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Abstract Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP).
However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties
in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP
separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six
FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of
biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites
which are distributed across the globe. The results showed that the TL-LUE model performed in general better
than the MOD17 model in simulating 8day GPP. Optimized maximum light use efficiency of shaded leaves
(εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax
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were well described by linear equations, indicating the existence of general patterns across biomes. GPP
simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation
(PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the
potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard
to usual biases in input data than existing approaches which neglect the bimodal within-canopy
distribution of PAR.

1. Introduction

Gross primary productivity (GPP) is a key component of the terrestrial carbon cycle and a principal indicator
for biosphere carbon fluxes [Zhang et al., 2009; Yuan et al., 2010]. The reliable estimation of GPP is a prerequi-
site for accurately determining carbon sequestration rates by terrestrial ecosystems [Sakamoto et al., 2011].
GPP at the ecosystem level can be estimated with good accuracy from measurements of CO2 fluxes at eddy
covariance towers [Baldocchi, 2003]. At regional and global scales, GPP can be calculated by a number of
ecosystem models [Foley et al., 1996; Liu et al., 1997; Beer et al., 2010; Ryu et al., 2011]. The application of
process-based ecosystemmodels is constrained by the requirements of many model drivers and parameters.
In contrast, light use efficiency (LUE) models, which calculate GPP as the product of absorbed photosynthe-
tically active radiation (APAR) and LUE, require fewer inputs and are computationally less demanding and
easy to parameterize [Prince and Goward, 1995; Running et al., 2004; Yuan et al., 2007]. Therefore, these
models have been more and more widely used to calculate regional and global GPP. For example, through
combining remotely sensed leaf area index (LAI) and distributed climate data, the MOD17 model is able to
produce the global GPP product (MOD17A2) in near real time.

Most widely used LUE models, such as Carnegie-Ames-Stanford approach [Potter et al., 1993], the MOD17
algorithm [Running et al., 2004], Vegetation Photosynthesis Model [Xiao et al., 2004], eddy covariance
(EC)-LUE [Yuan et al., 2007], and Greenness and Radiation models [Gitelson et al., 2006; Wu et al., 2011], treat
the vegetation canopy as a big leaf with a simple mathematical form assuming that GPP linearly increases
with incoming photosynthetically active radiation (PAR). However, in fact, GPP is not always linearly increas-
ing with incoming PAR. Different groups of leaves (sunlit and shaded) within the plant canopy have different
levels of exposure to direct sunlight and consequently different LUE values [De Pury and Farquhar, 1997;
Wang and Leuning, 1998; Chen et al., 1999; Friend, 2001]. Sunlit leaves (which simultaneously absorb both
direct and diffuse radiation) are easily light saturated, leading to low LUE (εmsu) values [Gu et al., 2002]. In
contrast, photosynthesis of shaded leaves (which only absorb diffuse radiation) is normally limited by low
radiation and increases linearly with increasing absorbed PAR. As a consequence, the LUE of shaded leaves
(εmsh) is relatively high [De Pury and Farquhar, 1997; Wang and Leuning, 1998; Chen et al., 1999; Friend,
2001]. However, the currently most widely used LUE models do not explicitly account for the difference in
APAR and LUE of sunlit and shaded leaves within the canopy, which has been recently shown to result in
biased values of estimated GPP [Zhang et al., 2011; Propastin et al., 2012; He et al., 2013].

One, so far, unconsidered reason that leads to variation in LUE is that diffuse and direct radiation affect
canopy LUE in different ways. LUE is shown to increase with the diffuse fraction through model simulations
[Sinclair and Shiraiwa, 1993; de Pury and Farquhar, 1997; Cohan et al., 2002; Ibrom et al., 2006] and observa-
tions [Rochette et al., 1996; Roderick et al., 2001; Choudhury, 2001; Gu et al., 2002; Alton et al., 2007; Alton,
2008]. Therefore, an increase in diffuse radiation results in increase of carbon uptake [e.g., Gu et al., 2003;
Cai et al., 2009]. For example, Hollinger et al. [1994] found that carbon uptake in a New Zealand beach forest
increased by 50% on cloudy days relative to the value on clear days. Gu et al. [2003] detected a 20% increase
in forest photosynthesis after the Pinatubo Volcano eruption in 1991, which increased diffuse radiation
through scattering by atmospheric particles. Similar increases of LUE under diffuse sunlight were also
reported in other studies [e.g., Niyogi et al., 2004; Urban et al., 2007; Zhang et al., 2011]. So a modification
of the traditional LUE approach which considers the variation of LUE at the canopy scale by allowing for
the variation of LUE under different conditions of radiation was suggested [Ibrom et al., 2008].

To overcome the weakness of LUE models, He et al. [2013] developed a two-leaf LUE model (TL-LUE) that
stemmed from the MOD17 model [e.g., Running et al., 2004; Turner et al., 2006] and the approach of the
process-based boreal ecosystem productivity simulator (BEPS) [Chen et al., 1999] and tested it against GPP
measured at six ChinaFLUX sites. The TL-LUE model considers the difference in LUE and absorbed radiation
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of sunlit and shaded leaves. The composition and function of ecosystems vary greatly across different loca-
tions on the globe, and thus, the TL-LUE model needs to be tested and validated at other biomes.
Moreover, the LUE of sunlit and shaded leaves varies with ecosystem types [Rochette et al., 1996; Lamaud
et al., 1997; Gu et al., 2002; He et al., 2013]. However, the values of εmsu and εmsh and their variation among
different ecosystems are not known. Therefore, εmsu and εmsh in the TL-LUE model need to be calibrated
rigorously for accurate estimation of GPP. Globally, the network of eddy covariance (EC) towers (FLUXNET)
now covers a wide range of ecosystems across different climate zones [Falge et al., 2002; Law et al., 2002;
Baldocchi, 2014]. EC-derived GPP (GPP_EC) values provide a unique opportunity for validating models and
calibrating or optimizing model parameters [Running et al., 1999; King et al., 2011; Baldocchi, 2014].

The TL-LUE model is driven by meteorological data (vapor pressure deficit (VPD), PAR, and air temperature (Ta))
and remotely sensed data (fPAR or LAI). When it is used for simulating GPP over large areas, the errors of simulated
GPP are partially caused by uncertainties in the input data, which are the same as those of the most widely used
LUE models, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP algorithm [Zhao et al.,
2005; Leuning et al., 2005]. VPD and Ta have the same impacts on the MOD17 and TL-LUE models, while PAR
and LAI (or fPAR) have different impacts, due to the differing representations of within-canopy radiative transfer.
Moreover, incoming shortwave radiation or PAR from regularly gridded reanalysis data sets (such as reanalysis
data provided by European Centre for Medium-Range Weather Forecasts and National Centers for
Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR)) and remotely sensed LAI data
sets might have systematic errors>20% [Zhao and Running, 2006; Fang et al., 2012; Jia et al., 2013]. Thus, there is
need to assess the sensitivity of TL-LUE and MOD17 models to PAR and LAI in estimating GPP.

The overarching objective of this study is to examine the robustness of the TL-LUE model using GPP derived
from eddy covariance CO2 flux measurements at 98 globally distributed flux towers. Specific objectives are to
(1) evaluate the performance of the TL-LUEmodel for simulating GPP in different ecosystem types, (2) determine
the maximum light use efficiency of sunlit and shaded leaves for different ecosystems, and (3) analyze the
sensitivity of the TL-LUE model to uncertainties in the PAR and LAI input data.

2. Data and Methods
2.1. Data Used
2.1.1. Global Land Cover (30m) (GlobeLand30) Data Set
In order to constrain the influences of land cover heterogeneity around towers GPP on model calibration and
validation, the GlobeLand30 data sets in 2000 and 2010 with a spatial resolution of 30m were used for
selecting towers with relatively homogenous land cover. These data sets were produced by the National
Geomatics Center of China. They both cover land area from 80°N to 80°S and include 10 land cover types,
namely, cultivated land (crop), forest, grassland, shrubland, wetland, water bodies, tundra, artificial surfaces,
bareland, permanent snow, and ice. These data sets were donated to the United Nations with the aim of con-
tributing to research on sustainable development and climate change [Jun et al., 2014] and have been widely
used in many studies [Cao et al., 2014; Chen et al., 2015; Manakos et al., 2014; Brovelli et al., 2015]. More
detailed information on these data sets was described on the website of http://glc30.tianditu.com.
2.1.2. Eddy Covariance and Meteorological Data
Eddy covariance data from the LaThuile FLUXNET database were used to parameterize and validate the TL-
LUE model. Sites were first selected on the basis of data availability of daily GPP, VPD, Ta, and PAR. Sites with
missing data of more than 20% during the growing seasons were excluded from this analysis. Then, the
GlobeLand30 in 2000 and 2010 was employed in conjunction with Google maps to exclude some flux sites
with very heterogeneous vegetation types to minimize the impact of land cover heterogeneity on optimized
model parameters. The sites were selected in following steps. For each flux site, we extracted the area propor-
tions of 10 different land cover types over the central 1 km× 1 km (for crop, grass, savannas, open shrub, and
woody savannas) or 3 km×3 km (for forests) area around the tower in years of 2000 and 2010 and then aver-
aged the area proportions in the 2 years. For sites of forests indicated by the site description in the LaThuile
FLUXNET database, shrubland was merged into forest in calculating the area proportions of forests based on
the GlobeLand30 and Google maps, as forest was oftenmisclassified as shrubland using remote sensing data.
There are a few sites labeled as grass in the site description. The calculated area proportion of grassland was
less than 0.1, while the proportion of cultivated land was above 0.8. For these sites, cultivated land was
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merged into grass land in calculating area proportion of grassland based on the GlobeLand30 and Google
maps. The flux sites were selected according to two conditions: the area proportion of the dominant cover
type is larger than a threshold and the dominant cover type is the same as that extracted from the LaThuile
FLUXNET database. In order to balance the number of flux sites and their land cover homogeneity, the area
proportion threshold of the dominant cover type was set as 0.5. As there were limited deciduous broadleaf
forests (DBF) and mixed forests (MF) sites, five sites with area proportions of dominant cover types less than
0.5 were kept, including two DBF sites (FR-Fon and FR-Hes with area proportions of dominant cover types equal
to 0.45 and 0.37, respectively) and three MF sites (BE-Bra, CA-TP4, and DE-Har with area proportions of domi-
nant cover types equal to 0.34, 0.47, and 0.31, respectively). Open shrub (OS), savannas (S), andwoody savannas
(WS) were not differentiated in the GlobeLand30 data sets. In calculating the area proportions of OS, S, and WS
sites, shrubland was accordingly treated as OS, S, andWS following the cover types extracted from the LaThuile
FLUXNET database, and the highest area proportion among 10 types was considered as the proportion of OS, S,
and WS. The area proportions of different cover types for each site were shown in Table A1 in Appendix A.

