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ABSTRACT OF THE DISSERTATION 
 

A NESTED PETRI NET FRAMEWORK FOR MODELING AND ANALYZING 
 

MULTI-AGENT SYSTEMS 
 

by 
 

Lily Chang 
 

Florida International University, 2011 
 

Miami, Florida 
 

Professor Xudong He, Major Professor 
 

In the past two decades, multi-agent systems (MAS) have emerged as a new paradigm 

for conceptualizing large and complex distributed software systems. A multi-agent 

system view provides a natural abstraction for both the structure and the behavior of 

modern-day software systems. Although there were many conceptual frameworks for 

using multi-agent systems, there was no well established and widely accepted method for 

modeling multi-agent systems. This dissertation research addressed the representation 

and analysis of multi-agent systems based on model-oriented formal methods. The 

objective was to provide a systematic approach for studying MAS at an early stage of 

system development to ensure the quality of design.  

Given that there was no well-defined formal model directly supporting agent-oriented 

modeling, this study was centered on three main topics: (1) adapting a well-known formal 

model, predicate transition nets (PrT nets), to support MAS modeling; (2) formulating a 

modeling methodology to ease the construction of formal MAS models; and (3) 

developing a technique to support machine analysis of formal MAS models using model 

checking technology. PrT nets were extended to include the notions of dynamic structure, 
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agent communication and coordination to support agent-oriented modeling. An aspect-

oriented technique was developed to address the modularity of agent models and 

compositionality of incremental analysis. A set of translation rules were defined to 

systematically translate formal MAS models to concrete models that can be verified 

through the model checker SPIN (Simple Promela Interpreter).  

This dissertation presents the framework developed for modeling and analyzing MAS, 

including a well-defined process model based on nested PrT nets, and a comprehensive 

methodology to guide the construction and analysis of formal MAS models.   
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CHAPTER 1 

INTRODUCTION 

 

This dissertation presents a framework for modeling and analyzing multi-agent 

systems based on model-oriented formal methods. This chapter gives an overview of the 

dissertation. Section 1.1 introduces the motivation of this dissertation research. Section 

1.2 identifies the research problems. Section 1.3 presents the approach to address the 

research problems. Section 1.4 summarizes the contributions of this dissertation. Section 

1.5 discusses the scope and limitations. Section 1.6 gives an outline of the dissertation. 

1.1 Motivation 

Multi-agent systems (MAS) [1] have been intensively studied in the distributed 

artificial intelligence (DAI) community to address distributed problem solving [2] that 

involves the collective efforts of multiple agents. There are two major motivations for 

distributed problem solving: (1) utilizing distributed resources concurrently in order to 

speed up a problem solving process; and (2) integrating problem solving capabilities that 

are geographically distributed when a centralized approach is not possible [2]. The 

research topics were primarily on distributed planning and coordination in which the 

concerns were on system-wide coherence and conflict controls over resources. In the past 

two decades, however, MAS has emerged as a paradigm in the software engineering 

community for structuring complex systems running in an open computing environment 

[3]. An important idea of using the MAS view for system design is to decompose a 

complex problem into a number of functionally specific modular components (agents) 

that are specialized at solving a particular problem aspect [4]. That is, the MAS 
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architecture offers the modularity to tackle a complex problem. The underlying concept 

of MAS is the use of agent as a key abstraction for system design. In the MAS context, 

agents represent heterogeneous computation entities that are geographically distributed 

and have the properties of autonomy, reactivity, pro-activeness and social ability [5, 6]. 

These properties differentiate an agent from an object in terms of conceptualization. That 

is, an agent performs the actions of its best interest as opposed to an object that performs 

the actions invoked by the others. It is obvious that the traditional design approach based 

on the object-oriented paradigm is inadequate for conceptualizing complex systems with 

the MAS architecture. 

Many research activities have been conducted to develop the languages, 

methodologies and tools for conceptualizing complex systems based on the MAS view 

[7]. Previous works in this regard were centered on agent-oriented software engineering 

(AOSE) [8], with a focus on the following research topics: (1) requirement engineering; 

(2) design, specification and verification techniques; (3) ontologies; (4) generic agent 

models and design patterns; (5) validation and testing techniques; and (6) tools for MAS 

development. The objective of AOSE is to establish a systematic approach for developing 

complex systems based on the MAS architecture. The AOSE approach has been applied 

to a diverse range of information technology (IT) sub-disciplines, such as information 

retrieval, control systems, e-commerce, mobile agent systems, workflow management 

and grid computing. In recent years, disaster management [9, 10, 11, 12] has also become 

an active application area due to its socially significant nature. Although the emergence 

of AOSE [8] is well recognized as a significant contribution for the conceptualization of 
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developing MAS, it is still in its infancy towards a mature engineering paradigm to be 

widely adopted by the software engineering community.  

Despite many studies in developing design methods based on MAS [7], few of them 

were in formal methods. In addition, there is no well established and widely accepted 

method for the representation of MAS. However, formal methods are an important means 

to study the critical aspects of the system and to reveal system flaws at an early stage of 

the development process [13]. It is well recognized that the design flaws or missing 

requirements found at a later stage are more expensive to fix. In response to the efforts in 

developing complex systems by applying the AOSE approach, this work aims at the 

representation and analysis of MAS based on model-oriented formal methods. A model-

oriented formal method describes a system’s behaviors by constructing a model in terms 

of mathematical structures [13]. Therefore, the model has a well-defined semantics, and 

is amenable for machine analysis. The objective of this study is to provide a systematic 

approach for constructing MAS specifications, which can be analyzed using existing 

model checking techniques [14, 15].  

1.2 Research Problems 

This dissertation research focuses on applying formal methods at an early stage of a 

system development process in an effort to ensure the dependability of complex systems. 

The idea is to formulate a systematic approach for modeling and analysis of complex 

systems with the MAS view based on model-oriented formal methods. Therefore, the 

research problems being explored include the modeling of MAS in formal specification 

languages, and the techniques for MAS analysis. Modeling is a process of building an 

abstraction for a system. Modeling a complex system based on the MAS view addresses 
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the complexity by decomposing the system into multiple agents that can be built and 

analyzed independently. In order to properly apply the MAS paradigm, the modeling 

language needs to support the representation of individual agent with essential 

characteristics [16], as well as the representation of the MAS architecture.  

Given that there is no well-defined formal model directly supports agent-oriented 

modeling, the idea is to find a suitable formal model and adapt it to support MAS 

modeling. In addition, the resulting models should be amenable for machine analysis by 

applying existing model checking techniques. Therefore, the research problems have 

been centered on three main topics:  

(1) Investigating a suitable formal model and extending the formal model to support 

MAS modeling; the extended formal model should be able to address the essential 

characteristics [5] of MAS, including: (i) individual agent modeling with essential 

properties, such as autonomy, reactivity, pro-activeness, and social ability; (ii) MAS 

architecture modeling with a compositional agent organization; and, (iii) coordination 

modeling with agent interactions.  

(2) Formulating a modeling methodology based on the extended formal model to ease the 

construction of MAS models; the methods should be easy to apply and produce 

adaptable and concise MAS models. 

(3) Developing a model analysis technique to support machine analysis of formal MAS 

models using model checking technology [14, 15]. 

1.3 Approach 

Among model-oriented formal methods, predicate transition nets (PrT nets) [17] are a 

powerful formal model for studying distributed and concurrent systems. PrT nets not only 
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are a visual specification language providing intuitive notations, but also very expressive 

in encapsulating meaningful and important data. More important, PrT nets have a precise 

operational semantics, which can be manipulated for machine analysis. Therefore, PrT 

nets are chosen as the underlying formalism in this study to address the representation of 

MAS. Despite the expressiveness, PrT nets have a flat net structure that provides only a 

single-level view of the system model. Thus, they are inadequate for modeling MAS 

architecture. Another drawback of PrT nets in terms of modeling MAS is that they do not 

have the element for modeling agent communications. Therefore, to address the research 

problem (1) identified in Section 1.2, PrT nets need to be extended to cope with agent-

oriented modeling. My approach to address the representation of MAS by extending the 

semantics of PrT nets is summarized as follows. 

(i) Incorporate the channel command in CSP (Communicating Sequential Process) [18] 

into the transition constraints of PrT nets for modeling agent communications. A 

channel command is used as an expression in a constraint formula indicating a 

unidirectional information flow, either an input message or an output message, 

between two agent nets. A channel expression is composed of a channel name, the 

direction of an information flow and a message token. 

(ii) Adapt the net-within-net paradigm [19, 20] and define a two-level nested PrT net to 

address the MAS architecture. A nested PrT net includes an upper level net 

modeling either a mediator agent net or a system net, and multiple lower level nets 

modeling heterogeneous agents. The coupling of the upper level net and a lower 

level net is through a pair of transitions with channel expressions. The channel name 
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specified in a channel expression is used to define the vertical communication 

between the upper level net and a lower level net. 

(iii) Introduce an agent model incorporating aspect-oriented concepts [21] to address the 

modularity of the internal structure of an agent net. The idea is to define agent 

features as aspects [22].  An aspect is a modular net that can be woven into the agent 

net based on requirements. The aspect specification and aspect weaving are formally 

defined. 

To address the research problem (2) identified in Section 1.2, a modeling 

methodology is developed to systematically transform a MAS conceptual model into a 

nested PrT net. Given that the model checker SPIN (Simple PROMELA Interpreter) [23] 

is a well developed tool for model checking distributed systems with asynchronous 

process interactions, SPIN is chosen as the analysis tool for MAS model analysis. The 

idea is to transform a nested PrT net describing a multi-agent system into a PROMELA 

program for verification. As a consequence, a full line of functionalities in the model 

checker SPIN can be utilized to analyze the PrT net model. A model transformation 

technique is developed to tackle the research problem (3). The translation rules for model 

transformation from a nested PrT net to a PROMELA program are explicitly defined.  

The overall framework can be depicted in Figure 1. Given a conceptual model 

identifying the agent roles within a multi-agent system, a nested PrT net model based on 

a two-layered MAS architecture can be built, and transformed into a PROMELA program 

in SPIN. The framework supports MAS modeling in a model construction process with 

three different stages in which each stage produces a transformational model that leads to 

a model of the next stage. First, the MAS model construction process starts with a 
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conceptual model resulting from requirement elicitation activities. Next, the conceptual 

model can be transformed into a nested PrT net model describing the MAS. Finally, the 

nested PrT net model is transformed into a concrete model in PROMELA. A 

methodology is developed to systematically transform the model at one stage to the other 

model at the next stage, including an agent-oriented modeling method, an aspect-oriented 

modeling method, an agent coordination modeling method, and a model transformation 

method.  

 

Figure 1. The overall framework. 
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1.4 Contributions 

The framework presented in this dissertation provides a comprehensive methodology 

for modeling and analyzing complex systems based on the MAS view. The major 

contributions are summarized as follows. 

(1) Developed a well-defined process model for the representation of multi-agent systems. 

 Support agent-oriented modeling in which the system model is a modular 

composition of multiple nets instead of a single net; that is, this dissertation 

achieves the modularity of PrT nets, which is an important means to address 

complexity.  

 Support the MAS view in which the system model has a two-level nested net 

structure following the two-layered MAS architecture. The upper level net models 

the coordination among agents, while the lower level net models heterogeneous 

agents. A nested net structure has two advantages: (i) a more compact and 

manageable net model by separating the global and local view, and (ii) can 

naturally model agent autonomy and mobility by treating agent nets as tokens at 

the upper level net.  

 Support the modeling of dynamic agent communications by incorporating the 

channel commands in CSP (Communicating Sequential Processes) [18] into the 

transition constraints in PrT nets. As a consequence, agent nets can be 

individually modeled and loosely coupled through communication channels. The 

new feature naturally models the reactivity and pro-activeness of agents, and 

supports the modeling of agent interactions. 
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(2) Developed a methodology for constructing multi-agent net models. 

 Provide an aspect-oriented technique for constructing individual agent nets with 

different features. As a result, common behaviors of agents can be modularized 

into features and woven as required. Aspect-oriented PrT nets have the following 

advantages: (i) enhancing the adaptability of behavior models in future 

modifications, extensions and reconfiguration of agent models; (ii) promoting the 

reusability of aspects; (iii) improving the conciseness of agent nets; and (iv) 

facilitating the compositionality of agent models for incremental verification. 

 Provide a technique for agent coordination modeling to ease the construction of 

MAS models. 

(3) Developed a model transformation technique for model checking multi-agent models.  

 Provide a technique that systematically transforms a nested PrT net to a 

PROMELA program in SPIN for automatic model analysis. As a result, a full line 

of functionalities in SPIN can be utilized for model analysis. 

Table 1 shows a comparison of this work to the most relevant works using high-level 

Petri nets to model agent-based systems. First column summarizes the contributions of 

this dissertation research. Most of the works listed in the table did not provide a 

comprehensive approach for MAS modeling and analysis, and only addressed a certain 

aspect of agent-oriented modeling. My work provides a comprehensive approach from 

MAS modeling to analysis, and covers essential agent properties within the MAS context. 
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Table 1. A comparison of this dissertation and other Petri-net-based works. 

Contributions 
This 

dissertation 

Colored Petri 
nets 

Ref. [24, 25, 
26]  

Cabac, 
Kohler 

PrT nets 
Ref. [27 ] 

D. Xu 

PrT nets 
Ref. [28] 

Ding 

G-nets 
Ref. [29] 

H. Xu 

Colored 
Petri nets 
Ref. [30 ] 

Lian 

Dynamic structure   
(nets-within-nets) 

    
  

Agent 
Communication  

(1) channel 
commands in 
transition 
constraints  
(2) formal 
semantics  

(1) based on 
OO; (2)   
transitions 
(channels) are 
method calls  

through 
transitions ( 
called 
connectors) 

through 
transitions 
(no formal 
semantics)  

message 
passing 
through  
special 
places  

 

Coordination 
modeling 

Coordinators   
    

Potential  
arcs  

Aspect-oriented agent 
models 

 
     

Tool support for 
analysis 

SPIN 
(model 
checking tool)  

RENEW 
(simulation 
tool)  

   

CPN 
(simulatio
n tool)  

within MAS context   
mobile 
agents 

mobile 
agents 

  

 
 
1.5 Scope and Limitations 

This dissertation research is focused on investigating model-oriented formal methods 

[13] for modeling and analyzing software systems based on the MAS design paradigm. 

The formal model used is PrT nets, and the analyzing tool is the model checker SPIN. 

The modeling methodology in this dissertation research is based on the agent concept 

defined in AOSE [8, 31], and is targeted at constructing models for large and complex 

systems relying on the MAS architecture. The scope is depicted in Figure 2. 



11 

Requirement Elicitation

Software Specificaton VerificationImplementation

Formal Specification Informal Specification

Model-oriented Property-oriented Model checking Theorem proving 

Multi-agent Systems Research

Modeling 
Methodology

Specification Tool

Distributed Artificial IntelligenceAgent-oriented Software Engineering

Distributed 
Problem Solving

Coordination 
mechanism

(a)

(b)

 

Figure 2. (a) The problem domain; (b) the solution domain. 

Since the objective of this dissertation research is to provide a means for modeling 

and verifying MAS at the system design stage, the principle is to avoid unnecessary 

redundancies, and build a model without irrelevant details for machine analysis. 

Therefore, this dissertation research is developed based on the following assumptions.   

(1) The MAS model is focused on the interdependencies between agent nets, rather on the 

computations.  

(2) The research is aimed at the construction of abstract models based on the MAS 

paradigm using model-oriented formal methods. The detail of how to implement the 

search algorithm for solving a problem efficiently using an agent program [32] is 

outside of the scope of this dissertation research.    
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(3) The nested PrT nets defined in this study is limited to a two-level nested net structure, 

which is adequate for modeling complex systems with the MAS architecture. 

(4) Agent communications are in a one-to-one and unidirectional fashion.  

(5) There are limitations for model checking nested PrT nets: (i) Due to tractability, the 

expressive power of PrT nets is restricted by limiting the sorts and the quantity of 

tokens in each place. As a result, the nested net to be analyzed have a finite state space 

such that the model execution in the model checker SPIN will terminate appropriately. 

(ii) For simplicity, all transitions fire immediately after the guard conditions are 

evaluated to be true, and the firings are interleaving given that this restricted semantics 

does not affect the verification of state-based properties. (iii) The properties can be 

checked are restricted within the scope of the model checker SPIN with XSpin version 

5.2.3. 

1.6 Outline of the Dissertation 

The rest of the dissertation is organized as follows.  

Chapter 2 reviews the theoretical background of this dissertation, including multi-

agent systems, Petri nets, predicate transition nets and the model checker SPIN. The 

contributions that are most related to this dissertation research are also discussed.  

Chapter 3 presents a nested PrT net framework that provides the theoretical 

foundation of this dissertation research, including the underlying formalism, and the 

overall approach to tackle the research problems.  

Chapter 4 introduces a modeling methodology to guide the construction of agent 

models and the mediator agent model that coordinates agents. An aspect orientation 
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technique is also presented in this chapter to address the modularity of agent models and 

compositionality of incremental analysis.       

Chapter 5 discusses the verification of formal MAS models. A model transformation 

technique is developed for model checking nested PrT nets. This chapter introduces the 

methodology to systematically transform the conceptual model of multi-agent systems to 

a concrete model that can be automatically verified using the model checker SPIN.  

Chapter 6 demonstrates three case studies in different application domains, including 

wireless sensor network with mobile devices, e-market and disaster mitigation. 

Chapter 7 concludes this dissertation research.   
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CHAPTER 2 

BACKGROUND AND RELATED WORKS 

 

This dissertation research is concerned with the representation and analysis of multi-

agent systems based on high-level Petri nets (Figure 2(a) and (b)). This chapter is 

organized as follows. Section 2.1 discusses the research in multi-agent systems. Section 

2.2 introduces Petri nets and gives a formal definition of predicate transition nets. Section 

2.3 presents the characteristics of the model checker SPIN. Section 2.4 discusses the 

related works. 

2.1 Multi-Agent Systems 

Multi-agent systems [1, 4] (MAS), stem from the Distributed Artificial Intelligence 

(DAI) community [2], is the study of distributed problem solving for large and complex 

systems. Since MAS offer the modularity for structuring complex systems, it has 

emerged as a new paradigm in the software engineering community for conceptualizing, 

designing and implementing dynamic software systems. The idea of using MAS for 

conceptualizing a complex system is to decompose the problem space into a number of 

functionally specific components (agents) that can be tailored to solve a particular 

problem. As a result, several dimensions of performance can be enhanced, such as 

computational efficiency, reliability, extensibility, maintainability, flexibility and 

reusability [33]. The research in system design based on the MAS paradigm is concerned 

with the construction of a collection of possibly preexisting autonomous agents that 

interact with each other and their environments. Therefore, MAS can be defined as a 

loosely coupled network of autonomous agents that cooperate to solve a problem, and is 
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characterized as follows: (1) each agent has incomplete information or capabilities for 

solving the problem; (2) there is no global control; (3) data are decentralized; and (4) the 

computation is asynchronous. The motivations for the increasing interest in structuring a 

complex system with the MAS architecture include: (1) increasing the efficiency, 

reliability and robustness of the system due to a large and complex problem space; since 

a centralized approach produces bottlenecks that lead to a system failure [4]; (2) 

interconnecting preexisting components that were designed by different organizations; 

and (3) retrieving and synthesizing spatially distributed information resources [4].  

There are several application areas [1] found to be suitable for the study of MAS: (1) 

Workflow and business process management. A workflow is an automated process that 

coordinates services from heterogeneous organizations over the Internet. Each step in a 

workflow corresponds to a decision that must be made by some computational process 

based on the states of the environment. An agent is usually used to model a provider, a 

requestor, a service, or an executor in a workflow process. (2) Distributed sensing 

systems. In a distributed sensing system, spatially distributed sensors are deployed to 

monitor environmental conditions, such as temperature or traffic. Typically, sensor nodes 

are scattered in a region to collect data cooperatively. Some sensor systems incorporated 

mobile devices into the system to gather sensor data effectively [34] by utilizing the 

storage and computation power of mobile devices. Mobile devices and sensor nodes are 

typically modeled as agents that cooperate for gathering and sharing data. (3) Information 

retrieval and management. In light of a distributed computation environment, 

information resources are usually spread over the internet. An information agent is 

designed to act on behalf of a user to manipulate the information obtained from various 
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sources, and providing the user a unified way to access the data obtained. (4) Electronic 

commerce. The application domain is concerned with the business automation over 

electronic systems such as the Internet. For instance, buyer agents and seller agents 

auction for goods through an e-market on behalf of the users. (5) Industrial system 

management and control systems. Supply chain management and production 

management are typical industrial systems for the study of MAS. These systems involve 

the process control between agents that belong to different organizations. Control systems, 

such as air traffic management, involve the resource control among autonomous agents 

through some negotiation mechanisms to avoid conflicts.  

In light of the growing interest in MAS, agent-oriented software engineering [8] has 

emerged as a new approach for engineering complex software systems. The main idea is 

to use the agent as a key abstraction for conceptualizing complex systems based on the 

MAS architecture. In [8] and [4], an agent is defined as an encapsulated computer system 

that is situated in some environment and capable of flexible, autonomous actions in that 

environment in order to meet its design objectives. By flexible and autonomous, agents 

can take the initiative actions, retrieve current environment information, react based on 

the information, and achieve their design goals. In [35], an agent was defined as a 

component of software, which acts on behalf of its user to accomplish tasks. Software 

agents were classified by their functionalities or exhibited behaviors into seven types: 

collaborative agents, interface agents, mobile agents, information agents, reactive agents, 

hybrid agents and smart agents. In summary, the essential properties of an agent are 

autonomy, reactivity, pro-activeness and social ability. By autonomy, agents have their 

own computation logic and various degree of intelligence to perform actions without the 
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direct intervention of humans; by reactivity, agents are able to perceive situated 

environment and respond in a timely fashion; by pro-activeness, agents are able to take 

the initiative to perform goal-directed tasks; by social ability, agents are capable of 

interacting with others within an agent society. Agent interactions include (i) 

communications, in which agents exchange messages; (ii) cooperation, in which agents 

work together towards a common goal; and (iii) coordination, in which agents are 

coordinated to avoid conflicts when sharing resources. The objective of AOSE is to 

formulate a systematic approach to effectively develop software systems based on the 

MAS architecture. The research area includes: (1) requirement engineering; (2) design, 

specification and verification techniques; (3) ontologies for agent models; (4) generic 

agent models and design patterns; (5) validation and testing techniques; and (6) modeling 

and simulation tools for MAS development.  

Although many research activities have been conducted to develop languages, 

methodologies and tools based on AOSE, the methodologies [7] developed so far did not 

cover enough details of how to represent the system and an agent. There is still lack of a 

well established and widely accepted method for representation of MAS. Moreover, there 

are several essential issues on applying the MAS paradigm [36] for complex system 

design. First, how to specify an agent with the reasoning capability for external 

information and with the coordinating capability in a simultaneously participating event 

is a challenge issue. Second, agent communications involve high level knowledge 

exchange, which is usually domain specific and context-based. For example, what are the 

communication languages and protocols, and how can heterogeneous agents 

communicate and interoperate. Third, agents are heterogeneous and autonomous, how to 
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ensure that agents act coherently in making decisions and how to ensure the overall 

system consistency are also challenging issues.  

2.2 Predicate Transition Nets  

Petri nets are a model-oriented modeling language and were first developed by Carl 

Adam Petri in 1962. Petri nets are a graphical and mathematical modeling tool that is 

excellent in describing the controls of dynamic systems. A Petri net can be formally 

defined as follows [37].   

A Petri net is a 5-tuple (P, T, F, W, M0) where: 

• P is a finite set of places. 

• T is a finite set of transitions. 

• F ⊆ (P×T) ∪ (T×P) is a set of arcs (flow relations). 

• W: F → {1, 2, 3, … } is a weight function. 

• M0: P → {0, 1, 2, 3, …. } is the initial marking. 

• 𝑃 ∩ 𝑇 = ∅ and 𝑃 ∪ 𝑇 ≠ ∅ 

The change of markings denoting the dynamic behaviors of the net is according to the 

following transition rules: 

• A transition t is said to be enabled if each input place p of t has at least w(p, t) 

tokens, where w(p, t) is the weight of the arc from p to t. 

• An enabled transition may fire. 

• A firing of an enabled transition t remove w(p, t) tokens from each input place p 

of t, and add w(t, p) tokens to each output place p of t, where w(t, p) is the weight 

of the arc from t to p. 
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Despite their use in a wide variety of applications [37], Petri nets are limited to 

specifying rather small systems or certain aspects of a system since the net structure can 

become very large and complex when specifying a large system. The tangling net 

structure results in poor readability and flexibility. As a consequence, many extended 

versions, including hierarchical Petri nets, timed Petri nets and stochastic Petri nets, were 

proposed to enhance the comprehensibility of Petri nets. These extensions are called 

high-level nets. Identical net structures in a low-level Petri net are simply replaced by a 

single transition or a place in a high-level net. Thus, the structural complexity in low-

level nets can be greatly reduced. Moreover, tokens in a high level net can be individually 

defined and differentiated; they are amenable to encapsulate important information and 

meaningful data.  

This dissertation research adopted predicate transition nets [17] (PrT nets) as the 

underlying formalism. PrT nets are high-level nets and defined to be manipulated in a 

mathematical way to working with logical formulas or algebraic expressions. The net 

structure of a PrT net can be conceived as a set of components that is structured by 

functions and relations. Since both data and controls can be addressed, PrT nets are more 

concise and expressive for modeling concurrent systems. A PrT net is formally defined as 

follows.   

Definition 2.2.1  A PrT net is a tuple (N, Spec, ins), where: 

(1) N = (P, T, F) is a net structure. P and T are finite sets of places and transitions of N, 

where 𝑃 ∩ 𝑇 = ∅, 𝑃 ∪ 𝑇 ≠ ∅;  𝑎𝑛𝑑 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃)  is a set of arcs, which 

define the flow relations; 
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(2) Spec is an algebraic specification, which includes sorts, operators, and equations. 

Terms defined in Spec include tokens in P, labels on F and constraints associated 

with T; and 

(3)  𝑖𝑛𝑠 = (𝜑, 𝐿, 𝑅,𝑀) is an inscription that maps net elements to their denotations in the 

algebraic specification Spec where: 

• 𝜑: 𝑃 → ℘(𝑆𝑂𝑅𝑇), is the token type definitions of N;  

• L: 𝐹 → 𝐿𝑎𝑏𝑒𝑙𝑠𝑜𝑟𝑡(𝑋), is a sort-respecting mapping from F to the set of labels 

𝐿𝑎𝑏𝑒𝑙𝑆𝑂𝑅𝑇(𝑋) where X is the set of sorted variables;  

• R is a mapping from T to the set of constraints, which are a set of first order logic 

formulas defined in Spec, and R associates each transition t in T with a first-order 

logic formula that defines the meanings of transition t;  

• M0 is the sort-respecting initial marking that assigns a multi-set of tokens to each 

place p in P.  

