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ABSTRACT OF THE DISSERTATION 

AUTOMATED DETECTION OF HEMATOLOGICAL ABNORMALITIES 

THROUGH CLASSIFICATION OF FLOW CYTOMETRIC DATA PATTERNS 

by 

Mark Alexander Rossman 

Florida International University, 2011 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

Flow Cytometry analyzers have become trusted companions due to their ability to 

perform fast and accurate analyses of human blood.  The aim of these analyses is to 

determine the possible existence of abnormalities in the blood that have been correlated 

with serious disease states, such as infectious mononucleosis, leukemia, and various 

cancers.  Though these analyzers provide important feedback, it is always desired to 

improve the accuracy of the results.  This is evidenced by the occurrences of 

misclassifications reported by some users of these devices.  It is advantageous to provide 

a pattern interpretation framework that is able to provide better classification ability than 

is currently available.  Toward this end, the purpose of this dissertation was to establish a 

feature extraction and pattern classification framework capable of providing improved 

accuracy for detecting specific hematological abnormalities in flow cytometric blood 

data.  

This involved extracting a unique and powerful set of shift-invariant statistical features 

from the multi-dimensional flow cytometry data and then using these features as inputs to 

a pattern classification engine composed of an artificial neural network (ANN).  The 
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contribution of this method consisted of developing a descriptor matrix that can be used 

to reliably assess if a donor’s blood pattern exhibits a clinically abnormal level of variant 

lymphocytes, which are blood cells that are potentially indicative of disorders such as 

leukemia and infectious mononucleosis.  

  This study showed that the set of shift-and-rotation-invariant statistical features 

extracted from the eigensystem of the flow cytometric data pattern performs better than 

other commonly-used features in this type of disease detection, exhibiting an accuracy of 

80.7%, a sensitivity of 72.3%, and a specificity of 89.2%.  This performance represents a 

major improvement for this type of hematological classifier, which has historically been 

plagued by poor performance, with accuracies as low as 60% in some cases. 

This research ultimately shows that an improved feature space was developed that can 

deliver improved performance for the detection of variant lymphocytes in human blood, 

thus providing significant utility in the realm of suspect flagging algorithms for the 

detection of blood-related diseases. 
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1. INTRODUCTION 

Automated hematology analyzers are critical tools known for their ability to perform fast 

and accurate analyses of human blood.  The aim of these analyses is to determine the 

possible existence of abnormalities in the human blood that have been correlated with 

serious disease states, such as infectious mononucleosis, leukemia, and various cancers.  

Though these analyzers do provide important feedback to medical experts, there is a 

persistent need to improve the sensitivity and specificity of the results, given the subtle 

nature of these diseases.  This is evidenced by the occurrence in relatively high rates of 

both false positives and the more critical false negatives as reported by some users of 

these devices.  Thus, it is advantageous to provide a superior pattern interpretation 

framework that is able to provide enhanced classification ability than is currently 

available.   

For these reasons, the ultimate endeavor of this research was to improve the prospects for 

the automated classification, characterization, and diagnosis of white blood cells existing 

in various stages of maturation or exhibiting possible abnormalities.  Toward this end, 

this dissertation proposes a research platform for the application of advanced feature 

extraction techniques to augment the accuracy of the classification and analysis of human 

blood cells that is performed by automated hematology analyzers such as the LH750TM 

that is currently manufactured by Beckman Coulter, Inc.  Given the strong collaboration 

between FIU and Beckman Coulter, the research methodology and the practical 

implications of this dissertation focus on hematological research towards a better 

understanding of serious diseases such as leukemia and lymphoma.  
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In the context of automated hematological analysis, advanced feature extraction 

techniques and classification algorithms have been developed within this research 

platform to address the complex problems of detection and ultimately diagnosis of 

disease.  Within the constraints of a real-time analysis system, achieving reliable 

accuracy for classification problems of this level of difficulty usually requires the use of 

high-performance computing systems that employ various levels of machine learning and 

artificial intelligence. 

The term Artificial Intelligence is used to describe a collection of problem-solving 

methods that emerged after the Second World War.  These methods were innovative 

because they used techniques to solve problems in engineering that were often unable to 

be solved using conventional mathematics [Fogel et al. 1966].  Advances in this field 

were, to a large degree, furthered firstly by the advent and later by improvements made in 

computing technology.  As the use of computers became more commonplace, the use of 

AI principles in the areas of research, and problem solving has steadily grown.  The areas 

of AI, which have made the most impact in the scientific community, are genetic 

algorithms, fuzzy logic, and artificial neural networks.  Though the concepts of genetic 

algorithms and fuzzy logic are indisputably useful for problem solving, some have stated 

that neural networks have demonstrated an uncanny advantage due to their ability to 

learn. 

The advent of the Perceptron was considered the beginning of the theory of Artificial 

Neural Networks (ANNs) [Rosenblatt 1958].  As the theory was further developed, other 

types of networks were also invented, such as the Adaline, Madaline, and Self-

Organizing Maps [Specht 1990] [Widrow and Lehr 1990] [Kohonen 2001].  The most 
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attractive feature about ANNs is that they can mimic the way biological neurons interact 

to process and learn information.  For these reasons, many problems of pattern 

recognition and classification can be solved with ANNs.   

Even though AI concepts have been applied to many scientific and industrial fields, it is 

in the biomedical field where especially ANNs have clearly outperformed the other areas.  

In these areas, applications are mainly targeted to the recognition of patterns that are 

indicative of diseases, various forms of cancer, and tumors [Kothari et al 1996] [Zong et 

al 2010] [Reddick et al 1998]. 

Especially in hematological research, the main focus of this dissertation, the use of AI 

applications to deal with the automation of the detection of blood abnormalities from 

screening devices, such as hematology analyzers and flow cytometers, is becoming more 

prevalent.  Early detection and diagnosis of diseases such as leukemia and lymphoma has 

become a critical area of research and has received great attention from medical and 

scientific institutions in the last two decades. This attention is due to the overwhelming 

number of persons suffering from leukemia, which reportedly affects over 300 thousand 

people in the United States, with an estimated 43,000 new cases diagnosed in 2010 alone.  

Likewise, lymphoma currently affects over 600 thousand people in the United States.  

The types of treatment and survival rates vary widely with the type of leukemia or 

lymphoma encountered, and can also differ by the person’s age at diagnosis, gender or 

race [Leukemia and Lymphoma Society 2011]. 

This dissertation is devoted to the crucial role that advanced feature extraction and 

pattern recognition methods play in hematological research.  For that reason, the 

strategies used to extract descriptive features from hematological blood data patterns 
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produced by the Beckman Coulter LH750 automated hematology analyzer will be 

presented.  Additionally, this dissertation will present a classification framework used for 

detecting clinically abnormal levels of variant lymphocytes in human blood samples, 

attempting to improve the performance of this classification method by employing 

various design and optimization strategies, and ultimately showing the finalized design 

that demonstrated the best classification performance on the dataset used for this 

experiment. 

Chapter 2 of this dissertation provides some fundamental background information about 

human blood cells, emphasizing the role that detection of white blood cell (WBC) 

abnormalities plays in diagnosing disease states.  A basic description of the typical 

capabilities and usages of automated hematology analyzers in a clinical setting will be 

given.  Following this will be a review of some existing methods of detecting 

hematological abnormalities in blood data, with an emphasis on the methods of extraction 

of descriptive features from blood data patterns that are currently implemented by the 

expert system software modules contained in currently-produced hematology analyzers. 

After a review of some existing detection methods, a discussion of the limitations of 

these methods will be described.  This will provide a strong rationale for the necessity of 

the proposed multi-dimensional eigensystem-based feature extraction methodology. 

Chapter 3 presents the experimental dataset that was acquired for the purposes of 

demonstrating that the correct classification of variant lymphocyte samples is an area of 

research than could benefit greatly from improved feature extraction methods.  A survey 

of the basic commonly-used statistical features that are often used to develop variant 

lymphocyte classifiers is given.  Special attention is also paid to the limitations of these 
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basic features; and it will be shown that, through the development of a pattern classifier 

that uses only the set of features derived from these basic statistics, that the two classes of 

samples (Variant Lymph Positive and Variant Lymph Negative) are not linearly 

separable, attesting to the difficulties that this problem inherently possesses.  More 

importantly, these limitations show the immediate need for the development of a set of 

pattern descriptors that will provide an improved separation of the two classes, thus 

providing a potential solution with improved classification accuracy. 

Chapter 4 will introduce the concept of multi-dimensional, eigensystem-based cluster 

descriptors and their potential applications to this classification problem.  It will be 

demonstrated that the numerical descriptors extracted using this shape analysis paradigm 

represent a powerful set of features for the improved classification of hematological 

abnormalities.  Naturally, following this introduction will be an in-depth description of 

the process that was designed to extract the eigensystem-based feature space from the 

raw hematological data files in a robust, yet computationally efficient way.  It will then 

demonstrate, through the application of several machine learning implementations based 

on the Perceptron artificial neural network using the data provided for this study, that this 

set of descriptive features has the capability to classify samples with clinically relevant 

levels of variant lymphocytes more accurately than the existing classification methods 

used by Beckman Coulter on the LH750 automated hematology analyzer.   

In Chapter 5, an in-depth discussion of the classification results will be made.  In 

addition, extensions to the ideas proposed in this dissertation will be expressed, along 

some new potential shape descriptors that may have added utility for this classification 

problem.  Concluding remarks are provided in Chapter 6. 
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2. BACKGROUND ON CLINICAL HEMATOLOGY AND BLOOD CELLS  

2.1. Background and Significance of Blood Cells 

2.1.1. Basic Categories of  Human Blood Cells 

Hematology is defined as the study of blood.  Blood consists of a liquid portion, called 

the serum or plasma, and its cellular components, the hematocytes.  Mostly, the modern 

practice of hematology emphasizes the study of the hematocytes, or blood cells.  Blood 

cells are generally divided into three main categories: Erythrocytes (Red Blood Cells), 

Leukocytes (White Blood Cells) and Thrombocytes (Platelets).  For simplicity, the 

abbreviations WBC and RBC will be used to signify white blood cells and red blood 

cells, respectively.  Though each of these cell types has its own significant functions in 

the human body, from the perspective of detection and diagnosis of many disease states, 

the white blood cells are often considered to be more indicative than the other two types.   

The white blood cells consist of five subcategories: Lymphocytes, Monocytes, 

Neutrophils, Eosinophils, and Basophils.  These five cell types are illustrated in the 

following figures made from pictures taken from a microscopic view of the cells: 

 

   
 

    (a)           (b) 
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     (c)           (d) 

 

 
(e) 

Figure 2.1: Basic WBC Types: (a) Lymphocyte, (b) Monocyte, (c) Neutrophil, (d) Eosinophil, (e) Basophil 

The reddish-to-purplish cell in each picture is the specific WBC cell type indicated, and 

the pink, semi-transparent cells in the background of each figure are Red Blood Cells 

(RBC).   

2.1.2. Abnormal Variations in White Blood Cells 

It is important to note that the types shown above represent normal, mature white blood 

cells, which are seen in blood under normal clinical conditions.  However, in the event of 

disease or various illnesses, specific abnormal white blood cells may also appear.  In this 

context, the term “abnormal” could refer to a white blood cell that is not fully mature 

(immature) or has physical attributes or characteristics that are noticeably different than 

its normal, mature counterpart [Bessman 1986].  Some examples of abnormal/immature 

WBCs are the following: Variant/Atypical Lymphocytes, Blasts, Immature Bands, 

Immature Granulocytes, and Plasma Cells. 
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Each of these abnormal/immature cell types is briefly defined, as follows: 

 Variant or Atypical Lymphocytes:  Lymphocytes showing morphologic features 

different from normal lymphocytes.  These lymphocytes are often larger than 

normal lymphocytes due to antigen stimulation.  In addition, their nuclei can be 

round, elliptic, indented, cleft, or folded.  Their cytoplasm is often abundant and 

can be basophilic with vacuoles and/or azurophilic granules present.   

 Blasts:  The most immature, undifferentiated cells in the WBC lineage.  These 

cells are usually devoid of definitive characteristics that would identify them as 

belonging to a particular WBC cell sub-type.   

 Immature Granulocytes: An immature neutrophil that may be neutrophilic, 

acidophilic, or basophilic in character. 

 Immature Bands:  An immature neutrophil that has a band-shaped or horseshoe-

shaped nucleus.   

 Plasma Cells:  Lymphocytes that were produced in the bone marrow that are 

specialized for antibody (immunoglobulin) production.   

 It is due to the detection of cellular variations, or deviations from the normal, that 

allows clinical hematology the ability to be useful as a diagnosis method.         

2.1.3. Benefits of the WBC Manual Differential 

Historically, the observation of WBCs and distinctions between normal and abnormal 

WBCs has been routinely made by trained hematologists using microscopic visual 

inspection techniques.  This process of microscopic examination of the white blood cells 

(and their separation into respective categories) by a trained hematologist or doctor is 

known as the Manual WBC Differential and is currently still considered an invaluable 
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source of hematological information.  The usual process of a manual differential is to 

examine a fixed number of WBCs (usually a tractable number in the range of 100-400 

cells) and then tabulate the number of cells of each WBC type that were encountered, as 

exemplified in Table 2.1 for a 200-cell WBC manual differential analysis. 

Table 2.1: Example of a 200-Cell Manual WBC Differential Count Report 

Lymph Mono Neutro Eo Baso Blast 
Immature 

Gran 

Immature 

Band 

Variant 

Lymph

Plasma 

Cell 

105 3 84 1 1 0 0 2 4 0 

 

Naturally, these values are often normalized to their respective percentages using the total 

number of WBCs counted (in this case 200 cells),to yield the percentages in Table 2.2 

Table 2.2: Example of a 200-Cell Manual WBC Differential Percentage Report 

Lymph Mono Neutro Eo Baso Blast
Immature 

Gran 

Immature 

Band 

Variant 

Lymph

Plasma 

Cell 

52.5% 1.5% 42% 0.5% 0.5% 0% 0% 1.0% 2.0% 0% 

 

Of particular interest is the distribution of percentages across the various WBC sub-

categories represented.  The reason is that each of the many sub-populations has a 

different level of medical significance.  Even though microscopic visual inspection of 

cells is still considered the most reliable “Golden Standard” of identification, this method 

is not without its limitations [Bessman 1986] [Drouet and Lees 1993]. 
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2.1.4. Limitations of the WBC Manual Differential Process 

Firstly, it is very time consuming to perform manual cell differentials.  Often a single 

manual reader will only be able to view and classify perhaps 200 cells in a single sitting 

before visual and physical fatigue may force the reader to need a rest.  For this reason, a 

single manual reader can usually only perform at most 25 manual differential procedures 

in a typical work day.  In fact, to assure quality and accuracy of the readings made for 

manual differentials; many medical institutions have recommended limits on their 

personnel as to the maximum number of manual differentials they should attempt in a 

single work day [Bessman 1986].  From the standpoint of monetary expenditures due to 

labor costs of employing highly-trained individuals such as cellular biologists and 

hematologists, one can easily deduce that the manual differential procedure can be rather 

costly.   

Of paramount importance in the WBC differential are not only the distributions of 

percentages of normal, mature WBC sub-types (Lymph, Mono, Neutro, Eo, and Baso), 

but also the percentages of abnormal/immature types (Blasts, Immature Granulocytes, 

Immature Bands, Variant Lymphocytes, and Plasma Cells).  Since there is a multitude of 

known types and variations of WBC cells (both normal and abnormal), correct and 

consistent identification of all the cells seen on a patient’s blood smear can be rather 

difficult, even for technologists and medical doctors with years of training and 

experience.  In fact, since some of the cell types encountered share many common 

morphological attributes, shapes, and colors, it is often very subjective as to the correct 

classification of some cells.  Due to problems such as time and cost constraints of 

performing manual differentials, and the propensity for human subjectivity in blood cell 
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classification, automated hematology analysis devices were created to overcome some of 

these shortcomings. 