In total, measurements of 268 site years from 98 sites were used in this study, including 32 evergreen needle-
leaf forests (ENF), 6 evergreen broadleaf forests (EBF), 10 deciduous broadleaf forests (DBF), 16 mixed forests
(MF), 14 crop (Crop), 12 grass (Grass), 2 savannas (S), 4 open shrub (OS), and 2 woody savannas (WS) sites. Out
of these 98 flux sites, 78 sites (79.6%) have area proportions of dominant vegetation types higher than 0.7, in
which 60 sites (61.2%) have area proportions of dominant vegetation types above 0.8. These sites are
distributed over East Asia, United States, Canada, and Europe. Detailed information on these sites is given
in Table A2 in Appendix A. Measured GPP values from 195 randomly selected site years representing different
vegetation types (VTs) were used to estimate the optimal parameter (maximum light use efficiencies) values,
and the remaining 73 site years of measurements were used for model validation.

All flux data were processed in a consistent manner within the FLUXNET project [Baldocchi et al., 2001;
Baldocchi, 2008] as described by Papale and Valentini [2003], Reichstein et al. [2005], and Papale et al. [2006].
GPP data were derived from the net ecosystem CO2 exchange (NEE) measured using the eddy covariance

Table 1. Model Parameters Used for Different Vegetation Types

Vegetation Typea DBF ENF EBF MF Grass Crop Savannas OS WS

εmax(g CMJ�1)b 1.04 1.01 1.26 1.12 0.60 0.60 0.89 0.77 0.77
Tamin_max (°C) 7.94 8.31 9.09 8.5 12.02 12.02 8.61 8.8 11.39
Tamin_min (°C) �8 �8 �8 �8 �8 �8 �8 �8 �8
VPDmax (kpa) 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1
VPDmin (kpa) 0.93 0.93 0.93 0.93 0.93 0.93 9.3 9.3 9.3
Clumping index (Ωc) 0.8 0.6 0.8 0.7 0.9 0.9 0.8 0.8 0.8

aDBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; MF: mixed forest;
Grass: grass; Crop: crop; Savannas: savannas; OS: open shrub; WS: woody savannas.

bRunning et al. [2000]. The values were default values used in the MOD17 model for calculating MODIS GPP product.
Tamin_max, Tamin_min, VPDmax, and VPDminwere used in both the MOD17 algorithm and TL-LUE model.
cTang et al. [2007] Clumping index (Ω) was only used in the TL-LUE model.

Figure 1. Comparison between measured and modeled (a) direct PAR and (b) diffuse PAR.
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Figure 2. Comparison of 8 day GPP calculated using the MOD17 (GPP_MOD) and TL-LUE (GPP_TL) models with corresponding tower measurements (GPP_EC) for
the site years used in the optimization. Both the MOD17 and TL-LUE models were driven using optimized parameters, smoothed LAI, and tower-based
meteorological data.

Journal of Geophysical Research: Biogeosciences 10.1002/2014JG002876

ZHOU ET AL. TL-LUE PARAMETERIZATION AND VALIDATION 1049



Figure 3. Validation of 8 day GPP calculated using the MOD17 (GPP_MOD) and TL-LUE (GPP_TL) models with corresponding tower measurements (GPP_EC) at the
validation site years. Both the MOD17 and TL-LUE models were driven using average optimized parameters for the different vegetation types, smoothed LAI,
and tower-based meteorological data.
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technique and ecosystem respiration (Re) estimated using the Lloyd-Taylor equation [Lloyd and Taylor, 1994],
which was fitted with the nighttime NEE data measured under turbulent conditions, i.e.,

Re ¼ Rrefe
E0 1

Tref�T0ð Þ
1

T�T0ð Þ

� �
(1)

where Rref represents the ecosystem respiration rate at a reference temperature (Tref, 10°C); E0 is the
parameter that determines the temperature sensitivity of ecosystem respiration; T0 is a constant and set
to �46.02°C; and T is the air temperature or soil temperature (°C).

GPP is calculated as follows:

GPP ¼ Re � NEE (2)

2.1.3. Leaf Area Index Data
The LAI was retrieved from the MODIS database and used to drive the two models. For each site, this data-
base contains 8 day composite LAI values of pixels covering a 7 km×7 km grid centered around the flux tower.
Previous studies extracted LAI values averaged over the central 1 km×1km [Yuan et al., 2007], 3 km×3km [Xiao
et al., 2008; Schmid, 2002], and 7km×7km [Groenendijk et al., 2011] areas within the 7 km×7km cutouts to cover
the flux tower footprint. Footprint modeling studies indicate that the area which contributes to the fluxmeasured
at eddy covariance flux towers varies from tens of meters to several kilometers [Schmid, 1997; Chen et al., 2012],
normally about 20 to 100 times of the measurement heights. Therefore, in this study, as for crop, grass, savannas,
open shrub, and woody savannas sites, LAI from the central 1 km×1km area was used since the corresponding
measurement heights are mostly lower than 10m. At the forest sites, LAI values averaged over the central
3 km×3 km area were extracted since their measurement heights are mostly higher than 20m. The resulting
LAI time series for each site were further smoothed using the locally adjusted cubic-spline capping method
[Chen et al., 2006] to remove unrealistically abrupt short-term changes in LAI due to the contamination of
the measurements by clouds or the presence of ground snow or ice.
2.1.4. Albedo Data
The standard 8day compositeMODIS black-sky albedo product (MCD43A3) at 500mgridded resolution [Lucht et al.,
2000; Schaaf et al., 2002] was downloaded from theMODIS database (ftp://daac.ornl.gov/data/modis_ascii_subsets).
Albedo averaged over the central 1 km×1 km (for crop, grass, savannas, open shrub, and woody savannas) or

Table 2. R2, RMSE, and AIC for MOD17 and TL-LUE Models in Calibration and Validation Site Years

MOD17 TL-LUE Difference

Vegetation Type R2 RMSE (g Cm�2 (8d)�1) AIC R2 RMSE (g Cm�2 (8d)�1) AIC ΔR2 RMSE (g Cm�2 (8d)�1) ΔAIC

Calibration
DBF 0.88 12.61 4979.1 0.90 11.21 4750.6 0.02 �1.40 �228.5
EBF 0.75 15.87 3053.9 0.78 14.25 2937.3 0.03 �1.62 �116.6
ENF 0.84 11.46 17287.4 0.87 9.96 16295.6 0.03 �1.50 �991.8
MF 0.84 12.25 9844.3 0.86 11.08 9452.1 0.02 �1.17 �392.2
Crop 0.82 20.19 4149.2 0.82 19.69 4116.6 0.00 �0.50 �32.6
Grass 0.81 11.84 5775.8 0.83 11.01 5606.5 0.02 �0.84 �169.2
OS 0.79 5.02 1041.0 0.84 4.48 969.8 0.05 �0.54 �71.3
S 0.64 12.20 692.4 0.72 10.67 657.4 0.08 �1.53 �35.0
WS 0.82 7.11 1084.7 0.87 5.97 990.3 0.05 �1.14 �94.5

Validation
DBF 0.81 16.13 3144.1 0.83 15.49 3100.7 0.02 �0.64 �43.4
EBF 0.54 21.10 1124.0 0.55 18.28 1073.3 0.02 �2.82 �50.8
ENF 0.75 13.80 4621.0 0.80 12.41 4437.1 0.05 �1.38 �183.9
MF 0.88 10.42 2364.0 0.90 9.55 2278.2 0.02 �0.87 �85.8
Crop 0.62 29.38 2111.4 0.66 28.36 2091.2 0.04 �1.03 �20.2
Grass 0.70 18.55 3226.0 0.75 15.95 3061.6 0.05 �2.60 �164.5
OS 0.86 5.01 298.6 0.88 4.31 272.6 0.02 �0.71 �25.9
S 0.73 7.65 189.2 0.75 7.30 186.9 0.02 �0.35 �2.3
WS 0.79 9.86 423.0 0.80 9.81 424.1 0.01 �0.05 1.1

ΔR2 means R2 of GPP_TLminus that of GPP_MOD;ΔRMSEmeans RMSE of GPP_TLminus that of GPP_MOD;ΔAICmeans AIC of GPP_TLminus that of GPP_MOD.
DBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; MF: mixed forest; Crop: crop; Grass: grass; S: savannas; OS:

open shrub; WS: woody savannas.
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3 km×3 km (for forests) area was used to drive the model. Outliers of MODIS albedo caused by clouds or the
presence of ground snow or ice were filled using annual means.

2.2. The MOD17 GPP and TL-LUE Models
2.2.1. MODIS GPP Model
The MOD17 model is based on the radiation conversion efficiency concept ofMonteith [1972] and the details
are described in Running et al. [2000].

