance (ANOVA) showed that the C6 was significantly higher in groundwater 

than in surface water (P< 0.0001, see box plot in Fig. 4.4). Consequently, the spread 

of the clusters as determined by PC2 seems to be controlled by DOM 

degradation/modification processes.  

 

4.4.3.2 Trends of DOC, a(254), and EEM-PARAFAC components 

      Sample locations were grouped into six groups along the terrestrial to marine 

(N-S) transect. They are: S332 surface water (S332-SW), S332 groundwater 

(S332-GW), coastal FB groundwater from LMB-GW and SK-GW (FB-Coastal-GW), 

Florida Bay surface water (FB-SW), central-east FB groundwater from the NK station 

(FB-Central-GW), and the Florida Keys groundwater sites from stations BS-GW and 

BW-GW (FB-Keys-GW). The DOC, a(254), and absolute and relative abundance of 

selected EEM-PARAFAC components were plotted and compared among these six 

groups (Fig. 4.4).  

      As seen in Figure 4.4A, both DOC and a(254) values were significantly higher 

in the S332-SW compared to FB-SW, and initially decreased gradually across the N-S 

transect to increase again for Florida Keys groundwater sites. This trend suggests a 

dilution of terrestrial DOM along the N-S transect, but additional DOM sources in 

groundwater adjacent to the Florida Keys. FB-SW had rather high DOC but low 

a(254), suggesting that non-aromatic DOM such as carbohydrates make up an 
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important fraction of the DOM in this region (Maie et al., 2005; Maie et al., 2006a). 

Surface waters from FB had significantly higher levels of DOC compared to the GW 

samples from FB-coastal and FB-central, although the a(254) were quite similar.  

Absolute and relative abundance of terrestrial humic-like (C1, C2, C3, C5) and 

protein-like (C7, C8) EEM-PARAFAC components are shown in Figure 4.4B and C 

respectively, and mimic each other in their distribution. Marine humic-like component 

C4 and microbial-modified component C6 had different patterns as discussed below, 

and thus were not included for comparison here. Basically, fluorescence intensity 

values for individual components showed similar pattern as for DOC and a(254) 

although some components had higher fluorescence readings in the GW samples 

compared to the SW samples. The four different terrestrial humic-like components did 

not show the same behavior, with C1 and C5 being more enriched at all GW sites, 

whereas the abundance of humic-like components C2 and C3 very much lower or 

even non-detectable in most of the Florida Bay GW. This suggests that the 

composition of SW and GW samples, particularly in FB are quite different possibly 

due to DOM source changes and more likely to differences in DOM processing. 

While C2 has been suggested as a photo-product and/or photo-refractory fraction of 

DOM (Chen et al., unpublished data; Stedmon et al., 2007) and thus is more abundant 

in SW than GW, C3 may be a more biodegradable humic-like component (possibly 

leading to the formation of C6), have higher absorption capacities to aquifer materials 

and/or precipitate out at high salinities and thus have a low tendency to accumulate in 

GW (Chen and Jaffe, unpublished).  
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 With respect to the protein-like components (C7 and C8), these were mostly 

enriched in FB samples, particularly FB-SW, and with C7 being more prominent 

compared to C8 in most samples except for FB-NK-GW and FB-Keys-GW. The 

tryptophan-like C8 has been reported to be more biodegradable, while the 

tyrosine-like (or blue-shifted tryptophan-like) C7 has been suggested as more 

refractory in natural aquatic environments (Yamashita & Tanoue 2003; Yamashita & 

Tanoue 2004; Maie et al., 2006b).  However, it is possible that C8 preferentially 

accumulates as DOM in GW ages, and it may be more abundant at the FB-Keys-GW 

locations due to inputs from septic tanks. The marine environment adjacent to the 

Florida Keys is affected by anthropogenic activities such as wastewater disposal and 

runoff, and most houses in the Florida Keys are still on septic tanks. High EEM 

protein-like fluorescence intensities have previously been reported as typical of 

sewage impacted waters (Baker, 2001; Lamont- Black et al., 2005; Lapworth et al., 

2008). 

      Lastly, a box plot comparison of C2% and C6% between surface water and 

groundwater from both S332 and FB sites (Fig.4.4), shows that GW 

samples had a much lower relative abundance of C2 compared to SW samples, while 

the opposite was true for C6. This would make sense if the abovementioned 

suggestion that C2 is a photo-product or a photo-resistant degradation byproduct was 

correct. As for C6, another humic-like component that has previously been reported as 

being exported from catchments with high agricultural use (Stedmon and Markager, 

2005), its enrichment in GW samples may be indicative of its high photo-reactivity or 
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its nature as a microbial degradation product. This component gave an inverse 

correlation with C3 in a long-term SW study of DOM from FB (R = -0.73; Maie et al. 

personal communication) and thus, might be a degradation product of C3.  