The dynamic semantics of a PrT net can be defined as follows: 

(1) A marking of a PrT net is a mapping from P to sorts defined in Spec; 

(2) An occurrence mode of N is a substitution 𝛼 = { 𝑥1 ← 𝑐1, … , 𝑥𝑛 ← 𝑐𝑛 }, which 

instantiates typed label variables. e: α is used to denote the result of instantiating an 

expression e with α, in which e can be either a label expression or a constraint; 

(3) Given a marking M, a transition 𝑡 ∈ 𝑇, and an occurrence mode α, t is α_enabled at M 

iff the following predicate is true: ∀p: p ∈ P.( L (p,t):α ⊆ M(p)) ∧ R(t):α, where 

{ ( , ) ( , )
( , )

L x y if x y F
L x y

otherwise
∈

=
∅     
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(4) If t is α_enabled at M, t may fire in occurrence mode α.  The firing of t with α  

returns the marking M defined by M’(p) = M(p) − L  (p,t):α  ∪ L (t,p):α  for p ∈ P.  

M[t/α>M’ is used to denote the firing of t with occurrence α under marking M. As in 

traditional Petri nets, two enabled transitions may fire at the same time as long as they 

are not in conflict; 

(5) For a marking M, the set [M> of markings reachable from M is the smallest set of 

markings such that M ∈ [M> and if M’∈ [M> and M’[t/α>M’’ then M’’∈ [M>, for 

some t∈T and occurrence mode α (note: concurrent transition firings do not produce 

additional new reachable markings); 

(6) An execution sequence M0T0M1T1… of N is either finite when the last marking is 

terminal (no more enabled transition in the last marking) or infinite, in which each Ti 

is an execution step consisting of a set of non-conflict firing transitions; 

(7) The behavior of N is the set of all execution sequences starting from the initial 

marking. 

2.3 The Model Checker SPIN  

In general, a complex software system cannot be efficiently verified. However, a 

finite-state abstract model of a complex software system can be efficiently verified using 

model checking technology [14, 15, 23]. Model checking involves the technique that 

exhaustively checks the correctness of a simplified model that preserves the essential 

characteristics of the system being investigated. SPIN (Simple PROMELA Interpreter) 

[23] is a generic model checking system that can be used to thoroughly check the high-

level model of a concurrent system. It was developed at Bell Labs and is one of the most 
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widely used logic model checkers in the world [23]. SPIN verification models aim at 

providing the correctness of process interactions, which can be specified with rendezvous 

primitives, with asynchronous message passing through buffered channels, and through 

access to shared variables [23, 38]. That is, SPIN focuses on checking the correctness of 

the asynchronous control in software systems, rather than synchronous control in 

hardware systems.  

The modeling language used in SPIN is called PROMELA (a Process Meta Language) 

[23]. A PROMELA model consists of one or more user-defined process templates and at 

least one process instantiation. The templates define the behavior of different types of 

processes. Each process is translated by the semantics engine of SPIN into a finite 

automaton. The behavior of a concurrent system is an asynchronous interleaving product 

of automata. A correctness claim is specified in a LTL (Linear Temporal Logic)  formula 

[39], which is converted by the semantics engine into a Buchi automation [38]. Given a 

concurrent system specified in PROMELA, and a correctness claim specified in a LTL 

formula, the verification process in SPIN either proves that the claim is impossible or 

provides detailed examples of behaviors that match.  

In summary, the model checker SPIN has the following features and functionalities: 

(1) It is focused on the efficient verification of concurrent and asynchronous software 

systems. 

(2) It accepts correctness claims specified in LTL. 

(3) It includes an XSpin graphical interface at the front-end for constructing PROMELA 

models, a random/guided simulator for interactive simulation, and a verifier 
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generator that generates an optimized on-the-fly verification program from a 

PROMELA model.  

The above characteristics make SPIN a suitable verification tool for the study of MAS 

where intensive agent interactions are involved.  

2.4 Related Works  

The main idea of designing complex systems in a MAS view is to use the agent as the 

key abstraction for structuring the system [8]. Therefore, MAS have several essential 

characteristics: (1) multiple agents are engaged; (2) each agent has its own computation 

logic and controls; (3) agent communications are dynamic and context-based; and (4) the 

emergent behaviors of agent interactions occur at runtime. As such, the major concern of 

MAS design is how to handle the complexity due to the heterogeneity and dynamics of 

multiple agents. There exists a significant amount of research that aimed at supporting 

MAS design in various aspects [7]. In this section, we review some efforts in designing 

methodologies, specification languages and coordination mechanisms for MAS design, 

respectively.  More specifically, some of the Petri-net-based works that are most related 

to this study are also discussed.   

2.4.1 General Agent-Oriented Design Methodologies 

While the object-oriented paradigm has gained popularity among developers, many 

agent-oriented design methodologies were extended from the object-oriented paradigm 

[7]. The works in this category attempt to provide conceptual guidelines and steps for 

MAS development at the design stage by infusing the object-oriented paradigm with the 

agent concept. However, these approaches were very different from each other in 

modeling agent-based systems with respect to the state-of-the-art MAS theories. As yet, 
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only a few of them have been applied to solve real-world problems. For example, at the 

Australian Artificial Intelligent Institute (AAII), an agent-based methodology has been 

proposed based on the widely accepted BDI (Belief-Desire-Intention) agent architecture 

[40]. Their model includes an internal model describing an agent’s beliefs, desires and 

intentions, an external model describing the hierarchical relation of agent classes, and an 

interaction model describing the control structure among agents. The methodology is 

based on the object-oriented paradigm with an enhancement on agent concepts. It has 

been applied in several real world applications related to air traffic controls.  

Tropos [41] is an agent-oriented software development methodology, which employs 

actors and goals as fundamental modeling concepts to all stages of a system development 

process. Tropos methodology supports MAS design from requirement analysis to 

implementation based on UML notations. The modeling activities proposed include actor 

modeling, dependency modeling, goal modeling, plan modeling and capability model. 

Tropos has a rather restricted view in terms of agent architecture, and is weak in semantic 

models.  

Gaia methodology [42] is a general methodology supporting MAS design in agent 

structure and agent organization. It allows developers to design an agent system from 

abstract models to increasingly detailed models, i.e., from abstract entities to concrete 

entities that can be directly implemented. Abstract entities and concrete entities are used 

in the requirement analysis stage and design stage, respectively. However, the Gaia 

methodology does not support the concept of agent autonomy.  

Other agent-based design methodologies [7], including MESSAGE, AALAADIN and 

MASE, provide only conceptual models without concrete models.       
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2.4.2 Coordination Models 

Distributed controls and resources are essential characteristics of MAS. Thus, a 

coordination mechanism ensures overall system consistency. While many agent-oriented 

modeling methodologies have been proposed [7], few of them dealt with coordination 

modeling using formal methods. In [43], a constructing method for a skeleton of an agent 

model was studied. The externally visible events related to the coordination of an agent 

were first identified; and then, based on the events, the skeleton of an agent was defined 

using finite state automata. This approach started from building a Dooley graph based on 

the conversations among agents. The histories of the conversations among agents were 

then analyzed to induce an agent skeleton. The resulting meta-model represented by a 

finite state automata was used to validate specified coordination requirements, which 

were represented by temporal relations. In [44], a coordination problem was defined as a 

process by which an agent reasons about its local actions and the anticipated actions of 

other agents in order to act coherently. A distributed goal-search formalism was 

developed to reason about an agent’s commitments and conventions, where commitments 

are pledges to undertaking some activities, and conventions serve to monitor the 

commitments. Linda model [45] is a well known coordination mechanism that addresses 

the coordination within an agent society. In the Linda model, the coordination process is 

a separated activity from computation activities. The coordination model serves as the 

glue that binds computational activities in which the communication is through a tuple 

space. As a result, agents are loosely coupled and communicate through a virtual space 

and do not need to know any detail about other agents. Law Governed Interaction (LGI) 

[46] is a message-exchange mechanism based on the Linda model. It allows an open 
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group of distributed agents to engage in the interactions that are regulated by an explicitly 

specified policy. The policy is called the interaction law of the group. The controls are 

decentralized. Each agent has a private controller that realizes interaction laws. The 

Contract net protocol [47] is a high level communication protocol that was developed to 

facilitate distributed controls in task sharing [2]. The protocol provides a specification for 

contracting tasks during a problem solving process of a distributed sensing system.   

2.4.3 Aspect-Oriented Modeling 

The key idea of the aspect-oriented concept [21] is the separation of cross-cutting 

concerns in which non-functional properties are modularized into aspects. This section 

introduces two major works in aspect-oriented modeling within the MAS context. 

In [48], a concept of model roles was proposed to model aspects in MAS. This is a 

UML-based modeling technique, which defines subtypes of agency meta-classes 

describing the MAS architectural diagram elements. A directory facilitator aspectual 

model was studied and mapped to AspectJ [22] codes. 

In [49], a meta-modeling framework was proposed to enrich agent-oriented models 

with aspects. The framework was composed of three models: the Agent Model, the 

Aspect Model and the Composition Model. The Agent Model comprised a set of 

fundamental agent-oriented design elements. The Aspect Model subsumed concepts, 

relationships and properties for aspect-oriented modeling. The Composition Model 

provided semantic description of the crosscutting composition mechanism.  

2.4.4 Specific Agent Modeling Languages  

Specifications are the products of requirement analysis activities in which intangible 

requirements are transformed into tangible specifications that serve as an important 
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means for communications among stakeholders. Formal specifications [13] are especially 

useful to reveal ambiguity and incompleteness of system design at an early stage of a 

system development process. There has been much research focused on specification 

techniques for specifying and modeling MAS in informal (in absent of precise semantic 

definitions) and formal specification languages (with precise mathematical-based 

notations). Some of the works are discussed in the following sections.  

a. UML-Based Modeling Languages 

 Since the Unified Modeling Language (UML) is a widely accepted modeling tool in 

the main stream software engineering community, many research works extend UML 

notations with the agent concept for modeling agent-based systems. Agent UML (AUML) 

[50] exploited the stereotypes, tagged values and constraints in UML to support the 

modeling of agent-based systems. The sequence diagram and class diagram in UML were 

extended to model agent interactions and the agent hierarchy. AUML was applied in later 

works [51, 52] to specify agent interactions in MAS. In [53], AUML diagrams for agent 

interaction protocols were translated into Petri nets and integrated into a tool called 

RENEW. Thus, the formal semantics of AUML was defined through Petri nets. 

Generally speaking, most of the works based on AUML focused on specifying FIPA 

(Foundation of Intelligent Physical Agents) interaction protocols [54]. Thus, AUML was 

limited to describing the message passing relations among agents, and has no precise 

semantic definitions for its modeling elements.  

The most recent extension based on UML to support the modeling of agent-based 

systems is the Agent Modeling Language (AML) [55] and the Multi-Agent System 

Modeling Language (MAS-ML) [56]. In AML, the authors intended to introduce an agent 
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modeling language for specifying, modeling and documenting agent-based systems by 

integrating MAS theories with UML version 2.0. Although AML provides a more 

comprehensive approach than AUML, it also introduced complexity into the AML 

specifications.  

MAS-ML was developed based on the Taming Agents and Objects (TAO) conceptual 

frameworks [57]. MAS-ML extended UML class diagram and sequence diagram to 

describe the structural and dynamic aspects, respectively, based on the TAO meta-model. 

New meta-classes and stereotypes were created and associated with the extensions of 

UML meta-model [56]. Although MAS-ML provides a solid conceptual model from the 

TAO meta-model, it does not cover all elements defined in the TAO meta-model. Thus, 

the notations of MAS-ML elements are difficult to construct and apply for MAS 

specifications.   

In summary, these extended UML-based modeling languages did not provide precise 

semantics, thus did not support formal analysis.   

b.  Temporal Logic and the Z Notation 

Temporal logic is a property-oriented modeling language [13] and is very popular in 

specifying the system properties of distributed systems. A property-oriented specification 

language defines system behaviors indirectly by a set of properties. Temporal logic is 

well suited to specify reactive systems and has been adopted in [16, 58] to specify agents. 

Although it is very successful in specifying the properties of reactive agents based on the 

BDI (Belief-Desire-Intention) agent architecture [59, 60], its property-oriented nature 

provides no state transition relations. Thus, not only it is difficult to map a temporal logic 

specification to an implementation, but it is also difficult to specify agent interactions.  
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Z notation (Z) is a formal specification language for specifying the functionality of 

sequential systems based on typed set theory and first order logic. It offers a rich type 

definition facility and supports formal reasoning [61]. In [62, 63], Z was used to define 

MAS in a four-tier hierarchy, namely entity and environment, objects, agents and 

autonomous agents. An agent specification is defined by agent goals, agent perceptions, 

agent actions, agent states and agent operations. Although Z provides rich type 

definitions, it does not provide explicit operational semantics and effective definitions of 

the concurrency [61]. Thus, it is insufficient to specify the concurrent and interacting 

behaviors in agent-based systems. Furthermore, there was no discussion about agent 

architecture and specifying rational behaviors in [62, 63]. 

2.4.5 Petri Nets    

Since Petri nets are an excellent concurrent model for studying distributed systems, 

they have been used in many research works to specify agent-based system. However, 

most of the works focused on specifying the global control structure and mobility of 

agents, while agent autonomy and its social behaviors were not covered. In summary, 

each of the previous research works based on Petri nets explored different aspects in 

modeling agent-based systems; such as, agent mobility and construction of agent plans. 

There is still a lack of systematic approaches for modeling and verifying MAS. These 

works are discussed based on their approaches and contributions.     

a. Nets-within-Nets 

Nets-within-nets paradigm addresses the dynamic structure of an agent system. 

Therefore, several works [25, 27, 28, 64] adopted the concept of nets as token objects [19] 

to model agent systems with a layered structure. In [25, 64], colored Petri nets were 
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extended by incorporating the object-oriented concept with the nets-within-nets paradigm 

to address the modeling of agent mobility. Synchronous communications between nets at 

different layers were modeled through a fusion of two enabled transitions, where the 

information exchange was bi-directional. In [27], a layered PrT net structure was used to 

specify agent systems with mobile agents. The information flows between an agent net 

and the system net at different layers were through internal connectors, which have to be 

constantly updated according to the changing number of agents to maintain consistency 

within the system net. In [28], a layered PrT net structure was also adopted. However, the 

information flows between layers were not explicitly defined. Instead, the focus was on 

modeling the behavior of a mobile agent system, which was constructed based on the 

MASIF (Mobile Agent System Interoperability Facilities) defined by the OMG (Object 

Management Group). These works [25, 27, 28, 64] addressed the mobility and structural 

adaptability of agent models by representing agents as net tokens in the system net. As a 

result, the movement of net tokens models the change of locations (mobility) of mobile 

agents.  

b. Modeling Agent Communication 

In [29], an agent-based G-net model derived from the object-oriented G-net was 

applied at the design level of a software development process. An agent-oriented G-net 

model, which incorporated the BDI agent architecture, was proposed to address the 

message passing among agents. The focus was on dealing with the incoming and 

outgoing messages processing in modeling agent communications without agent 

cooperation and coordination. In [27, 28], agent communications were specified in 

transitions; however, there was no formal semantics defined. In [25], synchronous 
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communications between nets at different layers were modeled through a fusion of two 

enabled transitions, where the information exchange was bi-directional.   

c. Modeling Coordination 

Resource sharing is the most common interdependency among agents in MAS. Thus, 

conflicts may occur when limited resources are demanded by multiple agents. In [30, 65], 

a component-based modeling approach was developed based on Colored Petri nets by the 

invention of potential arcs that are introduced to resolve conflicts for resources among 

agents. Potential arcs modeled the resources incoming from or outgoing to the external 

environment, and were added as additional constraints for enabling transitions. The 

potential arcs were later transformed into coordinators, which include all possible 

alternate paths coordinating shared resources. The focus of this approach was on 

constructing a conflict-free global plan for MAS at design level. In [28], the 

interoperability was achieved through the modeling of a finder, which served as the 

yellow page in a mobile agent system. However, there was no detail about modeling 

agent cooperation. Another work on agent coordination modeling was the moderator 

coordination model proposed in [66]. This work focused on agent interaction protocols 

and the ontology of agent conversations. The moderator was separated from agent models 

for handling the conversations among agents in an organizational view. The protocols 

were isolated from agent models and considered as the resources and predefined 

processes that agents have to follow. A moderator encapsulating a well-identified process 

was generated for each conversation between agents; and, a conversation server was 

defined to keep the information of all active conversations. The moderators were used as 

the coordination model to grant roles to agents and control their ongoing conversations. 
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The behavior model was specified using a formalism based on Petri nets, which were 

extended with object-oriented features called CoOperative Objects.    

d. Modeling Methodology within the MAS context 

The works in [29, 30], which are discussed in the previous section, provided the 

modeling methodology based on high-level Petri nets within the MAS context. However, 

a recent work [67] used low-level net as the modeling tool for modeling and analysis of 

multi-agent systems. In this work, low-level Petri nets were used to model an intelligent 

agent abstract architecture. The authors focused on developing an analytical methodology 

to analyze the structural properties of a multi-agent system. In [68], PrT nets were used to 

model a multi-agent blocks problems. The authors demonstrated the viability of verifying 

PrT net models based on planning graph reachability analysis, and the procedures for 

verifying hierarchical multi-agent plans with explicit parallel actions. In [26], a modeling 

methodology based on object-oriented Colored Petri nets was introduced. The authors 

introduced the object-oriented concept into Colored Petri nets to model agents with 

mental states, and used a logic programming language for the declaration of agent 

programs.      
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CHAPTER 3 

A NESTED PETRI-NET FRAMEWORK 

 

Nets-within-nets, originated from Valk’s work [19, 20], are high-level Petri nets that 

allow nets to be tokens within a net. The paradigm provides a natural abstraction of a 

hierarchical MAS organization. In recent years, several approaches based on the nets-

within-nets paradigm were proposed for modeling the communication and mobility of a 

mobile agent system [25, 28]. However, previous works in this regard were primarily 

focused on modeling agent mobility rather on supporting an overall MAS modeling. 

Building on the object-oriented paradigm, these works with the nets-within-nets 

paradigm focused on the dynamic structure of Petri nets, but did not employ an agent-

oriented modeling approach [8] and did not demonstrate how an agent net can be built 

with essential properties, such as autonomy, pro-activeness, reactivity and sociality [5]. 

More specifically, the work in [28] was limited to mobile agent systems and was not in 

the MAS context.  

In [25], the nets-within-nets paradigm was used to model a mobile agent system 

based on a Colored Petri net extension called Reference nets [24], which are object-

oriented high-level Petri nets. This work was based on a multi-agent architecture 

MULAN [24], which is defined to describe the hierarchical structure of an agent system. 

The communication between an agent net and the system net was synchronized through 

the concept of a channel defined by a fusion of two enabled transitions. The firing of 

these transitions allows bi-directional information exchange between the agent and the 

system, as well as the movement of the agent. An active token in the system net refers to 
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an object net, which can be triggered by using synchronous channels [69, 70]. Although a 

hierarchical structure MULAN is provided to model agent mobility, there is no detail of 

how to model an individual agent and agent coordination.  

In [28], the nets-within-nets paradigm is used for modeling agent mobility based on 

the MASIF defined by OMG. Agent mobility is addressed through the synchronization of 

some input and output transitions; however, there was no formal definition provided.  

The work in [27] also used a layered PrT net to specify mobile agents. However, the 

information flows between an agent net and the system net at different layers were 

through internal connectors. The internal connector had to be constantly updated 

according to the changing number of agents to maintain the consistency within the 

system net. 

This dissertation research is based on the nets-within-nets paradigm as well, however 

targets at modeling MAS. PrT nets are used as the underlying formalism. Since original 

PrT nets have a static net structure and provide only one level view of an overall system 

process, they are inadequate to model a hierarchical multi-agent organization. Moreover, 

PrT nets do not have the notion of agent communication. The basic idea to support MAS 

modeling is modularity [4]. That is, each agent having its own computation logic 

(behaviors) has to be independently modeled and loosely coupled in a hierarchical 

structure. My approach to address the representation of MAS includes two facets: (1) 

adapting the nets-within-nets paradigm to address the MAS architecture, and (2) 

extending PrT nets to address agent communication. In this study, the constraint formula 

of a transition defined in a PrT net is extended to include a channel expression for agent 

communication. A new definition of the channel command and PrT nets with this channel 
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concept are given. The new channel concept adapts the input and output commands in 

Hoare’s process algebra CSP (Communicating Sequential Processes) [18]. The 

communication between agents consists of synchronous control and unidirectional 

information flow, with which the essential characteristics of reactivity (input) and pro-

activeness (out) of agents can be nicely modeled. In addition, the channel expression is 

used to dynamically couple agents.  

Building on the PrT net extension, a framework has been developed to provide a 

systematic approach for modeling and analyzing MAS. The framework is based on a 

conceptual model that identifies essential MAS components based on the widely-

accepted definition of MAS [1, 4, 71]. Unlike the other works, the framework provides a 

full line of support from modeling to analysis, including a process model for modeling 

MAS, a methodology that systematically transforms the conceptual model to a nested PrT 

net describing a multi-agent system, and a technique that systematically translates a 

nested PrT net to a PROMELA program in the model checker SPIN.  

The rest of this chapter is organized as follows. Section 3.2 gives an overview of the 

nested Petri net framework. Section 3.3 presents the formal definition of two-level nested 

PrT nets. Section 3.4 introduces net patterns and semantics of two-level nested PrT nets.     

3.1 An Overview of the Framework 

One of the reasons to build an abstract model at the system design stage is to visualize 

system behaviors at an early stage of system development. The objective is to detect 

design errors and avoid costly fixes at a later stage of system development. Since MAS 

involve dynamic agent interactions, their behaviors are difficult to be directly observed 

through textual specifications. Thus, this research work takes advantage of the modeling 
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power and visual representation of PrT nets, and of SPIN tool in its well developed 

verifier, to formulate a methodology for the study of multi-agent systems prior to 

implementation. The components of the framework are shown in Figure 3. 

 

The Conceptual Model
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#define MAX_TOKENS 10
mtype = { …. }    /* defines global data objects */
typedef TYPE { …. }  
inline FUNC { … } /* defines macros that can be reused in the program */
chan CHANNEL = [0] of { .. } /* define global message channel */
active proctype MAIN_PROCESS ( ) {

/*  statement sequence  */     
}
proctype PROCESS1 ( ) { /*  statement sequence  */    }
proctype PROCESS2 ( ) { /*  statement sequence  */    }
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(net entities)   
(net elements)

The Concrete Model
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(agent nets)
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Figure 3. Components of the nested Petri net framework. 

3.1.1  The Conceptual Model 

MAS are a distributed problem solving approach [2, 4] for large and complex 

problems. Thus, MAS design generally involves several essential components: (1) 
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multiple distributed agents, which are designed to accomplish specific tasks; (2) 

communication, which allow agents to exchange information; (3) cooperation, which 

defines the process to accomplish a given task that relies on multiple agents; and (4) 

coordination, which defines the mechanism for managing available resources. A 

conceptual model is shown in Figure 4.  

 

Figure 4. MAS components: a conceptual model. 

Here, a mediator agent is considered as a special type of agent that is instrumented 

with some coordination mechanism for handling cooperation processes among agents 

within an agent community. Since agents evolve constantly in a distributed and 

heterogeneous environment, separation of the coordination logic eases the complexity of 

agent communications and allows the flexibility of coordination mechanisms for future 

extensions [36]. The framework developed in this study is based on the conceptual model 

shown in Figure 4. 

3.1.2  The Formal MAS Model 

An important concept of applying the MAS paradigm is modularity. Traditional PrT 

nets have a flat structure that models only a single-level view of distributed systems. 

Thus, in this study, PrT nets are enhanced in modularity by incorporating agent-oriented 

concepts and aspect-oriented concepts. Agent-orient concepts address the modularity of 
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system architecture, while aspect-oriented concepts address the modularity of an agent’s 

internal structure. The modularity at the system architecture level is achieved by 

employing a two-level nested PrT net structure, and the modularity at an individual agent 

level is achieved by employing an aspect orientation technique. Agents are essentially 

heterogeneous in the MAS context, and are specific problem solvers. The aspect-oriented 

concept [21] is adopted to address different features of an agent. For example, it is well 

recognized that the essential properties of an agent are autonomous, proactive, reactive 

and social in terms of AOSE. However, agents can be further classified by their 

functionalities [35]; such as, task agents, interface agents, mobile agents, information 

agents, reactive agents, hybrid agents and smart agents. Aspect orientation of agent 

features provides structural modularity of an agent model, and promotes the reusability of 

common behavior models. Since the process model provides system-wide modularity, it 

also achieves several non-functional performance measurements, such as adaptability (a 

dynamic structure), reusability (aspect orientation), and extensibility.   

In this study, an agent-oriented modeling mechanism is employed to transform the 

conceptual model (Figure 4) to the formal MAS model in a two-level nested net structure. 

The mechanism includes a single agent modeling technique for constructing individual 

agent nets, and an aspect-oriented modeling technique for modularizing the internal 

structure of an agent net (Figure 3). As a consequence, the MAS model can be 

constructed and contains multiple nets in a two-level nested net structure that provides a 

global view (described by the mediator agent) and a local view (described by agent nets).  
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3.1.3  The Concrete Model 

Although a PrT net can be unfold to a low-level Petri net and analyzed using existing 

Petri-net-based analysis techniques, such as reachability tree [37]. However, the 

unfolding process is tedious and error prone. Given that the reachablility tree technique is 

difficult to apply to PrT nets, a viable method for model analysis is to directly execute the 

model. Previous works in this regard generally fall into two major categories: (i) 

transforming a high-level net model to an executable program written in high level 

programming languages, such as C or JAVA [72, 73, 74, 75]; and (ii) transforming a 

high-level net model to an executable model described by the meta-language supported in 

some simulation tools [76, 77, 78, 79]. This study is similar to the works in the second 

category. However, the focus here is model checking nested PrT nets. That is, the 

problem is not just to facilitate the analysis of high-level nets, but also two-level nested 

PrT nets. 

Given that there is no well-established method for the analysis of two-level nested 

PrT nets, the problem here is to establish an efficient method for analyzing two-level 

nested PrT nets. Drawing upon existing tools for the analysis of abstract models, the 

model checker SPIN is a well developed tool for model checking concurrent systems. 

