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Abstract: Electroencephalography (EEG)-based emotion recognition is an important element in
psychiatric health diagnosis for patients. However, the underlying EEG sensor signals are always
non-stationary if they are sampled from different experimental sessions or subjects. This results in the
deterioration of the classification performance. Domain adaptation methods offer an effective way to
reduce the discrepancy of marginal distribution. However, for EEG sensor signals, both marginal
and conditional distributions may be mismatched. In addition, the existing domain adaptation
strategies always require a high level of additional computation. To address this problem, a novel
strategy named adaptive subspace feature matching (ASFM) is proposed in this paper in order to
integrate both the marginal and conditional distributions within a unified framework (without any
labeled samples from target subjects). Specifically, we develop a linear transformation function
which matches the marginal distributions of the source and target subspaces without a regularization
term. This significantly decreases the time complexity of our domain adaptation procedure. As a
result, both marginal and conditional distribution discrepancies between the source domain and
unlabeled target domain can be reduced, and logistic regression (LR) can be applied to the new
source domain in order to train a classifier for use in the target domain, since the aligned source
domain follows a distribution which is similar to that of the target domain. We compare our ASFM
method with six typical approaches using a public EEG dataset with three affective states: positive,
neutral, and negative. Both offline and online evaluations were performed. The subject-to-subject
offline experimental results demonstrate that our component achieves a mean accuracy and standard
deviation of 80.46% and 6.84%, respectively, as compared with a state-of-the-art method, the subspace
alignment auto-encoder (SAAE), which achieves values of 77.88% and 7.33% on average, respectively.
For the online analysis, the average classification accuracy and standard deviation of ASFM in the
subject-to-subject evaluation for all the 15 subjects in a dataset was 75.11% and 7.65%, respectively,
gaining a significant performance improvement compared to the best baseline LR which achieves
56.38% and 7.48%, respectively. The experimental results confirm the effectiveness of the proposed
method relative to state-of-the-art methods. Moreover, computational efficiency of the proposed
ASFM method is much better than standard domain adaptation; if the numbers of training samples
and test samples are controlled within certain range, it is suitable for real-time classification. It can be
concluded that ASFM is a useful and effective tool for decreasing domain discrepancy and reducing
performance degradation across subjects and sessions in the field of EEG-based emotion recognition.
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1. Introduction

Affective computing, which integrates a user’s emotions into human–computer interaction, has
attracted much research attention in recent years. Emotion recognition, one of the most important
elements in affective computing, aims to create affective user interfaces between humans and
computers and to help in detecting psychiatric health in patients. A variety of measures such as facial
expression, speech, electrocardiograph (ECG), electromyogram (EMG) and Electroencephalography
(EEG) [1–6] have been used for emotion recognition; of these, methods based on EEG signals are
attracting increasing levels of attention due to their objective evaluation and immediate responses
to emotional stimuli [7–9]. In general, to improve the spatial resolution of EEG, 64 or more sensor
electrodes are needed in order to record EEG signals [10].

The classification of EEG signals requires the extraction of useful features using an adequate
transformation of the raw EEG signal [11–13]; following this, various types of classifiers such as
a support vector machine (SVM) and linear regression (LR) can be implemented with multiclass EEG
signal classification. However, it is worth mentioning that the above classification strategies involve
the training and testing of the classifier for each subject. Thus far, it has remained difficult to classify
EEG patterns across subjects with a conventional classifier because of the variability between subjects
and the high levels of non-stationarity of EEG sensor signals [14]. Studies in the literature [15,16] have
proven factors causing non-stationarity. In EEG-based emotion recognition systems, the distribution
between the training and testing samples may be mismatched if they are sampled from different
experimental sessions or subjects. For a single subject on a given day, well-trained classifiers can
perform accurately; however, the performance is usually degraded on subsequent days when using
the same experimental setup. In across-subject classification problems, the training and test data are
usually sampled from different probability distributions. Thus far, most studies have focused on
selecting features or channels [17–20] and have neglected to consider the distribution discrepancy
between subjects.

Recently, domain adaptation learning techniques, which have been proven to be effective in
reducing the difference in distributions between domains, have been vigorously investigated for
cross-domain knowledge adaptation problems. Domain adaptation is typically aimed at identifying
common representations across training and test domains and building classifiers which are robust to
mismatched distributions, assuming that the input distributions of training and testing sessions are
different, while the conditional distribution of output given input remains unchanged.

To overcome the performance decrease caused by the non-stationarity of EEG sensor signals,
several domain adaptation methods have been proposed [21–23]. In [15], Sugiyama et al. applied
a covariate shift adaptation method to a brain-computer interface (BCI) competition dataset to analyze
non-stationary EEG signals in different sessions. They assumed that although the marginal distribution
between the subjects or sessions was mismatched, the decision rule remained constant. To correct
the covariate shifts, they utilized the Kullback–Leibler importance estimation procedure to re-weight
the training data and correct the difference between different subjects or sessions. More widely used
methods attempt to employ transformation to project the source and target domain onto a subspace.
In previous work [24], a new domain adaptation method known as transfer component analysis (TCA)
was proposed to learn some transfer components across domains in a reproducing kernel Hilbert space
(RKHS) using the maximum mean discrepancy (MMD) constraint [25]. In this subspace, the marginal
distributions of data in different domains are similar to each other. As a result, any supervised method
can be applied to the new source domain to train a classifier for use in the target domain. On this
basis [26], a novel transfer joint matching (TJM) approach has been put forward in the literature for
model feature matching and instance reweighting in a unified framework. Specifically, TJM aims to



Sensors 2017, 17, 1014 3 of 21

construct a new feature representation that is invariant to both the distribution difference and the
irrelevant instances. In [27], a reconstruction strategy based on sparse coding was used in an attempt
to construct robust sparse representations of both source and target data to obtain a well-aligned
feature space, in order to minimize the distribution divergence between the training and test data.
The authors incorporate this criterion into the objective function of sparse coding to make the new
representations robust to the distribution discrepancy. In addition, auto-encoder networks, which can
learn a common representation across training and test domains, have been successfully applied for
reducing the cross-domain discrepancy by utilizing the deep structures in the field, for example face
recognition and speech recognition [28–30].

