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ABSTRACT OF THE DISSERTATION 

HYBRID APPROACHES TO ESTIMATING FREEWAY TRAVEL TIMES USING 

POINT TRAFFIC DETECTOR DATA 

by 

Yan Xiao 

Florida International University, 2011 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

The accurate and reliable estimation of travel time based on point detector data is needed 

to support Intelligent Transportation System (ITS) applications.  It has been found that 

the quality of travel time estimation is a function of the method used in the estimation and 

varies for different traffic conditions.  In this study, two hybrid on-line travel time 

estimation models, and their corresponding off-line methods, were developed to achieve 

better estimation performance under various traffic conditions, including recurrent 

congestion and incidents.  The first model combines the Mid-Point method, which is a 

speed-based method, with a traffic flow-based method.  The second model integrates 

two speed-based methods: the Mid-Point method and the Minimum Speed method.  In 

both models, the switch between travel time estimation methods is based on the 

congestion level and queue status automatically identified by clustering analysis.  

During incident conditions with rapidly changing queue lengths, shock wave 

analysis-based refinements are applied for on-line estimation to capture the fast queue 

propagation and recovery.    
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Travel time estimates obtained from existing speed-based methods, traffic 

flow-based methods, and the models developed were tested using both simulation and 

real-world data.  The results indicate that all tested methods performed at an acceptable 

level during periods of low congestion.  However, their performances vary with an 

increase in congestion.  Comparisons with other estimation methods also show that the 

developed hybrid models perform well in all cases.  Further comparisons between the 

on-line and off-line travel time estimation methods reveal that off-line methods perform 

significantly better only during fast-changing congested conditions, such as during 

incidents.   

The impacts of major influential factors on the performance of travel time 

estimation, including data preprocessing procedures, detector errors, detector spacing, 

frequency of travel time updates to traveler information devices, travel time link length, 

and posted travel time range, were investigated in this study.  The results show that 

these factors have more significant impacts on the estimation accuracy and reliability 

under congested conditions than during uncongested conditions.  For the incident 

conditions, the estimation quality improves with the use of a short rolling period for data 

smoothing, more accurate detector data, and frequent travel time updates. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

As a measure of traffic congestion levels, travel time information is important to travelers 

as well as to transportation planners and operational personnel.  Travelers can make 

informed trip decisions regarding their departure time, route, and travel mode with the 

provided travel time information.  Transportation planners can better estimate travel 

demand given the knowledge of accurate link travel time, resulting in more reasonable 

designs of roadway alternatives and Intelligent Transportation Systems (ITS) 

deployments.  Traffic operation personnel can easily identify the incidents and traffic 

congestions based on the estimated travel times, and will also be able to effectively 

evaluate the performance of current and historical traffic operations. 

Traditional travel time measurement methods, including test vehicles and license 

plate matching, can only provide limited travel time data at a high expense.  With the 

advancement of ITS technologies, however, new probe vehicle techniques such as 

License Plate Reader, Automatic Vehicle Identification (AVI) and Automatic Vehicle 

Location (AVL) technologies are starting to be used for travel time measurement.  

Nevertheless, these techniques generally have high implementation costs and also greatly 

rely on the market penetration of ITS devices.  In parallel, point traffic detectors, such as 

loop detectors and Remote Traffic Monitoring Sensor (RTMS), are widely deployed 

along the roadways.  The traffic measurements reported by these detectors provide a 

cost-effective way to indirectly estimate travel time.  According to the survey of Kothuri 
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et al. (2007), a total of 25 metropolitan areas were providing travel time, and 17 other 

areas were planning to provide travel time information in 2007.  Most of the posted 

travel time estimates were based on speed measurements by point detectors.  How to 

estimate travel time accurately and reliably based on point detector measurements is thus 

an important subject that is receiving increasing interests from transportation engineering 

researchers and practitioners.   

1.2. Problem Statement 

Travel time studies based on point detectors can be categorized as travel time estimations 

and predictions.  Travel time estimation aims at calculating the vehicle travel time along 

a route based on current traffic conditions, i.e., known vehicle speed, volume, and 

occupancy.  On the other hand, travel time prediction focuses on the calculation of 

future travel time based on unknown but predicted traffic conditions.  Although some 

studies suggested that predicted travel time values should be used for the Advanced 

Traveler Information System (ATIS) applications (Vanajakshi 2004; Shen 2008), in 

practice, most Traffic Management Centers (TMCs) are still disseminating estimated 

travel time on Dynamic Message Signs (DMS) and traveler information systems such as 

511 phone services and web services.  Also, the estimated travel time is usually used as 

the basic input for travel time prediction in time series analyses (Guin 2006) and for 

training artificial intelligence applications to the prediction problems such as Artificial 

Neural Networks and Support Vector Regression (Van Lint 2004; Vanajakshi 2004; Shen 

2008).  Thus, the accuracy of estimated travel time directly affects the performance of 
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travel time prediction.  This study only focuses on freeway travel time estimations, 

especially in real-time applications.  

Existing point detector-based freeway travel time estimation methods can be 

generally classified into two types: speed-based methods (also referred to as the 

trajectory-based methods and extrapolation methods) and the flow-based methods.  The 

speed-based methods construct the trajectory of speed along a roadway based on point 

measurements of speed by traffic detectors and use this information to estimate the travel 

times.  The flow-based methods use volume and/or occupancy measurements as input 

variables instead of using speed measurements.  Previous studies suggest that each type 

of methods may perform differently under different conditions.  For example, 

speed-based methods produce acceptable results at lower levels of congestion, but there 

are questions regarding their ability to produce accurate and reliable estimates of travel 

times under recurrent and non-recurrent congested conditions.  Flow-based methods 

perform well for congested conditions, but they may not be appropriate for uncongested 

conditions.  The literature review shows that none of these methods can provide 

satisfactory travel time estimates under all traffic conditions.  Thus, hybrid travel time 

estimation approaches using a combination of estimation methods have been proposed as 

means of estimating travel time under different congestion levels.  However, previous 

hybrid approaches either specify the application scenario for each estimation method or 

predefine a constant threshold for selecting estimation methods.  Further, these hybrid 

models were tested for very short links and limited traffic conditions.  The hybrid 

approaches have not been adequately explored and compared with existing methods.  
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Even more important, these approaches have not well addressed the travel time 

estimation during fast changing incident conditions, which is critical to TMC operations.   

In addition, various factors may affect the performance of travel time estimation, 

such as data preprocessing, detector errors, detector spacing, travel time link length, 

travel time updating frequency, and so on.  The impacts of these factors on the accuracy 

and reliability of travel time estimation have not been extensively studied and require 

further investigation.   

1.3. Research Goal and Objectives 

The goal of this research is to develop and assess models to estimate freeway travel time 

based on point traffic detectors during non-congested conditions, recurrent congestion, 

and incident conditions.  The study will assess the developed models and examine their 

performances in terms of accuracy as well as reliability.  The specific objectives of this 

research are as follows:   

1) Review the existing travel time estimation and prediction methods. 

2) Develop detector data preprocessing procedures, including data filtering, data 

smoothing and aggregation, and data imputation. 

3) Develop on-line and off-line hybrid travel time estimation models. 

4) Define performance measures for travel time estimation accuracy and 

reliability, and compare the developed estimation models to existing models 

by using simulation as well as real-world travel time data to assess 

performance. 
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5) Identify the main influential factors on travel time estimation and quantify 

their impacts on estimation performance. 

1.4. Dissertation Organization 

This dissertation is organized into six chapters. Chapter 1 introduces the research 

background, describes the problems to be solved, and sets the goal and objectives to be 

achieved. 

Chapter 2 presents an extensive literature review regarding travel time data 

collection techniques, point detector data preprocessing procedures, existing travel time 

estimation and prediction methods, and their influential factors.  The main purpose of 

this review is to understand the state-of-the-art of travel time estimation, especially the 

advantages and disadvantages of existing estimation methods.  

Chapter 3 describes the framework of the proposed hybrid approaches for freeway 

travel time estimation based on point traffic detector measurements.  This includes data 

acquisition and preprocessing, traffic condition identification, and travel time estimation 

models.  Two on-line hybrid travel time estimation models as well as two corresponding 

off-line hybrid estimation models developed in this study are described herein.  

Chapter 4 defines accuracy and reliability measures to evaluate the performance 

of travel time estimation methods.  Existing speed-based methods, flow-based methods, 

and developed hybrid models are assessed using simulated travel time data as well as 

real-world data for different traffic conditions.  Further, off-line estimation models are 

compared with their on-line counterparts to determine the potential improvement in the 

estimation accuracy and reliability when using travel time prediction.     
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Chapter 5 identifies the main influential factors on freeway travel time estimation 

and analyzes their impacts on the estimation accuracy and reliability based on sensitivity 

analyses.   

Finally, Chapter 6 summarizes the main contributions, draws conclusions, and 

recommends issues for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presents a detailed review of the current practices in travel time data 

collection, point detector data preprocessing, travel time estimation and prediction 

methods, and the study of associated influential factors.   

2.1. Travel Time Data Collection Techniques 

Travel time information can be either directly measured or indirectly calculated from 

distance, speed, flow and other measurements.  Direct travel time measurement 

technologies include test vehicles, license plate matching, and Intelligent Transportation 

System (ITS) probe vehicles (Turner et al. 1998).  Indirect methods vary with the type 

of point detectors and the algorithms used to estimate travel time. 

2.1.1. Direct Measurement Techniques for Travel Time 

The test vehicle method is a traditional technique for the collection of travel time data.  

The test vehicles are driven along specific routes that allow the recording of the 

cumulative travel time at each predefined point, which is in turn used to obtain the travel 

time on each segment and along the entire route.  The drivers are instructed to drive 

with one of three different strategies (Roess et al. 2004).  With the floating-car strategy, 

the drivers pass as many vehicles as those that pass the test cars so that they can maintain 

their relative position in the traffic stream and approximate the behavior of an average 

vehicle.  The drivers following the maximum-car technique are instructed to drive as 

fast as they can only if the speed is within the safe or reasonable design range.  The 
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average-car technique requires the test car drivers to drive at the average speed level.  

The test vehicles may be instrumented with stop watch, tape recorder, or personal 

computer for the manual recording of the elapsed time; equipped with an electronic 

Distance Measuring Instrument (DMI) that is connected to the transmission of vehicles; 

or utilize a Global Positioning System (GPS) (Turner et al. 1998).  The test vehicle 

techniques have relatively low initial costs.  However, these techniques are 

time-consuming and their limited sample sizes may cause uncertainty in the measured 

travel time.  The individual test driver may also inadvertently introduce bias to the 

measurement results. 

License plate matching techniques collect the license plate numbers and their 

corresponding arrival time at various locations, and then match them between two 

consecutive locations.  This information is further used to deduce the average travel 

time on each roadway segment.  The license plate numbers can be collected either 

manually using a pen or pencil, or automatically with the help of video image processing.  

Compared to the test vehicle techniques, the license plate matching method can collect 

travel time from a larger sample of drivers, but requires more effort to read and match the 

license plates, and the results are sensitive to license plate reading errors (Turner et al. 

1998; Courage et al. 1998).   

Vehicles equipped with Automatic Vehicle Location (AVL) or Automatic Vehicle 

Identification (AVI) equipment such as a Global Positioning System (GPS), Bluetooth, or 

electronic toll collection tags, can be considered as ITS probe vehicles for travel time 

collection (Turner et al. 1998).  These vehicles can be personal cars, public transit, and 

commercial vehicles (Wunnava et al. 2007; Vanajakshi et al. 2008).  The use of ITS 



  

9 

probe vehicle techniques for data collection can cover a wide range of roadway segment 

and time horizons with no disruption to the traffic.  However, these techniques generally 

have high implementation costs, and greatly depend on the market penetration of ITS 

equipment and the accuracy of the tracking technology.  Privacy issues are also an 

important concern for this type of technique.     

2.1.2. Indirect Measurement Techniques for Travel Time 

Travel time can be indirectly measured by either developing estimation algorithms based 

on point traffic measurements such as speed, flow and occupancy, or matching vehicles 

based on their images or signatures captured at two specific locations.  

Various point detector technologies have been applied to measure traffic flow 

parameters.  Generally, these point detectors are classified as intrusive detectors and 

non-intrusive detectors.  Intrusive detectors are detectors embedded in the pavement or 

attached to the surface of the roadway.  Examples of intrusive detectors include the 

inductive loop detector, magnetic detector, and etc.  Non-intrusive detectors are installed 

on the roadside or above the roadway surface with minimum disruptions to the traffic.  

Microwave radar, infrared, ultrasonic, acoustic detectors, and video image processing are 

examples of non-intrusive detectors.  In this section, a brief review is given to only the 

most widely used detectors for indirect travel time measurement.  The detailed travel 

time estimation algorithms for these detectors will be discussed in a later section.      

The inductive loop detector is one of the most popular data sources for indirect 

travel time estimation.  When a vehicle passes through the loop, its engine acts as a 

conductor and absorbs the electromagnetic energy generated by alternating currents 
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through the wire loop.  This in turn reduces the loop inductance and increases the 

frequency of oscillator (an energy source for alternating currents).  By detecting the 

changes in oscillator frequency over the preset threshold, the presence or passage of a 

vehicle is signified.  The activation time, starting from a vehicle entering the detection 

zone to the vehicle leaving the detection zone, is referred to as vehicle occupancy time.  

Two types of loop configurations are commonly used, namely, the single loop detector 

and the dual loop detector (i.e., speed trap).  While a single loop detector configuration 

must rely on the measurement of traffic volume and occupancy to calculate speed, dual 

loop detectors not only directly measure traffic volume and occupancy, but directly 

measure speed as well.  Moreover, inductive loop detectors have the advantages of low 

capital costs, mature technology, proven accuracy, and the ability to function under all 

weather conditions.  However, they also have the disadvantage of unreliability due to 

detector failures and frequent maintenance.   

Microwave radar sensors transmit the signals in the format of either continuous 

Doppler waves or continuous frequency modulated waves.  As these transmitted waves 

encounter the vehicles, they are reflected back.  Detecting the frequency changes in the 

transmitted and received signals allows for the measurement of vehicle and traffic 

information.  The continuous frequency modulated microwave radar can detect speed, 

vehicle count, and presence, as well as the passage of vehicles.  The Doppler microwave 

radar cannot detect the stopped vehicles as the Doppler wave frequency does not shift 

with zero speed.  Thus, Doppler radars are used mainly to measure speed.  Compared 

with inductive loop detectors, microwave radar detectors have a longer life, lower life 
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cycle cost, and require less frequent maintenance, but they also have higher installation 

costs and special height requirements for the mounting location.     

Video image detectors (VID) consist of cameras, processors and software.  The 

images captured by cameras are digitized and analyzed by the processor.  The changes 

in image background are identified and converted to traffic parameters by the software.  

The information gathered by video image detectors includes vehicle presence, passage, 

vehicle length for use in classification, speed, and in some products incident occurrence 

can be.  However, the installation of cameras requires careful consideration of mounting 

height, location, and stability, as well as such issues as the periodic cleaning of lenses.  

Moreover, the performance of video image detectors is affected by inclement weathers 

such as rain, fog, and snow.  

In addition to the above mentioned technologies, vehicle signature matching using 

point detectors is a newly emerging method for the measurement of travel time and speed.  

The matching is based on unique vehicle features, such as color image (Dubuisson et al. 

1993), specific vehicle length (Coifman 1998; Coifman and Cassidy 2002; Coifman and 

Ergueta 2003), or features obtained from the detector frequency detuning curve including 

shape parameter, vehicle length, degree of symmetry, maximum magnitude, and number 

of high magnitude (Ritchie et al. 2005).  By capturing these unique features and 

matching them at two consecutive locations, the travel time on the link can be measured.  

The capabilities of inductive loop detectors, laser sensors, weigh-in-motion (WIM) 

sensors, and video cameras to capture vehicle-unique features have been tested in 

previous research (Turner et al. 1998).  Vehicle signature matching techniques generally 

perform well under both free-flow conditions and congested conditions, but the 
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measurement error may increase during free-flow conditions due to reduced detection 

resolutions at low traffic flow levels (Coifman 1998; Coifman and Cassidy 2002; 

Coifman and Ergueta 2003; Jeng et al. 2007; Ndoye et al 2008).  Another issue is that 

the existing vehicle signature matching techniques are usually based on lane-by-lane 

matching and therefore require a low lane changing rate and relatively constant vehicle 

position in platoon to achieve higher matching rate.  

2.2. Data Preprocessing 

The quality of detector data greatly influences the accuracy and reliability of travel time 

estimation.  Without accurate data, even with significant improvement in travel time 

estimation algorithms, the estimated travel time is still not accurate.  It is therefore 

necessary to preprocess the data before applying them to the travel time estimation 

process.  In this section, the type of errors in detector data are identified, followed by a 

discussion of the data filtering and data imputation procedures.      

2.2.1. Errors in Detector Data 

Payne et al. (1976) categorized loop detector malfunctions into five types: sensor stuck 

on/off; chattering; pulsing; hanging; and intermittent malfunctioning.  A sensor stuck 

on/off situation may produce similar detector measurements as those during incidents or 

special events.  When the detector is stuck at the “on” position, zero speed, zero volume, 

and an occupancy of 99% are consistently reported.  On the other hand, zeros are 

reported for all three parameters when it is stuck “off”.  During chattering, the detector 

produces random outputs reflecting short duration pulses, which result in the abnormally 

high or low values of traffic parameters.  For example, incorrect volume count will 
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occur when the detector pulsing produces more than one pulse for the presence of the 

same vehicle.  Detector hanging occurs when the detector remains at the state of “on” or 

“off” for a long time.  In this case, hanging “on” may produce the results of high 

occupancy with the same volume and decreasing speed, while hanging “off” generates 

the reverse results.  Extremely low or high traffic volumes may indicate intermittent 

malfunctions.  In addition to these errors identified by Payne et al. (1976), cross-talk 

from adjacent lanes is also a common error for inductive loop detectors.  With 

cross-talk, vehicles in adjacent lane sometimes actuate a loop when there is no vehicle 

over that loop (Middleton and Parker 2002).      

Three types of loop detection failures were identified by Van Lint (2004): 

incidental (or occasional), structural, and intrinsic.  Although incidental failures happen 

randomly, various factors may contribute to their occurrence, such as a temporary 

transmission failure resulting from power outages.  Structural errors are usually caused 

by detector malfunctions or mis-calibrations.  With detector malfunctions, abnormal 

data may be collected, or a wide range of data may be missing.  A consistent bias may 

exist in the measurement results if the detector is miscalibrated.  Finally, intrinsic failure 

corresponds to measurement noise, which is inherent to the detector type under 

consideration.     

Coifman (2004) assessed the performance of four models of loop sensors and the 

Remote Traffic Microwave Sensor (RTMS) deployed along I-80 in California.  The 

study found that most of the errors occur due to lane changes over the detection zones.  

The identified error types were over-counting non-flicker (i.e., detection of a vehicle 

outside the detection zone), over-counting flicker (i.e., detector turns off and back on 
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when detecting a vehicle), short on-time, under-count when not detecting vehicles, signal 

drop out in the middle of semi-trailer trucks, and missed motorcycle.  This study also 

shows that the variations in RTMS detection zone size across different lanes causes the 

systematic errors in nearest lane measurement due to small detection zone and farthest 

lane measurement due to occlusion.  Denning (2007) identified two major sources of 

errors in radar detector measurement for the Ohio Department of Transportation’s 

(ODOT) Columbus Traffic Management Center: the cosine effect and the detection of 

occluded vehicles.  The cosine effect emerges when the path of a measured vehicle is 

not in the same line as the axis of the radar’s emitted wave.  This effect results in the 

measured speed being only a projection of the actual speed in the direction that the radar 

antenna is pointed.  When the view of a vehicle is blocked by a large vehicle in nearby 

lanes, the radar detector cannot detect the occluded vehicle and thus reports no 

measurement.  

2.2.2. Data Filtering 

Extensive research to eliminate faulty detector data and improve data quality has been 

reported in the literature.  These studies can be classified into two levels: microscopic 

and macroscopic.  Microscopic level screening diagnoses detector errors by processing 

raw loop detector signals or the sensor ON/OFF indications.  In contrast, macroscopic 

level detection checks temporal aggregated data (Payne and Thompson 1997; Vanajakshi 

2004; Lu et al. 2008).      

Microscopic level screening is the most direct way to diagnose detector errors.  

This type of screening can differentiate the detector faults from other system problems, 
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such as communication failures (Lu et al. 2008).  Error detection at this level usually 

varies with the type of sensor and requires a certain modification or reprogramming of 

the devices (Vanajakshi 2004).  Chen and May (1987) compared the on-time of vehicles 

passing through the detection zone with the average on-times for a detector or a station to 

identify a faulty single loop detector.  Jacobson et al. (1990) developed an error 

detection algorithm based on the thresholds for volume-to-occupancy ratio.  Coifman 

(1999) identified the detector with errors based on the fact that the same vehicle passing 

though each loop of dual loop detector should have an identical on-time under free flow 

conditions.  Ametha et al. (2001) developed an algorithm for comparing the average 

vehicle length against the calibrated range of effective vehicle lengths to detect the errors.  

The average vehicle length estimation was based on the on- and off- times over paired 

loop detectors.  May et al. (2005) proposed and assessed nine microscopic detector 

diagnostics based on 1/60s loop detector data, including detector activity tests, static and 

dynamic minimum and maximum on-time, mode on-time, dual detector on-time 

difference, minimum off-time, and dynamic maximum off-time.       

Compared to the microscopic level detection, the macroscopic approach is more 

widely used due to the availability of aggregated data.  Most of the studies at this level 

use thresholds to check the validity of detector data.  Minimum and maximum 

thresholds are commonly applied for each measurement of speed, volume, and 

occupancy.  If the data fail any one of these thresholds, the data is considered invalid.  

The commonly used minimum values are zeros for all three parameters.  The used 

maximum threshold for volume is 5000 vphpl for 30-second volume, or 2400 or 3000 

vphpl for 20-second volume.  The maximum occupancy values are 90%, 95%, or 100%.  
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The used maximum speed is 100 vph (Payne et al. 1976; Quiroga et al. 2005).  Chen et 

al. (2003) also limited the number of samples with zero occupancy to be less than 1200 

per day, and the number of samples with occupancy greater than 35% to be less than 200 

per day, based on the idea that traffic cannot be congested for most of the day. 

Even when individual speed, volume, and occupancy pass the threshold tests, the 

combination of these parameters may violate the basic traffic flow principles.  Nihan et 

al. (1990) investigated single loop detector data and developed acceptable ranges of 

volume/occupancy ratio for a given occupancy measurement.  However, the boundaries 

of the acceptable ranges have to be calibrated based on historical data.  Vanajakshi 

(2004) and Turner (2007) examined detector data based on the fundamental traffic 

relationship among speed, volume, and density.  The average effective vehicle length is 

also an important parameter that was checked in previous studies.  Turner et al. (2004) 

limited the ranges of the average effective vehicle length to between 9 and 60 ft, while 

Al-Deek et al. (2004) used between 10 and 60 ft as a reasonable range for this length. 

In addition to data filtering at one location and one timestamp, temporal and 

spatial variations of detector data are also indicators of possible errors.  Temporal tests 

can consist of either a temporal variability check or temporal consistency check 

(University of Florida Transportation Research Center 2005).  Temporal variability 

thresholds are used to check whether identical data are reported for consecutive time 

periods.  Turner (2007) set the maximum consecutive number of periods with constant 

values to be 30 minutes to indicate a detector failure.  A study by the University of 

Florida Transportation Research Center reduced the threshold from 5 to 15 minutes 

depending on the time of day (2005).  For a daily-based check, Chen (2003) proposed 
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the usage of entropy to test if the occupancy data are constant for most of the time.  If 

the entropy of occupancy is less than four, then the detector data is invalid.  A similar 

entropy-based test was used by Al-Deek et al. (2004) when building the central Florida 

data warehouse.  The temporal consistency check examines whether there exists an 

abrupt change in measured values for two consecutive time periods.  The ranges of -15 

to 15 veh, -40 to 30 mph, and -40% to 50 % were recommended for the change of 

volume, speed, and occupancy, respectively, between two consecutive 30-second detector 

data in a previous study (University of Florida 2005). 

Spatial consistency test checks the changes in measurements between neighboring 

lanes and between detectors at upstream and downstream stations.  Lane deviation tests 

have been conducted by Payne et al. (1976) to identify the lane with too high or too low 

occupancy.  According to this study, if the lane occupancy at the five-minute 

aggregation level is more than twice the average value for all lanes or less than three 

times the average value, the detector is declared to malfunction.  A study by the 

University of Florida (2005) suggested a volume count change of -10 to 10 veh, a speed 

change of -20 to 20 vph, and an occupancy change of -20% to 20% between 

measurements of lane detectors at the same location.  For detectors at neighboring 

stations, these values plus 20d for count change, and 40d for speed and occupancy 

change, where d is the distance between neighboring stations in units of miles, are 

allowed.  

The above suggested threshold-based tests are either performed at the raw 20- or 

30-second level, or at an aggregated level.  For example, the tests conducted by Turner 

(2007) are all based on raw detector data.  However, other studies, such as those by 



  

18 

Payne et al. (1976) and Al-Deek et al. (2004), stated that the relationship to estimate the 

average effective vehicle length is not linear and that the data which satisfy this criterion 

at the raw data level may fail the test at the aggregated levels.  Therefore, they separated 

the data filtering tests into two levels: one is the 20- or 30-second level mainly focusing 

on the individual traffic parameters or a simple combination of these parameters, the 

other is at the aggregated levels (for example, 5-minute aggregation) for more 

complicated tests.  

Instead of using threshold methods for the data validity check as discussed above, 

other studies applied statistical or data mining methods to eliminate invalid data.  

Kondagari (2006) constructed probability distributions of each individual traffic 

parameter and their combinations based on historical data.  These distributions were 

used in real-time to obtain the probability of each measurement or each combination, 

which were further compared against predefined thresholds to identify erroneous data.  