More important, it focuses on the modeling of asynchronous process interactions, which 

is an important feature for MAS analysis. This study takes advantage of the well-

developed verifier in SPIN for the analysis of nested PrT nets. The idea is to transform 

nested PrT nets into PROMELA programs for model analysis. Thus, a model 

transformation technique is developed to transform formal MAS models to PROMELA 

programs in SPIN. The transformation technique includes a set of translation rules that 
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systematically translate net entities and net elements of nested PrT nets to their associated 

PROMELA statements. This results in a concrete model (written in PROMELA) that can 

be verified through the model checker SPIN. 

3.2 The Underlying Formalism 

The underlying formalism of this dissertation research is predicate transition nets, 

which are formally defined in Section 2.3. This section formally defines two-level nested 

PrT nets.  

 3.2.1   Two-Level Nested Predicate Transition Nets 

 Although a general structure of deeply nested nets can be defined, here I elect to just 

define a two-level net structure that is adequate for this study. Since lower level nets 

serve as tokens in the upper level net, some care must be taken to ensure the upper level 

net is well defined. First, the upper level net has its own data abstraction and processing 

capabilities; thus, it needs the full description power of PrT nets. Second, individual 

computation entities have their own behaviors and logics that cannot be described by 

static data. As a result, net tokens are treated as black boxes. Only their identities are 

visible and accessible in the upper level net. This treatment allows these net tokens to be 

grounded and thus well-defined. This treatment also respects the autonomous 

characteristic of agent tokens. Third, the creation and removal of a net token can be done 

through some boundary transitions without input places and transitions without output 

places, respectively. The functionality (constraints) of these transitions is left open and 

viewed as the responsibilities of an external environment.  

To address the interactions between the upper level net and agent nets, the constraint 

definition of PrT nets is extended to include channel expressions. The channel commands 
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in CSP (Communicating Sequential Processes) [18] are adopted for the channel 

expressions in transition constraints. A channel expression is either an output command 

n!e or input command n?x, where n is a channel name, e is an expression, and x is a 

variable. A channel name is the identification of a net and is used to control the 

synchronization of a pair of transitions. A synchronized communication occurs when two 

enabled transitions at different level have a matching pair of input and output expressions. 

After synchronization, a unidirectional information flow occurs such that the value in e of 

the output command is assigned to the variable x of the input command.  

For example, as shown in Figure 5, place A1 at the upper level net contains four agent 

net tokens, including a1, a2, a3 and a4; and place A2 contains three agent net tokens, 

including a5, a6 and a7. A transition t2 in the upper level net with identification S 

contains a?x, and a transition e1 in an agent net with identification a1 contains S!e are a 

matching pair of input and output expressions. The firing of both transitions is an 

interaction denoted as (t2, e1). Transition t2 is called input channel that inputs a data 

token from a lower level net, and transition e1 is called output channel that outputs a data 

token to the upper level net.  

To enforce vertical communications (that is, no direct communications between agent 

nets), the channel names in agent nets must be the identification of the upper level net. In 

this case (in Figure 5), the channel name in each agent net should be S. However, the 

channel name in the upper level net can be a variable ranging over agent identifications. 

It is instantiated when an agent token is instantiated. For example, variable ‘a’ in 

transition t1 and t2 of the upper level net shown in Figure 5. 
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Figure 5. An upper level view of a nested PrT net with input/output channels and net 
tokens. 

 

Definition 3.2.1  A channel expression is either n!e or n?x, where  

 n is a net identification, 

  “?” denotes an incoming direction,  

  “!” denotes an outgoing direction,  

 n!e  denotes an output of value e to net n, and 

 n?x denotes an input of value incoming from net n to x. 

Definition 3.2.2  A communication channel is a transition t with the constraint formula 

R(t) = Ru(t) ∧ Rc(t), where   

 Ru(t) is a non-communication constraint, and 

 Rc(t)  =  n!e | n?x is a non-empty communication constraint. 

Definition 3.2.3  A two-level nested net is a tuple (S, AG, I), where  

 S is a PrT net at the upper level called mediator net;  

 AG is a finite set of PrT nets called agent net;    
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 I ⊆ TS ×TAG is the set of interaction relations, where  

o I ≠ ∅, 

o TS is the set of transitions in S,  

o TAG = Ti such that i = 1 to |AG|, and Ti is the set of transitions in agent net 

AGi, and 

o (t, e) ∈ I is an interaction relation of a nested net, where t ∈ TS and e ∈ 

TAG; t and e are communication channels.  

The dynamic semantics of two-level nested PrT nets can be defined as follows: 

(1) A marking of a PrT net is a mapping from P to sorts defined in Spec; 

(2) An occurrence mode of N is a substitution 𝛼 = { 𝑥1 ← 𝑐1, … , 𝑥𝑛 ← 𝑐𝑛 }, which 

instantiates typed label variables. e: α is used to denote the result of instantiating an 

expression e with α, in which e can be either a label expression or a constraint; 

(3) Given a marking M, a transition t ∈ T, and an occurrence mode α, t is α_enabled at M 

iff the following predicate is true: ∀p: p ∈ P.( L (p,t):α ⊆ M(p)) ∧ R(t):α; where R(t) 

= Ru(t) ∧ Rc(t). Ru(t) is a non-communication constraint, and Rc(t) =  n!e | n?x is a 

communication constraint.  

(4) An α_enabled transition t with communication constraint Rc(t) is ready if a transition 

with a matching channel expression is also ready. A ready transition t under marking 

M with occurrence α is fireable. 

(5) The firing of ready transition t with channel expression Rc(t) under M with α returns 

the marking M’ defined by M’(p) = M(p) − 𝐿�(p,t):α ∪ 𝐿� (t,p):α  for p ∈ P. M[t/α>M’ 

denotes the firing of t with occurrence α under marking M.   
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(6) For a marking M, the set [M> of markings reachable from M is the smallest set of 

markings such that M ∈ [M> and if M’∈ [M> and M’[t/α>M’’ then M’’∈ [M>, for 

some t∈T and occurrence mode α (note: concurrent transition firings do not produce 

additional new reachable markings); 

(7) An execution sequence M0T0M1T1… of N is either finite when the last marking is 

terminal (no more enabled transition in the last marking) or infinite, in which each Ti 

is an execution step consisting of a set of non-conflict firing transitions; 

(8) The behavior of N is the set of all execution sequences starting from the initial 

marking. 

 Note: the effect of information flows after an interaction has been reflected in the arc 

label expressions. For example, the value of variable x in an input channel command can 

affect the new marking M’. 

For simplicity, the channel expression is defined in a one-to-one and unidirectional 

fashion. That is, each firing of a transition t sends/receives one message token to/from a 

single agent net. However, the communication channel can repeatedly fire as long as 

there are enough tokens in the input place. 

3.3 Net Representations and Semantics    

This section demonstrates typical patterns of net structures and their semantics in 

two-level nested PrT nets. These patterns and semantics are based on the following 

assumptions.  

(1) An agent net models the behavior of an autonomous agent, which has a computation 

logic that is independent from other agents;  
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(2) All agent nets communicate through the mediator net; that is, there is no direct 

communication between agent nets;   

(3) All agent nets should be modeled prior to the mediator net; that is, it is assumed that 

all agent roles and their responsibilities have been identified before a multi-agent 

system can be built; 

(4) The mediator agent net is a coordination model accommodating agent nets;    

(5) Pre-existing agent nets can be used as token templates in the mediator net and 

repeatedly instantiated during model execution; however, instantiated agent nets 

from the same template are independent from each other; that is, they are different 

instances with different agent identification. 

(6) An agent net cannot conserve agent tokens, while a mediator agent net must 

conserve pre-defined agent net tokens.  

3.3.1   Agent Nets 

The agent nets at the lower level cannot conserve agent tokens; that is, only data 

tokens are allowed in agent nets. Therefore, syntactically, there is no difference between 

the net representation of an ordinary PrT net and the net representation of an agent net in 

nested PrT nets. Semantically, however, there is a non-empty set of transitions model 

communication channels in an agent net. 

Definition 3.3.1  An agent net is a PrT net with net structure N = (P, T, F), where: 

 T = Tu ∪ Tc;  

 Tu is the set of non-communication transitions such that, ∀𝑡 ∈ 𝑇𝑢. (𝑅𝑐(𝑡) = 𝜆), 

where 𝜆 denotes an empty channel expression;  
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 Tc is the set of communication channels such that, 𝑇𝑐 ≠ ∅ 𝑎𝑛𝑑 ∀𝑡 ∈ 𝑇𝑐. (𝑅𝑐(𝑡) ≠

𝜆);   

 ∀𝑝 ∈ 𝑃. (𝜑(𝑝) = 𝐷𝐴𝑇𝐴_𝑇𝑌𝑃𝐸), where DATA_TYPES is the set of token types 

that define data tokens. 
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Figure 6. (a) Pro-activeness of an agent net; (b) reactivity of an agent net.   

For example, Figure 6(a) shows a communication between nets at different level in 

which an input communication channel in the upper level net (the mediator net) generates 

a message token, while an output communication channel in the lower level net (the 

agent net) consumes a message token (Figure 6(a)). The channel expression of transition 

outChannel in the agent net can be defined as Rc(outChannel) = S!msg, where S is the id 

of the mediator net. On the other hand, some input channel of the agent net can be 

defined as S?msg, which may generates a data token that is sent from mediator net S 

(Figure 6(b)). The net representation for a communication channel is no difference from a 
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regular transition. However, since the constraint formula is augmented with a channel 

expression, the semantics of a communication channel is different from a regular 

transition.  

During an execution, an agent net is proactive if it initiates an event (Figure 6(a)); and, 

it is reactive if it performs some action in response to an external event (Figure 6(b)).  

3.3.2   The Mediator Agent Net 

The mediator agent net at the upper level models the global process in a multi-agent 

system. A mediator agent net is a special type of agent net that conserves agent net tokens 

in addition to data tokens. Syntactically, the net representation of a mediator agent net is 

the same as an ordinary PrT net. Semantically, there is a non-empty set of transitions that 

model communication channels in a mediator agent net. In addition, each communication 

channel in the mediator agent net associated with a pair of input and output places that 

hold agent net tokens. A mediator agent net models the cooperation among agent nets. It 

is formally defined as follows. 

Definition 3.3.2 A mediator agent net is a PrT net with net structure S = (P, T, F), where  

 T = Tu ∪ Tc is the set of possible activities in a cooperation process; 

 Tu is the set of non-communication transitions such that ∀𝑡 ∈ 𝑇𝑢. (𝑅𝑐(𝑡) = 𝜆), 

where 𝜆 denotes an empty channel expression; 

 Tc is the set of communication transitions such that  𝑇𝑐 ≠ ∅ and ∀𝑡 ∈ 𝑇𝑐. (𝑅𝑐(𝑡) ≠

𝜆); 

 P = Pd ∪ Pa is the set of places, where Pd denotes the set of places that hold data 

tokens, and Pa denotes the set of places that hold agent tokens; Pd ∩ Pa = ∅ and 

Pa ≠ ∅;  
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 ∀𝑝 ∈ 𝑃𝑎. (𝜑(𝑝) = 𝐼𝐷𝐸𝑁𝑇𝐼𝐹𝐼𝐶𝐴𝑇𝐼𝑂𝑁 × 𝐴𝐺𝐸𝑁𝑇_𝑁𝐸𝑇), where  

o IDENTIFICATION is a unique number or name for identifying an agent net; 

o AGENT_NET ∈ AGENT_TYPES where AGENT_TYPES is the set of pre-

defined agent nets that are valid in the MAS model;  

Based on the above definitions, there are some essential patterns and limitations for 

the net representation of a mediator agent net. The patterns and limitations are introduced 

as follows. 

A. Net Patterns 

(1) Output information to an agent net 

In the mediator agent net, a transition with an output channel command is enabled 

when there are message tokens and agent tokens in its input places. Figure 7 shows a net 

structure like such. An output information flow occurs when the transition fires. The 

firing of an output communication channel sends the message token to the agent net that 

has the net identification indicated in the channel expression (channel name). That is, the 

firing of an output communication channel consumes a message token. 

outputChannel AA

l msg

a a

p2

p1

p3  

Figure 7. Net representation of an output communication channel. 

For example, place p2 in Figure 7 holds agent net tokens, while place p1 holds 

message tokens. Let us assume the toke type definition of p2 is 𝜑(𝑝2) = 𝐼𝑁𝑇𝐸𝐺𝐸𝑅 ×
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𝐴𝐺𝐸𝑁𝑇_𝑁𝐸𝑇, where the first element of the token is an agent id number and the second 

element is an agent net with the type AGENT_NET defined in Spec. The output channel 

expression can be defined as Rc(outputChannel) = a[1]!msg, which means “send 

information token msg to the agent net with the id number contained in the first element 

of variable “a”. After firing transition outputChannel, the agent net that received the 

information token is sent to output place p3. 

(2) Input information from an agent net 

A transition with an input channel command is enabled when there are agent tokens 

in the input place. Figure 8 shows a net structure like such. An input information flow 

occurs when the transition fires. The firing of an input communication channel received a 

message token from the agent net that has the net identification indicated in the channel 

expression (channel name). That is, the firing of an input communication channel 

generates a message token in p3. 
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Figure 8. Net representation of an input communication channel. 

For example, place p1and p2 in Figure 8 holds agent net tokens, while place p3 holds 

message tokens. Let us assume the token type definition for p1and p2 is 𝜑(𝑝1) =

𝜑(𝑝2) = 𝐼𝑁𝑇𝐸𝐺𝐸𝑅 × 𝐴𝐺𝐸𝑁𝑇_𝑁𝐸𝑇, where the first element of the token is an agent id 

number, and the second element is an agent net with the type AGENT_NET defined in 
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Spec. The input channel expression can be defined as Rc(inputChannel) = a[1]?msg, 

which means ‘input information token msg from the agent net with the id contained in the 

first element of variable a’. After firing transition inputChannel, a message token is 

generated and put into place p3. The agent net that sent the information token is moved to 

place p2. 

(3) Agent Autonomy 

In a global process view, an agent net is an independent computation entity that has 

its own thread of control over its own internal states. Therefore, an agent net is executing 

autonomously without a centralized control, and its behavior is invisible at the upper 

level net. The way that a transition in an agent net fires without the intervention of the 

mediator agent net is called agent autonomy.  

(4) Transportation 

A transition firing moves an agent net token from an input place to an output place is 

called agent transportation. Agent transportation models the mobility of agent nets. For 

example, in Figure 9, an agent is transported from location p1 to location p2. Agent 

transportation does not involve communication. That is, transition t is not a 

communication channel.  

A t A

p1 p2  

Figure 9. Transportation. 
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(5) Choice 

A global process is composed of a set of activities (or tasks) in which multiple agents 

are involved. An agent is designed to accomplish a certain task. On the other hand, an 

agent may have more than one capability to participate in different activities. For 

example, a gas producer may produce regular gas or premium gas. The option for an 

agent to participate in different activities constitutes a choice. For example, in Figure 

10(a), an output message is sent to an agent net through either output channel t1 or t2; 

that is, an agent net is instantiated to participate in either activity t1 or t2. In Figure 10(b), 

an input message is received from an agent net through either input channel t3 or t4; that 

is, an agent net can trigger either activity t3 or t4.     

t2A

t1msg t3 A

t4 msg

A A

(a) (b)  

Figure 10. Choice; (a) output channels; (b) input channels. 

(6) Synchronization 

A transition firing that synchronizes agent nets is called synchronization. For example, 

in Figure 11, two agent nets (A and B) are synchronized when transition t fires. 

Synchronization simply synchronizes agent nets, and does not involve agent 

communications.  
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t

A

BB
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Figure 11. Synchronization. 

(7) Instantiation 

A t A1

n
n’

template activated  

Figure 12. Instantiation. 

Agent nets are pre-existing entities in the upper level net. An agent net can be a 

template and instantiated during model execution. A transition firing that instantiates an 

agent net with a unique identification is called instantiation. For example, in Figure 12, 

agent net A1 is instantiated with an id number n after transition t fired. A template agent 

net is not an active token, while an activated agent net is an active token. An instantiation 

does not involve agent communication. 

(8) Cooperation 

A

B

t1

t2

t3

p1

p2

p3

 

Figure 13. Cooperation. 
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Agents cooperate in a global process. For example, in Figure 13, agent net A and 

agent net B are sending back results through communication channel t1 and t2, 

respectively. The results are stored in place p1 and p2, and are combined through the 

firing of transition t3. A final result is put in p3. 

(9) Coordination 

Agents share resources in a global process. A mediator agent net coordinates for 

resource sharing. Figure 14 shows an abstract net for coordinating resources. For example, 

in Figure 14, the agent net in place p1 can send a request for some resource. An agent net 

that has sent a request is moved to place p2 and waits for the requesting resource. 

Transition ‘retrieve’ and ‘Resource_out’ model the constraint for dispatching the resource 

in place p4.  

Request_in

Resource_out

Retrieve

A

R

A p2p1

p3

p5

p4

 

Figure 14. A control of resources. 

B. Restriction  

An activated agent net cannot be replicated since an activated agent net is an 

independent process with a unique process id (agent identification). For example, in 

Figure 15, the firing of transition t replicates agent net A. The replication results in two 

agent nets with a duplicate id, which will lead to incorrect system behavior.   
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Figure 15. Replication.  
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CHAPTER 4 

A METHODOLOGY FOR MODELING MULTI-AGENT SYSTEMS 

 

The formalism introduced in chapter 3 provides a theoretical foundation for the 

representation of MAS. There are three different models involved at different stages of a 

MAS modeling process: (1) the conceptual model, which is a product of system 

requirement elicitation; (2) the formal MAS model, which is the nested PrT net model 

based on the conceptual model; and, (3) the concrete model, which is the transformed 

PROMELA model for verification. A modeling methodology is considered as a 

collection of methods that enable designers to transform instances of the model at one 

stage into the model at the next stage. This chapter introduces a modeling methodology 

developed to support the construction of MAS models based on two-level nested PrT nets. 

An agent-oriented modeling technique is employed and infused with aspect-oriented 

concepts. The idea is to modularize the common features of agents into aspects, which 

can be flexibly woven into agent nets based on requirements. Since this study focuses on 

formal specification, how to elicit domain specific agent roles and their associated 

responsibilities at the requirement analysis stage is outside the scope of this study. It is 

assumed that, at the point of constructing abstract models for the system, the agent roles 

and their associated functionalities have been explicitly identified. 

The rest of this chapter is organized as follows. Section 4.1 introduces the concept of 

agent-oriented modeling. Section 4.2 formally defines an aspect orientation technique for 

the modularization of an agent net. Section 4.3 demonstrates a method for constructing a 

single agent net. Section 4.4 defines the coordinator for coupling an agent net and the 
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mediator agent net, and demonstrates a method for constructing a mediator net by 

composing relevant coordinators. Section 4.5 concludes the chapter by comparing this 

study with other related works. 

4.1 Agent-Oriented Modeling 

The traditional approach for building an intelligent agent program in the Artificial 

Intelligence (AI) community suggests that an agent program is a function that maps agent 

percepts to actions while updating its internal states [32]. There are reflex agents, goal-

based agents and utility-based agents where each type of agent programs exhibits various 

degree of intelligence. Thus, the process of making decisions by searching for solutions 

based on agent knowledge is central to the design of agent programs. However, in this 

study, the objective is to formulate a recipe for the abstraction of complex systems based 

on agent-oriented concepts prior to implementation. Therefore, the detail of how to 

implement the search algorithm that solves a problem efficiently using an agent is not the 

focus here.  

The agent-oriented concept adopted in this study is based on the widely recognized 

definition in the Agent-oriented Software Engineering (AOSE) [8, 31, 71] community. 

An agent is defined as follows. 

Definition 4.1.1 An agent is a distributed computation entity that is situated in some 

environment and capable of flexible, autonomous actions in that 

environment in order to meet its design objective. 

The above definition highlights several important features with regard to an agent-

oriented design: (i) an agent is a distributed computation entity designed to solve a 
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specific problem; (ii) an agent is embedded in an environment and can proactively get 

information and react to affect that environment; and, (iii) an agent is autonomous and 

self-contained in controlling its own states; it performs the action of its best interest.   

 

 

 

Figure 16. (a) Agent-oriented modeling; (b) essential modeling steps. 

(b) 

Agent-oriented modeling: 

(1) Identify the agent roles and their responsibilities (activities); and, each agent role 

is modeled as an agent net that specifies the behavior of the agent. 

(2) Identify the activities that involve external interactions for each agent net.   

(3) determine cooperation processes and the coordination context based on the 

requirements in step (2). 

(4) Generate coordinators for all interaction activities in agent nets. 

(5) Compose all coordinators to form the mediator agent net, which specifies the 

cooperation process among agents. 

(a) 
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In this study, agent-oriented modeling is considered as an approach for constructing 

abstract models based on the agent concept defined in Definition 4.1.1. Therefore, the 

following major components are supported:  

(1) Agent models can be built individually to meet the requirement of their design 

objectives;  

(2) An agent model can be constructed with essential features, such as autonomy, pro-

activeness, reactivity and sociality. 

(3) A coordination model can be constructed to model the cooperation process among 

agents; and  

(4) Agent models can be coordinated and interact through the coordination model.  

Figure 16(a) shows the idea of an agent-oriented modeling approach. First, agent nets are 

built individually; and next, they are coupled through coordinators. The resulting model 

is a two-level nested PrT net describing a system model with the MAS architecture. The 

modeling steps can be summarized into five major steps as shown in Figure 16(b). 

4.2 Aspect Orientation of the Internal Structure of an Agent Net 

There are different concerns when designing different types of agents [35]. For 

example, the concern for designing mobile agents is mobility, and the concern for 

designing task agents is collaboration.  Various concerns are considered as features of an 

agent model. In multi-agent systems, agents are usually designed to solve different 

problems. That is, each agent has a different action model with respect to its design 

objective; however, it also may shares common features with the others. For example, an 
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agent that consumes resources may share an identical plan of getting authorization for 

using resources.     

A variety of agent types substantially increases the complexity of agent design. One 

of the techniques to manage complexity is modularity. Aspect-oriented programming 

(AOP) [21] is one of the techniques applied at the implementation stage for modularity. 

The idea of AOP is to wrap crosscutting concerns into aspects, which are desired 

properties that can be woven into functional components. In recent years, aspect-oriented 

concepts were introduced into an early stage of system design to address the modularity 

of abstract models; for example, aspect-oriented modeling for MAS in [48, 49].  

In this study, the concept of aspects as modular features is adopted to address the 

complexity of building agent models with different internal structures. First, the features 

shared among agents are identified and specified as aspects. Next, an agent net can be 

constructed by weaving desired features into the fundamental action model. As a 

consequence, agent nets are adaptable for different features, thus are more manageable. 

Figure 17 shows the conceptual model of an aspect-oriented agent net that is composed of 

the fundamental action model and various aspects. 

knowlege
plans

Action model

Interaction
protocols

security

mobility

 

Figure 17. A conceptual model for an aspect-oriented agent net.  
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 Other advantages of an aspect-oriented agent model include net model reusability 

and flexibility. In terms of model analysis, an aspect-oriented agent model is amenable 

for incremental analysis by gradually weaving additional aspects or, by weaving different 

combinations of aspects.   

4.2.1   Specifying Aspects     

To specify aspects, several terms from AspectJ [22] are used here; however, they are 

given different meanings for aspect weaving. These terms are defined as follows. 

Definition 4.2.1  An aspect is a modular specification, including an advice, a set of 

pointcuts and a set of join points. 

Definition 4.2.2  An advice is a PrT net, which specifies the common behavior shared by 

multiple agent nets.   

Definition 4.2.3  A pointcut specifies a weaving point in the advice; it can be a place or a 

transition. 

Definition 4.2.4  A join point specifies a weaving point in the target net; it can be a place 

or a transition. 

A specification table is defined to specify an aspect. The table includes the essential 

information defined above. First, the aspect name is identified. Second, the advice to be 

woven is defined, including the advice name, the net structure, the semantic definitions 

and the pointcuts. Third, the names of target nets and their joint points are specified. The 

pointcuts from the advice and the joint points from the target nets are the matching points 

for aspect weaving. The specification is shown in Figure 18(a). An aspect weaving is 

considered as the process of composing two net structures into a single net structure by 
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connecting the advice to the target net specified in an aspect. Syntactically, two nets are 

connected together by specifying weaving points. Semantically, the semantics defined for 

weaving points have to be consistent before and after aspect weaving. Note that the 

semantic definitions of the advice can be delayed until it has been woven. In addition, it 

is assumed that there is no duplicate name in the woven net. That is, it is assumed that 

duplicate names with regard to net element definitions of the woven net have been 

properly resolved. 

Let N be the target agent net, and A be the aspect specification in which advice_name 

denotes the advice, PC denotes the set of pointcuts in advice_name, JP denotes the set of 

join points in N, and R denotes the set of weaving relations for net N. A weaving 

specification N: R defined in aspect A weaves advice_name in A into N based on the 

weaving relations specified in R. A weaving relation r in R is a binary relation (pointcuti 

→ join_pointi), where pointcuti ∈ PC and join_pointi ∈ JP; that is, r specifies a pair of 

matching points for an aspect weaving.  

An aspect specification is shown in Figure 18(a). An aspect weaving process is shown 

in Figure 18(b). 

There are two possible kinds of join points, namely transition join point and place 

join point. A place join point is considered as a place where an aspect of alternate choice 

can be added or, as a place that can hold the tokens generated from an aspect of some 

extended behaviors. A transition join point is considered as a point where an aspect of 

some concurrent behaviors can be added or, where an aspect of additional enabling 

conditions can be added. 
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Aspect: A;

t1

p1

t2

p2

pointcut1

Advice: advice_name; 
P = {pointcut1, p1, p2}; T = {t1, t2}; F = {(pointcut1, t1), (t1, p1), (p1, t2), (t2, p2)};
φ(p1) = φ(p2) = φ(pointcut1) = TYPE;
R(t1) = R(t2) = λ;
L(pointcut1, t1) = L(t1, p1) = L(p1, t2) = L(t2, p2) = x;
M0(p1) = M0(p2) = M0(pointcut1) = { };

Pointcut: pointcut1 [, pointcut2, pointcut3, ….]; 
N: pointcut1 -> join_point1 [, pointcut2 -> join_point2, pointcut3 -> join_point3 ….];

x x x x

 

(a) 

 
(b) 

Figure 18. (a) An aspect specification table; (b) an aspect weaving process.   

In addition to the previous example, some weaving patterns are generalized and 

shown in Figure 19, where (a), (b) and (c) are patterns of transition join point since the 

weaving point is at a transition; and, the patterns in (d), (e) and (f) are place join point 

since the weaving point is at a place. Patterns (a) and (d) are similar to after advice in 

Aspect weaving: 

(1) ∀ r ∈  R such that, for all incoming arcs (x, pointcuti) and outgoing arcs 

(pointcuti, x) defined in F, replace (x, pointcuti) with (x, join_pointi) and 

(pointcuti, x) with (join_pointi, x); and, replace L(x, pointcuti) with L(x, 

join_pointi) and L(pointcuti, x) with L(join_pointi, x). 

