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ABSTRACT OF THE THESIS 

HEALTH MONITORING OF ROUND OBJECTS USING MULTIPLE 

STRUCTURAL HEALTH MONITORING TECHNIQUES 

by 

Gurjashan Singh 

Florida International University, 2010 

Miami, Florida 

Professor Ibrahim N. Tansel, Major Professor 

Structural Health Monitoring (SHM) techniques are widely used in a 

number of Non – destructive Evaluation (NDE) applications. There is a need 

to develop effective techniques for SHM, so that the safety and integrity of 

the structures can be improved.Two most widely used SHM methods for 

plates and rods use either the spectrum of the impedances or monitor the 

propagation of lamb waves. Piezoelectric wafer – active sensors (PWAS) were 

used for excitation and sensing. In this study, surface response to excitation 

(SuRE) and Lamb wave propagation was monitored to estimate the integrity 

of the round objects including the pipes, tubes and cutting tools.SuRE 

obtained the frequency response by applying sweep sine wave to surface.The 

envelope of the received signal was used to detect the arrival of lamb waves 

to the sensor. Both approaches detect the structural defects of the pipes and 

tubes and the wear of the cutting tool. 
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CHAPTER I 

1. INTRODUCTION 
 

1.1 Background 

Structural Health Monitoring (SHM) is a technology to collect data about 

critical structural components using embedded sensing elements to provide 

detection and diagnosis when damage occurs.Common forms of structural 

damage include holes, cracks, notches, corrosion, etc. SHM is also a useful 

tool for improving the safety and reliability of the structures and to thereby 

reduce their operational cost.This is an emerging research area with multiple 

applications. There is a large number of non-destructive evaluation (NDE), 

non-destructive testing (NDT), and non-destructive inspection (NDI) 

techniques for identifying local damage and detect failure in critical 

structures. The most common structures being monitored by these techniques 

are plates, plate like structures and pipes[31]. During the last two decades, 

increasing resources have been put into the development of built-in damage 

detection systems[32]. SHM sets out to determine the health of a structure by 

reading an array of sensors that are embedded (permanently attached) into 

the structure and monitored over time. And through appropriate data 

processing and interpretation we may predict the remaining life of the 

structure in a long run. A promising damage detection method is the active 

system based on the propagation of Lamb Waves or guided waves [33]. 



2 
 

1.2 Objective of research 

The purpose of this study is to develop an efficient, low – cost and flexible 

health monitoring system. The sweep sine wave approach and lamb wave 

approach was implemented for this purpose. At first look the results obtained 

from these SHM methods were not very conclusive, so to extract meaningful 

information from the measured data these methods were enhanced by further 

processing the data through statistical methods. Dynamic frequency 

responses were collected by piezoelectric elements, envelope of the original 

signal and S – transformation were applied to extract the characteristics of 

the frequency response. Sum of square of difference for perfect and present 

defect was calculated to verify the intensity of defects within the system. 

1.3 Piezoelectric Wafer Active Sensors (PWAS) 

Piezoelectric wafer Active Sensors (PWAS) are non-invasive, 

inexpensive transducers having wideband non – resonant properties that 

operate on the piezoelectric principal. Since 1990 the PWAS transducers were 

being used by many researchers. Initially, PWAS were used for vibrations 

control by Crawley and Fuller. Banks et al. in 1996 used PWAS for damage 

detection of a structure. The use of PWAS for structural health monitoring 

has following 3 main paths, modal analysis and transfer function, 

electromechanical E/M impedance, wave propagation [26]. The use of PWAS 

for damage detection with lamb wave propagation was pioneered by Chang 



3 
 

and his coworkers. They have studied the use of PWAS for generation and 

reception of elastic waves in composite materials. Passive reception of elastic 

waves was used for impact detection. Pitch – catch transmission – reception 

of low frequency lamb waves was used for damage detection 

PWAS couple the electrical and mechanical effects through the 

tensorial piezoelectric consecutive equations 

Sij = Tkl + dkijEk 

Dj = djklTkl + Ek 

Where,  is the mechanical compliance of the material measured at 

zero electric field (E=0),  is the dielectric permittivity measured at zero 

mechanical stress (T=0) and dkij represents the piezoelectric coupling effect. 

PWAS transducers can be used for multimode structural health 

monitoring by simply changing is their driving frequencies. These sensors 

have the potential to work and detect changes (changes can be due to any 

damage) in the high frequency because they are tuned for high frequency 

explorations. So, these sensors have an advantage over other conventional 

sensors (accelerometers, strain gauges etc.) working on low frequencies which 

encounter bandwidth problems at high frequencies [6]. In certain cases these 

sensors can be the only ones to be used for investigation purposes, as in the 

case of small turbo machinery parts, computer industry components and 

precision machinery etc. PWAS transducers exhibit stable and repeatable 

characteristics, not only in as received condition but also while working with 
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1-D and 2-D structures. Moreover being very light weight, these sensors can 

be permanently embedded to the structure being monitored against any kind 

of damage [3]. The bonding material used to permanently attach the sensors 

has a great significance in monitoring the structural health because the 

signals will change due to varying operational and environmental conditions 

of the structure such as temperature, humidity etc [7]. So, bonding layer 

between the sensor and the structure is often the durability weak link for 

structural health monitoring applications, leading to loss of contact with the 

surface.You can find different types and sizes of PWAS transducers in the 

market but the most commonly uses among those are square and circular 

ones. From these two, circular PWAS transducers are mostly used because 

they excite omnidirectional guided waves that propagates in circular wave 

fronts whereas square piezoelectric elements also generate omnidirectional 

waves but with irregular patterns to those of circular ones [6].These sensors 

follow the structural dynamics and being non – resonant wideband devices, 

can achieve in – plane lamb wave excitation and sensing through in-plane 

strains [4]. Embedded piezoelectric wafer active sensors can be used as both 

individual probes and phased arrays.  

The use of PWAS for SHM has several main paths including high-

bandwidth strain sensors, PWAS converts the mechanical energy into 

electrical energy and the conversion factor obtained is linearly dependent on 

the signal frequency. This is the reason that we can directly connect the 
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PWAS transducers to high impedance measuring instruments (digital 

oscilloscope). PWAS can also be used as high bandwidth strain exciters. In 

this way PWAS can easily induce vibrations and waves in the structure to 

which it is attached. 

This Embedded Non-Destructive Evaluation (NDE) with PWAS 

transducers opens new ways of performing in – planedamage detection and 

structural health monitoring of thin walled structures such as pipelines, 

pressure vessels, oil tanks, missiles and aircrafts. 

1.4 Lamb Waves 

The theory of lamb waves (also referred as plate waves or guided waves) 

was originally developed by Horace Lamb in 1916 to describe the 

characteristics of waves in plates. Guided wave (e.g. Lamb Waves) technique 

is one of the best method for thin walled structures (sheet materials, tubular 

structures). Extensive developments in the application of lamb waves provide 

a platform for the inspection of many industrial products in aerospace [24], 

pipe and transportation industries. The generation of lamb waves can be 

performed using contact transducers, optical electromagnetic, 

magnetostrictive and air coupled transducers [34]. These waves can travel a 

long distance inside the thin walled structures at a very little cost of 

amplitude loss, making it possible to detect flaws over a considerable area 

[29, 30]. Lamb wave transmission and reception can be easily performed with 

the PWAS transducers as they propagate through the mid-surface of the thin 
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walled structure and can sweep large surface area with minimum installed 

sensors [4]. Complications that are encountered include the existence of 

multiple modes and their dispersive behavior. The solution to this complex 

problem can be achieved by using the transducers which excite only a single 

mode [35].   Generally conventional transducers are used to generate guided 

waves but they are very expensive and their bulkiness makes them non-

feasible for structural health monitoring. The two modes of Lamb waves are 

S0 and A0 mode 

1.4.1 Symmetric Lamb Waves (S0) 
 
In the low frequency regime, the zero order symmetrical mode travels 

at the plate velocity (considering plate as specimen), where it is also known 

as the extensional mode or longitudinal mode. During this period the plate 

stretches in the direction of propagation of wave and correspondingly 

contracts in the thickness direction. At increased frequency the wavelength of 

the wave becomes comparable to the plate thickness, now at this stage the 

plate starts to have a significant influence on its effective stiffness. The phase 

velocity drops smoothly while the group velocity drops abruptly towards a 

minimum. 

