
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-9-2010

Solution of Nonlinear Transient Heat Transfer
Problems
Donovan O. Buckley
Florida International University, dbucks23@gmail.com

DOI: 10.25148/etd.FI10120804
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Mechanical Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Buckley, Donovan O., "Solution of Nonlinear Transient Heat Transfer Problems" (2010). FIU Electronic Theses and Dissertations. 302.
https://digitalcommons.fiu.edu/etd/302

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.fiu.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/302?utm_source=digitalcommons.fiu.edu%2Fetd%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SOLUTION OF NONLINEAR TRANSIENT HEAT TRANSFER

PROBLEMS

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

MECHANICAL ENGINEERING

by

Donovan Buckley

2010

To: Dean Amir Mirmiran

College of Engineering and Computing

This thesis, written by Donovan Buckley, and entitled Solution of Nonlinear Transient
Heat Transfer Problems, having been approved in respect to style and intellectual con-
tent, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

George Dulikravich

Yiding Cao

Igor Tsukanov, Major Professor

Date of Defense: November 9, 2010

The thesis of Donovan Buckley is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Interim Dean Kevin O’Shea
University Graduate School

Florida International University, 2010

ii

ACKNOWLEDGMENTS

First, let me give GOD all the praise and accept the glory of having accomplished

an educational goal, which I set for myself three years ago. I would like to take this

opportunity to express my gratitude to my family and friends who were there for me

as a source of strength and encouragement. I would like to especially thank my wife,

Marsha, for her unwavering support of me pursuing this goal. I do not have enough

words to express my appreciation for her dedication, love, and continued confidence in

me. I owe her for being so unselfish, which has taken the load off my shoulder and made

this experience much easier.

I am very grateful to my major professor Dr. Igor Tsukanov for his support, guid-

ance and patience throughout my thesis project. I am still impressed by his compre-

hensive knowledge in mathematics, numerical computation and his analytical approach

to problems. This inspired me, enriched my growth as a student and nourished my

intellectual maturity, which I will benefit from throughout my engineering career. I am

extremely appreciative of how accessible he was, whether it was late at nights or on

weekends, he was always reachable to answer any questions I had.

I thank also my committee members Dr. George Dulikravich and Dr. Yiding Cao

for their critical comments and suggestions they shared with me. I thank them for their

valuable advice and guidance, and for all the journal articles they recommended that I

used as references during my research.

iii

ABSTRACT OF THE THESIS

SOLUTION OF NONLINEAR TRANSIENT HEAT TRANSFER PROBLEMS

by

Donovan Buckley

Florida International University, 2010

Miami, Florida

Professor Igor Tsukanov, Major Professor

In the presented thesis work, meshfree method with distance fields was extended to

obtain solution of nonlinear transient heat transfer problems. The thesis work involved

development and implementation of numerical algorithms, data structure, and software.

Numerical and computational properties of the meshfree method with distance fields

were investigated. Convergence and accuracy of the methodology was validated by

analytical solutions, and solutions produced by commercial FEM software (ANSYS 12.1).

The research was focused on nonlinearities caused by temperature-dependent ther-

mal conductivity. The behavior of the developed numerical algorithms was observed for

both weak and strong temperature-dependency of thermal conductivity. Oseen and

Newton-Kantorovich linearization techniques were applied to linearized the governing

equation and boundary conditions. Results of the numerical experiments showed that

the meshfree method with distance fields has the potential to produced fast accurate

solutions. The method enables all prescribed boundary conditions to be satisfied exactly.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION ... 1
1.1 Importance of Nonlinear Heat Transfer Solutions 1
1.2 Nonlinear Heat Transfer Problems... 2
1.3 Computation Techniques .. 3
1.4 Meshfree Method with Distance Fields... 5

1.4.1 Basic idea of meshfree method with distance fields 5
1.4.2 Principle of meshfree method with distance fields 6
1.4.3 Solution Structures for Any Boundary Conditions 8

1.5 Personal Contribution .. 10
1.6 Thesis Outline ... 11

2 NUMERICAL FORMULATION... 12
2.1 Temperature-Dependent Thermal Conductivity 12
2.2 Time stepping ... 13
2.3 Galerkin Method for Modeling Heat Transfer Problems 14
2.4 Dirichlet Boundary Conditions .. 16

