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Abstract: During the development of an individual from a single cell to prenatal stages to adolescence
to adulthood and through the complete life span, humans are exposed to countless environmental and
stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits
are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent
on estrogens. In this review, we discuss both environmental, epidemiological, and experimental
evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as
bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as,
arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure
to EEDs including the promotion of neurodegeneration, protection against neurodegeneration,
and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety,
learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are
varied during the entire life span and far-reaching with many different mechanisms. To understand
endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic
approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond
known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated
signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes
with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA,
and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and
brain disease associations identified hundreds of genes that were altered by exposure to estrogen,
phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of
both 17 β-estradiol (E2) and NRF1. Some of these genes are involved with brain diseases, such as
Alzheimer’s Disease (AD), Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis,
Autism Spectrum Disorder, and Brain Neoplasms. For example, the search of enriched pathways
showed that top ten E2 interacting genes in AD—APOE, APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B,
MAPT, PSEN2 and TNF—underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes
(KEGG) AD pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2,
EIF2S1, ENO1, MAPT, and PAXIP1. These genes are also responsive to the following EEDs: ethinyl
estradiol (APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1), BPA (APBB2, EIF2S1, ENO1, MAPT,
and PAXIP1), dibutyl phthalate (DPYSL2, EIF2S1, and ENO1), diethylhexyl phthalate (DPYSL2
and MAPT). To validate findings from Comparative Toxicogenomics Database (CTD) curated data,
we used Bayesian network (BN) analysis on microarray data of AD patients. We observed that both
gender and NRF1 were associated with AD. The female NRF1 gene network is completely different
from male human AD patients. AD-associated NRF1 target genes—APLP1, APP, GRIN1, GRIN2B,
MAPT, PSEN2, PEN2, and IDE—are also regulated by E2. NRF1 regulates targets genes with diverse
functions, including cell growth, apoptosis/autophagy, mitochondrial biogenesis, genomic instability,
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neurogenesis, neuroplasticity, synaptogenesis, and senescence. By activating or repressing the genes
involved in cell proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy,
angiogenesis, estrogen signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide
range of DNA damage, genomic instability and DNA methylation and transcriptional repression,
NRF1 may act as a major regulator of EEDs-induced brain health deficits. In summary, estrogenic
endocrine disrupting chemicals-modified genes in brain health deficits are part of both estrogen
and NRF1 signaling pathways. Our findings suggest that in addition to estrogen signaling, EEDs
influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks
may contribute in the development of complex chronic human brain health disorders.

Keywords: estrogen; endocrine disrupting chemicals; nuclear respiratory factor 1 (NRF1); brain health

1. Introduction

Endocrine disruptors (EDs) are defined as exogenous substances or mixtures that alter functions
of the endocrine system and consequently cause adverse health effects in an organism, its progeny,
or populations [1]. EDs encompass a plethora of chemicals: industrial chemicals, plastics, plasticizers,
pesticides, fungicides, pharmaceutical agents, and natural chemicals found in human and animal
foods [1–4]. EDs can be taken in the body through various routes of exposure: ingestion, inhalation,
and dermal contact [1,2]. The main occurrence of EDs is in the environment through manufacturing
and the production of e-waste. In addition to affecting the individual organism, EDs have been shown
to affect children and subsequent generations [1]. EDs affect all sensitive periods in a human lifetime:
gestation, childhood, puberty, reproductive life, and old age [1]. A subset of EDs, estrogenic endocrine
disruptors (EEDs), specifically affect processes in the body that are influenced and modulated by the
estrogen hormones and encompass the same chemical classes and routes of exposure as EEDs [1–4].

The human brain, a jelly-like mass of tissue weighing around 1.4 kg (3 pounds), is the most
complex biological structure in the universe. Each individual brain originates from a single neural
stem cell, which becomes approximately 100 billion neurons at birth. During some stage of the
embryo’s development, 250,000 to 500,000 neurons per minute are produced. We also now know new
brain cells are being generated throughout our lives—a process called neurogenesis. The brain has
bursts of growth and then periods of consolidation, when excess connections are pruned. The most
bursts are observed in the first two or three years of life, during puberty, and also a final burst in young
adulthood. All these processes are strongly dependent on estrogens [5]. How the brain ages or become
susceptible to stressors depends on genes and the environment. Adult human brain contains around
86 billion neurons, and close to 85 billion glial cells, which are as important as neurons, that amplify
neural signals. Each cell contains approximately 25–30,000 genes that code for proteins which perform
most life functions. Both formation and function of a protein is controlled by inter-, intra-, and extra-
cellular environment within a brain tissue of a human. With estrogen having an important role in
brain development, there has been a strong interest in investigating effects of EEDs on brain because
their effects on circulatory and neural estrogen functions have adverse effects on brain health. There is
a general agreement that human populations are constantly exposed to a wide variety of EEDs. Brain
cells and neural circuits are likely to be influenced by environmental stressors that includes EEDs,
because they are strongly dependent on estrogens [6]. For those reasons, the brain is very susceptible to
the effects of EEDs during critical development periods. Findings from experimental models, clinical
observations, and epidemiological studies converge to implicate exposure to EEDs as a significant
brain health concern to children as well as adults, because certain EEDs are able to alter neurogenesis,
neural transmission, and the formation of neural networks, thus implicating EEDs with an increase
in neurological disorders, including autism, attention deficit and hyperactivity disorder as well as
learning disabilities and aggressiveness [1,6]. EEDs have been implicated as one of the causes of
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neurodegenerative conditions and diseases [1,6,7]. Research suggests maternal exposure to EEDs
produce various neurological deficits: changes in rearing behavior, locomotion, anxiety, learning
difficulties, memory issues, and neuronal abnormalities [1,6,7].

There is emerging consensus that susceptibility to many of the complex and chronic brain diseases
that individuals develop occur as a result of multiple interactions between biologically unique and
inherited individual DNA sequence variation, epigenetic individuality, and genetic and epigenetic
variation. Exposure to environmental and stochastic factors occur in both germ and somatic cells
during intrauterine, postnatal, childhood, and adult life. Low DNA sequence variation across unrelated
individuals and our closest related species are not sufficient enough to account for all major differences
in physiological and chronic brain disease phenotypic outcomes. Nuclear respiratory factor 1 (NRF1) is
one of the sequence-specific DNA-binding redox sensitive transcription factors that constitutes the most
important and diverse gene-regulatory mechanism. Context specific NRF1 proteins binding to DNA
response elements depends on the variation in DNA binding sequences and the local cell-dependent
chromatin alterations, including histone modification, DNA methylation status, and accessibility of
regulatory elements [8]. Recently, Satoh et al. reported 2470 NRF1 target genes, including many
estrogen signaling pathway genes, associated with neurodegenerative diseases [9]. Both neurogenesis
and synaptogenesis are controlled by NRF1 regulated genes. A strong association of NRF1 with
human fetal brain and neural development has been recently reported [10]. The effects of EEDs on
the brain are varied during the entire life span and far-reaching with many different mechanisms.
How a healthy brain responds to EED stressors may help to explain how these stressors disrupt brain
cells to produce undesired lesion producing brain diseases. The recent advances in bioinformatics
and molecular genetics have provided an opportunity to understand how genes, and genetic and
epigenetic changes interact with environmental and stochastic stressors to either preserve health or
cause disease [4]. Keeping in mind the above concepts, first, we reviewed environmental epidemiologic
and experimental evidence on brain health with exposure to endogenous estrogen, oral contraceptives,
hormonal therapy and then EED compounds such as BPA, PCBs, phthalates, and metalloestrogens:
arsenic, cadmium, and manganese. Using bioinformatics, molecular and epidemiologic approaches,
we have attempted to review how these ubiquitous EEDs, which are known to disrupt the ovarian and
local estrogen function, influence NRF1 transcription factor regulated gene networks, contribute in the
development of complex chronic human brain health disorders.

2. Epidemiologic and Experimental Evidence of Brain Health Deficits with Exposure to
Estrogenic Endocrine Disruptors (EEDs)

Tables 1–3 present epidemiologic and experimental evidence on brain health with exposure to
endogenous estrogen, oral contraceptive, hormonal therapy and EED compounds, such as, BPA, PCBs,
phthalates, and heavy metals-arsenic, cadmium, and manganese. We have succinctly described below
effects of each estrogenic chemical on brain health.
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Table 1. Epidemiological studies summarizing association between endogenous estrogen, hormonal replacement therapy, phthalates, polychlorinated biphenyls,
cadmium, arsenic and manganese and neurodegenerative diseases—Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
and dementia.

Study Reference EDC Year Epidemiological Study Type Effect on Brain Brain Disease

Manly et al., 2000 Endogenous estrogen 2000 Case-control Lower estradiol levels in women associated with
greater risk of AD. AD

Geerlings et al., 2001 Endogenous estrogen 2001 Prospective cohort Longer exposure to endogenous estrogen associated
with AD and dementia. Dementia and AD

Schupf et al., 2006 Endogenous estrogen 2006 Prospective-cohort Women with low bioavailable estrogen were more
likely to develop AD. AD

De Jong et al., 2012 Endogenous estrogen 2012 Case-Control Longer reproductive time-span and exposure to
endogenous estrogen decreases ALS risk. ALS

Fox et al., 2013 Endogenous estrogen 2013 Retrospective cohort study Longer duration of endogenous estrogen exposure
may have a protective effect against AD risk. AD

Cereda et al., 2013 Endogenous estrogen 2013 Cross-sectional Age of PD onset was positively associated with
duration of exposure to endogenous estrogens. PD

Shumaker et al., 2003 Hormonal replacement therapy 2003 Clinical trial Estrogen progestin HRT increased risk for dementia
and did not prevent cognitive impairment. Dementia

Shumaker et al., 2004 Hormonal replacement therapy 2004 Clinical trial Estrogen only HRT increased risk of dementia and
cognitive impairment. Dementia

Shao et al., 2012 Hormonal replacement therapy 2012 Cohort study

Increased Alzheimer’s disease risk amongst women
who used HRT more than five years after

menopause, but observed a decreased risk of AD
if used within five years of menopause.

AD

Lundin et al., 2014 Hormonal replacement therapy 2014 Cohort study Increased in PD risk observed depending on
type of hormonal therapy. PD

Weisskopf et al., 2012 Polychlorinated biphenyls 2012 Nested case-control PCB exposure not associated with PD development. PD

Steenland et al., 2006 Polychlorinated biphenyls 2006 Retrospective mortality study In PCB exposed plant workers, higher death rates
from PD were observed in women. PD

Hatcher-Martin et al., 2012 Polychlorinated biphenyls 2012 Case-control In post-mortem brain tissue from PD, AD, and
controls, PCB levels were higher in PD brain tissue. PD

Roos et al., 2013 Cadmium 2013 Cross-sectional Elevated heavy metals, including cadmium,
were higher in ALS patients. ALS

Komatsu et al., 2011 Cadmium 2011 Case-control Elevated cadmium hair levels were associated with
Parkinson-like symptoms. PD
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Table 1. Cont.

Study Reference EDC Year Epidemiological Study Type Effect on Brain Brain Disease

Park et al., 2014 Arsenic 2014 Cross-sectional No difference in serum arsenic levels in
AD patients and controls. AD

Hozumi et al., 2011 Manganese 2011 Cross-sectional Higher levels of manganese found
among PD patients. PD

Koc et al., 2015 Manganese 2015 Cross-sectional Higher manganese levels found in hair samples
of AD patients compared to controls. AD

Miyake et al., 2011 Manganese 2011 Case-control In PD patients, no association found with
increased manganese intake. PD

Roos et al., 2013 Manganese 2013 Case-control Elevated manganese levels observed
in ALS patients. ALS

Kumudini et al., 2014 Manganese 2014 Case-control No association between blood manganese levels in
PD patients’ vs. controls. PD

Garzillo et al., 2014 Manganese 2014 Case-control No association between blood manganese levels in
ALS patients’ vs. controls. ALS

Kihira et al., 2015 Manganese 2015 Case-control Elevated manganese levels in hair observed in
ALS patients’ vs. controls. ALS

Arain et al., 2015 Manganese 2015 Case-control Higher levels of manganese and aluminum in those
suffering from neurodegenerative disease. Neurodegenerative disease.

Baker et al., 2015 Manganese 2015 Prospective cohort Low level manganese exposure causes sub-clinical
brain changes before symptoms occur. Neurodegenerative disease
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Table 2. Epidemiological studies summarizing association between endogenous estrogen, hormonal replacement therapy, bisphenol-A, and phthalates and memory
performance, child behavior, and IQ.

Study Reference EDC Year Epidemiological
Study Type Study Population Measurement of

Exposure Outcome Results Confounders Comments Brain Health
Indicator

Barret-Connor and
Goodman-Gruen, 1999

Endogenous
estrogen 1999 Cross-sectional 393 females

(ages 55 to 89).

Serum estradiol and
estrone levels.

Bioavailable and total.

Partial correlation
(p-value) and

Linear Regression
(β, p-value).

No associations between
neuropsychological tests

and endogenous
estrogen exposure.

Smoking status, alcohol
use, body mass index,
mood, age, education.

Does not
account for

past exogenous
estrogen use,

only present use.

Memory
performance

Low et al., 2005 Endogenous
estrogen 2005 Cross-sectional 760 women

(ages 60–64).

Reproductive time
period as a surrogate

of endogenous
estrogen exposure.

Linear regression
(β, p-value).

No significant associations
found between

performance on cognitive
and memory tests
and endogenous

estrogen exposure.

Age, education, verbal
intelligence, health and

mood variables,
lifestyle variables,

reproductive variables.

Study accounts
for exogenous
estrogen use.

Memory
performance

Heys et al., 2011 Endogenous
estrogen 2011 Cross-sectional 11094 women

(age > 50 years).

Proxies of
endogenous

estrogen exposure.

Multivariate Linear
regression (p-value,

95% CI).

Longer reproductive period
associated with higher

cognitive delayed recall
scores (p-value = 0.001;
95% CI, 0.008–0.02) and
mini-mental state exam
sores (p-value < 0.001;

95% CI, 0.04–0.07.

Age, education,
childhood and

adulthood
socio-economic position

and physical activity.

Accounts for
exogenous

estrogen use.

Memory
performance

Zimmerman et al., 2011 Endogenous
estrogen 2011 Cross-sectional 181 men (mean

age = 81 years).
Estradiol and

testosterone levels.
Linear Regression

(β, p-value).

Men with higher levels of
total estradiol performed
better on verbal memory

assessments (β = 0.17,
p-value < 0.02), compared

to men with lower levels of
total estradiol.

Age, education, body
mass index, and
cardiovascular
comorbidities.

Accounts for
exogenous

estrogen use.

Memory
performance

Oral Contraceptives and Memory Performance

Beltz et al., 2015 Ethinyl
estradiol 2015 Cross-sectional

136 men,
93 normally

cycling women,
148 OC users.

18–30 years of age.

History of OC use. Hierarchal
Regression.

Ethinyl estradiol was found
to affect memory, but only

amongst homogenous
groups of OC users.

Age and vocabulary.

Study does not
account for
endogenous

estrogen
exposure.

Memory
Performance

Egan and Gleason, 2012 Ethinyl
estradiol 2012 Cross-sectional

261 cognitively
normal women,

40–65 years of age.
History of OC use. MANCOVA

(u, CI, p-value).

OC users performed better
on Visuo-spatial ability
(u = 0.75, CI 0.23–1.28,

p = 0.005) and speed and
flexibility (u = 0.52,

CI 0.16–1.04, p = 0.007).

Age, years of education,
socioeconomic status.

Study compares
OC users to
non-users.

Memory
Performance

Griksiene and
Ruksenas, 2011

Ethinyl
estradiol 2011 Cross-sectional

43 females,
23 OC users,
20 non-users,

ages 19 to 24 years
of age.

Salivary 17- β
estradiol and

progesterone levels.
ANOVA. OC use negatively affects

verbal and spatial abilities. Not stated.

Does not
differentiate
between the
type of OC.

Memory
Performance
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Table 2. Cont.

Study Reference EDC Year Epidemiological
Study Type Study Population Measurement of

Exposure Outcome Results Confounders Comments Brain Health
Indicator

Hormone Replacement Therapy and Memory Performance

Resnick et al., 2006
Hormonal

replacement
therapy

2006

Randomized,
double-blind,

placebo–controlled
clinical trial

1416
postmenopausal
women, 65 years
of age and older.

Estrogen + Progestin
(CEE + MPA) or

Placebo.

Change is cognitive
function and affect.
Generalized Linear
Models (p-value).

CEE + MPA had a negative
effect on verbal memory
(p < 0.01) and positive

effect on figural memory
(p = 0.012) compared to
placebo. No significant

influence on positive affect,
negative affect, or

depressive symptoms.

Age, time at enrollment,
education, race, BMI,

smoking status,
alcoholic drinks/week,

history of
cardiovascular disease,
hypertension, diabetes,

prior HT use.

Beneficial and
detrimental effects

observed.

Memory
Performance

Resnick et al., 2009
Hormonal

replacement
therapy

2009

Randomized,
double-blind,

placebo-controlled
clinical trial

866
postmenopausal

women with prior
hysterectomy,

65 years of age
and older, free of

probable
dementia.

0.625 mg of CEE daily
or placebo.

Annual rates of
change in specific

cognitive functions
and affects. Linear

Mixed Models
(p-value).

Compared with placebo,
CEE treatment was

associated with lower
spatial rotational ability

(p < 0.01) which diminished
over time. CEE did not
affect other cognitive
functions and affects.

Age, time at enrollment,
education, race, BMI,

smoking status,
alcoholic drinks/week,

history of
cardiovascular disease,
hypertension, diabetes,

prior HT use.

No improvements
in memory
over time.

Memory
performance

Almeida et al., 2006
Hormonal

replacement
therapy.

2006

Randomized,
double-blind,

placebo-controlled
trial

115
Postmenopausal
women, 65 years
of age and older.

2 mg estradiol
or placebo.

Changes in cognitive
function and affect.

Higher dosages of estradiol
containing HRT treatment

did not improve
cognitive function.

Age, marital status,
education, previous

HRT use, daily living,
age at menarche, age at
menopause, cognitive
factors and complaints,
plasma estradiol and
homocysteine levels.

No significant
improvements

in memory.

Memory
performance.

Pefanco et al., 2007
Hormonal

replacement
therapy

2007
Randomized,

placebo-controlled
trial

57
postmenopausal
women, 65 years
of age and older.

0.20 mg of micronized
17-β estradiol

or placebo.

Neuropsychological
measures of memory,
language, mood, and

executive function
Repeated Measures
Analysis (p-value).

No differences were found
between ET and placebo on
any of the neurocognitive
measures or depression

instruments, nor were there
any differences when the

groups were stratified
according to age.

Age, education, income,
daily living, estradiol
levels, estrone levels,

hysterectomy.

No significant
improvements

in memory.

Memory
performance.

Viscoli et al., 2005
Hormone

replacement
therapy.

2005 Randomized,
double-blind trial.

644
postmenopausal

women.

1 mg of 17-β estradiol
or placebo.

Results of MMSE and
domain measures.

Generalized Linear
Models (p-values).

Estrogen therapy did not
have a significant effect on

cognitive measures
over time.

Age, race, education
level, chronic diseases,
prior estrogen therapy

use, hysterectomy,
depression, stroke.

No significant
improvement

in memory.

Memory
performance.

Yaffe et al., 2006
Hormone

replacement
therapy.

2006
Randomized,

placebo-controlled,
double-blind trial

417
postmenopausal
women, 60 to 80

years of age.

Weekly transdermal
patch of 0.014

mg/day estradiol
or placebo.

Results of global
cognitive function,

verbal and
visuospatial memory,
language, executive

function, and
semantic memory.

Linear mixed models
(p-value).

Estrogen therapy did not
have a significant effect on

cognitive measures
over time.

Age, education level,
race, BMI, smoking
status, depression

status, presence of hot
flashes, current
estradiol level.

No significant
improvement

in memory.

