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ABSTRACT OF THE THESIS 

DETERMINATION OF NUTRIENT LIMITATION ON TREES GROWING IN 

LOXAHATCHEE IMPOUNDMENT LANDSCAPE ASSESSMENT (LILA) TREE 

ISLANDS, FLORIDA 

 by 

Suresh Chandra Subedi 

Florida International University, 2011 

Miami, Florida 

Professor Michael S. Ross, Major Professor 

 The purpose of this study was to determine the general patterns of response by 

tree species common to Everglades Tree Islands (TI) when conditions limiting optimal 

growth are improved by fertilization on LILA tree islands. Experiments were conducted 

on constructed TI in the Loxahatchee Impoundment Landscape Assessment (LILA). 

Thirty-six trees of two species, Annona glabra and Chrysobalanus icaco, were randomly 

selected on each of four tree islands. Two tree islands have peat overlying limestone 

cores and two are composed solely of peat. Each tree was treated with one of three 

nutrient regimes: +N, +P, or Control (no addition of nutrients).  A highly significant P-

treatment effect on growth rate, leaf TP and leaf N:P ratio were observed in both species 

in comparison to Control trees. In contrast, neither of the species responded to N-

fertilization. The mass N:P ratios and δ13C in P-treated trees exhibited a positive 

correlation with Relative Elevation (RE) for both species. These findings suggested that 

the tree growth at LILA tree islands was P-limited on both substrates (limestone and 

peat). 
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1. INTRODUCTION 

The Everglades is an oligotrophic system (Noe et al. 2001, Wetzel et al. 2005) with plant 

species adapted to the low nutrient conditions. However, it has recently been discovered 

that tree islands, which are integral parts of the Everglades, are biogeochemical hotspots 

(Wetzel et al. 2005; Ross et al. 2006; Ross and Sah, 2010). Soil P levels concentrations in 

tree islands are sometimes more than 500 times higher than in the surrounding marsh 

(Ross and Sah, 2010). Furthermore, a sharp nutrient gradient exists within each tree 

island from the low open marsh to the highest elevation of the island. Tree islands are 

also one of the many Everglades communities that are affected by hydrology, which acts 

through many biogeochemical pathways and through its influence on plant nutrient 

availability. The relationship between hydrology and nutrient dynamics may be one of 

the key factors to understanding how changes in hydrologic regime will affect tree 

islands in the Everglades. Since there have been dramatic changes in soil and water 

chemistry in the Everglades due to alteration of hydrological regimes (Hanan and Ross, 

2010), the nutrient pattern in tree islands may also be changing. The concentrations of 

essential nitrogen (N) and phosphorus (P), are known to change along hydrologic 

gradients in tree islands. Nitrogen has been shown to become limiting to plant growth in 

highest elevation while P is more limiting towards the marsh (Jayachandran et al., 2004). 

To address the topic of tree island nutrient availability experimentally, I designed an 

experiment to determine if N or P limitation is responsible for growth in two major types 

of artificial tree islands (limestone and peat). Only N and P were examined because they 

are typically the important nutrients required for plant growth (Ricklefs and Miller 1999). 
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1.1 Tree islands 

Tree islands are generally defined as patches of woody vegetation embedded in a 

freshwater matrix (Tomlinson, 1980). They are important centers of biodiversity in the 

Florida Everglades and considered key indicators of the health of the Everglades 

ecosystem. They are found on slightly elevated region, typically 60 to 120 cm above 

adjoining slough surface (Sklar and van der Valk, 2002). They have a tear-drop shape 

showing the directional flow of water. Water flow may also be important in the 

development of nutrient gradients from the head to tail of the island. In some cases, tree 

island size increases through a slow sedimentation process over a long period of time, 

which allows them to accumulate more nutrients (Ross et al. 2006; Larsen et al. 2007).  

 

Because their soils act as a sink for nutrients in the ecosystem (Jayachandran et al. 2004; 

Wetzel et al. 2007), tree islands may play an important role in regulating nutrient 

dynamics i.e., in maintaining the oligotrophic nature of surrounding marshes (Wetzel et 

al. 2005). The biogeochemistry of the rooting environment, which emerges from the 

interaction of substrate with local hydrology, plays an important role in maintaining tree 

island structure and function (Stoffella et al. 2010). There are two distinct categories of 

tree islands found in the Everglades based on underlying substratum: those composed 

entirely of peat (pop-up or battery islands) and those built up on limestone bedrock (fixed 

or limestone islands) (Sklar and van der Valk 2002).   
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1.2 Nutrient dynamics in tree islands 

Tree islands are considered biogeochemical hotspots. The concentrations of total P was 

recorded as high as 50000 mg TP kg-1 dry weight soil (dw) in surface soil in tree island 

heads (hardwood hammocks) as compared to about 100 mg TP kg-1 dw in the 

surrounding marsh soils (Ross and Sah, 2010). In contrast, soil total N was found to be 

highest in flooded areas and decreasing with higher elevation (Ross et al. 2006). Several 

nutrient distribution mechanisms have been postulated for Everglades tree islands, and 

magnitude of each is currently debated (Wetzel et al. 2005). Processes considered as 

possibilities leading to nutrient accumulation, particularly for P, in tree islands include: 

surface water flow, atmospheric deposition, precipitation, groundwater upwelling, 

deposition of guano by birds and animal feces, and bedrock mineralization, among others 

(Wetzel et al. 2005, Ross et al. 2006). In contrast, the total nitrogen in tree island soils 

primarily depends on soil organic matter content and its interaction with hydrology 

(Jayachandran et al., 2004). As trees establish and grow, litterfall leads to the increasing 

accumulation of organic matter. Organic matter decomposition process further 

accentuates differences in nutrient availability among sites. Anaerobic conditions in the 

marsh slow the rate of decomposition and enhance organic matter and N accumulation. 

Upland areas, in contrast, are usually well drained, causing litter and organic matter to 

decompose aerobically and nitrogen to be mineralized rapidly. The result is slower 

organic matter accumulation and increased leaching of N out of the system (Austin and 

Vitousek, 1998). Thus, differences in hydroperiod and nutrient distribution between the 

elevated center of tree islands and their lower fringes may lead to patterns in nutrient 

accumulation and availability, i.e., relative N-limitation at upslope and P-limitation 
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downslope. Moreover, nutrient availability may also be affected by substrate type as 

species growth response varies between limestone and peat islands (Stoffella et al., 

2010). 

Tree productivity

Soil nutrient availability

Hydrology

Plant litter

Decomposition and mineralization

Substrate 
(peat/limestone)

 

Figure 1. Simple conceptual model for tree island nutrient dynamics. 

1.3 Experimental Fertilization  

Fertilization experiments have proved successful in determining the growth-limiting 

nutrient in various ecosystems including wetlands. The type of nutrient limitation is 

determined by applying a particular fertilizer to see if it significantly increases above-

ground biomass and plant tissue concentrations compared with control sites (Vitousek 

and Howarth 1991; Koerselman and Meuleman 1996). Gusewell et al. (2003) carried out 

fertilization experiments in Dutch fens and dune slacks and examined treatment effects 

on the biomass and N:P ratios of the whole vegetation as well as individual plant 
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populations. Similarly, Feller (1995) and McKee (2002) have shown that fertilization of 

red mangrove trees with phosphorus and nitrogen can change the growth limitation. 

Nutrient enrichment has two main effects on natural vegetation:  increase in biomass and 

increase in tissue nutrient concentration (van Duren and Pegtel 2000, Chapin, 1980, 

Vitousek et al 1995). Plant species generally react to the increased supply of the limiting 

nutrient, but not the non-limiting one, with higher biomass production (Verhoeven et al. 

1996). Studies on nutrient limitation involving either a comparison across an existing soil 

nutrient gradient or experimental fertilization have shown that increased availability of a 

limiting nutrient, such as nitrogen (N) or phosphorus (P),  can lead to higher leaf N or P 

concentrations (Chapin, 1980, Fisher et al., 2006, Vitousek et al. 1995). Despite the 

numerous fertilization experiments carried out, evidence regarding relationships between 

N:P ratios and responses of plant populations to N or P addition is rather scarce (McKee 

et al. 2002, Feller 1995).  

1.4 Determining nutrient availability 

1.4.1 Growth response 

According to von Liebig’s Law of the minimum, the productivity of communities or 

species is governed by the availability of a single limiting resource, while other resources 

available in relative abundance are less important for plant growth. The productivity 

increase can be considered as a result of increased availabilities of the potentially growth-

limiting nutrients: N and P (Olde Venterink et al. 2001). Also, the low concentration of a 

nutrient in plant biomass should reflect a low availability of the nutrient to the plant, and 

therefore indicates that additional supply of the nutrient might increase the plant’s 
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biomass production. If two or more nutrients are potentially limited, their availabilities 

relative to the other are likely to determine which of them is limiting (Koerselman and 

Meuleman 1996).  

