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Abstract.   Forecasted changes in global climate predict not only shifts in average conditions but also 
changes in the frequency and intensity of climate extremes. In the subtropics, the passage of extreme cold 
spells functions as a major structuring force for ecological communities, and can incur substantial losses to 
biodiversity, agriculture, and infrastructure. If these events persist in the future, it is likely that their effects 
on subtropical communities and ecosystems will become more pronounced, as tropical species migrate 
poleward. Recent extreme cold spells in subtropical China (2008) and United States (2010) occurred in eco-
systems that are the subject of long-term ecological study, enabling key questions about cold spell affects 
to be addressed. In this study, we (1) discuss the meteorological drivers that resulted in these two extreme 
cold spells, and (2) use findings from case studies published in the Ecosphere Special Feature on effects of 
extreme cold spells on the dynamics of subtropical communities, and on poleward expansion of tropical 
species and other previously published works to identify consistencies of subtropical community resil-
ience and resistance to extreme cold spells. In this review, we highlight three consistent findings related 
to this particularly type of extreme climate event: (1) cold spells drive predictable community change in 
the subtropics by altering ratios of coexisting tropical and temperate species; (2) certain landscape features 
consistently affect subtropical resistance and resilience to extreme cold spells; and (3) native tropical spe-
cies are more resistant and resilient to extreme cold spells than tropical nonnative taxa. Our review should 
improve forecasts of the response of subtropical community dynamics in scenarios where extreme cold 
spells either increase or decrease in frequency and intensity.

Key words:   climate change; community ecology; extreme climate event; Special Feature: Extreme Cold Spells; 
subtropics.
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Introduction

Forecasted changes in global climate include 
not only shifts in average conditions, but also 
changes in the frequency and intensity of cli-
matic extremes (Easterling et  al. 2000, Karl 
et  al. 2008). Climate extremes can be defined 
as discrete weather events that fall within the 
statistical tails of some climate parameter, and 

create conditions exceeding the acclimation cap
acity of species occurring within the affected 
region, often causing large-scale mortality events 
(Gutschick and BassiriRad 2003, Smith 2011). 
One climate extreme predicted to change in fre-
quency, intensity, and duration in the future is 
extreme cold spells (Kodra et al. 2011, Field 2012, 
Gao et al. 2015). Changes in the future dynamics 
of extreme cold spells will play a very important 

http://dx.doi.org/10.1002/ecs2.1455
http://creativecommons.org/licenses/by/3.0/


October 2016 v Volume 7(10) v Article e014552 v www.esajournals.org

Special Feature: Extreme Cold Spells� Boucek et al.

role in shaping the future distribution of species, 
community organization, and ecosystem func-
tion, especially in environments where species 
groups occur at their poleward or highest alti-
tudinal distribution (Precht and Aronson 2004, 
Beck and Goetz 2011).

The subtropical zone (25–40° latitude) is ther-
mally characterized by regions where long-term 
average minimum monthly temperatures are 
greater than 13°C, and the frequency of sub-0°C 
minimum temperature days ranges from once a 
year to less than annual (Holdrige’s life zones; 
Neilson 1995). Despite being a warm environ-
ment, the occurrence of cold spells is common in 
the subtropics, with ecologically impactful events 
being reported in the United States (Boucek and 
Rehage 2014), China (Liu et al. 2014a, b), Taiwan 
(Hsieh et al. 2008), Australia (Gilman et al. 2008), 
Brazil (Gallucci and Netto 2004), and the north-
west Mediterranean (Coles and Fadlallah 1991). 
Similar to other climate extremes, extreme cold 
spells affecting the subtropics are capable of dri
ving whole-scale changes to ecosystem structure 
and function (Stone 2008, Boucek and Rehage 
2014, Kemp et  al. 2016, Santos et  al. 2016). For 
instance, an extreme cold spell that affected 
the southeastern United States in 2010 drove a 
potential stable state shift in coral communities 
occurring in shallow waters off Florida’s Middle 
and Upper Keys archipelago. The 2010 extreme 
climate event caused almost complete mortal-
ity of some key foundational stony coral reef 
building species, while having less of an effect 
on soft octocoral species. Since the spell, affected 
stony corals have shown little recovery, result-
ing in a stable, postcold event community with 
an increased dominance of soft octocoral species 
(Colella et al. 2012, Kemp et al. 2016).