2.2. Automated Hematology 

2.2.1. Automated Hematology Devices 

Up until the middle of the 20th century, the blood smear slide reading with an optical 

microscope had been the only clinical method for blood analysis.  However, this began to 

change in the early 1950s.  A landmark event happened in 1953, when Wallace Coulter 

invented the “Coulter Principle”.  This principle basically demonstrated that a “particle 

pulled through an orifice, concurrent with an electric current, will produce a change in 

impedance that is proportional to the volume of the particle traversing the orifice” [Rodak 

et al 2007].  This methodology was eventually applied to count and measure the volume 

of individual blood cells suspended in a saline solution, and the first Coulter blood cell 

counter was subsequently born, thus making the dream of automated blood analysis into a 

reality. 

The advent of computers in the 1960’s helped to bring automated blood analysis into a 

new era.  Thus, signal processing, representation and statistical classification methods 

could then be applied to the acquired blood cell measurements, while seeking more 

accurate measurements.  Concurrently, developments made in the physics, clinical 

chemistry and immunology fields led to the advent of using lasers in hematology 

analyzers so that additional cellular measurements such as light scatter and fluorescence 

could be acquired, which were demonstrated to add even more selectivity to automated 

blood cell classification methods.   
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From the 1990’s to the present, automated blood analyzers have adopted technologies 

that employ fluorescent antibodies, which can be developed to be chemically selective to 

specific cell types.  Thus, current analyzers can acquire a set of parameters to represent 

different aspects of each cell, such as volume, conductivity, light scatter, and multiple 

fluorescence wavelengths.  Even though technological advances have been made 

recently, presently over 98% of commercially produced automated blood cell analyzers 

still incorporate the basic elements of the Coulter principle into their designs [Rodak et al 

2007]. 

2.2.2. VCS Automated Hematology Devices 

Within the experimental set up of this dissertation, the research carried out using data 

collected form the Beckman Coulter LH750 Hematology Analyzer.  This analyzer is 

known as a “VCS” analyzer, where the letters V, C, and S are abbreviations for Volume, 

Conductivity, and Scatter, respectively.  The formal descriptions of these parameters and 

their uses in cellular measurement are defined as follows: 

V: A measurement proportional to the physical volume of the blood cell. 

C: A measurement proportional to the electrical conductivity of the blood cell. 

S: A measurement proportional to the light scatter produced by the blood cell. 

Since the white blood cells are usually more indicative of potential disease states, 

interpretation and analysis of data produced by the Beckman Coulter VCS White Cell 

differential module (known as DIFF) is the sole focus of this research endeavor. 

2.2.3. Uses of Automated Hematology Analyzers As Screening Tools 

There is a multitude of disorders that can cause abnormalities in the White Blood Cells, 

some of the more common disorders are: sepsis, infectious mononucleosis, lymphomas, 
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dysplastic syndromes, viral infections, parasitic disorders, and various types of leukemia 

[Turgeon 2005].  In fact, a breakdown of the most commonly encountered hematological 

malignancies seen in the United States [Horner et al 2009] is given in Table 2.3. 

Table 2.3: Breakdown of Hematological Malignancies in the United States 

Type of Hematological Malignancy Percentage 

Acute Lymphoblastic Leukemia (ALL) 4.0% 

Acute Myelogenous Leukemia (AML) 8.7% 

Chronic Lymphocytic Leukemia (CLL) 10.2% 

Chronic Myelogenous Leukemia (CML) 3.7% 

Acute Monocytic Leukemia (AMOL) 0.7% 

Other Leukemias 3.1% 

Hodgkin’s Lymphomas (all four subtypes) 7.0% 

Non-Hodgkin’s Lymphomas (all subtypes) 48.6% 

Myelomas (all types) 14.0% 

Total 100% 

 

Depending on the type of disease and its severity, its level of progression, and whether or 

not treatments (chemotherapy, bone marrow transplants, or medications) have been 

administered to the patient, the hematological pattern can vary greatly.  In fact, 

hematological information from automated analyses used alone is not recognized by 

medical doctors as sufficient information for medical diagnosis.  It is merely used as a 

single source of information in the process of differential diagnosis, which often employs 
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the use of a multitude of other diagnostic tests and analyses [Turgeon 2005] [Drouet and 

Lees 1993]. 

2.2.4. Examples of Common Hematological Patterns 

In the context of the Beckman Coulter LH750 automated hematology analyzer, it is often 

visually apparent through the displayed hemograms, when a disorder or abnormality 

exists within a patient’s blood.  The hematological patterns for a clinically normal blood 

donor run with the LH750 instrument in the DIFF mode (Automated White Cell 

Differential) are shown in Figure 2.2. 

 

Figure 2.2: VCS WBC Differential Pattern of Normal Blood Donor – Before Event Categorization 

The two views shown (Volume versus Light Scatter and Volume versus Opacity) are 

two-dimensional histogram representations of the measurement parameters collected for 

the patient’s blood cells that were analyzed by the LH750 instrument.  Note that the 

numbers 1-4 have been drawn on top of these plots; this was done for the purposes of 

discussion.  On the left 2D scatterplot, there are 4 distinct clusters or populations present, 

each with the numbers #1-4 next to them.  These are the Lymphocyte, Monocyte, 
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Neutrophil, and Eosinophil populations, respectively.  From earlier discussions in this 

section, it is known that these are separate types of mature WBC cells.  In the right 2D 

scatterplot, it should be noted that only 3 distinct clusters are present; this is because the 

Neutrophil and Eosinophil populations overlap completely in the Opacity dimension.  

Thus, on the right 2D scatterplot, population #1 is Lymphocytes, #2 is Monocytes, and #3 

is Neutrophils and Eosinophils overlapped.   

The automated software module in the analyzer then separates the data points into their 

respective categories using a complex, statistical, rule-based clustering and segmentation 

scheme.  An example of the segmented patterns into their mutually-exclusive categories 

is as shown in Figure 2.3. 

 

Figure 2.3: VCS WBC Differential Pattern of Normal Blood Donor – After Event Categorization 

Also worth mentioning are the events that are below the segmentation line beneath the 

lymphocyte population; these are non-WBC events such as residual red blood cells and 

platelets.  These events are usually termed debris.  Additionally, no mention of the 

basophil population was yet mentioned.  This is because the basophil events are normally 



 16

very rare, and do not often form a distinct cluster of events.  However, when a significant 

amount of basophils is present, its events can be seen as a cluster to the right of the 

segmentation line that is to the right of the lymphocyte population on the Volume versus 

Opacity axis.   

There are many distinct patterns that can be seen, caused by a variety of disorders and 

diseases.  Some of these diseases and their respective hematology scattergram patterns, as 

depicted by the LH750 hematology analyzer’s WBC differential, or “DIFF” software 

module, are the following: 

Infectious Mononucleosis (IM):  

 

Figure 2.4: WBC Differential Patterns of Donor Diagnosed with Infectious Mononucleosis 

Infectious Mononucleosis is one of the more common disorders that cause an abnormal 

increase in the level of variant lymphocytes in the blood.  Even though this disorder can 

have dangerous consequences, it is usually regarded by medical experts as being on a 

lower level of criticality than malignant disorders such as leukemias and lymphomas 

[Caldwell and Lacombe 2000]. 
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Chronic Lymphocytic Leukemia (CLL): 

 

Figure 2.5: WBC Differential Patterns of Donor Diagnosed with Chronic Lymphocytic Leukemia 

Chronic Lymphocytic Leukemia is a disorder that is quite prevalent.  Normally, this 

disorder is more common in male patients over 50 years of age; children almost never 

develop CLL [Caldwell and Lacombe 2000].  An important fact is that CLL samples are 

sometimes difficult to distinguish from samples with abnormal levels of variant 

lymphocytes because both of these types of samples share some common characteristics.  

Both types of patterns usually exhibit lymphocytosis, and, at the same time, large or 

elongated lymphocyte populations – thus making them both have abnormal population 

statistics. 
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Acute Lymphocytic Leukemia (ALL): 

 

Figure 2.6: WBC Differential Patterns of Donor Diagnosed with Acute Lymphocytic Leukemia 

This type of sample also exhibits abnormal lymphocyte statistics (elongated lymph 

population and often lymphocytosis), thus also making it a difficult pattern to 

differentiate from a variant lymphocyte sample.  This type of sample usually contains 

very immature lymphocytes, also called lymphoblasts.  Flagging this type of sample as 

containing variant lymphocytes, which would technically incur a false positive, is usually 

an acceptable error, since it is indeed an abnormal pattern that should be detected. 
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Acute Myelocytic Leukemia (AML) 

 

Figure 2.7: WBC Patterns of Donor Diagnosed with Acute Myelocytic Leukemia 

A sample such as AML (Acute Myelocytic Leukemia) usually has a hematological 

pattern that is abnormal; the abnormalities in these types of cases affect mostly the 

monocyte and neutrophil populations, the lymphocyte population is normally decreased 

in size or is virtually non-existent in such cases.  However, there are many varieties of 

myelocytic disorders that exist and a thorough discussion of all of them would be beyond 

the scope of this dissertation. 

2.2.5. Limitations of Automated Hematology Analyzers 

Unfortunately, all abnormal patterns do not express such a visually obvious departure 

from that of a normal blood pattern, as the ones shown in the previous section.  Some 

patterns may look normal, yet may have abnormalities or malignancies present, thus 

elucidating the subtle nature of the problem at hand.  Usually, the greater the proportion 

of abnormal or malignant cells that are present in a population or region of the pattern, 

the more the population or region begins to change in appearance.  One type of abnormal 
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cell that has traditionally been very hard to detect reliably is the Variant or Atypical 

Lymphocyte, especially when the percentage of Variant Lymphocytes, as a fraction of 

total WBC cells, is less than 10% [Aulesa et al 2003] [Aulesa et al 2004].  Variant 

lymphocytes can be found in increased numbers (usually proportions greater than 10% 

but sometimes much more) in disorders such as infectious mononucleosis, viral 

pneumonia, and viral hepatitis.  However, even clinically normal donors can have up to 

4% variant lymphocytes present, thus making the delineation between clinically normal 

and clinically abnormal more difficult to create [Turgeon 2005] [Van der Meer et al 

2007] [Caldwell and Lacombe 2000].   

In fact, several publications have been written on the relatively low accuracy of Variant 

Lymphocyte detection using several different manufactured automated hematology 

analyzers [Hoffmann and Hoedemakers 2004].  In particular, the variant lymph flag on 

the Coulter LH750 automated hematology analyzer, for instance, has been evaluated by 

some external studies and shown to have limited accuracy, specificity, and sensitivity for 

consistently detecting medically relevant levels of variant lymphocytes in whole blood 

samples [Aulesa et al 2004].   

For this reason, this dissertation will focus on improving the detection of variant 

lymphocytes, since this type of pattern classification currently demonstrates some 

limitations and difficulties. 

2.3. Overview of Methods for Detection of Abnormal Hematological Patterns 

2.3.1. Basic Operational Steps of Existing Classification Methods 

The simplest detection of hematological pattern abnormalities is performed using the 

statistical parameters (percents, means, and standard deviations) derived from the events 
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in each population followed by rule-based classifiers applied on these parameters.  All 

detection methods have in common the need to “learn” the conditions under which a 

pattern may be considered abnormal.  Rules of this type are often developed using sets of 

data that are representative of normal donors and abnormal donors; then average statistics 

for each population are created.  Then, the differences in each statistic between the two 

datasets would be examined and the subsequent statistics offering the largest separation 

(the largest difference between normal and abnormal donors) would be kept as candidate 

features for rule development.  After the rule base has been extracted with some method, 

the algorithm is tested on unknown data to evaluate its performance.  

The steps undertaken in the context of this dissertation can be generalized in the 

following way:  

1) Data collection and pre-processing (including data partitioning for pattern extraction 

and later testing) 

2) Feature extraction 

3) Rule extraction (training) 

4) Event detection/classification (testing) 

There are many ways of detecting such patterns: either by rule extraction or by using 

more sophisticated methods such as artificial neural networks (ANNs).  

The patterns of interest to a particular research study often can vary greatly, and thus are 

usually extracted using a specific technique that has been customized for the task at hand.   

Once the set of useful features has been acquired, these values are then incorporated into 

a classification framework.  For example, an implementation of a perceptron ANN to 

classify hematological data as normal or abnormal, using an 84-dimensional set of 
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features produced by the Advia 120 automated hematology analyzer, was done recently 

by a group of researchers, with a claimed efficiency of classification of 91% [Zini and 

D’Onofrio 2003].   

When comparing detection or classification algorithms in terms of performance, some 

sort of criterion is needed in order to select the best algorithm.  Testing such algorithms 

produces different types of errors, which can make comparisons difficult.  Thus, the next 

section will describe methods to evaluate algorithms in terms of performance. 

2.3.2. Method of Performance Evaluation of Detection Algorithms 

Evaluation of the performance of detection algorithms is usually performed using 

Receiver Operating Characteristics (ROC) Analysis [Tilbury et al 2000].  Such analysis 

begins by establishing a confusion matrix which contains information about the actual 

classification of the data being tested and the outcome of the classification system.  Table 

2.4 shows the main entries of the confusion matrix for a two-class classifier. 

Table 2.4: Entries of a confusion matrix 

 Detected as 
 Negative Positive 
Negative TN FP 

Actual 
Positive FN TP 

 

The four table entries are defined as follows: TP (true positives) is the number of correct 

classifications that an instance is positive; FN (false negatives) is the number of incorrect 

classifications that an instance is negative; FP (false positives) is the number of incorrect 

classifications that an instance is positive; and TN (true negatives) is the number of 

correct classifications that an instance is negative. 
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Positive and negative refers to the outcome given by the classifier, whereas true and false 

refers to the correctness of this outcome (i.e. right or wrong with respect to the actual 

state of the patient).  The sum of the first and second row is the total number of positive 

and negative instances being under test, respectively, whereas instances are just all data 

values to be classified, regardless of their class.  Similarity, the sum of the first and 

second column is the total number of positive and negative detections by the system, 

respectively.  The grand total is the total number of instances being classified.  