GPP ¼ εmax� f VPDð Þ�g Taminð Þ�PAR� fPAR (3)

where εmax is the maximum light use efficiency and needs to be optimized; f(VPD) and g(Tamin) are the scalars
of VPD and minimum air temperature, respectively. fPAR is the fraction of PAR absorbed by the canopy and
calculated as follows:

fPAR ¼ 1� e�k�LAI (4)

Figure 4. Seasonal dynamics ofΔRMSE over nine vegetation types.ΔRMSEmeans 8 day RMSE values of 8 day GPP_MOD against GPP_ECminus the corresponding values of
GPP_TL against GPP_EC.
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In equation (3), f(VPD) and g(Tamin) are calculated as follows:

f VPDð Þ ¼
0 VPD≥VPDmax

VPDmax � VPD
VPDmax � VPDmin

VPDmin < VPD < VPDmax

1 VPD≤VPDmin

8>><
>>:

(5)

g Taminð Þ ¼
0 Tamin≤Tamin min

Tamin � Tamin min

Taminmax � Taminmin
Tamin min < Tamin < Tamin max

1 Tamin≥Tamin max

8>><
>>:

(6)

where VPDmax, VPDmin, Tamin_max, and Tamin_min are parameters determined according to literature (Table 1).

Figure 5. Seasonal dynamics ofΔAIC over nine vegetation types.ΔAICmeans 8 day AIC values of 8 day GPP_MOD against GPP_ECminus the corresponding values of
GPP_TL against GPP_EC.
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2.2.2. TL-LUE Model
The TL-LUE model developed by He et al. [2013] is stemmed from the MOD17 and BEPS models and calculates
GPP of a plant canopy as follows:

GPP ¼ εmsu�APARsu þ εmsh�APARshð Þ� f VPDð Þ�g Taminð Þ (7)

where εmsu and εmsh are the maximum light use efficiency of sunlit and shaded leaves (which need to be
optimized), respectively; APARsu and APARsh are the PAR absorbed by sunlit and shaded leaves; f(VPD)
and g(Tamin) are the scalars of VPD and minimum temperature, respectively, and also calculated using
equations (5) and (6).

Figure 6. Mean annual values of optimized (a) maximum light use efficiency (εmax), maximum light use efficiency of sunlit (εmsu), and shaded (εmsh) leaves, (b) LAI for
sunlit and shaded leaves, (c) APAR for sunlit and shade leaves, and (d) simulated GPP for sunlit and shaded leaves for different vegetation types.

Table 3. Means, Standard Deviations (STDEV), and Coefficients of Variation (CV = STDEV/Means × 100%) of Optimized Maximum Light Use Efficiency (εmax),
Maximum Light Use Efficiency of Sunlit (εmsu), and Shaded (εmsh) Leaves for Different Vegetation Types

Vegetation Typea

Mean (g CMJ�1) Standard Deviation (g CMJ�1) CV (%)

εmax εmsh εmsu εmax εmsh εmsu εmax εmsh εmsu

DBF 1.3 2.17 0.62 0.3 0.53 0.23 22.9 24.4 36.8
EBF 1.12 1.92 0.73 0.28 0.26 0.45 25.0 13.5 61.6
ENF 1.11 1.91 0.61 0.42 0.74 0.38 37.8 38.7 62.3
MF 1.18 1.84 0.66 0.26 0.44 0.38 22.0 23.9 57.6
Crop 2.58 4.81 1.19 1.02 2.05 0.49 39.4 42.7 41.2
Grass 1.52 2.82 0.89 0.44 0.9 0.43 28.9 31.9 48.3
Savannas 0.83 1.53 0.5 0.12 0.72 0.1 13.9 47.2 20
OS 0.93 2.11 0.46 0.42 1.13 0.21 45.6 53.5 45.3
WS 0.85 1.7 0.48 0.18 0.74 0.13 20.7 43.4 27.5

aDBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; MF: mixed forest; Crop: crop; Grass: grass; Savannas:
savannas; OS: open shrub; WS: woody savannas.
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APARsu and APARsh in equation (7) are calculated as follows:

APARsu ¼ 1� αð Þ� PARdir�cos βð Þ=cos θð Þ þ PARdif � PARdif;u
� �

=LAIþ C
� ��LAIsu (8)

and

APARsh ¼ 1� αð Þ� PARdif � PARdif;u
� �

=LAIþ C
� ��LAIsh (9)

where α is the canopy albedo retrieved from the MODIS product; PARdif and PARdir are the diffuse and direct
components of incoming PAR, respectively, and partitioned according to the clearness index [Chen et al., 1999];
PARdif,u is the diffuse PAR under the canopy and calculated following Chen et al. [1999]; (PARdif- PARdif,u)/LAI
represents the diffuse PAR per unit leaf area within the canopy; C quantifies the contribution of multiple scat-
tering of the total PAR to the diffuse irradiance per unit leaf area within the canopy; β is themean leaf-sun angle
and set as 60° for a canopy with a spherical leaf angle distribution; θ is the solar zenith angle[Chen et al., 1999];
and LAIsu and LAIsh are the LAI of sunlit and shaded leaves and are partitioned on the basis of LAI.

Diffuse and direct PAR can be empirically separated [Chen et al., 1999; Kathilankal et al., 2014]. In this study,
they were partitioned following Chen et al. [1999] and with parameters calibrated using measured daily
diffuse and total incoming radiation data [He et al., 2013], i.e.,

PARdif ¼ PAR 0:7527þ 3:8453R-16:316R2 þ 18:962R3-7:0802R4
� �

(10)

PARdir ¼ PAR� PARdif (11)

where PARdif represents the diffuse PAR; PAR is the total incoming photosynthetically active radiation, and
R is the sky clearness index and equals PAR/(0.5S0cosθ); S0 is the solar constant (1367Wm�2). A constant

0.5 is used to convert incoming solar
radiation into PAR [Weiss and
Norman, 1985; Tsubo and Walker,
2005; Bosch et al., 2009].

Direct and diffuse radiation measured
simultaneously without continuous
gaps in 37 sites years, including 22
sites and 7 vegetation types (Crop,
DBF, EBF, ENF, MF, grass, and savan-
nas), were used to validate the direct
and diffuse radiation estimated using
equations (10) and (11) (Table A3 in
Appendix A). The estimated direct
and diffuse PAR values were in good
agreement with measurements with
slopes of 0.98 and 0.97 and R2 values

Figure 7. The linear relationships between εmax and εmsh and between εmax and εmsu.

Figure 8. Sensitivity of GPP simulated by the MOD17 and TL-LUE models
to PAR.
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of 0.94 and 0.84, respectively. The root-mean-square error (RMSE) of estimated daily direct and diffused PAR
against observed values were 0.64 and 0.61MJm�2 d�1, respectively (Figure 1).

LAIsu and LAIsh were partitioned as follows:

LAIsum ¼ 2�cos θð Þ � 1� exp �0:5�Ω� LAI
cos θð Þ

� 	� 	
(12)

LAIsh ¼ LAI� LAIsu (13)

Table 4. Sensitivity of GPP Simulated by the MOD17 and TL-LUE Models to PARa

Variation of PAR (%)

Variation of GPP_TL (%)

DBF EBF ENF MF Crop Grass Savannas OS WS

�30 �19.4 �19.9 �20.6 �19.3 �20.0 �21.9 �18.5 �17.0 �16.2
�20 �11.8 �12.4 �12.7 �11.7 �12.3 �13.7 �11.5 �10.2 �9.9
�10 �5.4 �5.9 �5.9 �5.3 �5.7 �6.5 �5.5 �4.6 �4.6
10 4.5 5.5 5.2 4.4 5.0 5.9 5.3 4.1 4.5
20 8.5 10.9 10.0 8.1 9.6 11.4 10.7 8.0 9.2
30 12.2 16.4 14.5 11.4 14.0 16.7 16.4 12.1 14.4

aDBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; MF: mixed forest; Grass: grass; Crop: crop; Savannas:
Savannas; OS: open shrub; WS: woody savannas.

Figure 9. Sensitivity of GPP simulated by the MOD17 and TL-LUE models to LAI.
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where θ is the solar zenith angle [Chen et al., 1999]; LAI is the total
leaf area index of the canopy; and Ω was the clumping index
according to Table 1.

2.3. Model Parameterization and Validation

Maximum LUE for the whole canopy in the MOD17 algorithm (εmax)
and for sunlit leaves (εmsu) and shaded leaves (εmsh) in the TL-LUE
model was optimized using measured GPP values in 195 site years.
The optimization was implemented using the shuffled complex
evolution-University of Arizona method [Duan et al., 1992]. Both
MODIS and TL-LUE models were driven by 8 day VPD, Ta, PAR, and
LAI. The εmax, εmsu, and εmsh were annually optimized for each site
year. In the optimization, model performance was evaluated using
the agreement index (d), which is defined as follows:

d ¼ 1�
Xn
k¼1

Pk � Okð Þ2=
Xn
k¼1

ðjPk � Oj þ jOk � OjÞ2 (14)

where n is the total number of measurements; Pk and Ok represent
the kth predicted and observed 8 day GPP values, respectively, and
Ō is the annual mean of observed GPP values.

The relationship of dwith the root-mean-square error (RMSE) and the
correlation coefficient (R) is as follows:

d ¼ 1� RMSEð Þ2
σ2OP þ σ2P þ 2 RσOPσPj j (15)

where σ2OP ¼
Xn
i¼1

Pi � O
� �

2, σ2P ¼
Xn
i¼1

Oi � O
� �

2.