Apart from affecting ecosystem structure and 
function, extreme cold spells incur substantial 
losses to agriculture and fisheries in the sub-
tropics (Downton and Miller 1993, Zhou et  al. 
2011, Khounsy et al. 2012). For instance, a 2008 
extreme cold spell that affected subtropical 
China resulted in losses of 40% of winter time 
crops, 30% of bee colonies, 75 million livestock, 
and 0.45 million tons of aquacultured fish (Zhou 
et  al. 2011). Similar catastrophic losses to other 
natural resources have been observed in sub-
tropical Florida’s citrus industry (Sheridan 2003), 
where the passage of a series of extreme cold 

spells in 1980s killed approximately one-third of 
Florida’s commercial citrus trees (Downton and 
Miller 1993). Thus, extreme cold spells, like many 
climate extremes, can elicit extreme ecosystem 
responses and incur substantial economic losses.

If these events persist in the future, extreme 
cold spells will continue to be one of the dom-
inant structuring forces of ecological communi-
ties in the subtropics. Further, as tropical species 
continue to advance poleward into the subtrop-
ics due to climate warming, it is likely that the 
effects of these cold events on subtropical com-
munities and ecosystems will become more 
pronounced. Thus, in order for us to forecast eco-
system dynamics in the subtropics, it is crucial 
for us to understand how and what factors dic-
tate subtropical community responses to these 
extreme disturbances.

Recent extreme cold spells in subtropical China 
(2008) and United States (2010) occurred in eco-
systems that are the subject of long-term ecologi-
cal study, enabling key questions about cold event 
effects to be addressed. The once in 50-year cold 
spell in China (Chen et al. 2010, Liu et al. 2012) and 
once in 80-year event in the United States (Boucek 
and Rehage 2014) represented extreme events 
that caused a cascade of ecological changes that 
are documented in the multiple case studies of 
this special issue. In this introductory paper, we 
discuss the meteorological drivers that resulted in 
these two extreme cold spells, and highlight con-
sistent findings in subtropical community resis-
tance and resiliency to these extremes inform the 
papers featured and previously published works. 
Overall, we expect that the passage of extreme 
cold spells functions as a major force shaping 
subtropical community dynamics, changing 
structuring processes to those dictated by species 
tolerance to low temperatures, and the external 
features in the landscape that buffer communities 
from cold temperatures.

Climate Factors that Drive Extreme  
Cold Spells

In the subtropics, cold spells result from polar 
air moving into lower latitudes. Equatorial move-
ment of polar air is often correlated with winter 
shifts in upper airflow from predominantly 
zonal  (west–east) flow to meridional (north–
south) flow, via changes in ocean–atmospheric 
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teleconnections (Sheridan 2003, Chen et al. 2008, 
Wang et al. 2010, Na et al. 2012). For instance in 
the subtropical United States, upper airflows 
during the positive phase of the Pacific North 
American anomaly (PNA) coincide with 80% of 
the region’s ecologically impactful cold spells 
(Downton and Miller 1993, Sheridan 2003). At 
the onset of extreme cold spells, minimum daily 
air temperatures decrease to extreme low values 
almost overnight. These extreme low tempera-
tures persist for usually days before minimum 
daily air temperature returns to normal variabil-
ity (Zhou et al. 2011, Boucek and Rehage 2014).