      The combination of a terrestrial CDOM fingerprint and high salinity (38.6 ± 

3.7) for FB coastal and the Florida Keys GW samples provides evidence of the 

importance of vertical surface water recharge, possibly in combination with horizontal 

GW exchange. The dominant source of DOM should be from surface recharge water  

 

Fig. 4.4 Trends in UV absorption coefficient at 254 nm, and DOC, along with 
absolute (fluorescence intensity) and relative (out of the total of 8 components) 
abundance of EEM-PARAFAC terrestrial humic-like (C1, C2, C3, C5) and 
protein-like (C7 and C8) components. SW=surface water; GW=groundwater; 
FB=Florida Bay.  
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which were both saline and contain high levels of terrestrial/higher plant (mangrove) 

derived DOM. In addition, GW DOM in this system has been suggested to be ‘old’ 

based on 14C dating (Aiken & McKnight, 1985) and consequently may have been 

accumulating for long periods of time and/or be derived from oxidation of soils. 

Vertical recharge through sinkholes or vertical conduits often found in karst 

geography is another reasonable scenario for these cases since both are adjacent to 

fringe mangrove areas which serve as significant sources of DOM (Jaffe et al., 2004). 

However, even for the FB-central-GW (site NK) there was a significant difference in 

DOM fluorescence characteristics compared to FB-SW, suggesting that horizontal 

recharge from the terrestrial end-members and possibly from mangrove islands in FB 

is important in controlling FB-GW DOM composition.  

 

4.5 Conclusions and environmental implications 

      In summary, this study shows that the application of EEM fluorescence 

combined with PARAFAC modeling can provided insightful information regarding 

the sources, diagenetic status, and hydrological interactions of groundwater and 

surface water in coastal wetlands and estuaries. Subsequent PCA statistics of the 

PARAFAC data allowed for a plausible differentiation among the different DOM 

sources and their diagenetic state for the selected sample set based on both the source 

strength of terrestrial vs. marine sources and the susceptibility of the DOM to 

microbial and/or photochemical degradation. Furthermore, the combination of bulk 

DOC, UV-Vis and EEM-PARAFAC data provided clues regarding the influence of 
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horizontal vs. vertical water recharge to some of the studied well sites. As hydrology 

and water delivery to FB are among the main ecological drivers in the Everglades, 

this technique has a great potential in tracing hydrological flow and interaction, such 

as surface water recharge, submarine groundwater discharge, and salt water 

intrusions.  
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Chapter 5  

Molecular Size Based Characterization of Dissolved  

Organic Matter Using Size Exclusion Chromatography  

and Excitation-Emission Matrix and Parallel Factor Analysis 
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5.1 Abstract:  

      The fluorescence composition of size fractionated dissolved organic matter 

(DOM) was characterized through size exclusion chromatography (SEC) combined 

with Excitation-Emission Matrix (EEM) fluorescence coupled with parallel factor 

analysis (PARAFAC). Eight size factions of surface water from two sites in Florida 

Everglades freshwater marsh and one canal were studied. Interestingly, most of the 

eight components obtained from PARAFAC modeling were broadly distributed across 

the DOM molecular weight range, suggesting a fairly homogeneous composition of 

the fluorescent DOM (FDOM) along the molecular weight continuum. Furthermore, 

while six of the PARAFAC components were present all the eight molecular weight 

fractions, some, such as components 2 (C2) and 3 (C3), showed narrower molecular 

ranges and dominated in fractions 2 to 5. In addition, protein-like components 7 (C7) 

an 8 (C8) were relatively enriched in the highest and lowest MW fractions, implying 

that protein-like fluorescence received contributions from presumably 

macromolecular proteins and/or small peptides and amino acids respectively. This 

study suggests that different fluorophores from DOM are speciated along the 

molecular weight continuum most likely in the form of supramolecular associations, 

fact that may have important implications in our understanding of the environmental 

dynamics of FDOM. 
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5.2 Introduction: 

      Dissolved organic matter (DOM) is not only one of the largest reservoirs  

of carbon on the Earth, but as well one of the most complex mixtures in  

nature. It consists of myriads of organic compounds which play diverse pivotal  

ecological and biogeochemical roles in the environment. For example, it fuels  

the microbial loop by providing the heterotrophic microorganisms with an  

energy source. It can also be oxidized into inorganic carbon and thus affect the global 

elemental biogeochemical cycling and atmospheric inorganic carbon balance. In 

addition, DOM can associate with various metals and organic pollutants and thus 

affect the toxicity, bioavailability, and transport of environmentally important 

xenobiotics (Findlay and Sinsabaugh 2003; Hansell and Carlson 2002). 