1.4.2 Foliar N:P ratio 

If the concentration of an essential nutrient element in plant tissue drops below a level 

necessary for optimal growth, the plant is said to be deficient in that element. A 

deficiency may develop if the concentration of the element in the soil or substrate is low 

or if the element is present in chemical forms that render it unavailable for plant uptake.  

The assessment of nutrient availability from tissue analysis is based on the concept of 

critical concentration. Critical concentration is that concentration of a nutrient in the 

tissue just below the level needed to support optimal growth. Previous fertilization 

studies showed that less N and more P are taken up when supplemental quantities of both 

nutrients are made available to plants growing under background conditions of relatively 

low P supply and high N supply. In contrast, under conditions of relatively high P and 

low N supply, plants preferentially forage for and absorb N (Koerselman 1996). The N:P 

ratio should therefore determine which of the two nutrients is limiting, and only variables 

reflecting this relative availability would be indicative of the limiting nutrient. Tissue N:P 

ratio is considered a good indicator of nutrient limitation in wetland plants, providing a 

better indication of nutrient availability for plant growth than the concentration of either 

nutrient separately (Koerselman and Meuleman 1996, Bedford et al. 1999, Gusewell et 

al. 2003). Based on a review of 40 field fertilization experiments in wetlands, 

Koerselman and Meuleman (1996) suggested biomass production of the vegetation is 
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almost always limited by nitrogen if the molar N:P ratio of the aboveground biomass is 

low (< 14) and by phosphorus if the N:P ratio is high (>16). They hypothesized that 

species with high N:P ratios would be enhanced by fertilization with P, and populations 

with low N:P ratio would be enhanced by fertilization with N. 

1.4.3 Stable isotopes 

Since plants have the natural ability to discriminate against heavier stable isotopes, the 

abundance of stable isotopes, expressed as, for instance δ13C and δ15N, have been used as 

an indicator of nutrient availability (Novak et al. 1999; Mckee et al. 202; Wooller et al. 

2003; Jones et al., 2004; Inglett et al., 2004; 2007; Wang et al. 2010). Studies have 

shown that plant discrimination against δ15N becomes less with increasing N demand in 

an N-limited system (Schultze et al. 1994; Montoya and McCarthy 1995; Fry et al. 2000; 

McKee et al. 2002). Other experiments have shown that applying P-fertilizer to P- 

limited plants can increase N demand and lower the bias against 15N (Clarkson et al. 

2005; Mckee et al. 2002).   

 

As mentioned earlier, plant production is significantly influenced by nutrient availability. 

Through recent advances in the use of stable isotopes in ecosystem analyses and in plant 

physiology, the assessment of carbon isotope discrimination has become a valuable tool 

for the estimation of water use efficiency (Raven, 1992). The carbon isotope composition 

of plants reflects the ratio of internal to external carbon dioxide concentration in the leaf 

(Farquhar et al. 1982). Plants maintain an optimal relationship between leaf intercellular 

CO2-concentration and the concentration of CO2 in ambient air (Cowan, 1982). To 
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maintain the internal and air carbon dioxide concentrations, stomatal conductance to CO2 

and H2O is varied according to the assimilative demand. This is also reflected in the δ13C 

of plant organic matter. Since photosynthetic capacity is strongly influenced by the 

nutritional status of the plant (Pons et al, 1994), this also should have an effect on 

stomatal conductance.  

 

In this study, I examine changes in isotopic ratios resulting from a shift from P to N 

limitation or vice versa after nutrient treatment, where δ13C may be useful to assess the 

photosynthetic changes resulting from increased growth rates and δ15N could indicate 

increased N demand or decreased N availability under condition of N limitation or P 

addition. 
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2. OBJECTIVES AND HYPOTHESIS 

2.1 Objectives 

Tree island development through soil accretion depends greatly on tree 

productivity, which in turn varies with soil nutrient availability. Biomass production and 

nutrient dynamics on the islands may be affected by island type (peat or limestone). The 

balance of N and P in the tissues of different species may change along the hydrologic 

gradient and during stand development, in conjunction with changes in nutrient 

availability in the soil. This study determined whether nutrient limitation is an important 

factor in the development of tree islands, and will help in understanding N and P 

limitation to tree growth across a hydrological gradient and in contrasting soil 

environments. The goals of this research are to determine the tree response when 

conditions limiting optimal growth for the species are improved by fertilization and to 

determine the nature of nutrient limitation in tree species growing on limestone and peat 

islands. 

 

Hypothesis I: Trees on peat islands will respond strongly only to experimental increases 

in the supply of P; whereas trees on limestone islands will respond to increases in the 

supply of both N and P.  

Edaphic factors influence the retention of nutrients, especially in oligotrophic wetlands 

like the Everglades (Ross et al, 2006). The subtropical peatland of the Florida Everglades 

is characterized by high soil N and a high N:P ratio in the parent material (Koch and 
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Reddy, 1992). Since peat islands were built solely from organic surface sediment and the 

lack of nutrient inputs from mineral sediment deposition, low P content is expected.  

 

Both N- and P-availability in limestone islands are expected to be very low as only a thin 

a layer of soil exists. Organic soil directly overlays the limestone substrate; P-adsorption 

by calcium carbonate is a strong possibility.  P-availability in limestone substrates can be 

also very low due to high pH (>7.5) soils. Therefore, trees on limestone islands are 

expected to respond to both N- and P-treatment. 

 

Hypothesis II: Fertilization to increase the availability of N or P to plants will be 

reflected in their foliar N:P ratios. Similarly, P addition will lead to increased δ15N. 

Plants take up relatively more P than N under conditions of low N and high P supply 

(Koerselman 1992). Due to the luxury consumption of P, the N:P ratio in plant tissue will 

be relatively low. In contrast, there will be a higher N:P ratio in plant tissue under 

conditions of relatively high N and low P supply. Thus, plants have a critical N:P ratio 

that can be used to determine whether growth of the species is N-limited or P-limited 

(Koerselman and Meuleman 1996). In addition, it is hypothesized that with P addition, 

increasing N demand would decrease plant discrimination against 15N. Under N-limited 

conditions, plants may also utilize available N pools completely, thereby reducing the 

potential discrimination against heavier isotopes (Inglett and Reddy, 2004). If trees are P-

limited, leaf δ15N is expected to increase with P addition as exhibited in several wetland 

studies (Inglett et al. 2006; Inglett et al. 2007). 
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Hypothesis III: Leaf N:P ratios are expected to be relatively high at the base of the 

islands and low at the highest elevation of the islands.  

Soil P concentration increases along an elevation gradient from marsh to tree islands in 

the Everglades. Since the amount of N in tree islands in Everglades is positively 

correlated with organic matter content and negatively correlated with calcium carbonate, 

soil N concentration is expected to decrease moving upslope towards shorter 

hydroperiods or shallower water depths. This is because relatively dry condition in tree 

island heads can accelerate leaf litter decomposition and the development of deep root 

systems; in contrast, decomposition rates should be slower in the flooding fringes of the 

islands (Jayachandran et al. 2004). Thus, I expect that N-limiting conditions are found on 

upland portions of island whereas P-limiting conditions are found at the base of the 

island. 

 

Hypothesis IV:  Leaf δ13C is expected to be lower with increasing relative elevation (RE) 

in tree islands.  

In LILA, stress gradients (flooding, and nutrients) may occur across tree islands where 

tree growth increases with RE (Stofella et al., 2010). Various authors reported a negative 

correlation between leaf carbon isotope (δ13C) and tree height (Mckee et al. 2002; Lin 

and Sternberg 1992) and attributed the higher δ13C values in short trees to elevated stress 

and consequent effects on stomatal conductance. In a similar way, I am expecting a 

decreasing pattern of δ13C with increase in RE as trees on the base of the islands 

experience more flooding and nutrient (especially P) stress.  
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3. METHODS AND MATERIALS 

3.1 Study Area 

The study took place from July 2009 to September 2010 at the Loxahatchee 

Impoundment Landscape Assessment (LILA) site at the Arthur R. Marshall Loxahatchee 

National Wildlife Refuge in Boynton Beach, Florida. The LILA facility (lat 26 

º17.999’N, long 80º13.979’W) was constructed in 2002-2003 through a partnership 

between South Florida Water Management District, U. S. Army Corps of Engineers and 

U.S. Fish and Wildlife Service. It serves as a landscape-scale physical model of the 

Everglades that allows researchers to conduct experiments in a semi-controlled 

environment before applying results to the 688 thousand-hectare Everglades ecosystem. 