In China, the 2008 cold spell brought on not 
only extreme low temperatures that persisted for 
approximately a month, but also unseasonally 
high precipitation (Hong and Li 2009, Zhou et al. 
2011). These extreme low temperatures in sub-
tropical China and South-East Asia were a prod-
uct of interactions between Siberian high (SH), 
intraseasonal oscillation (ISO), and El Nino–
Southern Oscillation (ENSO) climate anomalies. 
Across Asia, this 2008 extreme event started in 
mid-January, when the Siberian high anomaly 
moved into an enhanced phase, coinciding with 
the movement of multiple cold air outbreaks into 
lower latitudes in central China. These cold air 
outbreaks were initially blocked from the sub-
tropics by suppressed convention over Sumatra 
(associated with the dry phase of the ISO). 
However, in February, the ISO shifted from a 
dry phase to a wet phase, increasing convection 
and pushing cold air outbreaks as far south as 
the South China Sea. On average, ISO wet phases 
and cold air advection to subtropical China per-
sist for 10  d, but in 2008, the transition out of 
this wet phase was stalled by a La Nina episode, 
causing the ISO wet phase to persist for 30  d, 
resulting in continuous cold air outbreaks in sub-
tropical China for the entire month of February 
(see Hong and Li 2009 for additional details). 
On top of these cold air outbreaks, an anoma-
lous and persistent summer monsoon-like flow 
pattern moved high-moisture tropical maritime 
air masses from the Bay of Bengal northward. 
The convergence of the tropical and polar air 
masses resulted in both extreme low minimum 
air temperatures in subtropical China for 24  d, 
and unseasonal precipitation (Zhou et al. 2011). 
As a result, the 2008 cold spell broke 50-year 
records for the maximum number of consecutive 

low temperature days throughout many regions 
of subtropical and temperate China (Chen et al. 
2008). This extreme disturbance not only affected 
natural systems and resources, but also caused 
$22.3 billion dollars in damages to infrastructure, 
resulted in 129 human fatalities, and displaced 
1.7 million people (Zhou et al. 2011).

Shifting to the 2010 extreme cold spell in sub-
tropical United States. Across the eastern United 
States, the 2009–2010 winter was the worst win-
ter in terms of snow fall and low temperatures 
since 1950 (Wang et al. 2010). The severity of the 
2009–2010 winter inspired the media to report 
that the next “mini ice age starts here,” increas-
ing public skepticism of climate warming (Wang 
et al. 2010, New York Times February 10, 2010; 
Wall Street Journal February 16, 2010). Like the 
2008 China event, this extreme cold spell resulted 
from the interaction of multiple climate anoma-
lies, namely the North Atlantic Oscillation (NAO) 
and the PNA. Starting on 28 December 2009, the 
NAO shifted into an extreme negative phase, 
indicating a weakening of the Icelandic Low and 
the Azores High, and the PNA shifted into the 
positive phase. These phase shifts coincided with 
a northerly directional change in surface wind 
anomalies across the United States, causing cold 
air outbreaks to sweep into lower latitudes and 
down into Florida. Extreme negative phases of 
the NAO usually occur during decades of lon-
ger term durations of lower phases of the NAO; 
therefore, it is likely that the longer the NAO 
remains in a negative phase, the more likely an 
extreme negative phase event will occur, and as 
a consequence, there is an increased probabil-
ity that the United States will be affected by an 
extreme cold spell (Wang et al. 2010).

In Florida, cold air outbreaks are relatively 
common each winter, usually lasting one or two 
days, and without incurring meaningful ecolog-
ical change. Once every 20  years, episodic cold 
spells affect subtropical Florida, whereby tem-
peratures decrease to extreme low values (>3 SD 
from long-term temperature average) and remain 
at these low values for extended periods (up to 
seven days, Boucek and Rehage 2014). These 
episodic cold spells have occurred in the months 
of December or January in the years 1940, 1977, 
1981, and 1985, all of which resulted in major 
ecological effects. Unlike these less severe epi-
sodic spells, the 2010 spell both drove minimum 
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temperatures to extreme low levels (−4.16 SD 
from the 80-year winter time mean), but more 
damaging, this event kept temperatures at 
extreme lows for 14 d, 7 d longer the next lon-
gest cold spell (January 1940; Boucek and Rehage 
2014). Effects of the 2010 cold event were severe 
or extreme for many taxonomic groups (e.g., cor-
als, primary producers, and top predators; Kemp 
et al. 2011, Mazzotti et al. 2011, Adams et al. 2012, 
Matich and Heithaus 2012, Barr et al. 2013), and 
the Florida citrus industry and coastal fisheries 
incurred substantial losses (Fantz 2010, Barbour 
et al. 2014, Blewett and Stevens 2014).