The index d can synthesize the information contained in RMSE, R2,
σOP, and σP. It has the advantage of being both relative, as opposed
to R2, and bounded in the range from 0 (no agreement) to 1 (com-
plete agreement), as opposed to RMSE [Willmott, 1981, 1982]. This
index has been widely utilized in model parameter optimization
[Wang et al., 2001; Gu et al., 2002].

2.4. Model Performance Assessment

The performance of TL-LUE and MOD17 was assessed using the root-
mean-square error (RMSE), the coefficient of determination (R2), and
the Akaike information criterion (AIC). AIC has the advantage of testing
the significance of the differences between the functions of different
model specifications [Wang and Liu, 2006] and measuring the para-
meters of a model [Akaike, 1974]. It is defined as follows:

AIC pð Þ ¼ N logE pð Þ þ 2p (16)

where p is the order of model, N the number of data, and E(p) innova-
tion variance. The AIC best model has the smallest AIC value [Inouye
et al., 1995; Harada et al., 2010].

3. Results
3.1. Performance of MOD17 and TL-LUE

Figure 2 shows the comparison of GPP simulated using the MOD17
model (GPP_MOD) and TL-LUE model (GPP_TL) against GPP_EC in
195 calibration site years for all nine VTs. Both simulated GPP_MOD
and GPP_TL were in good agreement with GPP_EC. When the dataTa
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from the 195 site years were lumped together, R2 and RMSE values for GPP_MODwere 0.83 and 12.84 gCm�2

(8d)�1, respectively, and the corresponding values for GPP_TL were 0.86 and 11.79 gCm�2 (8d)�1. When ana-
lyzed for individual VTs, the R2 and RMSE for GPP_MOD versus GPP_EC ranged from 0.64 for savannas to 0.88
for deciduous broadleaf forests and from 5.02 gCm�2 (8d)�1 for open shrub vegetation to 20.19 gCm�2

(8d)�1 for crops, respectively. The corresponding values of GPP_TL were in the range from 0.72 for savannas
to 0.90 for deciduous broadleaf forests and from 4.48 gCm�2 (8d)�1for open shrub to 19.69 gCm�2 (8d)�1 for
crops, respectively.

Using optimized εmax, εmsu, and εmsh values, simulated andmeasured GPP values for the 73 validation site years
are compared for individual VTs in Figure 3. When all VTs were lumped together, variations of 8day GPP
explained by the MOD17 and TL-LUE models were 72.7% and 76.1%, respectively. The corresponding RMSE
values were 16.77 gCm�2 (8d)�1 and 15.69gCm�2 (8d)�1. The TL-LUE model produced higher R2 and lower
RMSE values than the MOD17 model for all VTs. The improvement of GPP estimated with TL-LUE over that
estimated with the MOD17 model was most significant for grass and ENF, with R2 increased from 0.70 to
0.75 for grass and from 0.75 to 0.80 for ENF. The corresponding RMSE decreased from 18.55 gCm�2 (8d)�1

to 15.95 gCm�2 (8d)�1 for the former and from 13.80 gCm�2 (8d)�1 to 12.41gCm�2 (8d)�1 for the latter.

Out of the total of 195 calibration years, R2 values of GPP_TL against measurements were higher than those of
GPP_MOD in 172 (88%) site years. The RMSE values of GPP_TL were smaller than those of GPP_MOD in 184
(94%) site years. The AIC values of GPP_TL were lower than those of GPP_MOD for all VTs, especially for ENF,
grass, and MF (Table 2). Out of the total of 73 validation years, the TL-LUE model outperformed the MOD17
model in 67 (92%) of site years according to R2 of simulated GPP and in 61 (84%) site years according to RMSE
of simulated GPP. The AIC values of GPP_TL were lower than those of GPP_MOD for all vegetation types but
woody savannas (Table 2).

Figure 4 presents the seasonal variations of RMSEs of 8 day GPP_TL and GPP_MOD against GPP_EC. The RMSE
values of GPP_TL were almost smaller than those of GPP_MOD in all seasons for all vegetation types. The
decrease of RMSE of GPP_TL relative to that of GPP_MOD was more obvious during the growing season
for all vegetation types but savannas and woody savanna. As to DBF, MF, crop, and grass, the AIC values of
8 day GPP_TL were lower than those of the 8 day GPP_MOD product during the growing season with high
GPP, indicating the robust outperformance of the TL-LUE model over the MOD17 model (Figure 5). During
off-season periods with low GPP, the AIC values of GPP_TL were slightly higher than those of GPP_MOD.
As to ENF and EBF, the TL-LUE model performed better than the MOD17 model in all seasons, which is con-
firmed by the lower AIC values of the former. As indicated by slightly higher AIC values, the outperformance
of TL-LUE over MOD17 was not significant for open shrub, savannas, and woody savannas.

3.2. Optimized Maximum Light Use Efficiency

Figure 6a and Table 3 show the averages of the optimized εmax values in the MOD17 model, as well as εmsu and
εmsh in the TL-LUE model for nine VTs. The values of these parameters varied substantially among the different
vegetation types. For all VTs, values of εmsh were always the highest and those of εmsu were the lowest with the
values of εmax in between. As expected, crop had the highest εmax, εmsh, and εmsu values, which were 2.58, 4.81,
and 1.19gCMJ�1, respectively. The εmax, εmsh, and εmsu values of savannas were only 0.83, 1.53, and
0.50 gCMJ�1 and were lower than those of all other VTs. For a given plant function type, εmax, εmsh, and εmsu,
all exhibited considerable variations among different site years. The coefficients of variations (CV= standard
deviation/mean×100%) for εmax, εmsh, and εmsu ranged from 13.9% for savannas to 45.6% for open shrub, from
13.5% for EBF to 53.5% for open shrub, and from 20.0% for savannas to 62.3% for ENF, respectively. Figure 7
shows that there were tight linear relationships between εmax (denoted as x, gCMJ�1) with εmsh (denoted as
y1, gCMJ�1) and between εmax with εmsu (denoted as y2, gCMJ�1), which were described as y1 = 1.70x+0.06
(R2 = 0.79, p< 0.0001) and y2 = 0.46x+0.09 (R2 = 0.51, p< 0.0001). εmsh was 2.63 to 4.59 times εmsu.

Figures 6b–6d show the averages and standard deviations of LAI, APAR, and GPP of sunlit and shaded leaves
calculated by the TL-LUE model for the nine vegetation types. The values varied distinctively among the dif-
ferent vegetation types. The ratio of shaded LAI to sunlit LAI ranged from 1.06 for open shrub to 3.22 for DBF.
As expected, the APAR of shaded leaves was much lower than that of sunlit leaves. The ratio of the former to
the latter ranged from 0.28 for open shrub and to 0.84 for DBF. The GPP of shaded leaves was much higher
than that of sunlit leaves for most vegetation types with the exception of savannas and open shrub. The
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ratio of GPP of shaded leaves to and that of sunlit leaves ranged from 0.75 for savannas to 2.22 for DBF.
The higher GPP of shaded leaves results mainly from their higher maximum light use efficiency (εmsh)
and larger LAI.

3.3. Sensitivity of GPP Simulation to PAR and LAI Driving MOD17 and TL-LUE Models

The sensitivity of simulated GPP to PAR and LAI was assessed through artificial variations of these two
variables by ±30%, ±20%, and ±10%. The variations of PAR were partitioned into the variations of direct
and diffuse components according to the sky clearness index (R) using equations (10) and (11), and LAI
variations were partitioned into variations of sunlit and shaded LAI according to solar zenith angle using
equations (12) and (13). GPP_TL showed a weaker sensitivity to variations in PAR than GPP_MOD (Figure 8
and Table 4). An increase in PAR by 10%, 20%, and 30% resulted in an overestimate of GPP_TL in the range
from 4.1%, 8.0% for OS, and 11.4% for MF to 5.9%, 11.4%, and 16.7% for grass, respectively. A decrease in PAR
by 10%, 20%, and 30% resulted in an underestimate of GPP_TL in the range from 4.6%, 9.9%, and 16.2% for
WS to 6.5%, 13.7%, and 21.9% for grass, respectively. In contrast, the change in GPP simulated by the MOD17

Figure 10. Effects of varying PAR on GPP simulated using the TL-LUE and MOD17 models.

Journal of Geophysical Research: Biogeosciences 10.1002/2014JG002876

ZHOU ET AL. TL-LUE PARAMETERIZATION AND VALIDATION 1059



model was equal to the change in PAR. The sensitivity of simulated GPP_TL to LAI was slightly higher (no more
than 2%) than that of GPP_MOD (Figure 9 and Table 5).

In order to further analyze the sensitivity of simulated GPP to PAR for different vegetation types under differ-
ent conditions of incoming PAR, observed and simulated GPP were averaged over 1MJm�2 d�1 bins of PAR.
Both the TL-LUE and MOD17models tended to underestimate GPP when PAR was low and overestimate GPP
when PAR was high (Figure 10). GPP_TL deviated less from GPP_EC than GPP_MOD. With the increase of PAR,
the departure of GPP_TL from GPP_EC became much smaller than that of GPP_MOD.

Figure 11 shows the changes of R2, RMSE, and AIC of GPP_TL against GPP_ECminus the corresponding values
of GPP_MOD with LAI. The higher the LAI, the higher values of ΔR2 and absolute ΔRMSE and ΔAIC. It means
that with the increase of LAI, the TL-LUE model outperformed the MOD17 model more significantly. This
would be one of the reasons that in both calibration and validation, the RMSE values of GPP_TL were lower
than that of GPP_MOD in growing seasons than in nongrowing seasons (Figure 4). LAI is much higher in
growing seasons than in nongrowing seasons. The result is consistent with the findings of Knohl and
Baldocchi [2008] and Wohlfahrt et al. [2008].