(2) Discard pointcuti such that P = P - pointcuti, where P is the set of places in the 

advice.  

(3) Weaving advice_name into N such that: N.P = N.P ∪P; N.T = N.T ∪ T; N.F = 

N.F ∪ F, where N.P is the set of places in target net N, and N.T is the set of 

transitions in target net N. 
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AOP; (b) and (e) are before advices; and, (c) and (f) are around advices that can be added 

as an explicit control of the net. Intuitively, during a weaving process, a transition join 

point must be connected with a place in the advice and a place join point must be 

connected with a transition in the advice. This is to ensure the correctness of the syntax 

and static semantics of a woven net. 

 
Figure 19. Weaving patterns. 

4.3 Modeling a Single Agent Net 

An agent net specifies the behavior of a distributed computation entity in the MAS 

context. It describes an agent’s behavior without a centralized control. That is, it has the 

control over its own internal states. For modeling agent communications, channel 

commands are instrumented in transition constraints to specify external message 

exchanges. It is assumed that agent nets are communicating within the same context that 

has been defined in the semantic domain Spec, and are interpreting the information that is 

relevant to their computations based on their best interest. Furthermore, token types 

defined for exchanging messages between agent nets must be consistent. As a result, the 

messages exchanged among agent nets are in a simpler structure, and are only relevant to 

Advice Advice

Advice

(a) (b)

Advice

Advice

(c)

(d) (e) (f)

Advice
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the behavior of associated agent nets. This principle avoids the redundancy of irrelevant 

details and unnecessary complexity with regard to the interpretation of messages. The 

modeling steps for an agent net with communication channels can be summarized in 

Figure 20.  

 

Figure 20. Modeling steps for an agent net with communication channels. 

4.3.1   Modeling Examples      

A Gas Station scenario is used as an example to demonstrate the construction of an 

agent net.  

A Gas Station Scenario 

For the operation of a gas station, there are gas consumers, gas suppliers, the bank 

and the gas station itself. Gas consumers pump gas for their cars in order to accomplish 

(1) Identify the actions engaged for each agent and represent each action as a 

transition within an agent net; that is, define T. 

(2) Identify the pre-conditions and post-conditions for each transition in T; and, add 

associated input places, output places, arcs and transition constraint for all 

transition t in T, respectively; that is, define P, F and inscription ins. 

(3) Identify the transitions with external interactions in the net, and add associated 

channel commands; that is, define Tc in T, and ∀𝑡 ∈ 𝑇𝑐. (𝑅(𝑡) = 𝑅𝑢(𝑡) ∧ 𝑅𝑐(𝑡)), 

where Rc(t) =  n!e | n?x; n  is the identification of the mediator agent net.  

(4) Draw an interaction elicitation table (IET), which contains four columns:  

(i) all t in Tc identified in step (3),  

(ii) the direction of the information flow associated with t,  

(iii) the exchanging information associated with t, and 

(iv) the elicited channel command associated with t based on (i), (ii) and 

(iii).  
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their plans, while gas suppliers produce gas in order to supply gas to the gas station. The 

bank provides banking services, including credit card authorizations that allow customers 

to make transactions when pumping gas. The gas station provides an environment for 

these activities. There are pumping stations in the gas station where the cars entering the 

station can park and pump the gas. The gas pumping process includes four major steps: (1) 

the consumer who is driving a car and entering the station can park the car at one of the 

pumping stations that are available; (2) after parking at one of the pumping stations, the 

consumer must slide their credit card first in order to get the authorization for pumping 

gas; (3) if authorized, the consumer can start pumping gas with the choice of regular or 

diesel gas; and, (4) the consumer finished pumping and left the station.  

Based on the above scenario, there are five different agent roles: (1) regular gas 

consumer, who uses a vehicle to commute between home and school; if the car is out of 

gas, he goes to the gas station and pumps regular gas; first, he needs to find an available 

pumping station, and then to slide his credit card in order to pump gas; (2) diesel gas 

consumer, who uses a vehicle to transport goods between the factory and the store; if it is 

out of gas, he goes to the gas station and pump diesel gas; he also needs to find an 

available pumping station first, and then slides his credit card in order to pump gas; (3) 

gas producer, who produces both regular and diesel gas based on orders; (4) the bank, 

which provides the credit card transaction service that checks credits and reports credits; 

and, (5) the gas station, which is served as the mediator agent that provides the global 

view of the gas pumping process in which multiple agents are engaged in.  

Example 1: Modeling an agent net with communication channels. 
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Let us take the diesel gas consumer as an example to build the agent net based on the 

steps in Figure 20. 

Step (1) define T;  

 According to the scenario, let T = {ToStore, ToGasStation, Go, ToFactory, 

Park, SlideCard, PumpGas, Deny}; 

Step (2) define P, F, and ins = (𝜑, R, L, M0);  

 Let P = {factory, store, GasStation, ToPump, standby, pumped, CreditCard}; 

 φ(factory) = φ(store) = φ(GasStation) = CAR×INTEGER, where the first 

element of the data token is the car type and the second element indicates the 

condition of the gas tank (1 represents full tank, 0 otherwise), and 

CAR={sedan, truck}; φ (standby) = φ (ToPump) =  φ (pumped) =  

CAR×INTEGER×INTEGER; φ(CreditCard) = INTEGER denoting credit 

card numbers;  

 R: see Appendix A1;  

 Let M0(factory) = {<truck, 0>} denoting that in place factory there is a truck 

with empty tank, M0(credit_card) = {<1>} stores the credit card number, and 

all other places in P such that M0(p) = ∅ ;  

 F and L are defined accordingly. 

Step (3) define Tc;  

 Based on the scenario, Tc = {Park, SlideCard, PumpGas, Fail}, while Tu = 

{ToStore, ToGasStation, Go, ToFactory}; and let the identification of the 

mediator net be S; 
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 The interaction elicitation table (IET) with four columns can be drawn based 

on step (1) ~ (3) to generate channel commands associated with Tc; the table 

is shown in Table 2. Column Rc(t) contains the elicited channel commands, 

which can be added to associated transition constraints.   

Table 2. Interaction elicitation table. 

t ∈ Tc Directions Exchanging information Rc(t) 

Park input pumping station number S?st 

SlideCard output 
car type, credit card number 
and pumping station 
number 

S!<car, cr, st> 

PumGas input diesel gas S?g 

Deny input invalid credit card number S?cr 
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Figure 21. Agent nets in the gas station scenario.  
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Other agent nets can be built accordingly. The agent nets are shown in Figure 21, 

respectively. The rectangles with dashed line in Figure 21 denote the transitions 

involving external interactions.  Detailed semantic definitions for the agent nets in Figure 

21 are given in Appendix A1. 

Example 2: Aspect orientation and aspect weaving. 

From the above example, Diesel_consumer agent and Regular_consumer agent share 

the common behavior of pumping gas since they are gas consumers. Therefore, the 

pumping gas process can be modularized as an aspect. The specification of a Pumping 

gas aspect is shown in Figure 22(a). While the Pumping gas aspect is shared by two 

different agent nets to enforce an explicit control for transportation, the Car wash aspect 

shown in Figure 22(b) is an extended feature for gas consumer agents.  

For example, let Figure 23(a) be the basic action model for a Regular_consumer agent 

that regularly commutes between home and school. Let us assume that we want to add an 

explicit control to make sure the transportation only happen when the tank is full. In this 

case, the control can be done by weaving the Pumping gas aspect into its basic action 

model. Let us further assume that a Regular_consumer agent is given an additional option 

to wash the car when in the gas station. In this case, the agent plan can be extended by 

weaving the Car wash aspect into its basic action model. The woven net is shown in 

Figure 23(b). 

The weaving process based on Figure 18(b) is as follows. 

Step (1) Replace arc (pcut_1, ToGasStation) in adv1 with (home, ToGasStation), and arc 

(Go, pcut_2) with (Go, School).  

Step (2) Remove pcut_1and pcut_2 from P.  
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  Regular_consumer.P = Regular_consumer.P ∪ adv1.P;  

  Regular_consumer.T = Regular_consumer.T ∪ adv1.T;  

  Regular_consumer.F = Regular_consumer.F ∪ adv1.F; 

Step (3) Add semantic definitions for the woven Regular_consumer net. 

 

Aspect: Pumping gas

Advice: adv1;
P = {pcut_1, GasStation, ToPump, CreditCard, standby, pumped, pcut_2}; 
T = {ToGasStation, Park, SlideCard, PumpGas, Deny, Go}; 
F = as seen in the net structure;
φ(pcut_1) = φ(GasStation) = CAR×INTEGER; φ(ToPump) = φ(stanby) = φ(Pumped) = CAR× INTEGER×INTEGER;
φ(credit_card) = INTEGER;  
R = λ; L: as seen in the net structure; M0  = { };

Pointcut: Pcut_1, Pcut_2;
Diesel_consumer: Pcut_1 -> Factory, Pcut_2 -> Store;
Regular_consumer: Pcut_1 -> Home, Pcut_2 -> School;

Aspect: Car wash

Advice: adv2;
P = {pcut, washing_station, washed}; T = {ToWash, StartWash, DryOut}; 
F = as seen in the net structure;
φ(pcut) = φ(washing_station) = φ(washed) =  CAR×INTEGER; 
R = λ; L: as seen in the net structure; M0  = { };

Pointcut: Pcut;
Regular_consumer: Pcut -> Gas_station;
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Figure 22. (a) The Pumping gas aspect; (b) the Car wash aspect.   
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Figure 23. (a) The basic net for a Regular_consumer agent; (b) the woven net. 

4.3.2   Constructing an Agent Net with the BDI Model 

There are several concrete structures for agent models, such as logic based agents, 

reactive agents and belief-desire-intention (BDI) agents. However, the BDI model [59] 

has been widely adopted [33, 40, 59, 60, 80, 81] to build concrete agent models with 

rational behaviors. Beliefs refer to the information that an agent has about the situated 

environment; desires are agent goals that an agent would like to achieve; Intention are the 

choices with commitment [82]. The main idea of the BDI model is to explicitly represent 

beliefs, desires and intentions as the internal structure of an agent model to address agent 

autonomy [16].  
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A BDI model can be nicely modeled using PrT nets [83]. The beliefs are considered 

as internal states, which are markings of the net; the desires are goals, which are a set of 

reachable markings with respect to some initial marking; and the intentions are choices to 

reach the goals with respect to current marking. That is, an agent net is a plan that 

includes a set of transition sequences that can reach some goals with respect to some 

markings.  For example, John’s traveling plan is shown in Figure 24. John is currently at 

Miami and intends to go to Los Angeles. Los Angeles is a goal. Nevertheless, there are 

two paths available from current location Miami to Los Angeles, namely: (1) Miami-

Houston-Los Angeles, and (2) Miami-Atlanta-Los Angeles. Thus, the set of transition 

sequences 𝜎 = {𝜎1, 𝜎2}, where 𝜎1 =M0[t1>M1[t3>M2 , 𝜎2 =M0[t2>M1[t4>M2 and the set 

of reachable markings [M> = {M0,  M1,  M2}. [M> denotes the beliefs,  𝜎 denotes the 

agent plan, M2 denotes the desire, and transition sequences 𝜎1  and 𝜎2  denote the 

intentions. The net structure in Figure 24 exhibits the non-determinism that addresses the 

autonomy of path selection to reach the agent goal (Los Angeles). 

Miami Los AngelesAtlanta

Houstont1

t2

t3

t4

x

x

x

x

x

x

x

x<John>

 

Figure 24. John’s traveling plan. 

Let 𝜎 be the set of transition sequences with respect to marking M0, and [M> be the 

set of markings reachable from M0. A BDI PrT net can be formally defined as follows. 
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Definition 4.3.1 An agent plan is a net structure N = (P, T, F).  

Definition 4.3.2  The beliefs of an agent net A with respect to an agent plan N is the set 

of reachable markings [M0> with respect to M0.  

Definition 4.3.3   A goal of an agent is a goal state Mg of an agent plan N, where  

 Mg is a member of [M0>; 

 The set of goals MG = {Mg1, Mg2,, … Mgn} is called the desires of an agent plan N, 

where MG ⊆ [M0>.   

Definition 4.3.4   An intention is an execution sequence  𝜎𝑖= M0t1M1t2… Mgi, where  

 𝜎 is the set of possible execution sequences of agent plan N, and  

𝜎 = {𝜎1, 𝜎2, . . ., 𝜎𝑛};  

 𝜎𝑖  ∈  𝜎; and 

 M0 is the initial state and Mgi is the goal state. 

A BDI PrT net can be constructed by the following steps:  

(1) Identify predicates.  

(2) Identify transitions.  

(3) Define each intention by connecting relevant predicates and transitions.  

(4) Combine all intentions to form the agent plan.  

Given an initial marking describing initial beliefs, the agent plan can be checked if 

the goals are reachable. 
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4.4 Coordination Modeling 

Agents are autonomous and heterogeneous computation entities that are usually built 

independently. Therefore, one of the major concerns of designing MAS is the coherence 

of overall system. The coherence of the system usually relies on some mediator, which is 

employed for task sharing and resource sharing among agents. The process of task 

sharing [2] is considered as agent cooperation. The activities of coupling agents during 

the cooperation process are considered as agent coordination. Agent communications are 

two-way message exchanging activities to facilitate the coordination within an agent 

community. As such, a mediator agent net is employed to model the cooperation and 

coordination among agent nets (see the conceptual model in Figure 4). The idea is to 

coordinate individually modeled agent nets to constitute the global process.   

Let S be a mediator agent net as defined in Definition 3.3.2. The mediator agent net S 

can be constructed by establishing a set of coordinators for coupling agent nets. A 

coordinator in the mediator agent net manages either an input or output information 

(resources) associated with an interaction activity of an agent net. A coordinator is 

formally defined as follows. 

Definition 4.4.1 A coordinator C is a PrT net with net structure (Pc, tc, Fc) where: 

 Pc = Pd ∪ Pa, where Pd  is the set of places holding data tokens and Pa ≠ ∅; 

 Pa is the set of places holding agent net tokens and Pd ≠ ∅;  

 tc is a communication transition such that Rc(tc) ≠ 𝜆; and 

 Fc is the flow relation indicating the information flows associated with transition tc.  
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4.4.1   Coupling Agent Nets 

Figure 25 shows two different coordinators in which Figure 25(a) is an input channel 

coordinator, while Figure 25(b) is an output channel coordinator. Coordinators for all 

agent nets can be built by drawing a coordination elicitation table (CET). The CET 

provides an intermediate step to build the mediator agent net.  

inChannelA1

p

a A2

msg

(a) (b) 

a outChannelA1

p

a A2

msg

a

 
Figure 25. (a) An input channel coordinator; (b) an output channel coordinator 

Definition 4.4.2 A coordination elicitation table (CET) is a seven-columned table, where:  

Column 1. N.Rc(t) is the communication constraint of transition t in an agent 

net N; 

Column 2. C.tc is the communication transition tc of the coordinator C; 

Column 3. C.Rc(tc) is the communication constraint of transition tc of the 

coordinator C derived from  N.Rc(t); 

Column 4. C.Pd  is the set of places holding data tokens associated with tc of C; 

Column 5. C.Pa  is the set of places holding agent tokens associated with tc of 

C; 

Column 6.  C.tc is the preset of tc; 

Column 7. C. tc is the post set of tc. 

 The drawing steps of a CET are shown in Figure 26(a).  Each entry in the CET 

represents a coordinator accommodating an interaction with an agent net. Therefore, each 
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entry constitutes either an input channel coordinator (Figure 25(a)) or an output channel 

coordinator (Figure 25(b)). A coordinator in the mediator agent net manages either an 

input or output information (resources) associated with an interaction activity of an agent 

net. The mediator agent net S is generated by merging all coordinators in the CET. The 

generating steps are shown in Figure 26(b). 

Example 3: Modeling the mediator agent net (the gas station). 

First, let us look at an example to build coordinators using the steps in Fig. 26(a) for 

the Diesel_consumer agent net shown in Figure 21(a). 

Step (1) Based on Table 2, there are four entries of Rc(t) in Diesel_consumer agent net: 

S?st, S!<car, cr, st>, S?g, S?cr; thus, the first column of the coordination 

elicitation table is filled with these entries. 

Step (2) For each entry in the first column, the transition tc is added for coupling. 

Step (3) Rc(tc) of coordinator C can be defined based on column one pairing with Rc(t) 

of agent net N. 

Step (4) Define Pa and Pd based on Step (3). 

Step (5) Define F based on column Rc(tc).  

Table 3 shows the CET in which each entry produces one coordinator. Thus, there are 

four coordinators for the Diesel_consumer agent net. Each coordinator is transformed 

into a net structure according to table 3. These coordinators are shown in Figure 27(a).  
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Figure 26. (a) The steps for generating CET; (b) the steps for generating the mediator 
agent net.  

Table 3. The coordination elicitation table. 

N.Rc(t) C.tc  C.Rc(tc)  C.Pd  C.Pa C. tc C. tc 

S?st Park N!st {pumping_stations} 
{in_station, 

parked} 

{pumping_stations, 

in_station} 
{parked} 

S!<car, 

cr, st> 
Pay 

N?<car, 

cr, st> 
{transactions} 

{parked, 

waiting} 
{parked} 

{waiting, 

transactions} 

S?g PumpDiesel N!g 
{authorized,  

diesel_gas} 

{waiting, 

pumped} 

{authorized, 

diesel_gas, waiting} 
{pumped} 

S?cr Fail N!cr {authorized} 
{ waiting,  

parked} 

{authorized, 

waiting} 
{parked} 

(a)  Generating the coordinators by a coordination elicitation table (CET): 
(i) For each agent net N = (P, T, F) in the multi-agent nets MAS, list Rc(t) for all t 

in T in the first column of the table.  
(ii) Add associated transition tc in the second column for paring with each Rc(t) 

listed in the first column.  
(iii) Define Rc(tc) in the third column by the following rules:  

if N.Rc(t) = S?msg, then C.Rc(tc) = N!msg; 
if N.Rc(t) = S!msg, then C.Rc(tc) = N?msg;  

(iv) Add a place p to Pd for holding msg, an input place A1 and an output place A2 
to Pa for holding net N; if necessary, add other places for holding data tokens.  

(v) Determine tc and tc based on the following rules;  
if C.Rc(tc) = N?msg, then tc = {A1}, tc = {A2, p}, F = { (A1, tc), (tc, A2), 

(tc, p)}; 
if C.Rc(tc) = N!msg, then tc = {A1, p}, tc = {A2}; F = { (A1, tc), (tc, A2), (p, 

tc)}; 
 

(b)  Generating the mediator agent net from CET: 
(i) Merge all coordinators by removing redundant places and redirecting the arcs to 

associate transitions. 
(ii) Add local transitions and places to S based on the requirements for modeling the 

cooperation process. 
(iii) Define 𝜑, R, L and M0 for S accordingly. 
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(c) The gas station: a  mediator agent net
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Fig. 27. (a) The coordinators of the Diesel_consumer agent net; (b) the intermediate net;  
(c) the mediator agent net. 
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Next step is to merge all coordinators to form a single net structure based on the steps 

in Figure 26(b). The coordinators shown in Figure 27(a) are merged by the following 

steps. 

Step (1) Merge all coordinators in Table 3; Figure 27(b) is the intermediate mediator 

agent net by merging all coordinators in Figure 27(a); coordinators for other 

agent nets in Figure 21 can be built and merged in the same manner.   

Step (2) Merge all coordinators for all agent nets result in the mediator net shown in 

Figure 27(c). Two boundary transitions “drive_in” and “drive_out” are added 

to denote the entering and leaving of agent nets. 

Step (3)  Define the semantic definitions for the net (see Appendix A2). 

4.5 Summary 

In an effort to ease the construction of formal MAS models, this chapter presents a 

systematic approach for modeling a single agent net with an aspect-oriented approach, 

and for modeling the mediator agent net to coordinate agent nets.  

Although there were several research works incorporated aspect-oriented concepts 

into PrT nets, their focus was not on MAS modeling. For example, in [84, 85], aspect-

oriented concepts were used to address security concerns based on PrT nets. Security 

concerns were modeled as aspects and woven into a base net to generate a secured PrT 

net model. These works were not related to MAS modeling and were limited to security 

issues.  

Among research works based on UML for modeling MAS, the work in [86] proposed 

an aspect-oriented agent architecture based on UML (Unified Modeling Language). In 
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this work, essential agent concerns were separated from functional components and 

modeled as aspectual components. In [48], model roles were defined to model aspects. In 

[49], a meta-modeling framework was defined to include aspect-oriented concepts. A 

crosscutting composition mechanism was provided to compose agent models and aspects. 

These work [48, 49, 86] were based on informal methods and focused on guidelines and 

steps for the aspect orientation of an agent program’s internal structure. Their models did 

not support formal analysis. 
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CHAPTER 5 

A METHOD FOR ANALYZING FORMAL MAS MODELS 

 

Given that there is no existing method for the analysis of nested PrT nets, a model 

transformation technique is developed in this dissertation research to transform a MAS 

model with a two-level nested PrT net structure into a PROMELA program in SPIN 

(Simple PROMELA Interpreter) [38]. As a consequence, a full line of functionalities in 

SPIN can be utilized for the analysis of formal MAS models. 

Among research works for the analysis of high-level nets, there were two major 

approaches adopted: (1) simulation-based model analysis, and (2) model checking. The 

most commonly-used tool for the first approach is the CPN (Colored Petri Nets) tool [79]. 

CPN tool is a well-developed simulation tool based on Colored Petri nets. However, this 

dissertation research aims at modeling checking formal MAS models. Therefore, the 

model checking approach is adopted. There are two renowned model checkers: (1) SMV 

(Symbolic Model Verifier) [15], and (2) SPIN [23]. SMV is a tool for checking whether 

or not a finite-state system satisfies specifications given in CTL (Computation Tree Logic) 

[87]. SMV has been very successful in verifying hardware systems, however suffers from 

the state-explosion problem in verifying software systems. SPIN is a model checking tool 

based on the partial order reduction method, which is aimed at reducing the size of the 

state space needed to be explored. The SPIN verifier checks abstract models written in 

PROMELA that if a given PROMELA model satisfies the claims given in LTL (Linear 

Temporal Logic) [39]. SPIN is a well-suited tool for this dissertation research based on 

two main reasons: (1) it is a well-developed tool for model checking concurrent and 
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asynchronous software systems; and (2) it supports the modeling of asynchronous 

process interactions which is an important feature for studying multi-agent systems. 

Therefore, the idea is to transform the formal MAS model into a PROMELA model that 

can be analyzed by the model checker SPIN.   

Previous works in model translation from Petri nets to executable models generally 

fall into two major categories: (1) translation of Petri nets to high-level programming 

languages [72, 73, 74, 75]; and (2) translation of Petri nets to the meta-language 

supported in simulation tools [76, 77, 78, 79]. The authors in the first category attempted 

to use Petri nets as a central means during a model-driven system engineering process 

[88], and to generate an implementation dependent prototype from an implementation 

independent model. The works in the second category, however, focused on the 

validation of system design in critical aspects prior to implementation. The model 

transformation in this dissertation research aims at providing a method for verifying the 

proposed two-level nested PrT nets. Thus, a set of translation rules are explicitly defined 

for model transformation. The transformation technique provides a foundation for further 

automation in developing the tool for analyzing nested PrT nets.  

The rest of this chapter is organized as follows. Section 5.2 introduces PROMELA 

and its semantics engine. Section 5.3 elaborates the translation rules for model 

transformation. Section 5.4 provides the proof of correctness regarding the translation. 

Section 5.5 presents a translation example from a disaster mitigation system. Section 5.6 

demonstrates a method for analyzing the transformed PROMELA model using SPIN.  

Section 5.7 draws the conclusion. 
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5.1 The Target Language PROMELA 

The specification language used in SPIN is called PROMELA, in which the focus is 

on specifying the controls, rather on the computations, of distributed systems. The 

program structure and semantics engine of PROMELA are briefly introduced in the 

following sections. 

5.1.1  The Program Structure   

A PROMELA model is constructed from three basic types of objects: (1) processes, 

which define the behaviors of distributed entities; (2) data objects, which define the 

variables for keeping information; and, (3) message channels, which model the exchange 

of information between processes. Figure 28 shows a generic PROMELA program 

structure. The detailed syntax and grammar rules of PROMELA can be found in [38]. 

 

Figure 28. A generic PROMELA program structure.  

 

#define MAX_TOKENS 10   
mtype = { …. }     /* defines global data objects */ 
typedef TYPE { …. }    
inline FUNC { … }                        /* defines macros */ 
chan CHANNEL = [0] of { .. } /* define global message channel */ 
 
active proctype MAIN_PROCESS ( ) {  
 /*  statement sequence  */      
} 
proctype PROCESS1 ( ) { /*  statement sequence  */    } 
proctype PROCESS2 ( ) { /*  statement sequence  */    } 
……………… 
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5.1.2  The Semantics  

In a PROMELA program, each declaratory proctype defines a process. Before model 

execution, each process is transformed to a FSA (finite state automaton) describing the 

execution sequences of that process. A FSA is a tuple (S, s0, L, T, F) [38], where  

• S is a set of states denoting the possible points of control within a proctype; 

• s0 ∈S, is a distinguished initial state; 

• 𝑇 is a set of transition relations denoting the flow of controls, and 𝑇 ⊆ (𝑆 × 𝐿 × 𝑆);  

• L is a set of labels that link each transition in T with a specific basic statement that 

defines the executability (pre-conditions) and the effect (post-conditions) of that 

transition; only six basic statements are allowed as valid labels: print, receive, send, 

assignment, assertion and expression, where print and assignment statements are 

unconditionally executable; and, 

• F is a set of final states, and 𝐹 ⊆ 𝑆. 

The global behavior of a concurrent system described by a PROMELA program is 

obtained by computing an asynchronous interleaving product of automata. The resulting 

system behavior is also represented by an automaton. In the initial system state, all 

processes are in their initial state, and all data objects are set to their initial values. The 

semantics engine in SPIN executes a PROMELA model in a step by step manner. In each 

step, one executable basic statement (transition) is selected out of the transitions in all 

active processes. If more than one statement is executable, any one of them can be 

selected randomly (non-determinism). Depending on the system state, any statement in a 

SPIN model is either executable or blocked; that is, if a process reaches a point where no 
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executable transition left to be executed, it is simply blocked. On the other hand, as long 

as there are executable transitions, the semantic engine repeatedly selects one of them at 

random and executes it. The execution of a transition is to apply the effect (post-

conditions) defined in that transition. As a result, system variables, local variables, and 

the contents of channels may be modified. By simulating the execution of a PROMELA 

model, a large directed graph including all reachable system states is generated. Figure 29 

shows the operational model of the PROMELA semantics engine. 

startset initial 
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any executable 
transition t ?

select t and
apply t.effect

Y

N set current 
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blockedtime out?

stop

Y

N

 

Figure 29. The operational model of the PROMELA semantics engine.  