Memory
performance.
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Table 2. Cont.

Study Reference EDC Year Epidemiological
Study Type Study Population Measurement of

Exposure Outcome Results Confounders Comments Brain Health
Indicator

Bisphenol A, Maternal Exposure, and Child Behavior

Harley et al., 2013 Bisphenol-A 2013 Prospective
Cohort Study

592 mothers and
their children,

followed
prenatally up to
9 years of age.

Urinary BPA
concentrations (µg/L).

Child and maternal
exposure.

Child behavior
assessment results.

Multivariable
linear regression

(β, 95% CI).

Prenatal urinary BPA
concentrations were

associated with increased
internalizing problems in

boys at age 7 (β = 1.8,
95% CI: 0.3–3.3). Childhood

urinary exposure was
associated with increased
externalizing behavior in

girls at age 7 (β = 1.2,
95% CI: 0.3–2.1 and β = 1.0,

95% CI: 0.1–2.0) and
increased inattention and
hyperactivity behaviors in
both boys and girls at age 7.

Maternal age,
race/ethnicity,

education level, marital
status, country of birth,
years of US residency,

number siblings, family
income, maternal

depression, pesticide
metabolites.

Behavioral results
from both teacher

and mother
reported.

Behavior

Braun et al., 2009 Bisphenol-A 2009 Prospective
Cohort Study

249 mothers and
their children

followed
prenatally up to
2 years of age.

Urinary BPA
concentrations (µg/L).

Child and maternal
exposure.

Child behavior
assessment.

Multivariable linear
regression

(β, 95% CI).

Prenatal BPA
concentrations associated
with externalizing scores
among females (β = 6.0,
95% CI 0.1–12.0). BPA

concentrations at 16 weeks
associated with

externalizing behavior
among all children (β = 2.9,

95% CI 0.2–5.7).

Maternal age, race,
education, marital

status, SES, maternal
depression.

Female appear to
be more affected. Behavior

Yolton et al., 2011 Bisphenol-A 2011 Prospective
Cohort Study

350 mothers and
their children up

to 5 weeks.

Urinary BPA
concentrations

(ng/mL).

Neurobehavioral
outcomes.

Multivariable linear
regression (p-value).

No significant associations
between gestational

exposure to BPA and infant
neurobehavior. Higher BPA
exposure associated with
greater hypotonia at 26
weeks (p-value = 0.09).

Maternal race,
household income,

marital status, maternal
depression, maternal

BMI, maternal cotinine
levels, infant weight,

NICU stay after birth.

Phthalates also
measured. Behavior

Roen et al., 2015 Bisphenol-A 2015 Prospective
Cohort Study

250 mothers and
their children

followed
prenatally up to
7–9 years of age.

Urinary BPA
concentrations

(µg/L).

Neurobehavioral
outcomes. Poisson

Regression
(β, p-value).

Among boys, high prenatal
BPA concentrations was
associated with increase

internalizing (β = 0.41, p <
0.0001) and externalizing

scores (β = 0.40, p < 0.0001).
High postnatal BPA
concentrations was

associated with increased
internalizing (β = 0.30,

p = 0.0002) and
externalizing scores

(β = 0.33, p < 0.0001).

Prenatal and postnatal
BPA concentration,
child age, ethnicity,

gestational age,
maternal intelligence,
maternal education,

demoralization, tobacco
smoke exposure, and
phthalate exposure.

Possible sex
specific and

timing of
exposure

mechanism.

Behavior
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Table 2. Cont.

Study Reference EDC Year Epidemiological
Study Type Study Population Measurement of

Exposure Outcome Results Confounders Comments Brain Health
Indicator

Braun et al., 2011 Bisphenol-A 2011 Prospective
Cohort Study

244 mothers and
their children
followed from
gestation up to
3 years of age.

Urinary BPA
concentrations

(µg/L).

Neurobehavioral
outcomes.

Multivariate linear
regression

(β, 95% CI).

BPA detected in >97% of
gestational and childhood

samples. Each 10-fold
increase in gestational BPA

concentrations was
associated with more

anxious and depressed
behavior. The effects were
more pronounced in boys.

Mother’s race,
education, marital
status, household
income, maternal

depressive behavior,
phthalate exposure,

tobacco smoke.

Childhood
exposure was not

significantly
associated with

behavioral
modifications.

Behavior

Miodovnik et al., 2011 Bisphenol-A 2011 Prospective
Cohort Study

404 mothers and
their children
followed from
gestation up to
9 years of age.

Urinary BPA
concentrations

(µg/L).

Neurobehavioral
outcomes. General

linear models
(β, 95% CI).

No associations found with
BPA and outcomes.

Maternal age, maternal
IQ, marital status,

maternal education,
child race, sex, child IQ,

age at exam,
urinary creatinine.

Significant
associations found

with phthalate
exposure.

Behavior

Phthalates, Behavioral Disorders, and IQ

Yolton et al., 2011 Phthalates 2011 Prospective
Cohort Study

350 mothers and
their children up

to 5 weeks.

Urinary phthalate
concentrations

(ng/mL).

Neurobehavioral
outcomes.

Multivariable linear
regression (p-value).

Prenatal exposure to
dibutyl phthalate was

associated with improved
behavioral organization in

5 week old infants
characterized by decreased
arousal (p = 0.04), increased
self-regulation (p = 0.052),
and decreased handling

(p = 0.02). Prenatal
exposure to diethylhexyl

phthalate at 26 weeks was
associated with nonoptimal

reflexes (p = 0.02)
in male infants.

Maternal race,
household income,

marital status, maternal
depression, maternal

BMI, maternal cotinine
levels, infant weight,

NICU stay after birth.

Results are
inconsistent

between
phthalate types.

Behavior

Miodovnik et al., 2011 Phthalates 2011 Prospective
Cohort Study

404 mothers and
their children
followed from
gestation up to
9 years of age.

Urinary phthalate
concentrations

(µg/L).

Neurobehavioral
outcomes. General

linear models
(β, 95% CI).

Increased phthalate
exposure associated with

greater social deficits
(β = 1.52, 95% CI: 0.25–2.8).

Maternal age, maternal
IQ, marital status,

maternal education,
child race, sex, child IQ,

age at exam, urinary
creatinine.

Significant
associations found

with phthalate
exposure.

Behavior

Factor-Litvak et al., 2014 Phthalates 2014 Prospective
Cohort Study

328 inner-city
mothers and
their children

followed up to
7 years of age.

Urinary phthalate
concentrations

(ng/mL).

IQ test results. Linear
regression models

(β, 95% CI).

Prenatal metabolite
concentrations of DnBP and
DiBP inversely associated

with IQ (β = −2.69, 95% CI
−4.33, −1.05). Inverse

associations seen between
IQ, cognitive function, and

maternal prenatal
metabolite concentrations.

Race, maternal
education, marital

status, income, parity,
gestational age, birth

weight, child sex,
breastfeeding history,

tobacco smoke
exposure, prenatal
alcohol, hardships
during pregnancy,

maternal depression.

Phthalate-specific
effects were
observed.

Child IQ and
cognitive
function.
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Table 3. Experimental animal studies showing association between Bisphenol-A, phthalates, polychlorinated biphenyls and neurotoxicity.

Reference EDC Study Type Effects on Brain Health

Bowman et al., 2015 Bisphenol-A Adolescent male and female
adolescent rats

In male rats: Decrease in non-spatial memory and object recognition.
In both sexes: Decreased spine density on apical and basal dendrites on pyramidal cells in CA1 of the hippocampus.

Eilam-Stock et al., 2012 Bisphenol-A Adult male rats
Significantly impaired visual and spatial memory.
Decreased spine density on pyramidal cells in the CA1 and mPFC.
Decrease expression of PSD-95, increased expression of pCREB.

Elsworth et al., 2015 Bisphenol-A Adult male vervet monkeys Decreased working memory and accuracy.
Decreased excitatory synaptic outputs on dendritic spines of pyramidal neurons in pfc and hippocampus.

Inagaki et al., 2012 Bisphenol-A Ovariectomized female rats
Exposure to BPA alters E-induced enhancements of spatial and nonspatial memory.
In the hippocampus, BPA blocked E2 induced increases in basal spine density.

Wang et al., 2014 Bisphenol-A Postnatal male rats born from BPA
exposed female rats

Maternal exposure affected locomotor activity, exploratory habits, emotional behavior.
Increase reference and working memory errors.
Decreased mRNA and protein expression of synaptophysin, PSD-95, spinophilin, GluR1, and NMDAR1 in hippocampus.
Adverse effects on synaptic structure.

Xu et al., 2013 Bisphenol-A Male and female adult mice
Sex-specific effects of BPA exposure on spatial and passive avoidance memory.
Reduced synaptic density and adversely affected structure of synaptic interface.
In hippocampus, down-regulation of snynapsin I, PSD-95, NDMA receptor subunit NR1 and AMPA receptor subunit
GluR1 in male mice.

Jang et al., 2012 Bisphenol-A Postnatal female rats born from
BPA expose female rats

Decrease in newly generated cells in the hippocampus.
Negatively affected memory attention.
Lower levels of phospho-ERK, BDNF, phosphor-CREB in hippocampus.
Increased DNA methylation of Crtc1.

Kim et al., 2011 Bisphenol-A Young adult mice
High dose BPA exposure decreased the number of newly generated cells in the hippocampus, while low dose exposure
had the opposite effect.
High dose BPA exposure was shown to impair learning and memory performance significantly.

Diaz Weinstein et al., 2013 Bisphenol-A Adolescent male and female rats
Decreased spatial memory.
Adverse locomotor activity.
Increased anxiety.

Elsworth et al., 2015 Bisphenol-A Pregnant female rhesus monkeys Abnormal fetal brain development.
Fetuses of female monkeys showed a decrease in midbrain dopamine neurons and a reduction in spine synapses in the
CA1 region of the hippocampus.

Johnson et al., 2015 Bisphenol-A Pregnant female rats and offspring In the offspring: Developmental exposure disrupted navigational learning and navigational memory.

Kumar and Kumar Thakur 2014 Bisphenol-A Pregnant female mice and
male offspring

In the offspring: Impaired spatial memory.
Increased dendritic spine density in the cerebral cortex and hippocampus.
Upregulation of synaptic proteins Nrxn1 and Nlgn3.
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Table 3. Cont.

Reference EDC Study Type Effects on Brain Health

Matsuda et al., 2013 Bisphenol-A Pregnant female mice and offspring
In the offspring: Enhanced fear memory.
Increased serotonin metabolites.
Increased expression of Tph2, Slc6a4, and Maoa.

Xu et al., 2014 Bisphenol-A Pregnant female rats and offspring In the offspring: Interference with estrogen receptor signaling in the developing hippocampus.

Zhang et al., 2014 Bisphenol-A Adult male mice Enhanced the acquisition and retention of fear memory by the increased levels of histone acetylation, NMDA receptor,
and phosphorylation of the ERK1/2 in the hippocampus of male mice.

Stump et al., 2010 Bisphenol-A Pregnant female rats and offspring No adverse effects reported.

Ishido et al., 2011 Bisphenol-A Postnatal male mice Apparent hyperactivity observed.

Viberg et al., 2011 Bisphenol-A Postnatal mice Alterations in spontaneous behavior and cognitive function observed.

Kimura et al., 2015 Bisphenol-A Prenatal mice In utero exposure to BPA reduced spine densities in the hippocampal CA1 region of the brain in prenatal mice.

Kim et al., 2009 Bisphenol-A Neonatal and postnatal mice Stimulation of neuronal differentiation and possible disruption of neonatal brain development observed.

Dai et al., 2015 Phthalates Young mice Negatively affected locomotion activity and memory.

Betz et al., 2013 Phthalates Young mice Negatively affects learning and social behavior.

Li et al., 2013 Phthalates Young mice Induced apoptotic cell death, synaptic loss, and synaptic dysfunction.

Elnar et al., 2015 Phthalates Young mice Early exposure to PCBs induced neuronal susceptibility to amyloid stress. Lower expression of synaptic proteins.

Reilly et al., 2015 PCBs Young mice Negatively affects social behavior.

Zahara et al., 2015 PCBs Juvenile Avians Reduction in learning ability.

Hilgier et al., 2012 PCBs Adult Rats Exposure resulted in neuronal injury and loss.

Lee et al., 2012 PCBs Adult mice Exposure resulted in hyperactivity and dopaminergic neuron degeneration.
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2.1. Estrogens and Brain Health

Estrogen has a complex role in the body, and been tied to cardiovascular, metabolic, endocrine,
reproductive, and neurodegenerative diseases, as well as roles in gene expression and protein
synthesis [11,12]. Estrogen has been shown to have a role in sexual differentiation in the brain [12],
neuroprotection, and anti-inflammatory effects [13–18]. Studies also suggest estrogen plays a significant
role in the modulation of neuroplasticity and synaptogenesis [19–24]. Estrogens have also been
demonstrated to protect and regulate mitochondrial function in the brain [25–27].

When assessing the effects of endogenous estrogens on brain health, we observed endogenous
estrogen levels were quantified through blood and/or serum levels, or through the use of a surrogate
of exposure to estrogen. The surrogates take into account the times at which the human female body is
exposed in a lifetime, from the start of menarche to the end of menopause. We examined studies that
took into account exogenous estrogen use through either controlling it as a confounder, or using it as
an exclusionary criterion, since exogenous estrogen can modify the effects of endogenous estrogens.

Our review identified cross-sectional epidemiological studies that assessed the effects of
endogenous estrogen on brain health [28–32]. Four of the studies examined the relationship between
endogenous estrogen and memory performance [28,30–32] and one study examined the relationship
between age of Parkinson’s disease (PD) onset and exposure to endogenous estrogen [29]. One study
examined the effects of endogenous estrogens in males [32], and the other four studies examined the
effects on females [28–31].

A study of 393 postmenopausal women did not find any significant associations between
endogenous estradiol levels and neuropsychological test performance [28]. Another study did not find
any significant associations between reproductive time as a surrogate of endogenous estrogen exposure
and performance on cognitive and memory tests in a cross-sectional study of 760 postmenopausal
women [31]. However, a study by Heys et al., found significant associations between proxies of
endogenous estrogen exposure and cognitive delayed recall scores (p-value = 0.001, 95% CI, 0.008–0.02)
and the mini-mental state exam scores (p-value < 0.001, 95% CI, 0.004–0.007) in a cross-sectional study of
11,094 postmenopausal women [30]. In a cross-sectional study of 181 older men, examining the effects
of endogenous estrogen exposure from serum levels and verbal memory assessment scores in men,
higher total levels of estradiol were associated with better performance (β = 0.17, p-value < 0.02) [32].
Cereda et al., found that age of PD onset was positively associated with the duration of exposure to
endogenous estrogens using reproductive surrogates of endogenous estrogen exposure (7.10, [3.31],
p-value = 0.032) in a cross-sectional study of 579 females [29].

We identified case-control studies that assessed the effects of endogenous estrogen exposure on
brain health [33,34], with one study assessing endogenous estrogen exposure and Alzheimer’s disease
(AD) risk using serum estrogen levels [33] and one study assessing amyotrophic lateral sclerosis (ALS)
risk using a lifetime estrogen exposure surrogate [34]. In a case-control study of 50 AD cases and
93 controls, Manly et al., found women with the lowest endogenous estradiol levels were 4 times as
likely to have AD compared to women with the highest estradiol levels (OR = 4.2, 95% CI 1.1–15.6) [33].
In another case-control study of 131 ALS cases and 430 age-matched controls, De Jong et al. found
longer reproductive time-span decrease ALS risk (OR = 0.95, 95% CI 0.91–0.98) and longer endogenous
estrogen exposure decreases ALS risk (OR = 0.95, 95% CI 0.89–1.01) [34].

We identified cohort studies that assessed the effects of endogenous estrogen exposure on brain
health [35–37]. One study assessed dementia risk and the length of the reproductive period as
a surrogate for endogenous estrogen exposure [35], and two studies assessed AD risk, one using
bioavailable estrogen levels [36], and one using a surrogate measure of endogenous estrogen
exposure [37]. Geerlings et al. found after adjusting for covariates, women with longer reproductive
spans had an increased risk of dementia compared to women with the shortest reproductive spans
(RR = 1.78, 95% CI 1.12–2.84) and an increased risk of AD (RR = 1.51, 95% CI 0.91–2.50) in a cohort of
3601 postmenopausal women [35]. The risk was more pronounced in carriers of the APOE allele [35].
In a cohort study of 119 women with Down’s syndrome, Schupf et al. found women with low
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bioavailable estrogen were more likely to develop AD (HR = 4.1, 95% CI 1.2–13.9) [36]. In another
cohort study of 133 postmenopausal females, Fox et al. found longer duration of months with
endogenous estrogen exposure may have a protective effect against AD risk (p-value = 0.0235, 96% CI
0.9907–0.9993) [37]. The effect is more pronounced when subjects were over the total median number
of months (p-value = 0.00754, 96% CI 0.004118–0.005289) [37].

2.2. Oral Contraceptives and Brain Health

Oral contraceptives (OC) containing specifically ethinyl estradiol has been shown to reduce the
amount of available endogenous estrogen in the body [38]. OCs has varying effects brain structure,
function, and cognition [39]. Most recent studies have shown varying effects, However, most recent
studies do not differentiate between the various types of contraceptives, making it difficult to find out,
if, the contraceptives used contained ethinyl estradiol and inconsistencies are found in the reporting of
the type of OC used [40].

A cross-sectional study examined OC effects on spatial and verbal abilities found OC users to
perform better on some cognitive test, but not others and between homogenous groups of specific OC
medications [40]. Another cross-sectional study by Egan and Gleason found OC users to have better
performance on cognitive exams compared to non-users [41]. Griksiene and Ruksenas found OC to
negatively affect cognition [38]. A review by Warren et al., suggest an overall positive effect with OC
use and verbal memory [42].

2.3. Hormonal Replacement Therapy and Brain Health

Hormone replacement therapy (HRT) has been shown to be associated with the onset
of neurodegenerative disease, although evidence points to a timeframe dependent response,
depending on when the therapy is initiated. As summarized in Maki and Henderson, initial
observation studies and analyses with women indicated the use of HRT containing estrogen to
be associated with a reduced risk of AD [43]. Studies suggest that the timing of HRT during parts of
the menopausal stage may dictate whether beneficial adverse effects are observed [44].

Several analytical studies, however, showed associations between the use of HRT and
neurodegenerative disease. In the Women’s Health Initiative Memory Study (WHIMS), a randomized,
double-blind, placebo-controlled clinical trial, it was found that an HRT treatment of estrogen plus
progestin increased the risk for dementia in postmenopausal women and did not prevent cognitive
impairment [45]. In another study from the same trial, it was found that estrogen-only HRT did not
reduce the incidence of dementia, or cognitive impairment, and increased the risk for both [46].

An ancillary to the WHIMS study, the Women’s Health Initiative Study of Cognitive Aging,
or WHISCA, further supports HRT’s association with neurodegenerative disease [47], however, results
varied. One finding from Resnick et al. (2006), from the WHISCA study found that a combination
of conjugated equine estrogen with medroxyprogesterone acetate (estrogen + progestin) appeared
to negatively impact verbal memory, but positively affect figural memory among postmenopausal
women, free of probable dementia, and compared to controls [47]. Another finding from Resnick et al.
(2009), showed estrogen alone, as conjugated equine estrogen, did not improve cognitive functioning
and lowered certain cognitive functions in women with prior hysterectomy [48]. Other studies
have indicated that no visible improvement has been observed in using estrogen only treatments
for cognitive function [49–52]. Other studies that administered estrogen only treatments to younger
surgically menopausal women have shown benefits to memory [53,54], which may show an age-related
effect of estrogen only treatments.