In literature [31] a new EEG feature selection approach was developed: transfer recursive feature
elimination (T-RFE), for cross-subject emotion classification. The effectiveness of the T-RFE algorithm
for such cross-subject emotion classification paradigm is validated by a database for emotion analysis
using physiological signals (DEAP) [32], and outperforms several recent reported works on the same
database. The authors of [31] proposed a semi-supervised strategy by utilizing a validating set with
the emotion class labels rom the target domain. This is a successful attempt to handle the cross-subject
emotion classification in the DEAP database. The authors of [33] proposed an adaptive stacked
denoising auto-encoder (SDAE) to tackle cross-session mental workload levels classification tasks
using EEG. The algorithm of the adaptive SDAE consists of two steps: (1) initialization of the deep
model; and (2) the adaptive classification by iteratively tuning the weights between the adaptive layer
and the previous layer of the network. The results indicate a higher performance of the adaptive
SDAE in dealing with the cross-session EEG features. In [22], Zheng et al. mainly explored two types
of subject-to-subject transfer approaches without labeled target data. One is to exploit the shared
structure between training and test data. The other is to train multiple individual classifiers on source
subjects and transfer knowledge about classifier parameters to target subjects. The experimental
results show a mean accuracy of 76.31% in comparison with a conventional generic classifier, with
56.73% on average. However, this approach requires that there are enough subjects in the database,
and it cannot handle the session-to-session experiment. In [34], a novel strategy called the subspace
alignment auto-encoder (SAAE) is proposed to combine the auto-encoder network and the subspace
alignment solution in a unified framework to handle the unsupervised domain adaptation problem for
EEG-based emotion recognition by transforming features into the domain-invariant subspace. SAAE
exhibits better performance when compared to the state-of-the-art methods. However, for any new
samples from the testing sessions, the domain-invariant feature must be relearned. This involves
significant additional computation, and renders SAAE unsuitable for real-time classification.

In addition, the domain adaptation strategies mentioned above are actually a trade-off between
learning domain-invariant feature and retaining information in both source and target domains.
Transforming the data to an intermediate common shared subspace may lead to information loss
in both source and target domains. Moreover, these domain adaptation methods learn common
representations by assuming that the marginal distribution of training and testing sessions are different,
while the conditional distribution remains unchanged. However, for the EEG sensor signals, both
marginal and conditional distributions may be mismatched due to fluctuations in user attention level
and user fatigue.

To solve these problems, a fast domain adaptation strategy known as adaptive subspace feature
matching (ASFM) is proposed in this paper. In this method, we jointly adapt both the marginal
and conditional distributions within a unified framework, as shown in Figure 1. Specifically,
instead of tuning regularization parameters in the objective function like most domain adaptation
methods, this approach involves learning a linear transformation function which matches the marginal
distribution of the source and target subspaces without a regularization term. This means that the time
complexity of our domain adaptation procedure is significantly reduced.

In this study, by modeling each channel band power as a separate feature, an efficient feature
known as differential entropy (DE) [11,12] was used to measure the complexity of the EEG signals
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forming the input of the ASFM model. In ASFM, the l largest eigenvalues induced by principal
component analysis (PCA) are first selected for each domain as the bases of the source and target
subspaces. Then, the linear transformation matrix S is learned by minimizing the Bregman matrix
divergence. This step allows us to directly move the source and target subspaces closer without
unnecessary data projections. Additionally, any supervised method can be applied in the new source
domain to train a classifier for classification in the target domain, as the aligned source domain follows
a distribution similar to that of the target domain. In order to match the conditional distributions, we
try to estimate the prediction probability for an input target sample in the aligned subspace, and move
the confident predictions into the training set to adjust the conditional distributions. Note that our
ASFM is an unsupervised strategy without any labeled test data.

Labeled EEG 

Trainning Data 

Unlabeled EEG 

Test Data 

Preprocessing and Feature Extraction

Classifier LearningClassifier Learning

ˆ ˆ
train pseudoX X ˆ

testX

trainX
testX

ClassifierClassifier

Adaptive Subspace Feature Matching

Fast Marginal Distribution AdaptationFast Marginal Distribution Adaptation

Conditional Distribution AdaptationConditional Distribution Adaptation

+

Result

Figure 1. The flowchart of the Electroencephalography (EEG) emotion recognition system integrating
the proposed domain adaptation method.

The major contributions of this research can be summarized as follows:

1. In contrast to the conventional domain adaptation method, we combine the marginal and
conditional distribution adaptation strategies in the subspace, meaning that the new feature is
effective and robust for substantial distribution discrepancies;

2. Although the classifier in our proposed method needs to be updated along with the newly
obtained EEG data, the computational efficiency is much better than standard domain adaptation,
and it indicates the capability for the online implementation of the proposed algorithm when the
number of training samples and test samples is controlled within certain range;

3. Our work is intended to provide evaluation and analysis of several state-of-the-art domain
adaptation techniques in the field of pattern recognition for researchers aiming to apply these to
non-stationary EEG signal classification.

The remainder of this paper is organized as follows. In Section 2, the proposed experimental
design is introduced. Section 3 gives the details of the proposed ASFM method. Section 4 presents
the experimental results and a comparison with state-of-the-art methods. In Section 5, a discussion
and tools for analysis are given. The paper concludes in Section 6 with a summary of our study and
possible future extensions.
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2. Experiment Design

This study was performed on the publicly available emotion dataset – Shanghai Jiao Tong
University (SJTU) emotion EEG dataset (SEED) (http://bcmi.sjtu.edu.cn/~seed/) [13] in order to
investigate the effectiveness of the proposed domain adaptation algorithms. The SEED dataset is the
best choice for evaluating the influence of distribution discrepancy both across subjects and sessions
for non-stationary EEG signal classification, since each subject participating in SEED underwent the
experiments for three sessions with an interval of one week or longer. In SEED, EEG signals from a
total of 15 participants (eight females and seven males with an average age of 23.27) were recorded
using an ESI NeuroScan system with 62-AgCl-electrode cap (channels) electrodes at a sampling rate
of 1000 Hz. Each subject was exposed to stimulation from Chinese film clips (since factors related
to native culture may affect elicitation in emotional experiments). For the feedback, participants
were asked to assess their emotions as positive, neutral or negative immediately after watching each
film clip. Participants were told to report their emotional reactions to each film clip by completing
the questionnaire immediately after watching each clip. The questions are as follows: (1) what they
had actually felt in response to viewing the film clip; (2) how they felt at the specific time they were
watching the film clips; (3) had they watched this movie before; (4) had they understood the film clips.
They also rate the intensity of subjective emotional arousal using a 5-point scale. If the target emotions
were elicited, the corresponding experiment epochs were added into the SEED dataset.