2.4.1 Oseen Linearization ... 18
2.4.2 Newton-Kantorovich Linearization .. 19

2.5 Convective Boundary Conditions... 22
2.5.1 Oseen Linearization ... 27
2.5.2 Newton-Kantorovich Linearization .. 28

2.6 Solving the Nonlinear Transient Problem ... 31

3 NUMERICAL EXPERIMENTS.. 33
3.1 Construction of Approximate Distance Fields 33
3.2 Computation Validation ... 35
3.3 Experiment 1: Steady-State Problem with Constant Thermal Conduc-

tivity and Dirichlet Boundary Conditions... 37
3.4 Experiment 2: Steady-State Problem with Constant Thermal Conduc-

tivity and Convective Boundary Conditions.. 40
3.5 Experiment 3: Transient Problem with Constant Thermal Conductivity

and Dirichlet Boundary Conditions.. 42
3.6 Experiment 4: Transient Problem with Constant Thermal Conductivity

and Convective Boundary Conditions .. 44
3.7 Nonlinear Heat Transfer Problems with Dirichlet Boundary Conditions .. 46

3.7.1 Experiment 5: Steady-state problem with weak temperature de-
pendency of thermal conductivity ... 48

3.7.2 Experiment 6: Steady-state problem with strong temperature-dependency
of thermal conductivity.. 50

3.7.3 Experiment 7: Transient problem with weak temperature depen-
dency of thermal conductivity .. 52

3.7.4 Experiment 8: Transient problem with strong temperature depen-
dency of thermal conductivity .. 53

v

3.8 Nonlinear Heat Transfer Problems with Convective Boundary Condi-
tions ... 54

3.8.1 Experiment 9: Steady-state with weak temperature dependency of
thermal conductivity.. 56

3.8.2 Experiment 10: Steady-state with strong temperature dependency
of thermal conductivity.. 58

3.8.3 Experiment 11: Transient with weak temperature dependency of
thermal conductivity.. 61

3.8.4 Experiment 12: Transient with strong temperature dependency of
thermal conductivity .. 62

4 DISCUSSION AND CONCLUSION.. 65

REFERENCES .. 70

5 APPENDIX .. 72

vi

Orlando
Rectangle

LIST OF TABLES

TABLE PAGE

1.1 Example solution structures corresponding to boundary conditions for the
second order partial differential equation .. 10

3.1 The relative difference between meshfree method with distance fields and an-
alytical solutions: steady-state problem with Dirichlet boundary conditions
and constant thermal conductivity. .. 39

3.2 The relative difference between meshfree method with distance fields and
ANSYS 12.1 solutions: steady-state problem with convective boundary con-
ditions and constant thermal conductivity... 41

3.3 The relative difference between meshfree method with distance fields and
ANSYS 12.1 solutions: steady-state problem with Dirichlet boundary con-
ditions and weak temperature-dependence of thermal conductivity. 49

3.4 The relative difference between meshfree method with distance fields and
ANSYS 12.1 solutions: Solutions obtained for steady-state with Dirichlet
boundary conditions and very strong temperature-dependence of thermal
conductivity. .. 51

3.5 Relative difference between meshfree method with distance fields and ANSYS
12.1 solutions: steady-state with weak temperature-dependence of thermal
conductivity and convective boundary conditions. 57

3.6 Relative difference between meshfree method with distance fields and ANSYS
12.1 solutions.: Solutions obtained for steady-state with convective boundary
conditions very strong temperature-dependence of thermal conductivity. 60

vii

LIST OF FIGURES

FIGURE PAGE

1.1 The domain for the heat transfer problem... 7

3.1 (a) Two dimensional representation of the geometric domain of the bench-
mark problem; (b) outer boundary representation !2; (c) inner boundary
representation !1; (d) the corresponding approximate distance field. 35

3.2 (a)Temperature-dependency of thermal conductivity for alumina. Data taken
from online materials database matweb. (b) Temperature-dependency of
thermal conductivity for copper. Data taken from Journal of Physical and
Chemical Reference Data. ... 36

3.3 Convergence in terms of estimated errors produced by meshfree method with
distance fields and FEM software ANSYS 12.1 for five different grid sizes. 38

3.4 Temperature distribution in the benchmark problem Figure (3.1a) com-
puted analytically, by meshfree method with distance fields and ANSYS
12.1: steady-state problem with Dirichlet boundary conditions and constant
thermal conductivity. .. 40

3.5 Temperature distribution in the benchmark problem Figure (3.1a) computed
by meshfree method with distance fields and ANSYS 12.1: steady-state with
convective boundary conditions and constant thermal conductivity. 41

3.6 Comparing time evolution of temperature at location x = 0.8, y = 0.0 pre-
dicted by meshfree method with distance fields and ANSYS 12.1: for two
different time steps, constant thermal conductivity, and Dirichlet boundary
conditions. ... 42

3.7 Quasi-steady temperature fields computed by meshfree method with distance
fields: constant thermal conductivity, Dirichlet boundary conditions, and
time step t = 100 sec .. 43

3.8 Quasi-steady temperature fields computed by ANSYS 12.1: constant thermal
conductivity, Dirichlet boundary conditions, and time step t = 100 sec.......... 44

3.9 Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two
different time steps, constant thermal conductivity, and convective boundary
conditions. ... 45