New studies and reviews give mixed results. A newer observational study conducted by
Shao et al. (2012), showed increased AD risk amongst women who used HRT more than five years
after menopause, but observed a decreased risk of AD if used within five years of menopause [55].
Another recent meta-analysis showed no observable associated between postmenopausal HRT use
and AD or dementia [56]. While another study found that an increased risk in the type of hormonal
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therapy used and PD risk [57]. At least one study has examined the relationship between HRT use
and brain cancer, where a positive association between HRT use and the diagnosis of meningioma
was observed [58]. In summary, to date, most of the neuroprotective actions of E2 against AD are
based on animal models. While animal studies support a beneficial role for E2 in AD, there has been
little success in translating this preclinical work to treat AD with estrogens. This may be as a result
of species and sex differences, and brain complexity. HRT and anti-estrogen therapy (raloxifene) in
AD are focused on circulating estrogens, as measured by blood levels, not based on brain estrogen
levels. This is one of the main reasons why endocrine therapies (HRT and anti-estrogen therapy) are
unable to produce a significant beneficial effect in human AD [59]. Also there are negative effects of
E2-based therapies, such increased risk of cancer and loss of gray matter in certain regions of brain in
older women.

2.4. Bisphenol A and Brain Health

BPA, an EED, is widely used to make polycarbonate plastics and resin [4,60]. BPA can be
found in many consumer products that contain plastics [60]. These include water and baby bottles,
compact discs, impact-resistant safety equipment, medical devices, food cans, bottle tops, water supply
pipes, ATM receipts, dental sealants and composites [60]. Inhalation, ingestion, and dermal contact
are all routes of exposures for BPA [60]. Additionally, food containers made with BPA can cause
BPA to leech into foods and is expedited by the use of high heat [60]. It is of note that during the
2003–2004 NHANES cycle, BPA was detected in 93% of urine samples from people 6 years of age and
older [61]. BPA has also been demonstrated to show effects at all stages from prenatal to old age [62].
There is evidence to suggest BPA is released from plastic bottles used to store beverages consumed by
consumers, with BPA migration increasing with exposure to heat [63]. Animal studies have indicated
the ability BPA to penetrate the blood brain barrier due to its lipophilic nature [64,65].

Numerous studies highlight the link between BPA and neurotoxicity. Synaptogenesis,
the formation of synapses between neurons [66], and neurogenesis, the formation of new neurons [67],
are processes by which the brain can regenerate itself from damage due to trauma and disease. Several
animal studies have BPA to significantly affect these processes. Decreased synaptic spinal density
and adverse synaptic structures were observed in both male and female species of animals which
include rodents [68–73] and primates [74]. Postnatal exposure to BPA was also shown to affect
synaptic spinal density and structure in a rodent study [71]. BPA exposure was also shown to decrease
neurogenesis in the hippocampus of postnatal female rats whose mothers were exposed to BPA [75]
as well as young adult mice [76]. Recently, it has been shown that both BPA and bisphenol S (BPS),
a replacement used in BPA-free products, at a very low dose, equally affects neurodevelopment by
altering neurogenesis [77]. Some studies have indicated BPA has a neuroprotective effect on brain cells.
In a study using an immortalized clonal mouse hippocampal cell line (HT-22), BPA was found to protect
against glutamate and β amyloid protein induced cell death [78]. Some studies have also indicated
that BPA has no effect on neurotoxicity. In a study examining dietary exposure to F1 rat offspring,
BPA was shown to have no effect on offspring neurological development and motor activity [79].

BPA has been found to cause hyperactivity in rats, compared to its derivatives, possibly due to the
longer-lasting effect of the parent compound in the brain [80]. A single dose of BPA administered to
neonatal mice was observed to affect cognitive function and alter adult spontaneous behavior, with the
effect being seen in mid and high dosed mice [81]. In utero exposure to BPA in mice was shown to
reduce dendritic spine densities in the hippocampal CA1 region, regardless of its dose [82]. BPA was
demonstrated to impair neural ectoderm specification and neural progenitor cells in mouse embryonic
stem cells [83]. In a study using Caenorhabditis elegans to examine early embryogenesis exposure to
BPA and BPS into adulthood, it was shown that changes in behavior and learning were followed into
adulthood [84]. BPA was shown to decrease the proliferation of multipotent neural progenitor cells
and produce cytotoxicity in F1 mice, and in low-doses stimulated neuronal differentiation which might
disrupt brain development [85].
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Animal studies have indicated BPA to affect various aspects of memory at lower than the US
EPA’s reference safe daily limit of 50 µg/kg/day [86]. The types of memory affected include spatial
memory, visual memory, object recognition, working memory, reference memory and navigational
memory [68–71,73–76,87,88]. Animal studies have also indicate affects to locomotor function [71,87].

Prenatal BPA exposure has been shown to produce more aggressive and hyperactive behavior in
offspring when compared to mothers with lower BPA levels [89]. This human study is consistent with
animal studies that have also shown that prenatal BPA exposure is associated with increased aggression,
alterations in the dopaminergic system, and other neurobehavioral effects [90–97]. In a study
examining early life exposure to BPA, it was found that prenatal urinary BPA concentrations in
the mother and child were associated with anxiety, depression, and hyperactivity [98]. A recent French
study of 46 children with autistic spectrum disorders (ASD) and 52 controls reported an association
between BPA exposure and ASD in children [99]. In autistic children, plasma levels of BPA and
phthalates were significantly higher compared to controls [100]. Studies suggest BPA may cause
autism by inducing methylation changes in transcriptionally relevant regions of the BDNF gene in
the hippocampus of mice [101]. One study using cross-sectional data from the Canadian Health
Measures Survey found children taking psychotropic medications was associated with urinary
BPA (OR 1.59; 95% CI 1.05–2.40) [102]. Another study assessing prenatal exposure to BPA and
phthalates and infant neurobehavior at 5 weeks found no associations with BPA and some associations
with phthalate exposure and improved possible neurobehavior [103]. In a prospective cohort
study following African-American and Dominican women from pregnancy to children’s age of 7–9,
it was found that high prenatal BPA concentrations was associated with increased internalizing and
externalizing behaviors in boys with a decrease in internalizing behavior in girls and high postnatal
BPA concentrations was associated with increased internalizing and externalizing behaviors in girls
than in boys [104]. Other studies have found a decrease in hyperactivity symptoms in boys and an
increase in anxiety, depression, and externalizing behavior in young girls [89,105]. Other studies have
found no associations among maternal BPA levels, behavior, and autism [106].

Studies have demonstrated evidence of BPA exposure and associations with brain cancer.
In particular, meningioma, which account for 20% of intracranial tumors, may be linked to estrogen
sensitivity and genetic predisposition [107]. BPA exposure has also been implicated to be associated
with increased risk of meningioma—a common type of brain tumor—and patients with the highest
urine BPA levels were about 1.4 to 1.6 times more likely to have meningioma compared to those
with lower concentrations [108]. BPA at high doses has also been shown to induce cell growth and
the production of prolactin in a pituitary tumor cell line [109]. BPA increases N-ras expression in
a K. marmortatus model, which shows exposure to BPA can predispose the host to environmental
carcinogenesis [110]. BPA may produce nongenomic estrogenic responses in pituitary tumor cells by
detectable ERK phosphorylation [111]. In rat pituitary GH3 cancer cell lines, BPA interferes with cell
proliferation alone or with co-treatment with T3 [112].

In summary, besides diethylstilbestrol (DES), BPA is one of the widely researched EEDs. BPA is
detected in many human fluids and tissues including saliva, serum, urine, amniotic fluid, follicular
fluid, placental tissue and breast milk [99]. From the above studies, it is apparent that BPA exposure
has a great potential to impact human brain development and possibly contributes to the increasing
prevalence of human neurodevelopmental and behavioral disorders (Tables 1–3).

2.5. Phthalates and Brain Health

Phthalates, a group of endocrine-disrupting chemicals commonly used to [4], are used as in
plastics to make them flexible and resilient, also known as plasticizers [113–116]. Di(2-ethylhexyl)
phthalate, or DEHP is the one of the most widely used plasticizers and is found plastic products such as
wall coverings, tablecloths, floor tiles, furniture upholstery, shower curtains, garden hoses, swimming
pool liners, rainwear, baby pants, dolls, some toys, shoes, automobile upholstery and tops, packaging
film and sheets, sheathing for wire and cable, medical tubing, and blood storage bags [114,117]. Other
commonly used plasticizers are di-N-butyl phthalate, found in carpets, paints, glue, insect repellents,
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hair spray, nail polish, and rocket fuel [115]; di-N-octyl phthalate (DNOP), found in carpet back coating,
packaging films, medical tubing and blood storage bags, floor tile, wire, cables, adhesives, cosmetics,
and pesticides [113]; and Diethyl phthalate, in found in products such as toothbrushes, automobile
parts, tools, toys, food packaging, cosmetics, insecticides, and aspirin [116]. Phthalates are not part of
the chemical chain that make up the polymers in plastic, allowing them to readily released into the
surrounding environment [113–116]. Exposure to phthalates comes through ingestion, inhalation, and,
to a lesser extent, dermal contact with phthalate-containing products [117]. Phthalates have also been
demonstrated to have the ability to cross the blood brain barrier [118,119].

Phthalates have been found to disrupt neuroplasticity. A recent studies using a rat model suggests
exposure to phthalates reduces dendritic spine density, neurogenesis, and synaptogenesis in male
rats [120]. A recent review of phthalates and neuroplasticity also suggests phthalates negative effects
on neurogenesis and plasticity in animal models [121,122].

Phthalate exposure has been associated with various cognitive deficits. Animal studies
indicate that specific learning deficits include decreased fear conditioning [123], impaired spatial
memory [72,122,124] and adverse effects to locomotor activity [72]. A cross-sectional epidemiological
study using data from the NHANES 2011–2012 data collection found individuals who had difficulties
thinking and remembering had increasing levels of urinary phthalates along with other estrogenic
chemicals [125]. In another study found prenatal maternal exposure to phthalates was inversely
associates with child IQ DnBP and DiBP (b = −2.69, 95% CI −4.33 to −1.05 and b = −2.69, 95% CI
−4.22 to −1.16) [126].

There are a group of studies that have found possible links between phthalates and brain
behavioral disorders such as ASD and attention deficit hyperactive disorder (ADHD). One study,
examining exposure to estrogenic endocrine disrupting chemicals (EEDCs) and autism and ADHD
found intracranial exposure to several classes of EEDCs, which include phthalates, caused significant
hyperactivity in neonatal rats [127]. Altered gene expression was also observed [127]. A retrospective
study followed children 1–6 years of age with a follow-up at 6–8 years of age and found the
children with exposure to phthalates from PVC pipe dust were more likely to develop ASD [128].
Additionally, two other studies looked at both BPA and phthalate levels and neurobehavioral outcomes,
with associations found between adverse neurobehavioral outcomes and increasing urinary phthalate
levels [103,106]

Phthalates are suspected in the development of neurodegenerative diseases [119]. In an animal
study involving a rat model, phthalate exposure was shown to impair cognitive function and
increase the level of phspho-Tau, a precursor of AD development, in exposed rat offspring [129].
Currently no definitive epidemiological studies have been conducted with phthalates and
neurodegenerative diseases.

2.6. Polychlorinated Biphenyls and Brain Health

PCBs are synthetic organic chemicals composed in different combinations of 209 different
chlorinated compounds, or congeners [130]. PCBs have been used as coolant and lubricants in
transformers, and its manufacture was banned in 1977 because of harmful health effects, however, old
products may still contain them [130]. Many of PCBs congeners produce estrogenic effects [4]. PCBs
have been found to cause cancer in animals [130]. Routes of exposure included occupational exposure,
breathing air near contaminated areas, using older products manufactured before and around 1977,
and eating contaminated food [130]. PCBs bio accumulate in the food chain and remain active in the
environment for extended periods of time [130].

Recent animal and cell studies have shown PCBs to adversely affect brain health. Animal
studies have shown exposure to PCBs affect brain health by affecting social behavior [131], increased
hyperactivity [132], reduction in learning ability [133], and physiological effects on the brain such as
neuronal degradation [132,134], neuronal loss and damage [135], and susceptibility to amyloid stress
and reduced expression of synaptic proteins [134]. In in-vitro models, PCBs have shown to cause
neuronal cell death [136] and interfere with estrogen’s neuroprotective effects on neurons and brain
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cells [137]. In a study using ovariectomized, estradiol-replaced ewes, the VEGF/VEGFR systems is
affected by PCBs, which therefore affect the production of cerebrospinal fluid [138].

In a nested case-control study in Finland, serum PCBs were not associated with PD
development [139]. In a retrospective mortality study examining PCB exposure amongst workers in
capacitor plants, sex-specific analyses found higher deaths from PD amongst exposed women [140].
In a case-control study examining post-mortem brain tissue from PD, AD, and control patients,
PCB levels were higher in PD groups, and when stratified by age, were higher amongst women [141].

There are a number of studies that support the hypothesis that exposure to EEDs represent
risk factors for ADHD. Lead and PCB exposures have been implicated with ADHD in children [142].
There are a large number of studies focused on the association between exposures to PCBs and cognitive
function. There is ample evidence in human populations to suggest both high and low exposures
to PCBs during fetal development may be linked to cognitive deficits. Also alterations in sexually
dimorphic behaviors have been reported in humans exposed to PCBs. For example, cross-sectional
studies have shown the effects of PCBs on brain health. In children, PCB exposure is associated
with lower IQ [143] and lower visual memory function [144]. In older populations, PCB exposure
is associated with lower verbal learning and memory [145], lower verbal memory and depressive
symptoms [146], lower score on memory and learning measures [147] and attenuation of emotional
wellbeing and attentional functioning [148].

2.7. Cadmium and Brain Health

Cadmium is a naturally occurring metal in the earth’s crust and a natural constituent of
ocean water. Populations are exposed through food, cigarettes, smoke, drinking water, and air.
Cadmium is introduced into the food chain through soil and food contact surfaces, and through
foods such as leafy vegetables, grains, legumes, and organ meats. Occupation exposures are highest
in occupations involving cadmium-containing products, and occupations involved in alloy, battery,
plastics, and coloring production. Current evidence supports cadmium being cytotoxic at high
concentrations. At low doses cadmium mimics estrogen (E2) effects both in vitro and in vivo [149].

Cell models have shown cadmium to have adverse effects on brain health. In a study using
hippocampal slides of CA1 neurons, cadmium was shown to affect synaptic transmission and
short-term neural plasticity [150]. In another cell study using PC12 and SH-SY5Y cells, cadmium
induced cell apoptosis [151,152]. Animal models have shown cadmium to affect different aspects
of brain health. In a zebrafish animal model, cadmium has been shown to inhibit neurogenesis
in embryonic development [153]. Cadmium has been shown to negatively affect brain function.
Cadmium has been shown to induce apoptosis in vitro in rat cerebellum cortical neurons by affecting
by affecting calcium homeostasis [154] and also has been shown to induce apoptosis in vitro in through
damage of mitochondria in rat oligodendrocytes [155]. Cadmium has been demonstrated to interact
with β amyloid peptides which may lead to the development of AD [156].

Studies on human populations have also shown cadmium’s adverse effects on adult brain function.
A cross-sectional study using NHANES III data from 1988 to 1994 compared neurocognitive test
scores and urinary cadmium concentrations found individuals with no smoking history, or known
occupational cadmium exposure were found to have lower attention/perception scores with increasing
urinary cadmium levels [157]. In a cohort study of rural elderly Chinese persons, it was found that
increasing serum cadmium and copper levels was significantly associated with lower composite
cognitive scores [158]. Another study, which examined the cerebrospinal fluid of ALS patients,
found elevated levels of various metals, including cadmium, that were higher than the measured
blood levels and indicative of bioaccumulation [159]. A case-control study examining heavy metal
levels in a group of Mongolian people found elevated cadmium, as well as other heavy metals in
those with Parkinson-like symptoms from their hair samples [160]. In a study of boiler workers and
occupational exposure, exposure to various heavy metals, including cadmium was associated with
neurodegenerative-like conditions similar to PD and AD [161].
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2.8. Arsenic and Brain Health

At low doses arsenic acts as a xenoestrogen and modifies estrogen signaling [149]. Human
populations are usually exposed through the air, drinking water, and food, with food being the
main source of arsenic in a population, with some areas having naturally high levels of arsenic [162].
Occupational exposure occurs through individuals working in metal smelting, wood treatment,
and those working in the production and application of pesticides and herbicides [162]. Arsenic is also
used in the animal and poultry feed as an antimicrobial additive [162]. The major routes of exposure
are inhalation and oral, with dermal exposure being considered a minor route [162]. Arsenic has
been associated with various health conditions, which include respiratory disorders, cardiovascular
outcomes, diabetes, ocular effects, immune response disturbances, impaired neurological function,
developmental effects, and cancers [163]. Genetic polymorphisms are suspected of contributing to the
sensitivity towards arsenic [163].

In animal studies using rats, arsenic exposure through ingest water has been shown to impair
neurogenesis, worsened spatial memory, and promote abnormal neural synapses. In addition, animal
studies in rats have shown arsenic exposure to affect synaptic plasticity, by affecting the expression of
NDMA receptors [164,165] and downregulating the PTEN-Akt-Creb signaling pathway and damaging
cerebral neurons [166]. In a cell study conducted by Shavali and Sens (2007), arsenic was found to
cause enhanced oxidative stress and cell death in cultured neuronal cells, when administered with
dopamine [167]. In a study using a cholinergic neuronal cell line overexpressing amyloid precursor
protein (APP) and exposing it to sodium arsenite and its metabolite, dimethylarsenic acid, it was found
to affect cleavage of APP and increase its production [168].

In a cohort study consisting of 133 men and 201 women from the Project FRONTIER, a rural
healthcare study, long-term low level exposure to arsenic from groundwater was found to be associated
with poorer scores in language, visuospatial skills, and executive functioning, global cognition,
processing speed, and immediate memory [169]. In another study from Project Frontier, consisting
of 526 subjects genotyped according to the AS3MT gene, exposure to higher low level arsenic in
groundwater reduced cognitive functioning, but the results differed with amongst the different
SNPs [170]. In a case-control study measuring heavy metal serum levels in 89 Ad patients and
188 cognitively normal controls, there was no difference in serum arsenic levels between the AD group
and controls [171]. Another study conducted by Edwards et al., with a cohort consisting of 733 AD
patients, 127 individuals with mild cognitive impairment, and 530 individuals of normal cognition,
found that exposure to low level arsenic exposure from groundwater was found to be associated
with poorer neuropsychological performance [172]. A cross-sectional study by Shuie (2015), using
NHANES 2011-2012 data, found that individuals who has problems remembering had higher levels of
urinary arsenic [125].

2.9. Manganese and Brain Health

Manganese (Mn) is a naturally abundant environmental trace mineral that is an essential nutrient
required as a cofactor for various enzymes and is found naturally in grains and fruit. Manganese,
which is found in various industrial processes and products, exposure can occur through inhalation,
oral, dermal, and occupational routes. Recently, prepubertal exposure to environmental levels
of Mn has been shown to produce precocious mammary gland development through inducing
gonadotropin-releasing hormone (GnRH) regulated increases in levels of serum LH and E2 by
activating the hypothalamic-pituitary-ovarian axis [173]. MnCl2 (1.0 µM) is almost 9% as efficient
as 17-β estradiol in activating estrogen receptor-mediated transcriptional activity in MCF-7 breast
cancer cells. Mn has been show to accumulate in the hypothalamus and induces precocious puberty
in rats through activating GnRH peptide release from the basal hypothalamus leading to elevated
puberty-related hormones including E2 [173].

Evidence suggests manganese having a role in neurotoxicity. Chronic manganese exposure has
been shown to promote the build-up of the metal in the basal ganglia, white matter, and cortical
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structures of the brain [174]. Manganese has also been shown to cause an inhibitory effect on NMDA
receptors [175]. Although manganese is an essential nutrient and has beneficial uses in the human
body, increased levels of manganese in the body can lead to PD-like symptoms and developmental
exposure has been shown to negatively affect neurological development [176]. Manganese appears to
interfere with dopaminergic synaptic transmission, by possibly impairing presynaptic dopamine
release. A study using a monkey model showed manganese exposure caused neurotoxicity by
inhibiting dopamine neurotransmission [177].