.      The molecular weight (MW) distribution of DOM plays a crucial role in  

its bioavailability, photo- and bio-reactivity, and fate in aquatic ecosystems. To  

d a t e ,  w h i l e  s o me  l i t e r a t u r e  r ep o r t e d  th a t  l o w  mo l e c u l a r  w e i g h t  

(LMW: <1000 Daltons) DOM, such as amino acids and sugar monomers 

 are more readily available to microorganisms (Kujawinski 2011), a size- 

reactivity continuum model suggests that the bulk of high molecular  

weight (HMW: >1000 Daltons) DOM is more bio-reactive as compared  

with its LMW counterpart (Amon and Benner 1994; Amon and Benner  

1996; Kaiser and Benner 2009). HMW DOM has also been found to be more  

readily photo-degraded compared to LMW DOM and UV irradiation has  

been reported to decrease the MW of DOM in a quasi-exponential manner 
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(Lepane et al. 2003; Lou and Xie 2006). In addition, the size distribution  

charac ter i s t ic s  o f  DOM are  a l so  be l ieved  to  a ff ec t  the  mobi l i ty, 

bioavailability, and toxicity of its associated pollutants (Cabaniss et al. 2000;  

Chin and Aiken 1997). As such, the understanding of the size distribution of DOM  

and the composition of these size fractions is of particular ecological, biogeochemical,  

and environmental interests. 

      Several techniques exist to fractionate DOM based on size and one  

of the most commonly used one is size exclusion chromatography (SEC) (Chin  

et al. 1997; Maie et al. 2007; Woods et al. 2010). HPLC based SEC has the  

advantage of providing chromatographic peaks of the chromophoric DOM  

(CDOM) and requires small sample size compared with other techniques such  

as tangential-flow ultrafiltration (Cai 1999). Due to various practical advantages,  

including sensitivity and high sample throughput, fluorescence spectroscopic  

techniques have been widely used to study the dynamics of DOM in various  

environments over the past decades (Coble et al. 1998; Baker 2001; Jaffe et al.,  

2008;Fellman et al., 2010). Previous studies have successfully used the combination  

of SEC followed by techniques such as EEMs (Maie et al. 2007; Her et al. 2003; Lu et  

al. 2009), NMR (Conte et al.2007), and MS (Persson et al. 2006) to study DOM  

characteristics. By decomposing the EEM data statistically into different fluorescent  

components, EEM-PARAFAC has opened a new door to study and assess DOM  

dynamics in diverse environments during the past years (Stedmon et al. 2003; Cory  

and McKnight 2005; Jaffé et al. 2008). As such, a previous study used SEC followed  
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by EEM-PARAFAC to study DOM in landfill leachate, focusing on the use of a  

hydrophobic component as a potential tracer of landfill leachate (Lu et. al.  

2009) .  However,  desp i t e  the  i mpor t ance  o f  be t t e r  cha rac te r i z ing  

the fluorescence characteristics of size fractionated DOM, still little is known  

about this subject.  

      The purpose of this study is aimed to investigate the size distribution of DOM 

for Florida Everglades fresh surface water using SEC combined with an 

EEM-PARAFAC. Specifically, the objectives of this study are to use EEM-PARAFAC 

to characterize the composition of different DOM size fractions as obtained through 

SEC fractionation, and compare them among different types of surface waters from 

this region. 

 

5.3 Sampling and experimental methods 

5.3.1 Sampling: 

      This study was conducted in the Florida Everglades. Two freshwater marsh 

Sites from Shark River Slough and Taylor Slough (SRS2 and TS2), located  

in Everglades National Park (ENP), and a drainage canal (C111) were selected for this  

study. Their locations are shown in Figure 5.1. The freshwater marsh sites are  

dominated by sawgrass, interspersed with tree islands, wet prairie and slough  

communities, and periphyton mats are ubiquitous in the oligotrophic Everglades  

freshwater environments. Soils from the SRS2 site are peat-based while TS2 site soils  

are marl-based. The C111 canal site receives drainage water from the Northern  
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Everglades as well as inputs from agricultural areas. Surface water samples were  

collected in August 2008 from all sites. Samples were collected in pre-cleaned,  

acid-washed, brown high density polyethylene bottles (Nalgene). Containers were  

rinsed three times before sample collection. Samples were placed on ice immediately 