Since the developed probability distributions are not exclusive, this method may lead to 

conflicting conclusions based on different distributions.  Peeta and Anastassopoulos 

(2002) used Fourier transformation to detect erroneous detector data and correct them.  

However, this method still needs criteria to separate incidents from other faulty data since 

the Fourier transformation treats both as abnormal data.  Oh and Park (2008) employed 

Wavelet transformation to eliminate noisy data.  Similar to the Fourier transformation, 

this method may have difficulty in identifying incidents from the true erroneous data.    
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2.2.3. Data Imputation 

The 1992 Guidelines for Traffic Data Programs of the American Association of State 

Highway and Transportation Officials (AASHTO) did not recommend the imputation of 

missing data or erroneous data since this may introduce unquantifiable errors (AASHTO 

1992).  However, several studies have recommended that AASHTO should revise these 

guidelines and allow data imputation since imputation methods have been greatly 

improved.  These improvements allow the original relationship among raw data to be 

preserved, the impacts of imputation to be measured, and reasonable accuracy to be 

achieved (Conklin and Scherer 2003; Nguyen and Scherer 2003; Ni et al. 2005; Zhong et 

al. 2006; Fernández-Moctezuma et al. 2009).  Depending on the number of times that 

missing data are imputed, the imputation methods can be classified as either a single 

imputation or multiple imputation approach.  Below is a brief discussion of these two 

types of data imputation.  

The single imputation approach only imputes the missing data once.  Since 

traffic data are time-dependent and vary from one location to another, the temporal 

relationship and/or spatial information can be employed to handle the missing data.  

Archived historical data provides a good source for estimating this missing data.  

The historical mean method employs archived information to estimate and use the 

average value of a parameter at the same timestamp to fill in the missing value (Conklin 

and Scherer 2003; Nguyen and Scherer 2003).  The optimal number of days for which 

the average is estimated has to be determined either by experience or sensitivity analysis.  

The historical mean method may be further improved by limiting the average to only the 

same weekdays or weekends.  This approach is suitable for a long period of missing 
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data and is easy to implement, especially for on-line applications.  However, one 

disadvantage is that it reduces the variance of parameter values as more and more data 

are imputed.  Moreover, it may not account for current abnormal conditions, thus 

resulting in large errors.    

Instead of using historical values, some approaches focus on the temporally 

neighboring relations.  For example, the “Roll-forward” approach replaces the missing 

data with the immediate preceding value (Fernández-Moctezuma et al. 2009).  This 

technique is simple but inappropriate for cases in which a large number of data is 

missing.  An improvement to this approach is to estimate the missing value by either 

averaging the data from surrounding time periods or by linear interpolation between these 

data (Conklin and Scherer 2003; Van Lint 2004).  For off-line applications, both the past 

and future values can be applied, but for on-line implementation, only the preceding data 

are available for averaging.  More elegant time series analyses were also applied for 

data imputation.  Van Lint (2004) proposed the application of exponential moving 

average (EMA) for temporal imputation.  Differing from the simple moving average, the 

EMA method is a weighted moving average, with more weights for recent data than older 

data.  Additionally, more complicated time series models are the autoregressive 

integrated moving average (ARIMA) and its variations such as the seasonal ARIMA 

method (Williams and Hoel 2003; Nguyen and Scherer 2003).  By differencing or 

seasonal differencing, a non-stationary time series is transformed to a stationary one that 

can be fitted.  However, the EMA and ARIMA models have difficulty in recovering 

missing values when a high percentage of data is corrupted.  Therefore, Wen et al. 

(2005) proposed the application of a grey time series model to recover temporal missing 
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data.  The core of this method is to define a new time series with the difference between 

two consecutive terms equal to the value in the original time series, and then to construct 

a group of differential equations for the new time series.  The solution to these equations 

is used to forecast the missing value.  As mentioned by the authors, this method does not 

require the knowledge of data distribution and needs only a minimum of four data points 

in a grey time series.  In addition to the above traditional data imputation methods, 

Zhong et al. (2004) employed the genetic algorithm-based time delay neural network and 

local weighted regression, which showed better performance than the aforementioned 

methods.    

The measurements from neighboring detectors can also provide inputs to the 

estimates of the corrupted values.  Van Lint (2004) applied linear interpolation between 

upstream and downstream detector data to find the missing values.  Linear interpolation 

is a simple method, but one drawback is that it makes a naïve assumption about the data 

(Chen et al. 2003).  Therefore, based on historical data, the linear regression method was 

used to derive the relationship between the data of neighboring pairs.  Al-Deek et al. 

(2004) argued that the relationship is not linear, and thus developed a pair wise quadratic 

model to estimate the missing values.  However, this approach requires considerable 

effort, especially when the number of detectors is large, as the regression expression has 

to be established between the current detector and each neighboring detector, including 

the adjacent lanes at the same station, lanes at one station upstream, and one station 

downstream.  Wen et al. (2005) applied a grey relational-based pseudo-nearest-neighbor 

method to handle the missing spatial values.  More recently, a regression tree method 

was used by Logendran and Wang (2008) to predict the missing speed data, which took 
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the flow, incident, weather, and time-of-day related variables into consideration.  One 

issue with this multiple regression method is that it may not work when one of the 

independent variables is missing. 

Instead of considering the temporal and spatial characteristics separately, most 

researches combine both temporal and spatial data imputations.  For this purpose, 

Nguyen and Scherer (2003) developed the space-time autoregressive moving average 

models STARMA and C-STARMA.  Compared to the traditional ARIMA method, the 

values forecasted by these two models are not only a function of past observations and 

errors at the same location, but also a function of the values at neighboring locations.  

The difference between the STARMA and C-STARMA models is that STARMA only 

uses neighboring detectors’ data up to the previous time interval, but C-STARMA also 

includes the available spatial data at the same time interval.  Imputation results from 

different methods were further combined using the linear regression model.  Thus, more 

computational work is required for this modeling approach.  Van Lint (2004) selected 

the minimum of temporal and spatial imputation as the final imputed value of speed 

which corresponds to the maximum travel time.  Geng and Wu (2008) applied a 

time-series linear interpolation method to impute data with an assigned interval of less 

than five minutes and a weighted average method for those having an interval of greater 

than five minutes.  The weighted average method was based on the correlation 

coefficients of temporal and spatial neighboring data.  Specifically, the study used the 

correlation coefficient between two neighboring lanes at the same station, the coefficient 

between the same lane at upstream and downstream stations, or the correlation coefficient 



  

23 

between temporally neighboring days at the same location (that is, the same weekday in 

different weeks) to find the weights and determine the imputed value.     

Since there are various methods that can be used for data imputation, the question 

is which approach is more accurate or more appropriate.  Conklin and Scherer (2003) 

examined five types of data imputation strategies by artificially removing certain traffic 

data points.  These five types are historical average, average of neighboring time 

periods, average of neighboring stations plus the historical lane distribution, the 

expectation-maximization (EM) algorithm, and data augmentation.  Comparing the 

imputed volume with the actual data, the study showed that the EM method performs 

better than the other four strategies.  However, for those applications that do not require 

higher accuracy, the study concluded that the simple approach of using the historical 

average is also adequate.  For the off-line travel time estimation, three approaches were 

tested by Van Lint (2004).  The three approaches are the null replacement (leave the 

data as it is except at the spatial boundary where the data were replaced by the last known 

value), simple imputation through spatial and temporal interpolation, and a first order 

local weighted regression (LWR) model combined with an extended Kalman Filter.  

The comparison among these approaches indicated that the first two approaches 

outperform the more sophisticated model-based data imputation method.  This was 

explained by the fact that the LWR/Kalman Filter method cannot track the onset of 

congestion due to the missing data, and that only one fundamental diagram was used for 

detectors positioned at different locations.  For on-line travel time prediction, the null 

replacement, simple interpolation, exponential moving average, and a combination of the 

simple interpolation and exponential moving average were tested for incidental failure 
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(Van Lint 2004).  The results revealed that the last three methods are better than the null 

replacement method.  For the structural failure, the null replacement was compared to 

the simple interpolation and it was found that simple interpolation can produce 

surprisingly good results (Van Lint 2004).  Chen et al. (2006) tested the methods of 

historical average, temporal interpolation, spatial interpolation, hybrid time series and 

historical average, and artificial neural network for imputing missing volume data.  The 

comparison showed that temporal interpolation is more accurate than other methods in all 

tested cases.  The performances of the remaining methods vary with time-of-day, 

day-of-week, and missing percentages.  Based on these results, this study developed a 

hybrid algorithm to impute the missing data by applying different methods for different 

time-of-day and day-of-week.  

To account for uncertainty in the missing data, the multiple imputation schemes 

estimate the same missing value using different approaches and then calculate the mean 

and variance of the estimates.  Generally, the multiple imputation approach has been 

found to perform better than single imputation (Wang et al. 2008).  As one example of 

multiple imputation, Ni et al. (2005) applied the EM/DA (Expectation Maximization and 

Data Augmentation) approach for multiple times to the missing ITS data in the Georgia 

NaviGAtor system.  The EM/DA method uses the EM results as an initial estimate for 

missing values.  It then performs the regression over all the data.  Next, the missing 

value is estimated by using the regression equation plus one random value from the 

residual distribution of the regression.  These steps are repeated until the mean and 

covariance matrix converge.  The results of this method showed a high imputation 

quality and low mean absolute percentage error with multiple imputation scheme.  The 
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approach used in this paper, however,  may not work for situations in which the 

detectors fail to report data for a long period of time, since the basic assumption of the 

EM/DA approach is that the data is missing at random (i.e., the probability that a data is 

missing is independent of the absence of other data).  Wang et al. (2008) also proposed 

two multiple imputation models: one directly imputes the missing travel time based on 

the information collected by the available detectors and travel time, while the other model 

estimates only the missing detector data.  The key idea of these two models is to search 

the most similar historical cases using the k-nearest neighbor methods, which are in turn 

used to determine the distribution of missing variables.  Once the missing values are 

replaced with the mean of this distribution, the distribution is reexamined and compared 

with the previous one.  These steps are repeated until the mean and variance of the 

variable distribution converge.  Compared to the work of Ni et al. (2005), these two 

models do not make the assumption that data is missing at random, but do require an 

extensive calibration of thresholds to categorize the traffic patterns and identify the 

similar cases.       

2.3. Travel Time Estimation 

The accurate and reliable estimation of freeway travel time based on point detector 

measurements is needed to support advanced traveler information systems (ATIS) and 

advanced traffic management systems (ATMS).  Transportation agencies are 

increasingly updating travel time information on their dynamic message signs (DMS), 

traveler information telephone services (511), web sites, and other ATIS devices.  

Transportation agencies also use this information to support better traffic management. 



  

26 

Existing travel time estimation methods based on point traffic detectors can 

generally be classified into speed-based methods, flow-based methods, and hybrid 

approaches.  Below is a detailed review of these three types of methods.     

2.3.1. Speed-Based Methods 

Speed-based methods (also referred to as extrapolation methods or trajectory-based 

methods) construct the trajectory of speed along a roadway to estimate the travel times 

based on the point measurements of speed by traffic detectors.  Different assumptions 

regarding the speed trajectory will therefore lead to different speed-based methods.  To 

facilitate the discussion, Figure 2-1 presents a schematic diagram for detector 

configuration.  As an example, two roadway segments and three detectors are included 

in this diagram.  These detectors have point speed measurements of S1, S2, and S3, 

respectively.  The distances between the neighboring detectors are L1-2 and L2-3.  Below 

is a brief description of existing speed-based travel time estimation methods.    

 

Figure 2-1 Schematic Diagram of Detector Configuration 

2.3.1.1 Point-to-Point Method 

A travel time link is composed of roadway segments.  The segment travel times can 

therefore be used to estimate the total travel time along the link.  The Point-to-Point 

method approximates the average segment speed by the speed detected at the upstream 

Detector 1 Detector 2 Detector 3 

L1-2 L2-3

S1 S2 S3 
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detector; therefore, the travel time TT1-2 along the segment L1-2 can be calculated as 

follows:  

                    
1
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   (2-1) 

The SunSuide software used in Florida allows the users to specify the length of 

influential area for each detector station associated with the travel time link.  Thus, the 

user can configure the links to correspond with either the Point-to-Point method or the 

Mid-Point method described in the next section.   

2.3.1.2 Mid-Point Method 

The Mid-Point method assumes that each detector speed measurement represents the 

speeds of half distances to the next detector on both sides.  The segment travel time is 

thus calculated as follows: 
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The Mid-Point method is the most widely used travel time estimation algorithm in 

real-world systems, such as in Portland, Oregon (Kothuri et al. 2007), and in Florida 

DOT traffic management centers.  

2.3.1.3 Average Speed Method 

In the Average Speed method, the segment speed is approximated by the average of 

speed measurements at both ends of the segment.  The corresponding expression for 

travel time estimation is listed as follows: 
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2.3.1.4. Minimum Speed Method 

The speed used in the Minimum Speed method is the lowest value of speed 

measurements at either end of the roadway segment, resulting in the following expression 

for travel time estimation: 
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This method was implemented in San Antonio, Texas (Kothuri et al. 2007; Kury 2008).   

2.3.1.5. Minnesota Algorithm 

A modified Mid-Point travel time estimation algorithm was developed by the Minnesota 

Department of Transportation (Mn/DOT) and applied to the Twin Cities.  The speed is 

first estimated based on the volume and occupancy measurements from single loop 

detectors installed every half-mile, and then used for the estimation of travel time.  Each 

roadway segment is divided into three regions.  For each side region, the speed of the 

detector within that region is used.  For the central region, the average speed of two 

adjacent detectors is applied.  This results in the following expression:  
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2.3.1.6. Time Slice Model 

The Time Slice model considers the variation of speed with respect to time as vehicles 

traverse the roadway segment. For example, when a vehicle arrives at the second 

segment, the speed at the time t0+TT1-2 should be used if the entry time to the route is 
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assumed to be t0 (Li et al. 2006).  The corresponding mathematical expressions for 

travel times are the following  
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This approach can be further improved by taking the travel time along the 

segment into consideration when applying the downstream speed, as follows:   
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As shown in Equation 2-8, the travel time for segment 2-3 has to be solved 

recursively. 

2.3.1.7. Piece-wise Linear Speed Model 

Figure 2-2 shows the space and time of a vehicle path divided into sub-regions for 

off-line travel time estimations.  With the above mentioned speed-based methods, the 

speed is assumed to be constant in each sub-region but can have abrupt changes across 

the regions.  To make such a transition smoother, Van Lint (2004) proposed the 

Piece-wise Linear Speed Based Model (PLSB).  The basic idea behind this model is that 

the speed is assumed to be a linear function of space instead of a constant in each 

sub-region, that is, for a very small region [x, x+dx], the average speed would be 

calculated as follows: 
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where xu and xd are the upstream and downstream detector locations of segment k, and 

Su(k, p) and Sd(k, p) are the corresponding speeds during the time period p.   

Based on this assumption, the relationship between time and space can be derived 

as  
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and  
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Note that the parameters Su, Sd, x
0, and t0 in Equations 2-10 and 2-11 are a function of 

space interval k and time period p.   

Figure 2-2 Schematic Diagram of Space-Time Sub-region 
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To estimate the route travel time, a “Dynamic Network Level Travel Time 

Estimator” was used by Van Lint (2004).  When a vehicle exits the subregion (k, p), it 

may enter the region of (k+1, p), (k, p+1), or (k+1, p+1) depending on the exit point.  

This means that instead of using all of the speeds at the same time interval for route travel 

time estimation as for on-line applications, the speeds during the latest time periods may 

be applied.  However, this dynamic route travel time estimation approach is only 

appropriate for off-line estimation; for on-line application, the speeds in the next time 

interval cannot be known in advance.     

2.3.1.8. Piece-wise Constant Acceleration Model 

The Piece-wise Constant Acceleration Based Model (PCAB) was proposed by Shen 

(2008) as an improvement to the PLSB model.  The PCAB method assumes that the 

speed is a linear function of time (i.e., constant acceleration or deceleration rate) rather 

than a linear function of the distance, as is assumed by the PLSB model.  The resulting 

average speed at time t is,  
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and the corresponding location x(t) is given as 
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Again, the speeds, Su and Sd, are specific to each space interval k and time period p.   
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2.3.1.9. Comparison of Speed-based Methods 

A number of studies have been conducted to evaluate the speed-based methods reviewed 

earlier in this section.  Li et al. (2006) compared the performances of Mid-Point, time 

slice and PLSB models using AVI data based on toll tag and license-plate matching on 

two motorways in Melbourne, Australia.  The comparison showed little difference 

between model performances, with all methods underestimating the actual travel time.  

In 2008, Shen evaluated the Mid-Point, Minimum Speed, Average Speed, PLSB, and 

PCAB models using the simulation.  The results showed that both the PCAB model and 

Average Speed method achieve better accuracy than the PLSB model, and are much more 

accurate than the Mid-Point and Minimum Speed algorithms.  Kury (2008) collected the 

travel time data on the I-195 corridor in Florida using the floating-car technique.  The 

collected travel time was then compared to those estimated by methods including the 

Point-to-Point, Mid-Point, Minimum Speed, Minnesota algorithm, and those given by the 

SunGuide software.  The comparison indicated that the average estimated travel time by 

the Point-to-Point method has a slightly lower percentage difference from the actual 

value compared to other algorithms, and that no statistically significant difference could 

be found between these algorithms under free-flow conditions.  However, this study did 

not have enough data to compare these algorithms for congested traffic conditions.  

Similar to the results of Kury (2008), Kothuri et al. (2008) revealed that the San Antonio 

algorithm overestimates the travel time, while the other three algorithms achieve 

comparable performance.  However, this paper did not mention under what conditions 

the testing was conducted, but stated that the higher error is associated with the transition 
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period, such as the transition from congested to uncongested conditions, and suggested 

using the historical data for such a transitional region.      

2.3.2. Flow-based Methods 

The flow-based methods usually use volume and/or occupancy measurements as input 

variables to estimate travel time instead of using speed measurements.  Examples of 

these methods include the traffic dynamics approach, shock wave method, and 

statistical-based method, as discussed below.  

2.3.2.1 Traffic Dynamics Approach 

The traffic dynamics approach (also referred to as the Cumulative Curve method and the 

N-D method) was first proposed by Nam and Drew (1996, 1999).  This approach is 

based on characteristics of the stochastic vehicle-counting process and the principle of 

conservation of vehicles.  Depending on how many vehicles can enter and exit the 

segment in a given time interval, i.e., the variable m, the travel time estimation can be 

separated into two models: one for normal conditions and one for congested conditions.  

The corresponding cumulative flow plots for these two conditions are illustrated in Figure 

2-3.  Note that the symbol Q in this figure represents the cumulative volume count.  

For normal conditions, assuming first-in first-out, the total travel time for those vehicles 

that enter and exit the segment in the same interval can be estimated by the area between 

upstream and downstream cumulative curves.  Dividing this total travel time by the 

corresponding number of vehicles yields the average segment travel time.  A similar 

approach is applied for travel time estimation under congested conditions except that the 
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total travel time calculation is for all the vehicles that enter the segment during time 

interval (tn-1, tn).  

 
(a) Normal Conditions 

 
(b) Congested Conditions 

Figure 2-3 Schematic Diagrams for Traffic Dynamics Approach 
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Various improvements have been made to the original N-D method.  Vanajakshi 

(2004) proposed the following four modifications:  

 Use the Generalized Reduced Gradient optimization method to enforce the 

conservation of total number of vehicles;  

 Reformulate the expression of travel time under normal conditions by taking 

all the vehicles into consideration, instead of only the vehicles that can enter 

and exit the segment in the same time interval;  

 Use occupancy to calculate the density instead of using traffic counts; and 

 Use the extrapolation method to estimate travel time during low volume 

conditions.  

Zhang (2006) corrected the travel time estimation equation for congested 

conditions by considering the total travel time for those vehicles that exit the link during 

the time interval (tn-1, tn) to account for the fact that under congested conditions, vehicles 

may spend more time on segments than the length of the time interval.  This study also 

proposed the use of density, instead of variable m, as the threshold to determine whether 

the traffic conditions are normal or congested.  Vanajakshi (2009) further proved that 

the two equations for normal and congested conditions can be unified under one 

expression, as follows: 

                   






 
 

 ),(

)()(

2
)(

2

121
21

n

nn
n txq

tktkL
tTT  (2-14) 

where TT1-2(tn) denotes travel time along a segment with a distance of L1-2, k(tn) is the 

segment density at time tn, calculated from occupancy based on a fixed average vehicle 
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length, and q(x2,tn) is the flow at segment downstream location during the time interval 

(tn-1, tn). 

2.3.2.2. Shock Wave Method 

The shock wave method provides estimates of the shock wave speed and thus allows for 

the estimation of queue lengths during lane closure and incident conditions.  When 

applying the shock wave method to travel time estimation, the travel time of vehicles 

within the queue depends on the queue discharge rate at the bottleneck location, while the 

travel time for vehicles outside the queue is estimated based on the measured flow and 

occupancy (Dhulipala 2002).  Yeon and Ko (2007) compared the travel time estimated 

by both queuing theory and shock wave analysis with field data.  The results showed 

that both methods underestimated the actual travel time for one freeway section, but 

produced results similar to the field data for another.  

2.3.2.3. Statistical Approach 

Statistics-based methods attempt to relate freeway travel times to traffic counts at 

upstream and downstream detector locations or to accumulated flows within the 

segments.  The methods range from simple regression analyses (Liu and Chang 2006) 

and cross correlation analyses (Dailey 2003), to more complicated probabilistic 

regression models (Petty et al. 1998; Zhang et al. 1999; Guo and Jin 2006).  Liu and 

Chang (2006) developed two regression models to estimate travel time: one for freeways 

with a permanent bottleneck, and another for freeways with a temporary downstream 

bottleneck.  These two regression models relate the segment travel time to the 

accumulative flows at upstream and downstream detectors.  The results seem promising 
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even when the detectors are sparsely distributed.  Dailey (1993) considered the average 

travel time as a deterministic variable, whose value was determined by maximizing the 

cross covariance function.  Petty et al. (1998) proposed a probabilistic regression model 

that considers the average travel time along a link to be a random variable whose 

probability density function is the same as the arrivals at the upstream detector location.  

A regression analysis over the upstream and downstream flow measured during a given 

estimation window was used to determine this probability density function.  The case 

study showed that this method can estimate travel time even during very congested 

conditions.  Later, extensions of this method include using the B-splines, exponential 

moving (Zhang et al. 1999), and correlation analysis (Guo and Jin 2006) to improve the 

estimation of the probability density function.     

2.3.3. Hybrid Approaches 

Speed-based methods are widely used at Traffic Management Centers (TMCs) due to 

their simplicity.  These speed-based methods may produce acceptable results at lower 

levels of congestion, however, there have been questions regarding their ability to 

produce accurate and reliable estimates of travel times under recurrent and non-recurrent 

congested conditions (Li et al. 2006; Kury 2008; Kothuri et al. 2008).  This is because 

many detection technologies are not able to measure speed accurately under congested 

traffic conditions.  In addition, the speed measurements made at point locations may not 

reflect the speeds along the segment that they are supposed to represent.  On the other 

hand, some flow-based methods rely on assumed average effective vehicle lengths for 

density calculations and/or assumed constant queue discharge rates at the bottleneck 
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locations, which reduce the accuracy of the estimation (Dhulipala 2002).  In addition, 

using traffic volumes and occupancies to estimate speeds may not be appropriate for 

uncongested conditions since the speed is not sensitive to traffic demand under these 

conditions (Vanajakshi 2004).  Statistics-based methods such as the probabilistic 

regression are proven to be robust during congested conditions (Guo 2006).  However, 

such methods usually use a data sampling interval of 1-second, which is not commonly 

available in practice, where traffic detector data are commonly polled at 20-second or 

30-second frequencies in current traffic management applications.  

Since different methods perform differently under various traffic conditions, 

instead of using one simple method, researchers are exploring the development of hybrid 

approaches to estimate freeway travel time.  Vanajakshi (2004, 2009) applied an 

extrapolation method for very low volume conditions and a traffic flow approach for the 

remaining situations.  The cut-off threshold used to switch between these two methods 

is 500 veh/hr/lane, which is selected based on the testing results and seems to be a very 

low value.  Further, using the volume as the threshold may not be appropriate as a given 

flow rate may correspond to two different conditions: one is an uncongested condition 

and the other is a congested condition.  In addition, this study only investigated the 

travel time estimation along a very short distance (about 1.9 miles).  

Dhulipala (2002) used the shock wave method to estimate travel times under 

lane-closure and incident conditions, and a Mid-Point method based on flow and density 

(instead of speed) for non-incident and non-closure conditions.  When using the 

Mid-Point method, the estimates were increased by 20% when the density at the 

downstream detector was greater than 60 veh/mile/lane and the density at the upstream 
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detector was less than 60 veh/mile/lane, for the purpose of capturing the queue 

propagation.  Similarly, a factor of 40% was applied to the results of the Mid-Point 

method when both the densities at the upstream and downstream detectors were greater 

than 60 veh/mile/lane.  These two factors were approximated from the relationship 

between speed and density measurements.  In another study, Xia and Chen (2007) first 

estimated travel time based on traffic parameters such as flow rate and occupancy 

measurements, and then adjusted the segment travel time using the shock wave method 

for incidents with significant impacts.  However, this method requires incident starting 

time and estimates of the initial queue length based on detector measurements.   