1.4.2 Anti – symmetric Lamb Waves (A0) 
 
In the low frequency regime, the zero order anti-symmetric modesare 

highly dispersive in nature, where it is also known as flexural mode. At low 

frequencies, the phase and group velocities are both proportional to the 
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square root of the frequency. Here the group velocity is twice the phase 

velocity. 

Lamb waves can be generated in a plate with free boundaries with an 

infinite number of modes for both symmetric and anti-symmetric 

displacements within the layer. The average displacement over the thickness 

of the plate layer is in the longitudinal direction and transverse direction for 

symmetric and anti-symmetric modes respectively. The longitudinal mode, 

generally have higher velocity and low amplitude than the flexural mode but 

the flexural mode is the more easily excited of the two modes and often 

carries most of the energy. 

1.5 Phase Velocity 

The phase velocity of a wave is the speed for a wave of a single 

wavelength or you can say that it is the rate at which the phase of the wave 

propagates in space. This is the speed at which the phase of any 

one frequency component of the wave travels. 

Where, ω = Angular velocity and K = Wave number.  

1.6 Group Velocity 

The group velocity of a wave is the velocity with which the overall 

envelope of the wave propagates through the space. It also defines the energy 

and information of the wave. 

 Where, ω = Angular velocity and K = Wave number. 

http://en.wikipedia.org/wiki/Phase_(waves)�
http://en.wikipedia.org/wiki/Speed�
http://en.wikipedia.org/wiki/Frequency�
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It has been shown experimentally and theoretically that the S0 lamb 

waves can give better reflections from the cracks than the A0 lamb waves [6]. 

1.7 Purpose of Research 

The main objective of this research is to develop an accurate and cost 

effective process for detection of defects in pipes, tubes and cutting tool. A 

system with sensors will allow for the early detection of change in 

characteristics and failures thereby increase the safety of the system. For 

nondestructive evaluation (NDE) applications, PWAS can be used as 

embedded ultrasonic transducers [6, 3]. Upon excitation PWAS generate 

guided waves that can be used for damage detection through pulse-echo, time 

reversal and pitch-catch techniques [14-17]. The guided waves detect the 

defect or change in structure depending on its interaction with the 

propagating elastic wave. For this purpose few sensors and actuators are 

required for inspecting a large area [8]. These waves can travel through large 

distances with very little amplitude loss. A large number of guided wave 

inspection systems have been used for various applications, including damage 

detection in composite materials [9-10], defect detection in pipes [11-12], 

crack detection of steel bridge components [13], corrosion detection [28], 

health monitoring of rotorcraft [25], etc. PWAS act as both lamb wave 

exciters and transmitters. These low-cost, commercially available 

piezoelectric ceramics has opened a number of ways for dynamic structural 

identification by making use of embedded active sensors. These sensors are 
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small piezoelectric Transducer (PZT) ceramic wafers of negligible mass that 

can be easily and permanently applied to the structure creating a non-

intrusive sensor array for automatic structural identification and health 

monitoring [3]. Based upon the above theory, we propose to detect any 

changes or defects in pipes, tubes and cutting tool using guided waves 

generated by piezoelectric wafer active sensors. 
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CHAPTER II 

2 HEALTH MONITORING OF COPPER AND CARBON TUBES 

2.1 Guided waves in hollow shells 

Guided waves in hollow cylinders (pipes, tubes etc.) were first studied 

by Gazis [37]. According to him the guided waves in a hollow cylinder have a 

double infinite number of modes and the energy is constrained inside the 

tube wall. These waves fall into three sub categories torsional, longitudinal 

and flexural [39].The longitudinal and torsional modes fall into axisymmetric 

mode whereas  flexural mode fall into non – axisymmetric mode and are 

found and represented in phase and group velocity dispersion diagrams. The 

torsional modes induce particle motion in the circumferential direction 

(twisting of a pipe as they propagate), while longitudinal and flexural modes 

induce particle motion both along the main axis of the pipe and orthogonal to 

the surface of the pipe, and arise as an extension of the symmetric and anti-

symmetric modes present in thin plates [11]. Torsional and longitudinal 

modes are both axisymmetric, while flexural modes are not.The evolution of 

wave structures of different modes at different frequencies has also been 

discussed by Gazis [37]. When frequency goes very high, the higher order 

modes will backslide into surface waves. Surface waves are a superposition of 

lower order longitudinal modes at very high frequency [38]. The longitudinal 

mode is very effective for testing for the following reasons: it is practically 
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non – dispersive over a wide bandwidth, which means its velocity does not 

vary significantly with frequency and this will retains the signal shape and 

amplitude. It is equally sensitive to internal and external defectsat any 

circumferential location. 

Another group of researchers, Silk and Bainton (1979) showed that for 

a thin walled pipe, the assumption of Lamb wave propagation is valid. The 

longitudinal L (0,1) mode in the pipe is equivalent to that of A0 Lamb wave 

mode in plate. The shell structure (e.g. large pipes) is very similar to that of 

the propagation of the guided waves within the structure.  

A number of authors have showed the work on the use of lamb waves 

for the inspection op pipes and tubes [5, 56, 57]. The use of circumferential 

travelling waves has also been studied for the inspection of larger diameter 

gas pipelines [58]. Publications have also been reported the development of 

the dry – coupled transducers for the excitation and detection of guided 

waves [58]. 

As in United States there are about 300 thousand miles of 

transmission pipelines and over one million aging distribution pipelines and 

these needs to be monitored regularly [27]. Failure of a single pipeline 

(gasoline, water, etc.) can cause a huge damage.In United States alone, on an 

average there were approximately 80 all pipeline system excavation damage 

incidents in 2009 [18].Pipeline degradations are generally not monitored due 

to lack of any reliable and durable techniques [1]. However, to find the 
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damaged areas of the underground pipelines through visual inspection is 

very expensive and time consuming [2]. One of the major difficulties of 

monitoring these pipeline networks is the fact that the length of pipeline can 

be few meters to hundreds of kilometers buried underground [5]. One more 

difficulty for monitoring the pipe against any kind of defect can be the fact 

that the pipe may be partially buried, or insulated. So, it may not be practical 

to uncover the entire length of pipe for health monitoring. Because of the 

NDE and non-invasive characteristics of piezoelectric transducer (PZT) active 

sensors, routine maintenance of pipes (either underground, insulated or 

above the ground) in service will then be possible by implementing 

Nondestructive Testing (NDT) techniques. In this chapter we will discuss 

SHM techniques and work on the nondestructive testing methods for the 

monitoring of pipes, through easily available sensors and controllers which is 

competent enough to allow the localization of defects along the length of the 

pipe and will be able to give us a rough idea about the location and size of the 

defect. It is therefore envisaged that defects, leaks, cracks and any other 

degradation effects due to aging of pipes can be pointed out by nondestructive 

evaluation techniques using piezoelectric wafer-active sensors. 

2.2 Experimental Setup 

The goal of the experiment in the present work is to apply the SHM 

methods to monitor the defects in copper tubes. It is also favorable to 

investigate whether it is possible to find out the location of the defect in 
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copper pipe embedded with two piezoelectric sensors and also to check the 

working principle behind lamb wave generation and propagation. 