 

 

Fig.5.1 Sampling sites (SRS-2, TS-2, and C111) in Florida Everglades 

  

after sampling and were transported to the laboratory the same day. All surface water  

samples were filtered in the laboratory with pre-rinsed 0.22 μm filters (Durapore,  

Millipore) and stored in a refrigerator until analyses within one week of collection. 
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5.3.2 Molecular size fractionation 

      The molecular size fractionation of the DOM was carried out by SEC on a 

Shimadzu 10A series HPLC equipped with UV–Vis (SPD-10AV) and fluorescence 

detectors. The elution curve was recorded by measuring UV absorption at 280nm and 

excitation/emission at 350/450 nm. Since some DOM components do not absorb at 

280 nm, this study was focused on the chromophoric and fluorescent DOM (CDOM 

and FDOM respectively). A YMC-Pack Diol-120 column (pore size 12nm, I.D. 

8.0mm x length 500mm; YMC Inc) was used for the SEC fractionation. A solution of 

0.05M Tris(hydroxymethyl) aminomethane (THAM) adjusted to pH at 7.0 with 

phosphoric acid (Fisher) was prepared as eluent. The injection volume was 150 μl and 

flow rate was 0.7ml/min at room temperature (~23 °C). The void volume (V0; 

12.8min) and void volume plus inner volume (V0+Vi; 32.3min) were determined 

using Blue Dextran 2000 and L-tyrosine, respectively. The column was calibrated 

with several different MW poly-styrenesulfonic acid sodium salt standards of known 

MW (Fluka). These had MWs reported as 1400, 4300, 6800, 13000 and 32000 

Daltons, respectively. Despite the fact that there is no appropriate calibration standard 

for DOM, this standard has been found to give reasonable molecular weight estimates 

(Egeberg and Alberts 2003). However, average weight molecular weight values 

discussed here are only meant to serve as a guide along the MW continuum and not as 

actual values (e.g. Scully et al. 2004). 

      Eight sample size fractions were collected in pre-cleaned pre-combusted 

amber bottles. The fractions were split according to the elution order of the 8 
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observed peaks by the UV detector at 280nm (Fig.5.2). The retention time ranges for 

the 8 fractions were listed in Table 1. These retention times are the times after 

correction of the time lag of eluent traveling the lining between the detector and the 

receptacle amber bottle. The time lag was estimated with the lining length and the 

time lag between two detectors. It took 3-5 runs to collect enough sample amounts for 

each fraction to adequately measure EEMs. The samples were kept refrigerated after 

collection and the EEMs were determined immediately after SEC fractionation to 

minimize potential degradation. As mentioned above, the average weight MWs 

calculated here are apparent MW (AMW) rather than accurate values, due to the 

absence of an appropriate standard, and some non-size exclusion effects such as 

“ionic exclusion” and “specific adsorption” (Perminova, 1999).   

 

Table 5.1 Retention time and estimated apparent molecular weight (AMW) for 
eight fractions. 
 
 

 
 

 

Fractions Retention time AMW

(minutes) (daltons)
1 12.00-15.50 5,176 - 630,957
2 15.50-19.50 1,039 - 5,176
3 19.50-20.30 750 -1,039
4 20.30-21.40 479 - 750
5 21.40-23.10 239 - 479
6 23.10-24.10 159 - 239
7 24.10-28.00 32 - 159
8 28.00-32.00 0 - 32



 

123 
 

5.3.3 Analytical measurements and PARAFAC modeling 

      UV-Vis was determined using a Varian Cary 50 bio spectrophotometer with a 

1 cm quartz cuvette scanning from 240 nm to 800 nm. EEMs were measured using a 

Horiba JovinYvon SPEX Fluoromax-3 spectrofluorometer equipped with a 150W 

continuous output Xe arc lamp. Slits were set at 5.7 nm for excitation and 2 nm for 

emission. Forty-four emissions scans were acquired at excitation wavelength (λex) 

between 240 and 455 nm at 5 nm steps. The emission wavelengths were scanned from 

λex +10nm to λex + 250 nm (i.e., between 250 and 705 nm) in 2 nm steps (Maie et al., 

2006b). Fluorescence signals were acquired in signal over reference ratio mode (S/R) 

to eliminate potential fluctuation of the Xe lamp. More detailed information of 

post-acquisition steps for correction and standardization can be found elsewhere 

(Chen et al., 2010). The Fluorescence Index (FI) was determined as the ratio of the 

emission intensity at a wavelength of 470 nm to that at 520 nm, obtained at an 

excitation of 370 nm (Jaffé et al. 2008). Dissolved organic carbon (DOC) 

concentrations for each fraction were not measured due to the limited sample amount. 