For each participant in SEED, each positive, neutral and negative emotion has five corresponding
emotional clips, and each trial lasts about four minutes. The order of film clips is arranged in advance
so that two film clips targeting the same emotion are not shown consecutively. As shown in Figure 2,
there is a 5-s hint before each clip and 45 s of feedback after each clip. The SEED dataset provides EEG
signals which are down-sampled to 200 Hz; all of the EEG data underwent manual inspection to remove
the samples which had been seriously contaminated by electromyogram (EMG) and electrooculogram
(EOG). In addition, EOG signals were also recorded to mark blank artifacts. A bandpass filter was
applied between 0.3 Hz to 50 Hz to preprocess the EEG data, in order to filter the noise and remove
these artifacts. For each experiment, there are about 3300 clean epochs in total in each channel; each
epoch lasts for 1 s without overlapping.

Self assessent
Movie 

stimulation
Hint of start Rest

5 sec 4 min 45 sec 15 sec

Figure 2. Protocol for the electroencephalography-based emotion recognition experiment (adapted
from [13]).

3. Proposed Method

3.1. Feature Extraction and Normalization

Various types of features, such as power spectral density (PSD), differential entropy (DE),
differential asymmetry (DASM), rational asymmetry (RASM), and asymmetry (ASM) have been used
in EEG-based emotion recognition. According to the analysis results presented in [11–13], a simple and
efficient feature known as differential entropy (DE) shows a relatively balanced performance compared
with other features. DE is defined as:

hi(X) = −
∫ ∞

−∞

1√
2πσ2

exp
(x− µ)2

2σ2 log
1√

2πσ2
exp

(x− µ)2

2σ2 dx =
1
2

log 2πeσ2 (1)

where the time series X obeys the Gauss distribution N(µ, σ2). Obviously, the original EEG
signals do not follow a certain fixed distribution. However, authors of [11,12] have proven that: after

http://bcmi.sjtu.edu.cn/~seed/
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band-pass filtering in a certain band, the probability of sub-band signals meeting Gaussian distribution
hypothesis is greater than 90 percent. Therefore, in this paper, the time series X refers to EEG signals
after band-pass filtering in the five frequency bands: delta (1–3 Hz); theta (4–7 Hz); alpha (8–13 Hz);
beta (14–30 Hz); and gamma (31–50 Hz). For each frequency band, we can get the corresponding
time series X, then calculate corresponding DE feature following Formula Equation (1). Although DE
can achieve significantly better performance, there are two difficulties with this approach. Due to the
non-stationarity in the EEG sensors, the same signal may indicate different concepts under different
conditions. In other words, the conditional probability may change for samples collected from different
participants. Conventional DE features give equal treatment to all of the training samples; hence,
samples with the same emotion but collected from different participants cannot be distinguished.
In this work, a general coding scheme which takes into account the variation in participants is used to
enrich the DE feature. Suppose there are N participants in the training set. The N dimensions extra
feature vector of the qth sample Hq ∈ RN is defined as: Hq = [h1, h2, ..., hk, ...hN ]. If this sample in the
training set is from the pth subject (N subjects in total), hp = 1 and is 0 otherwise. Therefore, the kth
element hk in the N dimensions vector Hq can be defined as:

hk =

{
1 i f k = p
0 otherwise

(2)

In this work, if there are M samples from the source domain and there are N participants in the
training set, then we can augment the DE feature of the qth sample in the training set by concatenating
the original features x ∈ RM and the extra feature vector Hq as:

x̂q =

[
xq

Hq

]
∈ RM+N (3)

In short, the features of conventional DE have been extended to carry more information about the
background. In this study, the augmented DE was calculated using the standard five frequency bands
(delta: 1–3 Hz, theta: 4–7 Hz, alpha: 8–13 Hz, beta: 14–30 Hz, gamma: 31–50 Hz). Thus, there are
325 dimensions of features in total, since each frequency-band signal has 62 channels and there are
15 participants in the SEED dataset.

3.2. Adaptive Subspace Feature Matching

In this study, the augmented DE feature vectors extracted from samples in both the training
and test sets were used as the input to our ASFM model. In the source domain, there are ns
labeled samples in d dimensions (d = 325), denoted as XS = [xs1, xs2, ..., xsns] with their class labels
Ys = [ys1, ys2, ..., ysns], where xsi is the DE feature of the i-th sample from the training set and ysi is its
corresponding class label. Similarly, feature vectors extracted from the test set are defined as the target
domain and are denoted as XT = [xt1, xt2, ..., xtnt], where xti is the DE feature of the i-th sample from
the test set. Given a labeled source domain XS and unlabeled target domain XT , the problem to be
addressed is how to learn a new feature representation to reduce the marginal distribution discrepancy
between PS(XS) and PT(XT), and the conditional distribution discrepancy between PS(YS | XS) and
PT(YT | XT).

As shown in Figure 1, ASFM employs a two-step strategy. In the first step, the augmented DE
feature XS in the source domain is aligned to the target domain along with its class label by using
a fast marginal distribution adaptation strategy. In the second step, logistic regression is applied to the
new source domain to train a classifier for use in the target domain. Then, the conditional distribution
discrepancy is adapted by exploring the pseudo-labels of the target data. As a result, discrepancies
in both marginal and conditional distribution between the source domain XS and unlabeled target
domain XT can be reduced.
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3.2.1. Fast Marginal Distribution Adaptation

In order to match the marginal distribution of source and target domain, the subspace alignment
(SA) algorithm proposed in literature [35] is used in this paper. For simplicity, as shown in Figure 3,
principal component analysis (PCA) is chosen in this study for the selection of d eigenvectors
corresponding to the d largest eigenvalues. These eigenvectors are used as the bases of the source
and target subspaces, ZS and ZT . The common domain adaptation strategies used to constrain the
distribution discrepancy project both source and target data onto a common shared subspace by
minimizing the maximum mean discrepancy (MMD). However, due to the very large amount of
computation required, this strategy is unsuitable to be used for online classification. Thus, instead of
learning the transformation from source and target data directly, the proposed method tries to find the
linear transformation that best maps the source eigenvectors ZS onto the target eigenvectors ZT .

Unlabeled Test 

Features XT

PCA

Transformed

 Test Features PT

PCA  

Subspace

ZT

Labeled Training 

Features XS

PCA

Transformed

 Training Features PS

PCA  

Subspace 

ZS

 New PCA  Subspace  

Ztrans For Training Set

Figure 3. Architecture of the fast marginal distribution adaptation strategy. PCA: principal
component analysis.