In animals chronic exposure of Mn has been shown to produce subtle deficits in spatial working
memory, spontaneous activity, manual dexterity, and compulsive-like behavior [178]. A small cohort
study that followed 26 welders exposed to manganese found after a 3.5-year follow-up found worsened
olfactory, extrapyramidal, and mood disturbances [179]. A cohort study following asymptomatic
welder trainees with no previous manganese exposure found low-level exposure to cause sub-clinical
brain changes in subjects before any measurable learning deficits occur [180]. In another cross-sectional
study assessing children’s intellectual functioning and arsenic and manganese exposure, blood
manganese levels were negatively associated with full scale IQ test scores (p-value < 0.05), working
memory (p-value < 0.05), and perceptual memory (p-value < 0.05) [181]. A cross-sectional study by
Kim et al. [182] examining low-level manganese exposure in adults of an Ohio community found
subtle subclinical effects in unified PD rating scale and postural sway test for PD. A cross-sectional
study of school-aged children in Brazil found inverse scores on executive function and attention tests
with manganese levels [183]. A study amongst school children in Canada found low-level manganese
exposure in drinking water was associated with poorer neurobehavioral functions [184].

Manganese has been shown to produce Parkinsonism [176,185]. Recent epidemiological studies
have assessed the effects of manganese on brain health. A cross-sectional study by Hozumi et al. [186],
analyzed the cerebrospinal fluid of various neurodegenerative disease patients and found a higher
level of manganese among PD patients (p-value < 0.05). Koc et al. [187] found higher levels of metal,
including manganese, in hair samples of AD patients compared to controls. A case-control study
Miyake et al. [188], assessing dietary intake of heavy metals amongst PD patients found no association
with manganese intake. A case-control study by Roos et al. [159] found elevated manganese levels in
cerebrospinal fluid of ALS patients. A study by Kihira et al. [189] found elevated manganese levels in
ALS patients vs controls from their hair samples. Another study by Arain et al. [190] found higher levels
of manganese and aluminum in hair samples of patients suffering from neurodegenerative disease.

In summary, experimental and epidemiologic studies suggest that exposure to metalloestrogens—Cd,
As and Mn may influence brain health and they may be associated in the development of some of the
chronic complex brain disorders.

3. Mechanisms of Actions of Estrogenic Endocrine Disruptors (EEDs) on Brain Health Deficits

Estrogenic Mechanisms: It is clear through the studies described above that physiologic and
pharmacologic forms of estrogen and estrogenic active environmental chemicals affect brain health
(Tables 1–3). Estrogens have long been implicated in influencing brain health disorders, yet the
molecular mechanisms underlying brain health effects remain unclear. Estrogens are very intriguing
complex chemicals that regulate many of the women and men body’s functions, including development,
growth, reproduction, and nervous and immune systems, as well as the way various organs operate.
In addition to the primarily produced in ovary in females, estrogens are also produced by many
other tissues such as the testis, liver, adrenal glands, brain, breasts and fat cells. For example,
estrogen in the testis is produced by Leydig cells and germ cells by aromatization of testosterone.
A relatively high concentration of estrogen in rete testis fluid and in semen of several species that
exceed even the female vasculature is observed. 17 β estradiol concentration in testis venous blood
and lymph is relatively high in all species [191]. Similarly, in brain, both neurons and glia synthesize
E2 through aromatization of testosterone. The neurons of hypothalamus of rhesus monkeys has been
shown to produce large amounts of estradiol to regulate release of gonadotropin releasing hormone
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(GnRH) [192]. Recently estrogen synthesized in glial cells in Zebra Finch brain under conditions of
brain injury have been reported to control inflammation [193]. Associations between gender specific
estrogen levels and brain functions-related health challenges, such as cognition, depression, brain
neurodegenerative diseases such as AD and PD and neurodevelopment disorders, such as autism,
have raised the importance of estrogens in brain health. It has become apparent that estrogens play
very important role in brain health of both sexes. The underlying mechanisms of brain susceptibility
to estrogen’s effect remain elusive. In both cell culture and animal studies, estrogen exposure has been
shown to have adverse as well as protective effects on neurons, through genomic and non-genomic
pathways [194]. Endogenous estrogens play a role in the growth and regulation of neurons and
synaptic plasticity [19–21]. How circulating EDEs interact with neural and/or circulatory estrogens
in the control of brain structure and function remains to be understood. Maternal PCBs exposure
has been reported to accumulate in brain and liver fetal tissues that are strongly associated with PCB
levels in adipose tissue [195]. Other EEDs have been also found in brain. The brain is the fattest tissue
(60% fat) in our body. Therefore, once EEDs enter in the body, these compounds can get into the
circulation, cross through the blood brain barrier, metabolized, and/or stored by the brain, where their
effects can last for long periods of time. The biochemical and molecular mechanisms by which EEDs
may affect brain health are not clear. The effects of EEDs on the brain are varied during the entire life
span and far-reaching with many different mechanisms. A schematic representation showing how
circulatory (c) estrogen produced by ovary or testis, neural (n) estrogen [produced by aromatization
of testosterone to 17 β estradiol (E2) by neuronal or glial aromatase in the brain] and EEDs entering
into the blood circulation from ingestion, inhalation or dermal exposure may interact in the brain
and their impact on brain health (Figure 1). The relationship between neural estradiol and ovarian
estrogen or EED feedback is not clear. However, PCBs, BPA, phthalates, Cd, As or Mn, through
influencing gonadotropin-releasing hormone (GnRH) regulated increases in levels of serum LH and
E2, have been shown to modify the hypothalamic–pituitary-ovarian axis and they also bind to estrogen
receptors [1,2,149,173]. BPA, Phthalates and metalloestrogens—Cd, As and Mn have been shown to
cross the blood brain barrier [1,64,65,118,119,149,173]. Metalloestrogens, such as arsenite, cadmium,
mimic the actions of physiological estrogens through binding to estrogen receptors [196–198]. We have
not discussed existing paradigms of actions of estrogen, BPA and phthalates, because they have
been extensively reviewed. The most widely researched paradigm is that effects of estrogens and
EEDs are mediated via estrogen receptors (ERa, ERβ, GPER/GPR30), all three of which are widely
expressed in the brain [1–4] (Figure 2). Excess endogenous estrogens or EEDs produce adverse effects
on brain health as a result of aberrant estrogen receptor signaling. In addition to the classical estrogen
receptor-mediated signaling, emerging new evidence indicate other mechanisms, such as oxidative
stress mediated redox signaling and epigenetic disturbances may be involved with EEDs-associated
detrimental brain health outcomes.

Oxidative Stress Mechanisms: There is emerging evidence that exposure to estrogen and
EEDs-PCBs, BPA, phthalate produce oxidative stress. Oxidative stress may be one of the mechanisms
associated with the adverse effect of EEDs on brain health (Figure 2). Physiologically achievable
concentrations of estrogen or estrogen metabolites have been shown to generate reactive oxygen
species (ROS). In addition to the direct effect of estrogen on mitochondria and the redox cycling
of catechol estrogen, estrogen-induced proinflammatory cytokines, such as interleukin-1β (IL-1β)
and tumor necrosis factor α (TNF-α), can also generate ROS. Phthalates—DEHP, DBP, or DEP,
have been reported to produce ROS and lipid peroxidation. Epidemiological studies indicated that
phthalate metabolites are associated with oxidative stress [199]. BPA has been shown to modulate
neuronal activity by both dependent and independent of estrogen receptors, GPER, or estrogen-related
receptor-γ pathways [200]. BPA can lower cell viability and induce cell death by mediating calcium
influx, generation of ROS, and activation of MAPK and caspase 3 [201]. A similar chemical to BPA,
BPAF or Bisphenol AF, was shown to cause hippocampal cell death in mouse neuronal cells (HT-22),
by increasing cellular calcium, generation of ROS, and activation of p38, JNK, and caspase 3 [202].
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BPA administered to male rats was found to increase malondiadehyde levels, decrease glutathione
and superoxide dismutase activity in the cerebrum and cause upregulation of p53 and CD95-Fas and
activation of capsases 3 and 8 causing cell death [203], with melatonin attenuating the effects of BPA.
All three metalloestrogens—Cd, As and Mn produce oxidative stress in both cell lines and animal
models [1,151,160,167]. Different cellular signaling pathways may operate in response to varying
levels of estrogen or EED-induced ROS, leading to genotoxic damage, cell apoptosis, or cell growth.
At high levels of ROS, cells receiving genotoxic insults, if not repaired, may engage the apoptotic
pathways. There is increasing evidence supporting that estrogen or EED-induced alterations in the
genome of cells are produced by oxidative attack. Furthermore, ROS generated by estrogen or EED
exposure in combination with receptor-mediated proliferation of genetically damaged cells may be
involved in pathology of brain diseases. Inhibition of Akt and ERK/CREB/BDNF pathways in the
hippocampus by maternal BPA exposure has been suggested to impair object recognition memory
in the male offsprings [204]. In cultured hippocampal neurons, BPA was demonstrated the promote
changes in dendritic morphology by the phosphorylation of the NMDA receptor subunit NR2B. BPA
was shown to induce ERK1/2 activation at low concentrations in cerebellar granule cells and show
neurotoxic effects. Recently, BPA-mediated neurodegeneration has been reported to be a result of
modulation of autophagy through involvement of AMPK and mTOR pathways [205]. BPA has recently
been shown to disrupt insulin signaling, where glucose uptake into the CNS was affected, with increase
phosphorylated tau and APP observed in male mice. The adverse effects of BPA on insulin signaling
and GLUTs may contribute to the increment of p-tau and APP in the brain of adult offspring. Therefore,
perinatal BPA exposure might be a risk factor for the long-term neurodegenerative changes in offspring
male mice [206].Phthalates have been demonstrated to induce nuclear transcription factors that are
activators of telomerase reverse transcriptase (TERT), which has a role in tumor promotion [207],
increase levels of phospho-tau, a precursor to AD [129], and affects dendritic spine density [120].
Recent reviews have also indicated disruption of thyroid homeostasis, disruption of calcium signaling,
peroxisome proliferator-activate receptors (PPAR) activation, and adverse lipid metabolism as other
potential mechanism [208].

NRF-1 network genes interacting with individual EED impacting Brain Health: NRF1 (synonyms:
α palindromic-binding protein, α-PAL), a mammalian homolog to the P3A2 sea urchin and erect wing
(ewg) Drosophila protein, is a redox sensitive transcription factor [209,210]. NRF-1 proteins have
been shown to interact with a broad spectrum of transcription factors; and the NRF-1 recognition
site is one of the seven transcription factor binding sites which are most frequently found in the
proximal promoters of ubiquitous genes [8,9], indicating a broader spectrum of target genes for
NRF-1. NRF-1 mediate oxidative stress responses by regulating the expression of genes involved
in cell cycle, DNA repair, cell apoptosis and mitochondrial biogenesis. NRF1 is highly expressed in
human fetal brain [10]. A recent report based on ChIP Seq data from SK-N-SH human neuroblastoma
cells showed that NRF1 DNA motif(s) are present in the promoters of 2470 genes [9]. This study
suggested that dysregulation of NRF1 and its targets may be involved in the pathogenesis of
neurodegenerative diseases. Seven out of 2470 NRF1 target genes have significant relationships
with several neurodegenerative conditions. For examples, NRF1 target genes- PARK2, PARK6 (PINK1),
PARK7, PAELR (GPR37) are associated with Parkinson’s disease. NRF1 target genes -PSENEN AND
MAPT are involved in Alzheimer’s disease. TAF4, a NRF1 target gene, is associated with Huntington’s
disease. NRF1 as a potential important player in AD neighbors with five (CREB1, ESR1, NFE2L2, NOS1
and TP53) genes involved in AD [211]. Levels of NRF1 and its target gene- transcription factor A of the
mitochondria (TFAM) are significantly decreased in hippocampal tissues in AD autopsy brains [212].
Many estrogen signaling pathway genes are NRF1 target genes, which may be also associated with
neurodegenerative diseases [9]. Therefore, we used the Comparative Toxicogenomics Database
(CTD) based on curated information about chemical-gene/protein interactions, chemical-disease and
gene-disease relationships, to analyze the gene-EDC interactions associated with both estrogen and
NRF1 signaling pathways, and neurodegenerative diseases. Findings of EDCs-modified estrogen
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signaling and NRF1 signaling genes with exposure to natural estrogen, pharmacological estrogen,
PCBs, phthalate, BPA, As, Cd, or Mn are summarized in Tables 4 and 5 and discussed below.
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Figure 2. Possible mechanisms of estrogen or EED action. Genomic mechanism involves the
nuclear form of estrogen receptors ER-α or ER-β which associates with either the estrogen response
element (ERE) or Fos/Jun heterodimers that bind, in turn to activator protein-1 (AP-1) sites, whereas
plasma membrane bound ER-mediated mechanisms include the activation of an ER linked to
the phosphatidylinositol 3-kinase (PI3-K)/Akt, ERK1/2 mitogen-activated protein kinase (MAPK)
pathways, protein kinase C (PKC), and cAMP/protein kinase A (PKA) converging with the genomic
pathway. Actions of neurotrophins are influenced by estrogens or EEDs and vice versa. These pathways
are also activated by reactive oxygen species (ROS). ROS mediated redox signaling leading to the
activation of Akt/ERK/PKC pathways modulates nuclear transcription factors (e.g., ER, CREB,
c-Fos/c-Jun, NRF1) binding to their DNA motifs in the regulatory regions in DNA sequences of genes
associated with growth and survival of brain cells, neurogenesis and neuroplasticity, synaptogenesis
and synaptic plasticity and cognitive function. Estrogenic effects mediated through these pathways are
inhibited by antioxidants.
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Table 4. Top 10 enriched pathways for E2 and NRF1-Target genes associated with estrogenic endocrine disruptors—BPA, PCB, phthalates, As, Cd, and Mn.

17 β-Estradiol (E2) Interacting NRF1 Target Genes

KEGG Pathway Number of Genes Annotated Genes

Disease 86

ADCY9|AKT2|ALDOA|AP1S1|CCNT2|CDC42|CDK1|CDKN2B|CHMP2A|CHMP2B|CHMP5|CREB1|CSK|CSNK1A1|CTBP1|CYB5A|ENO1|EPS15L1|
ERCC2|EXT2|FASN|FZD4|GLB1|GTF2E2|HDAC2|HDAC3|HDAC4|HMMR|HRAS|HSP90AA1|IRS1|MAP2K7|MKNK1|MMADHC|MTHFD1|NAMPT|
NPM1|NUP107|NUP50|OS9|P4HB|PAPSS1|PFKFB4|PIP5K1B|PLCG1|POLR2A|POM121|PPIA|PRKAR2A|PSENEN|PYGL|RAC1|RAE1|RAF1|RAN|
RBX1|RHOA|RPL10|RPL13A|RPL14|RPL36|RPS13|RPS16|RPS21|RPS29|RPS9|SHC1|SLC25A10|SLC37A4|SMARCA4|SNW1|SOS1|SRC|STUB1|
STX1A|TAF12|TAF5|TCEB2|TGIF1|TNKS2|TPR|UBA52|WNT5A|XRCC5|XRCC6|YWHAZ

Metabolism 86

ACADM|ADCY9|ADI1|AGPAT5|AKR7A2|ALAS1|ALDOA|AMACR|ATP5O|AUH|BCAT1|BCAT2|BSG|CBR1|COX5B|COX6C|CTPS1|CYB5A|CYCS|
DTYMK|ELOVL4|ENO1|ERCC2|ETFB|ETFDH|EXT2|FASN|FDPS|GCLC|GLB1|GNG5|GPD1L|GSR|GSS|GSTM3|HDAC3|HMMR|HSD17B4|HSP90AA1|
INPP5A|INPP5K|IP6K2|LDHA|LPCAT3|LSS|MGST3|MMADHC|MPC2|MTHFD1|NAMPT|NDUFA3|NDUFB4|NUBP1|NUP107|NUP50|OAZ2|ODC1|
P4HB|PAICS|PAPSS1|PDHB|PFKFB4|PIP5K1B|PLA2G12A|PLCG1|PLD1|POM121|PPAT|PRKAR2A|PSAP|PYGL|RAE1|RAN|SDHA|SGMS1|SIN3B|
SLC16A1|SLC25A10|SLC37A4|SLC44A2|STX1A|SUCLA2|TPMT|TPR|UBA52|VAPB

Gene Expression 77

CCNT2|CDKN2B|CNOT1|DHX9|DNMT1|EEF1A1|EEF1D|EEF1G|EIF2S1|EIF2S2|EIF3K|EIF4E|EIF4G1|ERCC2|ESRRA|EXOSC2|EZH2|FARSB|GEMIN4|
GTF2E2|HARS|HDAC2|HNRNPA1|HNRNPH1|HNRNPU|HSPA8|LSM2|MARS2|MED20|MED4|NR1D1|PCBP2|POLR1A|POLR2A|POLRMT|PPA1|PTBP1|
RAN|RBBP4|RBBP7|RNPS1|RPL10|RPL13A|RPL14|RPL36|RPS13|RPS16|RPS21|RPS29|RPS9|RUNX2|SAP18|SARS|SEC61G|SET|SIN3B|SNW1|
SRRM1|SRSF1|TAF12|TAF5|TARS|TCEB2|TGIF1|THRA|TRAM1|U2AF1|UBA52|UPF1|UPF2|VARS2|XPO5|YWHAZ|ZNF610|ZNF658|ZNF711|ZNF750

Signal Transduction 72

ABI1|ADCY9|AKT2|ARHGDIA|BRK1|CASP2|CCNT2|CDC42|CDK1|CDKN2B|CREB1|CRK|CRKL|CSK|CSNK1A1|CTBP1|DAAM1|DGKH|E2F1|EIF4E|
EIF4G1|EPS15L1|FSTL3|FZD4|GNG5|GPR37|HDAC2|HDAC3|HDAC4|HRAS|HSP90AA1|IRS1|JAK2|LFNG|MAPK7|MEF2A|MKNK1|OS9|P4HB|PFN1|
PIP5K1B|PLCG1|PRDM4|PRKAR2A|PSAP|PSENEN|PTCH1|PTK2|RAC1|RAF1|RBX1|RELA|RHOA|RIPK2|ROCK1|RPS6KA5|RPS6KB1|SHC1|
SMARCA4|SNW1|SOCS1|SOS1|SRC|STARD13|STUB1|TGIF1|THBS2|TNKS2|TRIO|UBA52|WNT5A|YWHAZ

Immune System 67

ABI1|ADCY9|AKT2|ANAPC1|ANAPC11|AP1S1|ARPC2|ARPC5|BRK1|CASP2|CDC34|CDC42|CDK1|CREB1|CRK|CRKL|CSK|CTSD|DHX9|DYNLL1|
EIF4E|EIF4G1|FADD|FZR1|HRAS|HSP90AA1|IP6K2|IRS1|JAK2|KIF18A|KIF4A|MAP2K7|MAPK7|MEF2A|NUP107|NUP50|PCBP2|PELI1|PLCG1|PLD1|
POM121|PRKAR2A|PRKDC|PTK2|PVR|RAC1|RAE1|RAF1|RBX1|RELA|RIPK2|RNF19B|RPS6KA5|SEC61G|SHC1|SOCS1|SOS1|SRC|STUB1|TCEB2|
TPR|TUBB4B|UBA52|UBE2D4|XRCC5|XRCC6|YWHAZ

Cell Cycle 62

ANAPC1|ANAPC11|APITD1|ATM|AURKA|AURKB|BUB1|CCNB1|CCNE1|CDC7|CDK1|CDKN2B|CDKN2D|CDT1|CENPN|CKS1B|CLASP2|DKC1|
DSN1|DYNLL1|E2F1|ERCC6L|FBXO5|FZR1|GOLGA2|HSP90AA1|KIF18A|LIN37|MAD2L1|MCM2|MCM4|MCM6|MLH3|NEK2|NPM1|NUP107|
NUP50|OIP5|ORC6|PCNA|PLK4|POLA1|POM121|PPP1R12A|RAB1B|RAD50|RAE1|RBBP4|RBBP7|RBBP8|RBL2|RSF1|SDCCAG8|SET|
SMC4|SPC24|SPDL1|TPR|TUBB|TUBB4B|UBA52|ZWINT