      PARAFAC can statistically decompose EEMs into fluorescent groups or 

components (Stedmon et al., 2003). PARAFAC modeling can be obtained by either 

creating or validating the model using the complete dataset of EEMs or by fitting the 

EEMs to an already established PARAFAC model. In this study, the triplicate EEMs 

of the eight fractions collected from the freshwater water samples from three sites 

were fitted into a previously established model for Everglades surface water. No 

residues peaks were observed. The analysis was carried out in MATLAB 7.0.4. 
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(Mathworks, Natick, MA) with the DOMFluor toolbox (Stedmon and Bro 2008). The 

characteristics of the Eight EEM-PARAFAC components were summarized in Table 

5.2. PARAFAC component spectral characteristics and split-half validation can be 

found elsewhere (Chen et al., 2010). 

 

 

 
 
Fig.5.2 SEC chromatograms with UV-Vis detection at 280 nm for the three 
samples studied here. Eight fractions were collected as shown by the dotted lines. 
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5.4 Results and discussion 

5.4.1 Compositional differences and similarities for different MW fractions  

     A variety of differences in optical properties were observed for the different  

size fractions. As shown in Figures 5.2 and 5.3 there is a trend of higher A280 and  

lower FI for fraction 2, 3, 4, suggesting these fractions were dominated by more  

aromatic terrestrial-derived DOM. Her et al., 2003 reported that the fraction of  

AMW around 1000 – 5000 Daltons (equivalent primarily to fraction 2 in this  

study) showed higher aromaticity, which is also consistent with the high A280 values  

and the low FI value for fraction 2. While the highest FI values were those for the  

highest and the lower MW fractions (Fig. 5.5 and likely associated with the presence  

of microbially derived FDOM, there was a clear trend of decreasing aromaticity  

between fraction 2 and 8.   

     The EEM-PARAFAC distribution among the eight molecular weight fractions 

is presented in Figure 5.4for samples from three freshwater sites in the Florida 

Everglades while Figure 5.4 and Table 5.4 show the relative abundance of all 

PARAFAC components in each MW fraction. Surprisingly, all eight fractions received 

contributions to their overall fluorescence signal from at least six out of eight 

PARAFAC components, where Component 2 and Component 3 were the most 

common exceptions. This suggests a highly homogeneous distribution of 

EEM-PARAFAC components along the molecular weight continuum. Component 1, a 

humic-like component which is ubiquitous and abundant in aquatic environments, 

showed the highest abundance of all PARAFAC components (Yamashita et al., 2010) 
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Table 5.2 Molecular weight distribution characteristics of components.  

 

Componen
t Ex max/Em max                                Description 
  (nm)   

C1 <260 (345)/462 humic-like. ubiquitous component. 
    broad AMW, enriched in fractions 4,5,and 6. 

C2 <260/454 humic-like. photoproduct and/or photorefractory. 
    narrower AMW, enriched in fractions 2,3,and 4. 

C3 
 <260 

(305)/416 humic-like. intermediate of photodegradation. 

    
narrower AMW, enriched in fractions 2,3,4, and 
5(for SRS2). 

C4 
 <260 

(305)/376 
humic-like. traditionally defined marine/microbial 
humic-like 

    broad AMW, enriched infractions 4,5,and 6. 

C5 
<260 

(405)/>500 
humic-like. red-shifted ubiquitous component rich in 
soil leachate. 

    broad AMW, enriched infraction 2. 

C6 <260(325)/406 
humic-like. intermediate of biodegradation,very 
photoreactive. 

    broad AMW, enriched in fractions 5, 6,7, and 8. 
C7 275/326 protein-like. abundant in seagrass 

   broad AMW, enriched infractions 1and 8. 
C8 300/342 protein-like. abundanat in periphyton.  
    broad AMW, enriched infractions 1,6,7,and 8. 