Assuming that there exists a transformation matrix, S, which can align the coordinate systems of
the transformed subspaces ZS and ZT , the objective function can be expressed as:

min(‖ZSS− ZT‖2
F) (4)

where ‖·‖2
F is the Frobenius norm. Since the eigenvectors ZS and ZT extracted by PCA are orthonormal,

ZT
S ZS = I and ZT

T ZT = I, where I is the identity matrix. According to the invariance of orthonormal
operations of the Frobenius norm, ‖ZSS− ZT‖2

F can be re-written as:

F(S) =
∥∥∥ZT

S ZSS− ZT
S ZT

∥∥∥2

F
=
∥∥∥S− ZT

S ZT

∥∥∥2

F
(5)

Therefore, the best approximation is to assume that when S∗ = ZT
S ZT , the objective function is

a minimum. Given the source and target PCA subspaces ZS and ZT , the transformed source subspace
can be expressed as:

ZTrans = ZSZT
S ZT (6)

By computing XSZTrans = XSZSZT
S ZT and XTZT , the marginal distribution discrepancy between

PS(XS) and PT(XT) can be reduced. Since only PCA and matrix multiplication are used in this
transformation process, this method is very fast compared with other MMD-based domain adaptation
methods [24,26].

3.2.2. Conditional Distribution Adaptation

The above subspace feature-matching strategy is fast and effective; however, it still has one
drawback in that although the marginal distribution discrepancy between source and target data
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has been reduced, the conditional distributions may also be mismatched due to changes in user
attention level and user fatigue. The ASFM method, using a joint adaptation of conditional and
marginal distributions, is therefore proposed to address this issue. Since there is a large difference
between the marginal distributions of the training and test data, the problem of matching the source
conditional distribution with the target is non-trivial. Thus, we adapt conditional distributions in
the transformed subspace XSZTrans = XSZSZT

S ZT and XTZT . Our goal is to match the conditional
distributions PS(YS | XSZTrans; w) and PT(YT | XTZT).

Denote P = XSZTrans, and the transformed labeled source domain D = {(p1, ys1) , ..., (pns, ysns)}.
Logistic regression is used to estimate the conditional distributions of the source domain PS(YS | P; w).

The probability model of logistic regression is parameterized by a weight-vector w and defined as:

P(y | p; w) = − 1
1 + exp(−ywT p)

, where y = ±1 (7)

The gradient-descent algorithm is utilized to learn the parameter w. Then, the conditional
distribution of the source domain can be defined according to Equation (7):

PS(YS = 1 | P; w) = PS(YS = 1 | XSZTrans; w) =
1

1 + exp(−wTXSZTrans)
(8)

However, PT(YT | XTZT) cannot be exactly estimated without labeled data in the target
domain. It is well known that labeling the sample is always time-consuming and requires specific
conditions. To solve this problem, we assume that PT(YT | XTZT) ≈ PS(YS | XSZTrans; w); thus,
the pseudo-labels of the target data can be estimated. In order to achieve a more accurate approximation
for PT(YT | XTZT), we propose an iterative pseudo-label refinement strategy to refine PT(YT | XTZT).
In logistic regression, the probability PS(Y | XTZT ; w) is a natural metric of the certainty that XTZT
belongs to the predicted label. Based on this probability, the confidence level q(XTZT), which is used
to decide whether this target sample can be moved into the training set, can be defined as:

q(ZT) =

{
1
0

i f PS(Y | XTZT ; w) > τ

otherwise
(9)

For EEG-based emotion recognition applications with a given training set U and a test set V, each
new sample is assigned a confidence level q. If q = 1, this sample will be moved into the training set U,
and the conditional distribution PS(YS | XSZTrans; w) will be readjusted. As the number of iterations
increases, PS(YS | XSZTrans; w) can be iteratively refined. Eventually, both the marginal distribution
and the conditional distribution between domains will be reduced.

The pseudo code of our ASFM method is given in Algorithm 1.
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Algorithm 1 ASFM: adaptive subspace feature matching and classification.

Require:
Source data XS, Target data XT , Source labels YS, Threshold τ, Subspace dimension g,
Maximum Iterations: maxepoch

Ensure:
YT are the predicted labels for Target data XT .

1: Calculate the source subspace: ZS ← PCA(XS, d).
2: Calculate the target subspace: ZT ← PCA(XT , d).
3: Align subspace from ZS to ZT to get new subspace: ZTrans = ZSZT

S ZT .
4: Project source data to its new subspace: PS = XSZTrans.
5: Project target data to its subspace: PT = XTZT .
6: Initialize w randomly and learning rate α.
7: for epoch=1,2,...,maxepoch do
8: w← argmin`(w, (PS, YS)).
9: Apply on all elements of PT by using Equation (8).

10: Move c confident inputs from test set to the training set by using Equation (9).
11: end for
12: YT ← classi f ier(PT) by using Equation (8).

4. Experiment Results

In this section, an off-line experiment was first conducted on the SEED datasets to evaluate
the efficacy of the proposed ASFM. Then, to show the computational efficiency of the proposed
methods, a real-time experiment was also designed in this study. It should be noted that SEED
consists of 15 participants and each one performed the experiments three times; the interval of
two sessions is one week or longer. Therefore, we evaluate our ASFM model on two scenarios:
(1) subject-to-subject evaluation, where the training and test domains are from different subjects; and
(2) session-to-session evaluation, where the source and target domains are from the same subject but
different experiment sessions.

4.1. Off-Line Evaluation

In some scenarios, such as psychological analysis and disease diagnosis, we need to record all
of the samples in advance, then analyze the problem as a whole after data acquisition. Therefore, in
order to evaluate the effectiveness of the proposed ASFM for reducing the marginal and conditional
distribution discrepancy between training and test set, we first conduct an off-line experiment, in
which all of the test samples were concentrated into one target domain, and classified simultaneously.
We systematically compare the proposed ASFM model with several state of the art domain adaptation
methods. Firstly, conventional support vector machine (SVM) and logistic regression (LR) without
domain adaptation technology were trained as baseline by using Library for Support Vector Machines
(LIBSVM) [36] and Library for Large Linear Classification (LIBLINEAR) [37], because we chose LR
as the base classifier in our ASFM model. In addition, to testify the effectiveness of combining the
marginal and conditional distribution adaptation strategies together, we design this comparison named
“subspace feature matching (SFM)”. For SFM, we only match the marginal distribution by aligning the
PCA subspace as shown in Section 3.2.1, without moving confident samples from test set to the training
set. We systematically compared five state-of-the-art domain adaptation methods and subspace feature
matching. It is worth mentioning that, for these domain adaptation methods, LR is chosen as the base
classifier for fair comparison.

• Auto-encoder (AE) [28];
• Transfer sparse coding (TSC) [27];
• Transfer component analysis (TCA) [24].
• Transfer joint matching (TJM) [26];
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• Subspace alignment auto-encoder (SAAE) [34];
• Subspace feature matching (SFM) without adaptive strategy;

In addition, the min-max strategy is used to normalize the EEG trials in this paper. EEG feature
vectors extracted from the training and test set are denoted as FS and FT . For the off-line evaluation,
we concentrate FS and FT as F = [FS FT ], and our target is normalizing F to [L, U]. The formulation of
the min-max normalization is:

X =
F−min(F)

max(F)−min(F)
∗ (U − L) + L (10)

where X is the normalized data, and U and L are the upper and lower normalization bounds. In this
paper, U and L are as 1 and 0.