Subtropical Extreme Cold Spells Relative 
to Other Extreme Climate Events

Despite the accepted gravity of climate 
extremes in shaping natural systems, there are 
few generalizations to address the population, 
community, and ecosystem responses to such 
events (Jentsch et al. 2007, Smith 2011). First, few 
generalizations exist because climate extremes 
are rare, and relatively few field studies have 
captured ecosystem responses to such events. 
Second, few experimental systems are in place 
that can simulate extreme climate conditions 
over relevant spatiotemporal scales (Smith 2011). 
Third, ecological responses to climate extremes 
cannot be predicted with less severe and more 
frequent disturbances because climate extremes 
can create stressors of sufficient amplitude and 
duration to elicit unexpected threshold responses 
(Jentsch et al. 2007, Smith 2011, Peters et al. 2012). 
Finally, climate extremes often create many 
stressors that can interact with other local drivers 
to change ecosystems in complex and often 
context-dependent ways, limiting our ability to 
develop overarching generalizations of ecologi-
cal responses we may expect to climate extremes 
(Kreyling et al. 2011, Peters et al. 2012).

The effects of extreme cold spells on subtropi-
cal ecosystems may be less complicated than that 
of other climate extremes, and thus potentially 
easier to predict. First, subtropical cold spells 
are thermal events, unlike other climate distur-
bances such as tropical cyclones and drought that 
can incorporate multiple dimensions of stress 
(e.g., wind, fire, and precipitation in addition to 
temperature). Even extreme heatwaves co-occur 
with other extreme climate drivers, including 

droughts, stressful UV intensity, and increased 
fire risk, all of which may increase context speci-
ficity in ecological responses. For instance, during 
the 2011 heatwave in Australia, extreme tem-
peratures were the dominant driver of change 
in coastal marine systems (Smale and Wernberg 
2013). In contrast, in the 2003 European heatwave 
in northern Italy, Bertani et al. (2015) found that 
extreme drought conditions drove a state shift in 
primary producer communities in Mediterranean 
lakes. And a combination of extreme heat, extreme 
low precipitation, and high UV intensity drove 
changes in grassland communities following the 
same extreme 2003 European heatwave (Kreyling 
et  al. 2011). In contrast, unlike heatwaves and 
other extremes, the impact of cold events may be 
easier to link to a single driver, fostering easier 
comparisons across place and time, and allowing 
for greater predictability in their effects.

Another aspect of extreme cold spells that 
make their effects tractable is their relatively short 
duration, usually measured in days to weeks, 
compared with other climate extremes that can 
last for years (e.g., droughts). The impact of such 
persistent extreme events can be complicated 
as it can be driven by secondary influences that 
occur after the initial restructuring effects related 
to physiological stress and physical damage 
caused by the climate extreme. Secondary driv-
ers might include positive feedbacks that cause 
persistent state changes. For instance, in arid 
and semiarid grasslands, prolonged droughts 
combined with overgrazing can shift primary 
producer community dominance from peren-
nial grasses to drought-resistant woody plants 
that sequester nutrients and form “islands of fer-
tility,” ultimately leading to an ecosystem state 
change (Peters et al. 2012).

Relative to other climate extremes, ecological 
responses to extreme cold spells should largely 
be governed by thermal constraints controlled by 
either internal (physiological optima) or external 
(landscape refuges) factors that dictate a species’ 
ability to tolerate relatively short durations of 
cold temperatures. However, species can resist 
some negative deviations in temperature from 
less severe and more frequent cold spells; during 
extreme cold spells, temperatures often decrease 
below the physiological limits, particularly for 
many tropical species, resulting in abrupt, non-
linear decreases in species abundances.
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In the next sections, we highlight three consis-
tent findings stemming from the studies in the 
special issue, and discuss them in light of previ-
ous studies on subtropical community responses 
to extreme cold spells. Beyond bettering our 
understanding of ecological change mediated by 
extreme cold spells in the subtropics, identifying 
these consistencies may help guide interpretation 
of short-duration thermal disturbances occurring 
across the globe.