Four copper pipes were used for performing the tests. Three copper pipes 

were of same dimensions (12 inch length, 0.875 inch outer diameter and 0.03 

inch wall thickness) and fourth copper pipe was having 120 inch length, 0.875 

inch outer diameter and 0.03 inch wall thickness and can be seen in Figure 

2.1. 

 

Figure 2.1 – Perfect copper pipe showing two piezoelectric elements (12 inch 
in length) 

 

Each of the three copper pipes was embedded with two round 

piezoelectric elements of 0.50 inch diameter and 0.20 inch thickness. The 

piezoelectric elements were located at 1 inch from both the ends as shown in 

figure 2.2. One of the sensor acts as actuator (marked 1) and other as receiver 

(marked 2).  
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Figure 2.2 – Perfect copper pipe showing two piezoelectric elements at 1 inch 
distance from both the sides. 

 

At beginning of the experiment, all the three pipes were in perfect 

condition and were marked as pipe 1, 2 and 3. Three different kinds of defects 

were created (a through cut on pipe 1, a hole on pipe 2 and a kind of dent on 

pipe 3) on the pipes and readings were taken at each step. Each defect was 

created at the center of the pipe and is shown in figure 2.3, 2.4 and 2.5. The 

intensity of the defect was increased after each step and in total 3 readings 

were taken (first of the perfect pipe, second one with less intense defect and 

the third one with more intense defect).  

 

(a) 
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(b) 

 
Figure 2.3 – Copper pipe (a) perfect pipe, first cut and through cut (b) closer 

look of through cut 

 

 
Figure 2.4 – Copper pipe specimenshowing perfect pipe, with small hole and 

with large hole. 
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Figure 2.5 – Copper pipe specimen showing perfect pipe, with small dent and 

with large dent. 
 

The data obtained from the perfect pipes was used as reference data 

against their respective pipes with different defects.The fourth copper pipe 

was just used to see the propagation of the signal i.e. how much the signal 

attenuates by varying the distance between the actuator and the sensor.  The 

data was taken by using two SHM approaches: Sweep sine wave and Lamb 

wave approach.  

 Three carbon tubes of 7.5 inch length, 0.2 inch outer diameter and 0.05 

inch thickness were also prepared for performing the same set of 

experiments. Two round piezoelectric elements of 0.25 inch outer diameter 

and 0.020 inch thickness was glued (M – Bond 200) at both the ends. One 

tube was kept perfect, a notch by removing approximately half or one-fourth 

of the material at the center and a through hole at the center was prepared to 

simulate the defects in the tube and can be seen in the figure 2.6. 
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Figure 2.6 – Three carbon tubes (perfect, notch at center and hole at center) 

 

The experimental setup to monitor the surface response by sweep sine 

wave approach is shown in figure 2.7. The signal analyzer (Stanford Research 

Systems SR780) was used for excitation as well as for the reception of signal. 

A sweep sine wave signal (frequency range of 0-100 KHz) was given to excite 

the actuator (sensor 1) and the signal was received (at 2000 data points) from 

the receiver (sensor 2) by the same equipment. The frequency domain signal 

was recorded for all the three equal pipes after every step. Here the 

magnitude of the signal received from the perfect copper pipes (pipe 1, pipe 2 

and pipe 3) was taken as reference in order to compare the output signals 

from the same pipes for the other two stages. 
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Figure 2.7 – Experimental setup for sweep sine wave method 

 

The experimental setup for Lamb wave approach is shown in figure 

2.8. To perform the experiment, Metis Design SHM Node MD 75602 was 

used. This equipment excites one of the piezoelectric element (marked 1) by 

3.5 sine wave with 300KHz frequency and at the same time monitors the 

Lamb wave propagation through the received signal (with 10 MHz sampling 

frequency, at 8000 data points and were averaged 64 times to minimize the 

noise contamination) from the other piezoelectric element (marked 2). From 

the received 8000 data points only 3000 of them were used because of the 

software limitation.Before giving the exciting signal to the piezoelectric 

element, that signal was first passed through the Hanning window because 

the smoother cutting of the time interval by this type of window eliminates 

the discontinuities associated by using other windows (rectangular window, 

the flat top window, etc.) and it also reduces both leakage and ripples, thus 

improving the selectivity of the signal. The Hanning window is the most 

commonly used window for continuous signals and is recommended due to 

the good frequency resolution associated with the window. This window is 
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considered to be a general purpose window. The received signal was further 

processed to extract the useful information from it. S – transformation was 

used to calculate the envelopes of the received signal, wavelet transformation 

was then calculated of the S – transformation function, the significance of the 

differences among the envelopes was then evaluated by calculating the sum 

of the squares of the differences and followed by the comparison of the 

envelope of the two signals (perfect and with defect). 

 

 
Figure 2.8 – Lamb wave approach experimental setup. 

 
2.3 Results and discussion 

The above two approaches were tested for the copper pipes having 

different kind defects and competence, accuracy and feasibility is discussed in 

this section. 
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2.3.1 Sweep sine wave approach 

The experimental data gathered by testing three copper pipes with 

different defects on each of them was analyzed. Several plots were obtained 

and are discussed below. Results of pipe with cut (pipe 1) is discussed first 

and then followed by the pipe with hole (pipe 2) and pipe with dent (pipe 3) 

and lastly some experiments were done for the long copper pipe (pipe 4), in 

order to check the attenuation of the signal when it travels a long distance. 

2.3.1.1 Copper pipe with cut at the center 

 The magnitude of the transfer function is calculated after each step i.e. 

when the pipe is perfect then after first cut (cut 1) and finally after second cut 

(cut 2) and can be seen in the figure 2.9. From this plot showing three 

windows, it is very difficult to find a difference between the three signals. So, 

that means just by getting the signal from the signal analyzer does not solves 

our problem. Some useful information has to be extracted out of the received 

signal by some statistical algorithm [19–21].So, for that, square of difference 

between the signals of cut1 and cut2 from the perfect pipe signal can give 

some quantifiable information out of the measured signal which can be seen 

in figure 2.10. It can be seen from the figure that in the marked area, the 

amplitude of the signal for the plot between data 1 (perfect pipe) and data 3 

(cut 2) is significantly bigger than the difference between data 1 and data 2 

(cut 1) at 50 KHz – 60 KHz range. This significant difference in the 

amplitude level is because of the difference in the intensity of the cut, as cut 2 
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is much deeper than that of cut 1. As the amplitude difference came almost at 

the same frequency range, therefore we can say that this could be a possible 

location of the defect created on the copper pipe. 

 
Figure 2.9 – Spectrum analysis of perfect pipe, pipe with cut 1 and cut 2. 

 
Figure 2.10 – Square of difference between perfect pipe and pipes with cut 1 

and cut 2. 
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Further, in order to solidate and to make the results conclusive, sum of 

the squares of the difference between each case was calculatedand can be 

seen in figure 2.11. In this figure bar 1 represents the difference between the 

perfect pipe and the reference signal (signal from the perfect pipe), the bar 1 

is nil because this bar represents the value for the perfect tool. The bar 2 

represents the difference between the perfect pipe and the pipe with cut 1 

and similarly bar 3 represents the difference between the perfect pipe and 

pipe with cut 2. The length of the bar 2 from bar 1 has a significant increase 

than that between bar 2 and bar 3. From this you can see the difference 

between the perfect pipe and the pipe with first cut is very large than that 

between the first cut and second cut. So, we can say that a small change 

(defect) in the pipe can be monitored with the help of this technique, which 

can be very helpful to such pipeline systems, for which the degradation 

monitoring is a very sensitive and essential issue. 
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Figure 2.11 – Sum of square of difference between each case to the perfect 

pipe; perfect pipe/reference data (1), small cut (2) and through cut (3) 
 