5.2 A Translation Method 

The translation for model analysis is aimed at providing a method for analyzing the 

proposed two-level nested PrT nets. Therefore, the overall translation principles and 

assumptions are discussed as follows. 

(1) No embedded C codes.  
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Since the objective of this work is to provide a means to model and verify the 

properties of abstract models at the system design stage, the principle is to build a smaller 

sufficient abstract model and to avoid possible redundancies. Despite the full description 

power of C language, no embedded C code is considered in this translation.  

(2) Restricted PrT nets.  

PrT nets are very expressive given that: (i) there is no explicit definition regarding the 

limitation of the quantity of tokens in a place; (ii) the sorts and their operations are 

implicitly defined in the semantic domain Spec; (iii) testing enabling conditions of 

transitions and instantiation of tokens are implicit; and, (iv) the firing sequences can be 

infinite as long as there are sufficient tokens. On the other hand, a PROMELA model is 

an executable program, in which the quantity and types of data objects are bounded and 

the execution is finite. Therefore, due to tractability, the expressive power of PrT nets 

needs to be restricted by limiting the sorts and the quantity of tokens in each place. As a 

result, the nested PrT nets to be translated have a finite state space such that model 

executions will terminate appropriately.  

(3) Interleaving semantics within a net entity.  

For simplicity, it is assumed that all transitions fire immediately after the guard 

conditions are evaluated to be true, and the firings are interleaving given that this 

restricted semantics does not affect the verification of state-based properties.    

(4) Communication channels are communicating in a one-to-one and unidirectional 

fashion.  

Broadcasting is not considered in this translation; however, it can be done through an 

appropriate setup of a loop-statement construct for multiple communications.  
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(5) Machine analysis.  

This translation aims at the verification of the proposed two-level nested PrT nets in 

order to facilitate the machine analysis of multi-agent systems prior to implementation.  

(6) Correctness of translation.  

To justify the correctness of this translation, a translation from a two-level nested PrT 

net to a PROMELA program is said to be (i) complete, if all the net entities and net 

elements in a nested PrT net are faithfully translated to a set of non-overlapping 

statements in the target PROMELA program; (ii) consistent, if the target PROMELA 

program preserves the dynamic semantics of the nested PrT net; and, (iii) correct, if the 

translation is complete and consistent. 

5.2.1   Translation Rules 

The nested PrT net to be translated is called a multi-agent net. Each net entity in a 

multi-agent net is translated to a process in the target PROMELA program. As a result, a 

process describes the behavior of an agent, which is an autonomous entity and capable of 

interacting with the others. Each net element of a net entity is translated to a set of non-

overlapping compound statements within a process to address the semantics of the net 

entity. The static semantics of a net entity is defined by the inscription ins = (φ, L, R, M0), 

while the dynamic semantics is defined by the transition enabling and firing rules in 

Chapter 3. Therefore, there are net entity translation rules and net element translation 

rules. The mapping relations are summarized in Table 4. 
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Table 4. Mapping relations of net elements to PROMELA objects. 

PrT net elements PROMELA objects 

Net Process 

Place Array data object 

Transition (event) Guard conditions →      
          statement sequence 

Communication channels Message channels 

 

A. Net entity translation rule  

Let MAS be a set of PrT nets specifying a multi-agent system, including a mediator 

agent net and multiple agent nets. Each member in MAS is translated to a process object 

in the target PROMELA program. The rule for translating net entities in MAS to their 

counterparts in the target PROMELA program is called net entity translation rule. The 

rule is defined as follows. 

Rule e.1: For every net entity 𝑁 ∈ 𝑀𝐴𝑆, add a process proctype [active] N( ) { } to the 

target PROMELA program, where N is a unique process name. 

For example, let MAS = {S, agent1, agent2}, the translated skeleton program in 

PROMELA is as follows. 

active proctype S( ) {statement sequence } 

proctype agent1(argument_list ) { statement sequence } 

proctype agent2(argument_list) { statement sequence }   
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The keyword active in the declaratory statement denotes an immediate instantiation of 

the process when the program starts to run. The system process is required to be 

instantiated immediately as soon as the program starts to run, while agent processes are 

not. Instead of declaring as active processes using the declaratory keyword active, agent 

processes can be dynamically instantiated during model execution by the statement “run 

agenti(argument_list)”, in which the name of the agent process and arguments 

representing the initial marking are instantiated through the operator run. The maximum 

number of active processes in PROMELA is 255; that is, if |MAS| = n, then 2 ≤ n ≤ 255 

given that MAS has at least two members and at most 255 members.  

B. Net element translation rules 

 Net inscription ins = (𝜑, L, R, M0) specifies the static semantics of a net entity N = (P, 

T, F) with respect to the semantic domain Spec. The translation rules for translating net 

elements P, T, F and inscription ins are called net element translation rules. 

B.1.  Place Transition Rules 

In PrT nets, a place p in P is a predicate denoting a relation among individuals. Thus, 

tokens in p are instantiations of individuals. An arc label in L specifies the variable 

extension of a place p to which the arc is connected. A consistent substitution of the 

labeled variables on an arc is an instantiation of a particular token in p. For example, a 

token <a1,…, ak> in place p is a substitution of arc label x = (x1, …, xk).   

To translate a place p to its counterpart in the target PROMELA program, the 

translation strategy is to declare an array data object for p for holding tokens. Since the 

instantiation of tokens when executing the PROMELA program is simply by selecting the 
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element directly from the array data object, the translation of the associated labeled 

variable is omitted to avoid redundancy. In PrT nets, the token type of a place p is defined 

by 𝜑(𝑝) = 𝑆𝑂𝑅𝑇, where SORT is valid data types defined in the semantic domain Spec. 

In this translation, SORT is restricted to the basic data types in the target language 

PROMELA [38]. Due to tractability, the maximum number of elements for each array 

data object has to be predefined. In addition, an index is required for each array data object 

to keep track of token deposits.  

In PrT nets, tokens deposited in a place do not have specific orders, and their 

instantiations are implicit. However, for model execution, token instantiations have to be 

explicitly defined. For simplicity, the strategy is to let the index of the array data object 

always points to the tail of the array. As a result, removing or adding a token is always 

happening at the tail of the array data object. For example, an array p has three elements 

p[0], p[1], p[2]; assuming that the index is pointing at the third element p[2], which means 

the third element p[2] is null and is the first available slot to deposit a token. On the other 

hand, if a token is to be instantiated, then p[1] will be instantiated (removed) since it is the 

first available token next to the null element p[2]. For translating initial marking M0(p), the 

array data object representing p is initialized to desired values at the time of declaration.  

In summary, place translation rules are defined based on the following principles: 

(1) For all p in P, p and its associated labeled variable are translated to an array data object 

in the PROMELA program.  

(2) The data type for array data object p is limited to the basic data types supported in 

PROMELA. 
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(3) For each array data object p, define the maximum number of elements for p, and 

define an integer variable as the index of p. 

(4) Removing or adding a token is at the tail of array data object p. 

(5) Places that hold agent tokens are not explicitly translated due to two reasons: (a) agent 

tokens (agent nets) have been covered in the entity translation rule; (b) the 

identification (process id) of an agent token is given at runtime since each agent token 

run as an independent process in the PROMELA program.  

Place translation rules are summarized in Table 5. 

Table 5. Place translation rules. 

Rule Elements associated 
with a p in P Declarative PROMELA statements 

p.1  p 
#define MAX_p = MAX; 
place_p  p[MAX_p];  
int  p_idx = TAIL; 

p.2 𝜑(p)= sort1×…×sortn 
typedef  place_p { 
               sort1  x1; … ; sortn  xn}; 

p.3 M0(p) p[MAX_p] = INITIAL_VALUES; 

 For example, let 𝜑(𝑝) = 𝑖𝑛𝑡 × 𝑖𝑛𝑡; that is, the sort of place p is a Cartesian product of 

two integers. Assuming that place p holds a maximum of four tokens, the translated 

PROMELA statements are as follows.  

#define MAX_p = 4             

typedef   place_p { int x; int y }    

place_p   p[MAX_p] = 0;   

int p_idx = 0;   
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B.2.  Transition translation rules.  

The set of transitions T specifies the events that can change the marking of a PrT net. 

For all t ∈ T, there exists a constraint formula R(t) that defines the pre-conditions for 

enabling t and post-conditions after firing t. The set of all possible firing sequences with 

respect to some initial marking defines the dynamic behavior of a PrT net. Based on the 

dynamic semantics of PrT nets, (1) an enabled transition may not fire immediately; (2) the 

firing of an enabled transition is atomic; and (3) enabled transitions can fire non-

deterministically and concurrently. In this translation, however, it is assumed that an 

enabled transition fires immediately and the transition firings are interleaving. These 

assumptions do not affect the verification of state-based system properties such as safety 

and liveness properties, thus are adequate for this study. Transition translation rules are 

defined based on the following principles:  

(1) All transitions in a net are compositional in a do…od loop. Within the loop, transitions 

in conflict are specified by a selection construct if … fi. As a result, the executability of 

transitions within the loop will be repeatedly checked in which the selection of 

transitions for execution is non-determinism based on PROMELA’s semantics engine.  

(2) The constraint formula R(t) of a transition t is translated to a associated PROMELA 

construct in the form: precondition-statements → post-condition-statements, where the 

executability of t is based on the ‘precondition-statements’ and the firing of t is an 

atomic execution of post-condition-statements in PROMELA.  

(3) The universal quantifier  ∀ and existential quantifier  ∃ in R(t) are translated into 

do…od loop statements since they involve checking all or part of the elements in an 

array data object.  
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(4) The channel command specified in R(t) is translated to a rendezvous channel with 

buffer size 0 in PROMELA to address synchronous interactions among agents. The 

system channel that is shared by all agents is declared as a global message channel to 

be used for exchanging messages among processes. In addition, a local channel in each 

process is declared to receive messages from the mediator net through the global 

message channel.  

Transition translation rules are summarized in Table 6. 

A constraint formula R(t) of t is composed of Ru(t) ∧ Rc(t), where Ru(t) is a non-

communication constraint and Rc(t) is a communication constraint; Rc(t) = ∅ if transition t 

is not a communication channel. A constraint formula R(t) is translated to a PROMELA 

construct in the form: precondition-statements-t →  post-condition-statements-t. In 

PROMELA, a separator ‘;’ is usually used for the separation of sequential composition of 

statements and declarations; it is not a statement terminator. The right arrow sign ‘→’ is a 

separator as well, and not a logical implication. For program readability, however, the 

arrow sign ‘→’ is used instead of the ‘;’ sign for separating pre-condition statements and 

post-condition statements. Precondition statements are guard statements, which may 

include relational statements (expressions with relational operators  <, >,≤ 𝑎𝑛𝑑 ≥ ), 

equality statements, inequality statements, or a compound statement of the above 

statements connecting by logical and operator ‘&&’ or logical or operator ‘||’. For 

example, if the pre-conditions for transition t are defined as: 𝑥 ≠ 1 ∧ (𝑦 = 0 ∨ 𝑧 > 1); the 

translated PROMELA statement is x != 1 && (y == 0 || z > 1). The evaluation result of the 

guard statements is either true or false.  
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Table 6. Transition translation rules. 

Rule t.1.   Communication channel translation rule 

Channel Interactions  (synchronization) 

(1) declare global message channel:  
chan S = [0] of { MSG, chan}; 
(2) declare local message channel in the 
system net:  
chan a_id; 
(3) declare local message channel in an 
agent net:  
chan me = [0] of { MSG }; 

typedef  MSG { 
 ………… 
   } 
 
(1) agent net initiate communication:  
       MSG msg; 
 

        S!start(me);      /* agent send  */ 
        S?msg(a_id);   /* the system receive 
*/  
(2) system response: 
       MSG msg; 
 

        a_id!msg;    /* system send   */ 
      me?msg;      /* agent receive   */ 

Rule t.2.    Structural translation rule 

Step 1: for each non-conflicting transition 
t ∈ T such that R(t) = pre ∧ post, R(t) is 
translated into an atomic statement: 
:: atomic { pre-statements-t →  
                          post- statements-t } 

t
 

Step 3:  for k conflicting transitions t1 .. tk  
such that R(ti) = prei ∧ posti 

t1

tk
 

Translated PROMELA statements: 
:: atomic { guard-condition → 
         if  :: pre-statements-t1 →  
                            post-statements-t1 
             :: pre-statements-t2 →  
                            post-statements-t2 
                   ……….. 
             :: pre-statements-tk →  
                           post-statements-tk 
          fi  } 

Step 2: Compose all atomic statements 
into a do…od construct: 
do   
:: atomic { pre-statements-t1 →  
                          post- statements-t1 } 
:: atomic { pre-statements-t2 →  
                         post- statements-t2 }  
     ……….. 
:: atomic { pre-statements-tn →  
                        post-statements-tn }  
od   
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Rule  t.3.   Constraint formula with channel command translation rules 

(i) R(t) = pre ∧ c?msg ∧
 post 
translated statement: 
:: atomic { 

        statements-t; c?msg 
→   post-statements-t }              

(ii) R(t) = c?msg ∧ post 
translated statement: 
:: atomic { 
    c?msg → 
          post-statements-t }                          

(iii) R(t) = pre ∧ post ∧
 c!msg 
translated statement: 
:: atomic {       
pre-statements-t →  
    post-statements- t; c!msg }             

Rule t.4.   Constraint formula translation rules 

Components PROMELA statements 

preconditions pre 
(a logical formula containing 
operators =,≠, <, >,≤,≥, ∧, ∨) 

(1) relational statements with relational-
operators <, >, <= or >= :    
      op1 relational-operator op2;  
(2) statements with equality or inequality 
operators == or !=:    
      op1 == op2; or, op1 != op2 
(3) logical statement with logical-operators 
&& or  ||:   
     relational-statement-1 logical- operators  
                relational-statement-2 

 
universal quantifier ∀ in R(t) 
(e.g., ∀𝑥 ∈ 𝑋. (𝑝𝑟𝑒 ∧ 𝑝𝑜𝑠𝑡)) 
  

int p_idx = 0;  
do  

  :: p_idx < MAX_p && !pre → break 
  :: p_idx < MAX_p && pre → p_idx++ 
  ::  p_idx >= MAX_p → post; break 
od  

existential quantifier ∃ in R(t) 
(e.g., ∃𝑥 ∈ 𝑋. (𝑝𝑟𝑒 ∧ 𝑝𝑜𝑠𝑡)) 

int p_idx = 0; 
do  

  :: p_idx < MAX_p && pre → post; break 
  :: p_idx < MAX_p && !pre → p_idx++ 
  ::  p_idx >= MAX_p → break 
od 

post-conditions post 
(a logical formula containing ∧ 𝑜𝑟 ∨) 

a statement sequence including valid 
expressions in PROMELA 
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A global message channel S_CHAN is shared by agent processes to send messages to 

the system process; local message channel a_id in the system process is used to send 

messages to agent processes; and, local message channel me in agent processes is used to 

receive message from the system process. That is, channels ‘a_id’ and ‘me’ are matching 

pairs of message channels. Note that if an input channel is used as part of the pre-

conditions and is not a sole pre-condition, then the input channel has to be put at the end 

of a set of precondition statements. The reason for this is the executability of a rendezvous 

message channel depends on the other matching message channel based on the semantics 

engine of PROMELA. It will cause an error if an input channel is put in the middle of a 

conjunction of guard statements. In addition, a separator ‘;’ has to be used instead of 

logical and operator ‘&&’ between the input channel and its previous guard statements. 

This precaution is to make sure that the original semantics of the net is translated 

correctly. For example, let agent1 = (P, T, F) be an agent net, where P = {p1, 

p2}; 𝜑( 𝑝1) = 𝜑( 𝑝2) = 𝑖𝑛𝑡; T = {t1, t2}; F = {(p1, t1), (p1, t2), (t1, p2), (t2, p2)}; L(p1, 

t1) = L(p1, t2) = x; L(t1, p2) = L(t2, p2) = z; R(t1) = x > 3 ∧ me?y ∧ z = x - y; R(t2) = 

x ≤ 3 ∧ me?y ∧ z = x + y; M0(p1) = {5}; M0(p2) = ∅; the translated PROMELA statements 

by applying translation rule  t.3 are as follows. 

 chan me = [0] of { int } 

 do   

 :: atomic { x > 3; me?y → z = x - y } 

 :: atomic { x ≤ 3; 𝑚𝑒? 𝑦 → z = x + y }  

 od   
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The transition constraint R(t1) = x > 3 ∧ me?y ∧ z = x – y, where x > 3 ∧ me?y is the 

pre-conditions and  z = x – y  is the post-condition. The pre-conditions are translated to 

PROMELA statements as “x > 3; me?y”, where  two guard statements are separated by the 

separator ‘;’ instead of logical and operator ‘&&’; that is, the pre-conditions cannot be 

specified as “x > 3 && me?y”, which will cause an error.  

If a constraint formula contains universal quantifier ∀, then the whole set of tokens 

need to be examined. For example, ∀𝑥 ∈ 𝑋. (𝑝𝑟𝑒 → 𝑝𝑜𝑠𝑡), where every element of X has 

to be checked for pre-condition pre. The strategy is to use an index for the array object 

that contains the tokens, and examine each element for the pre-condition. As soon as an 

element is found to be false, then the formula is immediately evaluated as a false. On the 

other hand, if a constraint formula contains quantifier ∃, then only one element in the array 

object is needed to satisfy the pre-condition. A constraint formula containing quantifiers is 

translated to PROMELA statements by applying rule t.4 in Table 6.  

Let us look at a translation example for a transition constraint formula without channel 

command. Let a constraint formula R(t) be defined as pre → post where pre is ∃p∈P.(p[1] 

= ra[4]) ∧ ∀r∈R.(r[1] ≠ ra[3]), and post is R’ = R ∪ <ra[3], ra[4]>∧ ra’[4] = ‘added’; the 

translated PROMELA statements are shown in Figure 30.  

5.2.2   Model Transformation 

Let MAS be the set of PrT nets called multi-agent nets specifying a multi-agent system, 

and PROG be the target PROMELA program. The transformation steps can be defined as 

follows:  
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Step 1. Apply entity translation rule e.1 to MAS such that, for all 𝑁 ∈ 𝑀𝐴𝑆, add a process 

proctype  N( ) to the target PROMELA program 𝑃𝑅𝑂𝐺.  

Step 2. For each process 𝑁( ) in 𝑃𝑅𝑂𝐺, add PROMELA statements by applying rule p.1~ 

p.3 to all 𝑝 ∈ 𝑃 associated with net entity N.  

Step 3. For each process 𝑁( ) in 𝑃𝑅𝑂𝐺, add PROMELA statements by applying rule t.1~ 

t.4 to all 𝑡 ∈ 𝑇 associated with net entity N. 

 

Figure 30. A constraint formula translation example. 

5.3 Correctness of the Translation 

The translation is under the assumption that every PrT net in the formal MAS model 

has finite tokens. In addition, an interleaving semantics is adopted in translating transition 

cnt = 0; p12_idx--; 
do :: cnt < MAX_SESSION && pa[cnt].roleP ==   
              p12[p12_idx].content →  cnt = 0; break 
     :: cnt < MAX_SESSION && pa[cnt].roleP !=  
              p12[p12_idx].content → cnt++                               
     :: cnt >= MAX_SESSION →  
                  printf("Role %e denied !", p12[p12_idx].content);   
                  p12[p12_idx].content = error 
od;                        
do :: cnt < MAX_ROLE && ra[cnt].user == p12[p12_idx].category  
                  →  ra[ra_idx].roleR = p12[p12_idx].content;           
               p12[p12_idx].content = updated; break 
      :: cnt < MAX_ROLE && ra[cnt].user != p12[p12_idx].category  → cnt++  
      :: cnt >= MAX_ROLE && ra_idx < MAX_ROLE 
                  → ra[ra_idx].user = p12[p12_idx].category;  
                       ra[ra_idx].roleR = p12[p12_idx].content;  
                       p12[p12_idx].content = added; ra_idx++; break 
      :: ra_idx >= MAX_ROLE 
                  → printf("Exceed maximum role"); 
                       p12[p12_idx].content = error; break  
od; 
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firings. The correctness of the translation is justified based on translation completeness 

and behavior consistency between two models.  

5.3.1   Completeness  

Definition 5.3.1 Given a multi-agent net MAS and a translated PROMELA program 

PROG, the translation from MAS to PROG is complete if all net entities and net elements 

in MAS are covered by associated language constructs in PROG.   

(1) Completeness of net entity translation 

Lemma 1. Given a multi-agent net MAS and a translated PROMELA program PROG, a 

net entity translation is complete if, ∀ 𝑁 ∈ 𝑀𝐴𝑆 such that, there exists a process proctype 

N( ) in PROG.   

Proof. Based on net entity translation rule e.1, a skeleton process is faithfully created for 

each net entity in MAS. Therefore, PROG covers all entities in MAS. 

(2) Completeness of net element translation 

Lemma 2. Given a net entity N in MAS and its associated process 𝑁( )  in PROG, 

where  𝑁 = (𝑃, 𝑇, 𝐹) , a net element translation of N is complete if, net elements 

𝑃, 𝑇, 𝐹 and their static semantics 𝜑, 𝐿, 𝑅, 𝑎𝑛𝑑 𝑀0  are properly mapped to associated 

PROMELA statements in process 𝑁( ). 

Proof. Rule p.1~p.3 and t.1~t.4 cover all net element translations of net N given that (i) 

for all places p in P such that, 𝜑(𝑝), 𝐿(𝑝, 𝑥) 𝑎𝑛𝑑 𝑀0(𝑝) are translated by applying rule 

p.1~p.3; and, (ii) for all t in T such that, R(t) is translated by applying rule t.1~t.4. Thus, 

the process 𝑁 ( ) covers all syntactic and static semantics definitions of a net entity N.  
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(3) Completeness of multi-agent net translation 

Lemma 3. Given a multi-agent net MAS and a translated PROMELA program PROG, a 

multi-agent net translation is complete if,  ∀ 𝑁 ∈ 𝑀𝐴𝑆 , there exists a process 

𝑝𝑟𝑜𝑐𝑡𝑦𝑝𝑒 𝑁( ) in PROG such that, 𝑁( ) covers the syntactic and static semantics of N.   

Proof. Given Lemma 2, the net element translation rules can be applied to all N in MAS. 

Thus, PROG is a complete translation of multi-agent net MAS. 

5.3.2   Consistency 

The dynamic behavior of a PrT net depends on the initial marking, instantiation of 

tokens and the definition of transition constraints. That is, the variation of the initial 

marking and instantiation of data tokens result in different execution sequences at runtime 

based on the same transition constraints. Therefore, the behavior consistency of two 

models in the translation is justified based on the same initial marking.  

Definition 5.3.2 Given a multi-agent net MAS and a translated PROMELA program 

PROG, MAS and PROG are behavior consistent if, 

(i) For every net entity N ∈ MAS, there is a process N( ) in PROG preserves the dynamic 

semantics of N. 

(ii) For every transition t in T of the net entity N ∈ MAS, there is an atomic language 

construct E in the process N( ) in PROG such that, E preserves the semantics of R(t).    

Lemma 4. Given a transition t with R(t) = pret ∧ postt in N, and its associated language 

construct E = pre-statements-t → post-statements-t in process N( ); E is semantically 

consistent with R(t) if, for a firing M[t/𝛼>M’ in N there exists an execution s E s’ in N( ) 

such that M ⟺ s and M’⟺ s’. 
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Proof. If E is executable under state s in the process N( ), then pre-statements-t must be 

true; the execution of E under state s results in state s’. By rule t.2~t.4, (i) pre-statements-

t is a mapping of pret in R(t) implies M ⟺ s; and, (ii) post-statements-t is a mapping of 

postt in R(t) implies M’⟺ s’.  

Lemma 5. Given a net entity N ∈ 𝑀𝐴𝑆, and a complete translation process N( ) in PROG 

from N, N( ) is semantically consistent with N if, for any firing sequence 𝜎 in N starting 

from the initial marking M0, there exists an execution sequence e starting from the initial 

state s0 in N( ), such that 𝜎 ⟺ 𝑒 when M0 = s0. 

Proof.  

(1) By Lemma 4, a firing 𝜎 = M0t0M1 of transition t0 under the initial marking M0 in N 

implies that there is an execution e = s0E0s1 under the initial state s0 in N( ) such that, 

M0 ⟺s0 and M1 ⟺s1; thus, e is semantically consistent with 𝜎.      

(2) By (1), e is semantically consistent with 𝜎 for the case 𝜎 = M1t1M2 and e = s1E1s2 

such that, M1 ⟺s1 and M2 ⟺s2. It immediately follows that e is consistent with 𝜎 for 

the case 𝜎 = M0t0M1t1M2 and e = s0 E0s1E1s2, since M1, s1 are the derivatives of M0, s0 

and M2, s2 are the derivatives of M1, s1 respectively.  

(3) By (1) and (2), for an execution 𝜎 = M0t0M1t1M2….Mk-1tk-1Mk starting from the initial 

marking M0 in N, there is an execution e = s0 E0s1 E1s2… sk-1 Ek-1sk starting from the 

initial state s0 in N( ) such that, 𝜎 and e are consistent given that  M0 ⟺ s0, M1⟺ 

s1, …, and Mk⟺sk. 
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(4) Based on the same initial state, other executions are proved by (1), (2) and (3). Thus, 

given a net entity N and a complete translation process N( ) from N, N( ) preserves the 

semantics of N. 

By Lemma 1 through 5, the correctness of this translation approach transforming the 

formal MAS model to a concrete model in PROMELA is proved.   

5.4 A Translation Example 

Figure 31 shows a formal MAS model specifying a disaster mitigation system called 

BCIN (Business Continuity Information Network) [89]. Based on our previous study [90], 

BCIN employs a role-based access control for system resources. Each role has a distinct 

behavior model. The BCIN net shown in Figure 31 is the formal model to visualize the 

control of resources in BCIN. The semantic definitions for BCIN net are shown in 

Appendix A4. BCIN net is transformed to a PROMELA program by applying the 

translation rules defined in the previous sections. The resulting BCIN net consisting of one 

system net and four agent nets, has 28 transitions (excluding boundary transitions), 31 

places and 16 communication channels.  