Rows and columns summarize to the following: 

- Nneg is the total number of negative instances:          FPTNNneg       (2.1) 

- Npos is the total number of positive instances:           FNTPN pos       (2.2) 

- Cneg is the total number of negative classifications:  FNTNCneg       (2.3) 

- Cpos is the total number of positive classifications:      FPTPC pos       (2.4) 

- Ntot is the total number of instances being detected:  

FNFPTNTPCCNNN posnegposnegtot     (2.5) 

The following quantities can be extracted from the confusion matrixes: 

- Correct Classification Rate (CCR, also called accuracy): The proportion of all 

correct classifications to the total number of instances: 

FNFPTNTP

TNTP

N

TNTP
CCR

tot 





    (2.6) 
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- Misclassification Rate (MCR): The proportion of all incorrect classifications to 

the total number of instances: 

CCR
FNFPTNTP

FNFP

N

FNFP
MCR

tot








 1    (2.7) 

- True Positive Fraction (also known as Sensitivity): The proportion of TP to the 

total number of positive instances: 

FNTP

TP

N

TP
TP

pos
f 

     (2.8) 

- True Negative Fraction (also known as Specificity): The proportion of TN to the 

total number of negative instances: 

FPTN

TN

N

TN
TN

neg
f 

     (2.9) 

- True Positive Rate (also known as Precision): The proportion of TP to the number 

of positive classifications: 

FPTP

TP

C

TP
TP

pos
r 

     (2.10) 

- True Negative Rate: The proportion of TN to the number of negative 

classifications: 

FNTN

TN

C

TN
TN

neg
r 

     (2.11) 

- False Negative Rate: The proportion of FN to the number of positive instances: 

f
pos

r TP
FNTP

FN

N

FN
FN 


 1    (2.12) 
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- False Positive Rate (False Alarm Rate): The proportion of FP to the number of 

positive instances: 

FPTN

FP

N

FP
FP

neg
r 

     (2.13) 

Concerning the values of FNR and FPR, low values are usually desired.  When two 

classifiers are being compared, accuracy is often considered the most important metric, 

however, especially in the medical field, it is also important to monitor the rates of TP 

and TN as well.  For these cases, measures such as sensitivity or specificity should be 

maximized in addition to accuracy. 

Sometimes, it is desired to tune a classifier’s performance to meet required performance 

metrics, but it is known that varying a classifier’s threshold, or operating point, can have 

contradictory effects.  For instance, altering a classifier’s operating point to increase the 

TP rate can have the undesired effect of increasing the FP rate.  This variation of 

classifier performance as this threshold is varied is best given by a Receiver Operating 

Characteristic (ROC) curve [Marcum 1960].  The ROC curve is a parametric curve that is 

constructed based on the values of the TP and FP rate. In Figure 2.8, two ROC curves 

from two different classifiers are plotted.  Observe that the classifiers excel each other in 

different regions of the plot.  

Depending on the problem at hand, any particular ROC measure can be chosen in favor 

of another.  For example, if one prefers to maximize TP and minimize FN, then TPF is 

the best choice.  Often, a compromise is made by using the area under the ROC curve, 

and the classifier with the highest area under the ROC curve is said to be the best.  
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Figure 2.8: Two ROC curves plotted from the confusion matrixes of two classifiers 

This usage of ROC curves will be discussed in Chapter 3, where it will be used for 

numerical evaluation of potential features for their abilities to effective separate data into 

classes. 
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3. FEATURE EXTRACTION METHODS FOR VARIANT LYMPHOCYTE 

CLASSIFICATION 

3.1. Problem Introduction 

Since the detection of variant lymphocytes was indicated as an area of difficulty for the 

classification and analysis rule-engines of many automated hematological analyzers 

produced by such reputable manufacturers such as Advia, Beckman Coulter, and Sysmex 

[Aulesa et al 2004] [Hoffmann and Hoedemakers 2004], it seemed obvious that some of 

the shortcomings in detecting this type of hematological disorder might be alleviated by 

an improved feature extraction framework.   

In most hospitals where routine pre-screening of patients is often done, automated 

hematology analyzers are relied upon for their ability to detect the types of abnormal 

patterns discussed in the previous section.  For patients with diseases that are in the acute 

stages, or have progressed to later stages where the blood or bone marrow are pushing out 

immature cells at a very high rate, often the patterns express a very obvious abnormal 

appearance, and usually, a measure of population width or elongation, such as the 

standard of deviation, can be used in isolation to flag the pattern.   
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This is evident from Figures 3.1 and 3.2, one representing a normal donor, and the other a 

donor with lymphocytic leukemia: 

 

Figure 3.1 VCS WBC Differential Pattern of Normal Blood Donor 

 

Figure 3.2 VCS WBC Differential Blood Pattern of Blood Donor with Lymphocytic Leukemia 

A striking difference exists between the appearances of these two patterns.  One can 

observe that the normal donor has 4 distinct populations present, which are the 

Lymphocytes, Monocytes, Neutrophils, and Eosinophils.  In contrast, Figure 3.2 shows a 
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dominant lymphocyte population , with only small numbers of remaining events in the 

other three population categories..  This basic hematological condition is known as 

lymphocytosis (an over-abundance of lymphocytes).  This, in fact, is usually the most 

common medically-relevant trait that is seen in cases of potential lympho-proliferative 

(diseases affecting the lymphocyte population) disorders, such as lymphocytic leukemia 

[Caldwell and Lacombe 2000].  Of strong clinical relevance also is the striking size of the 

lymphocyte population, and its expanse (or variance) in the Volume dimension.  In fact, 

for this sample, this is an obvious feature detection trait.  This difference is demonstrated 

in Figure 3.3: 

 

Figure 3.3: Normal (left) and Lymphocytic Leukemia (right) Lymphocyte Populations 

The ellipses drawn around each lymphocyte population are used to indicate the variance 

or spread of each population in the Volume dimension; it is apparent that the lymphocyte 

population on the right (the Lymphocytic Leukemia sample) has a volume variance that 

is roughly three times as large as the lymphocyte volume variance of the lymphocyte 

population on the left (the Normal donor).  Of course, not all abnormal or leukemic 
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patterns exhibit this behavior; hence a measure of caution is required when classifying 

these types of patterns. 

In the immediate sections that follow, additional information is provided about the types 

of patterns that are indicative of abnormal levels of variant lymphocytes, and especially, 

about the features that are often used to detect them. 

3.2. Variant Lymphocyte Experimental Dataset 

Since the primary aim of this dissertation is to perform a feature analysis and 

development of an improved variant lymphocyte detection method, a specific 

dataset that is representative of this disorder was chosen for this study.  The 

dataset consisted of 300 individual donors with the following breakdown: 

1. 150 donors whose blood contains a clinically abnormal level of variant 

lymphocytes. 

2. 150 donors whose blood contains a clinically normal level of variant 

lymphocytes. 

All 300 raw data files used for this study were collected by trained technicians 

from a Beckman Coulter LH750TM automated hematology analyzer.  To establish 

whether a “clinically normal” or “clinically abnormal” level of variant lymphocytes 

is present in a donor’s blood, a microscopic 200-cell WBC manual differential 

count performed by a qualified medical professional was provided for each donor 

to establish the true percentage of variant lymphocytes in each donor’s blood.  

This percentage of variant lymphocytes is considered the “Golden Standard” 

reference method, against which the accuracy of all proposed classification 

methods will be gauged.   
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In several published medical texts, there is an ongoing controversy about the 

appropriate significance level at which the proportion of variant lymphocytes 

should be considered medically abnormal in any given patient.  Older medical 

standards such as the NCCLS (National Committee for Clinical Laboratory 

Standards) had previously set the accepted variant lymphocyte level at 10% 

(thus, a variant lymphocyte proportion of 10% or greater seen in a patient’s WBC 

differential count should be considered medically abnormal).  However, more 

recent medical standards established in 2007, such as the CLSI (Clinical and 

Laboratory Standards Institute) have revised this threshold, declaring that a level 

greater than or equal to 5% variant lymphocytes should be considered medically 

relevant [Koepke et al 2007].  Therefore, in accordance with the latest accepted 

medical standard, as established by the CLSI, a level of 5% or greater will be 

considered in this dissertation the reference positive threshold for variant 

lymphocytes.   

3.3. Case Studies of Typical Variant Lymphocyte Hematological Patterns 

In order to appreciate the intricacies involved in the subtle tasks of feature extraction and 

pattern classification, some commonly encountered patterns containing significant levels 

of variant lymphocytes are given as initial indicators of the difficulties that are yet to be 

resolved but need to be overcome. 

Some disease states, especially leukemias and certain lymphomas, often have fairly 

recognizable WBC scattergram patterns.  For this reason, reliable pattern analysis and 

recognition frameworks can be useful for their automatic detection [Caldwell and 

Lacombe 2000].  With a specific focus on disorders involving the lymphocyte population, 
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some of the more common diseases that can exhibit abnormal levels of variant 

lymphocytes and usually have visually-apparent abnormal hematological scattergram 

patterns are shown in the following case studies: 

1. Case #1: Medically-Positive Variant Lymphocyte Sample  

The following case represents a sample with a medically-positive level of variant 

lymphocytes which ideally, should be flagged as containing Variant Lymphocytes.  This 

pattern is shown below: 

 

Figure 3.4: Blood Pattern with Abnormal Level of Variant Lymphocytes – Case #1 

The percentages of the WBC population reported for this sample by the LH750 

differential algorithm are given in Table 3.1. 

Table 3. 1: LH750 Differential Algorithm Reported WBC Percentages for Case #1 

Lymph% Mono% Neutro% Eo% Baso% 

34.06% 9.72% 55.33% 0.68% 0.214% 

 



 33

Likewise, the statistical parameters (volume mean, volume standard deviation, opacity 

mean, opacity standard deviation, light scatter mean, and light scatter standard deviation) 

for the most pertinent WBC populations are shown in Figure 3.5. 

 

Figure 3.5: VCS WBC Population Statistical Parameters – Case #1 

Likewise, the Manual WBC differential percentages for this donor are given in Table 3.2. 

Table 3.2: Manual Differential WBC Percentages for Case #1 

Lymph Mono Neutro Eo Baso Blast
Immature 

Gran 
Immature 

Band 
Variant 
Lymph

Plasma 
Cell 

23.0% 6% 59% 0.5% 0.5% 0% 0% 1% 10% 0% 

 

Since this donor has a medically relevant abnormality (variant lymphocytes = 10% as a 

fraction of total WBCs), presumably a difference between the population statistics of this 

donor and a normal donor should be fairly evident.  The VCS WBC population statistics 

from the normal blood sample are shown in Figure 3.6 

 

Figure 3.6: VCS WBC Population Statistical Parameters - Normal Blood Sample 
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If a percentage difference is calculated for each statistical parameter between the variant 

lymphocyte sample and the normal sample, the percent difference is as shown in Figure 

3.7. 

 

Figure 3.7: Percentage Difference of Statistical Parameters (Variant Lymph Sample minus Normal Sample) 

Paying particular attention to the Lymph and Mono populations (since the Eo population 

does not contain a sufficient number of events to be considered statistically relevant), it is 

noticeable that the SD parameters for Volume, Conductivity and Scatter show the largest 

changes, with the means showing some changes as well.   These changes points to the 

fact that the SD parameters derived from the Volume, Opacity, and Scatter of specific 

populations are useful and powerful features to detect abnormalities in population 

distributions, such as those shown in the previous example. 
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2. Case #2: Medically-Positive Variant Lymphocyte Sample 

Another typical example of a sample having a medically-abnormal level of variant 

lymphocytes is shown below: 

 

Figure 3.8: Blood Pattern with Abnormal Level of Variant Lymphocytes – Case #2 

For this sample, The LH750 differential algorithm yielded the WBC percentage results 

given in Table 3.3.: 

Table 3.3: LH750 Algorithm Reported WBC Percentages for Case #2 

Lymph% Mono% Neutro% Eo% Baso% 

62.49% 4.099% 32.62% 0.276% 0.512% 

 

Likewise, the manual reference results are given in Table 3.4 

Table 3.4: Manual Differential WBC Percentages for Case #2 

Lymph Mono Neutro Eo Baso Blast
Immature 

Gran 
Immature 

Band 
Variant 
Lymph

Plasma 
Cell 

47.5% 0.5% 14.75% 1.75% 0% 0% 0% 13% 22.5% 0% 
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This sample is of primary importance not only because its manual variant lymphocytes 

percent is 22.5, well above the medically-accepted threshold to be considered abnormal, 

but because currently the LH750 differential algorithm did not detect this sample as 

having variant lymphocytes.  Thus, it is currently considered a false negative.  This is a 

type of pattern for which some improved detection is necessary in order to help resolve 

this type of misclassification occurrence.   

3. Case #3: Medically-Negative Variant Lymphocyte Sample 

The next sample shown is a primary example of a sample that should not mistakenly be 

flagged as having excessive variant lymphocytes.  It is the pattern of a clinically normal 

sample, with a normal level of variant lymphocytes.  The LH750 Variant Lymph 

detection algorithm does not detect this pattern as having excessive variant lymphocytes; 

thus it treats this sample in the correct fashion, as a True Negative.  A well-designed 

classification method for variant lymphocytes should also be able to distinguish this 

pattern from a positive sample without difficulty.  This pattern is shown below: 

 

 Figure 3.9: Blood Pattern with Normal Level of Variant Lymphocytes – Case #3 
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For this donor’s blood, the LH750 Differential algorithm gives the following WBC 

percentages: 

Table 3.5: LH750 Algorithm Reported WBC Percentages for Case #3 

Lymph% Mono% Neutro% Eo% Baso%

38.102% 8.401% 50.754% 2.174% 0.568%
 

Also, the Manual Differential is given for this donor as follows: 

Table 3.6: Manual Differential WBC Percentages for Case #3 

Lymph Mono Neutro Eo Baso

37% 10% 49% 2% 0%
 

4. Case #4: Medically-Negative Variant Lymphocyte Sample 

An example of an acute lymphoblastic leukemia is shown below.  This sample has its 

hematology scatterplots shown in Figure 3.10. 

 

Figure 3.10: Blood Pattern with Blasts but Normal Level of Variant Lymphocytes – Case #4 



 38

The LH750 differential algorithm produced the following WBC percentages as shown in 

Table 3.7. 

Table 3.7: LH750 Algorithm Reported WBC Percentages for Case #4 

Lymph% Mono% Neutro% Eo% Baso% 

91.989% 0.23% 7.485% 0.23% 0.066% 

 

From the above figure, it is apparent that a predominance of lymphocytes exists in this 

sample, attesting that the disorder is of a lymphocytic origin.  In this particular case, 

lymphocytes comprise approximately 92% of the WBC events on the scattergrams.   

However, it is important to note that from the point of view of a typical hematology 

analyzer with no specific monoclonal antibodies or markers, it is not easily apparent as to 

whether or not these are immature lymphocytes or mature lymphocytes as contained 

within the population shown above.  The most obvious pattern feature is the 

predominance of lymphocytes (lymphocytosis), however, according to several medical 

texts and publications, the presence of lymphocytosis is not always a reliable feature, 

since it can sometimes be present, but not be malignant in nature.  Especially in children, 

lymphocytoses often occur but is of benign origin.  In adult patients, however, 

lymphocytosis is normally a warning sign of a serious disorder, such as leukemia or 

lymphoma [Caldwell and Lacombe 2000].  From the perspective of the WBC manual 

differential, the cellular percentage statistics as given in Table 3.8 were reported for this 

donor. 
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Table 3.8: Manual Differential WBC Percentages for Case #4 

Lymph Mono Neutro Eo Baso Blast
Immature 

Gran 
Immature 

Band 
Variant 
Lymph 

Plasma 
Cell 

81% 0% 8% 1% 0% 9% 0% 1% 0% 0% 
 

According to information provided by the doctors for this patient, the Blasts present in 

this sample (roughly 9% as a fraction of total WBCs) were determined to be of 

lymphocytic origin and are B-cells (produced by patient’s bone marrow).  The 

importance of the B Blast cells in this sample are that they can cause a distortion of the 

shape of the lymphocyte population, since Blast cells can often have very different 

volume, light scatter, or opacity characteristics than normal lymphocytes.   