In order to see, where (frequency range) the difference between each 

set case is coming out to be maximum,  a graph with four different frequency 

levels from 5 KHz to 100 KHz was plotted and is shown in figure 2.12. It can 

be clearly spotted from the figure that in the last plot the difference of sum of 

squares is coming out to be the maximum. So, here also the maximum 

difference is coming out in 50 KHz to 100 KHz range. 
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Figure 2.12–Sum of square of difference of the defected pipes at four different 

frequency ranges 
 

Another way of expressing the difference of the sum of the square 

between each case is presented in the figure 2.13. Here you can see that for 

the fourth set of frequency interval (50 KHz – 100 KHz) the value of 

difference of the sum of squares is coming out to be the maximum. 
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Figure 2.13 – Test case v/s sum of square of difference at four frequency 

intervals 
   

2.3.1.2 Copper pipe with hole at the center 

Second set of experiments were carried out on second pipe (pipe 2). For 

this pipe also three set of data has been taken one at each step, when the 

pipe was perfect, pipe with 0.090 inch diameter hole at the center and pipe 

with 0.117 inch diameter at the center respectively. The results for this pipe 

came out to be similar as those for the pipe with cut (pipe 1). The plot of 

magnitude function is shown in figure 2.14. The signal came out is very rough 

and unclear. It is very difficult to judge anything out of this signal. All the 

three signals look very similar that it is almost impossible to jump on to any 

conclusions. The data which we got from the signal analyzer is in crude form 

and needs to be filtered and processed, in order to extract some meaningful 

information out of it.  
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Figure 2.14 – Spectrum analysis perfect pipe, pipe with small and large hole. 

 

To clearly find a distinctive difference among the three set of signals 

shown in figure 2.14, square of difference between the signals was calculated 

and plot of the calculated data is shown in figure 2.15. It can be seen from the 

figure that at around 60 KHz the amplitude of both the signals starts 

changing. As for data 2 and data 1 the value of maximum amplitude is 

between 500 – 1000 and after 60 KHz the amplitude level starts diminishing 

and is always below 500 whereas for the plot between data 3 and data 1 the 

value of maximum amplitude at nearly 60 KHz is almost approaching 1000 

and after that also the amplitude remains somewhat near 500 as shown by 

dotted lines. It is therefore clear from the graphs that the intensity of the 

amplitude value changes (increases) with the increase in defect level 
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(intensity) that means more is the severity of the defect more will be the 

change in the amplitude value. 

 

Figure 2.15 – Square of difference between perfect pipe and pipe with small 
and large hole. 

 
To validate the upper results, bar graphs of sum of square of difference 
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easily distinguishable, this difference is only because of the severity of the 

defect increases at every stage. Bar graph 3 represents the pipe with the 

bigger hole at the center, 2 represent the smaller hole at the center and 1 is 

for the perfect pipe.  

 
Figure 2.16 – Sum of square of difference between perfect pipe and each test 

case; perfect pipe/reference data (1), small hole (2) and largehole (3) 
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the geometry of the specimen (pipe) can be easily detected and also we can 

distinguish between the small defect and large defect. 

 
Figure 2.17 – Sum of square of difference of each test case at four different 

frequency levels 
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Figure 2.18 – Test case v/s sum of square of difference between each test case 

and baseline at four frequency intervals. 
 

2.3.1.3 Copper pipe with dent at the center 

The third set of experiment was performed on pipe 3. A dent was 

created at first stage by pressing the pipe with the help of hand held pliers. 

Dent is made at the center of the pipe and it just simulates the concentrated 
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extracted from the pipe with the help of signal analyzer and can be seen in 

the figure 2.19. The signal came out to be very unclear and no such difference 
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Figure 2.19 - Spectrum analysis perfect pipe, pipe with small and large dent 

 
 

Further the comparing of two states of the structure was executed in a 

linear fashion. The data which we obtained from the signal analyzer provides 

the useful information regarding the health of the host structure. However, 

this data in its original state does not provide quantifiable information 

regarding the presence and state of damage within the structure. Therefore, 

processing the measured signal, a feature needs to be extracted, which is 

sensitive to the damage and insensitive to other parameters. Square of 

difference between the two data sets was calculated and plotted in figure2.20. 

The top window portrays the difference between the perfect pipe (data 1) and 

first level dent (data 2), the second window shows the difference among data 

1 and second level dent (data3). Though the difference among the two 
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spectrums is not very convincing except at around 60 KHz where the 

difference among the two is not very large but still it is prominent. The 

difference among the signals grows larger with increase in the magnitude of 

defect. 

 
Figure 2.20 - Square of difference between perfect pipe and pipe with small 

and large dent 
 

To have a closer look at the severity of defect in the pipe, the sum of 
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fourth frequency interval as the value of sum of square of difference matches 

with that in figure 2.22, which is 10 x 10-4 for the final defect. 

 

. 
Figure 2.21 – Sum of square of difference of each test case; perfect 

pipe/reference data (1), small dent (2) and large dent (3) 

 

 
Figure 2.22 – Test case v/s sum of square of difference between each test case 

and baseline at four frequency intervals. 
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2.3.2 Lamb wave approach 

After testing, receipting and interpreting the data by sweep sine wave 

approach, lamb wave method (approach) was applied to the same copper 

pipes which were used for sweep sine wave method. Metis Design SHM Node 

MD 75602 equipment was used to create the lamb waves at one end of the 

pipe and receiving the signal from the other end. Signal was recorded after 

each level. Three defect levels were tested and recorded successfully.   

2.3.2.1 Copper pipe with cut at the center 

Pipe with cut was first tested followed by the pipe with hole and dent. 

When the piezoelectric element (marked 2) is excited from one end it 

generates a voltage which correlates the power with which the lamb waves 

were received at the other end by another piezoelectric element (marked 2). 

The piezoelectric element was excited at 200 KHz as well as at 300 KHz in 

order to see that at what frequency level the signal coming out to be clear and 

meaningful. The envelopes of the signal at 200 KHz and 300 KHz were 

calculated and plotted as shown in figure 2.23 and 2.24 respectively. The plot 

at 300 KHz excitation frequency seems to be more clear and detailed than 

that with 200 KHz excitation frequency. The signal with 300 KHz excitation 

frequency is more symmetric and systematic for all the three cases (perfect, 

cut1 and cut 2); the only change seen is that the amplitude values at some 

points are extremely different. This can be possible due to the defects present 

in the pipe. This is again will be explained with more details as we move 
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down on the lamb wave approach. So, for further processing the data, 300 

KHz frequency was chosen to excite and receive the signals from the copper 

pipes.  

 

Figure 2.23 – Variation of the envelope signal with simulated pipe with defect 
when the 200 KHz 3.5 sine wave is applied. The perfect pipe (Data 1), pipe 

with first cut (Data 2) and second cut (Data 3) 

 

Figure 2.24 – Variation of the envelope signal with simulated pipe with defect 
when the 300 KHz 3.5 sine wave is applied. The perfect pipe (Data 1), pipe 

with first cut (Data 2) and second cut (Data 3) 
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The piezoelectric element was excited at 300 KHz and the time domain 

signal was received at the other end and is shown in figure 2.25. The signal 

from all three levels can be seen in the figure. The signal looks very similar 

but still the difference can be seen when observed carefully.  

Figure 2.25 – The received signal at sensing piezoelectric element. 