3.10 Quasi-steady temperature fields computed by meshfree method with distance
fields: constant thermal conductivity, convective boundary conditions, and
time step t = 100 sec. ... 46

viii

3.11 Quasi-steady temperature fields computed by ANSYS 12.1: constant thermal
conductivity, convective boundary conditions, and time step t = 100 sec. 47

3.12 Convergence of Oseen and Newton-Kantorovich linearization schemes in terms
of relative difference between two consecutive solutions " (Equation 3.9): ob-
served for a material with weak temperature-dependence of thermal conduc-
tivity. .. 48

3.13 Temperature distribution in the benchmark problem Figure (3.1a) computed
by meshfree method with distance fields and ANSYS 12.1: steady-state prob-
lem with Dirichlet boundary conditions and weak temperature-dependency
of thermal conductivity. .. 49

3.14 Convergence in terms of relative difference between two consecutive solution
" (Equation 3.9). Convergence was observed for Oseen, Newton-Kantorovich,
and both Oseen and Newton-Kantorovich applied in the linearization process
for a material with very strong temperature-dependence of thermal conduc-
tivity. .. 50

3.15 Temperature distribution in the benchmark problem Figure (3.1a) computed
by meshfree method with distance fields and ANSYS 12.1: steady-state
problem with Dirichlet boundary conditions and very strong temperature-
dependency of thermal conductivity. .. 52

3.16 Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two
different time steps, Dirichlet boundary conditions and weak temperature-
dependence of thermal conductivity.. 53

3.17 Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two
different time steps, Dirichlet boundary conditions and strong temperature-
dependence of thermal conductivity.. 54

3.18 Quasi-steady temperature fields computed by meshfree method with dis-
tance fields: very strong temperature-dependence of thermal conductivity,
Dirichlet boundary conditions, and time step t = 1 sec. 55

3.19 Quasi-steady temperature fields computed by ANSYS 12.1: very strong
temperature-dependence of thermal conductivity, Dirichlet boundary con-
ditions, and time step t = 1 sec. .. 56

3.20 Temperature distribution in the benchmark problem Figure (3.1a) computed
by meshfree method with distance fields and ANSYS 12.1: steady-state prob-
lem with convective boundary conditions and weak temperature-dependency
of thermal conductivity. .. 57

ix

3.21 Convergence in terms of relative difference between two consecutive solu-
tions " (Equation 3.9). Convergence was observed for Oseen linearization,
Newton-Kantorovich linearization, and both Oseen and Newton-Kantorovich
applied in the linearization process. Steady-state with weak temperature-
dependency and convective boundary conditions.. 58

3.22 Convergence in terms of relative difference between two consecutive solu-
tions " (Equation 3.9). Convergence was observed for Oseen linearization,
Newton-Kantorovich linearization, and both Oseen and Newton-Kantorovich
applied in the linearization process. Steady-state with strong temperature-
dependency and convective boundary conditions.. 59

3.23 Temperature distribution in the benchmark problem Figure (3.1a) computed
by meshfree method with distance fields and ANSYS 12.1: steady-state
problem with convective boundary conditions and very strong temperature-
dependency of thermal conductivity ... 60

3.24 Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two
different time steps, convective boundary conditions and weak temperature-
dependence of thermal conductivity.. 61

3.25 Quasi-steady temperature fields computed by meshfree method with dis-
tance fields: very strong temperature-dependence of thermal conductivity,
convective boundary conditions, and time step t = 10 sec............................. 62

3.26 Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two
different time steps, convective boundary conditions and material with very
strong temperature-dependence of thermal conductivity. 63

3.27 Quasi-steady temperature fields computed by ANSYS 12.1: very strong
temperature-dependence of thermal conductivity, convective boundary con-
ditions, and time step t = 10 sec.. 64

4.1 (a) Two dimensional representation of the geometric domain of the fin type
heat exchanger; (d) the corresponding approximate distance field.................. 66

4.2 Comparing time evolutions of temperatures predicted by meshfree method
with distance fields and ANSYS 12.1. ... 67

4.3 Quasi-steady temperature fields computed by meshfree method with distance
fields. .. 68

4.4 Quasi-steady temperature fields computed by ANSYS 12.1........................... 69

x

CHAPTER 1

INTRODUCTION

1.1 Importance of Nonlinear Heat Transfer Solutions

Most metallic materials have thermal properties (thermal conductivity, specific

heat, and density) that are usually temperature-dependent. This results in nonlineari-

ties in the governing equations and the boundary conditions describing the temperature

distribution through these materials. However, because of the difficulties associated

with the solution of these nonlinear heat transfer problems, simplifying assumptions

are usually made to linearize such problems. For example, in the case of materials

that have thermal conductivity which varies slightly with temperature, constant ther-

mal conductivity is generally assumed. However, if temperature change is substantial or

the thermal conductivity varies greatly with temperature, the assumption of constant

thermal conductivity may lead to significant error in the solution. Therefore, when mod-

eling and simulating temperature distribution for such problems, nonlinearities caused

by temperature-dependent thermal conductivity have to be accounted for by the numer-

ical computation.