2.4. Travel Time Prediction 

Although this study mainly focuses on travel time estimation, it is helpful to review the 

prior research on travel time prediction.  As mentioned in the previous section, travel 

time prediction forecasts the future travel times.  Depending on whether the prediction 

horizon is less than or greater than 60 minutes, travel time prediction can be classified as 

either short-term or long-term predictions (Van Lint 2004).  Short-term travel time 

prediction is usually performed based on the near-past or current traffic conditions.  In 

comparison, long-term prediction relies more heavily on assumptions about future traffic 

conditions.  These assumptions are commonly made based on the statistics of historical 

data.  It is logical to expect that the accuracy of travel time prediction decreases as the 

prediction horizon increases.  The review presented below only pertains to short-term 

freeway travel time prediction as it is more closely related to the travel time estimation 

investigated in this study.    
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Travel time prediction methods include regression analyses, time-series, Kalman 

Filtering, artificial intelligence, simulations, and more.  In regression analysis, some 

studies assumed the predicted travel time to be a linear function of current and/or past 

estimated travel time values (Sun et al. 2003; Rice and Zwet 2004), or directly as a 

function of flow and occupancy measurements from loop detector data (Kwon et al. 

2000).  The coefficients in these regression expressions were assumed to vary with the 

departure times in studies by Zhang and Rice (2001) and Kwon and Petty (2005).  It was 

pointed out that these regression models may not perform well under incidents and other 

abnormal conditions (Waller et al. 2007).        

In parallel, research efforts have also been devoted to time series analyses for 

travel time prediction.  D’Angelo et al. (1999) proposed a non-linear time series method 

for travel time forecasting.  Ishak and Al-Deek (2002) applied the same method for 

travel time prediction on Interstate-4 in Orlando, Florida.  The results showed high 

prediction errors during congested conditions.  Guin (2006) applied the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) Time Series Model to predict 

travel time.  Waller et al. (2007) first used the ARIMA method to forecast traffic counts, 

which in turn was incorporated in the cumulative method to calculate travel time.  

When either the measured travel time data or historical data is available, Kalman 

filtering is a promising method for travel time forecasting.  Chien et al. (2003) 

considered the current travel time as the state variable, which is a linear function of travel 

time in previous time intervals.  This state variable was updated based on the new 

observations of travel time obtained from the simulation.  Similarly, Vanajakshi et al. 

(2008) assumed that the subsection travel time is a function of the upstream subsection 
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travel time, which is further combined with real time data from GPS-equipped buses to 

predict the travel time in India. 

More recently, various data-based artificial intelligence methods were widely 

used for travel time prediction.  The studies of You and Kim (2000), Sun et al. (2003), 

and Bajwa et al. (2005) used the nearest neighbor search method to obtain the predicted 

travel time by finding the closest matching traffic conditions based on the historical data.  

Wu et al. (2004) predicted the travel time by using the Support Vector Regression (SVR) 

method.  A similar method was also used by Lam and Toan (2008), which improves 

upon the earlier approach by using an empirical nearest neighbor method to retrieve the 

closest pattern and therefore substantially reduce the size of the training set of SVR.  

The results indicated that the SVR method has a better performance than both the 

historical mean predictor and the time-varying coefficient linear regression model.                  

Also, among the different kinds of artificial intelligence methods, neural network 

is quickly becoming one of the most attractive approaches to travel time prediction.  The 

structure of neural networks evolves from simple multilayer feed-forward structures 

(Park and Rilett 1999; Kisgyörgy and Rilett 2002; Huisken and van Berkum 2003; 

Innamaa 2005; Tao et al. 2006), and spectral basis (Rilett and Park 1999; Park et al. 

1999) to more sophisticated state-space (Van Lint et al. 2002; Van Lint et al. 2005; Van 

Lint 2006), counter propagation neural (CPN) (Dharia and Adeli 2003), multilayer 

feedback (Savran 2007),  and genetically-optimized time-delay models (Abdulhai et al. 

1999).  The neural network approach can be further improved by incorporating hybrid 

preprocessing methods to identify traffic patterns and simplify the inputs, such as the use 

of Kohonen Self-Organizing Feature Maps (SOFM) ((Park and Rilett 1998; Kisgyörgy 
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and Rilett 2002), fuzzy c-means clustering (Park and Rilett 1998), Empirical Mode 

Decomposition Method (Hamad and Faghri 2005), and grey time series model (Wen et 

al. 2005).  Since there is no single type of neural network that can outperform the others 

under all prediction horizons, three types of dynamic neural networks were combined 

together by Ishak et al. (2003; 2004), and the specific type of neural work used for 

prediction under certain traffic conditions was selected such that the best performance 

can be achieved.  The neural network method acts as a black box, which does not 

require the knowledge of how the traffic process evolves and is easy to implement.  It 

does require, however, the presence of future traffic conditions in the training network to 

obtain better performance.  Additionally, the trained neural network is not transferable 

because the neural network input and model selection are always location-specific (Van 

Lint et al. 2005).      

In addition to the above mentioned methods, simulation is also a useful tool for 

travel time forecasting.  Wunderlich et al. (2000) proposed the application of the 

mesoscopic INTEGRATION simulation model to predict the link travel times for 

decentralized route guidance.  Ben-Akiva et al. (2001) applied the DynaMIT, a dynamic 

traffic assignment/simulation tool, to estimate network status and predict travel time.  

Miska et al. (2005) presented a cellular automata model-based real-time microscopic 

simulation system to predict travel time.  Under this model, the prediction horizon can 

be as large as 30 minutes.  To overcome the limitation of sparsely distributed detector 

data, Liu et al. (2006) developed an on-line travel time prediction framework based on 

the microscopic simulation software, CORSIM.  Waller et al. (2007) later developed an 

integrated simulation and statistical model based travel time prediction framework.  The 
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framework uses the time-series method to predict the future traffic count and in turn input 

these volume counts to the Cell Transmission Model to simulate travel time.  The 

testing results indicated that travel time prediction errors range between 10% and 23% for 

a short three-mile segment with different levels of demand load.  The simulation-based 

travel time prediction approach takes speed limit, geometry conditions, different facility 

type, traffic signals, and other control strategies into consideration, however, it requires a 

lot of effort to calibrate this model.     

Since each method has its strengths and weaknesses, recently, several studies 

proposed to combine the different travel time prediction methods to improve overall 

performance.  Li (2002) used wavelet neural network to nonlinearly combine the 

forecasting results of the artificial neural network and Kalman Filtering models.  

Kuchipudi and Chien (2003) developed path-based and link-based travel time prediction 

models by using the Kalman Filtering method, and selected the best results for a specified 

time based on the prediction errors of each model.  Zheng et al. (2003) linearly 

combined the predictions of back propagation neural network and radial basis function 

neural network by assigning certain weights, determined by Bayes’s rule according to the 

cumulative performance of each single neural network model.  Similarly, Van 

Hinsbergen and Van Lint (2008) proposed the application of the Bayesian method to 

combine the prediction models based on their errors under similar conditions during the 

calibration process.  In all of these studies, the results indicated that the hybrid models 

outperform the single models.  Instead of using a single source of data, the data from 

different sources are also fused together to improve the prediction accuracy.  Sun et al. 
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(2008) employed the fuzzy logic method to fuse the travel time data obtained from the 

floating car technique as well as vehicle detector data.     

2.5. Factors Influencing Travel Time Estimation 

Accuracy has been widely used as an important performance measure for travel time 

estimation, determining how close the estimated travel time is to the actual travel time.  

Many factors can contribute to the accuracy of travel time estimation, such as detector 

failures, detector spacing, segment lengths, data aggregation level, travel time estimation 

algorithms, incidents, weather, and population characteristics.  The first four factors in 

the above list determine the quality of the input data for travel time estimation, which in 

turn affects the estimation accuracy.  The remaining factors directly affect the 

performance of the estimation process.  Many researchers focus on the improvements in 

travel time estimation algorithms to increase the travel time estimation accuracy.  

However, few studies have investigated the impacts of other factors on the accuracy of 

travel time estimates. 

Ishak and Al-Deek (2002) developed a general linear model (GLM) to explore the 

relationship between a congestion index, prediction horizon, rolling step, interaction 

terms and prediction errors, which showed that these factors have significant impacts on 

the prediction accuracy.  Oh and Park (2008) applied the entropy concept to quantify the 

impacts of traffic characteristics and found a linear relationship between these 

characteristics and travel time prediction accuracy.  Shen (2008) investigated the 

impacts of the rolling step on the accuracy of travel time estimation.  The study also 
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found that the estimation results do not show a significant difference between different 

data aggregation levels.       

Several projects studied the optimal placement of point detectors.  More 

detectors may increase the accuracy of travel time estimation.  However, it also results 

in higher maintenance requirements and thus higher costs.  Waller et al. (2007) 

enumerated the possible detector deployment patterns, and used a cell transmission 

model–based travel time prediction framework to evaluate the detector deployments.  

The results highlighted the importance of deploying the detectors close to the merging 

and diverging sections.  Edara et al. (2008) developed a Genetic Algorithm (GA)-based 

optimization method to determine the optimal locations of detectors, where the objective 

function is to minimize the errors between the estimated travel time and the actual travel 

time collected by probe vehicles equipped with GPS.  The study results indicated that 

the existing detector configuration (with a spacing of 0.5 miles) can be reduced by 45% 

and still satisfy the minimum travel time error rate.  A similar optimization method was 

also applied by Viti et al. (2008) to determine the optimal sensor locations.  Bertini and 

Lovell (2008) proposed another approach to find the optimal detector spacing, in which 

they compared the estimated vehicle-hour traveled during the transition condition based 

on the Mid-Point algorithm with the actual vehicle-hour traveled obtained by using shock 

wave theory, and determined the optimal detector spacing by minimizing such deviations.  

Another study was conducted by Kothuri et al. (2008) to understand and reduce real-time 

travel time estimation errors.  In their study, the estimated travel time in Portland, 

Oregon, was compared with the actual travel time, which showed that the estimated 

travel time has an error rate of below 20% for 85% of the time.  Three sources of errors 
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were further identified: transition traffic conditions, detector failure, and detector spacing.  

In addition to the above work, simulation was also performed by these researchers to 

investigate the impact of additional detectors.  The simulation results revealed that the 

high-density of detectors can improve the accuracy of travel time estimates for most 

cases but the effects of detector spacing still vary depending on specific locations.  

Although possible errors are identified by Kothuri et al. (2008), the impacts of these 

factors on the estimation accuracy have not been extensively investigated.     

In addition to accuracy, reliability is also an important performance measure for 

travel time estimation.  For real-world applications, instead of posting one travel time 

estimate, travel time range is usually displayed on DMS.  The reliability of travel time 

estimation, considering the uncertainty of travel time estimates has not been widely 

investigated.  Van Lint (2004) identified three sources of uncertainty in predicted travel 

time.  These factors are the distribution of individual vehicle travel times, the 

application of off-line travel time estimation, and the errors in the parameters of 

State-space neural network (SSNN).  This study assumed a lognormal distribution for 

simulated vehicle travel time and normal distribution for real-world vehicle travel time, 

estimated travel time, and errors associated with neural network prediction.  The 

resulted Prediction Interval Coverage Percentage (PI_CP), defined as the number of 

observations that fall in the confidence interval, was employed to represent the 

performance measures for the uncertainty of travel time prediction.   

Li, Rose, and Sarvi (2007) proposed a simple approach to generate the bounds for 

estimated travel time.  The approach is to use the minimum lane speeds at both upstream 

and downstream detector stations to get the upper bound of travel time estimation, and 
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similarly use the maximum lane speeds at both locations for the lower bound.  The 

assumption behind this approach is that fast drivers always tend to drive fast.  Gaudio 

(2008) investigated the effects of segment length and traffic congestion level on the 

reliability of travel time estimation by comparing the dynamic estimated travel time with 

those posted on DMS.  Regression analysis was then conducted to relate traffic volume 

and segment length to the reliability of travel time estimation.  However, this study 

defined the reliability as the difference between the posted travel time and dynamic 

estimated travel time.     

2.6. Summary  

In this chapter, a comprehensive review was performed to investigate topics related to 

travel time measurement, detector data filtering and imputation, existing travel time 

estimation and prediction methods, and factors influencing estimation accuracy and 

reliability.  Below, a summary of the findings based on the literature review is given. 

Previous research has demonstrated the necessity of data preprocessing for the 

accurate and reliable estimation of travel time.  To identify the erroneous detector data, 

the threshold-based filtering method has been widely used in the literature.  Methods 

with various degrees of complexity have been applied to replace the missing data.  

However, the simplest among the existing methods, linear interpolation, also performs 

well. 

Existing speed-based or flow-based travel time estimation methods can only 

perform well under certain conditions.  The hybrid travel time estimation approach has 
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been proposed as an effective method to estimate travel time at different congestion 

levels, but has not been adequately explored and compared with the existing methods. 

Although recent studies focused on developing travel time prediction algorithms, 

when the ground-truth data are not available, the prediction has to rely on estimated 

travel time inputs, which are usually based on the simple speed-based travel time 

estimation.  An improvement in travel time estimation may thus further improve the 

travel time prediction.   

Travel time estimation performance can be quantified in terms of accuracy and 

reliability.  Although some studies have been conducted to investigate the impacts of 

certain influential factors on estimation accuracy, studies on estimation reliability and its 

associated influential factors have been limited. 
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CHAPTER 3 

METHODOLOGY 

This research aims at developing improved hybrid models to estimate freeway travel 

times under different congestion levels based on point detectors.  Figure 3-1 presents the 

framework of the developed methodology.  As shown in this figure, the methodology 

developed in this study includes data acquisition and preprocessing, traffic condition 

identification, travel time estimation, and the assessment of the estimation quality.  

 

Figure 3-1 Travel Time Estimation Framework 
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3.1. Data Acquisition and Preprocessing 

The traffic data used in this study are collected using point detectors (true-presence 

microwave detectors) that are deployed along the major freeways in Miami, Florida, as 

shown in Figure 3-2.  These point detectors measure the values of speed, volume, and 

occupancy at small time intervals (e.g., every 20 seconds).  The detector data is then 

archived by the freeway traffic management software, which in Florida is the SunGuide 

software, and used by the traffic management centers (TMCs) of the Florida Department 

of Transportation (FDOT).  This data is stored in text files referred to as TSS files that 

contain one record for each lane of each detection station for every 20-second polling 

interval, as shown in Figure 3-3.  

 

Figure 3-2 Example of Microwave Detectors 
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Figure 3-3 Example of Detector Data File 

Detector data of a good quality is prerequisite for accurate and reliable travel time 

estimation.  However, current detector data usually include erroneous or missing 

measurements.  As one example, Table 3-1 presents some obvious errors in detector 

data along the SR-826 East-West section on December 2, 2008.  As listed in this table, 

some errors may exist in the data: for example, duplication of the same records, records 

with the same timestamp and same detector but with different values, or records with the 

same values but an elapsed time of less than 20 seconds.  In addition, there is a need to 

optimize the aggregating and smoothing of the measurements for different applications; 
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data preprocessing procedures are therefore required.  These procedures include data 

filtering, temporal and spatial aggregation, and data imputation as described below.        

Table 3-1 Example of Detector Errors 

Detector Data (12/2/2008) 

Type 1 Error: Number of exactly duplicate records 
timestamp detector_id lane_id speed volume occupancy
01:06:40 DS-1533E DS-1533E-link1-lane2 0 0 0 
01:06:40 DS-1533E DS-1533E-link1-lane2 0 0 0 
Type 2 Error: Number of same timestamp, same detector, but with different 
traffic data 
timestamp detector_id lane_id speed volume occupancy
11:58:00 DS-1515E DS-1515E-link1-lane1 48 6 9 
11:58:00 DS-1515E DS-1515E-link1-lane1 49 1 1 
Type 3 Error: Number of same values, but with time interval less than 20 seconds 
timestamp detector_id lane_id speed volume occupancy
03:42:54 DS-1523E DS-1523E-link1-lane2 0 0 0 
03:42:57 DS-1523E DS-1523E-link1-lane2 0 0 0 
Type 4 Error: Number of missing data 
timestamp detector_id lane_id speed volume occupancy
01:30:34 DS-1523E DS-1523E-link1-lane2 0 0 0 
03:42:54 DS-1523E DS-1523E-link1-lane2 0 0 0 

  

3.1.1. Data Filtering 

Rule-based tests are applied first to identify erroneous detector data.  These rules are set 

based on an examination of the types of errors commonly found in the detector data 

archived by the SunGuide software.  The rule-based tests include the following steps:  

 Identify duplicate data records such as the same records repeated more than 

once; two records with the same timestamp and lane identification (ID) but 

with different measurements (speed, volume count, and occupancy values); or 

data with the same lane ID and same measurements but with a polling interval 

of less than 20 seconds. 
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 A univariate test of data measurements aggregated at the 20-second level to 

check whether the values of individual traffic parameters exceed predefined 

minimum or maximum thresholds.  As shown in Table 3-2, the minimum 

and maximum thresholds for speed measurements are zero and 30 mph more 

than the speed limit; zero and 17 for volume counts, and zero and 100% for 

occupancy measurements.  These thresholds are based on recommendations 

by Payne et al. (1976) and Quiroga et al. (2005).   

 A multivariate test of data measurements aggregated at the 20-second level to 

check for unreasonable combinations of traffic parameter values such as a 

combination of zero speed, zero occupancy, and non-zero volume values.  

Note that the detector data with zero speed, volume count of one, and 

occupancy greater than 60% are considered to be valid for representing 

extremely congested conditions, as the zero speed may be caused by a 

rounding error.  Similar reasoning is applied for detector data with non-zero 

speed, zero occupancy, and a volume count of greater than 52.8×S/(180×Leff).  

This volume threshold is based on the relationship between occupancy and 

speed when the occupancy is equal to one (Turner 2007).  The average 

effective vehicle length, Leff, defined as the summation of average vehicle 

length and detector data, is assumed to be 25 ft in this step.  The coefficient 

of 180 in the above expression is used to convert the hourly volume to the 

data at the 20-second level to be consistent with the data reported by the 

detector.  Detector data with zero speed, zero volume count, and an 
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occupancy that is less than 3% is considered to be acceptable since this may 

occur when a vehicle positioned at the start of the new 20-second period is 

above a detector (Jain and Coifman 2005).  Detector data of zero speed, zero 

volume count, and 100% occupancy is also valid as vehicles stop on the 

detector when there is an incident or traffic is extremely congested.       

 A temporal variability check to test for constant values of speed, volume, and 

occupancy for a long period of time, including all zeros.  The threshold for 

number of periods beyond which having constant values should be flagged for 

errors varies with the time-of-day and locations, as discussed by Turner 

(2007) and University of Florida Transportation Research Center (2005).  

Since detector data of zero speed, zero volume count, and zero occupancy can 

correspond to no traffic conditions, this type of data is not filtered out.  

However, cases in which all zero values are consistently reported are flagged 

for error in this step.      

 Multivariate tests for the average effective vehicle length and maximum 

density at the temporal aggregation level under consideration.  Based on 

traffic flow theory, density can be calculated from flow and speed, which in 

turn can be combined with occupancy to estimate the average effective 

vehicle length.  Since the average effective vehicle length and maximum 

density are not linear functions of speed, volume, and occupancy, the 

combination of these three parameters may yield the reasonable average 

effective vehicle length and density values at the 20-second level, but may 

still produce invalid values when detector data is aggregated to the level of 
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1-minute or more.  Therefore, this test is conducted at the aggregated data 

level instead of the 20-second raw data level.  In this study, the reasonable 

range of average effective vehicle length is assumed to be between 10 and 60 

ft, and the maximum allowable density is 250 vphpl.    

It should be pointed out that a temporal consistency check, which is a check for 

the degree of change in the measured values for two consecutive time periods, is not 

conducted because it may produce incorrect conclusions.  As one example, detector may 

detect vehicles during the first 20 seconds, but no vehicle for the next 20 seconds due to 

light traffic.  Also, the corresponding speed can be reduced from free-flow speed to 

zero.  Another example is when a vehicle at the end of a queue stops on the detector for 

the first 20 seconds and moves away from the detector at the start of the next 20 seconds.  

The possible ranges of measurement changes between two consecutive periods are -100 ~ 

100 mph for speed, -17 ~ 17 for volume count, and -60 ~ 60 for occupancy measurements 

for two consecutive 20-second periods, which are very large and almost the same as the 

thresholds set for individual values.  Therefore, the temporal consistency check is not 

conducted since it is not expected to contribute to detecting errors.  

A spatial check for the relative differences in traffic parameters between detectors 

at neighboring stations is also not conducted, as big differences between lanes at the same 

location and detectors at neighboring stations may exist during lane closures, off-ramp 

queue backups, and incident conditions.  Further, the difference between two 

neighboring stations may be due to on-ramp and/or off-ramp volumes.  Similar to the 

temporal consistency check, this criterion can cause legitimate data to be filtered out.  

Detailed tests based on the above criteria are listed in Table 3-2.  
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Table 3-2 Rule-based Tests Used in the Data Filtering Step 

Aggregation 
Level 

Tests 

Eliminate 
Duplicate data 

 Eliminate exactly same records 
 Identify data with same timestamp and lane 

ID but different speed, volume count, and 
occupancy measurements 

 Identify data with the same lane ID, speed, 
volume count, and occupancy measurements 
but with time interval less than 20 second 

Univariate Test 
 S < 0 or S > Speed limit + 30 mph 
 V < 0 or V > 17 for 20-second data 
 O < 0 or O > 100 

Multivariate 
Test 

 S = 0, V > 0, and O > 0  (except that S = 0, 
V = 1 and O >= 60)  

 S > 0, V = 0, and O > 0 

 S > 0, V > 52.8×S/(180×Leff), and O = 0 

 S = 0, V = 0, and 3 < O < 100 
 S = 0, V > 0, and O = 0 
 S > 0, V = 0, and O = 0 

20-second 
Detector Data 

Temporal 
Variability Test 

 Check the maximum consecutive periods of 
constant speed, volume count, and 
occupancy including all zeros 

 Maximum of 30 periods (i.e., 10 minutes) 
for 6:00 am – 10:00 pm 

 Maximum of 45 periods (i.e., 20 minutes) 
for 10:00 pm – 12:00 am 

 Maximum of 90 periods (i.e., 30 minutes) 
for 12:00 am – 6:00 pm 

Average 
Effective 
Vehicle Length 

 Leff =52.8×O×S/V  

 Leff < 10 ft or Leff > 60 ft 

Temporal 
Aggregated 
Detector Data 

Maximum 
Density 

 k = V/S  
 k > 250 vphpl  

Note: S, V, O represent speed, volume counts, and occupancy measurements, 
respectively.  
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3.1.2. Data Smoothing and Aggregation 

The filtered 20-second lane-by-lane detector data must be smoothed to reduce the impacts 

of noise in the detection data.  Two smoothing methods are tested in this study: the 

simple moving average method used in the SunGuide software and the exponential 

moving average method.  The simple moving average is the average of previous m data 

points, where m is specified by the rolling period.  The mathematical expression for the 

simple moving average method is the following:  
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where Xi represents the raw ith measurement while Yt is the smoothed traffic parameter at 

the t timestamp.   

The second type of smoothing, the exponential moving average method, is 

described in Equation 3-2.  

                    1)1(  ttt YXY        (3-2) 

The symbol  in Equation 3-2 refers to a smoothing factor selected by the user.  Since 

detectors may have incidental or structural failures, the time interval between two 

acceptable neighboring records may not be consistent, and therefore a time-dependent 

smoothing factor is used instead of a constant value.  The expression for  is shown in 

Equation 3-3 below: 

                  /1 te                            (3-3) 

where  is the time interval between two consecutive records.   is a time constant, 

estimated based on a time interval of 20 seconds between detector data measurements 

and the commonly used value of 0.4 for  (Shen 2008).   
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It should be mentioned that zero speed measurements are not included in the 

smoothing when both volume count and occupancy measurements are zeros, since this 

corresponds to a no vehicle condition.  Depending on the frequency of updating travel 

time estimation, the most recent smoothed lane data is further aggregated to the station 

level for use in a later step.  Below is the expression for spatial aggregation: 
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where the speed Ss and occupancy Os are the averages of lane speeds and lane 

occupancies, respectively, at station s, and the volume count at the station, Vs, is the 

summation of all lane counts.  The parameter N denotes the total number of lanes.  

Similar to data smoothing, when the lane-based detector data are all zeroes, zero speed is 

not considered in the calculation of station speed, since detector data for all zeroes 

indicates that no vehicle passes the detector during the aggregated period of time.   

3.1.3. Data Imputation 

In the SunGuide software, the measured lane-based speed data is smoothed by a simple 

moving average method, then capped by the speed limit to avoid the reporting of short 

travel times which may encourage speeding.  The lane-based data is further aggregated 

to the station-level and used for travel time estimation.  In cases of detector failures, 

when a speed measurement is not reported by the detection system, the missing speed 

data is replaced by neighboring data (Dellenback and Heller 2006).  This method first 
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attempts to use a neighboring lane measurement and, if this is not available, uses a 

neighboring station measurement.   

In this study, additional spatial and temporal data imputation procedures are 

investigated to substitute for the missing or erroneous data identified in the data filtering 

step.  The spatial imputation employs neighboring detector information to impute the 

missing values while the temporal imputation uses the past information from the same 

detector to replace the missing values.  In this study, the spatial data imputation 

procedure is conducted at two levels: within the same detector station and between 

stations.  For the same detector station, if only part of the lanes have missing or 

erroneous speed measurements, the missing values are filled with the average of the 

speeds measured by detectors on adjacent lanes with the available speed measurements.  

When the whole station data is missing, between stations the imputation approach is used.  

Three types of methods for between-station imputations were considered in this study: 

simple average, linear interpolation, and the factor method.   