 

The data obtained is in unprocessed form and needs to be further 
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provide frequency dependent resolution, while maintaining a direct 

relationship with the Fourier Spectrum [40].S – transformation can detect 

the changes in the characteristics of a system in the presence of noise [41]. S 

– transformation can also be used to detect the propagation features of the 

lamb waves on a plate structure, and identify the occurrence of damages by 

the delay time and echoes [42]. S – transformation has the desirable 

characteristics that continuous wavelet transformation lacks, and it can give 

a more sound time-frequency representation of sensory signals [43]. The S – 

transformation plots of the received signal for all three cases (perfect pipe, 

pipe with cut 1 and pipe with cut 2) are shown in figure 2.26. It can be seen 

from the plots that the red circle which is at 2.5 x 10-4 seconds and between 

250 KHz – 300 KHz range moved towards right from its initial position.  The 

only area of interest is the area with red patches because the patches with 

yellow and green patches are due to the presence of some electronic device 

near the system. So, our main goal is to observe the red patch. For the third 

case (cut 2) at around 2 x 10 -4 sec. the red patch suddenly appeared which is 

not visible for the other two cases. This can be an indication that the defect 

size is increasing and can be taken into consideration. The S – 

transformation is very basic technique to check at what time intervals the 

signals are separating.  
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(a) 

 

(b) 
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(c) 

Figure 2.26 – S-transformation plots below 450 KHz frequency (a) perfect 
pipe, (b) pipe with first center cut and (c) pipe with through center cut 

 
To have a close look at the signals, the envelope of the S – 

transformation were calculated and plotted as shown in figure 2.27. It can be 

seen from the figure that at about 150 – 200 µsec there is a significant 

difference between the peaks of all the three cases. As it can be seen from the 

figure that all three signals were moving almost on the same path up to 150 

µsec, after this time period the signals started splitting from each other. The 

reason could be the defect present at the center of the pipe. Now, for the first 

case (perfect pipe, data 1) the amplitude of the signal at around 150 µsec is 

below 600 whereas for cut 1 the amplitude at same time increases to 600 and 

for cut 2 it even increases significantly to around 900. The reason can be the 

presence of defect. It can be seen clearly that with the increase in the defect 
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size the amplitude value at 150 – 160 µsec increases as well. Now the reason 

for which we choose 150 – 200 µsec range can be related to the length of the 

pipe we used to perform the experiments. The length of the pipe was 12 inch 

but the distance between the piezoelectric elements was 10 inch and the total 

time taken by the signal to propagate from one end of the pipe to other was 

300 µsec.  The location of the defect was at the center of pipe (at around 5 

inch from each sensor). That means the lamb wave could reach to the defect 

location in about 150 µsec. This was the only reason for selecting the range of 

time from 150 µsec to 200 µsec. The results obtained betweenthis time frame 

are promising as the amplitude consistently grows up which directly 

corresponds with the increase in defect.  

 

Figure 2.27 – Envelope of the S-transformation of the signal. Perfect pipe 
(data 1), pipe with first center cut (data 2) and through center cut (data 3) 
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After taking the envelope from the S – transformation, envelope of 

each signal will be calculated. The envelope of data 1 (perfect pipe) is plotted 

and shown in figure 2.28. The main objective of doing this is to check that 

weather we can decrease the data points without increasing the error. The 

data points of the envelope were decreased by 4 set of levels and average 

error was calculated at each level.   

 

Figure 2.28 – Envelope of the original signal from perfect pipe 
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envelope of the original signal is less than 600 data points and the 

approximate signal at first level came under 300 data points with very 

minute average error of 0.1 percent.  

 

Figure 2.29 – Wavelet transformation of the original signal, its first level 
approximation and average error. 
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Figure 2.30 - Wavelet transformation of the original signal, its second level 

approximation and average error. 
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Figure 2.31 – Wavelet transformation of the original signal, its third level 
approximation and average error. 

 

Figure 2.32 – Wavelet transformation of the original signal, its fourth level 
approximation and average error. 
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applications the pipe can be from few hundred feet to hundred meters and for 

that more data points will be needed to capture the signal with maximum 

details. Process such huge data sets needs advanced equipment which 

consumes less time to process the data. But by approximating the original 

signal under allowed average error, we can save a lot of time and money by 

using less advanced equipment thus, making the whole process to be very 

economical without compromising the accuracy of the received signal. 

The envelope of the data 2 (cut 1) and data 3 (cut 2) was calculated and 

can be seen in figure 2.33 andfigure 2.34. 

 

Figure 2.33 – Envelope of the original signal from the first center cut. 
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Figure 2.34– Envelope of the original signal from the second cut. 
 

Similarly, the approximate coefficient of the envelope of the original 

signal was calculated and the acceptable value of absolute error for both 

cases (pipe with cut 1 and cut 2) came out to be 0.29 percent and 0.38 percent 

at second level of approximation respectively. The plots for the approximation 

of these two cases can be seen in figure 2.35 andfigure 2.36. 

 
Figure 2.35 – Wavelet transformation of the original signal from first cut, its 

second level approximation and average error. 
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Figure 2.36 – Wavelet transformation of the original signal from second cut, 

its second level approximation and average error. 
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Figure 2.37 – Absolute difference of perfect pipe (data 1) and pipe with first 
cut (data 2) 

 

 

Figure 2.38 – Absolute difference of perfect pipe (data 1) and pipe with second 
cut (data 3) 
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from data 2. Here it can be seen that the absolute difference in this case is 

little less than the first case (difference between data 1 and data 2).  

 

Figure 2.39 – Absolute difference of pipe with first cut (data 2) and pipe with 
second cut (data 3) 
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systems and alerts at first defect level to take safety measures before the 

defect goes beyond control. 

 

Figure 2.40 – Sum of square of difference of each test case; perfect 
pipe/reference data (1), small cut (2) and through cut (3) 
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Figure 2.41 – The received signal at sensing piezoelectric element. 
 

The S – transformation plots for each case is shown in figure 2.42. 
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(b) 

 

(c) 

Figure 2.42 – S-transformation plots below 450 KHz frequency (a) perfect 
pipe, (b) pipe with small hole and (c) pipe with large hole. 
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was increased (0.117 inch diameter hole) the signal changes by a considerable 

amount, which can be seen in the figure 2.43 clearly. In this type of defect the 

amplitude of the final signal from the second level defect falls below the other 

two signals. This means that the amplitude of the envelope of the signal 

decreases with the increase in the defect size. This case of defect (hole) was 

opposite to that of the cut as a defect in the pipe. 

 

Figure 2.43 – Envelope of the S-transformation of the signal. Perfect pipe 
(data 1), pipe with small hole (data 2) and large hole (data 3) 
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data points decreased by consequential amount, which in real applications 

can be of great use and could, save a considerable amount processing time. 
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(c) 

Figure 2.44 – Wavelet transformation of the original signal, second level 
approximation of the envelope and average error; from (a) perfect pipe, (b) 

small hole at center and (c) large hole at center. 
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set of data is shown in figure 2.45. The results came out to similar to that of 
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(b) 

 

(c) 

Figure 2.45 – Absolute difference of the envelope of signal; (a) perfect pipe 
(data 1) and pipe with small hole(data 2), (b) perfect pipe(data 1) and pipe 
with large hole(data 3) and (c) pipe with small hole(data 2) and pipe with 

large hole(data 2) 
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1) has a huge amount of difference which is clearly visible as compared with 

the difference between the reference signal and the signal from the smaller 

hole (data 2). 

 

Figure 2.46 – Sum of square of difference of each test case; perfect 
pipe/reference data(1), small hole(2) and large hole(3) 
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Figure 2.47 – The received signal at sensing piezoelectric element. 
 

The S – transformation calculated for the received signal is shown in 

figure2.48. The response of the signal was received between 150 KHz to 300 

KHz at approximately100 µsec. At rest of the time interval the traces 

received were due to the disturbance from electric and mechanical 

equipments.  

 

Figure 2.48 – S-transformation plot, zoomed below 450 KHz frequency for 
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The envelope by S – transformation at isolated frequency of 300 KHz 

was calculated and plotted as shown in figure 2.49. The signals came out to 

be very unsymmetrical and are not clear as can be seen in the figure. The 

graphs from all three data sets at 100 µsec show some meaningful 

information. After 100 µsec time frame the spectrum becomes absurd and no 

indicative information can be drawn out of that spectrum. 