However, automated hematological analyzers such as the Coulter LH750 series are not 

capable of separating immature cells from their mature counterparts.  This is an 

unfortunate limitation of VCS technology.  The best recourse that an automated 

hematology analyzer can take is to give a reliable indication to the user of the device that 

an abnormality has been detected in the pattern of the scattergram or in the measured 

statistics of the sample under consideration.  Samples with a rather high proportion of 

immature lymphocytes (Blasts), such as the pattern from this donor, can sometimes 

satisfy the conditions of a variant lymphocyte classifier, thus causing a flag, inducing a 

false positive for variant lymphocytes.  However, from a patient risk perspective, it is 

much safer to give a false positive detection than a false negative one, especially for a 

serious disorder such as acute lymphocytic leukemia. 
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3.4. Selection of Pattern Features for Variant Lymphocyte Sample Classification 

As shown in the previous section, population statistics (percentages, mean, and standard 

deviation) are often used to delineate normal from abnormal patterns.  For a large number 

of patterns, this approach can be effective.   

In terms of classification of variant lymphocyte samples (medically abnormal versus 

medical normal levels), the following population statistical features are most often used: 

 Lymphocyte Percentage 

 Lymphocyte Volume Mean 

 Lymphocyte Volume Standard Deviation 

 Lymphocyte Opacity Mean 

 Lymphocyte Opacity Standard Deviation 

 Lymphocyte Light Scatter Mean 

 Lymphocyte Light Scatter Standard Deviation 

Commonly, to assess the classification “ability” of a population statistical parameter or 

feature to classify an abnormality of interest, a basic method employing histogram 

overlay plots is often used, where two 1-D histograms are shown.  The first histogram 

plotted will represent the distribution of the feature using a set of data that is “positive” 

for the abnormality of interest, and the second histogram plotted will represent the 

distribution of the feature using a set of data that is “negative” for the abnormality of 

interest.  An example is shown in Figure 3.11 demonstrating the feature “Lymphocyte 

Volume Standard Deviation” for samples of the two classes, “Medically Normal Levels 

of Variant Lymphocytes” and “Medically Abnormal Levels of Variant Lymphocytes.”  
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Figure 3.11: Histogram Overlay of Lymphocyte Volume SD 

For this parameter, it is noted that the “Variant Lymphocyte Negative” samples, or the 

Negative Class, shown in blue, have a roughly-symmetric, almost Gaussian distribution 

with a mode at about bin 15.  On the other hand, the “Variant Lymphocyte Positive” 

samples, or the Positive Class, shown in red, have a heavily-skewed, asymmetrical 

distribution, also with a mode at bin 15, but with a secondary peak near bin 25.   

It should be noted that the degree of overlap between these two histograms is the 

important aspect to be considered here.  The lower the degree of overlap between the 

classes in this feature space, the better the ability of this feature to offer class separability.  

For this particular feature, it is noticeable that the degree of overlap is very high, but there 

is a region (above bin 22) where these feature histograms have minimal overlap.  This 

indicates that this feature has some value for separating these classes, but to use this 

feature alone for classification would incur a large classification error.  One could, of 

course, choose different threshold levels, but one would not escape the problem that these 

sample types are not linearly separable in this 1D feature space (Lymph Volume SD).  



 42

For all six basic population statistical parameters (Lymph Volume Mean, Lymph Volume 

SD, Lymph Opacity Mean, Lymph Opacity SD, Lymph Light Scatter Mean, and Lymph 

Light Scatter SD), the different histogram overlays are shown in Figure 3.12. 

 
Figure 3.12: Histogram Overlays of Lymphocyte Population Statistical Parameters 

It is apparent from examination of each of these histogram overlays that each lymphocyte 

population statistical parameter offers a varying degree of class separability.  Some 

parameters offer little or no separation of the classes (Light Scatter SD and Opacity 

Mean) and some seem to offer a fair amount of separation.  Therefore, the question arises 

as to what is a good method for numerically assessing the class separability that can be 

offered by a particular parameter, or feature, in seeking effective classification.   



 43

This again brings up the discussion of the set of topics that were introduced in Section 

2.2.2 on ROC curve analysis.  The ROC curve again can be useful, in the fact that it can 

be used to quantify the “degree of correct classification” at every potential threshold 

value of the parameter or variable used.  It is conceptually equivalent to allowing the 

vertical line shown in Figure 3.13 (which represents a threshold value, or decision point) 

to vary from all bin values (from bin 5 to bin 55 in the example), and at each bin value 

evaluating the percentage of true positive patterns and the percentage of false negative 

patterns.  The false positive fraction (FPF) and true positive fraction (TPF) values are 

then plotted as a set of values (X, Y) for every bin value used, and an ROC curve will be 

generated. 

 

Figure 3.13: Histogram Overlay with "Sliding Decision Point Bar" 

A well-known classification efficiency parameter that can be calculated for an ROC 

curve is the AUC, also known as the area under the curve; this parameter is quite useful 

because it serves to quantify the potential classification “value” or class separability that 

a feature of interest can offer.  The AUC measurement is often normalized to the range 
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[0, 1], where an AUC value of 1 represents a perfect classification outcome.  Typically, 

as a rule of thumb, classification variables with values of AUC at or below the value of 

0.5 are considered random in their classification abilities and are normally discarded in 

lieu of better-chosen parameters [Tilbury et al 2000].   

For the Lymphocyte Volume SD parameter shown, the following ROC curve is 

generated. 

 

Figure 3.14: ROC Curve for Lymphocyte Volume SD 

For this feature, the AUC value is 0.7, which indicates that it has some potential for 

classification of variant lymphocyte samples.  Likewise, for all the 6 lymphocyte 

population statistical parameters, their respective ROC curves are shown in Figure 3.15. 
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Figure 3.15: ROC Curves for all 6 Lymphocyte Statistical Parameters 

3.5. Practical Difficulties With Variant Lymphocyte Classification Methods 

As was discussed in Section 2.2.5, one of the major limitations of automated hematology 

methods is accurate and sensitive flagging of variant lymphocyte patterns, especially for 

donors that only express slightly elevated levels of variant lymphocytes.  When the levels 

of variant lymphocytes begin to exceed 10% (as a proportion of total WBC cells), the 

hematological pattern presented by an automated instrument usually have the tendency to 

appear abnormal [Bessman 1986].  Pattern “abnormalities” due to the presence of variant 

lymphocytes can manifest themselves in many different ways, as was made evident 

through the previous case studies summarized in the previous section.  However, a fairly 

common pattern manifestation that can result from excessive levels of variant 

lymphocytes is to see an obvious increase in the width or elongation of the lymphocyte 

population.  This effect shown in Figure 3.16 is the relationship between the Manual 
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Variant Lymphocyte Percent (obtained by light-microscopic methods) and the 

Lymphocyte Volume SD.   

Relation of Lymphocyte Volume SD to Manual Variant 
Lymph Percent
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Figure 3.16: Relation of Lymphocyte Volume SD to Manual Variant Lymphocyte Percent 

As seen in the above figure, there is a tendency for the standard deviation of the volume 

of the lymphocyte population to grow as the proportion of variant lymphocytes increases.  

But, from previous analyses this feature is not sufficient to build an efficient classifier, 

since some samples have very large variant lymph percents yet do not express a large 

standard deviation in their volumes.  This assertion has an obvious medical relevance, 

since some types of lymphocytes that are termed “variant” and hence abnormal by 

clinicians and biologists are merely lymphocytes that appear larger in physical size 

(volume) than so-called normal lymphocytes when viewed on microscopic slides 

[Turgeon 2005] [van der Meer et al 2007].   
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Also, many samples exhibiting medically-abnormal levels of variant lymphocytes tend to 

express an obvious lymphocytosis, which is an increase in the overall proportion of 

lymphocytes.  This is due to the fact that many diseases and disorders that can cause 

variant lymphocytes to appear in the blood tend to be lymphoproliferative, that is, they 

have a predominant effect on WBC cells from the lymphocytic lineage [Caldwell and 

Lacombe 2000] [Bessman 1986] [Turgeon 2005] .   

For this reason, one of the most useful features in the classification of lymphocyte 

abnormalities is the percentage of lymphocytes relative to the whole WBC population.  

This parameter of course has an obvious medical relevance since many lymphocytic 

disorders (especially chronic lymphocytic leukemia) are known to express an obvious 

lymphocytosis (abnormally high proportion of lymphocytes as a fraction of total WBC 

cells) as a primary feature [Caldwell and Lacombe 2000].  The lymphocyte percent ROC 

curve is illustrated in Figure 3.17. 

 

Figure 3.17: ROC Curve of Lymphocyte Percent Parameter 
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So far, by using the population percentage and basic second-order statistics of the 

lymphocyte population itself, the AUC values obtained are as shown in Table 3.9.  In the 

table, the following abbreviations are used (V = Volume, LS = Light Scatter, OP = 

Opacity).  Note that these values are sorted in decreasing order. 

Table 3.9: ROC Performance Metrics of Common Lymphocyte Population Statistical Parameters 

Parameter Area Under Curve Optimal Sensitivity Optimal Specificity 

Lymph Percent 83.0% 78.6% 75.0% 

Lymph LS Mean 71.3% 66.0% 67.8% 

Lymph V SD 70.1% 62.1% 66.9% 

Lymph OP SD 60.5% 55.0% 56.9% 

Lymph OP Mean 58.5% 52.9% 57.5% 

Lymph V Mean 57.5% 54.3% 53.7% 

Lymph LS SD 51.0% 47.1% 48.1% 
 

From these ROC analyses and other medically-based rationales, the features shown above 

seem to be logical choices with which to design a classifier of variant lymphocyte 

samples.   

3.6. Theory of Fisher Linear Discriminants 

With the multitude of potential features available for pattern discrimination, it is 

necessary to define a quantitative method with which to assess the effectiveness of a 

given parameter.  One popular method is the Fisher linear discriminant.  Discriminant 

analysis seeks directions in the feature space that are efficient for discerning differences 

between pairs or groups of patterns.  This idea is an elegant one, as it considers the 

problem of projecting data from its multi-dimensional space onto a line, thus providing a 

method of dimensionality reduction.  Of course, it is possible that even if the sample data 

samples form well-separated, compact clusters in multi-dimensional space, simply 



 49

projecting the data onto an arbitrary line would probably produce a confused mixture of 

samples and thus produce a poor recognition performance.  For this reason, it is necessary 

to move the line around mathematically to eventually find an orientation direction for 

which the projected sample data are well separated.  This is exactly the goal of 

discriminant analysis [Duda, Hart, and Stork 2001]. 

Suppose that we have a set of n D-dimensional data samples x1, x2, …., xn, where n1 is 

the subset of samples D1 that is labeled w1, and n2 is a subset of samples D2 that is 

labeled w2.  If a linear combination of the components of x is formed, the following 

scalar dot product is obtained: 

xwy T       (3.1) 

And a set of n samples y1, y2, …., yn which have been divided into subsets Y1 and Y2.  

If 1w , each yi is the projection of the corresponding xi onto a line in the direction of 

w.  Thus, the direction of w is important and determining the appropriate w that provides 

the best separation between the subsets w1 and w2 is the ultimate goal. 

A measure of the separation between the projected points is the difference of the sample 

means.  If mi is the D-dimensional sample mean given by: 
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And is simply the projection of mi.  And thus, it follows that the distance between the 

projected means is: 

)( 21
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1 mmwmm T      (3.4) 

This difference can be scaled by simply changing the value of w.  However, if the goal is 

ultimately to obtain good separation of the projected data, the difference between the 

means “should be large relative to the standard deviations for each class” [Duda, Hart, 

and Stork 2001].  A popular measure that is proportional to the standard deviation of 

projected samples is known as the scatter and is defined as: 
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quantity 2
2

2
1 ss   is called the within-class scatter of the projected samples.  Using the 
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the Fisher Linear Discriminant defines the following criterion function as a function of w: 
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This last equation is significant because it shows that the w value that maximizes the 

criterion function J(w) leads to the best separation between the two projected sets. 

3.7. Use of Fisher Linear Discriminants for Feature Selection and Evaluation 

In the event that none of these features can separate the classes of data on their own, it 

becomes necessary to find multi-dimensional descriptors that potentially can do the task 
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more effectively.  One popular method of linearly combining a number of 1-dimensional 

features to create a multi-dimensional descriptor (or classifier) is through the method of 

Fisher linear discriminants as will be detailed in Section 3.8.5. 

3.8. Multi-Dimensional Feature Extraction Method for Improved Pattern Recognition 

A key contribution of this dissertation is to propose the extraction of a set of features that 

are more descriptive of hematological data patterns than simple 1-dimensional population 

statistical features that may not always be representative of the abnormality of the pattern.  

This is why the notion of “shape descriptors” has become such a commonly used term in 

more recent pattern recognition approaches, especially in research areas whose primary 

focus is on complex image-processing methods, such as medical imaging, face 

recognition and content-based image retrieval [Kim and Kim 2000]. 

The inherent nature of hematological data is that it is multi-dimensional, since several 

measurements are simultaneously collected for each analyzed blood cell.  The problems 

arise when one attempts to graphically illustrate clusters or populations of data in their 

native multi-dimensional states.  Even though many methods have been proposed over 

the years, the most popular surface rendering method is still done using the well-known 

“Marching Cubes” algorithm [Lorenson and Cline 1987].  It basically takes a multi-

dimensional dataset, and extracts from it a triangular mesh that is representative of the 

outer surface of the data cluster.  Using the Marching Cubes algorithm along with the 

MATLAB isosurface command, an example of Normal donor’s hematological data is 

illustrated in Figure 3.18 using surface rendering.  
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Figure 3.18: Surface Rendering of LH750 WBC Differential Data of a Normal Donor 

From the 3D surface rendering of an LH750 hematological data pattern, it should be 

noted that each population (Lymphocytes shown in Red, Monocytes shown in Cyan, 

Neutrophils shown in Green, and Eosinophils shown in Blue), has its own unique mean 

location, variance and orientation (pose).  It may also be noted that the pose or directional 

orientation of each population is not always necessarily orthogonal to the measurement 

directions of Volume, Opacity, and Light Scatter.  For this reason, describing the pose of 

the 3D populations with vectors which are free to conform to the structure of the data 

might be advantageous.  In the realm of multivariate statistics, this is a commonly 

encountered problem, and a classical method is often employed for this type of analysis 

which is known as the Karhunen-Loeve transform, or Principal Component transform.    

3.8.1. Mathematical Aspects of the Principal Component Transform 

Given that a dataset consists of n d-dimensional samples x1, x2, …., xn, the question often 

arises as to how to represent all of the samples concisely as a single vector x0.  To be 

more specific, it may be desired to determine a vector x0 such that the “sum of squared 

distances between x0 and all the various samples xk is as small as possible” [Duda et al 
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2000].  Formulating this problem mathematically can be accomplished by defining the 

following squared-error criterion function: 
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After defining this functional, the value of x0 that maximizes J0 is obviously sought.  It 

can be easily shown that the solution to this problem is given by x0 = m, where m is the 

sample mean.  However, this result is not interesting because the sample mean is a “zero-

dimensional representation of the data set” that does not contain any information about 

the variation in the data.  On the other hand, a much more useful one-dimensional 

representation of the data is the one that is created by projecting the data onto a line that 

runs through the sample mean [Jolliffe 1986] [Duda et al 2000].  Let e be a unit vector in 

the direction of the line, with its equation written as: 

aemx                 (3.8) 

The scalar value a (which can be any real number) corresponds to the distance of any 

point x from the mean m.  If we represent xk by m+ake, a set of optimal coefficients ak can 

be found by minimizing the squared error criterion function:  
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  (3.9) 

Noting that the magnitude of e is 1 (since it is a unit vector), and partially differentiating 

equation 3.9 with respect to ak, and setting the derivative of the obtained function to zero, 

the following equation is obtained: 
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This result is important because it states that a least-squares solution can be obtained by 

projecting the vector xk onto the line e that passes through the sample mean.  However, 

this formulation does not help us find the best direction of e for the line.  To find this 

solution, the notion of the sample scatter matrix needs to be introduced and then 

incorporated into the problem.  Thus, the scatter matrix, S, is defined as: 
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If equation 3.6 is substituted into equation 3.5, the following result is obtained: 
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It may be noted that the vector e that minimizes J1 also maximizes etSe.  Using the 

method of Lagrange multipliers to maximize etSe subject to the constraint that 1e .  If 

we let λ be the undetermined multiplier, then the following equation must be 

differentiated with respect to e: 

)1(  eeSeeu tt      (3.13) 

After differentiating this equation, the following equation is obtained: 

eSe
e

u 22 



    (3.14) 

And upon setting this differential equation equal to zero, an important result emerges 

since it is immediately noticed that e must be an eigenvector of the scatter matrix: 

eSe       (3.15) 
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Basically, because   eeSee tt , it follows that to maximize etSe, the eigenvector 

corresponding to the largest eigenvalue of the scatter matrix is to be selected.  Thus, in 

order to find the “best one-dimensional projection of the data in a least sum-of-squared-

error sense”, projecting the data onto a line through the sample mean in the direction of 

the eigenvector of the scatter matrix having the largest eigenvalue performs this task 

[Jolliffe 1986].  This method, of course, can be readily extended to multiple dimensions.   