The simple average uses the average of measurements from neighboring stations 

to estimate the missing values, as shown in Equation 3-5:   

                    )(
2

1
,3,1,2 ttt YYY                             (3-5) 

where Y can be speed, volume count, or occupancy.  Y2,t is the estimated value for 

missing data at timestamp t.  Y1,t and Y3,t are the measurements at neighboring stations, 

as shown in Figure 3-4. 
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Figure 3-4 Sketch Diagram for Spatial Imputation 

The linear interpolation method assumes linear spatial variation of traffic 

parameters.  Thus, the missing data can be estimated as:  
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where L denotes the distance between neighboring stations.  For the factor method, the 

factor is defined as the ratio of current station traffic data to the upstream or downstream 

values, as described below: 
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where Fi,j,t represents a factor between station i data and its neighboring station j at time 

of day t.  The station j can be either the upstream station or downstream station.  p is 

the total number of days available.  The missing value is then estimated as: 
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In this study, the exponential moving average method is applied for temporal 

imputation.  Interpolation could not be used as the future detector data are not available 

for on-line applications.  The missing value is replaced by the forecasted value based on 

the exponential moving average.  The corresponding expression is as follows:  

                  1,21,2,2,2 )1(   tttt fYfY                    (3-9) 

Station 1 Station 2 Station 3 

L1-2 L2-3

Y1    Y2 
(Missing) 

Y3 
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where f represents the forecasted values.  Note that the formulation in Equation 3-9 is 

similar to that in Equation 3-2.  However, the values in the previous time period are 

used to impute the missing data at the current time period.  Based on previous studies by 

Van Lint (2005) and Shen (2008), the value of the smoothing factor  is set to 0.4.   

In addition, if some required data for the estimation is not measured by the 

detector system, such as the ramp volume, the historical average at the same time period 

on same day of the week or short term counts are applied to replace the missing value.   

3.2. Congestion Level Identification 

The hybrid approaches investigated in this study to estimate travel time use combinations 

of methods and switch between these methods depending on the congestion levels.  A 

key point for the success of these approaches is to identify the roadway conditions and 

determine the time at which traffic congestion occurs.  Furthermore, in the case of 

traffic congestion that involves queuing, the methodology requires the determination of 

whether the traffic queue is forming or dissipating.  In addition to its use in travel time 

analysis, the identification of congestion level is important for situation analysis and 

performance measurements. 

Previous studies used predefined speed thresholds (for example, 35 mph or 50 

mph) or predefined occupancy thresholds to identify the congestion (Chan 2003; Ban and 

Benouar 2007; Yeon and Ko 2007; Zhang and Levinson 2004).  Kaneko et al. (1995) 

recommended using all three traffic parameters: speed, volume, and occupancy to 

identify traffic status.  In this study, the k-means clustering algorithm is used to classify 

the traffic states at each detection station into different clusters based on the historical 
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measurements of all three traffic parameters.  The reason to select k-means clustering 

method instead of hierarchical clustering methods is due to the simplicity and 

computational efficiency of the k-means method.  In the clustering analysis, the 

measurements are normalized using the z-score method to account for the different scales 

in three traffic parameters, as shown in Equation 3-10.  
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'                   (3-10) 

where Y refers to any measurement of speed, flow rate, and occupancy, and Y’ is the 

normalized value.  Ymean is the mean of each type of measurements, while Y is the 

corresponding standard deviation.  The Euclidean Distance is used to quantify the 

dissimilarity between two data points: 

              222 )''()''()''( jijijiij OOqqSSd                   (3-11) 

where dij is the Euclidean Distance between data point i and j.  S’, q,’ O’ are the 

normalized speed, flow rate, and occupancy, respectively.   

The selection of number of clusters k is critical to the success of k-means 

clustering analysis.  The classic traffic flow theory divides all the traffic states into two 

phases: uncongested and congested.  However, the study of Hall et al. (1992) argued 

that the uncongested conditions can be divided into two subphases.  The speed within 

the first subphase is almost constant while the speed in the second subphase decreases.  

Kerner and Rehborn (1996) further categorized the congested freeway into synchronized 

flow and wide-moving jams, and thus developed a traffic theory that distinguishes 

between three phases: free-flow, synchronized flow, and wide-moving jams.  Under the 

free-flow conditions, drivers can drive at their own speed.  However, drivers within the 
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synchronized flow drive at reduced speeds in this phase, and the flow is still high, while 

both speed and flow within the wide-moving jams are low.  Based on these reviews, the 

number of clusters used in this study is four.  These four clusters are associated with 

different congestion levels in the fundamental traffic flow theory diagram.  When 

applying the proposed method to estimate travel times in real-time, traffic measures at 

each detection station are associated with one of the predetermined clusters (congestion 

levels) for the detection station based on its distances from each cluster centroid, as 

reflected by the Euclidean Distance.  To reduce the impacts of the initial centroid 

position selections, the clustering analysis is replicated 10 times, and the one with the 

lowest within-cluster sums of point-to-centroid distances is used as the final result.     

Figure 3-5 presents an example of the clustering results for a detector station, 

DS-1507E, located on SR-826 eastbound in Miami-Dade County, Florida, based on the 

traffic detector data from December 1, 2008 to December 31, 2008.  The four cross 

symbols in these figures denotes the locations of cluster centroids.  As shown in Figure 

3-5, the traffic states are separated into four clusters.  Cluster I corresponds to close to 

free-flow conditions and the average speed is almost constant at free flow speed 

regardless of the demand.  Traffic Cluster II is still uncongested but with a reduced 

speed.  Cluster III is a more congested region, where the speed drops but to a lesser 

degree than the points in Cluster IV.  Cluster IV corresponds to extremely congested 

conditions, with low speed and low constrained flows.  Four clusters were used instead 

of just two corresponding to the congested and uncongested regions, to allow more 

flexibility in combining or separating any two of the clusters based on the results of the 

analysis. 
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(a) Flow Rate vs. Speed 
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(b) Occupancy vs. Speed 

Figure 3-5 Clustering Results for a Detection Station on SR-826 

(continued on next page) 
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(C) Occupancy vs. Flow Rate 

Figure 3-5 Clustering Results for a Detection Station on SR-826 

3.3. Queue Length Estimation 

This study requires the estimation of queue length when using the travel time estimation 

method based on traffic flow theory.  This section discusses how the queue length is 

estimated in this study based on detector data. 

Based on the identified traffic congestion states at the upstream and downstream 

detector stations in the previous step, each roadway link can be identified as one of four 

states: head of a queue, tail of a queue, in queue, or outside a queue.  For an identified 

head of a queue link, the traffic state at the upstream station is determined to be 

congested, that is, in Cluster III or IV, and the traffic states at the first and second 

downstream stations are in Cluster I or II, as shown in Figure 3-6(a).  The consideration 

of the second downstream station in addition to the first is to avoid a situation where a 
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III or IV 

Station 1 
Head of a Queue I or II 

Station 2

I or II 

Station 3 

I or II 

Station 1 
Tail of a Queue I or II 

Station 2

III or IV 

Station 3 

temporary traffic state change in the first downstream station can result in a sudden 

change in the calculated queue length value.  On the other hand, if both the two 

upstream stations are uncongested, that is, in the region of Cluster I or II, and the 

downstream station is in the Cluster III or IV, the link is categorized as a tail of a queue, 

as shown in Figure 3-6(b).  The links between a head of a queue link and a tail of a 

queue link are identified as in-queue links, and the remaining links are identified as 

outside of queue links. 

(a) Head of a Queue 

(b) Tail of a Queue 

Figure 3-6 Identification of Head and Tail of a Queue 

(Note: the number shown in the box represents the state) 

Once the head and the tail of a given queue are identified, the queue length can be 

estimated.  In addition, as another important parameter to the methodology, the queue 

status (growing, dissipating, or stationary), can be determined by comparing the current 

locations of the head and tail of the queue with those at previous timestamps.  Figure 

3-7 presents one example of queue identification for the SR-826 limited access facility in 

the eastbound direction on January 13, 2009.  As shown in this figure, the queue starts 

from the link located between station DS-1533E and DS-1535E at time 7:08 A.M. and 

extends to the first upstream link due to an incident at DS-1533E.  The queue length 

starts to decrease at time 8:16 A.M. and completely dissipates at 8:48 A.M.   
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Figure 3-7 Example of Queue Identification Results 
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3.4. On-Line Travel Time Estimation 

Travel time is estimated in this study using different methods for on-line (based on 

real-time data) and off-line (based on historical data) applications.  As clarified later in 

this chapter, additional information is available in the case of off-line applications, 

allowing for the more accurate estimation of travel time.  This section describes the 

on-line travel time estimation methods investigated in this study.   

As mentioned earlier, the hybrid approaches developed in this study apply 

different methods to estimate travel time based on the identified congestion level and 

queue location.  Two on-line hybrid travel time estimation models are developed herein: 

the first, referred to as On-Line Hybrid Model 1, combines a speed-based method with a 

traffic flow theory-based method; the second, referred to as On-Line Hybrid Model 2, 

combines two different speed-based methods.  Below is a description of these hybrid 

models.   

3.4.1. On-Line Hybrid Model 1 

The rationale behind Model 1 is that previous studies have reported that speed-based 

travel time estimation methods work well under free-flow conditions, while travel time 

estimation methods based on traffic flow theory work well under congested conditions.  

Thus, the combination of these two estimation methods has the potential of producing a 

better performance.  Model 1 uses a speed-based method to estimate travel times for 

non-congested segments and a traffic flow theory-based method for congested segments.     

The speed-based method selected for use is the Mid-Point method, since it is 

widely used in practice and was shown in this study to perform well for uncongested 
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conditions, as described later.  This method estimates the travel time along uncongested 

links as follows: 
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where TTi,t is the estimated travel time for link i at time t.  Li denotes the length of the 

link that connects upstream and downstream detector station, and Si,1,t and Si,2,t are the 

speeds at the detection stations upstream and downstream of the link, respectively.   

The travel time for a congested (fully queued) link is estimated using an improved 

traffic dynamics approach developed by Vanajakshi (2009), as follows:  
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where qi,2,t is the flow rate at downstream station of the link i at time t.  The ki in this 

equation is the link density, which is calculated as the average of the densities at the 

immediate upstream and downstream stations.  It should be mentioned that the density k 

in the above equation is estimated from the measured occupancy and the average 

effective vehicle length estimated by using the measured values of speed, volume count, 

and occupancy when the traffic is free-flow, that is,  
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where Leff,j is the average effective vehicle length at detector station j, N is the total 

number of lanes at the detector station, and m is the total number of detector records with 

free-flow traffic conditions within the same peak period.    
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When the link is located at the head of a queue, it may be identified as partially 

queued (when the queue is identified upstream of the link but not downstream of the 

link).  Therefore, the travel time estimation for a head of queue link consists of two 

parts: one for the queued section and one for the unqueued section, as shown below. 
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where Li,1 is the length of queue section within the link, while Li,2 is the remaining 

uncongested section.  Similar expression can be used for the travel time estimation of a 

tail of a queue link since such a link can be partially queued also. 

While testing the above model, it was determined that the fast change in the 

queuing status during lane blockage incident conditions requires two refinements to the 

above model.  The refined model is referred to as the Refined On-Line Model 1.  The 

first refinement is to predict the queue length during the queue forming stage to account 

for the lag between the times the vehicles receive the information (e.g., at a Dynamic 

Message Sign location) and the times they arrive at the tail of the queue, as shown in 

Figure 3-8.  

The predicted queue length is calculated based on the current location of the 

vehicle, current ending location of the queue and the propagation of the backward 

forming shock wave.  This propagation speed is calculated as follows:      
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where b denotes the shock wave speed, q2 and q1 are the flow rates within and upstream 

of the queue, respectively, and k2 and k1 are the corresponding densities.  In this study, 

q2 and k2 are approximated by the flow and density at the downstream station of the tail 

of the queue, while q1 and k1 are the traffic parameters at the upstream station of this link.  

Note that when the downstream station of the tail of the queue is within the transition 

region, the parameters at the next downstream station will be used as q2 and k2.  The 

speed within the queued section is estimated as the average speed of all of the detector 

stations within the queue.  This speed is calculated as a function of flow and density.  

 

Figure 3-8 Illustration for the Need of Refinement 1 

The second refinement to the model considers a front recovery shock wave a few 

minutes before the time at which the incident is forecast to be cleared.  This refinement 

can be applied only when such forecasting is possible, for example, by an operator who is 

monitoring a real-time video display of the incident scene and communicating with the 

time t: 

time t+nt: 

time t+t: 

 … 
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incident management team1.  This refinement is to account for vehicles that receive 

travel time information at the DMS locations, with the travel time calculated under the 

assumption that the front of the queue due to the incident at a given location is fixed at 

that location, but in fact, because the traffic is in the recovery stage after the lane 

blockage is cleared, the queue length is decreasing with the head of the queue moving 

upstream due to the fast moving backward recovery shock wave.  If this reduction in 

queue is not considered then the travel time received by the affected vehicles at the DMS 

location will be an overestimated travel time.  Figure 3-9 presents an illustration of this 

situation.  

  

Figure 3-9 Illustration for the Need of Refinement 2 

The refinement applied to address this issue includes the estimation of the 

recovery shock wave speed as follows:  

                     
12

12

kk

cc
f 


                                  (3-18) 

                                                        
1 The utilization of an incident duration prediction model was also considered but 

eliminated from further consideration due to the expected variation in the durations of 

incidents with similar attributes.   
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where f represents the speed of the recovery shock wave, c1 is the capacity during the 

incident, and c2 is the queue discharge rate during incident clearance.  These two 

parameters can be estimated from the normal roadway capacity and the capacity 

reduction factor during the incidents.  The capacity and capacity reduction can be 

estimated based on the Highway Capacity Manual (HCM) procedures and parameters, or 

estimated based on detector station data, if this is possible.  Parameters k1 and k2 are the 

corresponding densities.  The reduction in queue length due to the recovery shock wave 

is then calculated based on the vehicle starting location, the time that incident starts to 

clear, and the speed of recovery shock wave.  The average speed, determined from 

capacity c2 and density k2, is used for those recovered roadway segments.        

It should be pointed out that at the final stage of this study, it was found that 

similar to this study, Yi (2009) developed a travel time estimation framework by 

combining a speed-based method with a traffic-flow theory based method and a 

statistics-based method.  However, Yi’s study is different from this study in that it 

requires 1-second detector data and the knowledge of the timestamps when each vehicle 

enters and exits the detection zone.  This study requires 20-second detector data for 

speed, volume count and occupancy, which is the typical aggregation level of detector 

data in traffic management systems.  Further, Yi (2009) only tested the algorithms for 

very short links with a length of up to 3,300 feet, which may not capture the impacts of 

queue propagation, and also did not test the algorithm during incident conditions.  

Finally, for on-line application, Yi’s study did not take the dynamics of queue into 

consideration.  
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3.4.2. On-Line Hybrid Model 2 

Instead of combining a traffic flow method and a speed-based method as is done in 

On-Line Hybrid Model 1, Hybrid Model 2 combines two different speed-based methods: 

the Mid-Point method and the Minimum Speed method.  The rational is that the 

literature review shows that the Mid-Point method underestimates travel time during 

congested conditions.  Thus, using the minimum of the speeds measured at upstream 

and downstream detectors, as is done in the Minimum Speed method, may produce better 

results.   

The existence of the queue and its status, identified by clustering analysis as 

explained above, can be used with the On-Line Hybrid Model 2 to select the appropriate 

method for travel time estimation, as follows: 

 If there is no queue identified along a path, the traffic is under non-congested 

conditions and the Mid-Point method is applied to estimate the travel time for 

these conditions. 

   When the queue exists and it is growing backward, the Minimum Speed 

method is selected for the travel time estimation to capture the dynamic 

growth of the queue.  Since the Minimum Speed method uses the lower 

value of the upstream and downstream station speeds to represent the average 

link speed, it implicitly considers the queue propagation to the upstream 

station. 

 If the queue is dissipating with a forward recovery shock wave, which occurs 

at the time when the recurrent congestion starts to dissipate at the bottleneck 

due to the reduction of upstream demands, the Minimum Speed method is also 



  

75 

applied to account for the congestion considering that the recovery shock 

waves in this case is slow and not as fast as the recovery shock wave in case 

of incident clearance, which is described next. 

 If the queue is dissipating with a backward recovery shock wave, such as in 

the case of incident clearance, the travel time estimation switches back to the 

Mid-Point method.  This is because the fast moving recovery shock wave 

will result in a fast reduction in queue length and it is expected that there will 

be an overestimation if the Minimum Speed method is used in this case.   

Similar to Hybrid Model 1, a refinement is applied to Hybrid Model 2 by 

including in the calculation a front recovery shock wave that is used to account for the 

incident recovery conditions.  The procedures to estimate the impact of the recovery 

shock wave speed on the length of the congested region is the same as that used in Model 

1.  However, Model 2 does not need to account for the near-term growth of the queue 

length during the queue forming stage under incident conditions, as was done in the 

Refined Hybrid Model 1, since the Minimum Speed method already calculates the link 

travel time within the queue if the downstream detector station indicates the presence of a 

queue.   

3.5. Off-Line Travel Time Estimation 

Although this study mainly focuses on the real-time (on-line) estimation of travel time, 

for comparison purposes and for potential use for off-line applications, corresponding 

hybrid off-line estimation models that utilize historical data are also developed.  This is 

also useful since off-line estimates have been used in the training process of real-time 
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short-term travel time prediction methods such as Neural Network, Time Series, 

Regression, and Nearest Neighbor. 

The difference between on-line and off-line estimation methods is that for on-line 

applications, future traffic conditions along the paths of the vehicle are not available and 

only the instantaneous travel time (based on the traffic conditions at the time of the 

estimation) can be used in the estimation.  For off-line estimation, the traffic conditions 

at later time periods are determined based on historical data.  Thus, the actual travel 

time experienced by the vehicles can be estimated based on traffic conditions, as the 

vehicle progresses in its route from one link to the next.   

The method used in this study divides the whole time duration into small time 

periods that are critical to the temporal aggregation level of the detector data, as shown in 

Figure 3-10. 

Figure 3-10 Schematic Diagram for Off-Line Travel Time Estimation 
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As shown in this figure, a vehicle enters cell i at location x0 and time t0.  The 

remaining time in this time period is compared to the time that is required to reach the 

downstream station, and the minimum value of these two values is used in the travel time 

estimation for this cell.  Depending on the location of the exit point (x1, t1), the vehicle 

can either enter the next link during the same period, which is cell (i+1, t); stay on the 

same link but experience different traffic conditions at time t+1, which is cell (i, t+1); or 

enter the downstream link at the next period of time, which is cell (i+1, t+1).  The 

resulting route travel time of a vehicle is the time that the vehicle arrives at the 

destination (last detection station on the path for which the travel time is estimated) 

minus the time that the vehicle departs from the origin (first detection station on the path 

for which the travel time is estimated).  This concept is similar to the concept presented 

by Van Lint (2004).  However, instead of using the Piece-wise Linear Speed method as 

was done in the study by Van Lint (2004), the hybrid methods developed in this study are 

used to calculate the travel time within each cell.  In parallel to the two on-line hybrid 

models mentioned above, two hybrid off-line models are also developed, which are 

explained below.  

3.5.1. Off-Line Hybrid Model 1 

Similar to the On-Line Hybrid Model 1, the travel time within each cell for the Off-Line 

Hybrid Model 1 are either estimated by the Mid-Point method or Flow-based method, 

depending on the congestion level identified by the clustering analysis, as described 

above.  Given the entry location and time (x0, t0) at each cell, the exit location and time 

(x1, t1) can be written as follows: 
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where xd indicates the downstream detector location for each cell, tp refers to the ending 

timestamp for the cell, which corresponds to the time of the next travel time update, t(xd) 

is the timestamp when reaching the downstream detector location, and x(tp) is the location 

that can be reached by the vehicles at timestamp tp.  The expressions for these two 

parameters vary with the congestion level in the cell.  Below is a detailed discussion of 

how to calculate t(xd) and x(tp) under different conditions. 

Case 1: The cell is free of congestion. 

In this case, the Mid-Point method is used for travel time estimation as it performs well 

under uncongested conditions.  Since the Mid-Point method assumes that each detector 

speed measurement represents the speeds of half the distance to the next detector on both 

sides, the travel time estimation in this case is divided into two parts, depending on 

whether the entry point of vehicles x0 is within the first half of the cell or the second half 

of the cell. 

If the entry point of vehicles x0 is within the second half of the cell, that is,  
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2
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where xu indicates the upstream detector locations; then the corresponding timestamp 

when reaching the downstream detector location t(xd) is expressed as: 
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The location x(tp) that can be reached by the vehicles at the timestamp tp is 
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In the case that the entry point of vehicles is within the first half of the cell, as expressed 

below,  
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The expression for t(xd) is 
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The location x(tp) at timestamp tp is then written as: 
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where t(xm) is the timestamp when the vehicles reach the mid-point of the cell, which is 

calculated by the following: 
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Case 2: The cell is in-queue. 

When the status of the cell is in-queue, the flow-based method is applied to calculate t(xd) 

and x(tp) as follows:  
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where ku and kd are the densities at the upstream and downstream detector locations, 

respectively.  qd represents the flow rate at the downstream detector location of this cell. 

Case 3: The cell is the head of a queue. 

Similar to the On-Line Hybrid Model 1, the head of queue cell consists of two parts, one 

within the queue and one outside the queue, that is, an uncongested part downstream of 

the congestion.  If the vehicles enter the cell in the uncongested part, the values of t(xd) 

and x(tp) are obtained from the downstream detector speed, that is, 
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However, if the vehicles enter the cell within the congested part, the corresponding 

expressions for t(xd) and x(tp) are, 
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where xq is the ending location of the queue within the cell and t(xq) is the timestamp 

when the vehicles reach the location xq.  The vehicles may exit the cell from either the 

congested or uncongested region, and thus two different expressions are formulated for 

x(tp) in Equation 3-32. 
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Case 4: The cell is the tail of a queue. 

Contrary to the head of a queue case described above, the first part of a tail of a queue 

cell is uncongested while the second part of this cell is within the queue.  The method 

used for the estimation of travel time for a tail of queue cell follows the same idea as the 

head of queue cell. 

If the entering location x0 of a vehicle is within a congested region, the 

expressions for t(xd) and x(tp) are written as 

          
d

d
dd q

k
xxtxt  )()( 00                          (3-33) 

                   )()( 00 tt
k

q
xtx p

d

d
pd                     (3-34) 

Otherwise, the corresponding expressions are  
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where xq is the starting location of the queue within the cell and t(xq) is the timestamp 

when the vehicles reach the location of xq.   

As mentioned above, the resulting route travel time of a vehicle is the time that 

the vehicle arrives at the destination (last detection station on the path for which the 

travel time is estimated) minus the time that the vehicle departs the origin (first detection 

station on the path for which the travel time is estimated).   
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3.5.2. Off-Line Hybrid Model 2 

The Off-Line Hybrid Model 2 utilizes the Mid-Point method for uncongested cells and 

the Minimum Speed method for the fully or partially congested cells.  The combination 

of these two speed-based methods aims at utilizing the advantages of each individual 

estimation methods and thus improving the overall estimation performance.    

With the Off-Line Hybrid Model 2, the exit location and exit time (x1, t1) can be 

expressed as the function of entry location and time (x0, t0) as in Equation 3-19.  For the 

uncongested cells, the expressions for t(xd) and x(tp) in this equation are exactly the same 

as those described in Model 1 and are omitted here for brevity.   

The expressions of t(xd) and x(tp) for fully congested or partially congested cells 

are as follows: 
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Note that since the traffic parameters at later time periods are known, the off-line 

hybrid models do not need the refinements to account for fast moving shock waves as the 

on-line hybrid models.  Compared to the previous travel time estimation studies 

(Dhulipala 2002; Xia and Chen 2007), the hybrid off-line models developed in this study 

do not need additional information about incidents, such as the incident occurrence time 

and duration, since the clustering analysis described above will automatically detect the 

occurrence and disappearance of queue.     
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3.6. Summary 

In this chapter, two on-line as well as two off-line hybrid freeway travel time estimation 

models were developed based on point detector measurements.  Before exercising the 

model, detector data is checked, smoothed, aggregated, and imputed.  One of the 

important components of the developed models is incorporating clustering analysis in the 

travel time estimation model to identify traffic conditions.  This is a new contribution 

from this study.  Based on congestion level and queue status identified by the clustering 

analysis, different travel time estimation methods are selected in the developed models to 

take advantage of each individual estimation method.  Hybrid Model 1 uses the 

Mid-Point speed-based method for estimating travel time along uncongested links, and a 

traffic flow-based method for travel time on congested links.  Hybrid Model 2 combines 

two speed-based methods: the Mid-Point method for the uncongested condition and the 

Minimum Speed method for congested conditions.  Variations of these models are 

applied to real-time and off-line conditions, with the off-line versions taking advantage of 

the travel time at future time steps that are known for off-line applications, but not 

real-time applications.  For real-time applications, refinements to the hybrid models are 

developed based on shock wave analysis to capture the dynamics of queue propagation.    
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CHAPTER 4 

MODEL ASSESSMENT AND COMPARISON 

The accuracy and reliability of travel time estimates obtained using various existing 

speed-based methods including the SunGuide algorithm, a simple traffic flow-based 

method based on flow and occupancy, the modified N-D method (a traffic flow method), 

and the hybrid models described in Chapter 3, are evaluated and compared in this study.  

The comparisons are made using simulation models as well as real-world travel time data.  

The description of existing methods included in the comparison of this study can be 

found in the literature review section in Chapter 2.  

4.1. Study Corridor 

Figure 4-1 shows the corridor used as a case study in the comparison.  The study 

corridor is the eastbound section of SR-826, located in Miami-Dade County, Florida, 

starting from the location of detector DS-1509E to the location of detector DS-1549E.  

It includes six interchanges with a total length of about 6.4 miles.  As shown in Figure 

4-1, there are 21 true presence microwave detector stations deployed along this section 

with a spacing that ranges from between 0.3 to 0.5 miles.  However, it is found that 

detector station DS-1513E reported erroneous data during the period of the study, and 

therefore this station is excluded from the analysis.    
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Figure 4-1 Study Corridor and Detector Locations 

4.2. Performance Measures 

Two performance measures are used to quantify the accuracy of the estimated travel 

times.  These performance measures are the mean absolute error (MAE) and mean 

absolute percentage error (MAPE).  These two performance measures are defined as 

follows: 
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where TTi is the ith estimated travel time, and TTi,a is the corresponding real-world or 

simulated travel time (depending on the source of the ground truth data).  N is the total 

number of estimates. 