The translated PROMELA model contains 237 lines of codes, including five processes: 

(1) the system net; (2) supervisor role (S_NET); (3) observer role (O_NET); (4) primary 

contact role (P_NET); and, (5) participant role (PR_NET). The PROMELA model for the 

BCIN net is shown in Appendix B.  
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Figure 31. The BCIN net.  

5.5 Model Analysis 

Two types of correctness claims are considered in model checking the formal MAS 

model: (1) safety properties; and (2) liveness properties. A safety property defines an 

invariant that the model must always satisfy. A liveness property states that something 

good does happen on executing the model. Given a transformed PROMELA model, and 

correctness claims given in LTL, the model checker SPIN either proves that such claims 

are impossible or it provides examples of behaviors that match the claims. There are 

several ways to encode correctness claims in PROMELA. This section discusses how a 

transformed formal MAS model can be analyzed by the model checker SPIN.  
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5.5.1  Encoding System Properties in PROMELA 

In SPIN, correctness claims are used to formalize erroneous system behaviors. The goal 

is to decide whether design requirements could possibly be violated [38]. There are six 

basic constructs in PROMELA to specify correctness properties:  

(1) Basic assertions; an assertion statement is a correctness claim, which asserts that the 

expression used in the statement cannot be false.  

(2) End-state labels; a meta-label indicating a valid end-state other than the default end-

state of a process. A default end-state is at the end of the codes of a process. 

(3) Progress-state labels; a meta-label marking the execution of some statement; they 

can be used to detect a non-progress cycle. 

(4) Accept-state labels; they are used to find all cycles that do pass through at least one of 

those labels; and, there should not exist any execution that can pass through an 

accept-state label infinitely often. 

(5) Never claims; they are used to specify either finite or infinite system behavior that 

should never occur. A never-claim is checked at each execution step of the model 

execution. 

(6) Trace assertions; they are used to formalize statements about valid or invalid 

sequences of operations that processes can perform on message channels [38]. All 

channel names referenced in a trace assertion must be globally declared, and all 

message fields must be globally known constants or mtype symbolic constants. 

Traces on monitoring rendezvous channels can only capture the occurrence of the 

receive part of a handshake, not of the send part. Receive events on rendezvous 

channels can be monitored with trace assertions, but not with never claims. 
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Let us look at some examples using the above constructs to encode the correctness 

claims of the BCIN net [90]. Since BCIN net models the resource control among agent 

nets, there are several important properties need to be ensured:  

(a) A user cannot access the system without a valid role assignment.  

(b) A user enacting a role can only perform the actions pre-assigned based on permission 

assignments.  

(c) A user can only play a role at one time. 

(d) For each request received by the system net, there will be a response to the agent net 

eventually.  

Property (a), (b) and (c) are considered as safety properties, which are required to be 

true at all times, and property (d) is considered as a liveness property. Safety properties 

can be encoded using basic assertions or never claims, while liveness properties can be 

encoded using meta-labels and trace assertions. These properties are translated into 

PROMELA codes as follows. 

Although the constraint formula: ∀r∈R.(r[1] ≠ u) defined in transition ‘UserOut’ 

(Appendix A4) enforces the elimination of  invalid user tokens, a system invariant can be 

defined to check whether or not the BCIN model satisfies property (a). For example, the 

constraint formula states that if the user has not yet been assigned a role (a member of the 

set of role assignment R), then the user cannot enter the system. Intuitively, all users in the 

system must be members of the set R. Therefore, the correctness claim can be defined as 

follows. 

Property (a) 
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 assert ( valid_user == ra[0].user || valid_user == ra[1].user || valid_user == 

ra[2].user ) 

The assertion states that a valid user must be one of the users that defined in the array 

data object ‘ra’ that stores valid role assignments. All possible user identities need to be 

enumerated in order to check if this correctness claim is satisfied. An assertion statement 

is the only type of correctness property that can be checked in the simulation mode in 

SPIN. The execution will stop at the point where the assertion fails. 

Another way to encode the correctness claim for this property is using a never claim. 

The property requires that a user cannot access the system without a valid role assignment; 

that is, at all time, users who are in sessions should be valid users.  In the PROMELA 

model for BCIN net (Appendix B), the array data object ‘session[act_idx].sname’ stores 

the user names in sessions. Therefore, when ‘session[act_idx].sname’ is not null, it has to 

be one of the member of role assignments stored in the array data object ‘ra’. Let 

proposition p denotes users in sessions, and proposition q denotes valid users. The 

property can be encoded into a LTL formula [] (p -> q), where  

 p is defined as: session[act_idx] != NULL, and 

 q is defined as:  

(session[act_idx].sname == ra[0].user || session[act_idx].sname == ra[1].user || 

session[act_idx].sname == ra[2].user || session[act_idx].sname == ra[3].user ) 

SPIN provides a built-in translator that translates a LTL formula to never claim 

statements. A property can be encoded in a LTL formula first, and then translated into 

PROMELA codes using the translator provided. The PROMELA statements generated 
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from the above formula is shown in Figure 32, which results in the verification report in 

Figure 33. 

In BCIN net, an actor is a valid user enacting a predefined agent role. An agent role is a 

role model with predefined permission assignments for accessing system resources. The 

constraint formula: ∃p∈P.(p[1] = a[2]) defined in transition AssignPA (Appendix A4) 

makes sure that an associated role model is available to be activated. To assure this 

property, a correctness claim can be defined as follows. 

Property (b) 

 assert (actor.roleR == pa[0].roleP || actor.roleR == pa[1].roleP || actor.roleR == 

pa[2].roleP || actor.roleR == pa[3].roleP) 

The assertion states that an agent role that an actor is enacting must be one of the 

predefined role models.    

A session constraint is enforced by the formula ∃ s∈ S.(s = u) in the constraint 

definition of transition UserOut. In the PROMELA model, an assertion statement “assert ( 

inSession == false)” asserts that a user can only have one session at a time.  

Property (c) 

The message channels in agent processes are declared as local message channels in the 

BCIN model. Since a trace assertion can only monitors global channels, this property can 

be checked simply using a progress label at a receiving message channel to make sure the 

agent receives the information from the server. For example, “progress: me?m” states that 

Property (d) 
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it is impossible for the system to execute forever without also passing through the labeled 

states.  In other words, the receive-message channel in an agent process should be visited 

infinitely often. 

 

Figure 32. The PROMELA codes for a never claim.  

#define p (session[act_idx].sname != NULL) 

#define q (session[act_idx].sname == ra[0].user || session[act_idx].sname == 

ra[1].user || session[act_idx].sname == ra[2].user || session[act_idx].sname == 

ra[3].user ) 

 

 /* 

  * Formula As Typed: []  (p  ->  q) 

  * The Never Claim Below Corresponds 

  * To The Negated Formula !([]  (p  ->  q)) 

  * (formalizing violations of the original) 

  */ 

 

never {    /* !([]  (p  ->  q)) */ 

T0_init: 

 if 

 :: (! ((q)) && (p)) -> goto accept_all 

 :: (1) -> goto T0_init 

 fi; 

accept_all: 

 skip 

} 
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Figure 33. The verification report for the never claim.  

(Spin Version 5.2.4 -- 2 December 2009) 
 + Partial Order Reduction 
 
Full statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 acceptance   cycles  + (fairness disabled) 
 invalid end states - (disabled by never claim) 
 
State-vector 234 byte, depth reached 174, errors: 0 
      148 states, stored 
       33 states, matched 
      181 transitions (= stored+matched) 
      452 atomic steps 
hash conflicts:         0 (resolved) 
 
Stats on memory usage (in Megabytes): 
    0.035 equivalent memory usage for states (stored*(State-vector + 
overhead)) 
    0.262 actual memory usage for states (unsuccessful compression: 
743.19%) 
          state-vector as stored = 1842 byte + 16 byte overhead 
    2.000 memory used for hash table (-w19) 
    0.305 memory used for DFS stack (-m10000) 
    2.501 total actual memory usage 
 
 
pan: elapsed time 0.002 seconds 
 
#endif 
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In summary, safety properties can be checked through never claims and basic 

assertions, while liveness properties can be checked through never claims, progress-state 

labels and trace assertions. One important liveness property in formal MAS models is that 

an agent’s request is eventually responded. This can be checked by using a progress-state 

label at the receive-message channel statement of an agent net. SPIN provides a translator 

for translating valid LTL formulas into never claims.  Note that, liveness properties deal 

with infinite runs. An infinite run only happens in a finite system if the run is cyclic [38]. 

SPIN checks liveness properties by identifying acceptance cycles [38]. Table 7 

summarizes the encoding rules.  

Table 7. Encoding system properties 

System Properties PROMELA statement 

System invariant: 
   
         [] p  

#define p ………. 

assert (p) 

Properties expressed in LTL: 

(1) [] (p -> q) 

(2) [] (p -> <> q) 

(3) <> [] p 

(4) [] (p -> <> q) 

(5) Other valid LTL formula 

#define p ………. 

#define q ………. 

never { 

………. 

} 

 

Liveness property: 

an agent net eventually  received  

the response   

……… 

progress: 

       me?msg; 

………… 
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5.5.2  Model Checking the MAS Model 

Table 8 shows the transformation statistics from the BCIN net to the PROMELA 

model. 

After generating the PROMELA model and desired correctness claims, the model is 

ready to be checked in SPIN. There are verification mode and simulation mode in SPIN. 

Usually, the model is checked in the verification mode first. If errors are found, execution 

trails can be examined step by step in the simulation mode. 

Table 8. Statistics of model transformation. 

The BCIN Net The PROMELA Model 

 5 individual nets 

(1 system net and 4 agent nets) 

 31 places 

 28 transitions 

(including 16 communication 

channels, excluding 

boundary transitions) 

 5 processes 

 237 lines of codes 

 328 execution trails generated 

(executing with some initial 

marking) 

 2.501 Mbytes of memory used 

(500 states per second) 

 

The BCIN model is used as an example running under XSpin version 5.2.3 based on 

the following initial marking (initial state):  

M0(User) = {<Emily>};  

M0(RAs) = {<David, observer>, <Alice, supervisor>, <Emily, contact>};  

M0(PAs) = {<observer, O_NET>, <supervisor, S_NET>, <contact, P_NET>, 

<participant, PR_NET>};  

M0(BCIN_Database) = {<advisory, Wilma>, <message, generator>}.  
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While the BCIN model is checked under the verification mode, agent nets are activated 

at different point in the PROMELA model to test the correctness of interactions between 

processes at runtime. In addition, unknown agent identities are also intentionally 

introduced at some points of the execution to test the exception handling of the 

PROMELA model. System properties (a), (b), (c) and (d) defined in the previous section 

are added in the PROMELA model and checked in both verification mode and simulation 

mode. While execution in verification mode, there was an error found as shown in Figure 

34. By examining the simulation trails and sequence chart, the errors from the verification 

report and some subtle errors in the PROMELA model can be found and fixed. The 

interaction of agent processes in the corrected BCIN model is shown in Figure 35.  

 

Figure 34. The verification output with non-progress cycle detected.   
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Figure 35. The sequence chart of agent interactions in a simulation run.  

5.6 Summary 

In this chapter, a methodology for analyzing formal MAS models is developed and 

presented. The objective is to provide a method to study the behavior of a given MAS 

model. The methodology is summarized as follows. 

(1) Translation rules are defined for model transformation from the formal MAS model 

to the PROMELA model, including the net entity translation rule that transforms a 

PrT net into a process skeleton in PROMELA, and net element translation rules that 

transform places and transitions into their associated PROMELA language constructs. 

(2) Given a nested PrT net model specifying MAS, an equivalent PROMELA model can 

be generated using the translation rules defined. 
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(3) Given the transformed PROMELA model, the correctness claims can be encoded for 

model checking, including safety properties and liveness properties. 

(4) The PROMELA model can be executed in the verification mode for checking desired 

properties. If there are errors, the model can be diagnosed under the simulation mode 

by examining the execution trails generated during verification.  

Based on this study, the transformed PROMELA model is fairly efficient in model 

analysis. However, there are two issues need to be considered for further automation of 

code generation from a formal MAS model to a PROMELA program. First, due to the 

complexity of transition constraints, manual modifications for transition translation may 

be needed after applying the translation rules. Second, since tokens at a place are 

structured data represented by an array data object, specifiers need to enumerate all 

possible substitutions to construct correctness claims.  

The methodology presented in this chapter provides a foundation for tool development. 

The future work is to automate model analysis based on the transformation technique 

developed. The idea is to use nested Petri nets as the modeling tool for behavior models at 

the front-end, and the model checker SPIN as the analysis tool at the back-end.   
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CHAPTER 6 

CASE STUDY 

 

This chapter discusses case studies in three different application domains. Section 6.1 

presents the case study of a wireless sensor network with mobile devices. Section 6.2 

introduces the case study of an e-market. Section 6.3 elaborates the modeling of a 

business continuity information network for disaster mitigation.  

6.1 Wireless Sensor Network with Mobile Devices 

 Recent wireless sensor network systems (WSN) integrate mobile devices to take 

advantage of the storage, communication ability and computation power of the mobile 

devices for gathering and sharing sensor data [34]. Since mobile devices constantly 

change their locations, the idea of sharing information through WSN with mobile devices 

is in a publish/subscribe pattern where the subscribers (some mobile devices) express the 

interest in some class of information and the publisher (some mobile device) picks up the 

information from a sensor at its current location and broadcasts the information to the 

subscribers. An information server is employed to manage group information of the 

mobile devices.  

A key idea of the coordination is that mobile devices share common interest (sensor) 

data within the same group or among different groups. The coordination mechanism is a 

form of publish and subscribe and provides a paradigm for organizing multiple mobile 

devices through an interest-management server, in which groups of mobile devices are 

formed based on the location of their interested information. Mobile devices that issue 

queries for sensor data are subscribers. The server manages subscribers' information but 
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does not directly publish sensor data; that task is actually done by mobile devices using a 

multicast mechanism that sends the shared data to a group address given by the server. 

The sensor nodes in WSN are divided into clusters according to their geographic 

locations and the information of clusters is kept in the server. Each cluster, identified by a 

unique cluster id, has a cluster head and the sensor data within a cluster is periodically 

sent to the cluster head, which serves as a communication point with entities outside the 

cluster. The entities involved in communication behaviors have been identified and 

shown in Figure 36.  The arrows denote the message flows. 

 
 

subscribe

Mobile
Device

Server

friendly update

group joiningCluster
Head

unsubscribe

pickup data

sensor data

gain publish

Group Address

fail

 
 

Figure 36. Message flows between the entities in a WSN with mobile devices. 

 
The WSN with mobile devices [91] is used as an example and modeled using the two-

level PrT nets defined in Chapter 3. Based on the communication relations in Figure 36, 

the mobile devices are modeled as agent tokens of a server net.  A mobile device can 

issue a query (subscribe), pick up sensor data, publish shared data, gain shared data and 
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unsubscribe. The behavior models of a mobile device and the server net are discussed in 

the following sections. 

6.1.1   The Interest-Management Server Model 

When the server receives a query request from a mobile device, there are some 

interactions between the server and the mobile device. The interaction scenarios are 

described as follows.    

(1) The server checks whether or not there exists some common interest group with an 

interest at current location of the mobile device. If there is an existing common interest 

group at current location of the requesting mobile device, a message containing the group 

address is sent back to the mobile device. The message includes the instruction for 

'friendly update', which is an action for the mobile device to pick up the sensor data from 

the relevant cluster head. After picked up the sensor data, the mobile device multicasts 

the data to the group address indicating in the message from the server.  

(2) Followed by the friendly update, the server adds the requesting mobile device to the 

identified common interest group(s) that have the same query region as the subscribing 

mobile device. In the case that no existing cluster region covers the query region, a failed 

message is sent to the mobile device. The mobile device can unsubscribe after getting the 

result. When the server receives an unsubscribe message, it removes the information of 

the unsubscribing mobile device. Table 9 summarizes the actions of the server. 

The following conventions have been used: (1) the model does not restrict the multiple 

subscriptions of the same group for the same mobile device; (2) it is assumed that the 

information required for multicasting is kept in the server, and the information is 

accessible during a multicast; (3) there is no action for a mobile device to temporarily 
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join a group to perform a friendly update; (4) the original query content is used as the 

unsubscribing message and assume that the group address described in the requirement is 

a unique and fixed value, such as a cluster id. Figure 37 shows the server's behavior 

model according to the information and control flows in Table 9. 

Table 9. The server’s actions. 

Actions Pre-conditions Post-conditions 

Subscribe 
Mobile device sends a 

query   
Query received  

Instruct friendly 

update 

Mobile device’s current 

location exist common 

interest sharing group.  

Sends a message to mobile 

device to instruct a friendly 

update at its current location. 

Group Joining 

Mobile device’s query 

region is covered at least by 

one cluster 

Adds the mobile device to the 

common interest sharing group 

(s) with the same query region 

and sends a joining message to 

the mobile device. 

Fail  
None of the cluster regions 

covered the query region. 

Sends a fail message to the 

mobile device. 

Unsubscribe 

Received the unsubscribe 

message from a mobile 

device 

Removes the information of 

the unsubscribing mobile 

device 
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Figure 37. The behavior model of the information server. 

 
Semantic Definitions of the Server net 

Token Types: 

)()3(
)()4()2(

)()1(
)(_

_

CLUSTERp
QUERYMobileNetpp

MobileNetp
MobileIDssGroupAddreregionClusterClusterIDCLUSTER

TimeToLiveregionQueryationCurrentLocMobileIDQueryIDQUERY

℘=
×℘==

℘=
℘×××=

××××=

ϕ
ϕϕ

ϕ  

Note that, QUERY and CLUSTER are Cartesian product of predefined data types, which 

define the contents of a query, and the subscribed information about common interest 

groups, respectively. Query_region and Cluster_region are of the same type that can be 

used to represent a set of coordinates, which define the covered region of a query and the 

cluster region, respectively. The MobileNet is the net token defined by a mobile device 

net. 
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Transition Constraints: 

])2[]4[]4[']4[]2[.(?)(
'_']!2[)]4[]2[.()(

)],3[],2[(]!2[])2[]4[]4[']4[]2[.()]4[]2[.()(
)],3[],2[(]!2[)]4[]]2[]3[.()_(

?)(

qccqcCcqneunsubscribR
failedonsubscriptiqqcCcfailR

qccqqccqcCcqcCcjoinR
qccqccqCcupdatefR

mdmqnsubscribeR

−=∧∅≠∩∈∀∧=
∧∅=∩∈∀=

∧∪=∧∅≠∩∈∀∧∅≠∩∈∃=
∧∅≠∧∈∈∃=

=∧=

 

Note: transition subscribe is fireable when a matched output channel n in other net is 

ready. Transition f_update is enabled if mobile device q[2]’s (an id) current location q[3] 

is in cluster region c[2] and a non-empty set c[4] of mobile devices subscribed to cluster 

region c[2]. After firing, the friendly update message is sent through the channel. 

Transition join add mobile device id q[2] to the set of subscribed mobile devices c[4]. If 

query region q[4] is not covered by any cluster region c[2] in C, transition fail will fire 

and a failing message is sent through channel q[2]. Transition unsubscribe removes the 

active query token and its subscribed information.  

6.1.2   The Mobile Device Model 

A mobile device communicates with the user, server, other mobile devices and cluster 

heads. First, a user may generate a query through the interface on the mobile device when 

he/she needs information. Then, the mobile device sends a query request message to the 

server for subscription. Various actions may be taken according to the responding 

message from the server. If a friendly-update instruction message is received, the mobile 

device has to pick up the sensor data from the cluster head at current location, and 

publishes the data to a group address indicating in the friendly-update message. Upon 

receiving the group-joining instruction message and by the expiration of Time-To-Live 

time frame, the mobile device may receive the data through other mobile devices.  
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Table 10. A mobile device’s actions. 

Actions Pre-conditions Post-conditions 

input query 
The user of the mobile 
device needs information 

A query is generated containing 
query id, mobile id, current 
location, query region and 
Time-To-Live(valid time)  

Subscribe 
A query message is ready to 
send to the server. 

Waits for the reply from the 
server. 

friendly update 
The server instructs a 
friendly update  

Get the friendly update message 
and ready to pickup data from 
the cluster head in current 
region  

join 
Server has sent a group-
joining message 

(1) received sharing data from 
group members, or 

(2) picks up the sensor data 
directly by itself 

(3) performs direct injection to 
acquire the data and 
publishes 

Fail  
Server has sent a failed 
message  

Outputs the error message to the 
user 

Gain 
Cluster data is published by 
group members 

Got the data and ready to 
unsubscribe 

Publish 
Sensor data has been picked 
up. 

Published the data and ready to 
unsubscribe 

Direct pickup 
Current location is inside 
the query region 

Interact directly with cluster 
head to acquire sensor data 

Direct injection 

Current location is not in 
the query region and the 
valid time for the query 
is about to expire and no 
sharing data is available 

Request sensor data from query 
region cluster head remotely 
through sensor network 
routing 

Unsubscribe 
Received the data and sends 
an unsubscribe message to 
the server 

Outputs the data to the user 
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In other case, if the mobile device traveled to the same region with its query region 

before receiving the interested data through group sharing performed by the other mobile 

devices, it can pick up the sensor data itself and share the data with the members in the 

same group. If no such group sharing event happens when the time of a valid query is 

going to expire, i.e., no one in the same group ever reached the query region or no 

friendly update is performed, the mobile device will perform the ‘direct injection’, which 

is a way of getting the sensor data from the query region through sensor network routing. 

After received and published the data, the mobile device can unsubscribe from the server. 

The data received by the mobile device is properly extracted and displayed on the 

interface of the mobile device for the user. Table 10 shows the actions of a mobile device. 

Based on the actions listed in Table 10, the behavior model of a mobile device is 

developed and shown in Figure 38. Figure 39(a) shows the group address multicast 

behavior model, and 39(b) shows the cluster head’s behavior model. It is assumed that a 

mobile device knows its location through the GPS (Global Positioning System) or other 

localization techniques. Place p8 in Figure 38 keeps the mobile device’s id and its current 

location. Place p2 in Figure 39(a) refers to the same database as place p3 in Figure 38, 

which is assumed to be accessible during a multicast. In the model, the content of the 

responding message from the server contains the query information.  

Semantic Definitions of Mobile Device’s PrT Model 

Token Types: 
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ationCurrentLocMobileIDp
DATAp

DATAQUERYp
ssGroupAddreDATAp

QUERYssGroupAddrep
QUERYssGroupAddreregionClusterp

QUERYp
TimeToLiveregionQueryQueryIDp

TimeToLiveregionQueryationCurrentLocMobileIDQueryIDQUERY

×=
℘=

×℘=
×℘=

×℘=
××℘=

℘=
××=

××××=

)8(
)()7(

)()6(
)()5(

)()4(
)_()3(

)()2(
_)1(

_

ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ

 

Note: QUERY, Cluster_region and Query_region are of the same type as defined in the 

server’s behavior model. QueryID, MobileID, CurrentLocation, TimeToLive, 

GroupAddress and DATA are predefined data types.  

Transition Constraints: 

)],2[(!]2[)_(
!]2[)(

?)(
),,?()(

?)(
),,?()_(

!]3[]5[]2[]4[]2[]3[]1[]2[]1[]1[)(

gaqcrcrclpickupdirectR
sgagaspublishR

dgagainR
qgacrSjoinR

dSfailR
qgacrSupdatefR

qSrqrqclqclqrqsubscribeR

∧∈=
∧==

=
=
=

=
∧=∧=∧=∧=∧==

 

dcrindatasensorR
qSeunsubscribR

gaqcrqcrclinjectiondirectR

?)__(
!)(

)],2[(!]5[]2[)_(

=
=

∧−=∧∉= ετ
 

 
Note: ε is a predefined and small constant value, which is determined by the designer to 

enforce the firing of the transition. Transition input query and output data are boundary 

transitions for user interface. Transition positioning is the boundary transition that has the 

function of obtaining the current location (coordinates) of the mobile device. Transition 

subscribe is enabled whenever there is token r available from the input place p1 and a 

matched input channel S in the server net is ready. Transition f_update, join and fail are 
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unconditionally ready for firing whenever output channel S in the server is ready to 

output messages. Transition gain is unconditionally ready for fire whenever output 

channel ga from group address multicast is ready to broadcast messages. Transition 

publish is ready for firing when sensor data s is received through transition sensor data in 

through input channel cr. Transition direct pickup is enabled if current location cl[2] is in 

query region cr. After firing, a message is sent through output channel cr to the cluster 

head to request data. Transition direct injection is enabled if current location cl[2] is not 

in the query region and the time to live q[5] is going to expire within ε. Transition 

unsubscribe is enabled if query q is finished and data d is available in p6. After firing, 

data d is output to p7 and query q is sent through output channel S to the server to be 

removed from subscribed information. 
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Figure 38. The mobile device's behavior model. 
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Figure 39. (a) Group address multicast (b) Cluster head data communication  

Semantic Definitions of Group Address Multicast’s PrT Model 

Token Types: 

)()2(
)1(

)(_

CLUSTERp
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Transition Constraints: 
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Semantic Definitions of Cluster head Data Communication’s PrT Model 

Token Types: 
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=
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Transition Constraints: 

),(!)(
),?()(

gadmdsendR
gamdmdreceiveR

=
=

 

6.1.3   A Query Request Scenario 

Let us look at a simple scenario based on the behavior models defined in previous 

sections.  
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A campus WSN system with information-management server keeps the information of 

three cluster regions: library, cafeteria and gymnasium. The students on campus are 

usually interested in the conditions of these locations (for example, available space in the 

library). There are four students, John, Mary, Peter and Eric with their own mobile 

devices, and they are at different locations on campus. John and Mary are currently at the 

library; Peter is at the cafeteria and Eric is at the gym. Eric finished his workout and is 

heading to the cafeteria but wondering if the cafeteria is crowded or not. So Eric sends a 

query request through his mobile device to subscribe for information about the cafeteria. 

In the meantime, John and Mary finished their study at the library and are also heading to 

the cafeteria for lunch; they have sent query requests and subscribed for the information 

about the cafeteria. Peter has finished his lunch at the cafeteria and is heading to the gym. 

He subscribed the information for the gym. As such, two different common interest 

groups have been formed based on the interested regions: (1) John and Mary for the 

cafeteria, and (2) Peter for the gym. Eric's query request scenario is used as an example to 

demonstrate the interaction behaviors between Eric and the server. Let the current 

marking M0 of the server for the above scenario be the following: 

M0 (p1)={John, Mary, Peter, Eric} 

M0 (p2)= ∅   

M0 (p3)={(1, library, 1, ∅ ), (2, cafeteria, 2, {md1,md2}), (3, gym, 3, {md3})} 

M0(p4)={(John, q1, md1, library, cafeteria, 10),  (Mary, q1, md2, library, cafeteria, 10), 

(Peter, q1, md3, cafeteria, gym, 10)} 

For simplicity, only Eric's mobile device net is demonstrated in which there are 

interactions with the server, the group address multicast and the cluster head. Initially, 
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only place p8 has tokens, which stores the mobile ids and the current location of the 

mobile device. After Eric sent a query request through the mobile device's interface, a 

query request message containing the information of a query id, a mobile device id, the 

current location, the query region and a maximum waiting time for the query is 

generated. That is, there is a token q = {q1, md4, gym, cafeteria, 10} has been generated. 