 

Figure 2.49 – Envelope of the S-transformation of the signal. Perfect pipe 
(data 1), pipe with small dent(data 2) and large dent(data 3) 

 

The intensity of defect was then calculated followed by the 

approximation of the original signal. The intensity of the defect shown in 

figure 2.50; is plotted by calculating the sum of square of the difference of the 

defect levels from the reference signal (perfect pipe). It is undoubtedly seen 

from the bar graphs that with increase in the defect level the amplitude of 

the bars rises as well.  
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Figure 2.50 – Sum of square of difference of each test case; perfect 
pipe/reference data (1), small dent (2) and large dent (3) 

 

To save the time of processing of the received data, the number of data 

points has to be reduced but without affecting the information carried by the 

signal. The approximation of the original signal was calculated by keeping 

the absolute error below the acceptable value and can be seen in the figure 

2.51,figure 2.52 andfigure 2.53 for perfect pipe, pipe with first defect level 

and for the second defect level respectively. 



61 
 

 

Figure 2.51 – Wavelet transformation of the original signal from perfect pipe, 
its second level approximation and average error. 

 

 

Figure 2.52 – Wavelet transformation of the original signal from small dent, 
its second level approximation and average error. 
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Figure 2.53 – Wavelet transformation of the original signal from large dent, 
its second level approximation and average error. 
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Figure 2.54 – Sum of square of difference of each test case and perfect 
pipe/reference data 

 

2.3.4 Determine attenuation of signal over long distance 

For performing the above experiments, the length of the copper pipe 

used was not very long because in those experiments our main motive was to 

find the behavior of different kinds of defects and also the comparison of all 

the defects together. That is why we kept the size of the pipe 12 inch rather 

than to use a very long pipe. As the distance between the sensors was close 

the strength of the signal was never be an issue for the above set of 

experiments.  

To see the difference when the distance between the sensors increases, 

a long copper pipe (120 inch) was used with three sensors. Two sensors were 



64 
 

glued at 1 inch from both the ends and third one was placed at the center of 

the pipe. One of the piezoelectric elements present at one of the end was used 

as the exciter and the other two as receivers. A piezoelectric element was 

excited with continuous sine wave at 200 KHz generated by signal generator. 

The experimental setup for this experiment is shown in figure 2.55. A BK 

Precision, 10 MHz signal analyzer was used to excite the sensor with 

continuous sine wave. The signal was amplified by TEGAM power amplifier, 

model 2348 before exciting the piezoelectric sensor and the reception of the 

signal was collected by four channel Tektronix TDS 2024B digital 

oscilloscope. 

 

Figure 2.55 – Experimental setup for determining the attenuation of signal 
over long distance 

 
The sine wave used for excitation was first amplified by using power 

amplifier before exciting the piezoelectric element. The output voltage was 

recorded by digital oscilloscope and can be seen in figure 2.56. The amplitude 



65 
 

of the exciter is largest and keeps on decreasing for the successive 

piezoelectric element. This shows that the signal attenuates as the distance 

between the piezoelectric elements is increased. We are getting the signal 

from all the piezoelectric elements but the strength of the signals becomes 

very low that they cannot be used to perform further calculations and get 

some substantial information out of the received signal. So, in order to 

maintain the strength of the signal throughout the length of the pipe, either 

an array of sensors close to each other should be used or the input signal has 

to be amplified enough which can travel a long distance without 

compromising the strength of the signal. The signal for the piezoelectric 

element attached at the end of the pipe is seems to be almost dead having 

very little amplitude whereas the center piezoelectric element still holds 

some amplitude and is visible in the figure below. 
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Figure 2.56 – Showing strength of signal at exciter (data1), middle sensor 
(data2) and sensor at the end of long copper pipe (data3) 
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namely perfect tube, tube with 1 inch notch at the center of the tube and a 

through hole at center. 

Two piezoelectric elements were glued to each tube at both the ends. 

The signal analyzer was used to excite one of the piezoelectric elements with 

sweep sine wave and frequency response was collected from the other 

piezoelectric element by the same signal analyzer. The frequency domain 

signal obtained from three cases is shown in figure 2.57. Nothing can be 

predicted from the signal obtained by the signal analyzer. The square of 

difference between the signals of the defected tubes and perfect tube was 

plotted and can be seen in the figure 2.58. The difference between the two 

spectrums is nearly the same except at 75 KHz to 85 KHz of frequency range. 

 

Figure 2.57 – Spectrum analysis of perfect tube, tube with notch and through 
hole. 
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Figure 2.58 – Square of difference between perfect carbon tube and tubes 
with notch and center hole. 

 
The equipment used for lamb wave approach was the same as was 

used for performing copper pipe experiments. The matrix plot for the three 

carbon tubes is shown in figure 2.59. The difference between the signals is 

easily spotted and further processing is needed to clarify the difference 

among the signals. S – transformation of the signals was calculated in order 

to isolate the noise coming in the signal. The s – transformation plot is shown 

in figure 2.60. 
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Figure 2.59 – The received signal at sensing piezoelectric element. 
 
 

 

Figure 2.60 – S-transformation plot, zoomed below 600 KHz frequency for 
perfect pipe 

 

As the echoes from the signal are present around 300 KHz frequency, 

the envelope of S – transformation was calculated at 300 KHz frequency and 
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is shown in figure 2.61. Figure shows that the amplitude of the perfect tube is 

the highest followed by the tube with notch and hole. The scattering of the 

signal from the point of defect could be reason for the decrease in the 

amplitude. The defect may act as the barrier for the signal to reach the other 

side with the same strength. The results for the envelope of the signal on 

carbon tubes are opposite to that obtained from the copper pipes.  

 

Figure 2.61 – Envelope of the S-transformation of the signal. Perfect tube 
(data 1), tube with notch (data 2) and tube with hole (data 3) 

 
Finally the intensity of the defects was calculated by taking the sum of 

square of difference from the reference signal (from perfect tube). Figure 2.62 

shows that the defect created by cutting the notch in the tube is more severe 

than the through hole. The reason can be the defect size, as the size of notch 

is quite larger than that of the hole. The defect intensity can be seen visually 

but the motive for calculating it experimentally is to make the detection and 
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severity of defect available where the visual inspection is not possible. Hence, 

the results came out to be convincing and exactly correlates with the actual 

intensity of defects. 

 

Figure 2.62 – Sum of square of difference of each test case and perfect 
pipe/reference data 

 

2.4 Conclusion 

The suitability of the two structural health monitoring approaches was 

tested and evaluated for different defects present in the copper and composite 

pipes by using surface waves. The frequency domain spectrum analysis and 

the time domain lamb wave approach were successfully used to differentiate 

the perfect pipes from the defected ones. The intensity of defect levels was 

also produced and verified successfully. Apart from this the propagation and 

attenuation of the signal in long pipes was also portrayed in this chapter.  
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Spectrum analyzer calculated the transfer function of the surface 

response to sweep sine wave excitation. The results produced by this 

approach were quite convincing and accurate. Only two piezoelectric 

elements for every pipe were required to successfully perform the 

experiments. The cost of the spectrum analyzer was comparatively very low 

to that of the impedance analyzers, which also work on the same principal 

(frequency domain analysis).  It clearly shows the difference among the 

intensity of defects present within the system successfully and also depicts 

the frequency range where the amplitude level differs for different defects.   

Lamb waves were successfully generated and received through the 

hardware used. One piezoelectric element was used to generate the lamb 

waves and the other one to receive them. The cost of the equipment was the 

least among the two approaches used in this chapter. The signal gathered 

from the equipment was transformed into a meaningful information by 

calculating the envelopes, S – transformations and wavelet transformations. 

The S – transformations provides the clean signal by isolating all the 

disturbances from the original signal. The intensity of the defects was clearly 

and accurately calculated by squaring the difference among the signals.  