It consists of four identical 8-hectare macrocosms (M1-4) (Figure 2). In each macrocosm, 

2 types of tree islands were constructed: peat and limestone. Limestone tree islands 

represent fixed islands that form on limestone outcrops in all parts of the Everglades 

marsh. Peat tree islands represent pop-up or battery islands that form on floating chunks 

of peat or vegetation rafts, or peat-based islands that may form on flat bedrock. Battery 

islands are most common in the northern parts of Everglades (Wetzel 2002). Each 71 

m×43 m sized island had side slope of 16:1 along the long north and south sides, and 

12:1 along the shorter east and west sides. Maximum elevation of the island was 0.90 m 

above the surrounding slough surface. Peat islands were built from organic surface 

sediment while limestone islands were constructed above a base of locally mined 

limestone gravel occupying the 49m×14m central portion of the island; the limestone 

core was covered with 0.3 m of peat soil ( Figure 3) (van der Valk et al. 2008, Stoffella et 
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al. 2010). Since, sediments at the fringes of the limestone islands, beyond the central 49 

m X 14 m, were similar in condition to the peat islands, tree samples from these regions 

were considered to be peat-based for the purpose of this study. 

 

About 5,736 seedlings of 10 tree species of varying flood tolerance were planted on the 

eight islands during March of 2006 and 2007. Macrocosms M1 and M4 were planted in 

2006 and M2 and M3 were planted in 2007. Each island was divided into four quadrants, 

which were planted at spacings of 1.0, 1.67, 2.33 and 3.0 m. To ensure representative 

placement in all hydrological environments, eight species common to Everglades’ tree 

islands near to LILA site were randomly assigned to planting locations within the 

relatively high, interior 18 m × 10 m of each quadrant, and the lower surrounding areas 

separately. The planting arrangement called for 89 trees of each species per island. 

Planting stock was from local seed sources, grown for about 9-months in 1-gallon (3.78 

liter) pots at a local commercial nursery prior to outplanting in LILA.  

4.2 Experimental design 

LILA’s M2 and M3 macrocosms provided the setting for the experiment (Figure 2).  The 

M2 and M3 macrocosms include two islands each, one with a peat substrate and one with 

a limestone substrate.  Eighteen trees of each species, Annona glabra and Chrysobalanus 

icaco, were selected randomly from each island for a total of 36 trees per island, 72 trees 

per microcosm, and 144 trees overall.  Each tree received one of three nutrient 

treatments:  Nitrogen, Phosphorus, or no nutrient enrichment.  Therefore, 6 replicates 

were provided for each combination (species-treatment-substrate type) in each island.  
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All the sample trees were selected from less dense plots (3 m, 2.33 m and 1.67 m) to 

avoid competition among individual trees. 

 

A total of 108 trees were fertilized with one of the two nutrient enrichments (excluding 

the 36 control trees) for a year from July 2009 to June 2010.  The N enrichment was 

added in the form of urea (45-0-0).  The P enrichment was added in the form of 

orthophosphate, Na2HPO4, (0-45-0).  Nutrient enrichments were applied as a solution of 

dry pellet fertilizer dissolved in water. An allometric biomass equation was used to 

calculate total amount of biomass increase annually in each species population. Since 

data on tissue nutrient concentration (mgg-1) was available for each species (M. Ross, 

unpublished data), I used that nutrient data as reference to calculate the total amount of 

nutrient that an individual will accumulate annually for each species. At the end of the 

experiment, the cumulative amount of N and P applied over the course of the year was 

three times the amount of that nutrient that one individual normally incorporates into live 

tissue during an annual cycle (about 72 g of N or P per tree).   

 

 A total of six doses of N, P or water (controls) were applied to each tree. Each P 

treatment tree received about 500 ml nutrient solution, each N treatment tree received 

about 300 ml of nutrient solutions and each control tree received 300 ml of tap water. To 

apply nutrient enrichments, two 30 cm deep holes were cored into the substrate within the 

canopy shadow of each tree (Figure 4). A cap with holes was fixed to the bottom of the 

1.3 m long PVC pipe (0.75 inch diameter) to release of the nutrient solution into the 

surrounding substrate. The pipe was inserted into the hole, leaving 1.0 meter exposed 
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above the substrate.  The top of the pipe was capped after nutrient delivery. Holes were 

cored and pipes installed for all trees including control trees following identical 

procedures to ensure homogeneous experimental conditions. 

 

Total height, crown length, crown volume, and basal diameter of each tree were 

measured at the beginning and end of the experiment. The final measurements were taken 

5 months after the last nutrient dose to ensure that plants had enough time to respond 

after nutrient application. To analyze leaf nutrient concentration, 5-7 leaves from each 

tree were harvested at the end of the experiment. All samples were brought to the 

laboratory immediately for analysis. 

4.3 Hydrology 

A continuous record of surface water level was available from the LILA facility over the 

experiment period. Daily surface water level was monitored at the western (head) and 

eastern ends of each macrocosm. Surface water level at each tree island was estimated 

from a linear interpolation between water levels at the both ends of the macrocosm.  

 

Tree island elevations were established by 1) surveying with an auto-level (3mm 

accuracy) from vertical control benchmarks established by the SFWMD in each 

macrocosm to a temporary benchmark established in the center of each island, 2) 

surveying from the temporary benchmark to the base of approximately 150 newly planted 

trees of known horizontal location, 3) developing a contour plot of elevation from these 

data through ARC-GIS 9.2, and 4) applying the Spatial Analyst Extension in ARC-GIS to 
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determine an elevation of each tree. Relative elevation (RE) of each tree was calculated 

as the position of each tree above or below the mean tree island surface water over the 

experiment period. For example, 20 cm RE means the soil surface at the tree base was 

located 20 cm above the mean surface water, while -20 cm RE was 20cm below mean 

surface water.  

 

Soil samples were collected from 0-10 cm depth under the sample trees at the end of the 

experiment. Nine trees of each species (A. glabra and C. icaco) were selected randomly 

from each island for a total of 18 trees per island, 36 trees per substratum type (peat or 

limestone).  Since each tree received one of three nutrient treatments:  Nitrogen (N), 

Phosphorus (P), and control, each nutrient treatment had three replicates for each species 

per island.  

4.4 Laboratory analysis 

Once in the laboratory, leaf samples were dried at 65°C until a constant weight was 

obtained and then ground to a fine powder. A 1–2 mg subsample was placed in a tin 

capsule. Samples were combusted in an elemental analyzer (Carlo Erba) coupled to an 

isotope ratio mass spectrometer (IRMS Delta Plus, Finnigan Mat, San Jose, CA, USA) 

operating in a continuous flow mode. From these analyses, both isotope ratio (δ13C; δ15N) 

and elemental content (%C; %N) were obtained for carbon and nitrogen. Data are 

expressed in ‘‘delta’’ notation (δ 13 C and δ 15 N) as:  

δ = [(Rsample/ Rstandard ) – 1] X 1000 where, Rsample and Rstandard are the ratio 13C:12C 

or the ratio 15N:14N of the sample and standard, respectively, and the standards for carbon 
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and nitrogen are PDB (Pee Dee Belemnite) and air, respectively. All results were 

normalized to mg/g dry weight concentrations. 

 

Total phosphorus was analyzed colorimetrically according to the standard method for 

orthophosphate P (EPA method 365.1). Sample digestion methods were based on the 

procedure outlined by Solórzano and Sharp (1980). Oven-dried samples were oxidized 

through dry combustion, and all phosphorus-containing compounds were hydrolyzed to 

soluble reactive phosphorus (SRP) using magnesium sulfate (MgSO4) and hydrochloric 

acid (HCl). Products were stored a 4º C and analyzed within 48 hours of digestion. 

 

The N:P ratios can be expressed either as mass ratios (g N/g P) or as atomic ratios (mol 

N/mol P), which differ by a factor of 2.21. Since most literature in ecology uses mass N:P 

ratios, I also followed this convention.  

4.5 Statistical analysis 

The effect of nutrient treatments along with substrate types and relative elevation on tree 

growth and leaf nutrient concentration were analyzed for both species for one year. A 

two-way ANOVA was performed to examine the effects of nutrient treatment and tree 

island type (limestone vs peat) on leaf nutrient concentrations (N, P, N:P, δ13C and 

δ15N) and growth response for each species. Two-way ANOVA was also performed on 

soil TN, TP, and N:P to test for an effect of  substrate types and nutrient treatments for 

each species. A Linear Regression model was used to examine the effects of relative 

elevation on species growth response (Δ height growth) and all the tissue nutrient 
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measurement variables (TN, TP, N:P, δ13C and δ15N ). Multiple comparisons were only 

performed if two-way ANOVA results showed significant effect on the response variable. 