Since the server is ready to input message through transition ‘subscribe’, together with 

the transitions ‘subscribe’ in the mobile device net,  a synchronized communication 

occurs as a result of firing a pair of matching transitions. After firing the matching 

transitions, the server received the query request. That is, the token {Eric, q1, md4, gym, 

cafeteria, 10} is output to p2 in both nets. This query simply says that the mobile device 

md4 is interested in the information of the region cafeteria; and its current location is 

gym; and, this query is valid only within 10 seconds after the query is sent. The mobile 

device is ready to join a common interest group. 

Next, the server checks if there exists a common interest group in mobile device md4's 

current location gym. Refers to place p3, which holds the information of subscriptions 

and regions in the server net, there is a common interest group indicating cluster id '3', 

which is the region gym, linking a group address '3' and mobile device id 'md3'. The 

server then responds with the friendly update message containing {gym, 3} through 

output channel ‘md4’, which is the communication channel to Eric's mobile device. The 

mobile device's input channel ‘f_update’ simultaneously receives that message. Eric's 

mobile device then requests the sensor data through the communication channel ‘direct 

pickup’ with the cluster head at the situated region. As soon as it got the response through 

‘sensor data in’ from the cluster head, the mobile device publishes the data to the group 
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address ‘3’ through the firing of transition ‘publish’ in Figure 38. The shared data is sent 

through a multicast, and the mobile device ‘md3’, which is Peter, will receive the data. 

After instructing a friendly update, the server adds Eric's mobile device to the group of 

region 'cafeteria' through a simultaneous firing of transition 'join' in Figure 37 and Figure 

38. Eric’s mobile device received the group joining message containing {cafeteria, 2}, 

indicating that he has joined in the group address ‘2’ in region cafeteria. After Eric joined 

the group, Mary happens to arrive at the cafeteria and gets the information of the cafeteria. 

She publishes the information for sharing to group address '2'. All the mobile devices in 

the same group, John and Eric, received the information of the cafeteria through input 

channel 'gain'. After Eric received the data, he sends an unsubscribing message through 

transition 'unsubscribe' with output channel S to server. Server receives the message and 

removes Eric's subscription information. The firing sequence of the mobile device net 

regarding Eric's query request is as follows. 

M0 [input query> M1 [subscribe> M2 [f_update> M3 [direct pickup> M4 [sensor data in> 

M5 [publish> M6 [join> M7 [gain> M8 [unsubscribe> M9 [output data> 

  
The firing sequence of the server net regarding Eric's query request is: 

M0 [subscribe> M1 [f_update}> M2 [join> M3 [unsubscribe> 
  
The firing sequence of the group address multicasting net and the cluster head net regards 

to Eric's query request is: 

M0 [receive> M1 [send> 
  
The corresponding pairs of communication channels are listed in Table 11. 

Let the firing sequence of Eric's request query be the sequence called ReqSeq, the 

transition firings of these nets be represented in the order of [server net, mobile device 
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net, group address multicast net, cluster head net], and λ  be no transition firing in the 

net. The concurrently firing sequence ReqSeq of these nets regarding Eric's request query 

is as follows.  

ReqSeq = [λ , input query, λ , λ ], [subscribe, subscribe, λ , λ ], [f_update ,f_update, λ , 

λ ], [λ , direct pickup, λ , receive], [λ , sensor data in, λ , send],  [λ , publish, receive, 

λ ], [join, join, λ , λ ], [λ , gain, send, λ ], [unsubscribe, unsubscribe, λ , λ ], [λ ,output 

data, λ , λ ] 

Table 11. Communication channels. 

Server Mobile Device Group 
Multicast 

Cluster 
head 

Subscribe(in) Subscribe(out)   

F_update(out) F_update(in)   

Join(out) Join(in)   

Fail(out) Fail(in)   

Unsubscribe(in) Unsubscribe(out)   

 Publish(out) Receive(in)  

 Gain(in) Send(out)  

 Direct 
pickup(out)  Receive(in) 

 Sensor data in(in)  Send(out) 

 Direct 
injection(out)  Receive(in) 

 

6.1.4   Discussion 

 During this study, the applicability of two-level nested PrT nets is examined in 

modeling various aspects of an agent – autonomy, reactivity, pro-activeness, sociability, 
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and mobility. It is worth noting that, through this case study [91], I found the usefulness 

of formal modeling, which forces me to explicitly deal with all hidden assumptions and 

missing requirements. The messages and control flows between mobile devices and the 

server can be nicely modeled using two-level nested PrT nets. However, WSN involves 

low level communication mechanisms, such as the multicast. Although, the broadcasting 

of messages can be specified by a first order logic formula indicating all agent members, 

the details of low-level communications have to be abstracted away, such as identifying 

current coordinates (locations) of a mobile device. 

6.2 E-Market 

 In the e-market study [36], an Interaction Model is defined to handle the coordination 

behaviors of a set of possible agent conversations in an e-market. A Conversation is an 

execution sequence, which is initiated by a requestor and ended with a successful 

commitment or terminated by a failure resulted from any participant that is engaged in 

the conversation. In a typical e-market, there are buyers and sellers engaging in some 

high-level negotiations for the goods.  

Let us consider a simple conversation scenario at an e-market where seller and buyer 

auctioning goods. The conversation is in a format as: sender: communicative act, 

message content and receiver. An example of conversations is as follows. 

Seller: request, ‘sell book 30’, broker 

Broker: agree, ‘posted book 30’, seller 

Buyer: request,’ buy book 25’, broker 

Broker: inform, ‘sell book 25’, seller 

Seller: commit, ‘commit book 25’, broker 

Broker: inform, ‘buy book 25’, buyer 
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Buyer: commit, ‘commit book 25’, broker 

A higher level of abstraction is used to represent the message for demonstration 

purpose. The negotiation process about the transaction of a payment and the shipping 

detail between a seller and a buyer is abstracted away, since it is not relevant to the 

coordination behavior. The conversation starts from a request of a seller who wants to 

sell book for 30 dollars, the broker agreed with the request and posted the information. 

The buyer sends a request to the broker for buying the book. The broker informs the 

seller that there is someone wants to buy the book for 25 dollars and the seller agreed 

with the price. The broker informs the buyer and the deal is committed by the buyer. 

First of all, there are three entities engaged in the conversation: a broker, a seller and a 

buyer. The broker is served as the coordinator thus modeled as the higher level host net, 

which provides the information service of auctioning goods. The buyer and seller are 

participants in the activity of auctioning goods, therefore modeled as agent nets at the 

lower level. According to the conversation scenario, the communicative acts in verb 

represent actions. These actions are transformed into transitions. For example, the seller 

has ‘request’ and ‘commit’ actions, which imply proactive and reactive behaviors, 

respectively. The actions should be linked to a message outgoing place. After received a 

message, a seller’s decision logic decides which action to be taken according to its local 

knowledge and policy. The seller’s, buyer’s and the broker’s interaction model are shown 

in Figure 40 and Figure 41, respectively . 
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Figure 40. The seller’s and buyer’s interaction model. 
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Note: transition ‘receive’ and ‘send’ are used to input and output messages through 

communication channels. Transition commit is enabled when there is a previous request 

exists in place p5 and a response message for that request is also available. If the message 

content cannot be identified, the message is discarded through transition ‘fail’. Transition 

‘set request’ inputs message tokens from outside of the model. Transition ‘reasoning’ 

decides which action to be taken based on the received message. The initial marking M0 

sets a message token with message id #1, sender agent id a1, book price 30 dollars, 

minimum acceptance price 25 dollars, and receiver id s1. 

sendreceive
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Figure 41. The broker’s interaction model. 
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Note: type MESSAGE and DIRECTORY are of the same type that is defined in the agent 

model. Type AGENTNET defines the net tokens. 
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Transition Constraints: 

)''']3[]1[]1[.()(
]2[]5[]4[]4[]3[]3[

]5[]2[]1[]1[]1[]1[.()(inf
])2[]5[]4[]4['']3[]5[]2[
]1[]1[)']1[]1[.(()(

!]5[)(
?)(

imDDcommitimdimDdcommitR
domdomdom

domdomimdDdormR
imomimompostedomimom
imomimDDimdDdagreeR

omaidomaidsendR
imaidreceiveR

−=∧=∧=∈∃=
=∧=∧=

∧=∧=∧=∈∃=
=∧=∧=∧=

∧=∧∪=∧≠∈∀=
∧==

=

 

Note: transition ‘receive’ and ‘send’ are used to input messages and output messages 

through channels respectively. Transitions ‘participate’ and ‘unparticipate’ allow agent 

nets enter and leave the system. Transition ‘agree’ sends a message for a successful 

posting back to agents. Transition ‘inform’ notifies agents that there is a matched deal. 

When the deal is committed, the information is deleted from the directory through 

transition ‘commit’.   

6.2.1   Discussion 

In this case study, a higher level of abstraction is used to describe the negotiation 

mechanism to avoid unnecessary redundancy in message interpretation. However, e-

market involves intensive context-based interactions, which result in a too fine-grained 

abstract model that introduced additional complexity for model analysis. 

There are several major research issues to be solved. First, an agent’s decision logic 

decides the degree of autonomy and the behavior of how an agent should react to external 

events. The decision logic largely depends on the knowledge base of the agent. Thus, 

knowledge representation in a Petri net model is a challenging issue. Second, all entities 

have to speak the same language in order to understand each other and the content of the 

exchanged information, which is usually domain specific. Third, message exchange in 
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multi-agent systems is often asynchronous, i.e. agents may not need to respond 

immediately or wait for responses. However, there may still be some temporal 

dependency among agent tasks. Fourth, some of the methodologies for MAS design used 

an organization view; for instance, the work in [42]. It is possible for an agent to be 

assigned more than one role based on requirements. 

6.3 Disaster Mitigation 

 Disaster management has been one of the major application areas for multi-agent 

systems due to its socially significant nature. Heterogeneous agents are engaged in an 

emergency scenario [9, 10, 11, 12, 89, 92]. The major concerns are resource management 

and emergency response among distributed agents.  

In this case study [90], the multi-agent modeling approach is applied to a Business 

Continuity Information Network (BCIN) [89], which is aimed to prepare private sectors 

for a rapid recovery after major disasters. Since BCIN employs a role-based access 

control, the agent-oriented approach is used to model the interactions between agent roles 

and the BCIN system. At current stage, BCIN system supports static information sharing, 

including (1) the advisories from public agencies, and (2) the resources provided by 

private sectors. Yet, the interdependencies between recovery plans and the resources 

from private sectors were not studied. The availability of resources is rather dynamic in 

the aftermath of a disaster, and affects the feasibility of recovery plans. The objective of 

this work is to provide a dynamic model to study the interdependencies of activities and 

the dynamics of resource consumptions in BCIN prior to deployment to ensure system 

dependability.   
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We consider BCIN system as a coordination model to accommodate multiple agents 

in a multi-agent system context. BCIN currently employs a role-based access control 

(RBAC) mechanism [93]. Some use case scenarios are as follows. 

Scenario 1: David, a member from EOC (Emergency Operations Center), intends to get 

the most up-to-date information about Hurricane Wilma, which has been announced as a 

category one hurricane. The advisory for Wilma has been published and is available in 

BCIN. 

Scenario 2: Alice, a supervisor from Hardware Depot for emergency response, intends to 

assign John as the primary person to publish the resources provided by their company.  

Scenario 3: Eric, the supervisor of EOC, is going to publish a new advisory for an 

incoming hurricane. 

Scenario 4: Emily, a primary contact for emergency response from Shop Mart, has 

entered BCIN system and read information about resources provided by other companies. 

She decided to send a message to Hardware Depot, which has three power generators 

available. Shop Mart needs the generators for frozen foods.     

  For simplicity, this case study only demonstrates the above scenarios instead of all 

possible scenarios. However, the above scenarios are typical examples in accessing 

information in the BCIN system. The actors and their associated actions are listed in 

Table 12 based on the above scenarios.   

Here, an actor is an external entity that interacts with the system. Each actor plays a 

different role regarding system access. That is, each role has different permission 

assignments (PAs) [93], which describe the operations that a role can perform in the 

system. To this end, an actor is modeled as an agent net, and BCIN system as the system 
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net that accommodates agents. In the following sections, the steps for generating agent 

nets and the system net with communication channels are introduced. Modeling examples 

based on the above scenarios in the BCIN system are given as well. 

Table 12. Actors and their associated roles and actions. 

Actors Roles   Actions 

David Company Observer read information 

Alice Company Supervisor assign roles  

John Company Participant publish resources 

Eric EOC Supervisor publish advisories 

Emily Primary Contact send messages 

 
6.3.1   Modeling Interactions in an Agent Net 

The behaviors related to permission assignments are considered as an interaction 

aspect of an agent net. An interaction aspect addresses the sociality of an agent and is 

called a role model. Since the information stored in BCIN database is organized based on 

categories, a typical flow of event for an action in a role model is: (1) send a 

request(action, x, criteria) to trigger the system process action regarding category x based 

on the criteria, and (2) get the result of action from a receive(action, x, result). A ‘request’ 

denotes an outgoing data flow to the system, while a ‘receive’ denotes an incoming data 

flow from the system.  

Formally, a role model RM with the net structure (PRM, TRM, FRM) is a PrT net, which 

models the interaction aspect of an agent net. The set of permission assignments PAs of 

an RM defines the set of operations OP, where each op∈OP is either a request(action, x, 

criteria) or a receive(action, x, result) operation. A request operation involves an 

outgoing data flow to the system, and a receive operation involves an incoming data flow 
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from the system. The set of transition Top ⊆ TRM models the set of OP in an RM. As a 

result, a role model RM with communication channels can be generated based on the 

algorithm in Figure 42. 

. 

Figure 42. An algorithm for generating a role model.  

Example1: A PrT net for a supervisor role model. 

Let us look at an example to build a role model for a supervisor role by applying the 

algorithm in Figure 42. Based on Table 12, the operations permitted for a supervisor role 

are read information, publish advisories, and update role assignments. Therefore, the 

1: set Top =∅ ; 

2: ∀op∈OP  

      { top = action; 

 Top  = Top ∪ top ; 

add top and top and associated arcs; 

∀𝑝 ∈ (𝑡𝑜𝑝  ∪  𝑡𝑜𝑝), define φ(p); 

define Ru(top); 

/* Ru(top)∈R(top) is a non-communication constraint  */ 

label each arc of top with sort-respecting variables; 

  if action∈request { 

Rc(top) = S!x; 

 /* S is the system id, x∈L (top, p) and p∈top */ 

 R(top) = Ru(top) ∪ Rc(top); } 

if action∈receive { 

Rc(top) = S?e;  

 /* S is the system net id, e∈L (p, top) and p∈top */ 

 R(top) = Ru(top) ∪ Rc(top); } 

 } 
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action in request(action, x, criteria) is instantiated and results in request(Read, x, 

criteria), request(Publish, x, criteria), and request(Assign, x, criteria). 

For simplicity, only action Return is used in operation receive(action, x, result). As a 

result, the set of operations OP is defined as {request(Read, x, criteria), request(Publish, 

x, criteria),  request(Assign, x, criteria), receive(Return, x, result)}. The denotation of an 

op is not restricted, however should be differentiated in terms of the direction of an 

information flow. For example, all operations in OP denoted as request/receive can be 

denoted as output/input instead. After OP is defined, a PrT net for the supervisor role can 

be generated based on the algorithm in Figure 42. The resulting net structure for a 

supervisor role is shown in Figure 43, where relevant semantic definitions are given in 

Appendix A3. Note that, two boundary transitions (with no input or output places) ‘Input’ 

and ‘Output’ are added to denote the interfaces of the role model for non-interaction 

aspects. 
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Figure 43. A role model for a supervisor role.  

6.3.2   Modeling Interactions in the System Net 

The system net has three major components in order to accommodate multiple agents; 

namely access controls, communications and resource controls. Access controls address 
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the security aspect of the system, while communications and resource controls address 

the coordination among agents.  

a. Modeling Role-based Access Control 

From a system view, each user has to be assigned a role for the purpose of access 

control. Based on Table 12, each user plays a different role. However, it is possible that 

different users play the same role and one user plays more than one role at the same time. 

Therefore, a role is considered as a pattern of interactions within the system. A role 

assignment happens at runtime, that is, a user becomes an actor enacting a role given by 

the system after successfully started a session. To this end, the strategy is to keep a net 

template for each distinct role in a repository. A net template is the behavior model of a 

role interacting with the system, and is activated while a valid user enacting the role. This 

strategy not only conforms to the agent-oriented design, but also allows the adaptation of 

interaction behaviors at runtime. Net templates can be built for every distinct roles based 

on the algorithm described in Figure 42. Activated role models are executing 

concurrently. In other words, the role models that are activated from the same template 

(users enacting the same role) have different markings (states).  

Formally, a RBAC model is a tuple (RAs, PAs, Sessions, AssignRole, AssignPA), where 

RAs is a set of U×R relations of users U and roles R, PAs is a set of R×RM relations of R 

and role model RM, Sessions is a set of user sessions represented by U×R, AssignRole: 

U→R, is a function that maps a user in U to a role in R, AssignPA: R→RM is a function 

that maps a role in R to a role model RM. Each element in the RBAC model is mapped to 

an appropriate net element; for example, RAs, PAs, Sessions are modeled as places and 

the functions are modeled as transitions (see RBAC in Figure 31), where transition 
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AssignRole assigns a valid user a role based on predefined RAs, and transition AssignPA 

assigns PAs by activating an associated role model from net templates. Activated role 

models (net tokens) are kept in place Activated with their identifications. Note that 

boundary transitions UserIn, UserOut, ActorOut and End are added to generate or 

eliminate tokens. A session constraint [93] is enforced by the formula: ∃s∈S.(s = u) in 

transition UserOut to eliminate an invalid user token that has an active session in place 

Sessions. Relevant dynamic definitions can be found in Appendix A4. 

b. Modeling interactions and resource controls 

In the system net, a typical interaction sequence of an operation is: (1) an agent net 

sends the request for an operation (incoming information flow); (2) the system net 

performs the operation requested (resource controls); and, (3) the result is sent back to the 

agent net (outgoing information flow). The information flows involved in the above 

sequence are modeled by a pair of transitions with input/output channel commands to 

address the interactions with agent nets. Let the set of operations OPs denotes the 

resource controls in a system net S; a RC net with net structure (Prc, Trc, Frc) models the 

data and controls of an operation op∈OPs, and there exists a pair of transition tin and tout 

model the input and output channel respectively, where tin∈Trc and tout∈Trc. The 

algorithm in Figure 44 describes the steps to build a RC net that models an operation op.  

Example 2: A PrT net for operation ‘read’ in system net. 

For simplicity, a transition readDB and a pair of input place and output place are used 

to model data access against BCIN database (resource controls). Input channel transitions 

‘Read’ and output channel transition ‘returnR’ are added to address the data flows 
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from/to agent nets. The net structure for operation ‘read’ is shown in Figure 45. Note that 

a transition with a channel command in the system net has an input and an output places 

that hold agent net tokens, which can be instantiated for interactions. For example, places 

Activated and p1 stores the agent net tokens to enable input and output channel transitions 

Read and returnR when interactions are desired. Detailed constraint definitions are 

elaborated in Appendix A4. 

 

Figure 44. The algorithm for generating a RC net. 
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Figure 45. A resource acquisition operation. 

1: define Prc, Trc and Frc for operation op∈OPs.  

2: for all p∈Prc define φ(p); 

3: for all t∈Trc define Ru(t); 

4: for all f∈Frc define L; 

5: add an input channel tin to Trc; 

    define tin, tinand associated arcs;  

    define Ru(tin); 

    Rc(tin) = a?x;  /* a is the agent net id */ 

    R(tin) = Ru(tin) ∪ Rc(tin);  

6: add an output channel tout to Trc; 

    defne tout and toutand associated arcs; 

    define Ru(tout); 

    Rc(tout) = a!e;  /* a is the agent net id */ 

    R(tout) = Ru(tout) ∪ Rc(tout);  
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The BCIN Net 

A BCIN net based on the operations in Table 12 is shown in Figure 31 by applying the 

algorithms described previously for modeling RBAC, communication channels and 

resource controls. The detailed semantic definitions for the net are given in Appendix A4.  

The resource controls addressed are rather straightforward in this example for 

demonstration purpose. However, further policies for resource sharing during a global 

process can be modeled in two ways: (1) define further constraints (rules) in output 

channel transitions for dispatching resources; and/or (2) add an input place (or multiple 

input places) representing additional pre-conditions for the enabling of output channel 

transitions. Either way, the policies are enforced at the point of synchronization, which 

results in an outgoing information flow downward to an agent net.   

6.3.3   Soundness of BCIN Net 

There are several important properties regarding information access in BCIN need to 

be ensured: (1) an invalid user cannot play a role in the system; (2) an actor cannot 

perform the operations that were not assigned; (3) a user cannot play more than one role 

at the same time; and, (4) for a request received from an agent net, there will be a 

response to the agent net eventually. The prove sketches for the above properties are 

given as follows. 

Property (1): The constraint formula: ∀r∈R.(r[1] ≠ u) defined in transition ‘UserOut’ 

(Appendix A4) enforces the elimination of  invalid user tokens, where R is the set of 

valid role assignments. 

Property (2): The constraint formula: ∃p∈P.(p[1] = a[2]) defined in transition AssignPA 

make sure that an associated role model is available to be activated. Since role models are 
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predefined based on PAs, user behaviors are well controlled. The constraint formula 

∀p∈P.(p[1] ≠ a[2]) defined in transition ‘ActorOut’ eliminates the user token that has not 

yet been assigned any permissions.   

Property (3): A session constraint is enforced by the formula ∃s∈ S.(s = u) in the 

constraint definition of transition UserOut; that is,  if a user is already in Sessions, it is 

considered as an invalid user and is eliminated.  

Property (4) The semantic definitions for a RC net constructed by applying algorithm 

given in Figure 44 has to be carefully defined to make sure that if there is a request token 

rq in p such that p∈tin, there will be a result token rs in p such that p∈tout, and the agent 

id∈rq equals to the agent id∈rs. For example, in Figure 45, there will be an agent token 

in place p1 and a request token in place p2 with the same agent id if transition Read fired. 

Since the constraint definition of transition ReadDB (Appendix A4) encompasses 

exception handling, there will be a result token sent to place p7 eventually. 

6.3.4   Discussion 

This work provides a dynamic model to study the interdependencies of activities and 

the dynamics of resource consumptions in BCIN. Yet, further studies for the 

interdependencies between the recovery plans and resources from private sectors are 

needed, since the availability of resources is rather dynamic in the aftermath of a disaster, 

and affects the feasibility of the recovery plans from private sectors. Although, it is 

difficult to obtain the detail information regarding the recovery plans from private sectors, 

recovery plans from private sectors are essential for further studies of the dynamics of 

agent behaviors during a disaster scenario.   
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CHAPTER 7 

CONCLUSION 

 

To address the representation and analysis of complex systems with the MAS 

architecture, this dissertation research developed a framework that provides a 

comprehensive methodology for modeling and analyzing MAS based on model-oriented 

formal methods. An important element of the framework is modularity, which is fulfilled 

by an agent-oriented modeling methodology incorporated with aspect-oriented concepts. 

As a result, the MAS model is a modular composition of multiple agent nets, and the 

individual agent net is a modular composition of agent features. The advantages of a 

modular system model includes: (i) adaptability for future extensions; (ii) reusability of 

modular components; (iii) conciseness of the model; and (iv) compositionality for 

incremental analysis. 

The underlying formalism of the framework is PrT nets, which is adapted and infused 

with agent-oriented concepts for modeling MAS. A key idea is to support the modeling 

of the dynamic structure in MAS. The nested PrT nets defined in this study facilitate the 

modeling of a hierarchical MAS architecture, which can be changed dynamically. Nested 

PrT nets can be checked by the model checker SPIN. SPIN is an excellent tool for model 

checking logical correctness of distributed software systems. This study takes advantage 

of the functionalities in the model checker SPIN to verify nested PrT nets. Given a nested 

PrT nets describing the behavior of a MAS, a PROMELA program can be generated 

through the model transformation technique developed in this study for model checking. 
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The contributions, limitations and future works based on this dissertation research are 

discussed in the following sections. 

7.1 Contributions 

The framework presented in this dissertation provides a systematic approach for 

modeling and analyzing complex systems within the MAS context. Given a multi-agent 

system with a set of agent roles, their behavior models can be constructed and analyzed 

following the methodology provided in this dissertation. Compared to other works based 

on Petri nets([24, 25, 26, 27, 28, 29, 30] in Table 1), this dissertation research provides a 

more comprehensive framework featured a well-defined formal model with a dynamic 

structure, agent communication notations, agent coordination modeling, a comprehensive 

modeling methodology, and the tool support for machine analysis. Major contributions of 

this dissertation research are summarized as follows. 

(1) Developed a process model based on PrT nets to address the modeling of multi-agent 

systems. 

 Support agent-oriented modeling in which the system model is a modular 

composition of multiple agent nets;   

 Support the modeling of a dynamic MAS architecture in which the formal MAS 

model is a two-level nested PrT net;  

 Support the modeling of dynamic agent communications with the instrumentation 

of channel commands in transition constraints.   

(2) Developed a methodology for constructing formal MAS models. 
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 Provide an aspect orientation technique for constructing individual agent nets with 

different features;  

 Provide a technique for agent coordination modeling to ease the construction of 

formal MAS models. 

(3) Developed a model transformation technique for model checking formal MAS 

models.  

 Define a set of translation rules that systematically transform nested PrT nets to 

PROMELA programs in SPIN for automatic model analysis.   

7.2 Limitations 

The framework supports the modeling of essential characteristics found in MAS [1, 4, 

8, 94, 95]. Some limitations are discussed as follows. 

(1) The MAS model focuses on the interdependencies between agent nets, rather on the 

computations. Therefore, the detail of how to implement the search algorithm for 

solving a problem efficiently using an agent program [32] is outside the scope of this 

study.    

(2) The nested PrT nets defined in this study is limited to a two-level nested net structure 

under the assumption of a two-layered multi-agent architecture. However, it can be 

extended to a multi-level structure by defining the relations between mediator agent 

nets. 