Both of the methods used did a wonderful job in estimating the health 

of the system as well as determining the severity of defects in them. These 
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systems can be considered for structural health monitoring of all plate like 

structures.  
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CHAPTER III 

3 ESTIMATION OF DRILL WEAR THROUGH SURFACE WAVES 

3.1 Introduction 

From a long time manufacturing industry has been putting emphasize for 

tool wear monitoring systems; however, as such consistent commercial and 

cost effectivetool wear monitoring system has not been developed. Previously, 

most of the tool wear approximation studies monitored signals coming from 

the force, acceleration, temperature, acoustic emission and similar source. 

The complex geometry of the cutting tool and due to very small amount of 

material loss with the wear of cutting edges makes it difficult to estimate the 

tool wear through different Structural Health Monitoring (SHM) techniques. 

The tool wear can be automatically monitored by using machine vision 

systems [44, 45] or analyzing the laser beam reflection from the cutting edges 

[46]. These approaches have not found significant applications in the 

industry, since the cutting surfaces has to be cleaned properly before each 

inspection. The cutting forces may be considered as the most informative 

indirect wear monitoring signal since they are directly correlated with the 

cutting edges of the tool [47, 48].Most widely used method used for tool wear 

estimation for the above case was to monitor the spindle current or power 

measured by the sensor of the machine controller. This process may be 

automated or further improved by using rotary dynamometers [49 – 51]. 
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These methods are still unsuitable for widespread industrial 

implementations due to the significant amount of cost and limitations for tool 

wear estimation. 

SHM community has been detecting even hard to see damages by 

simply monitoring the elastic behavior of the surface of the structure.The two 

approaches developed to monitor the elastic behavior of surface were, 

impedance characteristics of the piezoelectric transducer attached to the part 

under observance [52] and the Lamb waves generation and monitoring their 

propagation by using the same or other piezoelectric transducer [16, 53].  

Low cost SHM techniques were developed by measuring the impedance 

of the single piezoelectric element with an auxiliary circuit and a low cost 

data acquisition device such as spectrum analyzer [54] or A/D card [55] 

instead of impedance analyzer. Use of two piezoelectric elements and 

measurement of the frequency response between them was also purposed 

[30]. 

The feasibility of the SHM methods was evaluated in this chapter for 

monitoring of tool wear. A drill was artificially worn in order to protect the 

sensors and wires from being damaged and tested by using the SHM 

methods.  The complexity of the tool geometry and distant location of the 

sensors from the cutting edges were two important challenges need to be 
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considered. In the following section differentiation of the measured 

characteristics and S – transformation will be briefly introduced.  

3.2 Experimental Setup 

A high speed steel (HSS) drill having 19/64 inch diameter and 4.4 

inches in length was used. Two round piezoelectric elements of 0.25 inch 

diameter and 0.020 inch thickness were bonded (M-Bond 200) to the shank of 

the drill bit. The location of the piezoelectric elements and the data collection 

equipment are shown in figure 3.1.  

 
(a)     (b)    (c) 

Figure 3.1 – Frequency response analysis experimental setup and specimen 
(a) experimental setup for frequency response analysis of drill-bit, (b) drill-bit 
equipped with Intelli-Connector MD7b data acquisition unit and (c) location 

of PWAS transducers on the specimen. 
 

In order to keep the characteristics of piezoelectric elements, bonding 

material, solders and wires unchanged, the cutting edges of the drill were 

artificially worn by grinding them with a handheld rotary grinder. The new 
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and artificially worn drills are shown in figure 3.2. The drill was grinded to 

four different wear levels: light, medium, severe and extreme. 

 

    

(a)                               (b)  

Figure 3.2 – High speed steel drill specimen; (a) new drill and (b) worn out 
drill 

 
The wear levels can be seen in table1.To simulate the extreme wear, 

the tip of the drill is heavily grinded.The data of the new tool as well as after 

each wear levels was taken by using two different approaches: Sweep sine 

wave approach and lamb wave approach. 

 Length of drill 
bit(mm) 

Diameter(mm) Grinded 
length(mm) 

No cut 111.92 7.49 0 
First cut 110.69 7.49 0 
Second cut 110.06 6.5 10.49 
Third cut 109.77 6.09 17.38 
Fourth cut 109.77 6.09 48.45 

Table 1 – Four different wear levels of drill bit. 

3.2.1 Surface response to excitation (SuRE) 

The experimental setup for this approach is shown in figure 2.7. The 

Stanford Research Systems (SRS) Model SR780 signal analyzer wasused to 
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excite one of the piezoelectric elements with sweep sine wave and the 

frequency response from the other piezoelectric element was obtained by the 

same equipment at 2000 data points in 0 – 100 KHz range. The frequency 

and time domain signal was received by the instrument. The signal analyzer 

calculates the transfer functions in the frequency domain. The magnitude 

calculated for the new tool was used as reference. To see the difference 

between the signal received by the new and the worn out drill, sum of the 

squares of the differences was calculated. The variations of the calculated 

sum of squares were visualized using the graphs.  

3.2.2 Lamb wave approach 

The experimental setup for this approach is shown in the figure 3.1. To 

perform the experiment, Metis Design SHM Node MD 7502 was used to 

create the Lamb wave and to monitor their propagation. One of the 

piezoelectric elements is excited by a 3.5 sine wave with 200 – 300 KHz of 

frequency. This signal was first pass through the Hanning window before 

being given to the piezoelectric element for excitation. The same system was 

used to measure the generated voltage by the other piezoelectric element 

bonded to the shank of the drill with 10 MHz sampling frequency. The signal 

was collected at 8000 data points but only first 3000 of them were used. The 

received signals were averaged 64 times to minimize the noise 

contamination. The device used to perform the test is capable of 
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synchronously facilitating 20 VPP guided waves (GW), frequency response 

(FR) and acoustic emission (AE) testing up to 5 MHz with 50 MHz 12 – bit 

data acquisition on 6 independent channels. The tests obtained by this 

method were time domain from the SHM Node MD 7052. The dominant 

frequency of the sampled signal was the same with the excitation signal. The 

delay time of each burst carries the information about tool geometry. Further 

after getting the data from the received signal, S-transformation was used to 

calculate the envelopes of the received signal. The significance of the 

differences among the envelopes was then evaluated by calculating the sum 

of the squares of the differences by following the same procedure outlined in 

the previous approach. 

3.3 Results and discussion 

The feasibility of two approaches was tested in this chapter. The 

performance of each approach is outlined as follows: 

3.3.1 Surface response to excitation 

The experimental data was gathered by testing the 19/64 inch 

diameter, high speed steel (HSS) drill bit. The data was taken for the new, 

and for other four wear levels, which are artificially created at the edges of 

the drill with a grinder. The magnitude of the transfer function was 

calculated once at each test condition and is shown in the figure 3.3.  It can 
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be seen from the graphs that the signals were similar but still some 

noticeable change in each case can be seen. 

Figure 3.3 – Spectrum analyses of perfect and grinded tool at 4 different wear 
levels 

 
The sum of the squares of the difference between each case is shown in 

figure 3.4. In the figure the first bar graph is having a nil value because this 

bar represents the value for the perfect tool. The other bar graphs represents 
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the difference between the perfect tool and the other four cases (for four 

different wear levels). The length of the bars for the sum of the squares of the 

new and the first three wear levels (light, medium and severe) increased 

significantly with almost equal steps. This pattern indicates that the 

characteristics of the magnitude changes with almost the same amount with 

increase of wear. It is though very difficult to separate the wear levels for the 

severe and extreme cases. The sum of the squares of the differences with 

respect to the case one was also studied at different frequency intervals, as it 

can be seen in figure 3.5. The difference between the five considered cases 

was observed best at 75 – 100 KHz interval. Figure 3.5, suggests that the 

differences among the magnitudes are not very clear at two bandwidths 

below 50 KHz. 