 

and a relatively uniform contributions in all eight fractions but was slightly more 

enriched in the mid-size fractions 4, 5, and 6 (AMW: 260 – 771 Daltons). Component 

4, a humic-like component which was traditionally termed as marine humic-like 

(Coble 1996), showed a similar MW distribution pattern to component 1. Namely, it 

also has relative uniform contribution to all eight fractions and a slightly higher 

relative abundance in fractions 4, 5, and 6. Component 5, believed to be a red-shifted 
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humic-like component which is ubiquitous in aquatic ecosystems as well, been 

previously found closely coupled with component 1 in Everglades ecosystem (Chen, 

Thesis Chapter 2). It also receives contributions from all eight fractions with broad 

AMW. Unlike component 1, however, component 5 was commonly more enriched in 

fraction 2 (AMW: 1.1 x 103 – 5.2 x 103 Daltons), suggesting an association with 

higher AMW fractions compared to component 1. This is consistent with the finding 

that a component similar to component 5, reported to be abundant in estuarine soil 

and sediment, was relatively enriched in the higher MW humic acid fraction (vs. the 

lower MW fuvic acid fraction; Santin et al., 2009). Component 6, also a humic-like 

component and found to be a photo-sensitive and microbially-produced component, 

received showed highest abundance in fractions 5 to 8 but was less abundant in 

fractions 2to 4. This was typified by sample SRS2 which had no contribution of 

component 6 to fraction 3 and ~1% relative abundance contributions to fraction 

which dominated by fractions 2, 3, and 4. This finding could possibly explain the 

reason why C2 versus C6 and C3 versus C6 were found to be inversely correlated in 

Everglades groundwater and surface water respectively (Chen et al., 2010) as they 

may be dominated by different MW fractions. Components 7 and 8 classified as a 

protein-like components (Chen et al., 2010; Yamashita et al., 2010), displayed a very 

interesting distribution with significantly higher relative contributions to the first 

(high MW) and the last (low MW) size fractions but somewhat depleted in the 

medium-sized fractions 3 and 4. This implies that protein-like components in these 

samples are likely representative of macromolecular proteins (high MW) and small  
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Fig.5.3 Chromatograms of size exclusion chromatography (SEC) with UV-Vis 
detector (λ= 280 nm) and splitting of eight fractions according to the peaks. 
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peptides and/or amino acids (low MW).This distribution is largely opposite to that of 

component 2 and component 3, In order to evaluate statistically the observed trends in 

PARAFAC distribution with respect to MW fractions, a PCA analysis was performed 

on the data available for sample SRS2 (Fig.5.5). Principal component 1 accounted for 

48% and Principal component 2 accounted for another 28% of the variability. 

Principal component 1 (PC1) seems to be a source-related variable, with a positive 

correlation for the humic-like components and a negative correlation with the 

microbial humic-like and protein-like components. In contrast principal component 2  

 

Table 5.3 Contributions of EEM-PARAFAC components to each fractions. 

  

%C1 %C2 %C3 %C4 %C5 %C6 %C7 %C8
TS2 site

fraction1 29.0 0.5 0.0 6.4 14.3 14.6 26.4 8.7
fraction2 30.8 5.5 0.0 7.0 15.8 13.8 18.2 8.9
fraction3 33.5 9.3 8.5 9.1 14.7 10.5 9.4 5.1
fraction4 34.2 4.0 4.5 9.4 12.6 13.8 11.0 10.4
fraction5 33.7 0.4 0.0 8.7 11.7 17.5 17.4 10.7
fraction6 33.3 1.1 0.0 9.3 13.4 16.5 17.3 9.1
fraction7 30.3 0.1 0.0 8.5 12.8 15.5 19.8 13.0
fraction8 26.4 1.0 0.0 6.6 12.9 13.4 24.5 15.2
SRS2 site

fraction1 25.6 2.2 0.0 4.3 10.4 10.8 33.7 13.1
fraction2 26.7 11.7 17.3 6.3 18.1 1.1 13.9 4.9
fraction3 27.1 12.0 23.6 7.5 12.3 0.0 8.0 9.5
fraction4 31.8 3.6 28.5 10.0 12.5 0.9 9.0 3.8
fraction5 33.3 0.0 15.2 10.8 11.5 10.3 13.4 5.5
fraction6 30.0 2.7 0.7 8.7 10.0 14.1 18.6 15.1
fraction7 26.6 1.6 0.1 8.3 10.1 13.7 25.3 14.4
fraction8 26.6 3.5 0.0 7.4 11.9 12.5 28.7 9.3
C111 site

fraction1 28.6 2.4 0.0 7.3 11.8 11.5 31.0 7.3
fraction2 30.0 11.2 5.8 9.3 15.3 8.8 14.9 4.7
fraction3 29.2 11.5 10.7 9.3 12.4 7.3 8.5 11.0
fraction4 34.0 7.8 7.7 10.3 11.8 12.1 10.3 6.0
fraction5 35.1 1.5 2.1 11.1 10.7 16.7 14.4 8.3
fraction6 31.4 2.3 0.0 9.7 11.0 15.4 19.3 10.9
fraction7 29.3 1.1 0.0 8.9 11.3 14.0 23.4 11.9
fraction8 28.4 2.0 0.0 7.4 11.8 11.9 28.3 10.2
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seems to be controlled by the molecular size, showing a positive correlation with 

fractions 4 to 6, while the high and low MW fractions are negatively correlated with 