Extending from a one-dimensional projection to a d-dimensional projection changes 

equation 3.8 to the following: 
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with the criterion function redefined as follows: 
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This function is thus minimized when the vectors e1,….,ed are the d eigenvectors of the 

scatter matrix having the largest eigenvalues.  Since the scatter matrix is real and 

symmetric, these eigenvectors are orthogonal.  The coefficients ai in equation 3.16 are the 

principal components of the feature vector x in that basis [Joliffe 1986] [Jackson 1991] 

[Duda, Hart, and Stork 2001].   

3.8.2. Principal Component Transform for 3D Variance and Pose Representation 

To apply method of Principal Component Analysis to hematological data from the 

LH750 analyzer in a meaningful way, the raw data points (Volume, Light Scatter , and 

Opacity measurements) corresponding to each individual population should first be 

obtained, and then arranged into arrays similar to the one represented in Table 3.10. 
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Table 3.10: Raw Event Array for a single hematological population collected with an LH750 analyzer 

Population Event # 
Volume 

Measurement (X) 
Opacity 

Measurement (Y) 
Light Scatter 

Measurement (Z) 

1 45 54 34 

2 52 43 37 

….. ….. ….. ….. 

N 38 58 36 
 

Once the arrays of data for each hematological population have been obtained, extraction 

of the eigensystem of each data array proceeds with the standard PCA formulations 

[Gonzalez and Woods 1992]. 

Since the covariance matrix Cx is real and symmetric, finding the set of n orthonormal 

eigenvectors is always possible. The eigensystem of the covariance matrix is then found 

using traditional methods.  For the 3-dimensional case, the characteristic equation would 

be formulated using a 3x3 covariance matrix in search of the roots λi, which in turn will 

determine the eigenvectors corresponding to the the three directions of largest variance. 

As an illustrative example of the usage of the eigensystem in 3D has been extracted for a 

single population and is displayed in Figure 3.19. 
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Figure 3.19: Eigensystem pose and variance descriptors for a single WBC population 

3.8.3. Extracting Eigensystem-Based Population Descriptors 

Since it is fairly well known that the standard principal component analysis methods 

based on the extraction of the eigensystem of the covariance methods are based on 

minimization of L2-norms, or squared-error criteria, the method contains inherent 

sensitivity to outlier points.  This happens because the “effect of outliers with large norm 

values is exaggerated by the use of the L2-norm” [Kwak 2008] [Ding et al 2006].  For 

these reasons, approaches such as Weighted-PCA, L1-Norm PCA and other methods of 

incorporating robustness through reduction of the effects of outlier data on the calculation 

of the eigenvectors and/or the covariance matrix have become popular in recent years 

[Kriegel, Kröger, Schubert, and Zimek 2008].  It should be noted, however, that the use 

of some of these methods, such as those based on calculating “robust” estimates of mean, 

median, and variance from large datasets, can be unwieldy in terms of computational 

efficiency.  Since it is desired that the eigensystem extraction be done with minimal 

computational requirements, care was taken to implement a method for extracting the 
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PCA that maintains some of the “outlier” reduction strategies of robust estimation 

methods while still providing the final result in an acceptable processing time.   

3.8.4. Proposed Extraction Method for Eigensystem-Based Cluster Descriptors 

The flowchart given in Figure 3.20 shows the processing steps used to extract the 

eigensystem for the hematological data patterns considered in this dissertation.  It shows 

how the set of 52 eigensystem features (which are representative of the 4 major WBC 

populations) are produced from the raw data that is given in the form of an Nx3 data 

array:  

 

Figure 3.20: Flow Chart Depicting Process of Extraction of Eigensystem-Based Descriptor Matrix 
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According to the flowchart shown above, the process of extraction of the 52-parameter 

descriptor matrix makes some important considerations: 

 Data Resolution Subsampling: The resolution of each measurement (Volume, 

Light Scatter, Opacity) is initially 256 channels, or 8 bits.  Since it is desired to 

accumulate the data into 3D histograms, production of 256x256x256 channel 

histograms would be required; dealing with histograms of this magnitude could 

become computationally unwieldy.  Thus, it was experimentally determined that 

3D histograms with 32 channels (1/8 the number of channels) could give an 

accurate representation of the hematological pattern information with the added 

benefit of taking a factor of (8x8x8 = 83) less computation time to produce and 

process mathematically.   

 Data Smoothing and Outlier Reduction:  Each population contains residual noise 

and events that are far from the cluster body.  These events are normally 

considered statistical outliers and their effects first reduced by smoothing the data 

with Gaussian filtering in the spatial domain.  In addition to smoothing, which 

does not remove completely the outlier points; morphological operations such as 

erosion and dilation are used, in conjunction with intensity thresholding in order 

to reduce the effects of noise and outlier points to an acceptable level. 

3.8.5. Comparison of Features Using Fisher Linear Discriminant Analysis 

After potential population features have been evaluated according to their ROC curve 

individually, and it was determined that no single feature can give the desired level of 

accuracy for the two-class classification problem at hand, a method of incorporating them 

into a multidimensional class separation framework is considered the next logical step.   
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Based on previous discussions, a number of feature values x could be combined in a 

weighted linear fashion (through the use of a set of weights w) into a single function y 

using the following equation: 

xwy t      (3.18) 

Assuming a two-class classification problem, the optimal value of w can be found using 

the following equation: 

)( 21
1 mmSw w       (3.19) 

In the following equation, m1 and m2 are the sample means of data points in class 1 and 

class 2, respectively.  Likewise, Sw is known as the “within-class scatter matrix” and is 

found as follows: 

21 SSSw       (3.20) 

S1 and S2 are the scatter matrices of the data points in class 1 and class 2, respectively.  

The scatter matrices Si are calculated for the data points in each class as follows: 





iDx

t
iii mxmxS ))((     (3.21) 

In this case, finding the optimal value of w in the least-sum-of-squares sense is equivalent 

to finding the direction of best separation between the two classes of data.  This property 

of the Fisher linear discriminant is then exploited to find the direction of best separation 

for any chosen number of potential features. 

Using this method, the 7 lymphocyte population features shown in Table 3.9 were 

combined into a single feature.  Using the linear discriminant method, the classification 

performance when using this feature gives the ROC curve shown in Figure 3.21. 
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Figure 3.21: ROC Curve of Linear Classifier Using 7 Lymphocyte Statistical Parameters 

With an AUC value of 0.87, and using the optimal closest point (the intersection point of 

the ROC curve with a diagonal line drawn from point (0,1) to (1,0)), gives a specificity of 

81.5% and sensitivity of 80.5%.  It can be seen that the accuracy of a classifier built with 

only these parameters is not likely to approach 100%, which is of course desired but not 

often attainable.  For these reasons, it thus becomes necessary to resort to selection of 

feature parameters that have better ability to discriminate between the two classes of data. 

From the case studies that contained the variant lymphocyte cell type, most often from 

donors diagnosed with variations of lymphocytic leukemia, infectious mononucleosis, or 

lymphoma, it should be noted that these disorders had, of course, an obvious effect on the 

lymphocyte population, but also that other WBC populations were often affected.  For 

instance, for cases with lymphocytosis (a predominance of lymphocytes as a fraction of 

total WBC cells), obviously, the proportions of other WBC cell types (Monocytes, 

Neutrophils, and Eosinophils) may have been different than their normally-expected 
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levels.  Likewise, the positional statistics of these other WBC populations would likely be 

different than those from normal blood donors.  Thus, perhaps, it is necessary to use 

statistics from all of the WBC populations to obtain improved classification accuracy for 

the variant lymphocyte detection method.  This assertion has medical relevance, since 

many types of WBC cells are often produced and/or activated by the human immune 

system upon its recognition of a potential pathogen [Turgeon 2005]. 

It can be shown that the eigensystem-based population descriptors do, in fact, augment 

the separability of the two data classes, Variant Lymphocyte Negative, and Variant 

Lymphocyte Negative.  The Fisher linear discriminant is used to combine 7 features.  For 

the first case, the 7 standard features of the lymphocyte population that were shown in 

Table 3.9 are used to build a single feature.  For the second case, three of the best features 

from the eigensystem of the lymphocyte population are used in place of the features 

Lymph Volume SD, Lymph Light Scatter SD, and Lymph Opacity SD and again, a single 

feature composed of 7 variables is made. These results are shown in Figure 3.22.  

 

Figure 3.22: Comparison of ROC Curves of Two Linear Classifiers 
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3.8.6. Retrospective 

From the results obtained, it is observed that the addition of the best lymphocyte 

eigensystem values (selected according to their AUC values) does improve the 

classification accuracy – this is evidenced by the slight increase of AUC value when 

comparing the classifier on the right to the one on the left.  

From previous discussions on ROC curve theory, it is known that the eigensystem with 

the highest AUC scores can theoretically offer the best class separability.  The top 10 

parameters (sorted according to their AUC values) are shown in Table 3.11. 

Table 3.11: Area-Under-The-Curve Values for the 10 Best Eigensystem Parameters 

Parameter Name AUC Value Parameter Name AUC Value 

Ly Percent 0.842 Ne E1 0.737 

Ne Percent 0.807 Ly V SD 0.712 

Ly E1 0.774 Ly LS Mean 0.710 

Ly E2 0.764 Ly V13 0.708 

Ly E3 0.745 Ly V11 0.699 
 

These outcomes also confirm some of the assumptions made in previous sections.  

Firstly, that some of the lymphocyte population eigensystem components have relatively 

high classification values, namely, the largest eigenvalue of the lymphocyte population 

for instance, also known as LyE1, has an AUC equal to 0.774, which is superior to the 

parameter Lymphocyte Volume SD, which was the previous best standard deviation 

parameter of the lymphocyte population – which had an AUC of 0.712.  Also, it was 

fairly surprising that the Neutrophil population statistics (both the population percentage 

itself and some of its Eigen components) were seen to have very formidable classification 
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abilities.  In fact, the Neutrophil percent was noted to have comparable classification 

abilities to that of the Lymphocyte percent, for this classification problem.   

If we again try to use subsets of the parameter space (selecting N-tuples of the best 

individual parameters by goodness of their AUC values), the following classification 

accuracies as shown in Figure 3.23 are determined for N = 3, 5, 7, 10, 15, 20, 25, 30, 35, 

40, 45, 50, and all 52 parameters, respectively. 

 

Figure 3.23: AUC Values for Classifiers Constructed from N-Tuples of Best Eigensystem Parameters 

In the above figure, it can be observed that the best seven parameters of the Eigen 

component plus population percents classifier give slightly better results to the 7 

parameters of the lymphocyte population alone (AUC = 0.876 versus 0.87).  This result is 
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not surprising, since other features with better ability to separate the data classes are 

being added to the classifier, thus making a more realistic model of the disorder at hand. 

Upon adding more parameters to the classifier, naturally the classification accuracy is 

expected to increase.  This is evident by seeing the progressively higher accuracy that is 

attainable by using a higher-dimensional feature space by increasing the number of 

parameters that have classification value.   It can also be noted that the degree of increase 

of accuracy begins to become negligible as the number of parameters increases 

indefinitely.  This is an example of the “law of diminishing returns”, as applied to pattern 

recognition.  Thus, at some point, it may be sensible to perform a feature reduction (from 

the maximum of 52) through a sensitivity analysis to pare down the number of input 

features without incurring significant degradation to the overall accuracy of the classifier.  

However, it is clear that the performance will not degrade by adding more features, so 

reducing their number is not of great concern.   
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4. APPLICATION OF MACHINE LEARNING TO THE DETECTION OF VARIANT 

LYMPHOCYTE DATA PATTERNS 

4.1. Objectives 

The intent of this application is to seek two primary aims: (1) a high sensitivity (i.e., 

minimum number of false negatives), and (2) a high specificity (i.e., minimum number of 

false positives). A stopping condition for delineating Variant Lymph Positive from 

Variant Lymph Negative files assumes therefore the highest accuracy attainable will 

ensure that that both primary aims are concurrently met.  

Variant lymphocytes have historically been very difficult to detect reliably using 

conventional features extracted from hematological data patterns.  Since this type of 

pattern detection that is done by the software algorithms of automated hematology 

analyzers must deliver its results quickly (typically in less than 5 seconds), a usable 

implementation can only be realized through a reliable and computationally efficient 

feature extraction and classification paradigm.  

Over the past decade, several automated hematological detection paradigms focusing 

mainly on disease classification using extracted statistical population features have been 

reported with different degrees of success and inherent challenges.  These studies 

included the use of rule-based linear classifiers, and application of neural networks [Zong 

et al 2005].  

To be considered robust, a hematological pattern detection algorithm should then be 

sufficiently sensitive and specific, and any detection paradigm designed within it will 

need to capture the main features characterizing the abnormal blood pattern that 

differentiate it from a normal blood pattern.  It has been demonstrated that there are often 
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inherent shape differences in individual WBC populations between samples that are 

abnormal and those that are normal.  Namely, for clinically abnormal samples, the multi-

dimensional clusters of data points representing each WBC population will generally 

show discernible differences in mean location, size, spread, or orientation (pose) when 

compared with identical populations from clinically normal donors.  These empirical 

facts served as the foundation of this research endeavor. 

In this chapter, the role of robust statistical operators that describe shape, spread, and 

pose of each population cluster are explored in order to develop a reliable real-time 

abnormal pattern detection algorithm for hematological data collected by the LH750 

automated analyzer.  The proposed method is based on extracting the set of orthogonal, 

shift-and-rotation-invariant statistical features derived from the eigensystem of each 

population cluster in three-dimensional space, as was described in detail in Chapter 3, 

and then applying this set of descriptive features to classify patterns that are indicative of 

the clinically-abnormal levels of variant lymphocytes.  Since this feature space is multi-

dimensional and complex, maximal utilization of its underlying descriptive power is most 

easily achieved through the use of machine learning paradigms.  Thus, toward this end, 

an appropriate ANN architecture is established, with the parameters of this feature space 

as its inputs, and a training procedure is implemented to confront the complex nature of 

the classification problem at hand.  The performance of the algorithm, which was 

evaluated by means of the ROC terminology, relied on two objectives: (1) establishing a 

decision space most suitable for variant lymphocyte pattern data classification, and (2) 

implementing an ANN that is trained to generate the weights for the highest classification 

accuracy possible.  The proposed method looks at all Variant Lymphocyte Positive and 
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Variant Lymphocyte Negative files together with the purpose of creating an inter-patient 

classifier that would be applied irrespective of the particular patient under test.  