Because FDOT districts generally post ranges of travel time values rather than 

fixed travel time values on their traveler information devices, it is necessary to quantify 

the reliability of the estimated travel times, as well.  In this study, the reliability of travel 
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time estimates is defined as the percentage of vehicles with travel times that are within 

the range of travel time posted on the traveler information devices.  In addition, the 

percentage of vehicles with travel times that are less than the posted minimum travel time 

(referred to as percentage early in this study) as well as the percentage of vehicles with 

travel time greater than the posted maximum travel time (referred to as percentage late) is 

also reported to differentiate between these two conditions.  This study calculates the 

travel time ranges that are displayed to travelers using the same method used by the 

traffic management centers (TMCs) in South Florida in their real-world operations 

(Florida Department of Transportation District 6, 2010).  With this calculation, if the 

estimated travel time is less than five minutes, the traveler information message to 

travelers is “Under 5 Minutes”.  If the travel time is more than 35 minutes, the message 

is “Over 35 Minutes”.  A 3-minute range is used when the estimated travel time is 

between 5 minutes and 10 minutes, and a 5-minute range is used for travel times between 

10 minutes and 35 minutes. 

4.3. Assessment Based on Simulation Data 

First, the different travel time estimation methods were tested using a simulation model 

that is calibrated for incident and no-incident conditions.  The utilized simulation tool is 

the CORSIM microscopic simulation tool.  The development and calibration of 

simulation models using data collected from ITS have been addressed as part of a 

separate FDOT research project conducted by Hadi et al. (2010).  The details of these 

procedures can be found in the final report of the research project mentioned above and 

will not be repeated here.   
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Three scenarios were used in the comparison.  The first scenario represents 

uncongested conditions and the other two represent non-recurrent congestions caused by 

one-lane blockage incidents with different attributes.  It should be noted that the 

comparison based on simulation presented in this section assumes that all detector 

measurements have 100% accuracy.  This assumption is relaxed in the next chapter to 

determine the impacts of detector errors on the results.  The temporal aggregation level 

of travel time used in the comparison is two minutes, which is a common aggregation 

level used in travel time estimation.  The SunGuide system can be configured to 

estimate travel time based on the Mid-Point and Point-to-Point methods.  The measured 

speeds are capped by the speed limit (for SR-826, the speed limit is 55 mph) in the 

SunGuide system before being used in the travel time calculation.  The comparison with 

the SunGuide estimation is done with and without the capping of the speed based on the 

Point-to-Point method. 

4.3.1. Simulated Uncongested Scenario 

Figure 4-2 presents the travel time results for uncongested conditions and Table 4-1 

shows the accuracy and reliability of various on-line travel time estimation methods for 

this scenario.  The improved N-D method in Table 4-1 refers to the method developed 

by Vanajakshi (2009), which was selected as an example of the latest traffic flow 

theory-based methods that can be found in the literature.  The flow-based method in this 

table is a method that uses the volume count and occupancy to estimate the travel time as 

described in Equation 3-13.  The purpose of including this method is to examine the 
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performance of the flow-based estimation method when not combined with speed-based 

methods.   
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(a) On-Line Estimation Results 
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(b) Off-Line Estimation Results 

Figure 4-2 Estimated Travel Time for Simulated Uncongested Condition  
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As show in Table 4-1, almost all of the on-line travel time methods can achieve 

good accuracy and reliability during uncongested conditions except the Point-to-Point 

method with capped speed, which overestimates the travel time due to the capped speed.  

The comparison among the different speed-based methods shows that the Minimum 

Speed method has slightly higher errors and lower reliability relative to the other 

speed-based methods, although it still performs well.  It also can be seen in Table 4-1 

that the developed models perform well in this case.  Compared to the on-line 

estimation methods, the off-line methods can achieve slightly better estimation 

performance, as shown in Table 4-2.  However, this improvement is not significant. 

Table 4-1 Accuracy and Reliability of Tested On-Line Travel Time Estimation 
Methods for Simulated Uncongested Condition 

Method 
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% Late

Point-to-Point Method w/ Capped Speed 0.74 11.77 80.59 19.41 0 

Point-to-Point Method w/o Capped Speed 0.12 1.92 100 0 0 

Mid-Point Method  0.08 1.31 100 0 0 

Minimum Speed Method  0.14 2.18 97.58 2.42 0 

Average Speed Method  0.08 1.34 100 0 0 

Minnesota Method  0.08 1.32 100 0 0 

Linear Speed Method  0.08 1.33 100 0 0 

Flow-Based Method  0.15 2.38 99.5 0.44 0 

Improved N-D Method  0.15 2.38 99.29 0.71 0 

Developed Hybrid Model 1  0.08 1.31 100 0 0 

Developed Hybrid Model 2  0.08 1.31 100 0 0 
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Table 4-2 Accuracy and Reliability of Tested Off-Line Travel Time Estimation 
Methods for Simulated Uncongested Condition 

Method 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Point-to-Point Method  0.11 1.76 100 0 0 
Mid-Point Method  0.06 0.94 100 0 0 
Minimum Speed Method  0.12 1.99 97.83 2.17 0 
Average Speed Method  0.06 0.99 100 0 0 
Minnesota Method  0.06 0.95 100 0 0 
Linear Speed Method  0.06 0.97 100 0 0 
Constant Acceleration Method 0.06 0.96 100 0 0 
Developed Hybrid Model 1  0.06 0.94 100 0 0 
Developed Hybrid Model 2  0.06 0.94 100 0 0 

 

4.3.2. Simulated Incident Scenario 1 

Figure 4-3(a) presents the results of the on-line travel time estimation for one of the 

incident scenarios used as a case study and referred to as simulated incident scenario 1 in 

the discussion.  In this simulation case, a one-lane blockage incident occurs at 7:35 A.M. 

and lasts for 25 minutes.  For clarity, Figure 4-3(b) presents the same results presented 

in Figure 4-3(a) but only for the Point-to-Point method with capped speeds (i.e., 

SunGuide method), the on-line Minimum Speed method, and the on-line hybrid models 

developed in this study.  Figure 4-3(c) shows the corresponding off-line travel time 

estimation results.  Figure 4-3(a) shows that, unlike the uncongested case, the results 

obtained from different travel time estimation methods vary significantly.  It appears 

that the Minimum Speed method is comparable to the other speed-based methods for this 

incident scenario.  The flow-based method and the improved N-D method can also 

produce relatively good results.  However, these three methods (Minimum Speed, 

Flow-based method and the improved N-D method) overestimate the travel time at the 

later stage of lane blockage due to the effect of the front recovery shock wave, described 
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earlier.  Figure 4-3(a) also includes the results obtained from the hybrid models 

developed in this study without refinements, which are slightly to moderately better than 

those of the flow-based method and the Minimum Speed method but also suffers from the 

front recovery shock wave effect.  The developed refined on-line models that consider 

the front recovery shock wave performed better than the other methods, as shown in 

Figure 4-3(b).  Figure 4-3(b) also shows that the SunGuide method does not perform 

well and significantly underestimates the travel time under this incident scenario.  

Please note that in all the figures presented in this chapter, the developed Hybrid Models 

1 and 2 referred to the models with the refinement described in the previous chapter. 
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(a) On-Line Estimation Results 

Figure 4-3 Estimated Travel Time for Simulated Incident Scenario 1 

(continued on next page) 
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(b) On-Line Estimation Results 
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(c) Off-Line Estimation Results 

Figure 4-3 Estimated Travel Time for Simulated Incident Scenario 1  
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Table 4-3a lists the accuracy and reliability of each on-line travel time estimation 

method for this simulated incident case between 7:00 A.M. and 9:00 A.M.  As stated 

previously, the lane blockage incident occurs at 7:35 A.M. and lasts for 25 minutes.  It 

can be seen from this table that in general the accuracy and reliability of the estimated 

travel time during the incident conditions are not as good as those for uncongested 

conditions.  The MAPE of travel time estimated by the SunGuide method with capped 

speed is about 12.79% and the corresponding reliability is 76.54% with 7.72% vehicles 

arriving early and 15.74% vehicles arriving late.  Table 4-3a also shows that the 

performances of the compared speed-based methods and flow-based methods are close.  

Compared to the other methods, the two developed hybrid models have slightly less 

errors and higher reliability even without the refinements.  With the refinement, the 

accuracy and reliability of the hybrid models improved even further.  A comparison of 

the results of the developed Hybrid Model 1 and Hybrid Model 2 shows that Model 2 

performs slightly better than Model 1. 

Table 4-3b presents the performances of the on-line travel time estimation 

methods only between 7:30 A.M. and 8:30 A.M., as the time period from 7:00 A.M. to 

9:00 A.M. includes partly uncongested conditions, while the traffic during the period 

between 7:30 A.M. and 8:30 A.M. is completely congested.  Compared to the results for 

the time period 7:00 A.M. to 9:00 A.M., the errors during the time period 7:30 A.M. to 

8:30 A.M. are higher and the reliabilities are lower.  Table 4-3b indicates that the 

selection of the study period for comparison has a great impact on the evaluation of travel 

time estimation performance.   
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Table 4-3a Accuracy and Reliability of Tested On-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 1 between 7:00 A.M. and 9:00 A.M. 

Method 
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% Late

Point-to-Point Method w/ Capped Speed 1.24 12.79 76.54 7.72 15.74
Point-to-Point Method w/o Capped Speed 1.10 9.07 79.66 0.85 19.49
Mid-Point Method  0.96 7.83 80.48 2.00 17.52
Minimum Speed Method  0.86 8.23 75.53 15.55 8.92 
Average Speed Method  1.26 9.88 78.24 0.58 21.19
Minnesota Method  1.06 8.50 80.18 1.64 18.18
Linear Speed Method  1.18 9.32 78.70 0.58 20.72
Flow-Based Method  0.94 8.64 80.21 8.76 11.03 
Improved N-D Method  0.99 9.30 79.93 9.20 10.87
Hybrid Model 1 w/o Refinement  0.87 7.76 82.26 7.45 10.29
Hybrid Model 2 w/o Refinement 0.76 6.80 82.23 7.88 9.88 
Developed Hybrid Model 1  0.58 5.55 85.98 4.93 9.09 
Developed Hybrid Model 2  0.60 5.50 87.85 1.59 10.57

 
Table 4-3b Accuracy and Reliability of Tested On-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 1 between 7:30 A.M. and 8:30 A.M. 

Method 
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% Late

Point-to-Point Method w/ Capped Speed 1.87 16.08 57.90 9.08 33.03
Point-to-Point Method w/o Capped Speed 2.07 16.28 57.32 1.78 40.90
Mid-Point Method  1.86 14.78 59.05 4.19 36.76
Minimum Speed Method  1.58 14.43 55.20 26.08 18.73
Average Speed Method  2.45 18.81 54.34 1.21 44.46
Minnesota Method  2.05 16.10 58.42 3.45 38.14
Linear Speed Method  2.29 17.72 55.31 1.21 43.48
Flow-Based Method  1.74 15.21 59.33 17.52 23.15
Improved N-D Method  1.83 16.34 58.82 18.38 22.80
Hybrid Model 1 w/o Refinement  1.68 14.65 62.78 15.62 21.60
Hybrid Model 2 w/o Refinement 1.46 12.73 62.72 16.54 20.74
Developed Hybrid Model 1  1.11 10.24 70.59 10.34 19.07
Developed Hybrid Model 2  1.15 10.12 74.50 3.33 22.17

Tables 4-4a and 4-4b present the accuracy and reliability of various off-line 

estimation methods for simulated incident scenario 1 from 7:00 A.M. to 9:00 A.M. and 

from 7:30 A.M. to 8:30 A.M., respectively.  As stated before, the off-line estimation can 
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be used as a basis for training travel time prediction algorithms.  Thus, the examination of 

off-line estimation results can give an indication of whether travel time prediction has the 

potential to improve the accuracy and reliability of the calculated travel time.  In 

addition, off-line travel time estimation is important for planning studies.  As shown in 

both tables, for off-line applications, the Minimum Speed method has a relatively better 

performance than other speed-based methods.  Again, the developed hybrid models 

have higher accuracy and reliability than the other methods.  The comparison between 

the results in Table 4-3b and Table 4-4b shows that both the on-line methods and off-line 

methods have similar performance except that the off-line Minimum Speed method and 

the developed off-line hybrid models perform better than their on-line versions, as 

illustrated in Figure 4-4.    

Table 4-4a Accuracy and Reliability of Tested Off-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 1 between 7:00 A.M. and 9:00 A.M. 

Method 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Point-to-Point Method  1.09 9.28 80.65 0 19.35 

Mid-Point Method  0.94 7.74 83.63 0 16.37 

Minimum Speed Method  0.44 4.45 91.30 4.76 3.94 

Average Speed Method  1.25 9.99 80.07 0 19.93 

Minnesota Method  1.04 8.51 79.99 0 20.01 

Linear Speed Method  1.17 9.41 79.39 0 20.61 

Constant Acceleration Method 1.28 10.19 79.39 0 20.61 

Developed Hybrid Model 1  0.42 3.84 94.17 1.18 4.65 

Developed Hybrid Model 2  0.42 3.86 91.65 1.59 6.76 
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Table 4-4b Accuracy and Reliability of Tested Off-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 1 between 7:30 A.M. and 8:30 A.M. 

Method 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Point-to-Point Method  2.06 16.76 59.39 0 40.61 
Mid-Point Method  1.83 14.82 65.65 0 34.35 
Minimum Speed Method  0.75 6.82 87.02 4.71 8.27 
Average Speed Method  2.45 19.24 58.19 0 41.82 
Minnesota Method  2.04 16.32 58.01 0 41.99 
Linear Speed Method  2.29 18.10 56.75 0 43.25 
Constant Acceleration Method 2.50 19.65 56.75 0 43.25 
Developed Hybrid Model 1  0.80 7.02 87.77 2.47 9.76 
Developed Hybrid Model 2  0.79 7.05 82.48 3.33 14.19 
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(a) Mid-Point Method 

Figure 4-4 Comparison of On-Line and Off-Line Estimation Methods  

(continued on next page)  
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(b) Minimum Speed Method 

Figure 4-4 Comparison of On-Line and Off-Line Estimation Methods  

4.3.3. Simulated Incident Scenario 2 

Figure 4-5 presents the results for on-line travel time estimation for Simulated Incident 

Scenario 2.  Similar to the Simulated Incident Scenario 1, the incident attributes in 

Scenario 2 correspond to a real-world incident from the FDOT District 6 SunGuide 

incident management database.  This one-lane blockage incident occurred at 7:23 A.M.  

After 35 minutes, the incident was moved to the shoulder and the blocked lane was open.  

The incident was completely cleared at 8:45 A.M., 82 minutes after it started.  This 

incident is more severe than Scenario 1, as it has a longer duration and the capacity drop 

due to the incident is higher by about 35%.  The arrival of fire trucks at this incident 

location appears to have a higher impact on the capacity compared to Scenario 1.  

Figure 4-5(a) shows that the estimation results from various on-line methods.  To show 
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the results more clearly, Figure 4-5(b) presents the same results but only for the 

SunGuide method, Minimum Speed method, and on-line Hybrid Models.  As shown in 

these two figures, the travel time estimated using various on-line methods are not 

satisfactory in this incident scenario unless a refinement is applied to the hybrid models 

to account for the front shock wave recovery.  The SunGuide method (i.e., 

Point-to-Point method with capped speed) underestimate the travel time during the queue 

forming stage, and overestimate the travel time at the end of lane blockage.  A similar 

trend can be found for other methods.  One reason for this is that these methods estimate 

the travel time based on the current traffic conditions, without capturing the dynamic 

changes in the queue length as the vehicles progress from the departure location to the 

destination.  As shown in Figure 4-5(b), the refined on-line hybrid models overcome 

this shortcoming with the consideration of a front recovery shock wave.  Figure 4-5(c) 

presents the corresponding off-line travel time estimation results.  It is seen from this 

figure that the off-line estimation methods can avoid the unrealistic estimated peaking in 

travel time observed in the on-line methods at the later lane-blockage stage when not 

considering the front recovery shock wave.   
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(a) On-Line Estimation Results 
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(b) On-Line Estimation Results 

Figure 4-5 Estimated Travel Time for Simulated Incident Scenario 2 

(continued on next page) 



  

100 

 

07:00 07:30 08:00 08:30 09:00 09:30 10:00
5

10

15

20

25

30

 

T
ra

ve
l T

im
e 

(M
in

ut
es

)

Timestamp

 Actual Travel Time
 Point-to-Point Method
 Mid-Point Method
 Minimum Speed Method
 Average Speed Method
 Minnesota Algorithm
 Linear Speed Method
 Constant Acceleration Method
 Developed Hybrid Model 1
 Developed Hybrid Model 2

 
(c) Off-Line Estimation Results 

Figure 4-5 Estimated Travel Time for Simulated Incident Scenario 2   

Table 4-5 presents the performance of on-line and off-line travel time estimation 

methods for Simulated Incident Scenario 2.  As shown in Table 4-5, the travel time 

produced by the SunGuide method with capped speed has a MAE of 3.61 minutes, a 

MAPE of 22%, and a reliability of 55%.  About 18% of the vehicles arrive at the 

destination earlier than the posted travel time range and 26% of vehicles arrive late.  

Without capping the speed, the results are a little bit better, but still are not good.  Table 

4-5 also reveals that the on-line hybrid models do not perform well without the 

refinements.  However, with the refinements, the developed on-line hybrid models 

produce much better results when compared to the other methods.  The comparison 

between these two on-line hybrid models shows that Model 2 has lower errors and higher 
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reliability than Model 1 under this scenario.  The reason for the difference in 

performance of the travel time estimation methods between Incidents 1 and 2 is that 

Incident 2 has a more severe capacity constraint.  Removing this constraint during the 

incident clearance stage resulted in a higher and faster impact on the experienced travel 

time.  Thus, not accounting for the recovery shock wave has a higher impact in Incident 

2 compared to Incident 1.   

Table 4-5 Accuracy and Reliability of Tested On-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 2 

Method 
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% Late

Point-to-Point Method w/ Capped Speed 3.61 22.27 55.36 18.37 26.27
Point-to-Point Method w/o Capped Speed 3.56 19.57 61.27 8.66 30.07
Mid-point Method  3.71 20.31 61.11 9.61 29.28
Minimum Speed Method  3.88 22.28 59.53 21.59 18.88
Average Speed Method  3.74 20.36 59.97 6.60 33.43
Minnesota Method  3.68 20.17 60.22 9.45 30.33
Linear Speed Method  3.70 20.23 60.10 7.63 32.27
Flow-Based Method  4.49 25.04 60.46 20.32 19.22
Improved N-D Method  3.32 19.92 59.61 20.52 19.87
Hybrid Model 1 w/o Refinement  4.42 24.47 62.87 17.34 19.79
Hybrid Model 2 w/o Refinement 3.84 21.66 60.87 18.94 20.19
Developed Hybrid Model 1  1.89 11.08 67.46 10.50 22.04
Developed Hybrid Model 2  1.75 9.82 70.03 7.71 22.26

Table 4-6 lists the performances of the off-line estimation methods for the 

Simulated Incident Scenario 2.  Compared to the results of Table 4-5, the off-line 

estimation methods perform much better than the on-line estimations.  For example, the 

MAE, MAPE, and reliability are 3.71 minutes, 20%, and 61%, respectively for the 

on-line Mid-Point method; and 2.51 minutes, 13%, and 72%, respectively for the off-line 

counterpart.  Again, the off-line Minimum Speed and the hybrid models produce 

satisfactory results under this scenario as shown in Table 4-6.  The results in Table 4-6 
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indicate that travel time prediction could be beneficial for incident conditions, 

particularly more severe incidents with long incident durations.   

Table 4-6 Accuracy and Reliability of Tested Off-Line Travel Time Estimation 
Methods for Simulated Incident Scenario 2 

Method 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Point-to-Point Method  2.73 14.75 70.60 1.67 27.72 
Mid-Point Method  2.51 13.37 72.32 2.15 25.54 
Minimum Speed Method  1.21 7.35 73.68 11.49 14.83 
Average Speed Method  3.31 17.62 65.16 0.99 33.85 
Minnesota Method  2.77 14.74 69.41 2.04 28.55 
Linear Speed Method  3.10 16.47 67.22 0.99 31.79 
Constant Acceleration Method 3.43 18.23 64.08 0.99 34.93 
Developed Hybrid Model 1  1.03 6.28 76.69 8.90 14.41 
Developed Hybrid Model 2  1.21 7.07 75.60 9.05 15.36 

4.4. Comparison Based on Real-world Data 

In addition to the use of simulation, further assessment of travel time estimation methods 

was made using real-world data.  The actual travel time was collected using videos from 

CCTV cameras deployed along the study corridor by matching the vehicles passing the 

field of view of one CCTV camera location to those passing the field of view of another 

CCTV camera location.  The results for one congested case and one uncongested case 

are presented in this section.  Both investigated cases represent recurrent conditions (no 

incident conditions).  For the uncongested case, the travel times between two detector 

stations, DS-1515E and DS-1545E (a distance of about 5.02 miles), were collected for the 

midday period on December 2, 2008.  For the congested case, the travel times between 

detector stations DS-1519E and DS-1545E (a distance of about 4.58 miles) were 

collected for the morning peak period on March 10, 2010.  
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Figure 4-6 presents the travel time estimation results for the two cases mentioned 

above.  It should be mentioned that the congestion level in the congested case is 

significantly lower than the congestion level resulting from the incident scenarios 

explored in the simulation models and discussed in Section 4.3.  Figures 4-6(a) and 

Figure 4-6(b) show the estimation results for uncongested conditions during the Midday 

period.  It is seen from these figures that although the travel times produced by the 

Point-to-Point method with capped speed overestimates the travel time due to the capped 

speed, the difference between the estimated travel times by the SunGuide method and the 

actual travel time is small.  The travel time estimates obtained using the speed-based 

methods as well as the developed models were also very close when the traffic is not 

congested.  Compared to the other methods, the Minimum Speed method slightly 

overestimated the travel time, and the results from the flow-based method and improved 

N-D method experienced more fluctuations.   

For the congested case, the results shown in Figures 4-6(c) and 4-6(d) indicate 

that except for the Minimum Speed method, all of the other speed-based methods, 

including the Point-to-Point method with capped speed, underestimated the travel time 

under congested traffic conditions.  This was true for both the on-line and off-line 

applications.  The flow-based method and the improved N-D method performed better.  

The developed hybrid models also produced travel times that were also close to the actual 

travel times.   
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(a) On-Line Estimation Results during Midday on Dec. 2, 2008 
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(b) Off-Line Estimation Results during Midday on Dec. 2, 2008 

Figure 4-6 Estimated Travel Time for Real-world Case 

 (continued on next page)  
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(c) On-Line Estimation Results during Morning Peak Period on Mar. 10, 2010 
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(d) Off-Line Estimation Results during Morning Peak Period on Mar. 10, 2010 

Figure 4-6 Estimated Travel Time for Real-world Case 
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Since not all individual vehicle travel times can be collected and the actual travel 

time distribution is unknown when using real-world point traffic detector data in the 

analysis, the reliability of the estimated travel time cannot be calculated using data that 

was produced based on simulation, as discussed in previous sections.  Thus, only the 

accuracy performance measures are presented in Tables 4-7 and 4-8.  As shown in Table 

4-7, the performance of various travel time estimation methods during uncongested 

conditions (Case 1) are similar to those obtained from simulation.  The Minimum Speed 

method, flow-based method, and the Improved N-D method were slightly less accurate 

than other methods for uncongested conditions.  For congested conditions (Cases 2), the 

Minimum Speed method and Hybrid Model 2 perform the best among the tested methods.  

The traffic flow method and Hybrid Model 1 also perform relatively well compared to 

other methods.  A comparison of the results from the off-line methods with those from 

the on-line methods indicates that the off-line estimation improved the travel time 

estimation slightly. 

Table 4-7 Accuracy of Tested On-Line Travel Time Estimation Methods for 
Real-world Cases 

Case 1 (Uncongested) Case 2 (Congested) 
Method MAE 

(Min.) 
MAPE 

(%) 
MAE 
(Min.) 

MAPE 
(%) 

Point-to-Point Method w/ Capped Speed 0.56 11.32 0.65 9.95 
Point-to-Point Method w/o Capped Speed 0.14 2.81 0.94 14.78 
Mid-point Method  0.14 2.87 0.66 10.20 
Minimum Speed Method  0.23 4.71 0.37 6.31 
Average Speed Method  0.14 2.83 0.81 12.66 
Minnesota Method  0.14 2.86 0.70 10.86 
Linear Speed Method  0.14 2.84 0.76 11.76 
Flow-Based Method  0.18 3.56 0.53 8.79 
Improved N-D Method  0.20 3.90 0.54 9.03 
Developed Hybrid Model 1  0.14 2.87 0.46 7.75 
Developed Hybrid Model 2 0.14 2.87 0.39 6.80 
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Table 4-8 Accuracy of Tested Off-Line Travel Time Estimation Methods for 
Real-world Cases 

Case 1 (Uncongested) Case 2 (Congested) 
Method MAE  

(Min.) 
MAPE 

(%) 
MAE  
(Min.) 