4. Discussions
4.1. Improvement of the TL-LUE Model Over the MOD17 Model

The comparison of RMSE and AIC of GPP_TL against GPP_EC with those of GPP_MOD indicates that the
improvement of TL-LUE model over the MOD17 model is more significant during the growing season com-
pared to off-season periods (Figures 4 and 5). One factor resulting in the seasonal change in the improvement
of TL-LUE model over the MOD17 model is the seasonal variations of LAI, especially for nonevergreen
vegetation. When LAI is low, the canopy consists dominantly of sunlit leaves, which are the main contributor
to the canopy GPP. So the TL-LUE and MOD17 model perform similarly. With the increase of LAI, shaded
leaves make a large contribution to canopy GPP. As a consequence, the outperformance of TL-LUE over
MOD17 became considerable. The ΔR2 (R2 of GPP_TL against GPP_EC minus the corresponding value of
GPP_MOD) increased significantly, while ΔRMSE and ΔAIC (RMSE and AIC of GPP_TL against GPP_EC minus
the corresponding values of GPP_MOD) decreased significantly (Figure 11). Similar findings were also
reported in Wohlfahrt et al. [2008].

During the growing season, incoming PAR varied across a wider range. When incoming PAR is high, direct
PAR is dominant and absorbed by sunlit leaves, which are commonly light saturated. Consequently, the
LUE of the whole canopy is low [Gu et al., 2002; Ibrom et al., 2008]. Under the condition of low PAR, the fraction
of diffuse PAR is high and uniformly distributed within the canopy. A larger part of the incoming PAR will be
absorbed by shaded leaves. Their photosynthesis is commonly light limited and might be significantly
enhanced by increasing PAR. Therefore, the LUE of whole canopy is high [Zhang et al., 2011]. The MOD17
model ignores the change of LUE with incoming PAR and definitely overestimates/underestimates GPP when
incoming PAR is high/low. The TL-LUE model differentiates εmsu and εmsh and properly captures the change
in fraction of incoming PAR absorbed by sunlit and shaded leaves [He et al., 2013]. It is able to alleviate the
bias in GPP simulated by the MOD17 model.

Figure 11. Changes of (a) R2 and (b) RMSE of GPP_TL versus GPP_EC minus the corresponding values of GPP_MOD with LAI.
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Observed incoming PAR data are very limited. Currently, PAR used to simulate regional and global GPP is
generated from model simulations, remote sensing, and data assimilation. Many studies have indicated that
large uncertainties exist in these data sets. For example, Zhao and Running [2006] pointed out that the
average bias of NCEP area-weighted radiation was about 20%. Also, based on field measurements, Betts
et al. [1996] and Brotzge [2004] showed that shortwave solar radiation was consistently overestimated by
17–27% in the NCEP-NCAR data set. With a data set of daily and monthly solar radiation from ground
observations at 122 stations over China using thermopile pyranometers, Jia et al. [2013] found that in the rea-
nalyzed data (NCEP-DOE), shortwave solar radiation was greatly overestimated in China, especially in north
and south regions, with mean bias errors of 32.1% and 31.9%, respectively. GPP_TL exhibited a much lower
sensitivity to PAR than GPP_MOD (Figure 8). An overestimate of 30% in incoming PAR resulted in an averaged
overestimation of GPP_TL in the range from 13.3% (grass) to 18.6% (MF), much smaller that the overestima-
tion of 30% in GPP_MOD. Similarity, the underestimation of GPP_TL caused by a negative bias of incoming
PAR was also smaller than that of GPP_MOD. If incoming PAR consisted solely of direct or diffuse beams,
the sensitivity of GPP_TL to incoming PAR would be the same as that of GPP_MOD.

In the TL-LUE model, PAR is partitioned into direct and diffuse components. The former is absorbed only by
sunlit leaves, while the latter can be utilized by both sunlit and shaded leaves. Owing to large difference
between εmsu and εmsh, the errors in the partitioning of direct and diffuse PAR will definitely propagate into
simulated GPP. The validation in 37 sites years showed that the RMSE of estimated diffused PAR against
observations was 0.61MJm�2 d�1. In the case of extreme underestimation of diffuse PAR, the relative
error of GPP_TL would be 6.2%. The extreme overestimation of diffuse PAR would induce an overestimation
of 10.9% in GPP_TL. Compared with the MOD17 model, the requirement for partitioning PAR into
direct and diffuse components is a disadvantage of the TL-LUE model. However, this shortcoming is
overwhelmed by the advantage of the low sensitivity of the TL-LUE model to uncertainties in incoming
PAR. The average 6.2%/10.9% underestimation/overestimation in GPP_TL caused by an extreme
underestimation/overestimation of diffuse PAR was smaller than the average 8.1% (=30%� 21.9%) /13.3%
(=30%� 16.7%) reduction of underestimation/overestimation in GPP_TL relative to GPP_MOD caused by a
30% underestimation/overestimation of PAR (Table 4).

4.2. The Optimized Maximum Light Use Efficiency

The optimized εmsh was much higher than εmax and εmsu. Open shrub had the highest ratio of εmsh to εmsu (4.59)
and EBF the lowest (2.63). Higher εmsh can be attributed to the fact that shaded leaves only have the opportunity
to absorb diffuse light (including the incoming diffuse sunlight reaching to the canopy and the multi-scattered
direct sunlight in the canopy), which enters the plant canopy from all directions and reaches leaves more evenly
than direct light [Sinclair et al., 1992; Hammer and Wright, 1994]. The intensity of light absorbed by shaded leaves
varies normally in the almost linear part of the light response curve that lies between the light compensation point
and the light saturation point, which is the reason for their higher light use efficiency compared to sunlit leaves.
The differentiation of εmsh and εmsu enables the TL-LUE model to simulate the enhanced effect of diffuse radia-
tion on LUE [He et al., 2013], which has been previously reported for crop and grass [Sinclair et al., 1992;
Sinclair and Shiraiwa, 1993; Rochette et al., 1996; Gu et al., 2002; Wohlfahrt et al., 2008] and coniferous
and deciduous forests [Price and Black, 1990; Hollinger et al., 1994; Baldocchi, 1997; Goulden et al., 1997;
Lamaud et al., 1997; Freedman et al., 2001; Ibrom et al., 2006]. Globally, irradiance over land surfaces
declined by an average of 20Wm�2 over the past 50 years [Stanhill and Cohen, 2001], especially during
1960–1999 [Mercado et al., 2009], while aerosol concentrations and cloudiness might result in increase of
diffuse radiation. With the consideration of the enhancing effect of diffuse irradiance on GPP, the TL-LUE
model might be used to simulate the impact of the changes in diffuse to global radiation ratio on GPP.

The average optimized εmax was close to the default values used in the MOD17 model (Table 1) for all VTs
with the exception of crop and grass, which exhibited much higher optimized εmax values than the default
(0.604 gCMJ�1 PAR). Many studies indicated that the underestimation of GPP for crop by the MOD17 model
is mainly due to using a too low value of εmax [Turner et al., 2006]. It has been reported that the mean LUE of
crop can approach 2.80 gCMJ�1 PAR [Garbulsky et al., 2010; Xiao et al., 2011; Chen et al., 2011], which is
slightly higher than the average value of 2.58 gCMJ�1 PAR optimized here. The optimized εmax of grass
averaged 1.52 g CMJ�1 (from 1.0 gCMJ�1 to 2.5 gCMJ�1), much higher than the value of 0.604 gCMJ�1 used
inMOD17model. Sjöström et al. [2013] also found a significant improvement in simulating GPP of grass if εmax
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was set to 1.7 gCMJ�1. The higher εmax for crop and grass is probably related to fertilization and the increased
use of productive and C4 plants with higher water use efficiencies, respectively.

There were tight linear relationships of εmsh and εmsu with εmax, e.g., εmsh was about 1.70 times εmax, and εmsu

only about 0.46 times εmax (Figure 7). These relationships are relatively strict and may be used for a quick esti-
mation of εmsh and εmsu values from existing εmax values. These robust and relatively constant relationships
between the different LUE estimators indicate that there is a similar functional pattern across different biomes
in the way how diffuse and direct radiation are used for GPP. The empirical, functional parameter estimation
approach does however not distinguish between the different reasons for the observed patterns, which can
be caused by shade modification of leaf physiology but as well by differences in PAR absorptivity, leaf angle
distributions, canopy structure, and the distribution of shade and sunlit leaves across the plant canopy. The
results show similarities in the ways canopies utilize diffuse and direct radiation, not how they achieve this.

Some LUEmodels apply a universally invariant LUE values for various ecosystems. For example, the C-Fix model
assumed a value of 1.1 g Cm�2MJ�1 APAR for all vegetation types [Veroustraete et al., 2002]. In the EC-LUE
model, LUE equals 2.14 gCm�2MJ�1 APAR without biome-dependent variations across biomes [Yuan et al.,
2007]. This study found out that εmax, εmsh, and εmsu varied considerably not only among different VTs but also
across different sites within a specific VT. Such variation has been previously reported in many studies [Russell
et al., 1989; Groenendijk et al., 2011]. The variations of εmax, εmsh, and εmsu across different sites might be caused
by a number of factors, including plant species, forest age, nitrogen content of leaves, and fraction of diffuse
radiation. These factors have not been included yet in MOD17 and TL-LUE models, suggesting the necessity
of further improving their parameterization for a better simulation of GPP. The inclusion of the changes in
LUE with the above mentioned factors will further improve the ability of LUE models to simulate GPP.