Table 1 shows the parameters of different methods. In this study, the SVM is employed by linear
kernel, and the parameter C is set by searching {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} to find the optimal
value. For LR, the parameter C was tuned in {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}. The structure of
conventional auto-encoder was set with two hidden layers and the number of hidden neurons is set
as 200. For TSC, the number of basis vectors in the dictionary was set to 150, sparsity regularization
to 0.1, and the number of iterations per TSC to 15. Subspace learning method TCA and TJM were
employed by radial basis function (RBF) kernel, and subspace bases were set as 80 and the adaptation
regularization parameter λ is 1.0. For our adaptive subspace feature matching, the dimension of the
PCA subspace is set to all, and threshold τ to 0.45, and the number of iterations is set to 1.

Table 1. Details of parameters used in different methods. SVM: support vector machine; LR: logistic
regression; AE: auto-encode; TSC: transfer sparse coding; TCA: transfer component analysis; TJM:
transfer joint matching.

Method Parameter Details

SVM
Linear kernel;

the parameter C was set by searching{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100};

LR
L2-regularized logistic regression;

We set the parameter C by searching {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100};

AE
Structure with 2 hidden layers;

The number of hidden neurons was set by searching {50, 100, 200, 400, 600, 1000};

TSC
Number of basis vectors was 150;
Sparsity regularization was 0.1;

Number of iterations per TSC was set as 15;

TCA
Subspace bases was set as 80;

Regularizer was set by searching λ ∈ {0.01, 0.1, 1, 10, 100};

TJM
Subspace bases was set as 80;

The number of iterations for TJM to converge is T = 3.
Regularizer was set by searching λ ∈ {0.01, 0.1, 1, 10, 100};

ASFM
The dimension of the PCA subspace is set to all;

Threshold τ is set to 0.45; the number of iterations is set to 1.

In this study, classification accuracy was used as the evaluation metric [26]:

Accuracy =

∣∣∣X : X ∈ DT ∧ Ŷ(X) = Y(X)
∣∣∣∣∣∣X : X ∈ DT

∣∣∣ (11)

where DT is the set of test data, Y(X) is the truth label of X, and Ŷ(X) is the label predicted by the
classification algorithm.
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4.1.1. Subject-To-Subject Experimental Results

To confirm the effectiveness and stability of our method, the leave-one-subject-out cross validation
method was adopted for the evaluation. There are in total 15 subjects in the SEED database. It is
worth mentioning that it is infeasible to include all the data (about 47,516 samples) from 14 subjects
as the training data for TSC, TCA, and TJM because of the limits of the memory for singular value
decomposition [22]. There are in total 15 trials for each subject in one experiment. Therefore, to avoid
bias, we randomly selected a 20 samples from each trial and got 300 samples in total. That means
the original structure of the SEED dataset is retained. Ultimately, from each subject, we obtained
4200 samples in total as training data. In addition, we repeated our sample selection five times to get
a fair result. For a fair comparison, all of the methods were evaluated by using the same 4200 samples
as the training set in this paper.

Table 2 shows the average classification accuracy and standard deviations of the 15 subjects for
each experimental session. It is worth noting that the average standard deviation is the standard
deviation for the 15 participants after calculating the average accuracy of three sessions. As seen from
these comparisons, the two standard classifiers SVM and LR only achieve an average classification
accuracy and standard deviation of 57.29%/7.42% and 57.43%/7.95%, respectively, as no domain
adaptation strategy is employed. With the benefits of learning common representations from both
source and target domains by utilizing the deep structure, the auto-encoder method can achieve
the mean and standard deviation of accuracy of 61.71%/8.09%, respectively, which is slightly better
than SVM, and LR. TSC, which attempts to modify the representation of both source and target
data, outperformed the auto-encoder method, benefiting from sparse coding constraint. As expected,
TCA and TJM, which use single-kernel MMD to match different distributions, achieved much better
performance at 75.32%/11.07% and 76.24% and 10.38%, respectively, as both of them try to minimize
the distribution divergence with a certain constraint. The SAAE method, which utilizes the nonlinearity
of the auto-encoder coupled with MMD constraints to ensure that the shifted source domain, follows
a distribution similar to that of the target domain, and achieved a better accuracy performance at
77.88%/7.33% for mean and standard deviation, respectively. Compared with these method, the
average classification accuracy and standard deviation of our ASFM is 80.46%/6.84%, respectively,
gaining a 2.58% higher accuracy and 0.49% lower standard deviation compared to the best baseline
SAAE, and 2.83%/−1.00% compared to SFM. In addition, compared with the subject-to-subject
transfer approach proposed by Zheng et al. [22], also evaluated on the SEED dataset, our ASFM
method achieves 80.46%/6.84% for mean and standard deviation, better than the 76.31%/15.89% for
mean and standard deviation found in the literature [22]. The statistical significance of the performance
between the proposed ASFM approach and other algorithms is evaluated using Student’s t-test, and
the p-values is lower than 0.05 for all tests.

Table 2. Average classification accuracy and standard deviations (%) of the 15 subjects for each
experimental session using leave-one-subject-out cross validation method. The reported results from
the original papers are marked with *. SAAE: subspace alignment auto-encoder; SFM: subspace feature
matching. (bold numbers indicate the best results).

Task Group No. Experimental Session 1 Experimental Session 2 Experimental Session 3 Average

SVM 60.31/9.53 53.37/12.97 58.20/12.40 57.29/7.42
LR 59.84/10.12 54.32/14.42 58.12/12.58 57.43/7.95

AE [28] 65.64/10.44 55.82/11.52 63.67/12.31 61.71/8.09
TSC [27] 73.33/7.61 72.16/9.08 67.03/9.79 70.84/6.44
TCA [24] 75.91/11.52 74.19/12.26 75.87/6.87 75.32/11.07
TJM [26] 77.62/10.90 74.30/12.06 76.79/5.69 76.24/10.38

SAAE * [34] 80.22/8.00 74.68/12.76 78.73/12.96 77.88/7.33
SFM 80.34/6.13 74.81/10.51 77.74/10.15 77.63/5.84

ASFM 83.51/7.40 76.68/12.16 81.20/10.68 80.46/6.84
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4.1.2. Session-to-Session Experimental Results

One of the great advantages of SEED dataset is that each participant was required to perform the
experiments for three sessions, and the interval lasts at least one week. This can help us investigate
whether the performance of our domain adaptation method can overcome the non-stationarity of EEG
signals with the passage of time. In this study, six task groups were constructed by splitting the data
from different sessions of one subject to training data and test data: session 1→ session 2, session 1
→ session 3, session 2→ session 1, session 2→ session 3, session 3→ session 1, and session 3 →
session 2. For each task group, all the data from one session (about 3394 samples) were included as the
training data, and the data from another session (about 3394 samples) were included as the test data.