MAPE 
(%) 

Point-to-Point Method  0.14 2.71 0.94 14.75 
Mid-point Method  0.14 2.70 0.63 9.68 
Minimum Speed Method  0.23 4.67 0.33 5.40 
Average Speed Method  0.13 2.66 0.81 12.55 
Minnesota Method  0.14 2.68 0.69 10.61 
Linear Speed Method  0.13 2.67 0.75 11.65 
Constant Acceleration Method 0.13 2.66 0.82 12.63 
Developed Hybrid Model 1  0.14 2.70 0.38 6.20 
Developed Hybrid Model 2 0.10 2.70 0.35 5.74 

4.5. Summary 

The developed hybrid travel time estimation models, as well as various speed-based 

methods and flow-based methods were evaluated in this chapter using both simulated and 

real-world travel time data.  The performance measures in terms of accuracy and 

reliability were quantified.  The results indicate that all tested methods perform 

reasonably well under uncongested traffic conditions.  However, their performances 

vary with the increase in congestion level.  The comparison with other estimation 

methods shows that the developed hybrid models perform well in all cases, but need 

refinements for on-line applications in the case of incident conditions particularly during 

incidents with a sharp drop in capacity.  The refinement considers the dynamics of 

queue propagation and clearance, and requires the prediction of when the incident will be 

cleared.  Further comparison between the on-line and off-line travel time estimation 

results reveals that off-line methods perform significantly better only during fast 
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changing congested conditions such as during incidents.  For uncongested conditions, 

the off-line methods produce results that are almost as good as their on-line counterparts. 
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CHAPTER 5 

IMPACTS OF INFLUENTIAL FACTORS 

In addition to the impacts of the estimation algorithms on the quality of the estimations, 

factors such as the impacts of data preprocessing procedures, detector errors, detector 

spacing, and travel time posting strategies are also expected to affect the accuracy and 

reliability of travel time estimation.  Therefore, the impacts of these factors on the 

on-line travel time estimation are investigated in this study.  The results presented in this 

chapter are based on using the Hybrid Model 2 as an example, since the impacts of these 

factors on all other methods generally show the same trend as this hybrid model.  The 

analysis results of the other estimation methods can be found in Appendix A.  Note that 

Hybrid Models 1 and 2 in these tables refer to the refined on-line hybrid models 

developed in this study.   

5.1. Data Preprocessing 

Data preprocessing includes data filtering, data smoothing, data aggregation, and data 

imputation.  This study investigates and compares the impacts of different methods to 

perform these steps on travel time estimation, as described below.   

5.1.1. Data Smoothing 

In this section, two different smoothing methods are compared: the simple moving 

average (which is the method used in SunGuide) and the exponential moving average.  

The Simulated Incident Scenario 1, described in Section 4.3.2, is used to test the impacts 

of data smoothing methods on travel time estimation.  In this scenario, the estimated 
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travel time is updated every 2 minutes, and the estimation performance is calculated for 

the time period 7:30 A.M. – 8:30 A.M.  Table 5-1 presents the estimation results with 

these two types of smoothing methods for the on-line Hybrid Model 2.  As shown in 

Table 5-1, for the simple moving average method, the estimation errors generally increase 

with the increase in the value of rolling period.  As mentioned in the previous section, 

the rolling period is a parameter that controls the moving window size for the 

determination of number of data points to be used in the moving average.  When a large 

rolling period is used, more historical information is included in the travel time 

estimation, which can dilute changes in traffic conditions such as queue length changes, 

resulting in higher estimation errors in fast changing situations like incident scenarios.  

It can also be seen from this table that a smaller rolling period will achieve better 

reliability in travel time estimation for incident conditions. 

The travel time estimation results obtained using the exponential moving average 

are also presented in Table 5-1.  The smoothing factor in the exponential moving 

average method can have any value between 0 and 1.  A higher value of this smoothing 

factor reduces the effects of older observations faster.  Comparing the results with those 

calculated from the simple moving average indicates that for Hybrid Model 2 and the 

investigated incident scenario, the exponential moving average method produces 

significantly more accurate and reliable results than the simple moving average method, 

since the exponential moving average method can give more weight to the latest data in 

the smoothing.  A smoothing factor of 0.4 is sufficient to produce good results.  It 

should be mentioned that these results are based on a simulation analysis that assumes 

100% detector measurement accuracy. 
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Table 5-1 Accuracy and Reliability of Travel Time Estimation Using Different 
Smoothing Methods  
Hybrid 
Model 2 

Factor 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% Late

1-minute 1.44 12.72 63.70 17.17 19.13 
2-minute 1.59 13.86 61.45 16.72 21.83 
3-minute 1.73 15.00 58.93 16.72 24.35 
4-minute 1.89 16.29 56.23 19.01 24.76 

Simple 
Moving 
Average 

Rolling 
Period 

5-minute 2.04 17.72 48.65 24.81 26.54 
0.2 1.49 12.51 69.21 3.33 27.46 
0.4 1.15 10.12 74.50 3.33 22.17 
0.6 1.03 9.28 73.92 4.36 21.71 
0.8 0.99 8.98 74.73 4.54 20.74 

Exponential 
Moving 
Average 

Smoothing 
Factor 

1.0 1.09 9.60 73.23 4.48 22.29 

5.1.2. Data Imputation 

To test the effects of different data imputation methods, 50% of the detector 

measurements were randomly removed for the Simulated Incident Scenario 1.  As 

mentioned earlier in this chapter, data imputation can be conducted spatially and/or 

temporally, and the spatial imputation can be performed within a station or between 

stations.  Therefore, different combinations of these imputation types were tested in this 

study including with or without within-station imputation for speed, with or without 

temporal imputation, and four different types of between-station imputations that are 

commonly used in practice.  These four types are the following: 

 Simple average, 

 Linear interpolation, 

 Linear interpolation for speed and occupancy but factor method for volume, 

and 
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 Factor method for all traffic parameters, as mentioned in the data 

preprocessing section.   

For the factor method, the factors are estimated based on data for all workdays in 

December, 2008.  The results are presented in Table 5-2. 

Table 5-2 Results of Different Data Imputation Methods 
Hybrid 
Model 2 

Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Hybrid Model 2 w/o missing data 1.15 10.12 74.50 3.33 22.17

Simple Average 1.23 10.72 72.20 4.77 23.03
Linear Interpolation 1.23 10.70 72.20 4.77 23.03
Linear Interpolation 
for S and O, and 
Factor for V 

1.23 10.70 72.20 4.77 23.03

w/o 
Temporal 
Imputation 

Factor Method 1.24 10.77 71.97 4.77 23.26
Simple Average 1.23 10.64 72.20 4.77 23.03
Linear Interpolation 1.22 10.61 72.20 4.77 23.03
Linear Interpolation 
for S and O, and 
Factor for V 

1.22 10.61 72.20 4.77 23.03

w/o 
Within- 
Station 
Imputation Average of 

Temporal 
and Spatial 
Imputations 

Factor Method 1.23 10.64 72.20 4.77 23.03
Simple Average 1.20 10.48 73.58 4.77 21.65
Linear Interpolation 1.20 10.48 73.58 4.77 21.65
Linear Interpolation 
for S and O, and 
Factor for V 

1.20 10.48 73.58 4.77 21.65

w/o 
Temporal 
Imputation 

Factor Method 1.20 10.48 73.58 4.77 21.65
Simple Average 1.20 10.48 73.58 4.77 21.65
Linear Interpolation 1.20 10.48 73.58 4.77 21.65
Linear Interpolation 
for S and O, and 
Factor for V 

1.20 10.48 73.58 4.77 21.65

w/  
Within- 
Station 
Imputation Average of 

Temporal 
and Spatial 
Imputations 

Factor Method 1.20 10.48 73.58 4.77 21.65
Note: S represents speed, V dictates volume count, and O is occupancy.  

Table 5-2 shows the impacts of the data imputation methods on the performance 

of travel time estimation results.  It should be mentioned that the performance 
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calculation is based on the time period between 7:30 A.M. and 8:30 A.M, which is 

heavily impacted by the incident conditions.  The results in this table show that the 

impact of randomly missing data when properly imputed is not high.  As mentioned 

above 50% of the detector measurements were removed randomly.  Slight differences in 

the accuracy of the resulting travel times can be observed from Table 5-2 for different 

imputation methods.  Note that the rows with within-station imputation, simple average 

between stations, and without temporal imputation corresponds to the imputation method 

used in SunGuide software.  Since travel time cannot be estimated when some of 

detector data are missing, the results presented in Table 5-2 cannot be compared to those 

without data imputation.  

5.2. Detector Errors 

Traffic data measured by point detectors include errors of different types: 

 Intrinsic errors due to measurement noise that reflects detector inaccuracy,  

 Systematic errors (for example, due to inadequate calibration or device 

inaccuracy), and  

 Data missing due to incidental and/or structural failure resulting from 

temporary power outages or detector malfunctions.   

The impacts of these three types of errors on travel time estimation performance are 

investigated in this study and discussed below. 

5.2.1. Intrinsic Errors 

Intrinsic errors are inherent to detectors and reflect their measurement inaccuracies.  The 

magnitude of the intrinsic error in measuring a given variables depends on the detector 
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type under consideration.  For example, Electronic Integrated Systems Inc. (EIS), the 

vendor of the RTMS detectors, reported that for RTMS detectors from a side fire location; 

the errors are expected to be 10% in speed, 5% in volumes, 10% in long vehicle volumes, 

and 5% in occupancy (EIS 2010).  To investigate the impacts of such errors on travel 

time estimation, the detector data resulting from CORSIM were modified to emulate 

these types of errors.  Similar to the study by Byon et al. (2009), a normal distribution 

was used to introduce the intrinsic errors in the simulated detector data of this study.  

The used normal distribution has a mean of zero, and a standard deviation determined by 

device measurement accuracy.  As shown in Figure 5-1, 99.7% of measurements are 

within 6 standard deviations of the mean detector error (zero) for a normal distribution.  

This assumption leads to the following equation: 

                    ErrX typical  26                                 (5-1) 

where  denotes the standard deviation, Xtypical is selected to be a common measurement 

value at the high end of each of the three basic variables (speed, volume, or occupancy), 

and Err is the corresponding measurement error.  Measurement at the high end is 

selected such that the worst case standard deviation is accounted for.  As an example, 

this investigation assumes that Err for speed measurement is 10%; Err for volume 

measurement is 5%, and Err for occupancy measurement is also 5%.  With the 

assumptions of 65 mph, 1,700 veh/hr, and 100%, as respective typical speed, volume, and 

occupancy measurements, Equation 5-1 yields the following standard deviations values: 

2.2 mph for speed, 28.3 veh/hr for volume, and 1.7 for occupancy.  Note that this is only 

one example.  Depending on the local situation and specific devices used, the values of 

Err and Xtypical may vary but the same methodology can still be applied.  
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‐3 -2 +3- +2+

About 68%

About 95%

About 99.7%
 

Figure 5-1 Illustration of Normal Distribution for Intrinsic Errors 

In this study, the intrinsic errors were introduced in two simulated scenarios: an 

uncongested scenario and Incident Scenario 1.  For each scenario, 10 random cases were 

generated and the results are presented in Table 5-3 for Hybrid Model 2 and in Tables A-5 

and A-6 (in Appendix A) for other methods.  Note that a number of 10 random cases 

satisfies the minimum sample size required at a 95% confidence interval for normal 

distribution.  As shown in Table 5-3, the performance of Hybrid Model 2 does not 

change much with the intrinsic errors introduced for the uncongested scenario.  

However, the performance is affected by the error for the incident scenario.  It should be 

noted that the results presented in Table 5-3 are with data filtering and imputation.  The 

impacts of intrinsic errors are expected to be higher without proper filtering and 

imputation and also with higher detector error. 
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Table 5-3 Impacts of Intrinsic Errors on Travel Time Estimation Performance  

Hybrid Model 2 Cases 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% Late

w/o Intrinsic Errors 0.082 1.31 100 0 0 
Average 0.083 1.33 100 0 0 

Minimum 0.081 1.30 100 0 0 

Simulated 
Uncongested 
Conditions 

w/ 
Intrinsic 
Errors Maximum 0.085 1.36 100 0 0 

w/o Intrinsic Errors 1.15 10.12 74.50 3.33 22.17 
Average 1.58 12.87 64.59 4.24 31.17 

Minimum 1.23 10.66 61.17 2.59 22.34 

Simulated 
Incident 
Conditions 

w/ 
Intrinsic 
Errors Maximum 1.75 13.97 71.17 6.49 34.75 

5.2.2. Systematic Errors 

Point detectors are not always well calibrated or have systematic underestimation or 

overestimation problems in measurements.  These are referred to as systematic errors in 

the reported measurements.  Examination of the detector measurements in this study 

showed that some detector stations always reported consistently high or consistently low 

values compared to the expected values based on adjacent detector measurements and 

traffic flow theory concepts.  Figure 5-2 shows the average free flow speed based on the 

detector data reported at station, DS-1513E, for two time periods.  As mentioned in 

Highway Capacity Manual (HCM) 2000, the free flow speed of a freeway segment is 

expected to prevail at flow rates between 0 pc/h/ln and 1,200 pc/h/ln (HCM 2000).  In 

this study, this definition was used to estimate the average free flow speed for the detector 

station with potential problems based on 5-minute aggregated detector data between 

12:00 A.M. and 5:00 A.M. from December 1, 2008 to February 28, 2009.  As shown in 

Figure 5-2, the data set is divided into two time periods.  Time Period 1 is from 

December 1, 2008 to January 15, 2009 and Time Period 2 is from January 16, 2009 to 

February 28, 2009.  It is seen from this figure that for Time Period 1, the resulting free 
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flow speed for Lane 1 is close to 90 mph and the free flow speed for Lane 2 and Lane 3 

are higher than 90 mph.  However, in Time Period 2, the average free flow speed for 

Lane 1 drops to 50 mph, while those for Lanes 2 and 3 are about 65 mph. 65 mph seems 

to be a reasonable free flow speed based on the free flow speeds at an adjacent detection 

station.  The 90 mph and 50 mph speed measurements seem to be due to systematic 

errors of about +26.87 mph and -14.6 mph, respectively.   

To investigate the impacts of systematic errors on travel time estimation results, 

different scenarios were created in this study by introducing systematic errors to the 

error-free simulated detector data for uncongested scenario and Incident Scenario 1, as 

shown below in Table 5-4.  Note that in each scenario having more than one detection 

station with a failure, the distances between the stations with the problem are selected to 

be equal.  

Lane 1 Lane 2 Lane 3
0

10

20

30

40

50

60

70

80

90

100

110

 

F
re

e 
F

lo
w

 S
pe

ed
 (

M
P

H
)

Detector Station DS-1513E

 Time Period 1
 Time Period 2

 
Figure 5-2 Estimated Free Flow Speed for Detection Station DS-1513E 
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Table 5-4 Tested Scenarios for Systematic Errors 

Case No. Detector Station  
Lanes with 
Systematic Errors

Systematic Error in Speed
(“+”: increase;  
 “-”: decrease) 

1 DS-1529E  All Lanes  + 26.87 mph 
2 DS-1509E and DS-1529E All Lanes +26.87 mph 

3 DS-1509E, DS-1523E and 
DS-1535E 

All Lanes +26.87 mph 

4 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

Lane 1 +26.87 mph 

5 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

Lane 1 and Lane 2 +26.87 mph 

6 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

All Lanes +26.87 mph 

7 DS-1529E  All Lanes  -14.60 mph 
8 DS-1509E and DS-1529E All Lanes -14.60 mph 

9 DS-1509E, DS-1523E and 
DS-1535E 

All Lanes -14.60 mph 

10 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

Lane 1 -14.60 mph 

11 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

Lane 1 and Lane 2 -14.60 mph 

12 DS-1509E, DS-1521E, 
DS-1529E and DS-1539E

All Lanes -14.60 mph 

Table 5-5 presents the performance of Hybrid Model 2 for the simulated 

uncongested and incident conditions when systematic errors are introduced.  It is shown 

in Table 5-5a that with larger systematic errors, both accuracy and reliability are reduced.  

Comparing the results with and without data filtering indicates that the developed data 

filtering procedures can slightly improve the estimation performance for systematic high 

speed errors, but not for systematic low speed errors, since it is difficult to differentiate 

the systematic low speed from the drops in speeds due to congestion.  Tables 5-5b 

presents similar results but for incident conditions.  Again, the results in this table show 

that the data filtering procedures may help to improve the performance of the estimation 

method.   
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Table 5-5a Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Uncongested Conditions  

Cases 
Hybrid 
Model 2 

Systematic 
High/Low 

Speed 

Stations w/ 
Errors 

Lanes at 
Stations w/ 

Errors 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

w/o Errors 0.08 1.31 100 0 0 
1 Station All Lanes 0.12 1.91 100 0 0 
2 Stations All Lanes 0.15 2.30 100 0 0 
3 Stations All Lanes 0.21 3.24 100 0 0 
4 Stations 1 Lane 0.18 2.88 100 0 0 
4 Stations 2 Lanes 0.28 4.51 100 0 0 

Systematic 
High Speed 

4 Stations All Lanes 0.37 5.85 100 0 0 
1 Station All Lanes 0.21 3.40 86.59 13.41 0 
2 Stations All Lanes 0.27 4.30 86.37 13.63 0 
3 Stations All Lanes 0.38 5.96 87.06 12.95 0 
4 Stations 1 Lane 0.10 1.67 99.34 0.66 0 
4 Stations 2 Lanes 0.32 5.13 90.77 9.23 0 

w/o Data 
Filtering  

Systematic 
Low Speed 

4 Stations All Lanes 0.71 11.29 83.58 16.42 0 
w/o Errors 0.08 1.31 100 0 0 
1 Station All Lanes 0.11 1.72 100 0 0 
2 Stations All Lanes 0.11 1.77 100 0 0 
3 Stations All Lanes 0.17 2.68 100 0 0 
4 Stations 1 Lane 0.11 1.80 100 0 0 
4 Stations 2 Lanes 0.17 2.69 100 0 0 

Systematic 
High Speed 

4 Stations All Lanes 0.33 5.15 100 0 0 
1 Station All Lanes 0.21 3.40 86.59 13.41 0 
2 Stations All Lanes 0.27 4.30 86.37 13.63 0 
3 Stations All Lanes 0.38 5.95 87.06 12.95 0 
4 Stations 1 Lane 0.10 1.67 99.34 0.66 0 
4 Stations 2 Lanes 0.32 5.13 90.77 9.23 0 

w/ Data 
Filtering 

Systematic 
Low Speed 

4 Stations All Lanes 0.71 11.29 83.58 16.42 0 
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Table 5-5b Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Incident Conditions  

Cases 
Hybrid 
Model 2 

Systematic 
High/Low 

Speed 

Stations w/ 
Errors 

Lanes at 
Stations w/ 

Errors 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

w/o Errors 1.15 10.12 74.50 3.33 22.17
1 Station All Lanes 1.16 10.17 74.38 2.99 22.63
2 Stations All Lanes 1.16 10.21 74.84 2.53 22.63
3 Stations All Lanes 1.25 11.05 74.38 1.49 24.12
4 Stations 1 Lane 1.99 15.88 60.02 0.23 39.75
4 Stations 2 Lanes 2.37 19.00 54.62 0.23 45.15

Systematic 
High Speed 

4 Stations All Lanes 2.54 20.62 53.88 0.23 45.89
1 Station All Lanes 1.50 13.11 64.39 15.11 20.51
2 Stations All Lanes 1.25 10.95 71.22 7.64 21.14
3 Stations All Lanes 1.10 10.47 75.07 8.73 16.20
4 Stations 1 Lane 1.58 13.26 61.86 15.91 22.23
4 Stations 2 Lanes 1.69 14.70 52.38 22.92 24.70

w/o Data 
Filtering  

Systematic 
Low Speed 

4 Stations All Lanes 5.62 42.88 41.53 39.06 19.41
w/o Errors 1.15 10.12 74.50 3.33 22.17
1 Station All Lanes 1.15 10.09 74.38 2.99 22.63
2 Stations All Lanes 1.15 10.09 74.38 2.99 22.63
3 Stations All Lanes 1.22 10.71 74.84 1.61 23.55
4 Stations 1 Lane 1.28 11.17 70.76 5.28 23.95
4 Stations 2 Lanes 1.53 13.05 67.43 2.35 30.21

Systematic 
High Speed 

4 Stations All Lanes 2.50 20.13 53.88 0.23 45.89
1 Station All Lanes 1.50 13.13 64.45 15.28 20.28
2 Stations All Lanes 1.25 10.93 71.22 7.64 21.14
3 Stations All Lanes 1.08 9.78 75.53 4.65 19.82
4 Stations 1 Lane 1.22 10.78 70.42 9.02 20.56
4 Stations 2 Lanes 1.50 13.05 64.96 12.23 22.80

w/ Data 
Filtering 

Systematic 
Low Speed 

4 Stations All Lanes 3.46 25.72 55.43 15.16 29.41

The accuracy of some types of point detectors decrease under low speed 

conditions.  To test how such errors in low speed measurements affect the accuracy and 

reliability of travel time estimation methods, systematic errors are introduced to the 

error-free simulated detector data when speed is less than 20 mph, and the analysis results 
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are presented below by using Hybrid Model 2 as an example.  It is seen from Table 5-6 

that when the measured low speeds are artificially increased or decreased by 20%, the 

error of the estimated travel time increass slightly from 10.1% to about 12%.  However, 

with an introduced systematic error of 40% in the measured speeds, the estimated error in 

travel time increased by 4% to 5%, compared to the case without errors in measured 

speeds.  The reliability of travel time estimates decreases significantly when the point 

detector systematically reports lower speeds than the actual values during the congested 

conditions, as shown in Table 5-6.  Note that the results presented in Table 5-6 are 

obtained with data filtering procedures.  

Table 5-6 Impacts of Systematic Errors in Low Speed Measurements on Travel 
Time Estimation Performance for Simulated Incident Conditions  

Method Cases  
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

w/o Errors 1.15 10.12 74.50 3.33 22.17
20% Increase in Low Speed 1.37 11.52 71.97 1.21 26.82
40% Increase in Low Speed 1.66 13.57 68.18 0.98 30.84
20% Decrease in Low Speed 1.46 12.33 61.69 16.94 21.37

Hybrid Model 2 

40% Decrease in Low Speed 1.88 15.19 57.15 16.83 26.02

5.2.3. Incidental and Structural Failure 

In addition to the two types of errors mentioned above, incidental and/or structural 

failures may also exist in detector data (Vant Lint 2004).  The incidental or occasional 

failure occurs randomly.  Various factors may contribute to its occurrence, such as 

temporary communication system failure resulting from power outrages.  Figure 5-3 

presents histograms of incidental and structural failures for detectors DS-1509E-Lane-1 

and DS-1549E-Lane-1, as examples, and also for all the detectors along SR-826 in 

December, 2008.  Note that the units of the x-axis in Figures 5-3(a) and 5-3(c) are 



  

122 

minutes and those for Figures 5-3(b) and 5-3(d) are hours.  Most of the missing data 

duration is less than 2 minutes. 

To quantify the impacts of incidental and structural failures, worst case scenarios 

were created by introducing failures to the error-free simulated detector data.  These 

failure scenarios were created based on what happens in real-world detector data during 

the study period in December, 2008.  Since a detector may fail more than once, the 

longest duration of the missing data during the failure period was used. 

Table 5-7 shows the impacts of incidental and structural failures on travel time 

estimation performance during both uncongested and incident conditions.  The results in 

this table show that, even with the worst case of incidental and structural failures, after 

imputing the missing data, these failures do not have high impacts on the estimated travel 

time accuracy for the uncongested conditions.  However, for the incident scenario, the 

existence of incidental and structural failures can result in a large increase in estimation 

errors and also a reduction in reliability.  This can be explained by the fact that even 

though the data imputation procedure is applied to replace the missing data during 

incident conditions, due to fast changes in traffic conditions, the filled data may not be 

able to completely capture such changes, resulting in a less satisfactory performance.       
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Figure 5-3 Examples of Incidental and Structural Failures 

(continued on next page) 
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Figure 5-3 Examples of Incidental and Structural Failures 
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Table 5-7 Impacts of Incidental and Structural Failures on Travel Time Estimation 
Performance  

Hybrid Model 2 Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 0.08 1.31 100 0 0 Simulated 
Uncongested 
Conditions 

w/ Incidental and 
Structural Errors 

0.10 1.54 100 0 0 

w/o Errors 1.15 10.12 74.50 3.33 22.17 Simulated 
Incident 
Conditions 

w/ Incidental and 
Structural Errors 

1.95 17.58 62.44 15.45 22.11 

5.3. Detector Spacing 

Number of detectors as well as their locations may affect the travel time estimation 

performance.  In order to study such impacts, some simulated detector data are 

intentionally removed to increase the average detector spacing.  Table 5-8 presents the 

sensitivity analysis results for the impacts of detector spacing.  As mentioned in the 

previous chapter, the average spacing between detectors deployed along the eastbound of 

SR-826 is about 0.3 miles.  As shown in Table 5-8, for uncongested traffic conditions, 

an increase in detector spacing only slightly reduces the accuracy and reliability of travel 

time estimation, as the traffic is relatively stable in this case.  However, the performance 

of travel time estimation is greatly affected with the increase in detector spacing for 

incident scenario.  For example, as the detector spacing increases from about 0.3 miles 

to 0.6 miles, the MAPE increases from 10.1% to 19.7%, and the reliability decreases 

from 74.5% to 52.8%.  This is because large detector spacing cannot capture the 

changes in traffic dynamics.  With the further increase in detector spacing from 0.6 

miles to about 1.2 miles, the performance of travel time estimation appears to be almost 

the same for investigated conditions.        
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Table 5-8 Impacts of Detector Spacing on Travel Time Estimation Performance  

Hybrid Model 2 
Approximate 

Detector Spacing 
(Miles) 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

0.3 0.08 1.31 100 0 0 
0.6 0.10 1.57 100 0 0 

Simulated 
Uncongested 
Conditions 1.2 0.09 1.40 99.75 0.25 0 

0.3 1.15 10.12 74.50 3.33 22.17 
0.6 2.56 19.74 52.84 1.15 46.01 

Simulated 
Incident 
Conditions 1.2 2.57 19.72 53.76 1.49 44.74 
 

5.4. Travel Time Posting Configuration 

Travel time posting strategies, such as travel time updating frequency, travel time link 

length, and the range of posted travel time are also expected to affect the accuracy and 

reliability of travel time estimates.  This section includes the results of tests conducted 

in this study to investigate the impacts of these influential factors.   