4.2. Experimental Setup 

The experiments were conducted using the same dataset of 300 donors that was 

introduced in Chapter 3.  The data used in each one of the methods described in this study 

was obtained from a significant sample of patients who demonstrated varying levels of 

variant lymphocytes in their blood.  Each of the hematological blood data was acquired 

using an LH750 Automated Hematology Analyzer operating in the differential mode of 

operation.  Likewise, a trained hematologist performed a 200-cell Manual WBC 

differential count for each patient used in this study.    

4.3.  Dimensions of Feature Space 

Assuming that the data pre-processing and feature extraction steps discussed in Section 

3.8 have already been applied to each data file, a 13-dimensional representation for each 

of the 4 main WBC populations (where each population is represented by its 3 

eigenvectors, 3 eigenvalues, and its population percent) is produced.  Each eigenvector 

consists of 3 vector components (i, j, k), thus making 9 parameters.  Thus, the proposed 

list of 52 potential features to be used in the classification of variant lymphocyte samples 

is as given in Table 4.1. 

Table 4.1: Eigensystem Orientation and Variance Parameters for 4 WBC Populations 

Population  Eigen Vectors Eigen Values 
Population 
Percents 

Total 
Parameters 

Lymphocyte VL1, VL2, VL3 EL1, EL2, EL3 Ly% 13 

Monocyte VM1, VM2, VM3 EM1, EM2, EM3 Mo% 13 

Neutrophil VN1, VN2, VN3 EN1, EN2, EN3 Ne% 13 

Eosinophil VE1, VE2, VE3 EE1, EE2, EE3 Eo% 13 
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4.4. Appropriate Artificial Neural Network Design 

Since multilayer feedforward neural networks, known as Perceptron are relatively simple 

and have been used successfully in a multitude of classification tasks, even for data that 

are not easily separable using conventional means (such as through linear classifiers), this 

type of ANN network will be applied to this classification problem using the 52-

dimensional parameter space introduced in the previous section.  Another advantage of 

this type of network is that it is easy to train by use of the much-cited backpropagation 

algorithm, which is based on successive optimization by backpropagation of errors. The 

foundations of this unique mathematical approach were laid by Paul Werbos in his 

groundbreaking 1974 Harvard doctoral thesis, whose full text is published in [Werbos 

1994]. The algorithm is one of the most used by scientists, engineers and researchers 

involved in neural networks.  A conceptual illustration of a three-layer Perceptron ANN 

is shown below: 

 

Figure 4.1: Conceptual Illustration of 3-Layer Perceptron ANN with Topology 8-10-1 
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In the example shown, it is a 3-layer Perceptron ANN with 8 Input Units, 10 Hidden 

Units, and 1 Output Unit.  For simplicity, the topology, or number of units in each layer, 

is often given in the format X-Y-Z, where X represents the number of input units, Y 

represents the number of hidden units, and Z represents the number of output units. 

For the experiments performed in this dissertation, a Perceptron ANN was constructed 

with 52 input units, 1 output unit, and a variable number of hidden units.  To avoid non-

linear modification of the input values (the features themselves), identical linear 

activation functions were used for all input neurons.  Since a two-class delineation is 

required (negative or positive for variant lymphocytes), a single output neuron was used 

with bipolar targets.  The chosen target designations will be -1 for samples negative for 

Variant Lymphocytes, and +1 for samples positive for Variant Lymphocytes.  Again, to 

avoid making any assumptions about the output values produced, a linear activation 

function was initially chosen for the single output neuron.  The backpropagation learning 

rule with a fixed learning rate was chosen to train the classifier. 

The next issue tackled is in determining the need for hidden units.  Initially, it will be 

assumed that acceptable classification accuracy for this problem can be found while using 

zero hidden units – making this neural network roughly equivalent to a linear classifier. 

4.5. Data Partitioning 

Out of the total 300 files used in this study, 150 (75 Variant Lymph Positive and 75 

Variant Lymph Negative) hematology data files or 50% were selected randomly and used 

initially in a training phase to ascertain the reliability of the eigensystem-based feature 

space sample classification process.  The remaining 150 data files or 50% were then used 

in the testing phase.  The 150 files selected for training are from patients 1 to 150, and 
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patients 151 to 300 were used subsequently in the testing phase in order to validate the 

classifier’s ability to perform well on an inter-patient level.  

4.6. Artificial Neural Network Design Considerations 

4.6.1. Type of Neural Network  

Although the Perceptron was chosen for this classification problem using the 52-

dimensional parameter space introduced in the previous section, it is important to 

emphasize that the choice of classification method is not crucial for this study, since the 

feature space has been demonstrated to have good discriminative power. Consequently; 

any machine learning framework is expected to achieve good classification results. 

4.6.2. Learning Rule 

Because the learning and weight update method “backpropagation of errors” has been 

shown mathematically to have sufficient ability, when coupled with multi-layer ANNs, to 

learn to find optimal decision functions by employing the method of gradient descent, it 

was decided to use this method for learning with the chosen Perceptron ANN. 

4.6.3. Targets Used For Supervised Learning 

Since a two-class delineation is required (negative or positive), a single output neuron 

was used with bipolar targets.  Bipolar targets can be more advantageous than binary 

targets (0 and 1) because sometimes the value 0 can cause numerical overflow problems 

with floating point division operations that are common in gradient descent calculations; 

these overflow problems can lead to instability and/or premature stoppage in the training 

procedure by producing very large numbers.  Bipolar targets (-1 and 1) force the targets 

to be equidistant and sufficiently further away from the zero value.   
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4.6.4. Type and Number of Input Units 

The number of input units is fixed at 52, which is identical to the dimensionality of the 

input feature space.  However, it may be determined that some inputs can be removed 

from the feature space if they do not contribute significantly to the ANN performance.   

In addition, to avoid nonlinear modification of the input values (the features themselves), 

no activation functions are used for the input neurons.   

4.6.5. Activation Functions 

Although the classification ability of an ANN is not strongly tied to the choice of 

activation functions used, they can a noticeable effect on the quality and effectiveness of 

pattern learning [Fausett 1994] [Duda et al 2000]. 

4.6.6. Training Procedure 

Typically, upon training artificial neural networks with supervised learning patterns, the 

issue of over-training (also termed over-fitting) is always a concern.  The issue is that an 

ANN, if left to train for too long, can actually “memorize” all the patterns in the training 

set, and the classifier that is created will be of little value if it is used to classify “unseen” 

patterns.  To assure that a classifier is not over-trained, and still will respond correctly to 

unseen patterns, cross-validation techniques must be employed during the neural network 

training/testing process.  Once the optimal artificial neural network topology has been 

found, final training and testing of this network will, of course, always be done while 

using cross validation, to assure that the ANN network that is created maintains sufficient 

ability to correctly classify unseen data patterns [Weigend 1994] [Tetko et al 1995]. 
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4.6.7. Learning Rates 

A fixed, constant learning rate is normally sufficient for effective learning.  It is 

important; however, to assure that the learning rate is large enough so as not to slow the 

learning process unnecessarily, but not be too large so as to cause oscillations or 

instability due to amplification of noise during the gradient descent optimization 

procedure.  There is no exact criterion to determine the optimal learning rate for a 

particular ANN classification problem; it usually must be determined by “trial and error” 

procedures [Fausett 1994] [Swingler 1996]. 

4.6.8. Number of Hidden Units 

Determination of this topological parameter can be critical to achieving a satisfactory 

ANN testing performance.  Having no hidden units and linear activation functions on 

input and output units will generate a network that is equivalent to a linear classifier.  

Adding hidden units allows the network to approximate a more complex decision 

boundary.  If the patterns are well-separated or linearly separable, then few hidden units 

are needed; however, if the contrary is true then larger numbers of hidden units will be 

necessary to obtain good classification results [Duda et al 2001]. 

4.7. Strategies to Find Optimal ANN Topology 

For the task of deciding upon a network topology that can give acceptable accuracy for 

the data used in this study, some experiments were done with varying topologies.  The 

following ANN parameters were varied in different experimental trials: 

1. Activation Functions (Linear versus Sigmoidal or Tansig) 

2. Number of Hidden Layers 

3. Number of Hidden Units 
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4. Number of Input Features (All features versus smaller subsets) 

4.7.1. Perceptron ANN Experiment #1 

Initially, to avoid making assumptions about the feasibility of this classification problem, 

the most basic Perceptron ANN configuration is used.  For exploratory purposes, it is 

often desired to see whether an input feature space (without the help of hidden units) can 

provide linear separability of the two pattern classes.  This type of exploratory analysis is 

initially done without any cross-validation so that a reasonable assessment as to the 

potential or “best-case” separability that the data classes inherently contain; this is done 

intentionally knowing that some over-fitting of the ANN will likely occur. 

For this experiment, the following Perceptron topology and parameters are used: 

Table 4.2: Perceptron ANN Configuration Variables for Training Experiment #1 

Number of 
Input Units 

Number Of 
Hidden 
Units 

Activation 
Functions 

Used 

Learning 
Rate 

Total 
Training 
Time (s) 

Cross 
Validation 
Used (Y/N) 

52 0 Linear 0.001 180 No 

 

Using the entire 300 datasets, this network was trained for 3 minutes (roughly 4000 

iterations per trial), 50 separate times so that an average training error result could be 

obtained.  It was done with no cross-validation merely to show that even in the over-

trained condition, with linear activation functions for both input and output neurons, that 

this ANN could not achieve 100% accuracy in a reasonable training time.  This would 

provide support for the assertion that the two classes (Negative for variant lymphocytes 

and Positive for variant lymphocytes) are not linearly separable.  The results for 

accuracy, sensitivity, and specificity for the 50 separate trials are given in Figure 4.2. 
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Figure 4.2: Accuracy, Sensitivity, and Specificity Results for 50 Training Trials – Experiment #1 

 

Throughout the 50 trials, the best accuracy result obtained was for trial #22.  The 

confusion matrix and performance statistics for this trial are given in Table 4.3. 

Table 4.3: Confusion Matrix and Performance Statistics for Best Trial of Experiment #1 

TP TN FP FN Accuracy Sensitivity Specificity

128 126 24 22 84.67 85.33 84.00 

 

Basically, the results did not change appreciably during the different training trials, which 

implied that there was little dependence of the testing result on the random initialization 

of weights (which was done for each trial automatically).  Judging by the best accuracy 

result of only 84.7%, the 2 dataset classes (Negative for Variant Lymphocytes, and 

Positive for Variant Lymphocytes) are likely to be not linearly separable.  Thus, it is 

fairly certain that a Perceptron with no hidden units and purely linear activation functions 

will not be able to provide perfect separation.  Thus, to achieve optimal separation of 

these classes, the non-linear aspects of artificial neural networks (hidden units and 
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alternative activation function types) must be incorporated into the classification 

problem.  Thus, the following trials introduce the usage of alternative activation functions 

and hidden units so that improvements in classification performance may be realized. 

The activation functions of each neuron can be specified to be different mathematical 

transfer functions.  Certain functions, such as the sigmoid, can be used to introduce non-

linearity into the classification, thus potentially, improving the accuracy of the classifier 

for classes that are not linearly separable. 

4.7.2. Perceptron ANN Experiment #2 

The activation functions of each neuron can be specified to be different mathematical 

transfer functions, other than purely linear.  Certain functions, such as the sigmoid, can be 

used to introduce non-linearity into the classification and thus potentially improve the 

accuracy of the classifier for classes that are not linearly separable. 

Before resorting to the use of hidden layers and hidden units to achieve separation of the 

two classes of data, the use of a sigmoid function in the output unit is attempted.  The 

equation of the logistic sigmoid (logsig) function that was used is given as the following: 

minminmax ))(exp(1

1
)()( y

bxa
yyxF 


    (4.1) 

In Equation 4.1, the a and b parameters are real numbers usually in the range of 0.1 to 5.  

The logsig function is often applied in backpropagation networks since its slope is not 

constant, and therefore, it can provide an effective way of updating weights depending on 

the value of the gradient of the error.  Additionally, the logsig has the advantage that its 

slope y’ can be expressed in terms of its output as )1(' yyy  , which makes it 

computationally practical.  The following parameters for the sigmoid were used: 
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Table 4.4: Sigmoid Activation Function Parameter Values 

Parameter Value 

a 3.0 

b 0 

Ymin -1.0 

Ymax 1.0 

 

Using the parameters in Table 4.4 as inputs to Equation 4.1 yields the following function: 

 

Figure 4.3: Graph of Sigmoid Function Using Parameters Defined in Table 4.1 

For the ANN training experiment, the sigmoid, or logsig function specified in Figure 4.3 

will be used as the activation function for all input units in the Perceptron.  The 

classification performance of the network will of course be monitored to note the effect 

of this activation function.  Again, using all 300 datasets for training and testing of the 

network, with no cross-validation techniques applied, the following Perceptron ANN 

topology and parameters were used: 
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Table 4.5: Perceptron ANN Configuration Variables for Training Experiment #2 

Number of 
Input Units 

Number Of 
Hidden 
Units 

Activation 
Functions 

Used 

Learning 
Rate 

Total 
Training 
Time (s) 

Cross 
Validation 
Used (Y/N) 

52 0 Logsig 0.001 180 No 
 

Again, this network was trained and tested 50 separate times.  The performance was 

calculated on all 300 datasets each time.  The 50 testing results are shown in Figure 4.4. 

 

Figure 4.4: Accuracy, Sensitivity, and Specificity Results for 50 Training Trials – Experiment #2 

Likewise, the best accuracy testing result (trial #35) is shown to assess the effect of 

adding the sigmoid activation functions.  The confusion matrix and performance metrics 

of this trial are given in Table 4.6. 

Table 4.6: Confusion Matrix and Performance Statistics for Best Trial of Experiment #2 

TP TN FP FN Accuracy Sensitivity Specificity

133 124 26 17 85.67 88.67 82.67 
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Again, it should be noted that the testing accuracy did not fluctuate between each trial, 

indicating that the testing results were repeatable, and not due to random chance.  

Comparing to the best results from Experiment #1, it was noted that Experiment #2 has 

slightly better overall accuracy (85.67% versus 84.67%), slightly better sensitivity 

(88.67% versus 85.33%) and slightly worse specificity (82.67% versus 84.0%).  So, it is 

noted that using a sigmoid activation function on the output unit of the ANN had only a 

marginal, albeit improved effect on its accuracy. 

4.7.3. Perceptron ANN Experiment #3 

Since it seemed as though the ANN accuracy performance was not going to reach 100% 

through a single-layer network, even with sigmoidal activation functions, it seemed 

necessary to add a single hidden layer to the network to give it the ability to separate the 

pattern classes more effectively.  Since the optimal number of hidden units is unknown, a 

simple test of different numbers of hidden units was done.  A sweep of various numbers 

of hidden units from 20 to 120 was done and the average pattern error checked to see if 

an obvious trend would emerge.  Since the number of input features is still fixed at 52, it 

did not seem logical to try a very small number of hidden units (e.g. 5 or 10).  The 

number of hidden units was varied from roughly 40% of the inputs (20) to roughly 2.3 

times the number of inputs (120).  Again, this experiment was done without cross-

validation, since the actual training results were not important; only the trend of training 

results relative to each other was sought.   