Results were considered statistically significant at the p-value less than 0.05 level. Prior 

to using ANOVA, assumptions of normality and homogeneity of variance were tested by 

the Shapiro-Wilkes and Levene’s tests, respectively. All analyses were done in 

STATISTICA (Version 7.1, StatSoft Inc., Tulsa, OK, USA). 
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4. RESULTS 

4.1 Nutrient treatment effect on plant growth 

The two species differed in their height responses to the nutrient treatments. A. glabra 

height growth increased significantly in response to P fertilization on both substrate types 

(Figure 5). Substrate type had no effect on A. glabra height growth and no interaction 

between substrate and nutrient treatment was detected (Appendix I). In contrast, C. icaco 

height growth did not respond to nutrient treatment at all but did exhibit a significant 

response to substrate type; trees grew higher on limestone islands than peat islands 

regardless of nutrient treatment (no significant nutrient x substrate interaction) (Appendix 

I, Figure 6).  

4.2 Soil nutrient analyses 

The two-way ANOVA results showed that nutrient treatment did not affect soil TN, TP, 

N:P under A. glabra (Appendix II). In this species, a substrate effect on soil TP was 

observed, with soils under trees growing on peat substrate having significantly higher TP 

than those on limestone substratum (Figure 7). In contrast, nutrient treatment did affect 

soil TP under C. icaco, and multiple comparison tests revealed that P-fertilized trees had 

significantly higher soil TP than Control or N-treated trees (Appendix II; Figure 8). 

Similarly, a significant nutrient treatment effect was observed on soil N:P ratio in this 

species, as soils collected from N-fertilized trees were found to have significantly higher 

N:P ratios than those from control and P-fertilized trees (Appendix II; Figure 9). No 
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substrate effects were observed under C. icaco trees, and no interaction between substrate 

and nutrient treatments was observed (Appendix II). 

4.3 Foliar nutrient concentration and leaf N:P ratios 

Neither species exhibited a statistically significant effect of nutrient treatment on leaf TN 

(see Appendix I). However, a substrate effect on leaf TN was detected for both species; 

leaf TN was found to be significantly higher in trees from limestone islands than in peat 

island trees (Figures 10 and 11). No significant interaction between substrate and nutrient 

treatment was detected for either species (Appendix I).  

 

In both species, leaf TP increased significantly in response to P fertilization but there was 

almost no change in leaf TP with N-fertilization (see Appendix I). Furthermore, multiple 

comparisons test revealed that P-fertilized trees had significantly higher TP than Control 

and N-treated trees in both species (Figures 12 and 13). Substrate effects were not 

observed for either species. However, there was a significant interaction (substrate x 

nutrient treatments) in C. icaco ( see Appendix I). 

 

Nutrient treatment effects on leaf N:P ratios were observed in both species (Appendix I) 

as P-fertilized trees had significantly lower N:P ratios than those from control and N-

fertilized ones (Figures 14 and15). Furthermore, leaf N:P in N-fertilized and Control trees  

were almost always observed to be greater than 16 (considered to be a critical value for 

P-limitation), while P-fertilized trees had N:P ratios < 16 in both species (Figures 16 and 

17).  Substrate effects on leaf N:P was not detected for either species. No interaction 
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(substrate x nutrient treatment) effect on leaf N:P was detected in A. glabra, but a 

significant interaction (substrate x nutrient treatment) was detected in C. icaco (Appendix 

I).  

 

A significant nutrient treatment effect on leaf δ15N was detected in both species 

(Appendix I). Post-hoc test further revealed that there was a significant difference 

between Control and N-fertilized trees of both species, but leaf δ15N in P-treated trees 

was not statistically different than either of the other treatments (Figures 18 and 19). In A. 

glabra, δ15N increased by 44.8 % and 92.8 % above Control trees in P and N treatments, 

respectively; in C. icaco, the analogous increase were 68.1 % and 78.6 %. No substrate or 

interaction (substrate x nutrient) effects were detected in either species (Appendix I).  

 

The two species differed in how leaf δ13C responded to the nutrient treatments. A. glabra 

leaf δ13C increased significantly in response to P-fertilization but substrate type had no 

effect at all (Appendix I, Figures 20). In contrast, neither nutrient treatment nor substrate 

type affected δ13C in C. icaco. Interaction effects on leaf δ13C were non-significant in 

both species (Appendix I).  

4.4 Responses with nutrient treatment along hydrological gradient 

The effect of RE on tree growth was found to be similar in both species, and across all 

nutrient treatments. Growth showed a significant positive response to RE in both 

unfertilized trees and P-fertilized trees in both species, as they grew taller with a decrease 

in flooding duration and depth (Figures 21 and 22). However, in N-fertilized trees, the 
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effect of RE was only observed in C. icaco; the response of A. glabra, while positive, was 

not significant at P<0.05. Among Control and N-fertilized trees of both species, leaf N:P 

ratios were unaffected by RE. However, in P-fertilized trees, leaf N:P ratio was found to 

increase significantly with increasing RE in both species (Figures 23 and 24). 

 

Carbon isotopic compositions of both A. glabra and C. icaco changed slightly along the 

RE gradient. Leaf δ13C ranged from -29.5 to -26.9 for A. glabra, and -31.41 to -28.64 for 

C. icaco. In A. glabra, δ13C was found to increase significantly with RE in P-fertilized 

trees but not in Control or N-fertilized individuals (Figure 25). In contrast, C. icaco 

Control trees showed a significant positive correlation between leaf δ13C and RE, while 

trees fertilized with either nutrient showed no such response (Figure 26). Relationships 

between N:P ratio and δ13C showed no significant patterns for Control and N-treated in 

either species, but P-fertilized A. glabra trees exhibited a positive correlation between 

N:P ratios and δ13C (Figure 27 and 28). An overall positive relationship between growth 

response and δ13C was observed for both species regardless of nutrient treatment (Figures 

29 and 30).  
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5. DISCUSSION 

5.1 Plant response to nutrient treatment  

Fertilization experiments are considered the best way to determine which nutrient limits 

either an individual plant population or a community type (Bedford et. al, 1999). If 

species are nutrient limited, they would be expected to respond to fertilization with 

increases in tissue nutrient concentration, growth or both (Tessier and Raynal, 2003). A 

highly significant P-treatment effect on leaf TP, indicative of P limitation, was found in 

both species tested in this experiment (Figures 12 and 13). In A. glabra the increase in 

leaf P was accompanied by a positive growth response (Figure 5). In contrast, neither A. 

glabra nor C. icaco responded to N-fertilization on either of the substrate type, nor were 

their leaf nutrient concentrations or N:P ratios affected (Appendix I). Therefore, the 

results suggest that the growth of both species (C. icaco, A. glabra) at the LILA tree 

islands were limited by P and not by N on both limestone and peat substrates. Similar 

positive species’ responses have been demonstrated in other fertilization experiments. For 

example, fertilization experiments performed in mangrove forests in Belize showed that 

tree growth was significantly increased in response to limiting P (Feller 1995; Feller et 

al., 1999; Feller et al., 2002; McKee et al., 2002; Lovelock et al., 2004). Shaver and 

Chapin (1980) did similar experiment on tundra species (both shrubs and herbaceous) and 

found a consistent growth response to limited nutrient addition. Several studies reported 

P-limited growth and biomass accumulation in seagrass species as P additions resulted in 

increased leaf P content, reduced N:P ratios, and enhanced shoot growth (Perez et al. 

1991; Fourqurean and Zieman 1992, Ferdie and Fourqurean 2004).  
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However, the interspecific difference in growth response to P fertilization may indicate 

that not all species respond to nutrient addition in a similar way (Vitousek et al., 1993; 

Sterner and Elser, 2002). Slow-growing plants from nutrient deficient sites may not 

respond to short term fertilization with an increase in growth (Chapin III, 1980, Vitousek 

et al., 1993); instead they often accumulate nutrients when they are more readily 

available, to be used during subsequent periods of stress (Grime 1977). Tessier and 

Raynal (2003) found similar results for six Catskill understory species. None of the 

species responded to N-addition while P-addition caused all species to increase in P-

concentration but only one to increase in biomass. Troxler et al., (2005) reported that C. 

icaco was the most efficient user of N and P relative to other co-occurring species in 

Everglades tree islands. Therefore, it is likely that observed difference in the growth 

response of A. glabra and C. icaco could be a result of slight differences in their short-

term growth strategy of response to limiting nutrient. However, this conclusion needs to 

be further tested with greenhouse and long-term fertilization experiments. 