5.4.1. Travel Time Updating Frequency 

Sensitivity analysis is conducted in this study to understand the impacts of the travel time 

updating frequency on the accuracy and reliability of travel time estimates.  Updating 

frequencies ranging from one to five minutes are included in the analysis.  Table 5-9 

displays the travel time estimation results for the simulated uncongested conditions and 

incident conditions as well.  The results in this table indicate that for the uncongested 

conditions, a longer travel time updating interval does not lead to worse estimation 

performance, since the traffic is relatively stable under uncongested conditions.  But for 

the incident scenario, it is seen that the errors increase and that the reliability is reduced 

with an increase in the travel time updating interval.  This indicates that more frequent 
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updates in travel time estimates are preferred for incident conditions due to the varying 

traffic conditions during incidents.  

Table 5-9 Travel Time Estimation Performances with Different Travel Time 
Updating Frequencies  

Hybrid Model 2 
Updating 

Frequency 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

1-minute 0.10 1.62 100 0 0 
2-minute 0.08 1.31 100 0 0 
3-minute 0.07 1.16 100 0 0 
4-minute 0.07 1.15 100 0 0 

Simulated 
Uncongested 
Conditions 

5-minute 0.07 1.06 99.89 0.11 0 
1-minute 1.16 10.21 74.24 2.58 23.18 
2-minute 1.15 10.12 74.50 3.33 22.17 
3-minute 1.31 11.31 70.55 4.64 24.81 
4-minute 1.35 11.85 55.38 17.69 26.93 

Simulated 
Incident 
Conditions 

5-minute 1.34 11.25 69.56 6.86 23.58 

5.4.2. Travel Time Link Length 

To show the impacts of travel time link lengths, four different travel time links are 

defined as follows: 

 DS-1523E – DS-1549E (Distance: 4.24 miles) 

 DS-1521E – DS-1549E (Distance: 4.55 miles) 

 DS-1517E – DS-1549E (Distance: 5.27 miles) 

 DS-1509E – DS-1549E (Distance: 6.42 miles) 

Table 5-10 presents the travel time estimation accuracy and reliability for these 

defined travel time links under the simulated uncongested and Incident 1 scenarios.  The 

mean absolute errors are shown to increase with the increase in the link length.  

However, the mean absolute percentage errors do not monotonically change with such an 

increase in distance as this performance measure is also related to the actual travel time 
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spatial distribution along the studied travel time link.  The reliability does not 

necessarily decreases as the distance increases since the reliability is also determined by 

the range of posted travel time.  Similar conclusions can be obtained based on the results 

in Table 5-10 for incident conditions.  Any conclusions based on the reported results are 

limited to the range of the increase in length investigated in this study.  

Table 5-10 Travel Time Estimation Performances with Different Travel Time Link 
Lengths   
Hybrid 
Model 2 

Origin-Destination 
Distance 
(Miles) 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 
DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23
DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 

Simulated 
Uncongested 
Conditions 

DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 
DS-1523E-DS-1549E 4.24 0.88 13.69 91.40 0 8.60
DS-1521E-DS-1549E 4.55 1.05 13.50 81.94 4.59 13.47
DS-1517E-DS-1549E 5.27 1.05 10.90 75.52 3.38 21.10

Simulated 
Incident 
Conditions 

DS-1509E-DS-1549E 6.42 1.15 10.12 74.50 3.33 22.17

5.4.3. Posted Travel Time Range 

As mentioned above, FDOT District 6 divides the estimated travel time into four 

categories: less than 5 minutes, between 5 and 10 minutes, between 10 and 35 minutes, 

and greater than 35 minutes (FDOT District 6 2010).  The corresponding ranges of 

travel time for these four categories are under 5 minutes, 3-minute range around the 

estimated travel time, 5-minute range around the estimated travel time, and over 35 

minutes, respectively. 

Sensitivity analysis is conducted to see how the reliability of travel time 

estimation changes by adjusting the posted travel time range.  The corresponding 

estimation performance is listed in Table 5-11.  This table shows that for uncongested 
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conditions, the reliability of the posted travel time is close to 100% even when the posted 

travel time range is decreased to 2 minutes.  However, if the travel time range is further 

reduced to 1 minute, the reliability of the estimated travel time is significantly impacted.  

Table 5-11 Travel Time Estimation Reliability with Different Posted Travel Time 
Ranges  

Hybrid Model 2 
Range of Posted 
Travel Time 

Reliability 
(%) 

% Early % Late 

[TT-2, TT+2] 100 0 0 
[TT-1, TT+2] 100 0 0 
[TT-1, TT+1] 99.29 0 0.71 

Simulated Uncongested 
Conditions 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 
[TT-2, TT+3] 74.50 3.33 22.17 
[TT-2, TT+4] 75.88 3.33 20.79 
[TT-2, TT+5] 75.88 3.33 20.79 
[TT-1, TT+4] 69.67 9.54 20.79 
[TT-1, TT+5] 69.67 9.54 20.79 

Simulated Incident 
Conditions 

[TT-1, TT+6] 70.25 9.54 20.22 

Note that the posted travel time range in Table 5-11 for incident conditions is 

mainly for travel time estimates that are greater than 10 minutes, due to the congestion 

caused by the incident.  It can be seen from this table that if the upper value of travel 

time range is increased to higher than 3 minutes, the reliability of the estimated travel 

time does not improve much.  This indicates that such an adjustment is not beneficial.  

Furthermore, decreasing the lower range to 1 minute reduces overall reliability.  

5.5. Summary 

The impacts of data preprocessing procedures, detector errors, detector spacing, and 

travel time posting strategies on travel time estimation accuracy and reliability were 

investigated through sensitivity analysis.  Two data smoothing methods were compared: 

the simple moving average method and exponential moving average method.  The 
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results show that the exponential moving average method can produce better results 

during incident conditions as this method gives more weights to the latest data.  The 

comparison of different data imputation methods indicated that the imputation method 

used in the SunGuide software appears to perform as good as other investigated methods.  

Three types of detector errors, intrinsic errors, systematic errors, and incidental 

and structural failures, were examined by intentionally introducing errors to 100% 

accurate simulated detector data.  The performances of travel time estimation based on 

these detector data with errors were compared to those estimated from 100% accurate 

detector data.  The analysis results show that detector errors have negligible impacts on 

travel time estimates during the uncongested conditions within the investigated ranges of 

errors; however, the performance of travel time estimation can deteriorate significantly in 

incident scenarios.  Similarly, the impacts of detector spacing were examined by 

removing certain detector data.  The sensitivity analysis results indicate that congested 

conditions such as incidents require closer detector spacing.   

Travel time posting configurations were considered in this study in terms of travel 

time updating frequency, travel time link length, and posted travel time range.  It is 

found that for uncongested conditions, travel time can be estimated accurately and 

reliably even with a longer updating interval, longer travel time link length, and small 

range of posted travel time.  However, for incident conditions, the travel time estimation 

requires a shorter updating frequency (such as 1-minute), shorter travel time link length, 

and a wider posting range to achieve a better performance.   
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CHAPTER 6 

RESEARCH SUMMARY 

This study has developed two hybrid on-line travel time estimation models and two 

corresponding off-line methods to estimate freeway travel times based on point detector 

measurements.  The accuracy and reliability of travel time estimation using these 

models were compared to the  existing speed-based and traffic flow-based methods 

using simulation and real-world data.  In addition, the performance of travel time 

estimation under different conditions, such as different congestion levels, incident 

conditions, detector errors, and various estimation method basic parameters, was also 

investigated.  This chapter summarizes the original contributions of the proposed 

methodology and conclusions of the study, and discusses the direction of future work.  

6.1. Study Contribution 

Compared to existing travel time estimation methods, the main contributions of this study 

are the following:  

 A clustering analysis-based traffic condition identification procedure was 

incorporated in travel time estimation.  This provides an automatic way to 

identify congestion level and queue status, and in turn provides a threshold for 

switching between different travel time estimation methods, as described next.  

 Based on the performance of individual estimation methods under certain 

conditions, two hybrid models were developed.  Hybrid Model 1 combines 

the Mid-Point method with a traffic flow-based method.  Hybrid Model 2 

combines the Mid-Point method with the Minimum Speed method.  Such 
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combinations may achieve better performance since different methods 

perform differently under different traffic conditions, including no-congestion, 

recurrent conditions and incidents.   

 In addition, instead of assuming one value for the average effective vehicle 

length used in the traffic flow-based estimation method, an effective way to 

compute this parameter based on detector data in the same peak period was 

proposed in this study.   

 During incident conditions with fast changing queue lengths, shock wave 

analysis-based refinements were introduced to the developed models to 

account for the fast queue prorogation and recovery. 

 Both on-line and off-line hybrid models were developed and compared in this 

study; this provides some insight into the conditions under which the accuracy 

and reliability of travel time estimates can potentially be improved.  

 In addition to traditional accuracy measures, performance measures, in terms 

of percentage of vehicles arriving to the destination within a given travel time 

range, percentage of vehicles arriving early, and percentage of vehicles 

arriving late, were proposed in this study to quantify the reliability of travel 

time estimation.  This is closely related to the practice of posting travel time 

as a range of travel time instead of an exact value, which is usually posted in 

real-world applications.    

 Detector errors, including intrinsic errors, systematic errors, and incidental 

and structural failures, were introduced to the error-free simulated detector 
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data to study how detector errors affect the travel time estimation accuracy 

and reliability.    

6.2. Conclusions 

In this study, travel time estimates obtained from existing speed-based methods, traffic 

flow-based method, and the developed models were tested by using both simulation and 

real-world travel time data as ground truth data.  The results indicate that all of the 

tested methods perform at acceptable and comparable levels at low congestion levels.  

However, their performances vary with the increase in congestion levels.  During low 

congestion levels, the Minimum Speed method and flow-based methods produce slightly 

less accurate results compared to other methods.  But the difference is not significant.  

For moderately recurrent congested conditions and fast-changing conditions during 

incidents, the performances of these two methods are comparable to the performances of 

other methods.  The comparison with other estimation methods shows that the 

developed hybrid models perform well in all cases.  Further comparisons between the 

on-line and off-line travel time estimation results reveal that off-line methods perform 

significantly better only during fast-changing congested conditions such as during 

incidents.  The difference in performance between the on-line and off-line methods 

increases with the increase in congestion levels.   

The impacts of major influential factors, such as data preprocessing procedures, 

detector errors, detector spacing, and travel time posting strategies, on the performance of 

travel time estimation, were also investigated in this study.  The results indicate that the 

spatial imputation method used in the SunGuide software to account for missing data 
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appears to perform as good as other investigated methods.  When estimating travel time 

during incident conditions, the use of the exponential moving average produces more 

accurate and reliable results compared to the simple moving average method used in 

SunGuide, since the exponential moving average method can give more weight to the 

latest data in the smoothing and can thus better account for the fast-changing dynamic 

conditions during incidents.  When using the simple moving average method during 

incident conditions, shorter rolling time periods produce better results.   

The results also show that the intrinsic errors caused by measurement noise, 

systematic errors (e.g., due to inadequate calibration or device inaccuracy), and data 

missing due to incidental and/or structural failure have significantly higher negative 

impacts on the performance of travel time estimation during congested conditions than 

for uncongested conditions.  Similarly, larger detector spacing does not worsen the 

performance of travel time estimation during uncongested conditions, but has significant 

impacts on the estimation accuracy and reliability during incidents.  

The results of the sensitivity analysis in this study indicates that for uncongested 

conditions, a longer travel time updating interval does not lead to poorer estimation 

performance.  For incident scenarios, the errors increase and the reliability decreases 

with the increase in the travel time updating interval.  The absolute errors also increase 

with the increase in the travel time link length under incident conditions.  With regard to 

the range of travel time posted on ATIS devices, it appears that a posted travel time range 

of two-to-three minutes generally produces good results for uncongested conditions.  

However, if the travel time range is further reduced to one minute, the reliability of the 

estimated travel time is significantly impacted.  For incident scenarios, a slightly larger 
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travel time range may increase the reliability of travel time estimation, but the 

improvement is not significant.  

6.3. Future Work 

The hybrid models for freeway travel time estimation developed in this study are not 

perfect, and merit some further studies in the following areas: 

 For real-time applications, a refinement needs to be made to the developed 

models at the later stages of lane blockage to capture the effect of front recovery 

shock wave during incident clearance.  However, this requires the knowledge of 

approximate lane blockage duration.  Future efforts may focus on incorporating 

existing incident duration models including lane blockage duration models in 

travel time estimation.  

 Even though the developed hybrid models were tested using simulated incidents, 

it is not clear how these models perform when applying them to real-world 

incident cases.  It is necessary to collect real-world travel time data, especially 

during various types of incidents, to further test these models.  

 The off-line hybrid models developed in this study can be used in the training 

process of real-time short-term travel time prediction approaches such as Neural 

Network, whose performances may be compared to the developed on-line hybrid 

models in future studies.  

 The reliability of travel time estimation was only quantified based on simulation.  

Due to lack of data, this study did not quantify the estimation reliability for 

real-world cases.  In the future, additional real-world data, such as vehicle 
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trajectory data, or travel time distribution data, should be collected and used in the 

evaluation of travel time estimation reliability.   

 There is limited information regarding point detector accuracy under various 

conditions.  Experiments should be conducted to test the measurement accuracy 

of different types of detectors, especially during low speed conditions.  This 

information can be further used in the methodology developed by this study to 

investigate their impacts on travel time estimation performance. 
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APPENDIX A 

SENSITIVITY ANALYSIS RESULTS FOR TRAVEL TIME ESTIMATION 

 
This appendix presents detailed analysis results for the impacts of major influential 

factors on the accuracy and reliability of travel time estimates.  

A.1 Impacts of Data Smoothing Methods 

Table A-1 Accuracy and Reliability of Travel Time Estimation Using Simple 
Moving Average 

Method 
Rolling 
Period 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

1-minute 1.87 14.91 58.42 3.50 38.08 

2-minute 1.96 15.51 58.53 2.53 38.94 

3-minute 2.05 16.23 59.56 2.01 38.43 

4-minute 2.11 16.63 59.10 2.47 38.43 

Point-to-Point 
Method 

5-minute 2.17 17.09 58.24 3.91 37.85 

1-minute 1.69 13.70 62.03 4.19 33.77 

2-minute 1.79 14.37 60.89 4.19 34.92 

3-minute 1.87 15.05 60.25 3.68 36.07 

4-minute 1.95 15.62 61.34 2.99 35.67 

Mid-Point 
Method 

5-minute 2.04 16.31 57.50 6.43 36.07 

1-minute 1.49 13.54 66.57 14.36 19.07 

2-minute 1.81 15.78 56.86 18.15 24.99 

3-minute 1.78 15.66 57.21 17.81 24.99 

4-minute 1.81 16.03 54.22 20.79 24.99 

Hybrid Model 1 

5-minute 1.91 17.08 52.79 22.23 24.99 

1-minute 1.44 12.72 63.70 17.17 19.13 

2-minute 1.59 13.86 61.45 16.72 21.83 

3-minute 1.73 15.00 58.93 16.72 24.35 

4-minute 1.89 16.29 56.23 19.01 24.76 

Hybrid Model 2 

5-minute 2.04 17.72 48.65 24.81 26.54 
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Table A-2 Accuracy and Reliability of Travel Time Estimation Using Exponential 
Moving Average 

Method 
Smoothing 

Factor 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

0.2 2.22 17.30 57.38 1.09 41.53 

0.4 2.07 16.28 57.32 1.78 40.90 

0.6 2.03 16.06 58.47 2.24 39.29 

0.8 2.04 16.09 58.24 2.24 39.52 

Point-to-Point 
Method 

1.0 2.04 16.17 55.66 3.45 40.90 

0.2 2.02 15.93 58.53 3.67 37.79 

0.4 1.86 14.78 59.05 4.19 36.76 

0.6 1.82 14.49 59.97 3.10 36.93 

0.8 1.82 14.53 58.53 3.91 37.57 

Mid-Point 
Method 

1.0 1.84 14.66 59.10 3.85 37.05 

0.2 1.50 13.51 61.63 12.52 25.85 

0.4 1.11 10.24 70.59 10.34 19.07 

0.6 1.13 10.72 66.63 14.70 18.67 

0.8 1.11 10.52 66.97 14.88 18.15 

Hybrid Model 1 

1.0 1.44 12.77 61.00 19.30 19.70 

0.2 1.49 12.51 69.21 3.33 27.46 

0.4 1.15 10.12 74.50 3.33 22.17 

0.6 1.03 9.28 73.92 4.36 21.71 

0.8 0.99 8.98 74.73 4.54 20.74 

Hybrid Model 2 

1.0 1.09 9.60 73.23 4.48 22.29 
 

A.2 Impacts of Data Imputation Methods 

Table A-3 Results of Different Data Imputation Methods without Within-Station 
Imputation 

Method 
Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Simple Average 2.09 16.38 57.09 2.93 39.98

Linear Interpolation 2.09 16.35 57.09 2.93 39.98
Point-to- 
Point 
Method 

w/o 
Temporal 
Imputation Factor Method 2.09 16.38 57.15 3.10 39.75
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Method 
Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Simple Average 2.08 16.28 57.09 2.93 39.98

Linear Interpolation 2.08 16.25 57.09 2.93 39.98
Point-to- 
Point 
Method 

Average of 
Temporal 
and Spatial 
Imputations Factor Method 2.08 16.30 57.09 2.93 39.98

Simple Average 1.87 14.86 59.97 3.50 36.53

Linear Interpolation 1.87 14.85 59.97 3.50 36.53
w/o 
Temporal 
Imputation Factor Method 1.88 14.95 59.74 3.50 36.76

Simple Average 1.86 14.79 59.97 3.50 36.53

Linear Interpolation 1.86 14.77 59.97 3.50 36.53

Mid-Point 
Method Average of 

Temporal 
and Spatial 
Imputations Factor Method 1.87 14.81 59.97 3.50 36.53

Simple Average 1.09 10.23 68.70 10.91 20.39

Linear Interpolation 1.08 10.16 68.70 10.91 20.39
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.10 10.35 68.75 10.68 20.56

w/o 
Temporal 
Imputation 

Factor Method 1.15 10.79 66.28 12.92 20.79

Simple Average 1.08 10.15 68.70 10.91 20.39

Linear Interpolation 1.08 10.09 68.70 10.91 20.39
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.09 10.20 68.70 10.91 20.39

Hybrid 
Model 1 

Average of 
Temporal 
and Spatial 
Imputations 

Factor Method 1.11 10.46 68.70 10.91 20.39

Simple Average 1.23 10.72 72.20 4.77 23.03

Linear Interpolation 1.23 10.70 72.20 4.77 23.03
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.23 10.70 72.20 4.77 23.03

w/o 
Temporal 
Imputation 

Factor Method 1.24 10.77 71.97 4.77 23.26

Simple Average 1.23 10.64 72.20 4.77 23.03

Linear Interpolation 1.22 10.61 72.20 4.77 23.03
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.22 10.61 72.20 4.77 23.03

Hybrid 
Model 2 

Average of 
Temporal 
and Spatial 
Imputations 

Factor Method 1.23 10.64 72.20 4.77 23.03
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Table A-4 Results of Different Data Imputation Methods with Within-station 
Imputation 

Method 
Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Simple Average 2.06 16.14 57.09 2.93 39.98

Linear Interpolation 2.06 16.14 57.09 2.93 39.98
w/o 
Temporal 
Imputation Factor Method 2.06 16.14 57.09 2.93 39.98

Simple Average 2.06 16.14 57.09 2.93 39.98

Linear Interpolation 2.06 16.14 57.09 2.93 39.98

Point-to- 
Point 
Method 

Average of 
Temporal 
and Spatial 
Imputations Factor Method 2.06 16.14 57.09 2.93 39.98

Simple Average 1.84 14.66 59.97 3.50 36.53

Linear Interpolation 1.84 14.66 59.97 3.50 36.53
w/o 
Temporal 
Imputation Factor Method 1.84 14.66 59.97 3.50 36.53

Simple Average 1.84 14.66 59.97 3.50 36.53

Linear Interpolation 1.84 14.66 59.97 3.50 36.53

Mid-Point 
Method Average of 

Temporal 
and Spatial 
Imputations Factor Method 1.84 14.66 59.97 3.50 36.53

Simple Average 1.13 10.49 68.52 10.91 20.56

Linear Interpolation 1.12 10.41 68.70 10.91 20.39
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.14 10.61 68.52 10.91 20.56

w/o 
Temporal 
Imputation 

Factor Method 1.14 10.72 68.52 10.68 20.79

Simple Average 1.14 10.53 68.52 10.91 20.56

Linear Interpolation 1.13 10.48 68.52 10.91 20.56
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.14 10.59 68.52 10.91 20.56

Hybrid 
Model 1 

Average of 
Temporal 
and Spatial 
Imputations 

Factor Method 1.17 10.84 67.15 10.91 21.94

Simple Average 1.20 10.48 73.58 4.77 21.65

Linear Interpolation 1.20 10.48 73.58 4.77 21.65
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.20 10.48 73.58 4.77 21.65
Hybrid 
Model 2 

w/o 
Temporal 
Imputation 

Factor Method 1.20 10.48 73.58 4.77 21.65
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Method 
Temporal 
Imputation 

Between-Station 
Imputation  

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

Simple Average 1.20 10.48 73.58 4.77 21.65

Linear Interpolation 1.20 10.48 73.58 4.77 21.65
Linear Interpolation for 
Speed and Occupancy, 
and Factor for Volume 

1.20 10.48 73.58 4.77 21.65
Hybrid 
Model 2 

Average of 
Temporal 
and Spatial 
Imputations 

Factor Method 1.20 10.48 73.58 4.77 21.65
 

A.3 Impacts of Intrinsic Errors 

Table A-5 Impacts of Intrinsic Errors on Travel Time Estimation Performance for 
Simulated Uncongested Conditions 

Method Cases 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% Late

w/o Errors 0.121 1.92 100 0 0 

Average 0.123 1.95 100 0 0 

Minimum 0.121 1.92 100 0 0 
Point-to-Point 
Method  

w/ 
Intrinsic 
Errors Maximum 0.125 1.98 100 0 0 

w/o Errors 0.082 1.31 100 0 0 

Average 0.083 1.33 100 0 0 

Minimum 0.081 1.30 100 0 0 
Mid-Point 
Method 

w/ 
Intrinsic 
Errors Maximum 0.085 1.36 100 0 0 

w/o Errors 0.082 1.31 100 0 0 

Average 0.083 1.33 100 0 0 

Minimum 0.081 1.3 100 0 0 
Hybrid Model 1 w/ 

Intrinsic 
Errors Maximum 0.085 1.36 100 0 0 

w/o Errors 0.082 1.31 100 0 0 

Average 0.083 1.33 100 0 0 

Minimum 0.081 1.30 100 0 0 
Hybrid Model 2 w/ 

Intrinsic 
Errors Maximum 0.085 1.36 100 0 0 

 
 
 
 
 
 
 



  

153 

Table A-6 Impacts of Intrinsic Errors on Travel Time Estimation Performance for 
Simulated Incident Case 1 between 7:30 A.M. and 8:30 A.M. 

Method Cases 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% 
Early 

% Late

w/o Errors 2.07 16.28 57.32 1.78 40.90

Average 2.03 16.02 57.84 2.00 40.16

Minimum 1.96 15.43 54.16 1.72 38.43
Point-to-Point 
Method 

w/ 
Intrinsic 
Errors Maximum 2.13 16.73 59.62 3.04 44.06

w/o Errors 1.86 14.78 59.05 4.19 36.76

Average 1.83 14.59 60.24 3.95 35.81

Minimum 1.76 14.08 58.24 3.10 34.18
Mid-Point 
Method 

w/ 
Intrinsic 
Errors Maximum 1.91 15.15 62.26 4.77 37.79

w/o Errors 1.11 10.24 70.59 10.34 19.07

Average 1.62 13.59 63.18 10.24 26.59

Minimum 1.27 11.00 59.51 3.91 21.94
Hybrid Model 1 w/ 

Intrinsic 
Errors Maximum 2.00 16.03 69.33 14.36 30.90

w/o Errors 1.15 10.12 74.50 3.33 22.17

Average 1.58 12.87 64.59 4.24 31.17

Minimum 1.23 10.66 61.17 2.59 22.34
Hybrid Model 2 w/ 

Intrinsic 
Errors Maximum 1.75 13.97 71.17 6.49 34.75

 

A.4 Impacts of Systematic Errors 

Table A-7a Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Uncongested Conditions without Data Filtering 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 0.12 1.92 100 0 0 
Case 1 0.17 2.67 100 0 0 
Case 2 0.22 3.51 100 0 0 
Case 3 0.26 4.07 100 0 0 
Case 4 0.23 3.65 100 0 0 
Case 5 0.32 5.09 100 0 0 
Case 6 0.40 6.29 100 0 0 
Case 7 0.09 1.43 100 0 0 
Case 8 0.08 1.29 100 0 0 

Point-to-Point 
Method 

Case 9 0.10 1.58 99.73 0.27 0 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 10 0.08 1.26 100 0 0 
Case 11 0.11 1.75 99.53 0.47 0 
Case 12 0.24 3.85 87.54 12.46 0 

w/o Errors 0.08 1.31 100 0 0 
Case 1 0.12 1.91 100 0 0 
Case 2 0.15 2.30 100 0 0 
Case 3 0.21 3.24 100 0 0 
Case 4 0.18 2.88 100 0 0 
Case 5 0.28 4.51 100 0 0 
Case 6 0.37 5.85 100 0 0 
Case 7 0.08 1.33 100 0 0 
Case 8 0.10 1.60 99.82 0.18 0 
Case 9 0.16 2.54 93.85 6.15 0 
Case 10 0.10 1.52 99.91 0.09 0 
Case 11 0.19 3.07 91.19 8.81 0 

Mid-Point 
Method 

Case 12 0.35 5.57 83.58 16.42 0 
w/o Errors 0.08 1.31 100 0 0 

Case 1 0.12 1.91 100 0 0 
Case 2 0.15 2.30 100 0 0 
Case 3 0.21 3.24 100 0 0 
Case 4 0.18 2.88 100 0 0 
Case 5 0.28 4.51 100 0 0 
Case 6 0.37 5.85 100 0 0 
Case 7 0.08 1.27 100 0 0 
Case 8 0.09 1.45 99.95 0.05 0 
Case 9 0.15 2.47 94.89 5.11 0 
Case 10 0.10 1.52 99.89 0.11 0 
Case 11 0.19 3.04 91.19 8.81 0 

Hybrid Model 1 

Case 12 0.33 5.30 83.58 16.42 0 
w/o Errors 0.08 1.31 100 0 0 

Case 1 0.12 1.91 100 0 0 
Case 2 0.15 2.30 100 0 0 
Case 3 0.21 3.24 100 0 0 
Case 4 0.18 2.88 100 0 0 
Case 5 0.28 4.51 100 0 0 
Case 6 0.37 5.85 100 0 0 

Hybrid Model 2 

Case 7 0.21 3.40 86.59 13.41 0 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 8 0.27 4.30 86.37 13.63 0 
Case 9 0.38 5.96 87.06 12.95 0 
Case 10 0.10 1.67 99.34 0.66 0 
Case 11 0.32 5.13 90.77 9.23 0 
Case 12 0.71 11.29 83.58 16.42 0 

Note: the definition for each case is explained in Table 5-4. 