Metabolic pathways 62

ACADM|ADI1|ALAS1|ALDOA|AMACR|ATP5O|AUH|BCAT1|BCAT2|CBR1|COX5B|COX6A2|COX6C|CTPS1|DAD1|DGKH|DNMT1|DTYMK|ENO1|
EXT2|FASN|FBL|FDPS|FUT8|GAA|GCLC|GFPT1|GLB1|GSS|HSD17B4|INPP5A|INPP5K|LAP3|LDHA|LSS|MECR|MTHFD1|NDUFA3|NDUFB4|
ODC1|PAICS|PAPSS1|PDHB|PGAM5|PGAP1|PIGA|PIP5K1B|PLA2G12A|PLCG1|PLD1|POLA1|POLE4|POLG2|POLR1A|POLR2A|PPAT|SDHA|SGMS1|
SHMT2|SUCLA2|SUFU|TGDS

Metabolism of proteins 48
B3GNTL1|CCT3|CCT6A|CCT8|CTSD|DAD1|DDIT3|DNAJB9|DNAJC3|DOHH|EEF1A1|EEF1D|EEF1G|EIF2S1|EIF2S2|EIF3K|EIF4E|EIF4G1|EIF5A|
FBXW5|FUT8|GFPT1|GLB1|GRPEL2|HSPA9|HSPD1|IGFBP3|MANEA|PFDN1|PGAP1|PIGA|RPL10|RPL13A|RPL14|RPL36|RPS13|RPS16|RPS21|
RPS29|RPS9|SEC61G|SHC1|STX1A|THBS2|TRAM1|TSPYL2|TUBB4B|UBA52

Developmental Biology 42
ABLIM2|AKT2|ARPC2|ARPC5|CDC42|CDK1|CLASP2|CREB1|CRMP1|CTNNA2|DPYSL2|HDAC3|HRAS|HSP90AA1|HSPA8|ITGA1|KIF4A|MED11|
MED18|MED20|MED4|MEF2A|MYH10|MYH14|NRTN|PFN1|PLCG1|PSENEN|PTK2|RAC1|RAF1|RHOA|ROCK1|RPS6KA5|RPS6KA6|SCN3B|SDCBP|
SIAH2|SOS1|SPTAN1|SRC|TRIO|TUBB4B

Mitotic M-M/G1 phases 35 ANAPC1|ANAPC11|APITD1|AURKB|BUB1|CCNB1|CDC7|CDK1|CDT1|CENPN|CLASP2|DSN1|ERCC6L|FBXO5|GOLGA2|KIF18A|MAD2L1|MCM2|
MCM4|MCM6|NUP107|NUP50|ORC6|POLA1|POM121|RAB1B|RAE1|SET|SMC4|SPC24|SPDL1|TPR|TUBB4B|UBA52|ZWINT
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Ethinyl Estradiol Interacting Common E2- and NRF1-Target Genes

KEGG Pathway Number of Genes Annotated Genes

Metabolism 49
ACADM|ADCY9|AGPAT5|ALAS1|ALDOA|ATP5O|BCAT1|BSG|CBR1|COX5B|COX6C|CTPS1|CYB5A|CYCS|ENO1|ERCC2|ETFDH|EXT2|FASN|FDPS|
GCLC|GLB1|GSR|GSS|GSTM3|HDAC3|HSD17B4|HSP90AA1|INPP5A|LDHA|LSS|MGST3|MTHFD1|NAMPT|NUP50|ODC1|P4HB|PAPSS1|PDHB|
PPAT|PSAP|PYGL|RAE1|RAN|SGMS1|SIN3B|SLC16A1|SLC25A10|SLC37A4

Disease 48
ADCY9|AKT2|ALDOA|AP1S1|CDC42|CDK1|CHMP2A|CREB1|CSK|CSNK1A1|CYB5A|ENO1|ERCC2|EXT2|FASN|GLB1|GTF2E2|HDAC2|HDAC3|
HRAS|HSP90AA1|MAP2K7|MTHFD1|NAMPT|NPM1|NUP50|OS9|P4HB|PAPSS1|PSENEN|PYGL|RAE1|RAN|RBX1|RHOA|RPL36|RPS16|RPS9|
SLC25A10|SLC37A4|SMARCA4|STUB1|TAF12|TAF5|TCEB2|WNT5A|XRCC5|YWHAZ

Gene Expression 43
DNMT1|EEF1A1|EEF1G|EIF2S1|EIF2S2|EIF3K|EIF4E|ERCC2|EZH2|FARSB|GTF2E2|HARS|HDAC2|HNRNPA1|HNRNPH1|HNRNPU|HSPA8|MED4|
NR1D1|PCBP2|POLR1A|POLRMT|RAN|RBBP4|RBBP7|RNPS1|RPL36|RPS16|RPS9|SAP18|SARS|SEC61G|SET|SIN3B|SRSF1|TAF12|TAF5|TARS|
TCEB2|THRA|UPF1|VARS2|YWHAZ

Immune System 36 ABI1|ADCY9|AKT2|ANAPC1|ANAPC11|AP1S1|ARPC2|ARPC5|CASP2|CDC42|CDK1|CREB1|CRK|CSK|CTSD|DYNLL1|EIF4E|FADD|FZR1|HRAS|
HSP90AA1|MAP2K7|MAPK7|NUP50|PCBP2|PTK2|PVR|RAE1|RBX1|SEC61G|SOCS1|STUB1|TCEB2|TUBB4B|XRCC5|YWHAZ

Cell Cycle 35 ANAPC1|ANAPC11|AURKB|BUB1|CCNB1|CCNE1|CDC7|CDK1|CDT1|CKS1B|DYNLL1|E2F1|FZR1|GOLGA2|HSP90AA1|LIN37|MAD2L1|MCM2|
MCM4|MCM6|NPM1|NUP50|ORC6|PCNA|PLK4|PPP1R12A|RAE1|RBBP4|RBBP7|RBBP8|RSF1|SET|SPC24|SPDL1|TUBB4B

Metabolic pathways 33 ACADM|ALAS1|ALDOA|ATP5O|BCAT1|CBR1|COX5B|COX6C|CTPS1|DNMT1|ENO1|EXT2|FASN|FDPS|GCLC|GLB1|GSS|HSD17B4|INPP5A|LDHA|
LSS|MECR|MTHFD1|ODC1|PAPSS1|PDHB|PGAM5|PIGA|POLE4|POLG2|POLR1A|PPAT|SGMS1

Signal Transduction 33 ABI1|ADCY9|AKT2|CASP2|CDC42|CDK1|CREB1|CRK|CSK|CSNK1A1|E2F1|EIF4E|HDAC2|HDAC3|HRAS|HSP90AA1|MAPK7|OS9|P4HB|PFN1|
PRDM4|PSAP|PSENEN|PTCH1|PTK2|RBX1|RHOA|SMARCA4|SOCS1|STUB1|TRIO|WNT5A|YWHAZ

Metabolism of proteins 28 B3GNTL1|CCT3|CCT6A|CCT8|CTSD|DDIT3|DNAJC3|EEF1A1|EEF1G|EIF2S1|EIF2S2|EIF3K|EIF4E|EIF5A|FBXW5|GLB1|GRPEL2|HSPA9|HSPD1|
IGFBP3|PFDN1|PIGA|RPL36|RPS16|RPS9|SEC61G|TSPYL2|TUBB4B

Developmental Biology 25 AKT2|ARPC2|ARPC5|CDC42|CDK1|CREB1|CTNNA2|HDAC3|HRAS|HSP90AA1|HSPA8|ITGA1|MED11|MED4|MYH10|NRTN|PFN1|PSENEN|PTK2|
RHOA|RPS6KA6|SDCBP|SIAH2|TRIO|TUBB4B

Bisphenol A Interacting Common E2- and NRF1-Target Genes

KEGG Pathway Number of Genes Annotated Genes

Metabolism 85

ACADM|ADCY9|ADI1|AGPAT5|AKR7A2|ALAS1|ALDOA|AMACR|ATP5O|BCAT1|BCAT2|BSG|CBR1|COX5B|COX6C|CTPS1|CYB5A|CYCS|DTYMK|
ELOVL4|ENO1|ERCC2|ETFB|ETFDH|EXT2|FASN|FDPS|GCLC|GLB1|GNG5|GPD1L|GSR|GSS|GSTM3|HDAC3|HMMR|HSD17B4|HSP90AA1|
INPP5A|INPP5K|IP6K2|LDHA|LPCAT3|LSS|MGST3|MMADHC|MPC2|MTHFD1|NAMPT|NDUFA3|NDUFB4|NUBP1|NUP107|NUP50|OAZ2|ODC1|
P4HB|PAICS|PAPSS1|PDHB|PFKFB4|PIP5K1B|PLA2G12A|PLCG1|PLD1|POM121|PPAT|PRKAR2A|PSAP|PYGL|RAE1|RAN|SDHA|SGMS1|
SIN3B|SLC16A1|SLC25A10|SLC37A4|SLC44A2|STX1A|SUCLA2|TPMT|TPR|UBA52|VAPB

Disease 84

ADCY9|AKT2|ALDOA|AP1S1|CCNT2|CDC42|CDK1|CDKN2B|CHMP2A|CHMP2B|CHMP5|CREB1|CSK|CSNK1A1|CTBP1|CYB5A|ENO1|ERCC2|EXT2|
FASN|FZD4|GLB1|GTF2E2|HDAC2|HDAC3|HDAC4|HMMR|HRAS|HSP90AA1|IRS1|MAP2K7|MKNK1|MMADHC|MTHFD1|NAMPT|NPM1|NUP107|
NUP50|OS9|P4HB|PAPSS1|PFKFB4|PIP5K1B|PLCG1|POLR2A|POM121|PPIA|PRKAR2A|PSENEN|PYGL|RAC1|RAE1|RAF1|RAN|RBX1|RHOA|
RPL13A|RPL14|RPL36|RPS13|RPS16|RPS21|RPS29|RPS9|SHC1|SLC25A10|SLC37A4|SMARCA4|SNW1|SOS1|SRC|STUB1|STX1A|TAF12|TAF5|TCEB2|
TGIF1|TNKS2|TPR|UBA52|WNT5A|XRCC5|XRCC6|YWHAZ

Gene Expression 71

CCNT2|CDKN2B|CNOT1|DHX9|DNMT1|EEF1A1|EEF1D|EEF1G|EIF2S1|EIF2S2|EIF3K|EIF4E|EIF4G1|ERCC2|ESRRA|EXOSC2|EZH2|FARSB|GEMIN4|
GTF2E2|HARS|HDAC2|HNRNPA1|HNRNPH1|HNRNPU|HSPA8|LSM2|MARS2|MED20|MED4|NR1D1|PCBP2|POLR1A|POLR2A|PPA1|PTBP1|RAN|
RBBP4|RBBP7|RNPS1|RPL13A|RPL14|RPL36|RPS13|RPS16|RPS21|RPS29|RPS9|RUNX2|SAP18|SARS|SEC61G|SET|SIN3B|SNW1|SRRM1|SRSF1|
TAF12|TAF5|TARS|TCEB2|TGIF1|THRA|TRAM1|U2AF1|UBA52|UPF1|UPF2|XPO5|YWHAZ|ZNF711
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Signal Transduction 68

ABI1|ADCY9|AKT2|ARHGDIA|BRK1|CASP2|CCNT2|CDC42|CDK1|CDKN2B|CREB1|CRK|CRKL|CSK|CSNK1A1|CTBP1|DAAM1|DGKH|E2F1|EIF4E|
EIF4G1|FSTL3|FZD4|GNG5|GPR37|HDAC2|HDAC3|HDAC4|HRAS|HSP90AA1|IRS1|JAK2|LFNG|MAPK7|MKNK1|OS9|P4HB|PFN1|PIP5K1B|PLCG1|
PRKAR2A|PSAP|PSENEN|PTCH1|PTK2|RAC1|RAF1|RBX1|RELA|RHOA|RIPK2|ROCK1|RPS6KA5|RPS6KB1|SHC1|SMARCA4|SNW1|SOCS1|SOS1|
SRC|STARD13|STUB1|TGIF1|THBS2|TNKS2|UBA52|WNT5A|YWHAZ

Immune System 66

ABI1|ADCY9|AKT2|ANAPC1|ANAPC11|AP1S1|ARPC2|ARPC5|BRK1|CASP2|CDC34|CDC42|CDK1|CREB1|CRK|CRKL|CSK|CTSD|DHX9|DYNLL1|
EIF4E|EIF4G1|FADD|FZR1|HRAS|HSP90AA1|IP6K2|IRS1|JAK2|KIF18A|KIF4A|MAP2K7|MAPK7|NUP107|NUP50|PCBP2|PELI1|PLCG1|PLD1|POM121|
PRKAR2A|PRKDC|PTK2|PVR|RAC1|RAE1|RAF1|RBX1|RELA|RIPK2|RNF19B|RPS6KA5|SEC61G|SHC1|SOCS1|SOS1|SRC|STUB1|TCEB2|TPR|
TUBB4B|UBA52|UBE2D4|XRCC5|XRCC6|YWHAZ

Cell Cycle 61

ANAPC1|ANAPC11|ATM|AURKA|AURKB|BUB1|CCNB1|CCNE1|CDC7|CDK1|CDKN2B|CDKN2D|CDT1|CENPN|CKS1B|CLASP2|DKC1|DSN1|
DYNLL1|E2F1|ERCC6L|FBXO5|FZR1|GOLGA2|HSP90AA1|KIF18A|LIN37|MAD2L1|MCM2|MCM4|MCM6|MLH3|NEK2|NPM1|NUP107|NUP50|
OIP5|ORC6|PCNA|PLK4|POLA1|POM121|PPP1R12A|RAB1B|RAD50|RAE1|RBBP4|RBBP7|RBBP8|RBL2|RSF1|SDCCAG8|SET|SMC4|SPC24|
SPDL1|TPR|TUBB|TUBB4B|UBA52|ZWINT

Metabolic pathways 58
ACADM|ADI1|ALAS1|ALDOA|AMACR|ATP5O|BCAT1|BCAT2|CBR1|COX5B|COX6C|CTPS1|DAD1|DGKH|DNMT1|DTYMK|ENO1|EXT2|FASN|FBL|
FDPS|FUT8|GAA|GCLC|GFPT1|GLB1|GSS|HSD17B4|INPP5A|INPP5K|LDHA|LSS|MECR|MTHFD1|NDUFA3|NDUFB4|ODC1|PAICS|PAPSS1|PDHB|
PGAM5|PGAP1|PIGA|PIP5K1B|PLA2G12A|PLCG1|PLD1|POLA1|POLG2|POLR1A|POLR2A|PPAT|SDHA|SGMS1|SHMT2|SUCLA2|SUFU|TGDS

Metabolism of proteins 47
B3GNTL1|CCT3|CCT6A|CCT8|CTSD|DAD1|DDIT3|DNAJB9|DNAJC3|DOHH|EEF1A1|EEF1D|EEF1G|EIF2S1|EIF2S2|EIF3K|EIF4E|EIF4G1|EIF5A|
FBXW5|FUT8|GFPT1|GLB1|GRPEL2|HSPA9|HSPD1|IGFBP3|MANEA|PFDN1|PGAP1|PIGA|RPL13A|RPL14|RPL36|RPS13|RPS16|RPS21|RPS29|
RPS9|SEC61G|SHC1|STX1A|THBS2|TRAM1|TSPYL2|TUBB4B|UBA52

Developmental Biology 41
ABLIM2|AKT2|ARPC2|ARPC5|CDC42|CDK1|CLASP2|CREB1|CRMP1|CTNNA2|DPYSL2|HDAC3|HRAS|HSP90AA1|HSPA8|ITGA1|KIF4A|MED11|
MED18|MED20|MED4|MYH10|MYH14|NRTN|PFN1|PLCG1|PSENEN|PTK2|RAC1|RAF1|RHOA|ROCK1|RPS6KA5|RPS6KA6|SCN3B|SDCBP|
SIAH2|SOS1|SPTAN1|SRC|TUBB4B

Pathways in cancer 34 AKT2|ARAF|CCNE1|CDC42|CDKN2B|CKS1B|CKS2|CRK|CRKL|CTBP1|CTNNA2|CYCS|E2F1|FADD|FZD4|HDAC2|HRAS|HSP90AA1|MSH2|PLCG1|
PLD1|PTCH1|PTK2|RAC1|RAF1|RASSF1|RBX1|RELA|RHOA|SOS1|SUFU|TCEB2|TPR|WNT5A

Dibutyl Phthalate Interacting Common E2- and NRF1-Target Genes

KEGG Pathway Number of Genes Annotated Genes

Metabolism 56
ACADM|ADCY9|ADI1|AKR7A2|ALAS1|ALDOA|AMACR|ATP5O|BCAT1|BCAT2|BSG|CBR1|CYB5A|CYCS|DTYMK|ENO1|ETFB|ETFDH|EXT2|FASN|
FDPS|GCLC|GLB1|GNG5|GSR|GSS|HDAC3|HMMR|HSD17B4|HSP90AA1|INPP5A|IP6K2|LDHA|LPCAT3|LSS|MGST3|MTHFD1|NAMPT|NDUFA3|
NDUFB4|NUBP1|NUP50|OAZ2|ODC1|PAPSS1|PLA2G12A|PLD1|POM121|PRKAR2A|PYGL|RAE1|RAN|SDHA|SGMS1|SLC25A10|UBA52

Disease 45
ADCY9|ALDOA|CCNT2|CDK1|CREB1|CSNK1A1|CTBP1|CYB5A|ENO1|EXT2|FASN|GLB1|HDAC3|HMMR|HSP90AA1|MTHFD1|NAMPT|NPM1|
NUP50|PAPSS1|POLR2A|POM121|PRKAR2A|PYGL|RAE1|RAF1|RAN|RHOA|RPL13A|RPL14|RPL36|RPS13|RPS21|RPS29|SLC25A10|SMARCA4|SNW1|
SRC|STUB1|TCEB2|TGIF1|TNKS2|UBA52|WNT5A|XRCC5

Gene Expression 39 CCNT2|DNMT1|EEF1A1|EEF1D|EIF2S1|EIF2S2|EIF4E|EIF4G1|ESRRA|EXOSC2|EZH2|GEMIN4|HNRNPA1|HNRNPU|HSPA8|LSM2|MED20|POLR1A|
POLR2A|PTBP1|RAN|RBBP4|RNPS1|RPL13A|RPL14|RPL36|RPS13|RPS21|RPS29|SET|SNW1|SRSF1|TARS|TCEB2|TGIF1|THRA|U2AF1|UBA52|XPO5

Metabolic pathways 38 ACADM|ADI1|ALAS1|ALDOA|AMACR|ATP5O|BCAT1|BCAT2|CBR1|COX6A2|DNMT1|DTYMK|ENO1|EXT2|FASN|FBL|FDPS|GCLC|GFPT1|GLB1|
GSS|HSD17B4|INPP5A|LDHA|LSS|MTHFD1|NDUFA3|NDUFB4|ODC1|PAPSS1|PGAM5|PLA2G12A|PLD1|POLE4|POLR1A|POLR2A|SDHA|SGMS1

Cell Cycle 34 ANAPC1|ANAPC11|APITD1|ATM|AURKB|CCNB1|CCNE1|CDC7|CDK1|CDKN2D|CDT1|CENPN|CKS1B|CLASP2|FBXO5|FZR1|HSP90AA1|MCM2|
MCM4|MCM6|NPM1|NUP50|OIP5|ORC6|PCNA|POM121|PPP1R12A|RAE1|RBBP4|SET|SPC24|SPDL1|UBA52|ZWINT
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Table 4. Cont.