Table 3 shows the mean accuracy and standard deviations of our ASFM method and the other
nine baseline methods on six task groups. It is worth mentioning that Graph regularized Extreme
Learning Machine (GELM) [38], which has been validated as the most effective method for the
session-to-session task on SEED dataset, is added for comparison. The reported results in the original
paper were used for a fair comparison. We observed that GELM achieved a much better performance
compared to the best baseline SVM and LR, as they forced the output of samples from the same
class to be similar. As expected, TCA and TJM achieved much better performance at 80.68%/7.70%
and 81.56%/7.47% for mean accuracy and standard deviation. The SAAE method achieved a better
accuracy and standard deviation performance, at 81.81%/7.56%. The average classification accuracy
and standard deviation of ASFM on the session-to-session task is 84.61%/6.92%, gaining a significant
performance improvement of 2.80%/0.64% compared to the best baseline SAAE. The statistical
significance of the performance between the proposed ASFM approach and other algorithms is
evaluated using Student’s t-test, and the p-values is lower than 0.05 for all tests.

Table 3. Average classification accuracy and standard deviations(%) of training and test data from
different sessions. The reported results from the original papers are marked with *.(bold numbers
indicate the best results)

Task Group No. 1 → 2 1 → 3 2 → 1 2 → 3 3 → 1 3 → 2 Average

SVM 67.63/12.73 64.21/13.00 67.62/14.73 70.37/19.48 72.69/14.21 66.64/14.38 68.19/11.41
LR 60.64/17.38 60.42/14.61 58.82/13.97 65.30/11.37 63.89/18.44 63.85/15.79 62.15/9.51

GELM * [38] 72.55/10.29 67.22/10.42 75.86/7.71 76.62/15.34 76.28/11.47 78.17/13.41 74.45/8.20
AE [28] 76.66/8.92 75.30/10.83 77.47/11.54 77.20/15.35 77.02/12.81 78.21/13.15 76.98/9.52
TSC [27] 79.85/12.12 80.71/10.70 82.07/8.08 80.24/10.32 79.92/7.71 77.99/11.36 80.13/8.52
TCA [24] 81.56/11.52 79.35/12.26 81.56/6.87 82.83/11.07 80.84/8.00 77.97/13.90 80.68/7.70
TJM [26] 82.43/10.90 80.89/12.06 82.36/5.69 84.04/10.38 80.57/9.97 79.09/11.69 81.56/7.47

SAAE * [34] 84.47/10.06 80.04/13.03 84.31/7.21 83.09/9.98 80.20/9.99 78.77/10.49 81.81/7.56
SFM 83.09/10.12 81.61/10.42 84.11/6.23 84.21/8.19 84.62/9.59 82.16/11.06 83.30/7.12

ASFM 84.34/10.18 82.96/10.49 85.46/6.07 85.11/8.83 86.05/9.66 83.75/11.39 84.61/6.92

4.2. On-Line Evaluation

To verify the effectiveness of our ASFM method for real-time classification, a simulated on-line
experiment was designed in this section. In the on-line testing evaluation, a conventional LR classifier
was trained by all training data, then about 3394 epochs (each epochs lasts for 1 s), were tested one by
one as time progressed. Compared to the fixed decision rule based classification method, our ASFM
method is adaptively performed for each test data. It is worth mentioning that the amount of samples
in target domain must be greater than the subspace dimension d for PCA processing. Therefore,
as shown in Figure 4, when the amount of samples in target domain is greater than the subspace
dimension d, we can use ASFM for online applications. In addition, since the distribution of the test
domain may always fluctuate, it is inappropriate to train a fixed classifier to classify the rest of the
following samples. Therefore, in this paper, the classifier was adjusted every 10 s by our ASFM method
as shown in Figure 4. The training set is denoted as DS and the test set is denoted as DT . Our strategy
is that we add 10 new samples into DT , and use DS and DT as the input of our ASFM model to learn a
new classifier every 10 s. As time goes on, both marginal and conditional distribution discrepancy
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between training and test sets can be reduced along with this inherent adaptive characteristic of
the ASFM.

ASFM ASFM ... ASFM ASFM

Time(sec)10 20 k*10 n*10

...

Start

The prepared samples

no fewer than PCA dimension

0

Figure 4. The flow of online experiment.

The min-max strategy is used to normalize the EEG trials in this paper. EEG feature vectors
extracted from the training and test set are denoted as FS and FT . For the on-line evaluation, test
samples were normalized according to the minimal and maximal values defined by the training
samples only. The formulation of the min-max normalization is:

X =
FT −min(FS)

max(FS)−min(FS)
∗ (U − L) + L (12)

where X is the normalized data, and U and L are the upper and lower normalization bound. In this
paper, U and L are as 1 and 0.

Because of the high time complexity, the previously mentioned domain adaptation methods, such
as TJM, TCA, AE, and TSC, are not suitable for online use. Therefore, in this study, we only compare
the classification performance of the proposed ASFM method with the conventional SVM and LR.
Table 4 shows the parameters of different methods. Conventional support vector machine (SVM)
and logistic regression (LR) without domain adaptation technology were trained as baseline by using
LIBSVM software [36] and LIBLINEAR software [37], because we chose LR as the base classifier in
our ASFM model. In this study, the SVM is employed by linear kernel, and the parameter C is set
by searching {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} to find the optimal value. For LR, the parameter
C was tuned in {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}. For our adaptive subspace feature matching,
the dimension of the PCA subspace was set to all, and threshold τ to 0.41, and the number of iterations
was set to 1.

Table 4. Details of parameters used in different methods.

Method Parameter Details

SVM Linear kernel;
the parameter C was set by searching{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100};

LR L2-regularized logistic regression;
we set the parameter C by searching {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100};

SFM The dimension of the PCA subspace is set to all.

ASFM The dimension of the PCA subspace is set to all;
Threshold τ is set to 0.41; The number of iterations is set to 1.