5.2 Nutrient availability and substrate effect 

 The effects of substrate type on soil nutrient content were negligible in this study, 

however, the growth response in C. icaco and leaf TN in both species were significantly 

higher in limestone islands for both species regardless of nutrient treatments (Appendix I, 

Figures 10 and 11). These contradictory results raise a question regarding nutrient 

availability on each substrate. For many years, plant nutritionists and biogeochemists 

have been concerned with developing more precise methods to evaluate total nutrient 

availability for plant growth, particularly in sites where very low soil concentrations of 
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elements exists. Predictions of nutrient availability based on analysis of the total amount 

of an element (TN or TP) in a soil sample can sometimes be misleading, as several 

factors complicate this approach. The main problem is in distinguishing between 

available and non-available forms of element. Soil chemical extractions are more difficult 

to interpret than leaf concentration (Tanner et al., 1998). Therefore, the higher leaf TN 

observed on limestone islands in both species indicates that N availability was slightly 

lower in the peat substrate. One potential reason could be the differences in water 

retention capacity between substrates. In tree islands that have a higher surface than the 

surrounding landscape, peat substrates can generally maintain water levels several 

centimeters above the surrounding surface water due to the capacity of their organic 

matter-rich soil to hold more water than most mineral soils (Mitsch and Gosselink 2007). 

Conversely, limestone islands have little capacity to retain water and generally drain 

rapidly, thereby maintaining a drier condition within the rooting zone of the plants 

(Stoffella et al., 2010). For instance, Sullivan et al. (2010) observed that the water table 

was lower on limestone substrate islands at the LILA site than on peat substrate, and 

responded more abruptly to groundwater drawdown. The relatively anoxic environment 

that may develop on peat soil may also slow down the decomposition process and 

consequently reduce nutrient availability for plants. In contrast, the drier condition that 

exists on limestone substrate may accelerate decomposition processes, making nutrients, 

particularly N, more easily available for plants (Shure, 1981). 

 

A substrate effect on growth response was detected only in C. icaco, in which higher 

growth was observed on limestone substrate (Figure 6). Since flooding stress is one of the 
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major factors that determine the survival and growth of plant species, differences in flood 

tolerance ability among species may easily be expressed (see Stoffella et al., 2010). A. 

glabra has been consistently ranked among the most flood tolerant Everglades tree island 

species, while C. icaco appears to be somewhat less flood tolerant (Armentano et al. 

2002; Gunderson et al. 1988; Jones et al. 2006; van der Valk et al. 2007). Therefore, the 

lower growth response exhibited by C. icaco in peat substrate could be because of 

flooding stress and high soil moisture condition. The edges of all islands contain similar 

soil and hydrology to the peat islands, so the substrate effect could only be tested on the 

centers of the islands at high elevations underlain by limerock (Figure 3).  

5.3 Critical N:P ratio and nutrient limitation 

Recently the nutrient ratios of plant tissue have become widely used as an alternative 

approach for the analysis of nutrient limitation (Gusewell 2004), especially in comparison 

to more laborious and time consuming fertilization experiments (Verhoeven et al. 1996; 

Bedford et al. 1999; Olde Venterink 2000, Gusell, 2004). Koerselman and Meuleman 

(1996) reviewed data on fertilization studies in a variety of European freshwater wetlands 

and proposed the following critical N:P mass ratios: below 14 indicating N limitation, 

above 16 indicating P limitation and between 14 and 16 indicating co-limitation. 

Gusewell et al. (2003) suggested that biomass N:P ratios do reflect the relative 

availability of N and P to plants and may indicate the degree of N or P deficiency 

experienced by a plant population even more reliably than fertilization experiment. 

Bedford et al. (1999) reviewed extensive literature and analyses of data on nutrient 

stoichiometry in plant tissues and surface soils to draw conclusions about nutrient 
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limitation in temperate North American wetlands. They found that marshes dominated by 

vascular herbaceous species were predominantly N limited, while other wetland types 

and growth forms were P-limited on the basis of N:P ratios in live tissues. Güsewell and 

Koerselman, (2002) again reviewed data from field fertilization experiments, and 

suggested lowering of the critical N:P ratios for N-limitation to 13:1. Although there has 

been wide variation in the literature on critical N:P ratios for N or P limitation of 

vegetation growth,  ranging from 7 to 16 for N limitation, and 12 to 29 for P (Appendix 

III), the threshold values given by Koerselman and Meuleman (1996) have been broadly 

used for various growth forms.  Since, their critical N:P ratios were based on herbaceous 

vegetation, the generality of these values has been already questioned by some 

researchers ( e.g., Tessier and Raynal 2003; Soudzilovskaia 2005). There is clearly a need 

for experimental testing to define accurately the critical N:P ratios for tree island species 

to use this tool for management and monitoring purposes. The present study can provide 

valuable information on critical foliar N:P ratio for tree island species on the basis of a 

fertilization experiments. Figures 16 and 17 clearly show that critical N:P ratios for A. 

glabra and C. icaco exist, at least with an upper critical value 16. In both species, leaf 

N:P ratio was > 16 in Control trees which gives an indication of P limitation on the 

islands. Similarly, Saha et al. (2009) also reported high mean leaf N:P ratio for hammock 

(45) and pineland (42) species in the Everglades. Richardson et al., (1999) also reported 

leaf N: P ratios of 70–84 in sawgrass (Cladium jamaicense) from Everglades prairies.  

 

The indication of P-limitation on Control trees of both species due to high N:P ratios 

(>16) is further supported by the significant decrease in leaf N:P ratios with P enrichment 
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i.e., to below 16, while remaining the same with N-enrichment i.e N:P>16. This implies 

that trees were first limited by P, and when the limiting nutrient was supplied in excess, 

plants became limited by N. According to von Liebig’s law of minimum, which states 

that individual plant species can be characterized by a fixed order in their nutrient 

requirements, only one nutrient actually limits growth at any one time. If there is a 

continuing application of the initially-limiting nutrient, the result is that growth limitation 

eventually switches to another nutrient. 

5.4 Nutrient treatment effect on leaf δ15N  

The potential for limitation to switch from one nutrient to another is corroborated by 

nitrogen isotope analyses in this study. With P addition, phosphorus was expected to 

become easily available, inducing plants to increase their δ15N as the result of increased 

N demand and reduced discrimination against the heavier isotope during N uptake 

(Figures 18 and 19). The trend in the data did support my expectation that leaf δ15N 

would increase with P-treatment relative to Control plants (Figures 18 and 19), though 

the difference did not reach statistical significance. Similar trends have also been reported 

in other studies (Mckee et al. 2002, Evans 2001, Clarkson et al. 2005, Inglett et al 2007) 

and Clarkson et al. (2005) proposed that the increased δ15N was a result of a decreased 

fractionation by plants as N demand increased, not because of the change in the δ15N of 

the N source. For example, Mckee et al. (2002) and Clarkson et al. (2005) reported that 

δ15N was increased with P enrichment in P-limited system in mangroves and New 

Zealand bog species, respectively. In my study, the significant higher δ15N observed in 

N-treated plants could also be a result of Urea (high δ15N). Several studies reported high 
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δ15N in commercial fertilizers (e.g., Flipse and Bonner 1985, Gautam and Iqbal 2010, 

Hubner 1986).  

5.5 Limitations of using N:P ratio  

An important limitation to the use of critical N:P ratios to assess nutrient limitation is that 

it is only effective if either N or P is limiting (Aerts and Chapin 2000, Koerselman and 

Meuleman, 1996). Other factors could and often do could also limit plant growth (e.g., 

light, water, temperature, and other nutrients particularly potassium). Since sampled trees 

were selected from low-density plots, i.e. all trees were spaced at least 1.67 meters apart 

on center; it is unlikely that light limited their growth. Temperature was also probably not 

an issue in South Florida’s subtropical environment.  

 

Since N:P threshold values described by Koerselman and Mauleman were derived 

exclusively from marsh vegetation, from harvesting whole aboveground biomass from a 

community in a wide range of wetlands, some authors (e.g., Aerts and Chapin 2000) have 

cautioned against using N:P ratios of individual species rather than of the community 

because of inherent interspecific variation in leaf nutrient chemistry (Daoust and 

Childers, 1999). However, community productivity is always controlled by dominant 

species (Grime, 1998), and net-primary production relates to community level N:P ratios. 