4.3. Uncertainties

LAI is an input into the MOD17 and TL-LUE models. Simulated GPP is affected by the quality of LAI, which
might be extracted from literature for these sites used in this study. However, only average or maximum
LAI values are typically reported [Heinsch et al., 2006]. In reality, LAI varies seasonally, even for evergreen for-
ests. Therefore, MODIS LAI rather thanmeasured LAI was used in this study to drive the models for optimizing
εmax, εmsh, and εmsu. Such simple application of MODIS LAI might induce some uncertainties in optimized
parameters and GPP validation. First, MODIS LAI usually has an error of about 20% [Fang et al., 2012], which defi-
nitely propagate into optimized parameters and estimated GPP. Sensitivity analysis showed that 20% of error in
LAI may cause detectable errors in calculated GPP (Figure 9), ranging from 5.3% to 7.7% for forest and 9.4% to
13.4% for other VTs for theMOD17model and 3.8% to 9.2% for forests and from 9.2% to 14.6% for other VTs for
the TL-LUEmodel. Additionally, the mismatch of the spatial resolution of MODIS LAI with the footprints of eddy
covariance flux towers might also bring some uncertainties in parameter parameterization and GPP simulation.
Furthermore, the vegetation type around many FLUXNET towers is not completely homogenous. MODIS LAI
from pixels around towers might not actually represent the LAI of various types of vegetation with different
maximum light use efficiency, namely, even the 1 kmMODIS pixel does not represent what the flux tower mea-
sured. Román et al. [2009] developed a method to quantify the representativeness of MODIS pixels for tower
comparisons. Unfortunately, their analysis has not been conducted for all FLUXNET sites used in this study. In
future, high spatial and temporal resolution LAI data should be used in conjunction with footprint models to
constrain uncertainties in parameter optimization and GPP estimation caused vegetation heterogeneity.

Generally, VPD and Ta have been used to represent the environmental controls on GPP. VPD represents part of
the atmospheric evaporative demand and its effect on photosynthesis and was shown to be one of the key
factors reducing LUE [Gu et al., 2002; Lloyd et al., 2002; Yuan et al., 2007; Ibrom et al., 2008]. Some previous stu-
dies have also outlined the important role of soil moisture in regulating LUE and GPP [Jarvis and Linder, 2000; Xu
and Baldocchi, 2004; Baldocchi et al., 2005; Yuan et al., 2007]. The exclusion of soil moisture in the TL-LUE and
MOD17 models may have induced some uncertainties in optimized parameters and calculated GPP, as is evi-
dent in the somewhat poor agreement of observed and simulated GPP for open shrub, savannas, and woody
savannas, in which soil water stress is likely to occur frequently. Soil moisture maybe included into the TL-LUE
models via the Soil Moisture Active and Passive and Soil Moisture and Ocean Salinity satellite data in the future.

As sunlit leaves received both direct and diffuse radiation, they are supposed to have higher temperature
than shaded leaves, which may lead to greater temperature gradients between sunlit leaves and the
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surrounding air. It means that the scalars (equations (5) and (6)) should be calculated using different
temperatures for sunlit and shaded leaves. The TL-LUE model presently takes the same air temperature
to calculate temperature scalars for sunlit and shaded leaves. Additionally, differences in leaf temperature
can also result in different VPD of sunlit and shaded leaves. In the TL-LUE and MOD17 models, the applica-
tion of same temperature and VPD for entire canopy might be also a source of uncertainties in simulated
GPP and optimized parameters. In addition, flux data from a limited number of savannas, open shrubs,
and woody savannas were used to optimize parameters and assess model performance, which makes
conclusions more uncertain.

5. Conclusions

In this study, the TL-LUE model was optimized and validated using global FLUXNET CO2 flux measurements.
The performance of the model was compared with that of the widely used MOD17 model. The main conclu-
sions are as follows:

1. The TL-LUE model outperformed the MOD17 model in simulating 8 day GPP. The improvement of the
TL-LUE model over the MOD17 model became more apparent at higher LAI.

2. Optimized εmax, εmsu, and εmsh varied considerably among VTs and across different sites for a specific VT.
Values of εmsh and εmsu were linearly correlated with the values of εmax. εmsh was about 1.70 times εmax,
and εmsu about 0.46 times εmax. The average values of optimized εmax were close to the default values
used in the MOD17 algorithm for all VTs except crop and grass. For the latter two VTs, optimized εmax

values were much larger than the default values used in the MOD17 algorithm.

3. GPP simulated by the TL-LUE and the MOD17 models showed a similar sensitivity to LAI. However, GPP
simulated by the TL-LUE model exhibited a lower sensitivity to errors in PAR input data than the
MOD17 model, indicating its robustness for simulating regional and global GPP using radiation data sets
with large uncertainties.

Table A1 described the area proportions of different land cover types calculated from the Global Land Cover
Data Set for each site over the central 1 km × 1 km or 3 km × 3 km around the flux tower. Area proportions
of dominant vegetation types were highlighted in the table. Sites in this table were used to calibrate and
validate TL-LUE and MOD17 models in this study.

Table A1. Area Proportions of Different Land Cover Types Calculated From the Global Land Cover Data Set for 98 Sites Over the Central 1 km× 1 km (for Crop,
Grass, Savannas, Open Shrub, and Woody Savannas) or 3 km × 3 km (for Forests) Around the Towera

Site Name
Latitude

(°)
Longitude

(°)
LaThuile FLUXNET
Vegetation Type

Area Proportion of GlobeLand30 Data Sets

Crop Forest Grass Shrub Wetland Water Tundra
Artificial
Surfaces

Bare
Land

Snow and
Ice

BE-Lon 50.55 4.74 Crop 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00
CH-Oe2 47.29 7.73 Crop 0.83 0.02 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00
CN-Yuc 36.95 116.60 Crop 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00
DE-Geb 51.10 10.91 Crop 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DE-Kli 50.89 13.52 Crop 0.84 0.07 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00
DK-Ris 55.53 12.10 Crop 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
ES-ES2 39.28 �0.32 Crop 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FR-Gri 48.84 1.95 Crop 0.92 0.01 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00
IT-PT1 45.20 9.06 Crop 0.51 0.45 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
US-Bo1 40.01 �88.29 Crop 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-Bo2 40.01 �88.29 Crop 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-Ne1 41.17 �96.48 Crop 0.98 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-Ne2 41.16 �96.47 Crop 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-Ne3 41.18 �96.44 Crop 0.95 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DE-Hai 51.08 10.45 DBF 0.17 0.76 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FR-Fon 48.48 2.78 DBF 0.42 0.45 0.00 0.00 0.00 0.03 0.00 0.10 0.00 0.00
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Table A1. (continued)

Site Name
Latitude

(°)
Longitude

(°)
LaThuile FLUXNET
Vegetation Type

Area Proportion of GlobeLand30 Data Sets

Crop Forest Grass Shrub Wetland Water Tundra
Artificial
Surfaces

Bare
Land

Snow and
Ice

FR-Hes 48.67 7.07 DBF 0.57 0.37 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00
JP-Tak 36.15 137.42 DBF 0.04 0.84 0.11 0.00 0.00 0.00 0.00 0.00 0.01 0.00
US-Bar 44.06 �71.29 DBF 0.00 0.92 0.03 0.00 0.00 0.00 0.00 0.02 0.02 0.00
US-Ha1 42.54 �72.17 DBF 0.03 0.95 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
US-MMS 39.32 �86.41 DBF 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-MOz 38.74 �92.20 DBF 0.19 0.75 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00
US-UMB 45.56 �84.71 DBF 0.02 0.50 0.12 0.00 0.13 0.24 0.00 0.00 0.00 0.00
US-WCr 45.81 �90.08 DBF 0.00 0.83 0.01 0.00 0.16 0.00 0.00 0.00 0.00 0.00
AU-Tum �35.66 148.15 EBF 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CN-Din 23.17 112.53 EBF 0.10 0.73 0.03 0.00 0.00 0.05 0.00 0.08 0.00 0.00
FR-Pue 43.74 3.60 EBF 0.02 0.93 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00
GF-Guy 5.28 �52.91 EBF 0.00 0.98 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00
ID-Pag �2.35 114.04 EBF 0.00 0.93 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IT-Cpz 41.71 12.38 EBF 0.08 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CA-Ca1 49.87 �125.33 ENF 0.00 0.93 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CA-Ca2 49.87 �125.29 ENF 0.00 0.91 0.06 0.00 0.01 0.00 0.00 0.01 0.01 0.00
CA-Ca3 49.53 �124.90 ENF 0.00 0.78 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CA-Man 55.88 �98.48 ENF 0.00 0.77 0.02 0.00 0.21 0.01 0.00 0.00 0.00 0.00
CA-NS5 55.86 �98.49 ENF 0.00 0.86 0.03 0.00 0.09 0.01 0.00 0.00 0.00 0.00
CA-Qcu 49.27 �74.04 ENF 0.00 0.94 0.00 0.00 0.00 0.06 0.00 0.00 0.01 0.00
CA-Qfo 49.69 �74.34 ENF 0.00 0.90 0.00 0.00 0.04 0.04 0.00 0.00 0.01 0.00
CA-SJ2 53.94 �104.65 ENF 0.00 0.77 0.06 0.00 0.10 0.01 0.00 0.01 0.05 0.00
CA-SJ3 53.88 �104.65 ENF 0.00 0.83 0.05 0.00 0.08 0.00 0.00 0.03 0.02 0.00
CN-Qia 26.73 115.07 ENF 0.23 0.75 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CZ-BK1 49.50 18.54 ENF 0.14 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DE-Tha 50.96 13.57 ENF 0.38 0.56 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00
DE-Wet 50.45 11.46 ENF 0.22 0.74 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00
FI-Hyy 61.85 24.29 ENF 0.06 0.91 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00
IL-Yat 31.35 35.05 ENF 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IT-Bon 39.48 16.53 ENF 0.23 0.73 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00
IT-Ren 46.59 11.43 ENF 0.14 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NL-Loo 52.17 5.74 ENF 0.20 0.71 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.00
PT-Esp 38.64 �8.60 ENF 0.24 0.74 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00
RU-Fyo 56.46 32.92 ENF 0.08 0.88 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00
SE-Fla 64.11 19.46 ENF 0.06 0.89 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.00
SE-Nor 60.09 17.48 ENF 0.09 0.85 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00
SE-Sk1 60.13 17.92 ENF 0.06 0.89 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.00
US-Blo 38.90 �120.63 ENF 0.00 0.91 0.07 0.00 0.00 0.01 0.00 0.00 0.00 0.00
US-Ho1 45.20 �68.74 ENF 0.00 0.97 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-Me2 44.45 �121.56 ENF 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-Me3 44.32 �121.61 ENF 0.01 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-NC2 35.80 �76.67 ENF 0.29 0.65 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-NR1 40.03 �105.55 ENF 0.00 0.96 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-SP1 29.74 �82.22 ENF 0.02 0.80 0.01 0.00 0.16 0.00 0.00 0.02 0.00 0.00
US-SP2 29.76 �82.24 ENF 0.08 0.63 0.02 0.00 0.24 0.00 0.00 0.01 0.01 0.00
US-SP3 29.75 �82.16 ENF 0.01 0.76 0.01 0.00 0.15 0.04 0.00 0.03 0.00 0.00
CA-Let 49.71 �112.94 Grass 0.43 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CH-Oe1 47.29 7.73 Grass 0.00 0.01 0.80 0.00 0.00 0.00 0.00 0.19 0.00 0.00
CN-Ha2 37.67 101.33 Grass 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DE-Meh 51.28 10.66 Grass 0.00 0.02 0.96 0.00 0.00 0.00 0.00 0.02 0.00 0.00
FR-Lq1 45.64 2.74 Grass 0.00 0.00 0.96 0.02 0.00 0.00 0.00 0.01 0.00 0.00
FR-Lq2 45.64 2.74 Grass 0.00 0.00 0.96 0.02 0.00 0.00 0.00 0.01 0.00 0.00
HU-Bug 46.69 19.60 Grass 0.00 0.24 0.72 0.04 0.00 0.00 0.00 0.00 0.00 0.00
IE-Dri 51.99 �8.75 Grass 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.01 0.00 0.00
IT-MBo 46.03 11.08 Grass 0.00 0.92 0.92 0.01 0.00 0.00 0.00 0.00 0.07 0.00
SE-Deg 64.18 19.56 Grass 0.00 0.08 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00
US-Wkg 31.74 �109.94 Grass 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.02 0.00 0.00
US-FPe 48.31 �105.10 Grass 0.19 0.00 0.71 0.05 0.03 0.00 0.00 0.00 0.01 0.00
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Table A2 described site years used for calibrating and validating TL-LUE and MOD17 models, as well as the
basic characteristics of each site, including abbreviated name, country, latitude, longitude, vegetation types,
and related references.