Signal Transduction 32 ADCY9|ARHGDIA|CCNT2|CDK1|CREB1|CSNK1A1|CTBP1|DAAM1|EIF4E|EIF4G1|GNG5|HDAC3|HSP90AA1|JAK2|LFNG|MEF2A|PRDM4|PRKAR2A|
PTCH1|RAF1|RHOA|SMARCA4|SNW1|SOCS1|SRC|STUB1|TGIF1|THBS2|TNKS2|TRIO|UBA52|WNT5A

Immune System 31 ADCY9|ANAPC1|ANAPC11|ARPC2|ARPC5|CDK1|CREB1|CTSD|EIF4E|EIF4G1|FADD|FZR1|HSP90AA1|IP6K2|JAK2|MEF2A|NUP50|PLD1|POM121|
PRKAR2A|PRKDC|PVR|RAE1|RAF1|RNF19B|SOCS1|SRC|STUB1|TCEB2|UBA52|XRCC5

Metabolism of proteins 25 CCT3|CTSD|DDIT3|DNAJB9|DNAJC3|EEF1A1|EEF1D|EIF2S1|EIF2S2|EIF4E|EIF4G1|FBXW5|GFPT1|GLB1|HSPA9|HSPD1|PFDN1|RPL13A|RPL14|
RPL36|RPS13|RPS21|RPS29|THBS2|UBA52

Mitotic M-M/G1 phases 23 ANAPC1|ANAPC11|APITD1|AURKB|CCNB1|CDC7|CDK1|CDT1|CENPN|CLASP2|FBXO5|MCM2|MCM4|MCM6|NUP50|ORC6|POM121|RAE1|SET|
SPC24|SPDL1|UBA52|ZWINT

Developmental Biology 21 ARPC2|ARPC5|CDK1|CLASP2|CREB1|CTNNA2|DPYSL2|HDAC3|HSP90AA1|HSPA8|ITGA1|MED20|MEF2A|MYH10|NRTN|RAF1|RHOA|SCN3B|
SDCBP|SRC|TRIO

Diethylhexyl Phthalate Interacting Common E2- and NRF1-Target Genes

KEGG Pathway Number of Genes Annotated Genes

Metabolism 21 ACADM|ALAS1|ALDOA|BCAT2|BSG|CYCS|FASN|FDPS|GSR|GSTM3|HSD17B4|HSP90AA1|LDHA|LSS|MMADHC|NDUFA3|ODC1|PAPSS1|PLD1|
PYGL|SLC37A4

Metabolic pathways 15 ACADM|ALAS1|ALDOA|BCAT2|DNMT1|FASN|FDPS|HSD17B4|LDHA|LSS|NDUFA3|ODC1|PAPSS1|PLD1|POLE4

Disease 15 AKT2|ALDOA|FASN|HDAC2|HDAC4|HSP90AA1|IRS1|MMADHC|NPM1|PAPSS1|PYGL|RBX1|RPL36|RPS13|SLC37A4

Immune System 12 AKT2|ANAPC11|CDC34|DYNLL1|EIF4G1|HSP90AA1|IRS1|KIF18A|PLD1|RBX1|SEC61G|TUBB4B

Metabolism of proteins 11 CCT3|CCT6A|DNAJB9|EIF4G1|GRPEL2|HSPA9|HSPD1|RPL36|RPS13|SEC61G|TUBB4B

Cell Cycle 9 ANAPC11|CCNB1|CCNE1|DYNLL1|HSP90AA1|KIF18A|NPM1|TUBB4B|ZWINT

Cellular responses to stress 8 ANAPC11|CBX2|CCNE1|CYCS|GSR|HSP90AA1|HSPA8|RBX1

Pathways in cancer 8 AKT2|CCNE1|CYCS|HDAC2|HSP90AA1|MSH2|PLD1|RBX1

Developmental Biology 8 AKT2|DPYSL2|HSP90AA1|HSPA8|ITGA1|SCN3B|SIAH2|TUBB4B

Cell cycle 5 ANAPC11|CCNB1|CCNE1|HDAC2|RBX1

Polychlorinated Biphenyls Interacting Common E2- and NRF1-Target Gene

KEGG Pathway Number of Genes Annotated Genes

Cell Cycle 13 AURKA|AURKB|CDK1|CDT1|CENPN|CKS1B|FBXO5|MCM2|MCM6|PCNA|PLK4|SMC4|ZWINT

Mitotic M-M/G1 phases 9 AURKB|CDK1|CDT1|CENPN|FBXO5|MCM2|MCM6|SMC4|ZWINT

DNA Replication 4 CDT1|MCM2|MCM6|PCNA

Cell cycle 4 CDK1|MCM2|MCM6|PCNA

DNA replication 3 MCM2|MCM6|PCNA

DNA replication and repair 3 CDK1|PCNA|UNG

Pancreatic cancer 3 ARAF|CDC42|RAF1
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Table 4. Cont.

Cadmium Interacting Common E2- and NRF1-Target Genes

KEGG Pathway Number of Genes Annotated Genes

Metabolism 26 ACADM|ALDOA|AUH|BCAT1|COX5B|COX6C|CYCS|DTYMK|ENO1|FASN|GCLC|GSR|GSS|GSTM3|HSD17B4|HSP90AA1|INPP5K|LDHA|MGST3|
OAZ2|PAICS|RAN|SDHA|SGMS1|SLC16A1|SLC37A4

Gene Expression 25 CCNT2|CDKN2B|DNMT1|EEF1A1|EEF1D|EEF1G|EXOSC2|HARS|HNRNPA1|HNRNPH1|HSPA8|LSM2|MARS2|MED20|RAN|RPL10|RPL13A|RPL14|
RUNX2|SRRM1|TAF12|TCEB2|THRA|XPO5|YWHAZ

Disease 24 ALDOA|CCNT2|CDC42|CDK1|CDKN2B|CREB1|CTBP1|ENO1|FASN|HSP90AA1|IRS1|OS9|PPIA|RAC1|RAF1|RAN|RPL10|RPL13A|RPL14|SHC1|
SLC37A4|TAF12|TCEB2|YWHAZ

Signal Transduction 21 ARHGDIA|CCNT2|CDC42|CDK1|CDKN2B|CREB1|CTBP1|E2F1|FSTL3|GPR37|HSP90AA1|IRS1|OS9|PTK2|RAC1|RAF1|RELA|ROCK1|RPS6KB1|
SHC1|YWHAZ

Metabolic pathways 20 ACADM|ALDOA|AUH|BCAT1|COX5B|COX6C|DNMT1|DTYMK|ENO1|FASN|GAA|GCLC|GSS|HSD17B4|INPP5K|LDHA|PAICS|SDHA|
SGMS1|SHMT2

Immune System 18 CDC42|CDK1|CREB1|CTSD|HSP90AA1|IRS1|KIF4A|PELI1|PTK2|PVR|RAC1|RAF1|RELA|RNF19B|SHC1|TCEB2|UBE2D4|YWHAZ

Cell Cycle 17 AURKA|BUB1|CCNB1|CCNE1|CDK1|CDKN2B|CKS1B|E2F1|FBXO5|HSP90AA1|MAD2L1|MCM2|MCM4|MCM6|NEK2|OIP5|SMC4

Pathways in cancer 15 CCNE1|CDC42|CDKN2B|CKS1B|CTBP1|CYCS|E2F1|HSP90AA1|MSH2|PTK2|RAC1|RAF1|RASSF1|RELA|TCEB2

Developmental Biology 15 CDC42|CDK1|CREB1|HSP90AA1|HSPA8|KIF4A|MED20|MYH10|MYH14|NRTN|PTK2|RAC1|RAF1|ROCK1|SPTAN1

Metabolism of proteins 12 CTSD|DDIT3|DNAJB9|EEF1A1|EEF1D|EEF1G|EIF5A|HSPD1|RPL10|RPL13A|RPL14|SHC1

Arsenic Interacting Common E2- and NRF1-Target Genes

KEGG Pathway Number of Genes Annotated Genes

Metabolism 33 ADCY9|ALDOA|CYCS|ENO1|ERCC2|ETFB|ETFDH|FASN|GCLC|GSR|GSS|GSTM3|HSD17B4|HSP90AA1|INPP5A|IP6K2|LDHA|MMADHC|NUBP1|
P4HB|PAICS|PLCG1|PLD1|POM121|PPAT|PRKAR2A|SDHA|SGMS1|SLC44A2|STX1A|SUCLA2|TPMT|UBA52

Immune System 30 ADCY9|ARPC2|CASP2|CDC42|CDK1|CREB1|CTSD|FZR1|HRAS|HSP90AA1|IP6K2|JAK2|KIF4A|MAPK7|PCBP2|PELI1|PLCG1|PLD1|POM121|
PRKAR2A|PRKDC|PTK2|PVR|RAF1|SOS1|SRC|TUBB4B|UBA52|UBE2D4|XRCC5

Disease 27 ADCY9|ALDOA|CDC42|CDK1|CDKN2B|CREB1|CTBP1|ENO1|ERCC2|FASN|HDAC4|HRAS|HSP90AA1|MMADHC|NPM1|P4HB|PLCG1|POM121|
PRKAR2A|RAF1|RPL36|SMARCA4|SOS1|SRC|STX1A|UBA52|XRCC5

Signal Transduction 24 ADCY9|CASP2|CDC42|CDK1|CDKN2B|CREB1|CTBP1|E2F1|HDAC4|HRAS|HSP90AA1|JAK2|MAPK7|P4HB|PLCG1|PRKAR2A|PTCH1|PTK2|RAF1|
ROCK1|SMARCA4|SOS1|SRC|UBA52

Developmental Biology 22 ABLIM2|ARPC2|CDC42|CDK1|CREB1|HRAS|HSP90AA1|HSPA8|KIF4A|MED18|MYH10|MYH14|NRTN|PLCG1|PTK2|RAF1|ROCK1|SCN3B|SIAH2|
SOS1|SRC|TUBB4B

Metabolic pathways 20 ALDOA|COX6A2|DNMT1|ENO1|FASN|FUT8|GCLC|GSS|HSD17B4|INPP5A|LAP3|LDHA|PAICS|PLCG1|PLD1|PPAT|SDHA|SGMS1|SUCLA2|SUFU

Cell Cycle 19 ATM|AURKA|CCNB1|CCNE1|CDK1|CDKN2B|CDKN2D|E2F1|FZR1|HSP90AA1|MAD2L1|NPM1|PCNA|POM121|SET|SPDL1|TUBB|TUBB4B|UBA52

Gene Expression 19 CDKN2B|CNOT1|DNMT1|EEF1G|ERCC2|EZH2|HNRNPA1|HSPA8|LSM2|PCBP2|PTBP1|RNPS1|RPL36|RUNX2|SET|UBA52|UPF1|VARS2|ZNF610

Pathways in cancer 17 CCNE1|CDC42|CDKN2B|CTBP1|CYCS|E2F1|HRAS|HSP90AA1|MSH2|PLCG1|PLD1|PTCH1|PTK2|RAF1|RASSF1|SOS1|SUFU

Cellular responses to stress 16 ATM|CCNE1|CDKN2B|CDKN2D|CYCS|E2F1|EHMT1|EZH2|FZR1|GSR|HSP90AA1|HSPA8|MAPK7|P4HB|PRDX5|UBA52
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Table 4. Cont.

Manganese Interacting Common E2- and NRF1-Target Genes

KEGG Pathway Number of Genes Annotated Genes

Cellular responses to stress 6 ATM|CYCS|GSR|HSPA8|P4HB|RELA

Developmental Biology 5 CREB1|HSPA8|SCN3B|SPTAN1|SRC

Tuberculosis 4 CREB1|CYCS|RELA|SRC

p53 signaling pathway 3 ATM|CYCS|PPM1D

Small cell lung cancer 3 CKS2|CYCS|RELA

Apoptosis 3 ATM|CYCS|RELA

Cell cycle 3 ATM|BUB1|MCM4
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Table 5. Interaction of estrogenic endocrine disrupting chemicals modified genes with estrogen
signaling and NRF1 network genes in the individual neurodegenerative disease.

Endocrine Disrupting
Chemical (EDC)

Individual EDC Responsive Modified Genes Common to Both NRF1 and E2 Target.
* Indicates E2 Responsive

Alzheimer’s Disease (AD)

17 β-estradiol 6 genes: APBB2|DPYSL2|EIF2S1|ENO1|MAPT|PAXIP1
Ethinyl Estradiol 6 genes: APBB2 *|EIF2S1 *|ENO1 *|IDE|MAPT *|PAXIP1 *

Bisphenol A 8 genes: APBB2 *|DPYSL2 *|EIF2S1 *|ENO1 *|IDE|MAPT *|PAXIP1 *|SLC30A4
Dibutyl Phthalate 4 genes: DPYSL2 *|EIF2S1 *|ENO1 *|IDE

Diethylhexyl Phthalate 2 genes: DPYSL2 *|MAPT *
Cadmium 2 genes: ENO1 *|SLC30A4

Arsenic 2 genes: ENO1 *|MAPT
Manganese 1 gene: ENO1 *

Parkinson’s Disease (PD)

17 β-estradiol 8 genes: HSPA9|MAPT|RPL14
Ethinyl Estradiol 3 genes: HSPA9 *|MAPT *|PINK1

Bisphenol A 8 genes: GAK|HSPA9 *|MAPT *|PARK2|PARK7|PINK1|RPL14 *|VPS35
Dibutyl Phthalate 4 genes: HSPA9 *|PARK2|PARK7|RPL14 *

Diethylhexyl Phthalate 3 genes: HSPA9 *|MAPT *|PARK2
Cadmium 3 genes: PARK2|PINK1|RPL14 *

Arsenic 4 genes: GAK|HSPA9 *|MAPT *|PARK2
Manganese 2 genes: PARK2|PARK7

Huntington’s Disease (HD)

17 β-estradiol 2 genes: AIFM1|P6K2
Ethinyl Estradiol 1 gene: AIFM1 *

Bisphenol A 2 genes: AIFM1 *|IP6K2 *
Dibutyl Phthalate 1 gene: IP6K2 *

Cadmium 1 gene: AIFM1 *
Arsenic 1 gene: IP6K2 *

Amyotrophic Lateral Sclerosis (ALS)

17 β-estradiol 1 gene: GSR|CHMP2B
Ethinyl Estradiol 1 gene: GSR *

Bisphenol A 2 genes: GSR *|CHMP2B *|UNC13A
Dibutyl Phthalate 1 gene: GSR *

Diethylhexyl Phthalate 1 gene: GSR *
Cadmium 1 gene: GSR *

Arsenic 1 gene: GSR *
Manganese 1 gene: GSR

Autism Spectrum Disorder (ASD)

17 β-estradiol 3 genes: CIRBP|PCDH9|GTF2I
Ethinyl Estradiol 2 genes: CIRBP *|GTF2I *

Bisphenol A 3 genes: CIRBP *|GTF2I *|PCDH9 *
Polychlorinated Biphenyls 1 gene: CIRBP *

Cadmium 1 gene: CIRBP *
Arsenic 1 gene: PCDH9 *

Brain Neoplasms

17 β-estradiol 3 genes: PCNA|PTCH1|RELA
Ethinyl Estradiol 2 genes: PCNA *|PTCH1 *

Bisphenol A 4 genes: EML4|PCNA *|PTCH1 *|RELA *
Dibutyl Phthalate 2 genes: PCNA *|PTCH1 *

Polychlorinated Biphenyls 1 gene: PCNA
Cadmium 1 gene: RELA *

Arsenic 2 genes: PCNA *|PTCH1 *
Manganese 1 gene: RELA *

17-β Estradiol interacting genes which are also NRF1 target genes: The CTD search results showed
that there were 6695 genes related to 17-β estradiol (E2) (Figure 3). The 724 genes out of the 6695
E2 modified genes are NRF1 target genes (Tables S1 and 2, Figure 3). Three of the common E2 and
NRF1 target genes, GPR37, MAPT, and PSENEN are associated with neurodegenerative disease ([9],
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Table 4). Table 4 showing enriched pathway analysis revealed the top pathways associated with E2
responsive NRF1 target genes, that included: (1) Disease (86 genes); (2) Metabolism (86 genes); (3) Gene
Expression (77 genes); (4) Signal Transduction (72 genes); (5) Immune System (67 genes); (6) Cell Cycle
(62 genes); (7) Metabolic pathways (62 genes); (8) Metabolism of proteins (48 genes); (9) Developmental
Biology (43 genes); and (10) Mitotic M-M/G1 phases (35 genes).

Ethinyl Estradiol Interacting genes common to both E2 and NRF1 target genes: The CTD
search revealed that there were 6049 genes related to the active estrogenic chemical in oral
contraceptives—ethinyl estradiol (EE) (Figure 3). Out of the 6049 EE modified genes, 800 genes
are NRF1 target genes and 331 genes are target genes of both E2 and NRF1 (Tables S1 and S2, Figure 3).
Two of the genes, MAPT and PSENEN, observed interacting with all three EE, E2 and NRF1 are
associated with neurodegenerative disease [9]. Table 4 showing enriched pathway analysis revealed
the top pathways associated with the number of common E2, E2 and NRF1 target genes, that included:
(1) Metabolism (49 genes); (2) Disease (48 genes); (3) Gene Expression (43 genes); (4) Immune System
(36 genes); (5) Cell Cycle (35 genes); (6) Metabolic pathways (33 genes); (7) Signal Transduction
(33 genes); (8) Metabolism of Proteins (28 genes); (9) Developmental Biology (25 genes); and (10)
Cancer Pathways (22 genes).

BPA and Interactions with NRF1 Target Genes: The CTD search revealed there are 19,113 genes
related to BPA. Out of the 19,113 interacting genes, 2113 are NRF1 target genes, and 673 are target
genes of both BPA and E2 (Tables S1 and S2, Figure 3). Three of the genes, GPR37, MAPT and
PSENEN observed interacting with all three BPA, E2, and NRF1 are associated with neurodegenerative
disease [9]. Enriched pathway analysis revealed the top pathways associated with number of common
BPA/E2/NRF1 target genes, that included: (1) Metabolism (85 genes); (2) Disease (84 genes); (3) Gene
Expression (71 genes); (4) Signal Transduction (68 genes); (5) Immune System (66 genes); (6) Cell Cycle
(61 genes); (7) Metabolic Pathways (58 genes); (8) Metabolism of Proteins (47 genes); (9) Developmental
Biology (41 genes), and Cancer Pathways (34 genes) (Table 4).

Phthalates and Interactions with NRF1 Target Genes: The CTD search revealed there were
4816 genes interacting with dibutyl phthalate (DBP) and 1344 genes with diethylhexyl phthalate
(DEHP). The 756 DBP interacting genes are NRF1 target genes, whereas 149 DEHP interacting
genes are NRF1 target genes. Among DBP responsive genes, there are 309 genes common E2
and NRF1 target genes and 86 DEHP associated genes are common E2 and NRF1 target genes
(Tables S1 and S2, Figure 3). MAPT, a common DEHP, E2 and NRF1 target genes are associated
with neurodegenerative disease [9]. Enriched pathway analysis revealed the top pathways associated
with number of common DBP/E2/NRF1 target genes, that included: (1) Metabolism (56 genes);
(2) Disease (45 genes); (3) Gene Expression (39 genes); (4) Metabolic Pathways (38 genes); (5) Cell
Cycle (34 genes); (6) Signal Transduction (32 genes); (7) Immune System (31 genes); (8) Metabolism of
Proteins (25 genes); (9) Mitotic M-M/G1 phases (23 genes), and Developmental Biology (21 genes).
Enriched pathway analysis of E2/NRF1/DEHP-responsive genes revealed the top pathways for gene
involvement that includes: (1) Metabolism (21 genes); (2) Metabolic pathways (15 genes); (3) Disease
(15 genes); (4) Immune System (12 genes), (5) Metabolism of proteins (11 genes); (6) Cell Cycle (9 genes);
(7) Cellular response to stress (8 genes); (8) Cancer Pathways (8 genes); (9) Developmental Biology
(8 genes); and (10) Cell cycle (5 genes) (Table 4).