Tree island community level N:P ratio may also be driven by the N:P ratios of the 

dominant species and C. icaco and A. glabra are two of the dominant woody species in 

tree islands. However, it would be better to further test these results with other species.   
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5.6 Background nutrient availability and nutrient application 

In this experiment, small doses of N or P fertilizers were directly added into the soil near 

the base of individual trees through pores in PVC conduit 30 cm below the soil surface, 

which allowed the slow release of fertilizer directly onto the plant roots. I applied 

fertilizers for one year so that the plants received nutrient addition continuously during 

the experimental period.  A nutrient treatment effect on soil TP was observed in both 

species (though the p-value for A. glabra was marginal at 0.06, see Appendix II). Soil TP 

under P-fertilized trees was increased by 109% and 102% in C. icaco and A. glabra, 

respectively. Increased soil TP concentration around treated trees indicates that total 

nutrient content in soil was affected by fertilization (Figure 3 and 4). However, no 

significant nutrient treatment effect was observed from N-treatment for either species 

(Appendix II). The soil TN from N-fertilized trees was increased by 37.2 % and 3.2% in 

C. icaco and A. glabra, respectively. The difference in nutrient effect on soil N and P 

could result from a difference in their retention time in soil. Nitrogen is less likely to 

persist in a soil for a long time as it can be lost through denitrification (in anoxic 

environments) and cycled into the gaseous phase. The phosphorus cycle does not include 

such a gaseous phase, and phosphorus has a strong affinity towards limestone substrate, 

thus it is relatively immobile in limestone-derived soils. Ferdie and Fourqurean (2004) 

found similar results in south Florida estuaries in which, 49–82% of P added to P-limited 

seagrass meadows was retained for at least a year, while less than 10% of added N was 

retained over the same time period in N-limited seagrass beds.  
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In this study, phosphorous was applied in the form of sodium biphosphate (Na2 HPO4). 

The additional sodium to P-treated trees likely did not affect tree response, as the relative 

addition of sodium was low (personal conversation with Dr. Leonard Scinto). 

Furthermore, the effect of neighboring individuals subjected to a different treatment was 

minimized by the experiment design, which employed a random selection of trees from 

low density plots (3 m, 2.33 m, and 1.67 m spacing), where canopy overlap was minimal. 

5.7 Nutrient limitation along the hydrological gradient 

Previous studies from tree islands have demonstrated that moisture has a significant 

effect on nutrient availability (Hanan and Ross 2010; Jayachandran et al., 2004, Ross et 

al, 2006). Ross et al. 2006 reported a decreasing trend in leaf N:P ratios from marsh 

through Hardwood Hammock, suggesting that phosphorus limitation of growth dissipates 

with decreasing flooding frequency in  Everglades. The results in this study are not 

consistent with those studies from Everglades tree islands, as no significant change in leaf 

N:P was observed along RE gradient in Control trees within either species (Figures 23 

and 24). However, P-treated trees of both species (but not Control and N-treated trees) 

exhibited a positive correlation between RE and leaf N:P (Figures 23 and 24); thus, 

maximum N:P ratio was found at the highest elevation and the lowest N:P was found at 

lowest elevation when P-availability was augmented. In contrast, growth response 

patterns of Control and N-treated trees also showed a positive correlation with RE but 

leaf N:P ratio was unaffected by elevation. Since P-treated trees had N:P ratio lower than 

16 in both species, tree on lower elevation (flooded zone) are likely to be N limited 

(Figure 23 and 24) after P-addition. Flood-related stress such as anoxia can negatively 
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affect plant growth and inhibit nutrient uptake (Lin and Sternberg, 2007). Therefore, the 

low N:P corresponding to low growth response to P-treatment at lower elevation  could 

be due to flooding stress. 

5.8 Effect of nutrient treatment on leaf δ13C  

Carbon-stable isotopic ratio of plant tissues is often used as an indicator of gas exchange 

(Inglett and Reddy, 2006). In general, stomatal closure and reduced carbon isotope 

discrimination are stress responses and have been demonstrated in plants exposed to 

stress (Guy and Wample, 1984). Physiological stress can limit CO2 supply for 

photosynthesis and thus lower discrimination against 13C and reduced productivity 

(McKee et al, 2002). Generally enzymatic discrimination against 13C is at maximum 

when stomata are more open or rates of photosynthesis are low. In contrast, less 

discrimination against 13C was found when plants use internal CO2 more completely 

when stomata are closed or photosynthesis is high (Inglett and Reddy, 2006). The 

significant pattern observed in δ13C of P-fertilized A. glabra in the present study (Figure 

25) demonstrates that physiological processes affecting C-isotope discrimination were 

affected by nutrient addition coupled with hydrology. The non-significant pattern in N-

fertilized and Control trees suggests that variation in δ13C of P-fertilized A. glabra trees is 

likely the result of the added limited nutrient, P, stimulating photosynthesis. This is 

further corroborated by overall increase in δ13C in response to P-fertilization (Figure 20). 

Serret et al., (2008) hypothesized that the increase in δ13C of fertilized plants could be 

because of a decrease in the ratio of intercellular to ambient CO2 concentrations caused 

by a higher stomatal limitation of photosynthesis or more carboxylation capacity of 
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photosynthetic tissues or both. Some short term in vitro studies have shown that P 

limitation can reduce the rate of photosynthesis in plants (see Rao and Terry, 1995). In 

the same study, they demonstrated that the rate of photosynthesis is controlled by ribulose 

1,5-biphosphate (RuBP); low P reduced photosynthesis and RuBP levels, and resupply 

increased photosynthesis in sugar beets. Inglett and Reddy (2006) reported increasing 

pattern of δ13C and photosynthesis with P availability (towards inflows) for Typha 

species in Water conservation Area-2A, Florida. They argued that positive relationship 

between δ13C and higher photosynthesis limitation was a result of limitation on stomatal 

conductivity at high nutrient sites. Similarly, in the present study, trees with higher 

growth response by P-fertilization also exhibited higher δ13C (Figure 27). It could be 

possible that the higher photosynthesis (higher growth) rate corresponding with less 

discrimination against 13C due to the lack of significant changes in stomatal conductance 

along the RE. It is not surprising to see non–significant pattern observed in δ13C of P-

fertilized C. icaco trees (Figure 28) as neither growth nor δ13C were affected by nutrient 

treatments. However, direct photosynthetic measurements (CO2
 assimilation rate and 

stomatal conductance) of trees could readily define the hypothesis.  

5.9 Why are LILA tree islands P-limited? 

The nutrient analyses suggested that improved P supply was the principal reason for 

increased growth in LILA tree islands, which is in general agreement with the high P 

availability in Everglades tree islands. It is interesting to compare soil P in LILA to 

Everglades tree islands. The relatively low soil P content in LILA tree islands is 

uncharacteristic of Everglades tree islands. Soil TP for Control trees in this study were 
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0.013 % and 0.014 % under C. icaco and A. glabra trees respectively; while in 

Everglades tree island soils, soil TP concentrations of 3% in hammock, 0.1 % on 

Bayhead and 0.07 in bayhead swamp have been reported (Jayachandran et al., 2004). 

Similarly, various authors (Orem et al. 2002, Ross et al., 2006, Gann Troxler et al, 2001, 

Wetzel 2009) reported extremely high phosphorous content at the head or center of 

islands compared with surrounding marsh. The discrepancies between LILA and 

Everglades tree islands in soil TP content is likely the result of tree island age. In 

Everglades tree islands, three major mechanisms have been hypothesized for the high P 

content in soil (Ross et al., 2006; Wetzel et al. 2005, Jayachandran et al., 2004)): 1) 

dissolved nutrients are carried toward the tree islands because of higher 

evapotranspiration, 2) contribution of animal (bird) inputs, and 3) the dynamics of 

organic matter. Being a very young (~6 years old) island with 3 year old trees, all three of 

these mechanisms are at a preliminary stage in LILA tree islands, and it could take a long 

time to accumulate nutrients to the same level as in Everglades tree islands. Ross and Sah 

(2010) argued that when tree islands are at early stages of development, tree growth can 

be limited by P, but this might not be the same in mature forest ecosystems like hammock 

tree islands in Everglades. Also, as calcite can adsorb P (Zhou and Li, 2001) and render it 

unavailable for plant growth, the availability of phosphorus to species growing on 

limestone tree island soils could be P-limited. For example the earlier study by Troxler et 

al., (2005) found that southern Everglades tree islands were P limited, despite the 

presence of high P and N in soils.  
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6. CONCLUSIONS 

The present study showed that fertilization experiments proved successful in determining 

the growth-limiting nutrient in two tree islands species in the LILA tree islands. This 

experiment identified the difference between LILA and Everglades tree islands in plant 

nutrient availability. Leaf nutrient ratios (N:P) analysis seem particularly adaptable to 

evaluations of the availability of nutrients for the tree islands species. The present study 

is consistent with Koerselman and Meuleman (1996), at least in so far as the upper limit 

(N:P >16) for P-limitation in tree islands, though the low critical ratio could not be tested 

due to lack of a combined (N+P) treatment. As a result, foliar N:P ratios can be used to 

identify and predict how changing environment alters nutrient availability and the shift 

between N and P limitation. Leaf nutrient ratio may be a useful tool to assess whether and 

how humans impact the relative supplies of N and P and in monitoring and evaluation of 

conservation management efforts (Gusewell et al. 2000). It can be also used to examine 

how changes in the relative availability of N and P influence plant species composition or 

various ecological processes in tree islands (Bedford et al. 1999; Olde Venterink 2000). 