 
Table A-7b Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Uncongested Conditions with Data Filtering 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 0.12 1.92 100 0 0 

Case 1 0.16 2.47 100 0 0 

Case 2 0.17 2.63 100 0 0 

Case 3 0.21 3.27 100 0 0 

Case 4 0.16 2.53 100 0 0 

Case 5 0.21 3.28 100 0 0 

Case 6 0.34 5.35 100 0 0 

Case 7 0.09 1.43 100 0 0 

Case 8 0.08 1.29 100 0 0 

Case 9 0.10 1.58 99.73 0.27 0 

Case 10 0.08 1.26 100 0 0 

Case 11 0.11 1.76 99.43 0.57 0 

Point-to-Point 
Method 

Case 12 0.24 3.85 87.54 12.46 0 

w/o Errors 0.08 1.31 100 0 0 

Case 1 0.11 1.72 100 0 0 

Case 2 0.11 1.77 100 0 0 

Case 3 0.17 2.69 100 0 0 

Case 4 0.11 1.80 100 0 0 

Case 5 0.17 2.69 100 0 0 

Case 6 0.33 5.15 100 0 0 

Case 7 0.08 1.33 100 0 0 

Case 8 0.10 1.60 99.65 0.36 0 

Mid-Point 
Method 

Case 9 0.16 2.55 94.00 6.01 0 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 10 0.10 1.53 99.94 0.06 0 

Case 11 0.19 3.08 91.19 8.81 0 

Case 12 0.35 5.57 83.58 16.42 0 

w/o Errors 0.08 1.31 100 0 0 

Case 1 0.11 1.72 100 0 0 

Case 2 0.11 1.77 100 0 0 

Case 3 0.17 2.69 100 0 0 

Case 4 0.11 1.80 100 0 0 

Case 5 0.17 2.69 100 0 0 

Case 6 0.33 5.15 100 0 0 

Case 7 0.08 1.27 100 0 0 

Case 8 0.08 1.32 100 0 0 

Case 9 0.13 2.11 98.66 1.34 0 

Case 10 0.10 1.53 99.89 0.11 0 

Case 11 0.19 3.04 91.19 8.81 0 

Hybrid Model 1 

Case 12 0.31 4.91 83.58 16.42 0 

w/o Errors 0.08 1.31 100 0 0 

Case 1 0.11 1.72 100 0 0 

Case 2 0.11 1.77 100 0 0 

Case 3 0.17 2.68 100 0 0 

Case 4 0.11 1.80 100 0 0 

Case 5 0.17 2.69 100 0 0 

Case 6 0.33 5.15 100 0 0 

Case 7 0.21 3.40 86.59 13.41 0 

Case 8 0.27 4.30 86.37 13.63 0 

Case 9 0.38 5.95 87.06 12.95 0 

Case 10 0.10 1.67 99.34 0.66 0 

Case 11 0.32 5.13 90.77 9.23 0 

Hybrid Model 2 

Case 12 0.71 11.29 83.58 16.42 0 
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Table A-8a Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Incident Conditions without Data Filtering 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 2.07 16.28 57.32 1.78 40.90 

Case 1 2.09 16.47 57.50 1.61 40.90 

Case 2 2.15 16.97 57.50 1.61 40.90 

Case 3 2.25 17.98 57.27 1.61 41.13 

Case 4 2.52 19.66 55.20 0.23 44.57 

Case 5 2.76 21.81 53.99 0 46.01 

Case 6 2.92 23.40 52.67 0 47.33 

Case 7 2.04 16.09 58.07 3.10 38.83 

Case 8 2.02 15.92 60.14 3.50 36.36 

Case 9 1.93 15.70 56.40 8.73 34.87 

Case 10 1.84 14.71 58.36 6.78 34.87 

Case 11 1.83 15.20 61.69 9.88 28.43 

Point-to-Point 
Method  

Case 12 2.30 20.40 46.76 35.38 17.86 

w/o Errors 1.86 14.78 59.05 4.19 36.76 

Case 1 1.89 14.98 59.51 3.10 37.39 

Case 2 1.91 15.11 59.10 2.64 38.25 

Case 3 2.04 16.28 59.45 1.61 38.94 

Case 4 2.49 19.35 53.65 0.00 46.35 

Case 5 2.81 22.15 52.56 0.00 47.44 

Case 6 3.01 24.03 51.23 0.00 48.77 

Case 7 1.83 14.67 60.77 4.25 34.98 

Case 8 1.82 14.61 60.20 5.05 34.75 

Case 9 1.80 15.31 60.60 9.82 29.58 

Case 10 1.63 13.55 67.20 6.55 26.25 

Case 11 1.82 16.10 54.80 22.46 22.75 

Mid-Point 
Method 

Case 12 3.46 29.78 33.95 48.48 17.58 

w/o Errors 1.11 10.24 70.59 10.34 19.07 

Case 1 1.08 9.90 73.75 6.72 19.53 

Case 2 1.09 9.95 73.75 6.72 19.53 

Case 3 1.20 10.53 76.62 2.41 20.96 

Hybrid Model 1 

Case 4 1.15 10.19 76.68 2.13 21.19 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 5 1.21 10.73 76.79 1.78 21.42 

Case 6 1.36 12.09 76.28 0.92 22.80 

Case 7 1.45 12.62 69.84 13.50 16.66 

Case 8 1.46 13.01 59.51 23.84 16.66 

Case 9 1.01 10.03 69.73 15.57 14.70 

Case 10 1.20 11.23 66.17 18.09 15.74 

Case 11 1.46 13.01 59.16 24.35 16.48 

Case 12 1.84 16.97 54.68 30.67 14.65 

w/o Errors 1.15 10.12 74.50 3.33 22.17 

Case 1 1.16 10.17 74.38 2.99 22.63 

Case 2 1.16 10.21 74.84 2.53 22.63 

Case 3 1.25 11.05 74.38 1.49 24.12 

Case 4 1.99 15.88 60.02 0.23 39.75 

Case 5 2.37 19.00 54.62 0.23 45.15 

Case 6 2.54 20.62 53.88 0.23 45.89 

Case 7 1.50 13.11 64.39 15.11 20.51 

Case 8 1.25 10.95 71.22 7.64 21.14 

Case 9 1.10 10.47 75.07 8.73 16.20 

Case 10 1.58 13.26 61.86 15.91 22.23 

Case 11 1.69 14.70 52.38 22.92 24.70 

Hybrid Model 2 

Case 12 5.62 42.88 41.53 39.06 19.41 

 
Table A-8b Impacts of Systematic Errors on Travel Time Estimation Performance 
for Simulated Incident Conditions with Data Filtering 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 2.07 16.28 57.32 1.78 40.90 

Case 1 2.08 16.33 57.38 1.72 40.90 

Case 2 2.08 16.35 57.38 1.72 40.90 

Case 3 2.18 17.18 57.27 1.61 41.13 

Case 4 2.08 16.47 58.36 2.13 39.52 

Case 5 2.30 18.21 58.64 0.23 41.13 

Point-to-Point 
Method 

Case 6 2.79 22.03 52.84 0.00 47.16 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

Case 7 2.04 16.08 58.76 3.10 38.14 

Case 8 2.01 15.91 60.14 3.50 36.36 

Case 9 2.03 15.97 60.94 2.87 36.19 

Case 10 1.99 15.65 57.90 4.37 37.74 

Case 11 1.97 15.71 57.84 6.38 35.78 

Case 12 2.11 17.76 56.98 13.79 29.24 

w/o Errors 1.86 14.78 59.05 4.19 36.76 

Case 1 1.87 14.79 58.99 3.62 37.39 

Case 2 1.87 14.80 58.99 3.62 37.39 

Case 3 2.00 15.83 59.33 1.72 38.94 

Case 4 1.89 15.20 60.37 2.70 36.93 

Case 5 2.18 17.33 58.07 0.23 41.70 

Case 6 2.90 22.95 52.67 0.00 47.33 

Case 7 1.84 14.68 60.83 4.42 34.75 

Case 8 1.82 14.62 60.20 5.05 34.75 

Case 9 1.84 14.84 59.74 5.51 34.75 

Case 10 1.81 14.59 61.34 5.05 33.60 

Case 11 1.89 15.81 61.34 8.39 30.27 

Mid-Point 
Method 

Case 12 2.77 22.59 48.02 21.42 30.56 

w/o Errors 1.11 10.24 70.59 10.34 19.07 

Case 1 1.14 10.47 71.11 9.36 19.53 

Case 2 1.14 10.49 71.11 9.36 19.53 

Case 3 1.09 9.80 75.65 4.02 20.33 

Case 4 1.66 13.64 69.39 3.04 27.57 

Case 5 1.73 14.22 66.69 2.70 30.61 

Case 6 1.64 13.84 67.09 2.64 30.27 

Case 7 1.44 12.57 69.84 13.50 16.66 

Case 8 1.46 12.93 60.77 22.57 16.66 

Case 9 1.05 10.35 66.97 19.30 13.73 

Case 10 1.61 13.69 66.40 8.90 24.70 

Case 11 1.52 12.94 68.87 5.74 25.39 

Hybrid Model 1 

Case 12 1.46 13.05 64.62 13.79 21.60 
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Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 1.15 10.12 74.50 3.33 22.17 

Case 1 1.15 10.09 74.38 2.99 22.63 

Case 2 1.15 10.09 74.38 2.99 22.63 

Case 3 1.22 10.71 74.84 1.61 23.55 

Case 4 1.28 11.17 70.76 5.28 23.95 

Case 5 1.53 13.05 67.43 2.35 30.21 

Case 6 2.50 20.13 53.88 0.23 45.89 

Case 7 1.50 13.13 64.45 15.28 20.28 

Case 8 1.25 10.93 71.22 7.64 21.14 

Case 9 1.08 9.78 75.53 4.65 19.82 

Case 10 1.22 10.78 70.42 9.02 20.56 

Case 11 1.50 13.05 64.96 12.23 22.80 

Hybrid Model 2 

Case 12 3.46 25.72 55.43 15.16 29.41 

 
Table A-9 Impacts of Systematic Errors in Low Speed Measurements on Travel 
Time Estimation Performance for Simulated Incident Conditions  

Method Cases  
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

w/o Errors 2.07 16.28 57.32 1.78 40.90

20% Increase in Low Speed 2.24 17.46 55.08 0.34 44.57

40% Increase in Low Speed 2.42 18.86 54.62 0.11 45.26

20% Decrease in Low Speed 1.92 15.38 57.73 6.09 36.19

Point-to-Point 
Method 

40% Decrease in Low Speed 1.76 14.50 63.47 7.58 28.95

w/o Errors 1.86 14.78 59.05 4.19 36.76

20% Increase in Low Speed 2.08 16.31 60.65 1.21 38.14

40% Increase in Low Speed 2.28 17.76 54.22 0.98 44.80

20% Decrease in Low Speed 1.68 13.75 62.67 7.06 30.27

Mid-Point 
Method 

40% Decrease in Low Speed 1.59 13.56 66.28 9.82 23.89

w/o Errors 1.11 10.24 70.59 10.34 19.07

20% Increase in Low Speed 1.18 10.68 67.89 11.83 20.28

40% Increase in Low Speed 1.23 10.87 68.06 10.68 21.25

20% Decrease in Low Speed 1.12 10.31 68.35 12.58 19.07

Hybrid Model 1 

40% Decrease in Low Speed 1.25 11.24 67.78 10.97 21.25
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Method Cases  
MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

5% Increase in Volume 1.10 9.91 72.95 7.98 19.07

10% Increase in Volume 1.17 10.91 64.33 16.54 19.13

5% Decrease in Volume 1.17 11.10 67.55 14.30 18.15

10% Decrease in Volume 1.08 10.06 71.74 9.59 18.67

w/o Errors 1.15 10.12 74.50 3.33 22.17

20% Increase in Low Speed 1.37 11.52 71.97 1.21 26.82

40% Increase in Low Speed 1.66 13.57 68.18 0.98 30.84

20% Decrease in Low Speed 1.46 12.33 61.69 16.94 21.37

40% Decrease in Low Speed 1.88 15.19 57.15 16.83 26.02

5% Increase in Volume 1.15 10.15 74.50 3.33 22.17

10% Increase in Volume 1.16 10.18 74.55 3.50 21.94

5% Decrease in Volume 1.15 10.12 74.50 3.33 22.17

Hybrid Model 2 

10% Decrease in Volume 1.15 10.12 74.50 3.33 22.17
 

A.5 Impacts of Incidental and Structural Failures 

Table A-10 Impacts of Incidental and Structural Failures on Travel Time 
Estimation Performance for Simulated Uncongested Conditions  

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 0.12 1.92 100 0 0 
Point to Point 
Method  w/ Incidental and 

Structural Errors 
0.14 2.18 100 0 0 

w/o Errors 0.08 1.31 100 0 0 
Mid-Point 
Method w/ Incidental and 

Structural Errors 
0.10 1.53 100 0 0 

w/o Errors 0.08 1.31 100 0 0 
Hybrid Model 1 w/ Incidental and 

Structural Errors 
0.10 1.53 100 0 0 

w/o Errors 0.08 1.31 100 0 0 
Hybrid Model 2 w/ Incidental and 

Structural Errors 
0.10 1.54 100 0 0 
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Table A-11 Impacts of Incidental and Structural Failures on Travel Time 
Estimation Performance for Simulated Incident Conditions 

Method Cases  
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

w/o Errors 2.07 16.28 57.32 1.78 40.90 
Point to Point 
Method  w/ Incidental and 

Structural Errors 
2.04 16.21 55.66 6.61 37.74 

w/o Errors 1.86 14.78 59.05 4.19 36.76 
Mid-Point 
Method w/ Incidental and 

Structural Errors 
2.06 17.00 58.07 10.57 31.36 

w/o Errors 1.11 10.24 70.59 10.34 19.07 
Hybrid Model 1 w/ Incidental and 

Structural Errors 
1.80 16.36 58.13 25.16 16.72 

w/o Errors 1.15 10.12 74.50 3.33 22.17 
Hybrid Model 2 w/ Incidental and 

Structural Errors 
1.95 17.58 62.44 15.45 22.11 

 

A.6 Impacts of Detector Spacing 

Table A-12 Impacts of Detector Spacing on Travel Time Estimation Performance 
for Simulated Uncongested Conditions  

Method 
Approximate 

Detector Spacing 
(Miles) 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

0.3 0.12 1.92 100 0 0 

0.6 0.14 2.29 100 0 0 
Point-to-Point 
Method 

1.2 0.08 1.29 99.94 0.06 0 

0.3 0.08 1.31 100 0 0 

0.6 0.10 1.57 100 0 0 
Mid-Point 
Method 

1.2 0.09 1.40 99.75 0.25 0 

0.3 0.08 1.31 100 0 0 

0.6 0.10 1.57 100 0 0 Hybrid Model 1 

1.2 0.09 1.40 99.75 0.25 0 

0.3 0.08 1.31 100 0 0 

0.6 0.10 1.57 100 0 0 Hybrid Model 2 

1.2 0.09 1.40 99.75 0.25 0 
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Table A-13 Impacts of Detector Spacing on Travel Time Estimation Performance 
for Simulated Incident Conditions  

Method 
Approximate 

Detector Spacing 
(Miles) 

MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late

0.3 2.07 16.28 57.32 1.78 40.90 

0.6 2.86 21.96 53.99 0.46 45.55 
Point-to-Point 
Method 

1.2 2.86 22.08 52.15 0.86 46.98 

0.3 1.86 14.78 59.05 4.19 36.76 

0.6 2.85 21.85 51.52 0.92 47.56 
Mid-Point 
Method 

1.2 2.77 21.30 51.81 1.26 46.93 

0.3 1.11 10.24 70.59 10.34 19.07 

0.6 1.89 15.13 63.18 1.67 35.15 Hybrid Model 1 

1.2 1.93 15.38 56.81 4.02 39.17 

0.3 1.15 10.12 74.50 3.33 22.17 

0.6 2.56 19.74 52.84 1.15 46.01 Hybrid Model 2 

1.2 2.57 19.72 53.76 1.49 44.74 
 

A.7 Impacts of Travel Time Updating Frequency 

Table A-14 Travel Time Estimation Performances with Different Travel Time 
Updating Frequencies for Simulated Uncongested Conditions  

Method 
Updating 

Frequency 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

1-minute 0.14 2.20 100 0 0 

2-minute 0.12 1.92 100 0 0 

3-minute 0.12 1.91 100 0 0 

4-minute 0.12 1.90 100 0 0 

Point-to-Point 
Method 

5-minute 0.12 1.86 100 0 0 

1-minute 0.10 1.62 100 0 0 

2-minute 0.08 1.31 100 0 0 

3-minute 0.07 1.16 100 0 0 

4-minute 0.07 1.15 100 0 0 

Mid-Point 
Method 

5-minute 0.06 1.03 100 0 0 

1-minute 0.10 1.62 100 0 0 Hybrid Model 1 

2-minute 0.08 1.31 100 0 0 
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Method 
Updating 

Frequency 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

3-minute 0.07 1.16 100 0 0 

4-minute 0.07 1.15 100 0 0 

5-minute 0.07 1.03 100 0 0 

1-minute 0.10 1.62 100 0 0 

2-minute 0.08 1.31 100 0 0 

3-minute 0.07 1.16 100 0 0 

4-minute 0.07 1.15 100 0 0 

Hybrid Model 2 

5-minute 0.07 1.06 99.89 0.11 0 

 
Table A-15 Travel Time Estimation Performances with Different Travel Time 
Updating Frequencies for Simulated Incident Conditions  

Method 
Updating 

Frequency 
MAE 
(Min.) 

MAPE 
(%) 

Reliability 
(%) 

% Early % Late 

1-minute 1.99 15.63 59.27 0.80 39.93 

2-minute 2.07 16.28 57.32 1.78 40.90 

3-minute 2.04 16.05 55.83 3.83 40.35 

4-minute 2.29 18.19 48.17 8.67 43.17 

Point-to-Point 
Method 

5-minute 2.25 17.58 52.85 6.75 40.41 

1-minute 1.79 14.23 60.99 1.89 37.12 

2-minute 1.86 14.78 59.05 4.19 36.76 

3-minute 1.86 14.82 57.62 6.15 36.23 

4-minute 2.08 16.81 47.70 14.37 37.93 

Mid-Point 
Method 

5-minute 2.12 16.77 54.37 7.92 37.71 

1-minute 1.10 9.85 73.38 9.07 17.56 

2-minute 1.11 10.24 70.59 10.34 19.07 

3-minute 1.15 10.54 69.04 12.46 18.49 

4-minute 1.54 13.77 46.77 25.31 27.92 

Hybrid Model 1 

5-minute 1.27 11.29 66.33 8.80 24.87 

1-minute 1.16 10.21 74.24 2.58 23.18 

2-minute 1.15 10.12 74.50 3.33 22.17 

3-minute 1.31 11.31 70.55 4.64 24.81 

4-minute 1.35 11.85 55.38 17.69 26.93 

Hybrid Model 2 

5-minute 1.34 11.25 69.56 6.86 23.58 
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A.8 Impacts of Travel Time Link Length 

Table A-16 Travel Time Estimation Performances with Different Travel Time Link 
Lengths for Simulated Uncongested Conditions 

Method Origin-Destination 
Distance 
(Miles) 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

DS-1523E-DS-1549E 4.24 0.05 1.17 100 0 0 

DS-1521E-DS-1549E 4.55 0.05 1.11 99.64 0.08 0.28 

DS-1517E-DS-1549E 5.27 0.07 1.27 100 0 0 

Point-to- 
Point 
Method 

DS-1509E-DS-1549E 6.42 0.12 1.92 100 0 0 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 

DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 

DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
Mid-Point 
Method 

DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 

DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 

DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
Hybrid 
Model 1 

DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 

DS-1523E-DS-1549E 4.24 0.05 1.16 100 0 0 

DS-1521E-DS-1549E 4.55 0.05 1.15 99.69 0.08 0.23 

DS-1517E-DS-1549E 5.27 0.06 1.09 100 0 0 
Hybrid 
Model 2 

DS-1509E-DS-1549E 6.42 0.08 1.31 100 0 0 

 
Table A-17 Travel Time Estimation Performances with Different Travel Time Link 
Lengths for Simulated Incident Conditions 

Method Origin-Destination 
Distance 
(Miles) 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

DS-1523E-DS-1549E 4.24 0.92 14.00 86.78 0 13.22

DS-1521E-DS-1549E 4.55 1.07 13.27 77.93 4.59 17.48

DS-1517E-DS-1549E 5.27 1.86 16.59 57.41 2.49 40.10

Point-to- 
Point 
Method 

DS-1509E-DS-1549E 6.42 2.07 16.28 57.32 1.78 40.90

DS-1523E-DS-1549E 4.24 1.13 17.15 73.36 0 26.64

DS-1521E-DS-1549E 4.55 1.44 17.28 75.94 0.09 23.97

DS-1517E-DS-1549E 5.27 1.74 15.85 58.30 1.38 40.32
Mid-Point 
Method 

DS-1509E-DS-1549E 6.42 1.86 14.78 59.05 4.19 36.76

 DS-1523E-DS-1549E 4.24 0.63 10.10 91.98 0.35 7.67 
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Method Origin-Destination 
Distance 
(Miles) 

MAE 
(Min.)

MAPE 
(%) 

Reliability 
(%) 

% 
Early

% 
Late

DS-1521E-DS-1549E 4.55 0.85 11.09 87.02 0.13 12.85

DS-1517E-DS-1549E 5.27 0.97 9.97 75.48 6.10 18.43

Hybrid 
Model 1 

DS-1509E-DS-1549E 6.42 1.11 10.24 70.59 10.34 19.07

DS-1523E-DS-1549E 4.24 0.88 13.69 91.40 0 8.60 

DS-1521E-DS-1549E 4.55 1.05 13.50 81.94 4.59 13.47

DS-1517E-DS-1549E 5.27 1.05 10.90 75.52 3.38 21.10
Hybrid 
Model 2 

DS-1509E-DS-1549E 6.42 1.15 10.12 74.50 3.33 22.17
 

A.9 Impacts of Travel Time Posting Range 

Table A-18 Travel Time Estimation Reliability with Different Posted Travel Time 
Ranges for Simulated Uncongested Conditions 

Method 
Range of Posted 
Travel Time 

Reliability 
(%) 

% Early % Late 

[TT-2, TT+2] 100 0 0 

[TT-1, TT+2] 100 0 0 

[TT-1, TT+1] 99.29 0 0.71 
Point-to-Point Method 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 

[TT-2, TT+2] 100 0 0 

[TT-1, TT+2] 100 0 0 

[TT-1, TT+1] 99.29 0 0.71 
Mid-Point Method 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 

[TT-2, TT+2] 100 0 0 

[TT-1, TT+2] 100 0 0 

[TT-1, TT+1] 99.29 0 0.71 
Hybrid Model 1 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 

[TT-2, TT+2] 100 0 0 

[TT-1, TT+2] 100 0 0 

[TT-1, TT+1] 99.29 0 0.71 
Hybrid Model 2 

[TT-0.5, TT+0.5] 70.07 0.42 29.52 
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Table A-19 Travel Time Estimation Reliability with Different Posted Travel Time 
Ranges for Simulated Incident Conditions  

Method 
Range of Posted 
Travel Time 

Reliability 
(%) 

% Early % Late 

[TT-2, TT+3] 57.32 1.78 40.90 

[TT-2, TT+4] 58.93 1.78 39.29 

[TT-2, TT+5] 59.97 1.78 38.25 

[TT-1, TT+4] 56.58 4.14 39.29 

[TT-1, TT+5] 57.61 4.14 38.25 

Point-to-Point Method 

[TT-1, TT+6] 58.42 4.14 37.45 

[TT-2, TT+3] 59.05 4.19 36.76 

[TT-2, TT+4] 64.85 4.19 30.96 

[TT-2, TT+5] 68.18 4.19 27.63 

[TT-1, TT+4] 62.44 6.61 30.96 

[TT-1, TT+5] 65.77 6.61 27.63 

Mid-Point Method 

[TT-1, TT+6] 67.57 6.61 25.85 

[TT-2, TT+3] 70.59 10.34 19.07 

[TT-2, TT+4] 73.12 10.34 16.54 

[TT-2, TT+5] 75.13 10.34 14.53 

[TT-1, TT+4] 65.02 18.44 16.54 

[TT-1, TT+5] 67.03 18.44 14.53 

Hybrid Model 1 

[TT-1, TT+6] 68.12 18.44 13.44 

[TT-2, TT+3] 74.50 3.33 22.17 

[TT-2, TT+4] 75.88 3.33 20.79 

[TT-2, TT+5] 75.88 3.33 20.79 

[TT-1, TT+4] 69.67 9.54 20.79 

[TT-1, TT+5] 69.67 9.54 20.79 

Hybrid Model 2 

[TT-1, TT+6] 70.25 9.54 20.22 
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