Polychlorinated Biphenyls and Interactions with NRF1 Target Genes: There were 648 genes
interacting with polychlorinated biphenyls (PCBs). The 433 PCBs genes are NRF1 target genes, and the
53 PCBs genes are common E2 and NRF1 target genes (Tables S1 and S2, Figure 3). Enriched pathway
analysis of common PCBs/E2/NRF1-associated genes revealed the top pathways for gene involvement
that included: (1) Cell Cycle (13 genes); (2) Mitotic M-M/G1 phases (9 genes); (3) DNA replication
(4 genes); (4) Cell Cycle (4 genes); (5) DNA replication and repair (3 genes); and (6) Pancreatic cancer
(3 genes) (Table 4).
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Cadmium and Interactions with NRF1 Target Genes: Using CTD search we found 2458 genes
interacting with cadmium (Cd). The 263 Cd interacting genes are NRF1 target genes and 143 interacting
genes are common E2 and NRF1 target genes (Tables S1 and S2, Figure 3). GPR37 gene, a common
Cd/E2/NRF1 gene, is associated with neurodegenerative disease [9]. Enriched pathway analysis of
Cd/E2/NRF1 common genes revealed the top pathways that included: (1) Metabolism (26 genes);
(2) Gene Expression (25 genes); (3) Disease (24 genes); (4) Signal Transduction (21 genes); (5) Metabolic
pathways (20 genes); (6) Immune System (18 genes); (7) Cell Cycle (17 genes); (8) Cancer Pathways
(15 genes); (9) Developmental Biology (15 genes) and (10) Metabolism of proteins (12 genes) (Table 4).

Arsenic and Interactions with NRF1 Target Genes: The CTD search revealed there were 4037 genes
related to arsenic (As). The 520 As interacting genes are NRF1 target genes and the 190 as interacting
genes are common E2 and NRF1 target genes (Tables S1 and S2, Figure 3). Enriched pathway
analysis of As/E2/NRF1 common genes revealed the top pathways that included: (1) Metabolism
(33 genes); (2) Immune System (30 genes); (3) Disease (27 genes); (4) Signal Transduction (24 genes);
(5) Developmental Biology (22 genes); (6) Metabolic pathways (20 genes); (7) Cell Cycle (19 genes);
(8) Gene Expression (19 genes); (9) Cancer Pathways (17 genes); and (10) Cellular responses to stress
(16 genes) (Table 4).

Manganese and Interactions with NRF1 Target Genes: Using CTD search we found 462 genes
interacting with manganese (Mn). The 50 Mn interacting genes are NRF1 target genes and the 30 Mn
interacting genes are common E2 and NRF1 target genes (Tables S1 and S2, Figure 3). Enriched pathway
analysis of common Mn/E2/NRF1 genes revealed the top pathways that included: (1) Cellular
responses to stress (6 genes); (2) Developmental Biology (5 genes); (3) Tuberculosis (4 genes); (4) p53
signaling pathway (3 genes), Small cell lung cancer (3 genes), Apoptosis (3 genes), Cell cycle (3 genes)
(Table 4).

Association of EED interacting genes common to both E2 and NRF1 targets with Neurodegenerative
Diseases: Table 5 as well as Tables S1 and S2 summarize EEDs modified genes, which are common
E2 and NRF1 target genes and their involvement with the specific type of brain disease, such as AD,
PD, HD, ALS, Autism Spectrum Disorder, and Brain Neoplasms. Out of the 6643 E2 interacting genes,
there were 1413 genes associated with nervous system disease.

The CTD search of E2 interacting genes in AD revealed 61 genes: ACE, ACHE, AMFR, APBB2,
APOE, APP, ARC, ATP5A1, BAX, BCHE, BCL2, BDNF, BIN1, CALM1, CASP3, CHRNA7, CHRNB2,
CLU, CRH, CYP46A1, DHCR24, DPYSL2, EIF2S1, ENO1, EPHA1, ESR1, F2, GAPDHS, GSK3B, HFE,
HMOX1, IGF1, IGF1R, IGF2, IGF2R, IL1B, INS, INSR, LEP, MAOB, MAPT, MIR146A, MPO, NOS3, NPY,
PAXIP1, PICALM, PLAU, PPARG, PRNP, PSEN2, SLC2A4, SOD2, SORL1, TF, TFAM, TNF, TPI1, TREM2,
VEGFA, VSNL. The bold indicates E2 interacting genes which are NRF1 target genes. With AD, the
six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1.
These genes are also responsive to the following EEDCs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1,
ENO1, MAPT, and PAXIP1), BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1), dibutyl phthalate
(DPYSL2, EIF2S1, ENO1), diethylhexyl phthalate (DPYSL2 and MAPT), cadmium (ENO1), arsenic
(ENO1 and MAPT), and manganese (MAPT) (Table 5).

With PD, the 8 E2-responsive NRF1 target genes are: GAK, HSPA9, MAPT, PARK2, PARK7, PINK1,
RPL14, AND VPS35. These genes are also responsive to the following EEDCs: ethinyl estradiol (HSPA9,
MAPT), BPA (HSPA9, MAPT, RPL14), dibutyl phthalate (HSPA9, RPL14), diethylhexyl phthalate
(HSPA9, MAPT), cadmium (RPL14), and arsenic (HSPA9, MAPT) (Table 5). The CTD search revealed
that PCBs-interacting 9 genes: HMOX1, IL6, NQO1, RPS8, SLC18A2, SNCA, SOD1, SOD2, TNF are
associated with Parkinson Disease. Both SOD and TNF E2 interacting genes are NRF1 target genes.

With HD, the 2 E2-responsive NRF1 target genes are: AIFM1 and IP6K2. These genes are also
responsive to the following EEDCs: ethinyl estradiol (AIFM1), BPA (AIFM1 and IP6K2), dibutyl
phthalate (IP6K2), cadmium (AIFM1), and arsenic (IP6K2) (Table 5).
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With ALS, the E2-responsive NRF1 target genes are CHMP2B and GSR. These genes are also
responsive to the following EEDCs: ethinyl estradiol (GSR), BPA (GSR and CHMP2B), dibutyl phthalate
(GSR), diethylhexyl phthalate (GSR), cadmium (GSR), and arsenic (GSR) (Table 5).

With ASD, the E2-responsive NRF1 target genes are CIRBP, PCDH9, and GTF2I. These genes are
also responsive to the following EEDCs: ethinyl estradiol (CIRBP and GTF2I), BPA (CIRBP, GTF2I, and
PCDH9), polychlorinated biphenyls (CIRBP), cadmium (CIRBP), and arsenic (PCDH9) (Table 5).

With brain neoplasms, the E2-responsive NRF1 target genes are PCNA, PTCH1, and RELA. These
genes are also responsive to the following EEDCs: ethinyl estradiol (PCNA and PTCH1), BPA (PCNA
and RELA), dibutyl phthalate (PCNA and PTCH1), cadmium (RELA), arsenic (PCNA and PTCH1),
and manganese (RELA) (Table 5).

3.1. NRF1, Mitochondrial Dysfunction, and Neurodegenerative Diseases

Mitochondria are known as the powerhouses of cells. They are important for cell viability
and function [213]. They control cell process such as energy production, calcium signaling,
and apoptosis [213]. Research has suggested that mitochondrial dysfunction is a cause and not
a result of neurodegenerative diseases [214]. It is suggested mitochondrial dysfunction plays
a major role, in AD, PD, HD, and ALS through the oxidative phosphorylation dysfunction [202].
Mitochondrial dysfunction may also increase ROS generation, cause abnormal protein-protein
interactions, and may lead to loss of cellular integrity and cell death [215]. There is also evidence
to suggest mitochondrial dysfunction may play a role in neuronal plasticity and maintenance [215].
Sex steroids have been observed to regulate mitochondrial function [216], and provide targets for
EEDs such as BPA, phthalates, polychlorinated biphenyls, metals, oral contraceptives, and hormonal
replacement therapies [5]. NRF1 regulates the expression of nuclear genes that encode that encode
mitochondrial proteins that function in metabolic pathways such as the trichloroacetic acid cycle
(TCA), oxidative phosphorylation, heme synthesis, and in mitochondrial DNA replication and
transcription (e.g., mitochondrial transcription factor A [Tfam] [9,217]. For example, NRF1 and
NRF2 are regulators of all 13 COX subunit genes in neurons which are integral to mitochondrial
function [218]. By generating energy (ATP), and regulating subcellular Ca2+ and redox homoeostasis
through modulating mitochondria biogenesis genes as well as neuroplasticity regulating genes,
NRF1 may play important roles in controlling fundamental processes in neuroplasticity, including
neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodeling.
Since mitochondrial dysfunction has been implicated as a possible pathway for neurodegenerative
diseases [214], gene targets of NRF-1 directly affect brain health and may provide insight into mechanisms
of these diseases. PGC1α acts as a master inducer of mitochondrial biogenesis and respiration through
regulating NRF1. PGC1α has also been implicated in Alzheimer’s disease (AD), amyotrophic lateral
sclerosis (ALS) and Duchenne muscular dystrophy. In ALS patients and mice, significant alterations in
mRNA expression of PGC-1α, NRF1, NRF2, and Tfam were observed [219]. The PGC-1 transcription
impairment in the striatum and a significant decrease of PGC-1 and PGC-1A but unchanged NRF-1
and Tfam mRNA expression in muscle tissue have been reported in HD patients [220,221]. In a mouse
model of HD, decreased mRNA expression of PGC-1 and Tfam in muscle tissue correlated with reduced
numbers of mitochondria, whereas PGC-1A, NRF-1, and further downstream target genes were not
significantly reduced [220]. These observations have led to the suggestion that the progressive muscle
atrophy and morphologic abnormalities of neuromuscular junctions that occur in HD mice could be
a consequence of impaired PGC-1 and target gene expression [220]. PGC-1, NRF1, and MnSOD are
mainly localized in neurons suggests that these protective effects are of neuronal rather than glial
origin. Expression of PGC1α is reduced in AD patients and in the transgenic 2576 mouse model
of AD [222–225]. Importantly, PGC1α in cell models of AD ameliorates their phenotype [212,224].
Since levels of NRF1 are significantly decreased in both Alzheimer’s disease hippocampal tissues
and AD-causing amyloid precursor protein mutant cells, impaired mitochondrial biogenesis is
implicated to contribute to mitochondrial dysfunction in Alzheimer’s disease. NRF-1 has the ability
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to distinctly co-ordinate mitochondrial functions by tailoring nucleo-mitochondrial interactions to
a specific cellular context, such as differentiation, stress stimulus and cell lineage. Furthermore,
expression of PGC1-α, NRF1, NRF2, and transcription factor A were found to be significantly reduced
in both AD hippocampal tissue as well as APPswe M17 cells which overexpress APP protein, which
supports impaired mitochondrial biogenesis likely contributes to mitochondrial dysfunction [212].
When mtDNA contained within mitochondria undergoing phagocytosis is considered into account,
it appears that total hippocampal neuron mtDNA may actually increase [226]. Increased mitochondrial
mass or mitochondrial mass markers have been observed in the AD hippocampus of the healthiest
remaining neurons that paradoxically appear to be increased [227]. Considering these disparate
findings suggesting that neuron mitochondrial mass or mitochondrial mass markers increase with
advancing age, Swerdlow suggested a physiologic difference between brain aging and the AD brain,
which is the ability of healthy hippocampal neurons to adapt to mitochondrial stress by mounting
a compensatory mitochondrial biogenesis response [228–230].

3.2. NRF1-Mediated Regulation of Neurogenesis and Synaptogenesis

Estrogen has been demonstrated to have a significant role in controlling neural progenitors in
the developing embryonic brain. Estrogen has been shown to induce proliferation and differentiation
of neural progenitor [231–233]. Neural progenitors have also been demonstrated to express estrogen
receptors [232,233], which provide a site in EEDCs to exert their effects. EEDCs have been shown
to cross the placental and blood brain barrier [6], but the mechanisms regarding the effects on the
early stages of neural development are largely not known. Studies suggest neural development is
affected by exposures to EEDCs. Low-dose exposure to BPA and BPS has been shown to induce
hypothalamic neurogenesis in an embryonic zebrafish at a point in time analogous to the second
trimester of human development [77]. Several classes of phthalates were shown to prevent neural stem
cell proliferation in a rat mesencephalic stem cell model [234]. Polychlorinated biphenyls have also
been demonstrated to interfere with neuronal cell differentiation in a rat embryonic neural stem cell
model [235]. Arsenic was shown to substantially inhibit neuronal differentiation in human embryonic
neural stem cells [236]. Manganese has also been demonstrated to cause cell death in a rat neural stem
cell model through a mitochondrial-mediated pathway [237]. Both neurogenesis and synaptogenesis
are controlled by NRF1 regulated genes. We now know that multipotent adult neural stem cells
(NSCs) have differentiation potential to give rise to all three main neuronal cell types, the neurons,
astrocytes and oligodendrocytes. Multipotent adult neuronal stem cells (NSCs) through neurogenesis
(birth of brain cells or the process by which brain cells are generated from neural stem cells and
progenitor cells) replenish loss of cells in discrete regions of the human brain. A decreased rate of
neurogenesis as a result of impairment in NSCs with increasing age in the adult brains of human is
considered to contribute to the neurodegenerative process and subsequently resulting in memory
deficits and learning impediments during the pathogenesis of Alzheimer’s disease. Cholinergic
neurons of the forebrain are most affected by the neurodegenerative process during the pathogenesis
of Alzheimer’s disease. Neuronal loss is one of the neuropathological hallmarks of AD. The control
of stem cell homeostasis within tissues such as the balance between proliferation, differentiation,
apoptosis and senescence is strictly linked to the regulation of tissue repair and regeneration. It has
been recently reported that estrogen helps in growth, survival and differentiation of either embryonic
stem cells or tissue-specific stem/progenitor cells. New adult stem cells (ASCs) replenishing losses
due to neurodegenerative processes underlying AD. EEDs may interfere with new neural stem cells
generation. The generation of new neurons from neural progenitor stem cells, the growth of axons
and dendrites and the formation and reorganization of synapses are examples of neuroplasticity.
All these processes seem to be regulated by nuclear respiratory factor 1 (NRF1) target network genes.
For example, recently, it has been shown that NRF1 regulates neurite outgrowth—a critical process
in neuronal development in neuroblastoma cells and hippocampal neurons by regulating its target
gene, Synapsin 1 [238]. Another fifteen genes involved in different biological processes of neurons,
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cell cycle-related genes—MAPRE3, NPDC1, SUV39H2, SKA3, transport-related genes—RAB3IP,
TRAPPC3, signal transduction-related genes—SMAD5, PIP5K1A, USP10, SPRY4, transcription-related
genes—GTF2F2, NR1D1, and regulation of GTPase activity-related genes—RHOA, RAPGEF6, SMAP1,
have been reported to contain NRF1 binding motif(s) in their promoters and mRNA levels of 12 of these
genes are regulated by NRF-1 [239]. Overexpression or knockdown of MAPRE3, NPDC1, SMAD5,
USP10, SPRY4, GTF2F2, SKA3, RAPGEF6 positively regulates, where as RHOA and SMAP1 negatively
regulates neurite outgrowth. Three hypothetical genes—FAM134C, C3orf10, and ENOX1 involved
in neurite outgrowth are regulated by NRF1. FAM134C positively regulates and C3orf10 negatively
regulates neurite outgrowth [240]. In summary, it appears that NRF-1 regulates neurite outgrowth
through cell cycle-, transport-, signal transduction-, transcription-, regulation of GTPase activity-related
genes and hypothetical genes. This suggests that NRF1 regulates neuronal differentiation through
a variety of biological processes.

NMDA receptors are very important for regulating neuronal plasticity including learning and
memory. Soluble β-amyloid (Aβ) oligomers (Aβ), considered to be involved in the pathogenesis of
Alzheimer’s disease (AD), have been reported to influence synaptic dysfunction through interacting
with glutamatergic receptors of the NMDA type responsible for maintaining glutamate homeostasis
such as uptake and release [241]. There is a clinical relevance of above interactions based on the
NMDA receptor antagonist- memantine. This NMDA receptor antagonist is used clinically in the
treatment of AD. NRF1 has recently been shown to functionally regulate important subunits of NMDA
receptors—NR1 and NR2b (Grin1 and Grin2b) and AMPA receptor subunit 2 (GluR2) [242] in response
to changing neuronal activity. NRF1 and NRF2 have been shown to concurrently regulate both
GRIN1 and GRIN2B [243]. The GRIN2B gene which encodes NMDA receptor subunit NR2B has
been suspected to play a role in the development of AD [244] which makes its relationship with
NRF1 a possible route of neurodegeneration. Evidence suggests that the DNA methylation competes
with transcriptions factors [245], which may indicate a possible mechanism for neurodegenerative
conditions to take place, if NRF1 binding is affected. NRF1 has also been demonstrated to interact
with macroH2A histone which stabilizes and positions nucleosomes and reduces transcriptional
variability [246]. NRF1 has also been shown to work with chromosomal conformations to facilitate the
expression of GRIN2B, which when affected, results in impairments in working memory [247]. NRF1
also has a role in the transport of NMDA receptors to dendrites by regulating the Kif17 gene [248].
This suggests that NRF1 is actively involved in the regulation of glutamatergic synaptic transmission
in neurons and also possibly in brain diseases.

In vitro and in vivo BPA exposure via disrupting a chloride ion transporter Kcc2 gene expression
in neurons through epigenetic mechanisms involving NRF1 target gene- Methyl-CpG binding protein
2 (MeCp2) is considered to be involved neurodevelopmental toxicity. This could possibly help to
explain a NRF1 role in BPA-associated pathogenesis of human neurodevelopmental disorders [249].

In a study examining the effects of manganese exposure with HT disease pathology, manganese
exposure adversely affects medium spiny neuron dendritic length and spine density which is associated
with a decrease brain-derived neurotrophic factor which caused alterations in the Htt gene which
causes HT [250]. In study using a monkey model, exposure to manganese was shown to promote
α-synuclein positive cells, which indicate the development of PD and dementia [251]. Another study
using a monkey model found the amyloid-β precursor-like protein 1 (APLP1), and indicator in the
development of AD, was upregulated when exposed to manganese [252]

The accumulation of the β-amyloid protein outside neurons and an abnormal form of the protein
tau inside neurons are considered to contribute to the development of Alzheimer’s. During the
progression of Alzheimer’s disease, chemical transfer at synapses begins to fail, the number of synapses
declines, and neurons eventually die. All these processes seem to be regulated by nuclear respiratory
factor 1 (NRF1) target network genes. In addition to the regulation of neuroplasticity controlling genes,
PSENEN (PEN2), a component of the γ-secretase complex, APLP1 (an isoform of APP) and MAPT
(tau) are three principal NRF1 target genes directly associated with the development Alzheimer’s [9].
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All three proteins—APP, presenilin-1 and tau are considered to play important roles in developmental
and synaptic plasticity, and alterations in these proteins have been shown to modulate neurogenesis
and synaptic plasticity [253]. The suppression of NRF-1 activity can induce neurodegeneration
through growth arrest and increases in apoptosis and reduces growth and survival of neural stem
cells. Therefore, NRF1 is an emerging potential target for therapeutic intervention for brain diseases,
including AD.

3.3. Understanding Sex Bias and NRF1 Regulated Genes-EEDs Interactions in AD

Sex differences in nervous system diseases, such as multiple sclerosis, Parkinson’s disease,
and Alzheimer’s disease, exist in prevalence, severity, and progression of pathologies and consequently
has become a major obstacle for the treatment. Cognitive disturbances are frequent in brain health
deficit-related disease. Men show greater cognitive impairment in schizophrenia, whereas women
show more severe dementia and cognitive decline with Alzheimer’s disease. Low dose of raloxifene
exposure to BPA alters the expression of hypothalamic ERα and ERβ (Esr1 and Esr2) expression in
a sex-specific manner in the developing brain [254].