Thus, the Perceptron ANN was again set up with the following topology and parameters: 
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Table 4.7: Perceptron ANN Configuration Variables for Training Experiment #3 

Number of 
Input Units 

Number Of 
Hidden 
Units 

Activation 
Functions 

Used 

Learning 
Rate 

Total 
Training 
Time (s) 

Cross 
Validation 
Used (Y/N) 

52 
Varied from 

20-120 
Logsig 0.001 180 No 

 

To get a reliable result for each trial of different numbers of hidden units, 5 training trials 

were conducted for each number of hidden units, and an average of the pattern error for 

the 5 trials was computed and saved.  The results of this analysis, average pattern error 

from 5 training trials, are shown as a function of number of hidden units in Figure 4.5. 

 

Figure 4.5: Average Training Pattern Error versus Number of Hidden Units 

A general trend of increasing pattern error is seen as the number of hidden units increased 

beyond 50.  In the range of 20 to 50 hidden units showed a fairly constant (and relatively 

low) average pattern error.  It is possible that, in this training scenario, (without any 

cross-validation) 20-50 hidden units may be optimal for the best accuracy possible, since 
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there are no constraints imposed to avoid over-training the network.  Is it therefore 

possible that a greater number of hidden units are necessary to construct a neural network 

with both the ability to perform well on training data as well as on unseen testing data.  

Thus, this experiment should be conducted in two trials (one with no cross-validation and 

one with cross-validation) and then the ultimate conclusion should be drawn.  The 

technique of cross-validation is basically to divide the training set into mutually 

exclusive, but not equally-sized subsets, and for each subset, the classifier is trained on 

the union of all the other subsets.  The average of the error rate of each subset is therefore 

an estimate of the error rate of the classifier.  This type of validation is, of course, more 

demanding computationally, but useful when the most accurate estimate of a classifier’s 

error rate is required [Kotsiantis 2007]. 

4.7.4. Perceptron ANN Experiment #4 

Extending the coverage of Experiment #3 to address the effects of ANN over-training, 

the same experiment is now conducted using a technique of cross-validation.  Cross 

validation will be implemented as follows: 50% of the available patterns will be used for 

training, 25% of the available patterns will be used for testing, and the remaining 25% 

will be used for cross-validation.  The data for each of these sets will be selected in an 

equal-but-random fashion from the two sets of data (positive samples and negative 

samples), to assure that the number of positive samples and negative samples are always 

roughly equal, to avoid biases in the results.  For the original dataset of 300 patterns (150 

positive and 150 negative), the data will be partitioned as follows: 



 82

Table 4.8: Data Partitions for Training, Cross-Validation, and Testing 

Data Subset 
Number Of Files in 

Subset 

Training 
150 (75 Positive, 75 

Negative) 

Cross-Validation 
75 (37 Positive, 38 

Negative) 

Testing 
75 (38 Positive, 37 

Negative) 
 

Training was performed and finalized with early stopping (a cross-validation strategy) as 

a regularization procedure to avoid network memorization.  The procedure was set as 

follows: every 3 iteration loops, the average square error on the cross-validation set is 

computed and compared to the previous 5 values computed thus far.  If the last error is 

higher, the iterations are stopped, because this could represent an increasing error trend. 

One may question the difference between the three data subsets (training, testing, and 

cross-validation).  What is their distinction from one another?  Why not just use training 

and testing sets?  What is the purpose of having an additional set, the cross-validation 

set?  The answer will require a short explanation.  The training data will be iterated 

through the network again and again, over 1000’s of iterations.  It is expected that the 

ANN will eventually “memorize” each of the training patterns through the process of 

over-fitting.  At this point, the ANN that is created may be relatively useless, because it 

possibly could not correctly recognize the “Variant Lymphocyte” trait or pattern in data 

samples presented to it that were not seen previously by the classifier during training.  

This is obviously a training pitfall that should be avoided [Weigand 1994].  That is where 

the testing data becomes important.  It will not be involved in the training process in any 
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way; in fact, it will not be seen by the ANN.  However, the cross-validation dataset 

differs from the testing dataset; it will not be trained upon either, but it used merely to 

determine if over training of the network has occurred.  A common practice used in 

cross-validation is to allow the ANN to see all patterns of the training set N times.  Then 

after it has been allowed to train for these N iterations, the cross-validation set will be 

evaluated by the ANN and an average pattern error for this subset of data will be 

computed.  If this average pattern error for the cross-validation set continues to decrease 

(since this error will be computed after each N training iterations of the training data), the 

training process will continue for another N iterations [Tetko et al 1995].  It is important 

to realize that the cross-validation set is not trained upon by the ANN (since no weight 

updates will be caused by its usage), but it is merely used as a tool for monitoring 

whether sufficient (but not too much) training has been done for the ANN.  Thus, 

employing this strategy will now give three sets of errors that must be monitored – 

training error on training data, testing error for testing data, and testing error for cross-

validation data. 

Thus, following similar parameters as Experiment #3, but with the important addition of 

the cross-validation technique to avoid over-training of the network, the following 

average pattern errors are seen as a function of number of hidden units: 
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Figure 4.6: Average Pattern Error versus Number of Hidden Units with Cross-Validation 

The average training pattern error is the lowest series (shown in red).  The average 

training pattern error begins at a fairly high value when only 1 hidden units is used, then 

begins to trail off as the number of hidden units approaches 15.  Then, there is a slightly 

upward trend for the average training pattern error as the number of hidden units 

increases beyond a certain point (close to 40).  Between 15 and 40 hidden units, the 

average training pattern error is fairly constant. 

This result may seem counter-intuitive because of the notion of over-fitting in the training 

process; we would expect this pattern error to decrease toward zero as the number of 

hidden units increases towards infinity.  However, it is apparent that as the network 

complexity and degree of non-linearity increases (through the addition of more hidden 

units and their activation functions), the more prone it is to be unstable.  The training 

error function of the network becomes more sensitive to perturbations, possibly due to the 

inherently difficult nature of solving highly-complex, and non-linear mathematical 
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functions for extremal values, which is what, in essence, a multi-layer Perceptron is 

attempting to do.   

More important than average training error are the average pattern errors for the cross-

validation and testing datasets.  This error also clearly follows a discernible trend; their 

average pattern errors seem to be affected (although not as drastically as the training 

pattern errors) by the increase of number of hidden units.  Also, it is clear from the data 

plots that the cross-validation set (shown in green) seems to always have a larger average 

pattern error than the testing set (shown in blue).  So, to simplify this analysis (finding the 

optimal number of hidden units for this classification problem to have minimal error), we 

ignore the average pattern error for the training data (for the moment), and concentrate on 

the average pattern error for the other sets.  For simplicity in viewing, an average of the 

pattern error for the two sets (cross-validation and testing) is shown versus the number of 

hidden units.   
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The results of this analysis are shown below: 

 

Figure 4.7: Average Pattern Error versus Number of ANN Hidden Units 

Since the lowest average pattern error produced by untrained (unseen) data is ultimately 

what is desired from the final ANN design, this is the goal that is sought from this 

analysis.  The lowest average pattern errors are seen at N = 14 (0.839), N = 18 (0.841), 

and N = 32 (0.837).  This gives three potential trials for the optimal number of hidden 

units.  Since the minimum pattern error was seen for N = 32 hidden units, that will be the 

first trial, followed by N = 14, and N = 18.  The ANN topology demonstrating the best 

overall performance under the duress of repeated training and testing experiments (to 

assure that the good ANN performance is repeatable was not merely due to chance 

occurrence) will be chosen as final network topology. 

4.7.5. Perceptron ANN Experiment #5 

Using the same Perceptron inputs and parameters as those used in Experiment #4, and 

only allowing the number of hidden units to vary for (N = 14, 18, and 32), the following 

trials are performed. 
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4.7.5.1.Trial #1: N = 32 Hidden Units 

Using N = 32 hidden units and the same Perceptron ANN setup with 52 inputs (linear 

activation function and no bias), sigmoid activation functions, and 1 output unit, the 

following performance was seen over 50 repeated training attempts: 

 

Figure 4.8: Accuracy, Sensitivity, and Specificity Results for 50 Training Trials – Experiment #5, Trial #1 

The average performance metrics for the 50 training trials are shown in Table 4.9. 

Table 4.9: Performance Result Ranges for Experiment #5, Trial #1 

Accuracy Range Sensitivity Range Specificity Range 

74.46 ± 2.79 66.68 ± 4.6 82.45 ± 3.11 
 

Likewise, the best accuracy training result from the 50 trials is shown below: 

Table 4.10: Confusion Matrix and Performance Statistics for Best Trial of Experiment #5, Trial #1 

True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Accuracy Sensitivity Specificity

55 66 8 21 80.67% 72.37% 89.19% 
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4.7.5.2.Trial #2: N = 18 Hidden Units 

The same procedure was repeated for this topology that contained 18 hidden units.  The 

testing results for 50 separate trails are shown in Figure 4.9. 

 

Figure 4.9: Accuracy, Sensitivity, and Specificity Results for 50 Training Trials – Experiment #5, Trial #2 

The average performance metrics for the 50 training trials are also shown in Table 4.11. 

Table 4.11: Performance Result Ranges for Experiment #5, Trial #2 

Accuracy Range Sensitivity Range Specificity Range 

73.65 ± 2.63 64.68 ± 5.4 82.86 ± 3.5 

Likewise, the best accuracy training result from the 50 trials is shown below: 

Table 4.12: Confusion Matrix and Performance Statistics for Best Trial of Experiment #5, Trial #2 

True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Accuracy Sensitivity Specificity

54 63 11 22 78.0% 71.05% 85.14% 
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4.7.5.3.Trial #3: N = 14 Hidden Units 

The same procedure was repeated for this topology that contained 14 hidden units. The 

testing results for the 50 separate trials are shown below in Figure 4.10. 

 

Figure 4.10: Accuracy, Sensitivity, and Specificity Results for 50 Training Trials – Experiment #5, Trial #3 

The average performance metrics for the 50 training trials are shown in Table 4.13.: 

Table 4.13: Performance Result Ranges for Experiment #5, Trial #3 

Accuracy Range Sensitivity Range Specificity Range 

72.24 ± 2.78 61.76 ± 6.28 83.0 ± 4.16 
 

Likewise, the best accuracy training result from the 50 trials is shown below: 

Table 4.14: Confusion Matrix and Performance Statistics for Best Trial of Experiment #5, Trial #3 

True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Accuracy Sensitivity Specificity 

49 66 8 27 76.67% 64.47% 89.19% 
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4.8. Discussion of Perceptron ANN Topology Experiments 

It was shown that suitable values of the Perceptron parameter values (learning rate, 

activation function type and parameters, and number of hidden units) that would provide 

good classification performance for this problem could be found experimentally.  The 

conclusions drawn from the five individual experiments can be summarized as follows: 

Use of a linear classifier (Perceptron with no hidden units and linear activation functions 

on inputs and outputs) cannot give perfect separation of the two data classes, even when 

allowing “memorization” of all data to occur by foregoing any cross-validation activities.  

This conclusion was drawn in Experiment #1. 

Sigmoid Activation Functions have some positive effects on the classification 

performance (small increase in accuracy).  However, the addition of sigmoid activation 

functions alone was not sufficient to provide vast improvement in performance – these 

conclusions were drawn in Experiment #2. 

Addition of a hidden layer is necessary to augment the performance capabilities of the 

ANN – this was seen in Experiments #3. 

A suitable number of hidden units can be arrived upon by observing the average pattern 

error for multiple training results each attempted with increasing numbers of hidden 

units.  Lower average pattern error indicates improved ANN performance.  This was seen 

in experiments #4 and #5. 

The optimal number of hidden units for this classification problem was chosen at the 

point when the average pattern error was minimized.  Though 3 individual choices of N 

(number of hidden units) all gave very low values for average pattern error, it was noted 

that N = 32 hidden units gave the best set of average performance metrics for repeated 
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training scenarios.  This statement is reinforced by observed average performance metrics 

for the 3 values of hidden units: 

Table 4.15: Average Performance Metrics for 3 Topologies Tested in ANN Experiment #5 

Number Of ANN 
Hidden Units 

Average Accuracy 
Performance 

Average Sensitivity 
Performance 

Average Specificity 
Performance 

32 74.46% 66.68% 82.45% 

18 73.65% 64.68% 82.86% 

14 72.24% 61.76% 83.0% 
 

4.9. Finalized Perceptron ANN Topology and Best Performance 

Assuming that a 3-layer (1 input layer, 1 hidden layer, 1 output layer) Perceptron will be 

used, and that the optimal ANN parameters (number of hidden units, activation functions, 

and learning rates) were already determined through the experiments detailed in Section 

4.7, the following Perceptron ANN parameters will be used to demonstrate the following 

classification performance: 

Table 4.16: Perceptron ANN Configuration Values of Optimal Network 

Number of Input Units 52 

Input Unit Activation Function Linear 

Number of Hidden Layers 1 

Number of Hidden Units 32 

Hidden Unit Activation Functions Sigmoid 

Activation Function Parameters See Table 4.4 

Number Of Output Units 1 

Output Unit Activation Functions Sigmoid 

Activation Function Parameters See Table 4.4 

Global Learning Rate 0.001 

Total Training Time 180 seconds 

Cross-Validation Used For Training Yes 
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It is noteworthy to mention that the Perceptron ANN with N = 32 hidden units and the 

other setup parameters mentioned in Table 4.16 demonstrated the best combination of 

accuracy, sensitivity, and specificity seen to date.   

The best overall results shown from this ANN topology (which represents the optimal 

classifier for Variant Lymphocyte detection as determined through this series of 

experiments), with respect to the Coulter LH 750 Variant Lymphocyte classifier are 

shown in the following tables.  The classification accuracy, sensitivity, and specificity 

was evaluated using the Cross-Validation and Testing datasets combined (total of 150 

files).  This was done because the training dataset (150 files) was essentially memorized 

by the Perceptron ANN and does not give an unbiased testing result.  So, using the 150 

files designated for testing and cross-validation only, the side-by-side comparison of 

performance between the two classifiers on exactly the same set of data is shown below: 

LH750 Variant Lymphocyte Classifier Performance: 

Table 4.17: Performance of LH750 Variant Lymph Suspect Flag on Testing + Cross-Validation Datasets 

True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Accuracy Sensitivity Specificity

22 70 4 54 61.33% 28.94% 94.59% 
 

Eigensystem-Feature Variant Lymphocyte Classifier Performance:  

Table 4.18: Performance of Proposed Variant Lymph Suspect Flag on Testing + Cross-Validation Datasets 

True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Accuracy Sensitivity Specificity

55 66 8 21 80.67% 72.37% 89.19% 
 

It is fairly obvious that the current variant lymphocyte classifier implementation using the 

Perceptron ANN with 52 input Eigen-parameter features gives improved performance.  
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This is evident not only from overall accuracy (80.67% versus 61.33%), but also from 

overall sensitivity (72.37% versus 28.94%).  The only drawback of this implementation is 

that its specificity was not as high as the Coulter LH 750 implementation (89.19% versus 

94.59%).  However, it is felt that the 5.4% increase in false positives is an acceptable 

tradeoff for the vastly improved sensitivity and accuracy of the implemented approach. 

5. CLASSIFICATION OF VARIANT LYMPHOCYTES USING FEATURE 
EXTRACTION AND MACHINE LEARNING 

 
5.1. Objectives of the Method 

The main objective of this method was to demonstrate that the set of multi-dimensional 

eigensystem-based hematological population descriptors that was proposed by this 

dissertation is clearly more effective for correctly classifying samples containing 

medically-relevant levels of variant lymphocytes than are basic 1-dimensional population 

statistical features such as mean and standard deviation. 