However, N:P ratios need to be calibrated properly with other physiological indicators 

like stomatal conductivity, net photosynthetic rate, etc. to provide a better idea of the 

nature of nutrient limitation. 

 

The experiment identified a clear difference in species growth responses to substrate 

type, as limestone tree islands seem to be a more beneficial environment for the less flood 

tolerant species (C. icaco).  It appears likely that species growth and survival depends not 

only on hydrology but also nutrient availability, particularly P. Therefore, the present 
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study may be very helpful in the design of management systems for tree islands, 

especially at LILA, which are at early stages of development.  

 

The results reported here were from 1-year study. Because plants sometimes are delayed 

in their response to nutrient addition; a longer term experiment needs to be completed 

before applying the conclusions in ecosystem and natural resource management in 

Everglades tree islands. In order to test the generality of the results, further 

experimentation should also include species that co-occur with A. glabra and C. icaco.   
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APPENDIX I 

Two-way ANOVA results for A. glabra and C. icaco responses to nutrient treatments and 
substratum.  Response variable: Growth=Δ height (cm); total nitrogen in leaf = TN, total 
phosphorous in leaf= TP, Leaf nitrogen and  Phosphorous ratio = N:P, leaf δ15N, and leaf 
δ13C ; Treatment effect:  island type: limestone or peat = Substratum (Sub); Nutrient= 
Nut (N, P and Control) . (*) indicating significant effect (P-value<0.05). 
 

Species Response Effect DF F p-value 
Nut 2 6.613 0.01* 
Sub 1 0.007 0.93 Growth 
Nut*Sub 2 0.879 0.42 
Nut 2 2.755 0.07 
Sub 1 4.873 0.03* Leaf TN 
Nut*Sub 2 0.312 0.73 
Nut 2 38.960 0.01* 
Sub 1 1.400 0.24 Leaf TP 
Nut*Sub 2 2.700 0.07 

Leaf N:P Nut 2 58.28 0.01* 
 Sub 1 1.990 0.16 
 Nut*Sub 2 2.450 0.09 
Leaf δ13C Nut 2 6.155 0.01* 
 Sub 1 0.001 0.97 
 Nut*Sub 2 1.297 0.28 

Nut 2 6.284 0.02* 
Sub 1 0.208 0.65 

A. glabra 

Leaf δ15N 
Nut*Sub 2 0.633 0.53 
Nut 2 0.005 0.99 
Sub 1 9.693 0.01* Growth 
Nut*Sub 2 0.019 0.98 
Nut 2 0.007 0.99 
Sub 1 6.766 0.01* Leaf TN 
Nut*Sub 2 0.895 0.41 
Nut 2 19.900 0.01* 
Sub 1 3.260 0.07 Leaf TP 
Nut*Sub 2 5.490 0.01* 
Nut 2 24.270 0.01* 
Sub 1 1.960 0.16 Leaf N:P 
Nut*Sub 2 3.410 0.04* 
Nut 2 0.654 0.52 
Sub 1 2.149 0.14 

Leaf δ13C 
 

Nut*Sub 2 0.118 0.88 
Nut 2 3.765 0.03* 
Sub 1 0.304 0.58 

C. icaco 

Leaf δ15N 
Nut*Sub 2 2.433 0.09 
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APPENDIX II 

Two-way ANOVA results for soil nutrient content of A. glabra and C. icaco trees with 
respect to nutrient treatments and substratum.  Response variable: total nitrogen in soil = 
Soil TN, total phosphorous in soil= Soil TP, Soil nitrogen and  Phosphorous ratio = Soil 
N:P. Treatment effect:  Substratum type: limestone or peat = Sub; Nutrient= Nut (N, P 
and Control)   
 

Species Response Effect DF F p-value 
Nut 2 0.06 0.94 
Sub 1 2.54 0.12 Soil TN 
Nut*Sub 2 0.04 0.95 
Nut 2 3.10 0.06 
Sub 1 5.90 0.02* Soil TP 
Nut*Sub 2 1.87 0.17 
Nut 2 0.69 0.51 
Sub 1 0.04 0.83 

A. glabra 

Soil N:P 
Nut*Sub 2 3.28 0.06 
Nut 2 2.13 0.14 
Sub 1 0.27 0.60 Soil TN 
Nut*Sub 2 0.41 0.66 
Nut 2 4.00 0.03* 
Sub 1 0.24 0.58 Soil TP 
Nut*Sub 2 0.69 0.50 
Nut 2 3.84 0.03* 
Sub 1 0.06 0.79 

C. icaco 

Soil N:P 
Nut*Sub 2 0.10 0.90 

Note: (*) indicating significant effect (P-value<0.05). 
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APPENDIX III 

Results of the literature search on N:P ratios and nutrient limitation in vegetation. The 
columns ‘N limitation’ and ‘P limitation’ indicate the N:P ratio at which the authors of 
the cited studies suggest that their respective ecosystem is limited by the indicated 
nutrient  
Study System Location Additions N:P Limited  Limitation 

By N 
Limitation 
by P 

Estuaries        
Doering et al. 
(1995) 

Estuary Laboratory N and P 15·6 N   

Murray, 
Dennison and 
Kemp (1992) 

Estuary Virginia N and P 14–18 N and P   

Doering et al. 
(1995) 

Estuary Laboratory N and P 20·4 P 
 

  

Doering et al. 
(1995) 

Estuary Laboratory N and P 25·9 P   

Doering et al. 
(1995) 

Estuary Laboratory N and P 28·9 P 
 

  

Shores        
Koerselman 
(1992) 

Coastal 
dunes 

The 
Netherlands 

   < 16 > 25 

Wetlands        
Vermeer 
(1986a) 

Wet 
grassland 

The 
Netherlands 

N and P 5·4 N   

Aerts, Wallén 
and Malmer 
(1992) 

Sphagnu
m bog  

Sweden N and P 6 N   

Boeye et al. 
(1997) 

Wet 
meadow 

Belgium N and P 7·6–
9·0 

N   

Verhoeven and 
Schmitz (1991) 

Fen The 
Netherlands 

N and P 11·95 N   

Boeye et al. 
(1997) 

Fen Belgium N and P 13·1–
14·7 

N   

Vermeer 
(1986b) 

Fen The 
Netherlands 

N and P 13·3 N   

Boyer and 
Wheeler (1989) 

Fen England P 14·6 P   

Loach (1968) Bog England N and P 21·4 P   
Boyer and 
Wheeler (1989) 

Fen England P 22·0 P   

Tamm (1954) Bog Sweden N and P  23·0  N   
Boeye et al. 
(1997)  

Fen  Belgium  N and P  
 

23·3–
30·7  

P   

Verhoeven and 
Schmitz (1991)  

Fen  The 
Netherlands  

N and P  23·85  
 

P   

Loach (1968)  
 

Bog  England  N and P  25·3  P   

Loach (1968)  Bog  England  
 

N and P  30·0  P   

Aerts, Wallén 
and Malmer 

Sphagnu
m bog  

Sweden  N and P  
 

34  P  < 10  > 14 
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(1992)  
Boyer and 
Wheeler (1989) 

Fen  
 

England  P  54·0 P   

Wassen, Olde 
Venterink and 
de Swart (1995)  

Mire  
 

Poland     < 14·3  > 25 

Verhoeven, 
Koerselman and 
Meuleman 
(1996)  

Wetland  review 
Europe  

   < 14  
 

> 16 

Penning de 
Vries, Krul and 
van Keulen 
(1980)  

Grasslan
d  
 

Western 
Africa  

N and P    < 6·67 > 26·32 

von Oheimb et 
al., (2010) 

Heathlan
ds 

Germany      

Gusewell 
(2003) 

Fens and 
dunes 

The 
Netherlands 

N and P    >20 

UPLANDS        
de Visser et al. 
(1994)  

Conifero
us forest  

Europe  N  
 

7·0–
14·5  

Not N   

Alan, Taylor 
and Dicks 
(2000)  

Carica 
papaya  

Laboratory  N and P  7  
 

N and P   

Jacobson and 
Pettersson 
(2001)  

Picea 
abies 
stand  

Sweden  N and P  7·54  
 

N   

Mohren, van 
den Burg and 
Burger (1986)  
 

Douglas 
fir forest  

The 
Netherlands  

N and P  8  N   

Jacobson and 
Pettersson 
(2001)  
 

Pinus 
sylvestris 
stand  

Sweden  N and P  8·96  N   

Clarholm and 
Rosengren-
Brinck (1995)  