Changes in Community Structure 
Following Extreme Cold Spells  
in the Subtropics

In the subtropics, communities are composed 
of tropical species at the poleward extent of their 
range, temperate species at their equatorial range 
limit, and subtropical species within their core 
range. Tropical species evolved in warm, ther-
mally aseasonal environments (i.e., thermal spe-
cialists; Tewksbury et al. 2008), while temperate 
and subtropical species have adapted to relatively 
wide seasonal fluctuations in temperature (ther-
mal generalists; Sunday et al. 2014). Thus, tropical 
species are generally limited in their physiologi-
cal acclimation to extreme cold and even exhibit 
maladaptive behaviors during extreme cold 
events (see Mazzotti et al. 2016). In comparison, 
temperate species have the physiological capacity 
to resist both relatively high and low temperature 
extremes (Sunday et  al. 2014). Because tropical 
species are less resistant to extreme cold spells 
compared with temperate and subtropical spe-
cies, cold events should shift community domi-
nance in favor of more temperate species.

The studies in this issue, along with prior 
work, support this generalization. Starting with 
top predators in Florida, the 2010 event reduced 
abundances of tropical American Crocodile 
(Crocodylus acutus), while having little influ-
ence on broadly tolerant American Alligators 
(Alligator mississippiensis; Mazzotti et  al. 2016). 
Moving down the food web, following the same 
event in Florida coastal rivers, an immediate 
decline in tropical fishes was observed, while 
temperate fish abundances remained unchanged 
or increased (Boucek and Rehage 2014, Santos 
et al. 2016). Switching over to the spell in China, 
similar decreases in tropical species dominance 
were observed following the 2008 event. For 

instance, Wang et al. (2016) showed that the 2008 
cold spell caused disproportionate mortalities 
of tropical butterflies, resulting in an increased 
community dominance of temperate butterflies. 
In coral reef communities, a switch from tropical 
species to broadly temperature tolerant species 
was observed following both the 2008 China and 
the 2010 U.S. event (Chen et al. 2008, Kemp et al. 
2011, 2016). Outside these two extreme cold spells, 
other research supports this generalization. In 
coastal subtropical zones across the globe, the 
passage of extreme cold spells has been shown 
to switch vegetation communities from tropical 
mangrove-dominated environments to temper-
ate salt marsh-dominated habitats (Stevens et al. 
2006, Osland et al. 2013, Cavanaugh et al. 2014). 
Subtropical cold spells, therefore, appear to lead 
to rapid shifts in community structure toward 
greater broadly tolerant species dominance.

Effects of Landscape Features on 
Subtropical Community Resistance  
and Resilience

Extreme cold spells affecting the subtropics 
can incur ecological change across entire regions. 
In both Florida and China, mortality of tropical 
species was observed from latitudes 19° N and 
29° N, to latitudes of 24° N and 28° N, respec-
tively (Stevens et  al. 2016, Kemp et  al. 2016). 
Despite the large footprint of the area affected by 
extreme cold spells, tropical species and subtrop-
ical community resistance and resilience vary 
across space.

Landscape features may either promote or 
reduce tropical species and subtropical commu-
nity resistance to extreme cold events. Further, 
these landscape features may operate at every 
spatial scale. At the scale of a single forest patch, 
Ross et al. (2009), Chen et al. (2015), and Wang 
et al. (2016) found that larger trees that occupy 
the upper canopy are more severely damaged by 
extreme cold spells (by both physiological dam-
age from cold shock and physical damage from 
icing) than smaller lower understory trees in 
Floridian and Chinese mangrove forests and in 
Chinese evergreen forests. In these forests, tem-
perature and humidity both decrease moving up 
to the canopy, increasing stressful thermal condi-
tions for taller trees (Ross et al. 2009). Similar dif-
ferences between forest floor vs. canopy effects 
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were also documented in small-bodied consum-
ers habituating Chinese mangrove forests. Boreal 
mollusks suffered higher mortalities than their 
benthic counterparts in Chinese mangrove for-
ests following the 2008 cold spell, likely due to 
similar temperature and humidity drivers (Liu 
et al. 2016).