PC2. The distributions shown in the figure seem to confirm that the medium-size 

fractions were dominated by humic-like components, particularly C1, C4 and C6. As 

seen in Fig.5.5, fractions 1, 7, and 8, which were dominated by protein-like 

components C7 and C8, correlated negatively with principal component 1, while 

fractions 2 and 3 and to some extent fraction 5 correlated positively with principal 

component 1.   

       

 

 

 

Fig.5.4 Cross-fractionation cross-site comparison of DOM composition. 
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Fig.5.5 PCA of all fractions from all three sites. (A - score plot) S-1 to S-8 
represent eight fractions for surface water sample from the SRS site, T-1 to T-8 
from the TS site; C-1 to C-8 from the C111 site. (B - loading plot) PARAFAC 
components C1 to C8.  
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      The results here are consistent with a previous study by Her et al. (2003) that  

protein-like DOM had high AMW and middle fractions had high aromaticity, but here  

a clear enrichment in protein-like fluorescence is also apparent for the low MW  

fraction. The almost homogeneous distribution of PARAFAC components across the  

molecular weight continuum is a very interesting finding! It’s believed that very  

similar fluorescent spectra could be produced from fluorophores of vastly different  

composition, such as poly-phenols and amino acids (Maie et al., 2007), which were  

also determined to have different MW. The presence of such compounds with similar  

spectral characteristics in all MW fractions is unlikely, and has recently been proven  

not to be adequate to describe spectroscopic propertied of DOM. Therefore,  

supramolecular associations of humic substances (Sutton and Sposito, 2005; del  

Vecchio and Blough, 2004) and other DOM components, and intermolecular binding  

between for example proteins and humic substances (Aiken et al., 1985) would be a  

more plausible explanation for the existence of an almost homogeneous distribution  

of EEM-PARAFAC components along a wide range of MW in DOM.  In this  

respect, a previous DOM reactivity study found that  the EEM-PARAFAC  

components degradation kinetics data could be fitted into a multi-pool degradation  

model, but that the same PARAFAC component showed very different decay rates  

based on sample origin (Chen; this thesis Chapter 3). This observation can be  

explained in two ways: different molecular weight fractions containing the same  

PARAFAC components show different reactivity due to the different composition and  

structure of these supramolecular associations of fluorophores. In any case, 
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differences in composition or differences in speciation, will present variations in 

reactivity, which in fact can be significant (Chen; this thesis Chapter 3). 

 This calls for caution when using EEM-PARAFAC components as environmental 

reactivity proxies as their presence in bulk DOM samples can represent a great 

variety of complex structures or molecular associations within a wider range of 

MW, and consequently affect reactivity.  

 

5.4.2 Cross-site comparison of FI and EEM-PARAFAC components 

      Peat-based freshwater site SRS2 showed highest UV absorbance at 

280 nm, followed by marl-based freshwater site TS2 and then canal site C111 

(Fig.5.2), reflecting higher DOC content and higher terrestrial-derived aromatic DOM 

for this site. This is not surprising since SRS2 receives peat-derived DOM. As seen 

from Fig.5.3 and Fig.5.7, the relative abundance (%) of C3 at site SRS2 was much 

higher: 7.3%, 23.6%, 28.5%, 15.2%, 0.7%, 0.1% for fractions 2, 3, 4, 5, 6, and 7, 

respectively, as compared with TS2 site: 8.5%, 4.5%, for fractions 2 and 3, and C111 

site: 5.8%, 10.7%, 7.7%, 2.1% for fractions 2, 3, 4, 5, respectively. The not mentioned 

fractions were 0% for all three abovementioned sites. In contrast, the relative 

abundance (%) of C6 at site SRS2 was generally lower, especially in fractions 2, 3, 

and 4. These mirrored the DOM composition differences among different sites within 

the same Everglades ecosystem, potentially attributable to the different soil types, 

degree of microbial activity, and anthropogenic effects. In the TS site, the microbial 

activity is higher and could enhance the production of microbial humic-like 
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component 6. The canal site C111 receives higher nutrients and thus higher likely 

features microbial activity. 