 

Figure 3.4 – The sum of the squares of the differences between the magnitude 
of each case and the reference.  The first and the second cases are the perfect 
tool.  The 3, 4 and 5 shows the cases for low, medium and significant wear. 
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Figure 3.5 – The difference between the each test case and the perfect one at 
different frequency intervals.  The frequency intervals designated 1 to 4 

corresponds to 0Hz to 25 KHz, 25 KHz to 50 KHz, 50 KHz to 75 KHz, and 75 
KHz to 100 KHz respectively. 

3.3.2 Lamb wave propagation 

The experimental data was collected by performing experiments on a 

HSS drill. The experiments were repeated at 200 and 300 KHz excitation 

frequencies. The data was taken twice for the new and artificially worn tool. 

So, in all 12 sets of data was analyzed. 

The voltage created by the piezoelectric element correlates with the 

power of the arriving Lamb waves. The signals received in the time domain 

looks very similar as shown in figure 3.6. 
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Figure 3.6 – The received signals by the sensing piezoelectric element. 
 

The envelopes of the signals were calculated by using the S – 

transformation to identify the differences between the signals. The S – 

transformation of first 6 cases with 300 KHz excitation frequency is shown in 

figure 3.7. The data 7 and 8 belongs to the new drill. The data 9-10 and 11-12 

were collected when the drill undergoes light and medium wear respectively.  
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Figure 3.7 – The envelopes of the received signals by the sensing piezoelectric 
elements.  The data numbered 7 and 8, 9 and 10, and 11 and 12 were 

obtained at the identical simulated wear levels, and they are almost the 
same.  The first two belong to perfect (data 7,8), the following two 

corresponds to medium, and severe tool wear (data 11,12). 
 

The envelopes were almost identical at the same wear levels. It can be 

seen from figure 3.8 and figure 3.9 that after 120 µsec, envelopes of the new, 

light and medium wear levels changes significantly. There is almost no 

difference between the envelopes in the first 75 µsec. The excitation 

frequencies used were 200 KHz and 300KHz in figure 3.8 andfigure 3.9 

respectively. 
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Figure 3.8 – Variation of the envelope signal with simulated tool wear when 
the 200 KHz 3.5 sine wave is applied.  The perfect (Data 1), medium (Data 3) 

and severe (Data 5) simulated wear. 
 

 

Figure 3.9 – Variation of the envelope signal with simulated tool wear when 
the 300 KHz 3.5 sine wave is applied.  The perfect (Data 7), medium (Data 9) 

and severe (Data 11) simulated wear. 
 

The sum of the squares of the differences of the envelopes between 

each case and the reference (envelope from the new drill) is plotted in figure 

3.10 and figure 3.11. The excitation frequencies for these cases were 200 KHz 
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and 300 KHz and shown in figure 3.10 and figure 3.11 respectively.The four 

equally divided time intervals of considered 300 µsec long periods were 

automatically studied in these plots.  The differences between the envelopes 

of the signals were most significant after 150 µsec.  The new and two levels of 

wear could be detected from the sum of the squares of the difference of the 

envelopes in the 150 – 225 µsec, and 225 – 300 µsec time intervals with 

almost the same confidence. 

 

Figure 3.10 – The sum of the square of the difference between each set and 
the first one.  The excitation signal frequency was 200 KHz.  The data sets of 
1 to 6 were tested.  The intervals 1, 2, 3, and 4 corresponds to the 0-75 µsec, 

75-150 µsec, 150-225 µsec, and 225-300 µsec respectively. 
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Figure 3.11 – The sum of the square of the difference between each set and 
the first one.  The excitation signal frequency was 300 KHz.  The data sets of 
7 to 12 were tested.  The intervals 1, 2, 3, and 4 corresponds to the 0-75 µsec, 

75-150 µsec, 150-225 µsec, and 225-300 µsec respectively. 
 

3.4 Conclusion 

Feasibility of the use of the structural health monitoring (SHM) 

methods was evaluated for estimation of the tool wear. The spectrum 

analysis and Lamb wave based approaches were successfully used to separate 

the signals of the new and worn out tool. 

Spectrum analyzer conveniently estimated the transfer function of the 

surface response to excitation. Two piezoelectric elements were needed.  

Typically the costs of the spectrum analyzers are half to a quarter of 

impedance analyzers.  The magnitude of the transfer function could be 

calculated with digital signal processers (DSP) without requiring any 
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complicated electronics.  However this approach requires bonding two 

piezoelectric elements. 

 Creation of the Lamb waves with one piezoelectric element and 

monitoring their propagation from the signal of the other piezoelectric 

element was straight forward. The hardware cost was the lowest among the 

two approaches discussed in this chapter. Two piezoelectric elements were 

needed.  Calculation of the envelopes of the collected signals was necessary 

outside of the hardware. The s – transformation was used with this purpose 

and provided smooth envelope curves in a very consistent manner.  S-

transformation also isolates the noise from the signal, since the envelopes of 

only the harmonic component of the signal at the excitation frequency was 

obtained. 

 The study indicated that the SHM methods should also be considered 

when the next generation tool wear monitors are developed.  Evaluation of 

the surface response to excitation with a spectrum analyzer and Lamb wave 

based approaches may be used together to complement each other for tool 

wear estimation.  Both approaches use two piezoelectric elements bonded to 

the tool. 
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CHAPTER IV 

4 CONCLUSION AND FUTURE WORK 

 The Structural Health Monitoring (SHM) methods were introduced in 

the previous chapters and their feasibility was studied. The results confirmed 

that the SHM methods are capable of detecting any changes or defects in the 

structure. This chapter comprises of conclusions of all the above determined 

work followed by the future work. 

4.1 Conclusions 

A comprehensive procedure to locate and trace the intensity of defects 

in copper and carbon fiber tube based on time domain and frequency domain 

was presented.The proposed procedure was verified experimentally using two 

different pipes (copper and carbon fiber). The piezoelectric elements were 

used as actuators and sensors. These sensors were very light in weight and a 

lot cheaper than the conventional sensors. These sensors can be easily and 

permanently attached to the structures. The signals acquired from these 

sensors through two SHM methods were successfully refined to get the 

intelligible information. The intensity of defect in the copper pipe and carbon 

fiber tube was shown distinctively. Apart from this, it was shown that the 

strength of the signal attenuates over a longer traveling distance.  

Monitoring the tool wear by same SHM techniques was also 

addressed.The S – transformation analysis and envelope of the S – 
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transformation were used to extract the salient features representing a 

perfect and a worn tool from time domain signals. The defect intensity 

vectors for different tool states were identified using frequency domain 

analysis. The performance of both the SHM approaches was evaluated with 

four different wear levels and tool state detection was achieved successfully. 

The results indicate that these methods could be a successful tool for 

monitoring similar cutting tools.  

The two SHM approaches used in this study were precisely tested, 

scrutinized and concluded. The equipment cost for lamb wave approach was 

the least of the two methods proposed. Only two sensors per test sample were 

required to perform the experiments for both approaches except for the long 

copper pipe. The overall cost of both the methods was less than the other 

available conventional SHM techniques.  

4.2 Future Work 

 In this study, an exploratory study of two structural health monitoring 

methods for damage detection of round objects (pipes, tubes and cutting tool) 

is conducted. Some, observations are made during carrying out this study, 

and further research should be conducted to enhance the proposed damage 

detection methodology. The following recommendations are provided for 

future research considerations: 
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• A chip level piezoelectric – wafer active sensor device possessing local 

processing ability and wireless communication ability must be developed 

to achieve in field in – situ SHM applications. 

• In order to treat the general problem of buried pipes, the effect of a solid 

medium outside the pipe has to be investigated. 

• Number of sensors can be reduced by using more sophisticated sensors 

capable of directional sweeping larger areas without touching the 

piezoelectric sensors. 

• More research on different kind of damage at different locations using the 

proposed damage detection approach and sensor system should be 

conducted. 

• Further utilization of numerical FE simulation may simplify the 

experimental study and help guide the location of the sensors to achieve 

even better results. 
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