Variation in cold spell resistance across patches 
also exists. Landscape features that may influ-
ence cross-patch resistance to extreme cold spells 
include (1) proximity to water bodies that can 
buffer patches from extreme cold temperature, 
(2) features that may block wind, and (3) eleva-
tion differences (e.g., valleys) that can trap cold 
air. Starting with examples from citrus groves in 
Florida, following a series of episodic cold spells in 
the 1980s, Downton and Miller (1993) showed that 
citrus grove resistance varied based on whether 
the grove was on a hill or in a valley, or whether 
the grove was close to a lake. Groves in valleys 
were more at risk to freeze damage due to the set-
tling of denser cooler air in these valleys that create 
cold pockets. Similarly, groves on the windward 
north-facing sides of hills suffered more damage. 
In mangrove forest patches in subtropical China, 
Liu et  al. (2012) came to a similar conclusion. 
Mangroves located on the leeward sides of hills 
suffered minimal damage following the 2008 cold 
spell relative to those on the windward side. In a 
similar fashion, subtle changes in elevation may 
trap cold air in addition to distance to oceans that 
can act as a heat source and alter mangrove cross-
patch forest resistance in both subtropical China 
and the United States (Chen et al. 2010, 2015, Liu 
et al. 2014a, b, Zhang et al. 2016).

At the largest scales, ocean currents and 
ecosystem geomorphology can dictate cross-
ecosystem resistance. For instance, Stevens et al. 
(2006) found nearly complete resistance for a 
tropical estuarine fish population in Florida at 
one estuary, and virtually no resistance in three 
others. These interestuary differences in trop-
ical fish resistance were likely a result of mul-
tiple interacting factors, including availability 
and abundance of deepwater habitats (though 
mostly anthropogenic), abundance of freshwater 
springs, and proximity to warm tropical oceanic 
currents. Similarly, in the Florida Keys archipel-
ago, following the 2010 cold event, shallow-water 
coral reefs in the middle to upper keys suffered 
community-wide change, while coral reefs in 

deeper water and closer proximity to the warm 
waters of the Gulfstream were less affected by 
the disturbance (Colella et al. 2012).

Like resistance, subtropical community resil-
ience can vary across spatial scales. For instance, 
Rehage et  al. (2016) showed that across eight 
nonnative fish populations affected by the 2010 
disturbance, population resilience varied from 
within one year, to populations that have exhib-
ited no recovery five years postdisturbance. 
Rehage et al. (2016) attribute this spatial variation 
in resilience to differences in distance to warm-
water source populations. Likewise, Stevens 
et  al. (2006) found that following the 2010 cold 
spell in Florida, resistance of a tropical estuarine 
piscivore was similar across three of four estuar-
ies but resilience varied, possibly an effect related 
to interestuary differences in geophysical struc-
turing that may influence reproduction, recruit-
ment, and juvenile survival. Thus, landscape 
features are an important consideration as they 
can influence both resistance and resilience.

Differences in Resistance and  
Resilience among Tropical Native  
and Nonnative Taxa

Native and nonnative species may differ in a 
variety of ways, including how they are affected 
by extreme events. Within the context of extreme 
cold events, nonnative tropical species appear to 
be less resistant and resilient than their tropical 
native counterparts. This finding agrees with 
hypotheses proposed by Kreyling et  al. (2015), 
when measured the thermal tolerance of 27 
North Hemisphere native and nonnative tree 
species. Kreyling et al. (2015) found that cold tol-
erance was related to the temperature conditions 
in the species’ native range. The authors con-
clude that developing cold tolerance operates on 
relatively long timescales. Thus, it is possible that 
tropical species native to the subtropics may 
have developed limited tolerance to extreme cold 
spells, while tropical nonnative species with dis-
tributions in more core areas of the tropics have 
not yet acquired any physiological capacity or 
behaviors that may improve their resistance to 
extreme cold spells (Cook-Patton et al. 2015).