Table A1. (continued)

Site Name
Latitude

(°)
Longitude

(°)
LaThuile FLUXNET
Vegetation Type

Area Proportion of GlobeLand30 Data Sets

Crop Forest Grass Shrub Wetland Water Tundra
Artificial
Surfaces

Bare
Land

Snow and
Ice

BE-Bra 51.31 4.52 MF 0.17 0.34 0.00 0.00 0.00 0.01 0.00 0.47 0.00 0.00
BE-Vie 50.31 6.00 MF 0.13 0.58 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00
CA-Gro 48.22 �82.16 MF 0.00 0.91 0.05 0.00 0.00 0.03 0.00 0.01 0.00 0.00
CA-Oas 53.63 �106.20 MF 0.00 0.95 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00
CA-Obs 53.99 �105.12 MF 0.00 0.80 0.01 0.00 0.16 0.00 0.00 0.02 0.01 0.00
CA-TP4 42.71 �80.36 MF 0.41 0.46 0.05 0.00 0.02 0.03 0.00 0.01 0.00 0.00
CA-WP1 54.95 �112.47 MF 0.07 0.86 0.04 0.00 0.00 0.00 0.00 0.03 0.00 0.00
CN-Cha 42.40 128.10 MF 0.03 0.83 0.04 0.00 0.00 0.00 0.00 0.10 0.00 0.00
DE-Gri 50.95 13.51 MF 0.16 0.82 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
DE-Har 47.93 7.60 MF 0.55 0.31 0.00 0.00 0.00 0.07 0.00 0.07 0.00 0.00
IT-Lav 45.96 11.28 MF 0.13 0.83 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00
US-Dk1 35.97 �79.09 MF 0.08 0.82 0.01 0.00 0.02 0.00 0.00 0.05 0.00 0.00
US-Dk2 35.97 �79.10 MF 0.10 0.83 0.01 0.00 0.02 0.00 0.00 0.03 0.00 0.00
US-Dk3 35.98 �79.09 MF 0.10 0.83 0.01 0.00 0.02 0.00 0.00 0.03 0.00 0.00
US-PFa 45.95 �90.27 MF 0.01 0.62 0.04 0.00 0.33 0.01 0.00 0.00 0.00 0.00
US-Syv 46.24 �89.35 MF 0.00 0.70 0.01 0.00 0.15 0.13 0.00 0.00 0.00 0.00
CA-NS6 55.92 �98.96 OS 0.00 0.03 0.01 0.93 0.00 0.02 0.00 0.00 0.00 0.00
CA-NS7 56.64 �99.95 OS 0.00 0.10 0.00 0.68 0.09 0.10 0.00 0.03 0.00 0.00
US-Aud 31.59 �110.51 OS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
US-SRM 31.82 �110.87 OS 0.00 0.07 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00
AU-How �12.49 131.15 Savannas 0.00 0.50 0.44 0.01 0.06 0.00 0.00 0.00 0.00 0.00
ES-VDA 42.15 1.45 Savannas 0.00 0.45 0.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00
US-KS2 28.61 �80.67 WS 0.02 0.06 0.00 0.00 0.62 0.21 0.00 0.10 0.00 0.00
US-Ton 38.43 �120.97 WS 0.00 0.00 0.60 0.40 0.00 0.00 0.00 0.00 0.00 0.00

aThe highlighted table entries mean the area proportions of dominant vegetation types.

Table A2. Characteristics of the FLUXNET Sites Used in This Studya

Site Name Country Latitude (°) Longitude (°)
LaThuile FLUXNET
Vegetation Type Calibration Years Validation Years Reference

BE-Lon Belgium 50.55 4.74 Crop 2004 Stoy et al. [2013]
CH-Oe2 Switzerland 47.29 7.73 Crop 2005 Eugstera et al. [2010]
CN-Yuc China 36.95 116.60 Crop 2003-2004 Yu et al. [2006]
DE-Geb Germany 51.10 10.91 Crop 2005 2004 Kutsch et al. [2010]
DE-Kli Germany 50.89 13.52 Crop 2005 Wattenbach et al. [2010]
DK-Ris Denmark 55.53 12.10 Crop 2004-2005 Eugstera et al. [2010]
ES-ES2 Spain 39.28 -0.32 Crop 2005 Stoy et al. [2013]
FR-Gri France 48.84 1.95 Crop 2005 Stoy et al. [2013]
IT-PT1 Italy 45.20 9.06 Crop 2003 Stoy et al. [2013]
US-Bo1 US 40.01 -88.29 Crop 2002-2003 2004 Blyth et al. [2011]
US-Bo2 US 40.01 -88.29 Crop 2004 Reichstein et al. [2005]
US-Ne1 US 41.17 -96.48 Crop 2002-2004 Ershadi et al. [2014]
US-Ne2 US 41.16 -96.47 Crop 2003-2004 Ershadi et al. [2014]
US-Ne3 US 41.18 -96.44 Crop 2003-2004 2001 Ershadi et al. [2014]
DE-Hai Germany 51.08 10.45 DBF 2001,2003-2005 2002 Knohl et al. [2003]
FR-Fon France 48.48 2.78 DBF 2006 Smith et al. [2010]
FR-Hes France 48.67 7.07 DBF 2001-2005 2006 Stoy et al. [2013]
JP-Tak Japan 36.15 137.42 DBF 2001-2004 Kume et al. [2011]
US-Bar US 44.06 -71.29 DBF 2004 2005 Jenkins et al. [2007]
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Table A2. (continued)

Site Name Country Latitude (°) Longitude (°)
LaThuile FLUXNET
Vegetation Type Calibration Years Validation Years Reference