Picea 
abies 
plantatio
n  
 

Sweden  N and P  9·8  N and P   

Valentine and 
Allen (1990)  

 
Loblolly 
pine 
plantatio
n  

North 
Carolina  

N and P  10·42  
 

N and P   

Bowman (1994)  
 

Alpine 
dry 
meadow  

Colorado  N and P  13  N   

Herbert and 
Fownes (1995)  

Montane 
forest  
 

Hawaii  N and P  13·83  P   

Bowman (1994)  Alpine 
wet 
meadow  

Colorado  N and P  14  P   
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Ljungstrom and 
Nihlgård (1995)  

Beech 
forest  
 

Europe  P  14·17  At least 
P 

  

Bobbink (1991)  Chalk 
grassland  
 

The 
Netherlands  

N and P  16·08  N and P   

Tessier and 
Raynal (2003) 

Forest 
understor
ey 

New York  N and P 17·71  
 

P   

Mohren, van 
den Burg and 
Burger (1986)  

Douglas 
fir forest  

The 
Netherlands  

N and P  22–25  
 

P   

Aerts and 
Berendse (1988)  
 

Heath  The 
Netherlands  

N and P 29·41  P   

Aerts and 
Berendse (1988)  

Heath  The 
Netherlands  

N and P  27·5  P 
 

  

Wall, Hellsten 
and Huss-
Danell (2000)  

Alnus 
and 
Trifoliu
m  
 

Laboratory  N and P    > 7  

Ericsson et al. 
(1993)  

Picea 
abies 
plantatio
n  
 

Sweden     > 12·5  

Gusewell 
(2004) 

Terrestri
al 

Review N and P   <10 >20 

        
Soudzilovskaia 
et al., (2005) 

Alpine 
tundra 

Russia N and P 29 N and P   

Note: Revised  from Tessier and Ravnal (2003)  
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 Figure 2. A map showing a design of LILA. Each macrocosm (M1-M4) contains two 

islands, E and W; one of them made up of limestone while other was peat. 

W W

E

W

E

W

Header cell

100 m

M4 M3 M2 M1

Distribution canal

E E

= walkway= tree island



 

 51

 

 

Figure 3. The average below ground depth (m) of sediment detected at the center of the      
peat and limestone tree islands when the groundwater wells were installed. 
(Adopted from Stoffella et al., 2010) 
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Figure 4. A picture showing nutrient treatment technique around the trees. 
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Figure 5. Comparisons of growth response between nutrient treatments for A. glabra. 

Each vertical bar represents 95% confidence interval. Nutrient treatments are 
C=Control, P=P-treatment, and N=N-treatment. Treatments whose labels include 
the same letter do not differ (p<0.05). 
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Figure 6. Comparisons of growth response for C. icaco on limestone and peat substrates. 

Each vertical bar represents 95% confidence interval. Substrates labeled same 
letter do not differ (p<0.05). 
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Figure 7. Comparisons of soil TP content for A. glabra on limestone and peat substrates. 
Each vertical bar represents 95% confidence interval. Treatments whose labels 
include the same letter do not differ (p<0.05). 
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Figure 8. Comparisons of soil TP content between nutrient treatments for C. icaco on 

limestone and peat substrates. Each vertical bar represents 95% confidence 
interval. Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. 
Treatments whose labels include the same letter do not differ (p<0.05). 
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Figure 9. Comparisons of soil N:P ratio between nutrient treatments for C. icaco on     

limestone and peat substrates. Each vertical bar represents 95% confidence 
interval. Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. 
Treatments whose labels include the same letter do not differ (p<0.05). 
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Figure 10. Comparisons of leaf TN for A. glabra on limestone and peat substrates. Each 

vertical bar represents 95% confidence interval. Treatments labeled with the same 
letter do not differ (p<0.05). 
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Figure 11. Comparison of leaf TN for C. icaco on limestone and peat substrates. Each 

vertical bar represents 95% confidence interval. Treatments labeled with the same 
letter do not differ (p<0.05). 
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Figure 12. Comparisons of leaf TP between nutrient treatments for A. glabra on 

limestone and peat substrates. Each vertical bar represents 95% confidence 
interval. Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. 
Treatments whose labels include the same letter do not differ (p<0.05). 
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Figure 13. Comparisons of leaf TP between nutrient treatments for C. icaco on limestone 

and peat substrates. Each vertical bar represents 95% confidence interval. Nutrient 
treatments are C=Control, P=P-treatment, and N=N-treatment. Treatments whose 
labels include the same letter do not differ (p<0.05). 
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Figure 14. Comparisons of leaf N:P between nutrient treatments for A. glabra on 

limestone and peat substrates. Each vertical bar represents 95% confidence 
interval. Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. 
Treatments whose labels include the same letter do not differ (p<0.05) 
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Figure 15. Comparisons of leaf N:P ratio between nutrient treatments of C. icaco on       

limestone and peat substrates. Each vertical bar represents 95% confidence 
interval. Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. 
Treatments whose labels include the same letter do not differ (p<0.05). 
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Figure 16. Scatterplot showing effect of nutrient treatment on N:P ratios for A. glabra.          

Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. Broken 
lines at the center of the graph showing N:P critical ratios i.e. >16 and <14.  
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Figure 17. Scatterplot showing effect of nutrient treatment on N:P ratios for C. icaco.             

Broken lines at the center of the graph showing N:P critical ratios i.e. >16 and 
<14. Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. 
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Figure 18. Comparisons of leaf δ15N between nutrient treatments for A. glabra on 
limestone and peat substrates.  Each vertical bar represents 95% confidence 
interval. Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. 
Treatments whose labels include the same letter do not differ (p<0.05). 
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Figure 19. Comparisons of leaf δ15N between nutrient treatments for C. icaco on 

limestone and peat substrates. Each vertical bar represents 95% confidence 
interval. Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. 
Treatments whose labels include the same letter do not differ (p<0.05).  
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Figure 20. Comparisons of leaf δ13C between nutrient treatments of A. glabra on 

limestone and peat substrates. Each vertical bar represents 95% confidence 
interval. Nutrient treatments are C=Control, P=P-treatment, and N=N-treatment. 
Treatments whose labels include the same letter do not differ (p<0.05).  
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Figure 21. A scatterplot between growth response of C, N, and P-treatment of A. glabra       

trees and relative elevation (RE). Solid lines are showing significant patterns, 
whereas broken lines are for non-significant. 
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Figure 22. A scatterplot between growth response of C, N, and P-treatment of C. icaco 

trees and relative elevation (RE). Solid lines are showing significant patterns. 
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Figure 23. A scatterplot between leaf N:P ratios of C, N, and P-treatment of A. glabra 

trees and relative elevation (RE). Solid lines are showing significant patterns, 
whereas broken lines are for non-significant. 
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Figure 24. A scatterplot between leaf N:P ratios of C, N, and P-treatment of C. icaco trees 

and relative elevation (RE). Solid lines are showing significant patterns, whereas 
broken lines are for non-significant. 

 
 



 

 73

A. glabra

 C
 N
 P-40 -30 -20 -10 0 10 20 30 40

Reletive Elevation, cm

-30.0

-29.5

-29.0

-28.5

-28.0

-27.5

-27.0

-26.5

δ13
C

 RE:C:  r2 = 0.0005;  r = -0.0223, p = 0.9157
 RE:N:  r2 = 0.0371;  r = 0.1926, p = 0.3787
 RE:P:  r2 = 0.4573;  r = 0.6762, p = 0.0002

 
Figure 25. A scatterplot between leaf δ13C of C, N, and P-treatment of A. glabra trees and 

relative elevation (RE). Solid lines are showing significant patterns, whereas 
broken lines are for non-significant. 
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Figure 26. A scatterplot between leaf δ13C of C, N, and P-treatment of C. icaco trees and 

relative elevation (RE). Solid lines are showing significant patterns, whereas 
broken lines are for non-significant. 
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Figure 27. A scatterplot between leaf N:P ratios and δ13C of C, N, and P-treatment of A. 

glabra trees. Control(C) and N-treated (N) did not show any significant pattern. 
Solid lines are showing significant patterns, whereas broken lines are for non-
significant. 
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Figure 28. A scatterplot between leaf N:P ratios and leaf δ13C of C, N, and P-treatment of 
C. icaco. Broken lines are showing non-significant patterns. 
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Figure 29. A scatterplot between leaf δ13C and growth response (∆ height) for A. glabra. 



 

 78

  
C. icaco

 N
 P 
 C 
 Other -32.0 -31.5 -31.0 -30.5 -30.0 -29.5 -29.0 -28.5

d13C

-20

0

20

40

60

80

100
H

T
, c

m
p<0.05

 
Figure 30. A scatterplot between leaf δ13C and growth response (∆ height) for C. icaco. 
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