(3) Agent communications are in a one-to-one and unidirectional fashion through channel 

commands instrumented in transition constraints. Transitions with channel commands 

can fire many times as long as there are sufficient tokens. Since channel names are 

agent identifications, broadcasting or one-to-many communication can be achieved 
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by defining the constraint formula and tokens. For example, given a set of agent 

identifications, send the same message token to all members of the set. 

(4) Agent communications involve high-level knowledge exchange in which the context 

of the knowledge is usually domain specific. Thus, the structure of the messages is 

difficult to be generalized in the abstract models. Therefore, in this work, the 

messages exchanged among agents are in a simpler structure that is only relevant to 

the behavior models. The idea is to focus on the control flows with regard to system 

resources, and to produce a smaller sufficient model for model checking. This 

approach is applicable to most MAS domains, such as control systems, workflow 

managements and disaster mitigations where the resource management and controls 

are the central issues. However, for application domains where intensive context-

based interactions are involved, such as the e-commerce, the messages need to be 

handled with a different approach. For example, based on our e-market case study, 

there are certain patterns with regard to agent interactions. This can be dealt with by 

naming all possible interaction patterns and modeling each pattern as an aspect as 

defined in Chapter 4. That is, the interactions can be treated as agent features. 

Another way to handle content-rich messages is to use only one pair of input and 

output channels to handle incoming and outgoing messages uniformly in each agent 

net. As a result, the interpretation of the messages is a part of the agent behaviors. 

(5) The BDI model provides a theoretical foundation to build intelligent computer 

systems by explicitly modeling the mental states to mimic the reasoning behaviors of 

human. Based on the case study in [83], PrT nets can naturally model agent 

knowledge in terms of logical formulas. However, agent reasoning involves domain 
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specific ontology and inference techniques, which will result in a too fine-grained 

abstract model for model checking.   

(6) There are limitations for model checking nested PrT nets:  

 Given that nested PrT nets are very expressive, they need to be restricted in order 

to be properly translated into PROMELA models. That is, due to tractability, the 

sort of a place is restricted to the data types supported in PROMELA, and the 

quantity of tokens in the place is finite. As a result, the transformed concrete 

model to be analyzed has a finite state space such that the model execution in the 

model checker SPIN will terminate appropriately. 

 For simplicity, all transitions in the PROMELA model fire immediately after the 

guard conditions are evaluated to be true, and the firings are interleaving given 

that this restricted semantics does not affect the verification of state-based 

properties.  

 The properties can be checked are restricted within the scope of the model 

checker SPIN has to offer with XSpin version 5.2.3. 

7.3 Future Works 

Based on the limitations described in the previous section, several research directions 

are possible. 

(1) Extension of current framework. 

Currently, the framework supports two-level nested PrT nets. It can be extended 

to a multi-level structure. An idea for this extension is to define the relation among 

mediator agent nets. That is, the mediator agent of an agent community serves as a 

proxy to other communities.  
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(2) More case studies. 

Three different application domains have been studied in this dissertation research, 

namely wireless sensor network, disaster mitigation and e-market. However, there are 

other domains [1] need to be further investigated.     

(3) Context and knowledge representation problems. 

Agents are heterogeneous computation entities in the MAS context. Thus, each 

agent has its own computational logic. However, an essential element in MAS is 

coordination in which agents must communicate within the same context. The context 

of the high-level knowledge exchanged is considered as the precondition of an agent 

plan. That is, an agent reasons about the context of knowledge it currently has to 

decide whether or not a plan is feasible. How to define the meta-knowledge for agent 

communications is an interesting topic. For example, represent resources, policies and 

trust metrics among distributed agencies during an emergency response scenario.  

(4) Tool development.  

One of the key elements to increase the value of the proposed methodology is to 

develop a tool that provides a reasonable user interface for easy prototyping and 

analysis. This can be done in two directions.  

 Integrate nested PrT nets with current tools. Recently, a tool based on SAM 

(Software Architecture Model) [77] has been developed to support the editing of 

two-level nested PrT nets. The translation rules defined for model transformation 

in this dissertation research provides a foundation for further tool development in 

model analysis by integrating SPIN as the model checker at the back-end.   
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 Develop a general-purpose tool for modeling and simulation of agent-based 

systems. Dynamic interactions in a multi-agent system are difficult to be directly 

observed. A hand-on tool for simulation will help. However, current state-of-the-

art tools for agent-based modeling and simulation need to be investigated first.   
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APPENDIX A 

SEMANTIC DEFINITIONS 

A1. Figure 21. 

Diesel_consumer 

P = {factory, store, GasStation, ToPump, standby, pumped, CreditCard}; 

Tc = {Park, SlideCard, PumpDiesel, Deny}; 

Tu = {ToStore, ToGasStation, Go, ToFactory};  

𝜑(factory) = 𝜑(store) = 𝜑(GasStation) = CAR×INTEGER;  

𝜑(standby) = 𝜑(ToPump) = 𝜑(pumped) = CAR×INTEGER×INTEGER;  

CAR = {sedan, truck}; 𝜑(CreditCard) = INTEGER;  

R(ToStore) = c[2]=1; R(ToGasStation) = c[2]=0; R(Go) = c[2]=1 ∧ g=1; 

R (ToFactory) = 𝜆; R (Park) = S?st; R(SlideCard) = S!<c[1], cr, st>; R(PumpDiesel) 

= S?g ∧ c’[2]=1; R(Deny) = S?cr;   

M0(factory) = {<truck, 0>}; M0(CreditCard) = {<1>}; M0(store) = ∅ ; 

M0(GasSstation) = ∅; M0(ToPump) = ∅; M0(standby) = ∅; M0(pumped) = ∅; 

F and L are as seen in the Figure 21(a). 

Gas_producer 

P = {Ready, Orders, Diesel, Regular}; 

Tc = {TakeOrder, SendDiesel, SendRegular}; 

Tu = {ProduceRegular, ProduceDiesel};  

𝜑(Ready) = INTEGER; 𝜑(Orders) = INTEGER; 

 𝜑(Diesel) = 𝜑(Regular) = INTEGER;   

R(TakeOrder) = S?o; R(SendDiesel) = S!ds; R (SendRegular) = S!rs;  

R (ProduceRegular) = o=2 ∧ rs=1; R(ProduceDiesel) = o=1 ∧ ds=1;   

M0(Ready) = {<1>} ; M0(Orders) = ∅   ; M0(Diesel) = ∅ ; M0(Regular) = ∅;   

F and L are as seen in the Figure 21(b). 
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Regular_consumer 

P = {home, school, GasStation, ToPump, standby, pumped, CreditCard}; 

Tc = {Park, SlideCard, PumpRegular, Deny}; 

Tu = {ToSchool,  ToGasStation, Go, ToHome};  

𝜑(home) = 𝜑(school) = 𝜑(GasStation) = CAR×INTEGER; 

𝜑(standby) = 𝜑(ToPump) = 𝜑(pumped) = CAR×INTEGER×INTEGER;  

𝜑(CreditCard) = INTEGER;  

R(ToSchool) = c[2]=1; R(ToGasStation) = c[2]=0; R(Go) = c[2]=1 ∧ g=1;  

R (ToHome) = 𝜆; R (Park) = S?st; R(SlideCard) = S!<c[1], cr, st>;  

R(PumpRegular) = S?g ∧ c’[2]=1; R(Deny) = S?cr; 

M0(home) = {<sedan, 0>}; M0(CreditCard) = {<2>}; M0(school) = ∅ ; 

M0(GasStation) = ∅; M0(ToPump) = ∅; M0(standby) = ∅; M0(pumped) = ∅; 

F and L are as seen in the Figure 21(c). 

The bank 

P = {Ready, transaction, Accounts, Report}; 

Tc = {CheckCredit, ReportCredit}; 

Tu = {Deny, Authorize};  

𝜑(Ready) = INTEGER;  

𝜑(transaction) = INTEGER×CAR×INTEGER×INTEGER;  

𝜑(Accounts) = INTEGER×INTEGER;  

𝜑(Report) = INTEGER×CAR×INTEGER×INTEGER×INTEGER; 

R(CheckCredit) = S?cr; R(ReportCredit) = S!<cr,r>;  

R (Authorize) = ∃𝑎 ∈ 𝐴. (𝑡𝑟[3] = 𝑎[1]) ∧ 𝑎′[2] = 𝑎[2] − 1 ∧r[1]=t[1] ∧r[2]=t[2] 

∧r[3]=t[3] ∧r[4]=t[4] ∧r[5]=1;         

R (Deny) = ∀𝑎 ∈ 𝐴. (𝑡𝑟[3] ≠ 𝑎[1]) ∧ r[1]=t[1] ∧r[2]=t[2]∧r[3]=t[3] ∧ 

r[4]=t[4] ∧r[5]=0;       

M0(Ready) = {<1>} ; M0(CardNumber) = ∅ ;  

M0(Accounts) = {<1,5>, <2, 4>, <3,3>, <4,1>} ; M0(Report) = ∅;   

F and L are as seen in the Figure 21(d). 
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A2. Figure 27(c). 
  

P a = {in_station, parked, bank_agent, waiting, gas_producer_agent, pumped }; 

P d = {pumping_station, transactions, authorized, diesel_gas, regular_gas}; 

Tc = {Park, Pay, CheckCredit, ReportCredit, PumpDiesel, PumpRegular, Fail, 

GetDiesel, GetRegular, OrderRegular, OrderDiesel}; 

Tu = {drive_in, drive_out};  

𝜑(in_station) = 𝜑(parked) = 𝜑(waiting) = 𝜑(pumped) = 

INTEGER×CONSUMER_AGENT; 

𝜑(bank_agent) = INTEGER×BANK_AGENT; 

𝜑(gas_producer_agent) = INTEGER×GAS_PRODUCER_AGENT; 

𝜑(transactions) = INTEGER×CAR×INTEGER×INTEGER;  

// the three integers represent agent id, car type, credit card number and pumping 

station respectively; 

𝜑(authorized) = INTEGER×CAR×INTEGER×INTEGER×INTEGER;  

// the four integers represent agent id, car type, credit card number, pumping station 

and credit report repespectively; 

𝜑(pumping_station) = INTEGER;  

𝜑(diesel_gas) = 𝜑(regular_gas) = INTEGER; 

R(Park) = N!st; R(Pay) = N?<c, cr, st>∧tr[1]=a1[1]∧tr[2]=c∧tr[3]=cr∧tr[4]=st; 

R (CheckCredit) = N!tr; R(ReportCredit) = N?r;  

R(PumpDiesel) = a1[1]=r[1]∧r[2]=truck∧r[5]=1∧d’=d-1∧g=1∧N!g;  

R(PumpRegular) = a1[1]=r[1]∧r[2]=sedan∧r[5]=1∧r’=r-1∧g=1∧N!g; 

R(Fail) = r[5]=0∧N!cr; R (GetDiesel) = N?ds ∧ 𝑑′ = 𝑑 + 𝑑𝑠;  

R(GetRegular) = N?rs ∧ 𝑟′ = 𝑟 + 𝑟𝑠;  

R(OrderDiesel ) = 𝑑 < 1 ∧ N!1; R(OrderRegular) = 𝑟 < 1 ∧ N!2; 

R(drive_in) =  R (drive_out) = 𝜆; 

M0(in_station) =  {<1, dieselConsumer>, <2, regularConsumer>}; M0(parked) = ∅; 

M0(waiting) = ∅ ; M0(pumped) = ∅; M0(bank_agent) = {<3, bank>}; 

M0(gas_producer_agent) = {<4, producer>};  

M0(pumping_station) = {<1>, <2>, <3>}; M0(credit_card) = ∅;  
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M0(diesel_gas) = {<10>}; M0(regular_gas) = {<10>}; 

F and L are as seen in the Fig. 27(c). 

A3. Figure 43. 

The supervisor role 

φ(start) = φ(waiting) = NAME×ACTION×CATEGORY×CONTENT; 

φ(result) = CONTENT; 

R(Read) = e[1] = ‘read’∧ S!e; 

R(Publish) = e[1] = ‘publish’∧ S!e; 

R(Assign) = e[1] = ‘assign’∧ S!e; 

R(Return) = S?r∧ r[2] = e[1]∧ x = r[4]  

A4. Figure 31. 

The BCIN net 
 

φ(Users) = NAME; 

φ(RAs) = ℘(NAME×ROLE); 

φ(Sessions) = ℘(NAME); 

φ(Actor) = NAME×ROLE; 

φ(PAs) = ℘(ROLE×RM); 

φ(Activated) = φ(p1) = NAME×RM; 

φ(BCIN_Database) = ℘(CATEGORY×CONTENT); 

φ(p2) = φ(p7) = NAME×ACTION×CATEGORY×CONTENT 

φ(p3) = φ(p5) = φ(p11) = NAME×RM; 

φ(p4) = φ(p8) = φ(p6) = φ(p9) = φ(p12) = φ(p10) = NAME×ACTION ×

CATEGORY×CONTENT; 

R(UserOut) =∃s∈S.(s = u)∨∀r∈R.(r[1] ≠ u); 

R(AssignRole) =∃r∈R.(r[1] = u)∧ a = r; 

R(AssignPA) =∃p∈P.(p[1] = a[2]) ∧m[1] = a[1]∧m[2] = p[2]∧ S’=S∪a[1]; 

R(ActorOut) =∀p∈P.(p[1] ≠ a[2]); 

R(End) = m[1]?op∧ op[1] = ‘quit’∧ ∃s∈S.(s = m[1])∧ S’= S\s; 

R(Read) = m[1]?op∧ r = op; 
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R(ReadDB) =(∃ d∈D.(d[1] = r[3])∧ r’[4] = d[2])∨ (∀ d∈D.(d[1] ≠ r[3]) ∧ r’[4] = 

‘error’); 

R(returnR) = m[1]= r’[1]∧m[1]!r’; 

R(SendM) = m[1]?op∧w = op; 

R(WriteMG) = D’= D ∪ <w[3], w[4]>∧w’[4] =’message sent’; 

R(returnM) = m[1] = w’[1]∧ s!w’; 

R(Publish) = m[1]?op∧ p = op; 

R(PublishRS) =  D’= D ∪ <p[3], p[4]>∧ p’[4] =’published’; 

R(returnP) = m[1] = p’[1]∧m[1]!p’; 

R(RA) = m[1]?op∧ ra  = op; 

R(UpdateRA) = (∃ p∈P.( p[1] = ra[4]) ∧ ((∀r∈R.(r[1] ≠ ra[3] ∧R’ = R ∪ <ra[3], 

ra[4]> ∧  ra’[4] = ‘added’)∨ (∃ r∈R.(r[1] = ra[3]) ∧ r’[2] = ra[4]))∧ ra’[4] = 

‘updated’))∨ (∀ p∈P.(p[1] ≠ ra[4])∧ ra’[4] = ‘error’); 

R(returnRA) = m[1] = ra’[1]∧m[1]!ra’; 
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APPENDIX B 

THE PROMELA MODEL FOR BCIN NET 

 
#define NULL  0 
#define MAX_SESSION 4 
#define MAX_ACTIVATED 4 
#define MAX_ROLE 4 
#define MAX_DB 4 
#define MAX_TOKENS 4 
 
mtype = { read, publish, sendM, assign, quit }; 
mtype = { updated, added, error, message_sent, published} 
mtype = { david, john, alice, emily, mary}; 
mtype = { observer, supervisor, contact, participant }; 
mtype = { advisory, message, resource }; 
mtype = { Wilma, generator}; 
mtype = { O_NET, S_NET, P_NET, PR_NET }; 
 
typedef MSG { 
 pid agent_id; 
 mtype action; 
 mtype category; 
 mtype content } 
 
typedef  ROLE { 
              mtype user; 
              mtype roleR } 
 
typedef PA { 
              mtype roleP; 
              mtype net } 
 
typedef IN_SESSION { 
 pid sid; 
 mtype sname } 
          
typedef BCIN_DB { 
 mtype DB_category; 
 mtype DB_content } 
 
chan S = [0] of { MSG, chan}; 
 
inline initial_marking(pl, p_pid, v1, v2, v3) { pl.agent_id = p_pid; 
pl.action = v1; pl.category = v2; pl.content = v3 } 
inline add_token(p_in, p_out) { p_out.agent_id = p_in.agent_id; 
p_out.action = p_in.action; p_out.category = p_in.category; 
p_out.content = p_in.content} 
inline remove_token(p) { p.agent_id = 0; p.action = 0; p.category 
= 0; p.content = 0 } 
 
active proctype system_net() 
{     
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    chan aid;  
    MSG m, p12[MAX_TOKENS] = NULL, p2[MAX_TOKENS] = NULL, 
p4[MAX_TOKENS] = NULL, p6[MAX_TOKENS] = NULL; 
    byte cnt, act_idx = 0, p12_idx = 0, p2_idx = 0, p4_idx = 0, p6_idx 
= 0; 
         
    ROLE  actor, ra[MAX_ROLE] = NULL; 
    IN_SESSION session[MAX_SESSION] = NULL; 
    ra[0].user = david; ra[0].roleR = observer; 
    ra[1].user = alice; ra[1].roleR = supervisor; 
    ra[2].user = emily; ra[2].roleR = contact; 
    byte ra_idx = 3; 
  
    PA pa[MAX_SESSION]; 
    pa[0].roleP = observer; pa[0].net = O_NET; 
    pa[1].roleP = supervisor; pa[1].net = S_NET; 
    pa[2].roleP = contact; pa[2].net = P_NET; 
    pa[3].roleP = participant; pa[3].net = PR_NET; 
       
    BCIN_DB db[MAX_DB] = NULL; 
    db[0].DB_category = advisory; db[0].DB_content = Wilma; 
    db[1].DB_category = message; db[1].DB_content = generator; 
    byte db_idx = 2; 
    bool inSession = false; 
    mtype valid_user = NULL; 
       
 /* RBAC Begin */ 
     mtype user_in = emily;  
      
     do 
         /* UserOut */           
         :: atomic { user_in != NULL -> cnt = 0;  
 do   
 :: cnt < MAX_SESSION ->  

if :: session[cnt].sname == user_in -> printf("User %e in 
session !", user_in); user_in = NULL; inSession = true; break  

                                                   
:: session[cnt].sname != user_in  -> cnt++         

            fi 
 :: cnt >= MAX_SESSION -> cnt = 0; inSession = false; break  
 od; 
 do 
 :: inSession == false ->  

if :: cnt < MAX_ROLE && ra[cnt].user == user_in ->  valid_user  
      = user_in; user_in= NULL; break 

  :: cnt < MAX_ROLE && ra[cnt].user != user_in  -> cnt++  
         :: cnt >= MAX_ROLE ->  printf("No role assignment for %e 
!",  
               user_in); user_in = NULL; break   
     fi; 
       od } 
 
          /* Assign Role */ 
      :: atomic { valid_user != NULL -> cnt = 0;   
 do 
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 :: cnt < MAX_ROLE ->  
         if :: ra[cnt].user == valid_user  ->  actor.user =  
               ra[cnt].user; actor.roleR = ra[cnt].roleR; valid_user =  
               NULL; break 
    :: ra[cnt].user != valid_user -> cnt++    
         fi; 
      :: cnt >= MAX_ROLE -> break     
 od }                                  
         /* ActorOut */ 
      :: atomic { actor.user != NULL -> cnt = 0;  
          do 
  :: cnt < MAX_SESSION && pa[cnt].roleP != actor.roleR ->  
               cnt++          
  :: cnt < MAX_SESSION && pa[cnt].roleP == actor.roleR ->   
/* Assign PA */ 
            if :: actor.roleR == supervisor -> session[act_idx].sid =  
               run agentS(assign, john, participant)  
     :: actor.roleR == observer -> session[act_idx].sid = run  
                  agentO(read, advisory, Wilma)  
     :: actor.roleR == contact -> session[act_idx].sid = run  
                  agentP(sendM, message, generator) 
               :: actor.roleR == participant -> session[act_idx].sid =  
                  run agentPR(publish, resource, generator) 
       fi; 
         session[act_idx].sname = actor.user; act_idx++; actor.user  
            = NULL; actor.roleR = NULL; 
       actor.user = NULL; actor.roleR = NULL; break  
   :: cnt >= MAX_SESSION -> printf("Role %e not available !",  
               actor.roleR); break 
            od }                             
                  
/* RBAC End */  
 
/* Main Operation */ 
           :: atomic { S?m(aid) -> 
              /* Assign RA */     
              if :: m.action == assign ->    
         if :: p12_idx < MAX_TOKENS -> add_token(m, p12[p12_idx]);  
                    p12_idx++                                            
                 :: p12_idx >= MAX_TOKENS -> printf("Exceed maximum  
                      token deposits!") 
                 fi; 
              /* UdateRA */ 
          cnt = 0; p12_idx--; 
               do :: cnt < MAX_SESSION && pa[cnt].roleP ==  
                     p12[p12_idx].content ->  cnt = 0; break 
             :: cnt < MAX_SESSION && pa[cnt].roleP !=  
                     p12[p12_idx].content -> cnt++                               
                  :: cnt >= MAX_SESSION -> printf("Role %e denied !",  
                    p12[p12_idx].content); p12[p12_idx].content = error 
               od;                        
               do :: cnt < MAX_ROLE && ra[cnt].user ==  
                     p12[p12_idx].category -> ra[ra_idx].roleR =  
                     p12[p12_idx].content; p12[p12_idx].content =  
                     updated; break 
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           :: cnt < MAX_ROLE && ra[cnt].user !=  
                   p12[p12_idx].category -> cnt++  
                :: cnt >= MAX_ROLE && ra_idx < MAX_ROLE ->  
                   ra[ra_idx].user = p12[p12_idx].category;  
                   ra[ra_idx].roleR = p12[p12_idx].content;  
                   p12[p12_idx].content = added; ra_idx++; break 
                :: ra_idx >= MAX_ROLE -> printf("Exceed maximum role");  
                   p12[p12_idx].content = error; break  
          od; 
              /* returnRA */  
                   aid!p12[p12_idx] ; remove_token(p12[p12_idx])   
              /* read */  
                  :: m.action == read ->  user_in = alice; 
             if :: p2_idx < MAX_TOKENS -> add_token(m, 
p2[p2_idx]);  
                       p2_idx++ 
                    :: p2_idx >= MAX_TOKENS -> printf("Exceed maximum  
                       token deposits!") 
                 fi; 
              /* readDB */ 
            cnt = 0; p2_idx--; 
                 do :: cnt < MAX_DB && db[cnt].DB_category ==  
                       p2[p2_idx].category ->  p2[p2_idx].content =  
                       db[cnt].DB_content; break 
               :: cnt < MAX_DB && db[cnt].DB_category !=  
                       p2[p2_idx].category -> cnt++  
                    :: cnt >= MAX_DB->  p2[p2_idx].content = error;  
                       break 
            od;  
              /* returnR */ 
                       aid!p2[p2_idx]; remove_token(p2[p2_idx])   
             /* sendM */ 
                   :: m.action == sendM ->  
            if :: p4_idx < MAX_TOKENS -> add_token(m, p4[p4_idx]);  
                       p4_idx++  
                    :: p4_idx >= MAX_TOKENS -> printf("Exceed maximum  
                       token deposits!") 
                 fi;      
              /* WriteMG */ 
       p4_idx--; 
                if :: db_idx < MAX_DB  ->  db[db_idx].DB_category =   
                      p4[p4_idx].category; db[db_idx].DB_content =  
                      p4[p4_idx].content; p4[p4_idx].content =  
                      message_sent 
              :: db_idx >= MAX_DB -> printf("DB full !!");  
                      p4[p4_idx].content = error 
           fi;  
               /* returnM */ 
        aid!p4[p4_idx]; remove_token(p4[p4_idx]); user_in = david 
               /* publish */ 
            :: m.action == publish ->  
            if :: p6_idx < MAX_TOKENS -> add_token(m, p6[p6_idx]);  
                       p6_idx++ 
                    :: p6_idx >= MAX_TOKENS -> printf("Exceed maximum  
                       token deposits!") 
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                 fi;                     
               /* publishRS */ 
                  p6_idx--; 
                  if :: db_idx < MAX_DB  ->   
                        db[db_idx].DB_category = p6[p6_idx].category;  
                        db[db_idx].DB_content = p6[p6_idx].content;  
                        p6[p6_idx].content = published 
                :: db_idx >= MAX_DB -> printf("DB full !!");  
                        p6[p6_idx].content = error 
              fi;   
               /* returnP */ 
           aid!p6[p6_idx]; remove_token(p6[p6_idx])  
               /* End */ 
             :: m.action == quit ->  
                            cnt = 0; 
                do :: cnt < MAX_SESSION && session[cnt].sid ==  
                      m.agent_id -> act_idx--; session[cnt].sid =  
                      session[act_idx].sid; session[cnt].sname =  
                      session[act_idx].sname; session[act_idx].sid =  
                      NULL; session[act_idx].sname = NULL; break 
                   :: cnt < MAX_SESSION && session[cnt].sid !=  
                      m.agent_id --> cnt++ 
                   :: cnt >= MAX_SESSION -> break 
                 od; 
              fi   }                    
    od 
} 
 
proctype agentS( mtype i1,  i2,  i3)   /* Supervisor S_NET */ 
{   chan me = [0] of { MSG }; 
    MSG m, start, waiting, result; 
     
    initial_marking(start, _pid, i1, i2, i3); 
    S!start(me); 
    add_token(start, waiting); 
    remove_token(start);  
    me?m; 
    printf("operation %e %e %e", m.action, m.category, m.content); 
    m.action = quit; 
    S!m(me) 
} 
 
proctype agentO(mtype i1, i2, i3)   /* Observer O_NET */ 
{   chan me = [0] of { MSG }; 
    MSG m, start, waiting, result; 
 
    initial_marking(start, _pid, i1, i2, i3); 
    S!start(me);      
    add_token(start, waiting); 
    remove_token(start); 
    me?m; 
    printf("operaton %e successful!", m.action); 
    m.action = quit; 
    S!m(me) 
} 
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proctype agentP(mtype i1, i2, i3)   /* Primary Contact P_NET */ 
{   chan me = [0] of { MSG }; 
    MSG m, start, waiting, result; 
 
    initial_marking(start, _pid, i1, i2, i3); 
    S!start(me); 
    add_token(start, waiting); 
    remove_token(start); 
    me?m; 
    printf("operaton %e successful!", m.action); 
    m.action = quit; 
    S!m(me) 
} 
  
proctype agentPR(mtype i1, i2, i3)   /* Participant PR_NET */ 
{   chan me = [0] of { MSG }; 
    MSG m, start, waiting, result; 
 
    initial_marking(start, _pid, i1, i2, i3); 
    S!start(me); 
    add_token(start, waiting); 
    remove_token(start); 
    me?m; 
    printf("operaton %e successful!", m.action); 
    m.action = quit; 
    S!m(me) 
} 
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