US-Ha1 US 42.54 -72.17 DBF 2000-2001,2006 2004 Blyth et al. [2011]
US-MMS US 39.32 -86.41 DBF 2001, 2003, 2005 2002 Schmid et al. [2000]
US-MOz US 38.74 -92.20 DBF 2005 2006 Gu et al. [2006]
US-UMB US 45.56 -84.71 DBF 2001-2003 Gough et al. [2013]
US-WCr US 45.81 -90.08 DBF 2002, 2005 2003 Cook et al. [2004]
AU-Tum Austria -35.66 148.15 EBF 2003-2005 2002 Lasslop et al. [2010]
CN-Din China 23.17 112.53 EBF 2003-2004 2005-2006 Yu et al. [2006]
FR-Pue France 43.74 3.60 EBF 2001,2003-2005 2002 Stoy et al. [2013]
GF-Guy French Guiana 5.28 -52.91 EBF 2004-2005 Bonal et al. [2008]
ID-Pag Indonesia -2.35 114.04 EBF 2002 Hirata et al. [2008]
IT-Cpz Italy 41.71 12.38 EBF 2002 Garbulksy et al. [2008]
CA-Ca1 Canada 49.87 -125.33 ENF 2001, 2003-2005 2002 Humphreys et al. [2006]
CA-Ca2 Canada 49.87 -125.29 ENF 2001-2004 2005 Humphreys et al. [2006]
CA-Ca3 Canada 49.53 -124.90 ENF 2002-2004 2005 Humphreys et al. [2006]
CA-Man Canada 55.88 -98.48 ENF 2003 2001 Hilton et al. [2014]
CA-NS5 Canada 55.86 -98.49 ENF 2004 Goulden et al. [2006]
CA-Qcu Canada 49.27 -74.04 ENF 2002-2003, 2005 2004 Giasson et al. [2006]
CA-Qfo Canada 49.69 -74.34 ENF 2005 2004 Bergeron et al. [2007]
CA-SJ2 Canada 53.94 -104.65 ENF 2004-2005 Zha et al. [2009]
CA-SJ3 Canada 53.88 -104.65 ENF 2005 Zha et al. [2009]
CN-Qia China 26.73 115.07 ENF 2003-2004 2005-2006 Yu et al. [2006]
CZ-BK1 Czech 49.50 18.54 ENF 2004-2006 Smith et al. [2010]
DE-Tha Germany 50.96 13.57 ENF 2001-2005 Grünwald and Berhofer [2007]
DE-Wet Germany 50.45 11.46 ENF 2003-2005 Rebmann et al. [2010]
FI-Hyy Finland 61.85 24.29 ENF 2001-2004 Suni et al. [2003]
IL-Yat Israel 31.35 35.05 ENF 2001-2002 Sprintsin et al. [2011]
IT-Bon Italy 39.48 16.53 ENF 2006 Smith et al. [2010]
IT-Ren Italy 46.59 11.43 ENF 2001-2003 Montagnani et al. [2009]
NL-Loo Netherlands 52.17 5.74 ENF 2001-2005 Dolman et al. [2002]
PT-Esp Portugal 38.64 -8.60 ENF 2003-2004 Wei et al. [2014]
RU-Fyo Russia 56.46 32.92 ENF 2001-2006 Milyukova et al. [2002]
SE-Fla Sweden 64.11 19.46 ENF 2001-2002 Smith et al. [2010]
SE-Nor Sweden 60.09 17.48 ENF 2003 Lagergren et al. [2008]
SE-Sk1 Sweden 60.13 17.92 ENF 2005 Stoy et al. [2013]
US-Blo US 38.90 -120.63 ENF 2001-2003, 2005 Goldstein et al. [2000]
US-Ho1 US 45.20 -68.74 ENF 2000-2004 Stoy et al. [2013]
US-Me2 US 44.45 -121.56 ENF 2005 Stoy et al. [2013]
US-Me3 US 44.32 -121.61 ENF 2004-2005 Vickers et al. [2009]
US-NC2 US 35.80 -76.67 ENF 2005 2006 Noormets et al. [2010]
US-NR1 US 40.03 -105.55 ENF 2000, 2002-2003 Monson et al. [2002]
US-SP1 US 29.74 -82.22 ENF 2005 Stoy et al. [2013]
US-SP2 US 29.76 -82.24 ENF 2000-2001, 2003-2004 Glenn et al. [2010]
US-SP3 US 29.75 -82.16 ENF 2001-2004 Hilton et al. [2014]
CA-Let Canada 49.71 -112.94 Grass 2002-2005 2001 Flanagan and Adkinson [2011]
CH-Oe1 Switzerland 47.29 7.73 Grass 2003 Ammann et al. [2007]
CN-Ha2 China 37.67 101.33 Grass 2005-2006 Zhang et al. [2008]
DE-Meh Germany 51.28 10.66 Grass 2004-2006 Stoy et al. [2013]
FR-Lq1 France 45.64 2.74 Grass 2004-2006 Gilmanov et al. [2007]
FR-Lq2 France 45.64 2.74 Grass 2004-2006 Gilmanov et al. [2007]
HU-Bug Hungary 46.69 19.60 Grass 2003-2006 Stoy et al. [2013]
IE-Dri Ireland 51.99 -8.75 Grass 2004 2003 Stoy et al. [2013]
IT-MBo Italy 46.03 11.08 Grass 2003-2006 Gianelle et al. [2009]
SE-Deg Sweden 64.182 19.557 Grass 2001-2002, 2004-2005 Smith et al. [2010]
US-FPe US 48.31 -105.10 Grass 2003-2004 Ershadi et al. [2014]
US-Wkg US 31.74 -109.94 Grass 2006 Scott [2010]
BE-Bra Belgium 51.31 4.52 MF 2002, 2004 Stoy et al. [2013]
BE-Vie Belgium 50.31 6.00 MF 2001-2005 Aubinet et al. [2001]
CA-Gro Canada 48.22 -82.16 MF 2004 McCaughey et al. [2006]
CA-Oas Canada 53.63 -106.20 MF 2000, 2002-2005 2001 Black et al. [2000]
CA-Obs Canada 53.99 -105.12 MF 2000-2003, 2005 2004 Krishnan et al. [2008]
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Table A3 described the basic characteristics of the flux sites used for validating direct and diffuse radiation
calculated in this study in Figure 1, including abbreviated name, country, latitude, longitude, vegetation
types, and related references.

Table A3. Characteristics of the FLUXNET Sites Used for Validating Direct and Diffuse Radiationa

Site Country Latitude (°) Longitude (°) LaThuile FLUXNET Vegetation Type Years References

CH-Oe2 Switzerland 47.29 7.73 Crop 2005 Eugstera et al. [2010]
US-Ne1 US 41.17 -96.48 Crop 2002-2004 Ershadi et al. [2014]
US-Ne2 US 41.16 -96.47 Crop 2002-2004 Ershadi et al. [2014]
US-Ne3 US 41.18 -96.44 Crop 2002-2004 Ershadi et al. [2014]
FR-Fon France 48.48 2.78 DBF 2006 Smith et al. [2010]
FR-Hes France 48.67 7.07 DBF 2006 Stoy et al. [2013]
IT-Ro1 Italy 42.41 11.93 DBF 2006 Wei et al. [2014]
US-Bar US 44.06 -71.29 DBF 2005 Jenkins et al. [2007]
FR-Pue France 43.74 3.60 EBF 2005-2006 Stoy et al. [2013]
VU-Coc Vanuatu -15.44 167.19 EBF 2002-2003 Roupsard et al. [2006]
DE-Wet Germany 50.45 11.46 ENF 2005-2006 Rebmann et al. [2010]
FI-Hyy Finland 61.85 24.29 ENF 2004-2005 Suni et al. [2003]
FR-LBr France 44.72 -0.77 ENF 2003-2005 Stoy et al. [2013]
IT-SRo Italy 43.73 10.28 ENF 2006 Wei et al. [2014]
NL-Loo Netherlands 52.17 5.74 ENF 2005-2006 Dolman et al. [2002]
DE-Meh Germany 51.28 10.66 Grass 2004, 2006 Stoy et al. [2013]
IT-Amp Italy 41.90 13.61 Grass 2006 Gilmanov et al. [2007]
IT-Mbo Italy 46.03 11.08 Grass 2005-2006 Gianelle et al. [2009]
NL-Ca1 Netherlands 51.971 4.927 Grass 2006 Stoy et al. [2013]
US-Var US 38.41 -120.95 Grass 2006 Stoy et al. [2013]
IT-Lav Italy 45.96 11.28 MF 2006 Marcolla et al. [2003]
ES-LMa Spain 39.94 -5.77 Savannas 2004 Stoy et al. [2013]

aThe site name codes are a composition of country (first two letters) and site name (last three letters). Investigator-provided vegetation types are deciduous
broadleaf forest (DBF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), mixed forest (MF), Crop (crop), Grass(grass), and savanna (Savannas).

Table A2. (continued)

Site Name Country Latitude (°) Longitude (°)
LaThuile FLUXNET
Vegetation Type Calibration Years Validation Years Reference

CA-TP4 Canada 42.71 -80.36 MF 2005 2004 Arain and Restrepo-Coupe [2005]
CA-WP1 Canada 54.95 -112.47 MF 2004-2005 Flanagan and Syed [2011]
CN-Cha China 42.40 128.10 MF 2005-2006 2003-2004 Yu et al. [2006]
DE-Gri Germany 50.95 13.51 MF 2005-2006 Smith et al. [2010]
DE-Har Germany 47.93 7.60 MF 2005-2006 Stoy et al. [2013]
IT-Lav Italy 45.96 11.28 MF 2001-2002 Marcolla et al. [2003]
US-Dk1 US 35.97 -79.09 MF 2003-2004 Gilmanov et al. [2010]
US-Dk2 US 35.97 -79.10 MF 2003-2005 Pataki and Oren [2003]
US-Dk3 US 35.98 -79.09 MF 2002-2004 Pataki and Oren [2003]
US-PFa US 45.95 -90.27 MF 2003 Davis et al. [2003]
US-Syv US 46.24 -89.35 MF 2002 Desai et al. [2005]
CA-NS6 Canada 55.92 -98.96 OS 2002, 2004 2003 Goulden et al. [2006]
CA-NS7 Canada 56.64 -99.95 OS 2004 2003 Goulden et al. [2011]
US-Aud US 31.59 -110.51 OS 2005 Horn and Schulz [2011]
US-SRM US 31.82 -110.87 OS 2004-2006 Scott [2010]
AU-How Austria -12.49 131.15 Savannas 2002, 2005 Ershadi et al. [2014]
ES-VDA Spain 42.15 1.45 Savannas 2005 2004 Gilmanov et al. [2007]
US-KS2 US 28.61 -80.67 WS 2004-2005 2002 Powell et al. [2006]
US-Ton US 38.43 -120.97 WS 2002-2003, 2005-2006 2004 Hilton et al. [2014]

aThe site name codes are a composition of country (first two letters) and site name (last three letters). Investigator-provided vegetation types are deciduous
broadleaf forest (DBF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), mixed forest (MF), Crop (crop), Grass(grass), open shrub (OS), savanna
(Savannas) and woody savanna (WS).
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