 

 

Fig.5.6 Trends in Fluorescence Index (FI) starting from the original whole 
sample to eight fractions with elution order. FRA = fraction.   

 

 
Fig.5.7 Comparison of component 3 (C3) and component 6 (C6) among three 
sites and eight fractions: peat-based freshwater marsh site SRS2; marl-based 
freshwater marsh site TS2; and canal site C111. 
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5.5 Conclusions: 

      The molecular weight distributions of dissolved organic matter (DOM) was 

investigated using size exclusion chromatography (SEC) followed by 

EEM-PARAFAC. The results showed multiple PARAFAC components contribute to 

each of the eight MW fractions, indicative of a fairly homogeneous distribution of 

PARAFAC components along the MW continuum. The most likely explanation of this 

observation is that DOM is composed of heterogeneous molecular associations of 

components with varying fluorescence characteristics (PARAFAC components) in the 

form of supramolecular structures distributed throughout the MW range of DOM.  

      While most fluorophores were represented along the MW continuum, some 

MW fractions were distinctly different in composition, suggesting that the 

supramolecular associations that make up the DOM MW range are not simply 

associations of linearly increasing ‘polymers’, but can have specific compositional 

characteristics within the MW range. While high and low MW fractions were 

enriched in protein-like fluorophores, and can be explained by the presence of 

proteins and peptides and/or amino acids, other fractions presented very specific 

fluorescence characteristics. This suggests that very specific molecular associations 

are part of the DOM pool. While these MW distribution characteristics were generally 

observed for all samples, they were somewhat different for different sampling sites. 

Again, this may due to differences in DOM sources, biogeochemical conditions and 

other presently unknown drivers. The exact composition, structure and the 

environmental conditions for the formation of these molecular associations remains 
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unknown at this point, and further research in this area is needed to better understand 

their dynamics in aquatic environments.  

      Overall, this study confirmed and highlighted the complex nature of DOM 

components of different MW and suggests that DOM speciation differences may 

result in important variations in reactivity and associated environmental implications. 
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Appendix:  

 

 

 

     Fig. A-1Trends in DOC during biodegradation for leachates and surface water 
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     Fig. A-2 Trends in C2% and C6% during photo- and bio-degradation 

 

Time series (hours) 
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 Fig. A-3 Examples of biodegradation patterns and  
kinetics data of EEM-PARAFAC components 

 

 

Time series (hours) 
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Fig. A-4 Examples of comparison of photo- (7 days) and bio-reactivity 
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(28 days) of EEM-PARAFAC components for biomass leachate, 
soil leachate, and surface water in FCE. 

 

 

 

 

 

 

 

 

Fig. A-5 Examples of comparison of photo- (7 days) and bio-reactivity 
(28 days) of EEM-PARAFAC components for biomass leachate, 

soil leachate, and surface water in FCE. 

 



 

156

 

 

 

 

 

 

Fig. A-6 Examples of comparison of photo- (7 days) and bio-reactivity 
(28 days) of EEM-PARAFAC components for biomass leachate, 

soil leachate, and surface water in FCE. 
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Fig. A-7 Examples of comparison of photo- (7 days) and bio-reactivity 
(28 days) of EEM-PARAFAC components for biomass leachate, 

soil leachate, and surface water in FCE. 
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Fig. A-8 Examples of comparison of photo- (7 days) and bio-reactivity 
(28 days) of EEM-PARAFAC components for biomass leachate, 

soil leachate, and surface water in FCE. 
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Fig. A-9 Examples of comparison of photo- (7 days) and bio-reactivity 
(28 days) of EEM-PARAFAC components for biomass leachate, 

soil leachate, and surface water in FCE. 
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Fig. A-10 Examples of trends in Fluorescence 
 Index (FI) during photo- and biodegradation 
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Fig. A-11 Example of year-to-year temporal patterns of EEM-PARAFAC 

components in fluorescence intensity (QSU) at site SRS3 
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  Fig. A-12 Seasonality of Mangrove marsh sites (SRS-4, SRS-5, SRS-6) 
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   Fig. A-13 Seasonality of Mangrove marsh sites (TS/Ph-6, TS/Ph-7) 
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   Fig. A-14 Seasonality of Florida Bay sites (TS/Ph-9, TS/Ph-10, TS/Ph-1) 
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