5.2. Data Collection 

For this study, hematological data collected using a Beckman Coulter LH750 automated 

hematology analyzer.  Since this study focused on the classification a specific type of 

WBC abnormality, the presence of Variant Lymphocytes, only the data from the WBC 

differential mode of operation of the LH750 analyzer was used in this study.  

Specifically, this amounted to data from 300 individual donors.   The first 150 donors 

were randomly chosen because they were negative for medically-abnormal levels of 

Variant Lymphocytes, and the next 150 donors were randomly chosen because they were 

positive for medically-abnormal levels of Variant Lymphocytes. 
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5.3. Feature Extraction 

As stated earlier, a set of 52 parameters was extracted from the 4 most significant WBC 

populations in each hematology sample, which are the Lymphocyte, Monocyte, 

Neutrophil, and Eosinophil populations.   

Table 5.1: Donor Information and Data Used 

Donor 

Manual 
Variant 

Lymphocyte 
Percent 

Is Donor 
Medically-
Positive for 

Variant 
Lymphocytes 

1 1.75 No 

2 0.5 No 

3 4.8 No 

4 2 No 

5 0.25 No 

…..   

150 0.75 No 

151 8.5 Yes 

152 22.5 Yes 

153 5 Yes 

154 12 Yes 

…..   

300 6 Yes 
 
5.3.1. ANN Configuration and Training Procedure 

For the problem at hand, a 52-32-1 Perceptron Artificial Neural Network topology was 

ultimately selected.  The rationalization for selecting 32 hidden units and no other 

number of hidden units was made through interpretation of the results of the ANN 

topology experiments that had been reported in section 4.7, which indicated that an 

optimization of the number of hidden units for the problem at hand was possible.  Even 

though many of the parameters used for the final network were experimentally 

determined through trial and error procedures, examination of the average pattern error 
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and classification accuracy performance upon completion of each trial provided the 

overall assurance whether specific parameter choices were more beneficial for the 

problem at hand.  It was assumed that parameter choices (activation function types and 

parameters, learning rates, and number of hidden units) that provided the lowest average 

pattern errors during the testing phase were most likely to be optimal choices for the 

Variant Lymphocyte classification framework. 

The input units were assigned linear activation functions, and the hidden and output units 

were assigned logsig functions, with the same parameters that were used in section 4.9. 

The cross-validation strategy implemented in this case was identical to the one applied in 

section 4.9.  Training was stopped once an increment in the cross-validation set for 5 

consecutive times was detected. Under normal conditions, a training error can be 50% 

higher or lower than the previous one.  By allowing the error no more than 5 consecutive 

times to increase, one is assuming that the error will keep increasing with a probability of 

1 - (0.5)5 = 1 - 0.03125 = 0.96875, which is a high-confidence value. The learning rate 

was set in all ANNs to 0.001. 

Because the minimum error obtained by an ANN depends on the starting condition, there 

is no way to know in advance which will be the best set of weights that will lead the 

network to a global minimum. The only way is to perform several trials, each starting 

with random weights, and to store the set of weights that yielded the best solution. This 

study opted to find the best solution for each ANN after a number of trials. 

For each trial, the ANN was trained 50 times and the average performance results 

(average accuracy, average sensitivity, and average specificity) were shown as 

representations of the performance.  This is done since a single training result can be 
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influenced heavily by the random starting values of the weights and biases.  Thus, it is 

assumed that average performances values created with N = 50 trials are statistically 

significant.   The intent of this approach with so many repeated trainings is to rule out the 

possibility that any differences in the results are just by chance (analogous to the 

statistical T-test). 

Since cross-validation was performed, all training repetitions were stopped either by the 

cross-validation stop criterion or by reaching the time limit that was set.  The procedure 

was applied consistently across all ANN topologies.  In general, each ANN was allocated 

a time span of 3 minutes for training. 

As it is known, cross-validation stops only when the validation error starts to increase, as 

shown in Figure 5.1.  The number of iterations when the network begins to over-fit and 

loses its generalization ability is labeled in the figure as Ncritical.  But before reaching that 

point, the error on the testing set can either increase or decrease, although most of the 

times this error is expected to follow the trend of the cross-validation error, at least for 

the first few iterations.  In this experiment, this tendency was observed in most trainings 

iterations, but not in all.  Because the training algorithm has purposely no feedback from 

the testing error, limiting the search time is a good way to avoid high testing errors.   

 
Figure 5.1: Illustration of the cross-validation criterion to stop training.  
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5.4. Testing Results 

Since the object of this dissertation was to demonstrate that the 52-dimensional eigen-

system population feature descriptor matrix could provide improved Variant Lymphocyte 

classification performance, the performance of the implemented approach was compared 

against a well-known Variant Lymphocyte classification algorithm which is provided as 

part of the Beckman Coulter LH750 Automated Hematology Analyzer.  The 

classification performance of this analyzer’s Variant Lymphocyte suspect flag on the 150 

data files designated for testing by this study is shown in Table 5.2. 

Table 5.2: LH750 Variant Lymphocyte Suspect Flag Performance 

True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Accuracy Sensitivity Specificity

22 70 4 54 61.33% 28.94% 94.59% 
 

Using the best individual testing result from the 50 trials of the Perceptron ANN topology 

showing the highest average accuracy performance (the Perceptron with topology 52-32-

1) in the various experimental trials explained in Chapter 4, the performance using the 

same 150 testing data files is shown again in Figure 5.3.   

Table 5.3: Eigensystem-Based Variant Lymphocyte Suspect Flag Performance 

True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Accuracy Sensitivity Specificity

55 66 8 21 80.67% 72.37% 89.19% 
 

5.5. Discussion of Classification Performance Improvements Obtained 

It is notable to mention that the accuracy performance of the implemented Variant 

Lymphocyte detection method has increased from 61.3% to 80.67%, or by approximately 

a factor of 1.31, or 31%.  Likewise, the sensitivity of the implemented approach has 



 98

increased from 28.94% to 72.37%, or by approximately a factor of 2.41.  The downfall is 

the decrease in specificity by a factor of 0.94.  This, however, seems to be an acceptable 

tradeoff, since accuracy and sensitivity have increased dramatically with only a modest 

decrease in specificity. 

5.6.  Samples Classified by Implemented Approach 

Some patterns that were incorrectly detected by the LH750 Variant Lymphocyte suspect 

flagging method are now discussed.  Many of these cases have been correctly detected by 

the implemented Variant Lymphocyte detection approach as discussed next. 

5.6.1. Pattern #1: Variant Lymph Positive Sample Correctly Detected 

Below is an example of a file that was not detected as having a medically-abnormal level 

of variant lymphocytes by the LH750 Variant Lymphocyte suspect flag, thus it is treated 

as a False Negative. 

 

Figure 5.2: Variant Lymph Positive Sample – Discussion Pattern #1 

The manual differential is also given for this donor, so that the seriousness of this sample 

may be understood.  In particular, this case is serious because of the extremely high 

percentage of variant lymphocytes seen, which was reported as 35.25% according to the 
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manual differential report.  This case ideally should be flagged as containing Variant 

Lymphocytes, and to not do so may be medically dangerous.  This sample also has a very 

elongated lymphocyte population in the volume and opacity directions; this is a likely 

reason why the current classification method detected it as a true positive sample. 

Table 5.4: Manual WBC Differential for Discussion Pattern #1 

Lymph Mono Neutro Eo Baso Blast
Immature 

Gran 
Immature 

Band 
Variant 
Lymph 

Plasma 
Cell 

51.25 3.0 9.5 0.75 0 0 0 0.25 35.25 0 
 

5.6.2. Pattern #2: Variant Lymphocyte Negative Sample Incorrectly Detected 

The following pattern is very difficult to detect correctly using the implemented 

approach.  This sample exhibits a very large lymphocyte percent, and a fairly abnormal 

pattern appearance, yet, according to the manual differential, it does not contain a 

medically-abnormal level of Variant Lymphocytes: 

 

Figure 5.3: Variant Lymph Negative Sample – Discussion Pattern #2 

The manual differential is shown for this donor as follows: 
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Table 5.5: Manual WBC Differential for Discussion Pattern #2 

Lymph Mono Neutro Eo Baso Blast
Immature 

Gran 
Immature 

Band 
Variant 
Lymph 

Plasma 
Cell 

91.75 1.0 4.75 0.75 0 0 0 0 1.75 0 
 

This pattern is abnormal in appearance, but the manual differential states that a very low 

level of variant lymphocytes exists (less than the critical 5% value determined by medical 

doctors); thus the correct classification would be to declare that this sample is negative 

for variant lymphocytes.  However, this sample is a False Positive for the current 

implementation.  On the other hand, the Coulter LH750 variant lymphocyte suspect flag 

gives the correct classification for this sample.   

5.6.3. Pattern #3: Variant Lymph Positive Sample Correctly Detected 

A difficult pattern to detect is the type of sample that is clinically positive for variant 

lymphocytes but for which the manual differential states that less than 10 percent of 

variant lymphocytes are present; thus these are samples with between 5 and 10 percent 

Variant Lymphocytes.  This problem was stated in several hematological publications as 

a major limitation of the Variant Lymphocyte detection algorithms on several 

commercially manufactured automated hematology analyzers [Aulesa el al 2003] [Aulesa 

et al 2004] [Hoffmann and Hoedemakers 2004].  This problem is usually attributed to an 

apparent lack of sensitivity that most Variant Lymphocyte detection methods seem to 

possess.  For this reason, the implemented approach made an effort to greatly improve the 

sensitivity of detection of samples in the 5-10% Variant Lymphocyte range, while at the 

same time, not increasing appreciably the level of False Positives.   
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This is clearly not an easy task.  An example of this type of Variant Lymphocyte pattern 

is shown below: 

 

Figure 5.4: Variant Lymph Positive Sample – Discussion Pattern #3 

The WBC manual differential report is given for this donor: 

Table 5.6: Manual WBC Differential for Discussion Pattern #3 

Lymph Mono Neutro Eo Baso Blast 
Immature 

Gran 
Immature 

Band 
Variant 
Lymph 

Plasma 
Cell 

60.0 4.5 26.5 2.5 0 0 0 0 6.5 0 
 

It should be noted that only 6.5% variant lymphocytes are present, and the pattern does 

not appear to be extremely abnormal, thus, from a pattern detection standpoint, this is an 

example of a pattern for which detection of variant lymphocytes can be challenging.  

Since the proposed method takes into consideration not only the Lymph and Mono 

percents, but also the shape and orientation statistics (due to use of the eigenvectors and 

eigenvalues) of each population; for this reason, the classifier was able to detect an 

abnormal shape signature (perhaps due to the overlap between the Lymph and Mono 

populations).  Thus, for this sample, the proposed method was able to detect this sample 
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as having an abnormal level of variant lymphocytes while the LH750 Variant Lymph 

detection approach was not.   

For the reasons posed in these examples, it is felt that the implementation of the Variant 

Lymphocyte detection using the 52-parameter eigensystem descriptor matrix offers a 

better accuracy, and superior sensitivity than the existing Variant Lymphocyte detection 

method used by the LH750 automated hematology analyzer.   

Since the object of this dissertation was to demonstrate that the 52-dimensional eigen-

system population feature descriptor matrix could provide improved Variant Lymphocyte 

classification performance, the performance of the implemented approach was compared 

against a well-known Variant Lymphocyte classification algorithm, which is provided as 

part of the Beckman Coulter LH750 Automated Hematology Analyzer product. 
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6. CONCLUSIONS 

The main intention of this dissertation was to present the proposed eigensystem-based 

cluster shape descriptors and show their applicability to a well-known pattern 

classification problem in clinical hematology which was also fully addressed from a 

medical application perspective and related mathematical framework.  

The multi-dimensional set of shape descriptor features developed was demonstrated, 

through the application of machine learning frameworks such as Artificial Neural 

Networks, to be capable of detecting a class of hematological patterns more effectively 

and accurately than existing features, attesting to the attractiveness of this novel 

approach. 

Chapter 1 of this dissertation gives an overview of recent applications of Artificial 

Intelligence to problem solving in several areas of biomedical research. A foundation for 

understanding the primary issues and goals in clinical hematology was provided in 

Chapter 2, which also set the stage for understanding the significance of current 

limitations and difficulties faced in the automated detection of clinical abnormalities in 

the hematology field.  This chapter was crucial for understanding the basics of the 

methods later developed in this dissertation. 

With a focus on detecting hematological patterns corresponding to blood samples 

containing medically-abnormal levels of Variant Lymphocytes, an in-depth review of the 

some of the various hematological pattern manifestations that are commonly encountered 

with respect to this disorder was given.  Also, a description of the commonly-used feature 

extraction methods for describing hematological samples containing variant lymphocytes 
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was presented in Chapter 3.  Some limitations of current features for the purposes of 

pattern classification were then expressed.  A novel set of feature descriptors was then 

proposed. 

In pursuing practical applications in the area of automated hematology analyses, Chapter 

4 described the design and implementation of a method aimed at detecting hematological 

patterns that exhibit medically-abnormal levels of Variant Lymphocytes. The data was 

provided by Beckman Coulter Corporation and involved 300 patients who had their blood 

analyzed by a LH750 automated hematology analyzer.  The approach implemented 

consisted of extracting a 52-dimensional feature space that is descriptive of the physical 

spread and orientation of each WBC population cluster in three-dimensional space as 

features to identify medically abnormal hematology patterns.  

It was found that the designed Perceptron ANN classifier created using the eigen-system 

statistical descriptors as inputs yielded 80.67% accuracy, 72.37% sensitivity, and 89.19% 

specificity on the data chosen for this research study.   Compared to the Beckman Coulter 

LH750 Variant Lymphocyte detection method, which produced 61.3% accuracy, 28.9% 

sensitivity, and 94.6% specificity, the classification performance of the proposed feature 

space and machine learning methods implemented in this dissertation represent a notable 

improvement.   

Within the experimentally-determined optimal range of 15 to 40 hidden units, increasing 

the number of hidden neurons did not improve the results.  This observation was made 

after a large number of training iterations, all stopped with cross-validation.  Possible 

explanations for this can be as follows: 1) starting points for the iterations are always 

different and 2) local minima are always possible.  Since the backpropagation algorithm 
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used in training the networks is always started from random solutions to avoid local 

minima, it is perfectly possible to achieve higher testing and even training errors if more 

hidden units are added.  To reach this conclusion, up to ten repetitions were done and 

averaged in each topology.  More repetitions could have been performed for each 

topology, however, with increasing data size and number of neurons, the time needed for 

the optimization increases so that the test becomes impractical.  

The algorithm developed here might be capable of making a substantial contribution to 

the diagnostic gain of detected hematological abnormalities using pattern-based 

frameworks. 

In Chapter 5, a discussion of the classification results introduced in Chapter 4 was made.  

Specific case files that were not detected correctly by the Beckman Coulter Variant 

Lymphocyte detection method employed on the LH750 hematology instrument were 

reviewed.  For many of these cases, the eigensystem-based feature classification 

framework proposed in this dissertation was able to detect many of these cases correctly, 

attesting to the contribution of this feature space as a basis for abnormal pattern detection.  

The method was based on establishing a descriptor matrix for a hematological data 

pattern which proved to be advantageous in terms of its detection abilities. The algorithm 

for computing the matrix is straightforward and involves statistical operations on features 

derived from population data point arrays.  The attractiveness of this feature matrix is that 

it is a shift-and-rotation-invariant representation that can be used to represent and 

compare hematological patterns with different shape, orientation, and appearance 

characteristics by using this single set of descriptors. 
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