Menopausal hormone therapy (HT; 0.625 mg/day conjugated equine estrogens (CEE) therapy
alone (CEE-Alone) and in combination with 2.5 mg/day medroxyprogesterone acetate (CEE + MPA))
has recently been shown to produce significant Gray Matter (GM) losses compared to the placebo
groups in the anterior cingulate and the adjacent medial frontal gyrus, and the orbitofrontal cortex and
risk for cognitive impairment and dementia in older women [255].

Alzheimer’s disease (AD) disproportionally affects women (F:M = 2:1) and the total number of
Americans aged 65 y with AD is projected to increase from 5.1 million to 13.8 million by 2050. Despite
tremendous progress in understanding the pathogenesis of AD, the molecular basis underlying the
sex-dependent differences in AD remains largely unknown and consequently has become a major
obstacle for the development of new sex-based molecular targets of AD. Hormone replacement therapy
(HRT) and anti-estrogen therapy (raloxifene) are focused on circulating estrogens, as measured by
blood levels, but not based on brain estrogen levels. This is one of the main reasons why such
endocrine therapy is unable to produce a significant beneficial effect in human AD [256]. There is only
one study in which human brain levels of estrogens have been measured; and these hormones do not
change significantly with age in postmenopausal women, rather estradiol (E2) showed an increasing
trend from age 60–100 years [257]. There is no change in brain levels of E2 in the male 60–79 years
age range. In contrast, preclinical data are ample and unequivocal that brain estrogen deficiency
induces Alzheimer’s pathology, and early E2 treatment, not late treatment, prevents AD pathologies
in APP transgenic mice [258]. It is not clear why a sex-specific bias occurs in AD, even though brain
hormone levels are similar between the two sexes. NRF1 targets have been shown to have roles in
the development of AD. The NMDA receptor subunit GRIN1 and GRIN2B, have been shown to be
regulated by NRF-1 [243]. GRIN1 and PSD-95 protein were found to be significantly increased in AD
cases compared to controls and were found in areas of the brain that were reactive for anti-tau antibody
AD2 [259]. A variant of GRIN2B was found to be overexpressed in AD patients and individuals with
mild cognitive impairment [260] and may induce lower GRIN2B transcriptional activity as well as
NR2B protein expression, which are associated with AD [261]. Other studies support this connection
where AB peptides were shown to decrease the number and activity of NMDA receptors [262].
Another study found neurons from AD cases had significantly less mtDNA gene copy numbers
from PCR methods compared to controls as well as lessened gene expression of mitobiogenesis
factors such as NRF1, NRF2, EER α, and TFAM and the master regulator PGC1 α [263]. Another
NRF1 target, prsenilin-2 (PSEN2), an AD-related gene was shown to have increased activity when
an overexpression of EGR-1 is takes place [264]. This provides the evidence that NRF1 may also
have a role in the regulation of PSEN2. Evidence also suggests the regulation of the transcription
factor EGR-1 may be regulated by APP, which may play a role in AD development and memory
formation [265]. Mutations in NRF1 targets PSEN1 and PSEN2 may also lead to the development
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of neurodegenerative disease [266–268]. In addition PSEN1 and PSEN2 transcription, expression,
promoter activity, and mRNA levels are influenced by the PARKIN protein [269]. PARKIN inactivation
as well as PGC-1 α and NRF1 repression is a possible mechanism for neurodegeneration [270].

Many genes modified by EEDs are common targets of both (E2) and NRF1 and some of these genes
are involved with the specified brain diseases. Therefore, using NRF1-EDC interacting genes identified
from CTD (Table 4), we focused our efforts on AD and conducted enrichment pathway analysis, which
revealed that many of the NRF1 target genes interacting with each specific EEDC and they are part of
pathway of AD (Figures 4–10). Enrichment pathway analysis was performed using Cytoscape and
Genemania. The search of enriched pathways showed that top 10 E2 interacting genes in AD: APOE,
APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B, MAPT, PSEN2 and TNF underlie the enrichment of the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Alzheimer’s disease pathway. With AD, the six
E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1. These
genes are also responsive to the following EEDs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1, ENO1,
MAPT, and PAXIP1) BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1), dibutyl phthalate (DPYSL2,
EIF2S1, ENO1), diethylhexyl phthalate (DPYSL2 and MAPT), dibutyl phthalate (DPYSL2, EIF2S1,
ENO1) (Figures 5–10, Table 5). GO annotations of E2 and NRF1 enrichment network genes of EEDs
revealed multiple common E2 and NRF1 genes associated with carbohydrate metabolic pathways,
which was common among all EEDs (Figures 4–10). Other two biological process pathways showing
association with multiple common E2 and NRF1 genes interacting with E2, EE, BPA or phthalates
were translation (translation initiation, translation initiation factory activity and translation factory
activity, nucleic acid binding) and glial/oligodendrocytes growth and differentiation (Figures 4–8).
To validate findings from CTD curated data, we conducted Bayesian network (BN) analysis [271]
of microarray data of 79 subjects of male (15 AD patients, 17 control) and female (17 AD patients,
30 controls) from Gene Expression Omnibus (GEO) database [272] showed that the female NRF1 gene
network is completely different from male human AD patients (Figure 11). For BN analysis, we have
first identified 827 genes that showed significant correlations with NRF1 gene expression pattern
among 79 subjects.

We used Banjo [273] to identify the most likely BN given the male and female data. Figure 11
shows the summarized BN where for each gene, State 0, 1, and 2 represent low expression, no change,
and high expression respectively; and for Alzheimer, State 0 and 1 represent a control subject and
a subject with AD respectively. When we analyzed only hippocampal microarray, we observed
that both gender and NRF1 were associated with AD (Figures 12 and 13). The invertebrate NRF1
homologue, EWG, controls transcription of neuronal genes in Drosophila embryos [210]. A strong
association of NRF1with human fetal brain and neural development has been recently reported [208].
NRF1 regulates neurite outgrowth. NRF1 regulates important subunits of NMDA receptors—NR1 and
NR2b (Grin1 and Grin2b) and AMPA receptor subunit 2 (GluR2). These findings suggest that NRF1
may be involved in the regulation of brain and neural development [10,274].The neurotoxic amyloid
β-peptide (Aβ), the major constituent of senile plaques in AD brains is generated by proteolytic
cleavages of the amyloid precursor protein (APP), and the amyloid precursor-like proteins 1 and 2
(APLP1 and APLP2) by β- and γ-Secretases. PSEN2, and presenilin enhancer 2 (PEN2) subunits of
γ-Secretase complex, involved in the formation of Aβ, MAPT (tau) and insulin-degrading enzyme (IDE)
which degrades Aβ are NRF1 target genes [9]. Accumulation of Aβ is dependent on Aβ formation
by MAPT, APP, PSEN2, and PEN2; and loss of IDE (Aβ degrading enzyme). AD-associated NRF1
target genes -APLP1, APP, GRIN1, GRIN2B, MAPT, PSEN2, PEN2, and IDE are also regulated by E2.
These NRF-1 regulatable genes alone, or in concert with others, may contribute to the sex-dependent
differences in the brain NRF1 network and the molecular mechanisms of prevention of AD by E2.
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Figure 4. Gene set pathway enrichment analysis of 17-β estradiol (E2) responsive NRF1 target genes associated with Alzheimer′s Disease (AD). The network includes the 
top 30 E2 related genes in AD in gray. E2 responsive NRF1 genes are in black. Right panel show GO annotations of NRF1 enrichment network genes of E2 associated with 
biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO 
term. 

Figure 4. Gene set pathway enrichment analysis of 17-β estradiol (E2) responsive NRF1 target genes associated with Alzheimer’s Disease (AD). The network includes
the top 30 E2 related genes in AD in gray. E2 responsive NRF1 genes are in black. Right panel show GO annotations of NRF1 enrichment network genes of E2
associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes
annotated to each GO term.
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Figure 5. Gene set pathway enrichment analysis of ethinyl estradiol responsive E2 and NRF1 common target genes associated with Alzheimer′s Disease (AD). The 
network includes the top 30 ethinyl estradiol-associated genes in AD in gray. Ethinyl estradiol responsive NRF1 genes are in black and * genes denoted by a 
diamond-shaped node are E2 and NRF1. Right panel show GO annotations of E2 and NRF1 enrichment network genes of ethinyl estradiol associated with biological 
process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term. 

Figure 5. Gene set pathway enrichment analysis of ethinyl estradiol responsive E2 and NRF1 common target genes associated with Alzheimer’s Disease (AD).
The network includes the top 30 ethinyl estradiol-associated genes in AD in gray. Ethinyl estradiol responsive NRF1 genes are in black and * genes denoted by
a diamond-shaped node are E2 and NRF1. Right panel show GO annotations of E2 and NRF1 enrichment network genes of ethinyl estradiol associated with biological
process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.
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Figure 6. Gene set pathway enrichment analysis of bisphenol-A (BPA) responsive R2 and NRF1common target genes associated with Alzheimer′s Disease (AD). The 
network includes the top 30 BPA-related genes in AD in gray. Bisphenol-A responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node and * are E2 
and NRF1 responsive. Right panel show GO annotations of E2 and NRF1 enrichment network genes of BPA associated with biological process pathways involving 
multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term. 

Figure 6. Gene set pathway enrichment analysis of bisphenol-A (BPA) responsive R2 and NRF1common target genes associated with Alzheimer’s Disease (AD).
The network includes the top 30 BPA-related genes in AD in gray. Bisphenol-A responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node and
* are E2 and NRF1 responsive. Right panel show GO annotations of E2 and NRF1 enrichment network genes of BPA associated with biological process pathways
involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.
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Figure 7. Gene set pathway enrichment analysis of dibutyl phthalate modified E2 and NRF1 common target genes associated with Alzheimer′s Disease (AD). The network 
includes the top 30 dibutyl phthalate related genes in AD in gray. Dibutyl phthalate responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node and * 
are E2 and NRF1 responsive. Right panel show GO annotations of E2 and NRF1 enrichment network genes of dibutyl phthalate associated with biological process 
pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term. 

Figure 7. Gene set pathway enrichment analysis of dibutyl phthalate modified E2 and NRF1 common target genes associated with Alzheimer’s Disease (AD).
The network includes the top 30 dibutyl phthalate related genes in AD in gray. Dibutyl phthalate responsive NRF1 genes are in black. Genes denoted by
a diamond-shaped node and * are E2 and NRF1 responsive. Right panel show GO annotations of E2 and NRF1 enrichment network genes of dibutyl phthalate
associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes
annotated to each GO term.
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Figure 8. Gene set pathway enrichment analysis of diethylhexyl phthalate responsive E2 and NRF1 common target genes associated with Alzheimer′s Disease (AD). The 
network includes the top 30 diethylhexyl phthalate related genes in AD in gray. Diethylhexyl phthalate responsive NRF1 genes are in black. Genes denoted by a 
diamond-shaped node and * are E2 and NRF1 responsive. Right panel show GO annotations of E2 and NRF1 enrichment network genes of diethylhexyl phthalate 
associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes 
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Figure 8. Gene set pathway enrichment analysis of diethylhexyl phthalate responsive E2 and NRF1 common target genes associated with Alzheimer’s Disease (AD).
The network includes the top 30 diethylhexyl phthalate related genes in AD in gray. Diethylhexyl phthalate responsive NRF1 genes are in black. Genes denoted by
a diamond-shaped node and * are E2 and NRF1 responsive. Right panel show GO annotations of E2 and NRF1 enrichment network genes of diethylhexyl phthalate
associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes
annotated to each GO term.
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Figure 9. Gene set pathway enrichment analysis of cadmium responsive E2 and NRF1 common target genes associated with Alzheimer′s Disease (AD). The network 
includes the top 30 Cd related genes in AD in gray. Cadmium responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node and * are E2 and NRF1 
responsive. The network includes the top 30 related genes in gray. Right panel show GO annotations of E2 and NRF1 enrichment network genes of cadmium associated 
with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each 
GO term. 

Figure 9. Gene set pathway enrichment analysis of cadmium responsive E2 and NRF1 common target genes associated with Alzheimer’s Disease (AD). The network
includes the top 30 Cd related genes in AD in gray. Cadmium responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node and * are E2 and
NRF1 responsive. The network includes the top 30 related genes in gray. Right panel show GO annotations of E2 and NRF1 enrichment network genes of cadmium
associated with biological process pathways involving multiple E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes
annotated to each GO term.
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Figure 10. Gene set pathway enrichment analysis of arsenic responsive E2 and NRF1 common target genes associated with Alzheimer′s Disease (AD). The network 
includes the top 30 arsenic related genes in AD in gray. Arsenic responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node and * are E2 and NRF1 
responsive. Right panel show GO annotations of E2 and NRF1 enrichment network genes of arsenic associated with biological process pathways involving multiple E2 
and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term. 

 

Figure 10. Gene set pathway enrichment analysis of arsenic responsive E2 and NRF1 common target genes associated with Alzheimer’s Disease (AD). The network
includes the top 30 arsenic related genes in AD in gray. Arsenic responsive NRF1 genes are in black. Genes denoted by a diamond-shaped node and * are E2 and NRF1
responsive. Right panel show GO annotations of E2 and NRF1 enrichment network genes of arsenic associated with biological process pathways involving multiple
E2 and NRF1 genes and Q-value as a probability showing number of genes out of the total genes annotated to each GO term.
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Figure 11. Gender differences in NRF1 network in AD of brain microarray data of 79 subjects of male 
(15 AD patients, 17 control) and female (17 AD patients, 30 controls) from GEO database [272]. 

 
Figure 12. Bene network showing gender and NRF1 association with AD in hippocampal  
microarray [272]. 

Figure 11. Gender differences in NRF1 network in AD of brain microarray data of 79 subjects of male
(15 AD patients, 17 control) and female (17 AD patients, 30 controls) from GEO database [272].
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4. Conclusions

A large number of genes (approximately 300) are considered to be altered during the development
of complex chronic brain diseases. For example, a minimum of six to eight gene mutations and gene
activation by genetic/epigenetic mechanisms is needed for the development of glioblastoma [275].
Similarly, in AD, there are a minimum of 6–8 genes that are involved in the causation of this disease.
During the development of an individual from a single cell to prenatal stages to adolescent to adulthood
and through the complete life span, humans are exposed to countless environmental and stochastic
factors. Environment constitutes everything that surrounds us both internally and externally, including
toxicants, hormones, diet, psychosocial behaviors, and life-styles. Like genes, these environmental
factors also interact among themselves. It takes 5–15 years to develop the most sporadic brain cancers
and other complex chronic brain diseases. A single exposure to an internal or external environmental
factor alone cannot explain the development of a complex chronic brain disease, rather it appears that
exposure to multiple environmental and stochastic factors across the lifespan and their interactions
influence the development of a chronic disease in an individual. The old paradigm is that an orderly
progression of changes in disease stem cells through a recognizable series of intermediate states leads
toward a predictable endpoint, the disease, in equilibrium with the prevailing environment. In contrast,
a more recent view of complex malignant or nonmalignant complex chronic lesion development is
based on adaptations of independent disease stem cells. Transitions between a series of different
states of disease stem cells are disorderly and unpredictable resulting from probabilistic processes
such as death and survival of disease stem cells which make up a malignant or nonmalignant complex
chronic lesion. This reflects inherent variability observed in behaviors of different types of cells
present in the malignant or nonmalignant complex chronic lesion and the uncertainty of environmental
and stochastic factors. In particular, it allows for succession of alternative pathways and endpoints
dependent on the chance outcome of interactions among gene–gene, environment-environment,
gene–environment and between cells and their environment. These concepts may help in explaining
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tremendous inter-individual variability in the response to environmental and stochastic stressors,
which has hindered our understanding of why a certain individual develops a brain disease when
exposed to environmental factors and others remain healthy. EEDs effects on brain go beyond known
mechanisms to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling.
Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified numerous
NRF1 regulated genes that were altered by exposure to estrogen, phthalate or BPA or other EEDCs
(APP, APLP1, MAPT, PEN2, PSEN2, PARH2, PINK1, PARK7, VDAC2, NR1 and 2b). EEDs -modified
genes in brain health deficits are part of estrogen and NRF1 signaling pathways. NRF1 regulates targets
genes with diverse functions, including involved in cell growth (CKS2, CDC6, CDC7, CDC23, CDC25C,
NPAT, GTSE1, SMC4L1, KIF22, PPP5C, CCNB1, CCNG2, RAD54B, PRC1), apoptosis/autophagy (BNIP3,
PINK1, Parkin), mitochondrial biogenesis/respiration (mtTFA, ABCB6, MRP63, MRPL18, TIMM8A,
CytC), and neurogenesis/neuroplasticity/synaptogenesis (Synapsin 1, MAPRE3, NPDC1, SUV39H2,
SKA3, RAB3IP, TRAPPC3, PIP5K1A, USP10, SPRY4, GTF2F2, NR1D1, RHOA, RAPGEF6, SMAP1,
NPDC1, SMAD5, USP10, FAM134C, C3orf10, and ENOX1) (Figure 14). Both phosphorylation and
acetylation of NRF-1 by two independent signaling molecules control NRF-1 activation. Activation
of a redox sensitive signaling pathway regulates NRF-1 phosphorylation and acetylation events.
These two events enhance its activating function by increasing its localization close to nuclear targets
and its affinity for promoters of target genes.
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Figure 14. NRF1 regulating targets genes with diverse functions. NRF1 is depicted to recognize the
palindromic sequence defined as YGCGCAYGCGCR, where Y and R indicate a pyrimidine or purine
nucleotide, respectively, to recruit factors for the transcription of target genes, which are involved in
many cellular processes.

This, in turn, may contribute to the susceptibility of normal brain cells to develop disease
phenotype. NRF-1 is phosphorylated by cyclin D1-dependent kinase, p38MAPK, ERK and AKT
(reviewed in [8]). All of these are redox sensitive kinases. Consistent with the redox-sensitivity of
AKT, 4-OH-E2- or H2O2-induced NRF-1 phosphorylation was inhibited by the glutathione peroxidase
mimic, ebselen. AKT activity depends on its phosphorylation, which is positively regulated by PI3K
and negatively regulated by a class of protein phosphatases [52]. AKT controls translocation of NRF-1
to the nucleus, because translocation of NRF-1 to the nucleus does not occur in PTEN deficient cells.
The ability of E2 and H2O2 to activate AKT may be attributed to the inactivation of cysteine-based
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phosphatases by ROS [8]. The reversible inactivation of phosphatase—PTEN, by estrogen-induced ROS
may be a key component of AKT activation. Together, these data suggest that estrogen effects on brain
cells may be in part mediated through ROS signaling biomolecules that regulate estrogen-induced
NRF-1 activation. This, in turn, may control the expression of NRF-1-regulatable genes. These data
implicated that ROS induced DNA synthesis, increased phosphorylation of kinases, and activated
transcription factors, e.g., AP-1, CREB, E2F, NF-κB, and NRF1 of non-genomic pathways which are
responsive to oxidants, estrogen and EEDs. Estrogen or EED-induced ROS by increasing genomic
instability and by transducing signal through influencing redox sensitive transcription factors may play
important role(s) in neurogenesis and synaptogenesis (Figure 2). It is envisioned that estrogen or EED
induced ROS mediated signaling is a key complementary mechanism that drives the brain disorders.
ROS mediated signaling, however, may occur in the context of other estrogen induced pathways such
as ER-mediated signaling. NRF1 regulates targets genes with diverse functions, including cell growth,
apoptosis/autophagy, mitochondrial biogenesis, genomic instability, neurogenesis, neuroplasticity,
synaptogenesis, and senescence (Figure 14). By activating or repressing the genes involved in cell
proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy, angiogenesis, estrogen
signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide range of DNA damage,
genomic instability and DNA methylation and transcriptional repression, NRF1 may act as a major
regulator of EEDs-induced brain health deficits. Our findings suggest that in addition to estrogen
signaling, EED chemicals influencing NRF1-regulated communities of genes across genomic and
epigenomic multiple networks may contribute to the development of complex chronic human brain
health deficits.
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