Findings from this Special Feature support this 
notion. Chen et  al. (2015) found that mangro
ves introduced to subtropical China (Sonneratia 
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caseolaris, S.  apetala) suffered higher mortalities 
than native species. Similarly, bamboo fields 
planted with nonnative species suffered greater 
losses than fields seeded with native bamboo 
following the 2008 cold event (Junming et  al. 
2008, Zhou et  al. 2011). In Florida, Boucek and 
Rehage (2014) and Rehage et  al. (2016) found 
that tropical native fishes were both more resis-
tant and resilient to extreme cold compared with 
their functionally similar nonnative counter-
parts. Similarly, Downing et al. (2015) found that 
nonnative bees in subtropical Florida were less 
resistant to the 2010 cold spell than native bees. 
Many nonnative species are introduced to the 
subtropics from lower latitudes, because of their 
high ornamental value (Schofield and Loftus 
2015). Thus, as the dynamics of extreme cold 
spells change in the future, it is likely that inva-
sion risk and the population stability of currently 
established nonnatives will track the changes in 
the frequency, intensity, and duration of extreme 
cold spells in the subtropics.

Conclusions: Subtropical Conservation 
in a Warming World with Extreme  
Cold Events

Although whether extreme cold spells will 
increase or decrease in frequency, intensity, or 
duration is uncertain and varies geographically 
(Vavrus et al. 2006, Kodra et al. 2011), the studies 
in this special issue show that any change in their 
dynamics may have consequences for subtropical 
ecosystems. If these events increase in frequency, 
we may expect nonnative population dynamics 
to become less stable, and the probabilities of new 
species invasions to be reduced. At the same time, 
we may see losses to many important natural 
resources in these latitudes, including coral reefs 
and mangrove forests, which provide key ecosys-
tem services to the region, in addition to losses to 
agriculture and fisheries productivity. Further, 
increases in these events may function to slow the 
poleward migration of tropical species, as well as 
impair translocation success in conservation 
efforts, which could be particularly problematic 
as tropical species are at very high risk from cli-
mate warming (Sunday et al. 2014).

Under scenarios where extreme cold spells 
remain constant or increase in frequency, we 
could consider developing conservation and 

management strategies that account for variation 
in resistance to these events, considering both 
the component species within that community 
(nonnative, tropical, temperate), and the land-
scape features the community occupies. For hab-
itats and communities that offer little resistance 
to these cold disturbances, we could implement 
strategies to provide extra protection for trop-
ical species occurring in those areas that are at 
increased risk to cold spell effects (discussed in 
Stevens et al. 2006). This added protection may be 
particularly important for highly managed trop-
ical fisheries that due to harvest are increasingly 
responsive to climate stressors (Stevens et  al. 
2006, Britten et al. 2014, Santos et al. 2016). On the 
other hand, habitats that have landscape features 
that offer high resistance to these disturbances 
could be identified and set aside as refuges for 
endangered and/or imperiled tropical species 
occurring in the subtropics such as American 
Crocodiles (Mazzotti et al. 2016). Similarly, these 
cold spell refuge habitats could serve as key 
introduction sites of the species being considered 
for assisted migration programs and transloca-
tion conservation strategies.

Last, decreases in the frequency of these events 
could provide long-term benefits to agriculture 
and aquaculture, like Florida citrus, and that 
could add facilities at higher latitudes (Sheridan 
2003). Likewise, we may expect tropical fisheries 
to become more stable and potentially increase 
in productivity (Stevens et al. 2006, Santos et al. 
2016). Decreases in the frequency of these events 
may also increase the population stability of 
threatened tropical species occurring within the 
subtropics (i.e., American Crocodile; Mazzotti 
et  al. 2016), as well as increase habitat suitabil-
ity in the subtropics for tropical species threat-
ened by climate warming (Liu et al. 2012, Kemp 
et al. 2016). Regardless of the fate of extreme cold 
spells in the future, our special issue highlights 
key responses that we can expect subtropical sys-
tems to exhibit in light of these extreme events.
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