As mentioned before, the leave-one-subject-out cross validation method was adopted for the
evaluation. To reduce the computational complexity, a subset of samples (300 samples) was randomly
selected from each subject, and 4200 samples were obtained in total as training data. All the data from
each subject (about 3394 samples) were included as the test data. To get a fair result, we repeated our
sample selection five times, then average classification accuracy was used as the final classification
outcome. Figure 5 demonstrates the detailed classification accuracy and standard deviations of all the
applicable methods. We note that SVM and LR achieved comparable performances of 56.26%/6.84%
and 56.38%/7.48% for mean and standard deviation. The average classification accuracy and standard
deviations of ASFM on the session-to-session task is 75.11%/7.65%, gaining a significant performance
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improvement compared to the best baseline LR. It is very important to observe that ASFM performs
better than SFM (74.26%/6.19% for mean accuracy and standard deviation), which is our subspace
feature matching model without adaptive strategy on this dataset. This reveals that only matching the
marginal distribution may not be good enough for robust domain adaptation.
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Figure 5. Average classification accuracy and standard deviations (%) of each subject using
leave-one-subject-out cross validation method for on-line evaluation.

Session-to-session experiment was also performed for online test. Six task groups were
constructed by splitting the data from different sessions of one subject to training data and test
data: session 1→ session 2, session 1→ session 3, session 2→ session 1, session 2→ session 3, session
3→ session 1, and session 3→ session 2. For each task group, all the data from one session (about
3394 samples) were included as the test data, and the data from another session (about 3394 samples)
were included as the test data. Figure 6 demonstrates the detailed experimental results.

30

40

50

60

70

80

90

1-2 1-3 2-1 2-3 3-1 3-2 Average

A
cc

u
ra

cy
(%

)

Subject

SVM LR SFM ASFM

Figure 6. Average classification accuracy and standard deviations (%) of training and test data from
different sessions for on-line evaluation.

As seen from these comparisons, the two standard classifiers SVM and LR only achieve an average
classification accuracy and standard deviation of 52.68%/5.63% and 54.01%/6.29% as no domain
adaptation strategy is employed. The average classification accuracy and standard deviation achieved
by ASFM on the six tasks were 79.71%/4.97% and performed better than SFM (77.24%/5.32%).
This verifies that the proposed models can overcome the non-stationarity of EEG signals over time. The
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statistical significance of the performance between the proposed ASFM approach and other algorithms
is evaluated using Student’s t-test, and the p-values is lower than 0.05 for all tests.

5. Discussion

5.1. Comparison with State-of-the-Art Methods

To give a better understanding of the comparison results, in this section, we discuss the algorithmic
differences of these state-of-the-art methods. SVM and LR are known to perform fairly well on standard
emotion recognition classification problems, but it may fail when the training data and testing data are
sampled from different domains.

For the stacked auto-encoder, the nonlinearity of the deep structure made it feasible to extract
common representations from both source and target domains. However, without consistency
constraints, it is not always optimal because the new deep features may unexpectedly increase
the distribution discrepancy at times. Domain adaption methods, such as TSC, TCA and TJM,
have been successfully applied for reducing the cross-domain discrepancy in the field of computer
vision. However, for EEG sensor data, they did not achieve the best performance. The sparse coding
based algorithm TSC creates new representations by incorporating MMD into the objective function
to constrain the cross-domain discrepancy. TCA transforms features into a subspace with MMD
constraints. As an improved method of TCA, TJM aims to reduce the domain difference by jointly
matching the features and reweighting the instances across domains by constructing invariant feature
representation. For a computer vision task, there are a lot of irrelevant features among different
images. Therefore, transforming features into a common shared subspace is an effective way to reduce
distribution discrepancy and the irrelevant features. However, for EEG sensor data, projecting the data
to an intermediate common shared subspace may lead to information loss in both source and target
domains, because most features extracted from all the 62 channels are significant. Moreover, such a
strategy is costly, and renders them unsuitable for real-time classification. The experimental results
shown in Section 4 demonstrate this drawback.

As compared with the other algorithms, our ASFM method projects each source and target
data into its respective subspace, then learns a transformation matrix to make the coordinate system
of the transformed subspaces align. As a linear transformation, ASFM still cannot fully remove
the distribution discrepancy completely, but most information of each domain can be retained.
Furthermore, for our ASFM, both marginal and conditional distribution discrepancy are taken
into account. The experimental results in Section 4 have shown that ASFM performed better than
SFM, which is our subspace feature matching model without matching the conditional distribution.
This significantly demonstrates the effectiveness of our ASFM method.

5.2. Computation Time Analysis

As already mentioned, a simulated on-line experiment was designed in Section 4.2. In fact, as the
test samples increase, the computation time for adjusting the classifier also increased. In order to
avoid the bias, we only evaluated time complexity when we get the maximum quantity of the test
samples (4200 training samples and 3394 test samples.) following the on-line experiment designed in
Section 4.2. It is worth mentioning that the time taken for data preprocessing and feature extraction
was not considered. All the algorithms were tested in the same environment using MATLAB R2013b
with an Intel core i7-4770 3.40 GHz processor and 16 GB of RAM. The experimental results are
shown in Table 5.
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Table 5. Time complexity of all baseline methods. The reported results from the original papers are
marked with *.

SVM LR AE TSC TCA TJM SAAE * SFM ASFM

Training time (s) 0.20 0.29 90.14 246.39 58.08 164.92 121.81 0.39 1.39

With no surprise, the computation time of the SVM and LR is much shorter than the other
algorithms. All of the domain adaptation methods (AE, TSC, TCA, TJM) need a lot of training time,
and this renders them un-suitable for real-time classification. Our ASFM method achieves a acceptable
performance in this computation time experiment. Compared to SFM, the adaptive strategy really
needs extra time. It is worth mentioning that the time complexity of our ASFM is closely related to the
subspace dimension. In Figure 7 and Table 6, the average classification accuracies and time complexity
of our ASFM method with varying subspace dimension are shown.

We also analyze the computational complexity of Algorithm 1 using the big O notation.
The computational cost focuses primarily on PCA (Line 3 and Line 4) and parameter estimation
for (Line 8). In this paper, if there are n1 training samples and n2 test samples, each represented
with m features, then, for PCA: covariance matrix computation is O(m2(n1 + n2)) and its eigen-value
decomposition is O(m3). Therefore, the complexity of PCA is O(m(m(n1 + n2 + m))). The complexity
of parameter estimation for w is determined by parameter estimation method. In this paper, the random
gradient-descent algorithm is utilized in this learning work, and the complexity is O(m(n1 + n2)).
Authors of [24] showed that the complexity of comparison method TCA is O(m(n1 + n2)

2). In this
paper, n1 + n2 = 7594 and m = 325. Therefore, complexity of TCA is about 20 times more than our
method. This is similar with the results shown in Table 5.

It is worth noticing that the proposed ASFM method has achieved balanced results when
70 features are extracted. In spite of this, complexity of our method is still limited by the number of
training samples and test samples. In order to use our method for online implementation, the number
of training samples and test samples should be paid attention, for example, by enlarging the sampling
interval of the EEG features when necessary.

(a) Offline experiment (b) Online experiment
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Figure 7. Average classification accuracy of the ASFM method with varying subspace dimension.

Table 6. Time complexity of ASFM with varying subspace dimension.

Subspace Dimension 10 30 50 70 90 110 130 150 250 325

Training time (s) 0.19 0.26 0.30 0.37 0.45 0.50 0.58 0.63 1.01 1.39
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5.3. Effectiveness Analysis

To prove the effectiveness of the proposed methods, we show scatter plots of features between the
training dataset (session 1) and the testing dataset (session 2) for Subject 1. To facilitate visualization,
we utilize the first two dimensions to plot the feature distribution. In Figure 8, the red, green and
blue plus sign marks indicate the training features from Session 1. On the other hand, the red,
green and blue circles indicate the test features from Session 2. Therefore, it is easy for us to check the
distribution change from the training to the test data during the experimental sessions. Figure 8a shows
the distribution of raw EEG features. Obviously, a different feature distribution is found to occur.
Figure 8b shows that the features from different sessions have been transformed into a subspace
by our ASFM method. We can observe that the target points in Figure 8b are discriminated much
better, and the categories between the source and target are aligned much better. Clearly, the domain
discrepancy of the two sessions has been significantly reduced, and it can explain the effectiveness of
our ASFM.

(a) Raw feature (b) Feature transformed by our ASFM

Negative in Sessions 1 
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Positive in Sessions 1 

Negative in Sessions 2 
Neutral in Sessions 2
Positive in Sessions 2 
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+
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Neutral in Sessions 1 
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Figure 8. Feature distributions of the first two dimensions between training and testing sessions for
Subject 1.

5.4. Online Trajectory Analysis

To analyze the online trajectory, we draw the profile of accuracy varying with time along the
currently adopted temporal resolution of 10 s. Due to space limitations, the session-to-session and
subject-to-subject experiment for Subject 1 are shown in Figure 9 as an example. In Figure 9, the black,
green, red and blue curves indicate SVM, LR, SFM, and ASFM. As can be observed from Figure 9,
all of the methods show an unstable results in the early stages, because the quantity of test sample is
too small. As time progresses, the results reach stability gradually. It is worth noting that our ASFM
strategy almost gains the best performance at all time-points.



Sensors 2017, 17, 1014 18 of 21

(a)  Subject-to-subject (b)  Session-to-session

 
A

ccu
racy

(%
)

 
A

ccu
racy

(%
)

Time（s） Time（s）

SVM

LR

SFM

ASFM

SVM

LR

SFM

ASFM

Figure 9. The profile of accuracy varying with time in session-to-session and subject-to-subject
experiment for Subject 1.

5.5. Parameter Sensitivity

In this study, the proposed ASFM method involves two important parameters: the dimensionality
of the subspace k, and the threshold τ, which determines the confidence level q(XTZT). In the previous
section, we have shown the average classification accuracies and time complexity of our ASFM method
with varying subspace dimension in Figure 7 and Table 6. Taking account of time complexity, in this
study, the dimensionality of the subspace k was set as 70.

The threshold τ is another important parameter for ASFM. We conducted sensitivity analysis on
the leave-one-subject-out cross validation experiment with 325 features, 4200 training samples and
3394 test samples. For comparison, the average classification accuracy of all 15 task groups on the
subject-to-subject datasets was computed. When testing this specific parameter, the dimensionality of
the second subspace was fixed at 70. The influence of the parameter τ in our ASFM approach is shown
in Table 7. The threshold τ should be neither too small nor too large. In this study, for all experiments,
the threshold τ of ASFM was set at 0.45.

Table 7. Classification accuracy (%) of ASFM using different values of the threshold τ.

τ 0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9

Classification accuracy (%) 77.45 77.48 78.23 79.49 80.46 79.73 78.31 77.95 77.82 77.71

In addition, we added analysis about the influence of the number of iterations in our ASFM
approach. Table 8 shows classification accuracy of ASFM using different number of iterations. It can
be observed that as the number of iterations increases, classification accuracy stabilizes gradually.
However, there is only a small increase when the number of iterations is more than one. Therefore,
taking account of time complexity,we only use one time iteration.

Table 8. Classification accuracy (%) of ASFM using different number of iterations.

Number of Iterations 0 1 2 3 4 5 6 7

Classification accuracy (%) 77.63 80.46 80.69 80.90 81.05 81.08 81.09 81.09

5.6. The limitations of ASFM

The limitations of ASFM are mainly reflected in the following two aspects:

(1) As some works [39–41] have mentioned, although there are many successful applications, the
power of transfer learning still has its limit, which is named “negative transfer”. Negative transfer
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refers to the phenomenon that, instead of improving performance, transfer learning from source
domain degrades the performance on the target domain. In general, transfer learning methods
treat knowledge from every source domain as a valuable contribution to the task on the target
domain. However, when knowledge is transferred from highly irrelevant sources, “negative
transfer” will happen. In fact, given multiple source domains, in the worst case, the majority of
the source domains could be irrelevant to the target domain. In reality, ASFM is not effective
on DEAP [32] which is a frequently-used database for EEG-based emotion estimation. This is
probably because there are too many irrelevant subsets between each other in this dataset. So far,
it is still difficult to estimate the relevance between two subjects without labeled data in the target
subject. Therefore, unsupervised transfer learning (or domain adaptation) research for EEG-based
emotion estimation on DEAP database is a greater challenge, and an important research aspect in
our future work.

(2) The complexity of our method is still limited by the number of training samples and test samples.
In order to use our method for online implementation, the number of training samples and test
samples should be paid attention, for example by enlarging the sampling interval of the EEG
features when necessary.

6. Conclusions

In this paper, the ASFM scheme is proposed, which attempts to jointly adapt both the marginal
and conditional distributions from non-stationary EEG data across different subjects and sessions.
In ASFM, linear mapping is learned in order to align the source PCA subspace with the target PCA
subspace. Following this, conditional distributions can be adapted in the transformed subspace by
iterative exploration of the pseudo-labels of the target data. As a result, discrepancies in both marginal
and conditional distributions between the source domain and the unlabeled target domain can be
reduced. Experimental testing using the SEED dataset for EEG emotion recognition shows that the
proposed method demonstrates improved performance compared with the state-of-the-art methods,
and verifies the effectiveness of the proposed method for dealing with the domain discrepancy and
reducing performance degradation across subjects and sessions for offline and real-time applications.
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