Some materials, for example PTFE and Indium have a very weak dependence of

their thermal properties on the temperature. For such materials, thermal properties

can be assumed to be constant. In contrast, materials such as, Alumina, Hastelloy C-

2000 alloy, and Copper can have large variation in their thermal properties. Copper

for example, has very steep temperature-dependency of thermal conductivity in range

of very low temperatures [5]. The thermal conductivity of copper at T = 1∘K is 5730

W/m2-K and when T = 40∘K thermal conductivity increases sharply to 19600 W/m2-K.

In this case, temperature-dependence of thermal conductivity cannot be neglected and

has to be incorporated into the solution procedure.

Many practical engineering situations require solving nonlinear transient heat

transfer problems. However, exact analytical solutions of such nonlinear transient heat

transfer problems are generally not available. Due to the limitations of analytical solu-

tions for nonlinear heat transfer problems, a number of numerical methods have been

developed to solve such problems. In the presented thesis work, the meshfree method

1

with distance fields is adopted to obtain numerical solutions of such nonlinear transient

heat transfer problems.

1.2 Nonlinear Heat Transfer Problems

Temperature dependence of the material properties causes nonlinearity in the

differential equation, nonlinearity in the boundary conditions or nonlinearities in both.

Based on the mathematical formulation of the corresponding boundary value problem,

nonlinear heat transfer problems can be classified into three groups [15]:

1. Materials with temperature-dependent properties: This would be the case of temperature-

dependent thermal conductivity, density, and/or specific heat capacity. This gives

rise to a nonlinear partial differential equation in the form

�(T)c(T)
∂T

∂t
= div[�(T)∇T] +Q, (1.1)

where T is temperature, �(T) is the temperature-dependent thermal conductivity

of the medium, �(T) is temperature-dependent density, c(T) is the temperature-

dependent specific heat capacity and Q is the internal heat generation. For the

problems that we investigated in this thesis work, density and specific heat capacity

are assumed to be constant and there is no internal heat generation.

2. Nonlinear boundary conditions: These are caused by heat radiation or temperature-

dependent heat transfer coefficients. For this thesis, the focused was on investi-

gating numerical approaches for solution of problems with nonlinear boundary

conditions of the following kinds:

∙ Prescribed heat flux or Neumann boundary condition

q = q̄ wℎere q = �(T)
∂T

∂n
(1.2)

∙ Convective boundary condition

q = −�(T − Tenv), (1.3)

in which � is the convective heat coefficient and Tenv is the temperature of

2

the medium surrounding the convective boundary. The nonlinear convective

boundary condition can be written as

�(T)
∂T

∂n
= −�(T − Tenv) (1.4)

∂T

∂n
+

�

�(T)
T =

�

�(T)
Tenv (1.5)

∙ Radiation boundary condition

q = �"(T 4 − T 4
r), (1.6)

where � is the Stefan-Boltzmann constant and " in the emissivity between

the surface and the boundary at temperature Tr.

3. Nonlinear sources: These are characteristic of some kind of chemical reaction or

phase transition taking place within the solid medium.

1.3 Computation Techniques

A variety of engineering analysis methods are available for solution of nonlinear

transient heat transfer problems. A commonly used engineering analysis method for

solution of these problems is the finite-difference method (FDM) [18]. Finite element

method (FEM) [2] is also a commonly used method to solve these problems. The pri-

mary advantages of the finite element method over the finite difference method are that

irregular boundaries can be handled easily, and the size of the finite element can be

varied easily over the region. Another method used is the boundary element method

(BEM) [26], where the numerical solution of the continuum is performed with a reduc-

tion of dimensionality of the problem. The success of BEM is that the number of the

resulting simultaneous equations depends only upon the discretization of the boundary

of the domain and that technique can be employed to represent the solution over the

boundary elements. Thus the problem can be treated with one less dimension.

Out of all the engineering analysis methods mentioned above and others that

have been developed so far, the FEM has found to be the most used. However, FEM

3

relies on various spacial discretizations (meshes, grids, etc.) that have to conform to the

shape of the geometric object. Creation of such spatial discretization known as meshing,

can be a difficult and computationally expensive procedure. These traditional methods

of engineering analysis methods (FEM, BEM, etc), rely on the spatial discretization

(meshing) of the geometric domain and/or its boundary to enforce or approximate the

imposed boundary conditions at discrete location.

Although there has been tremendous advances in meshing technology that allows

for automatic meshing of most geometries, the appropriate meshing remain challenging

for complicated geometries where meshing can dominate manual and computer solution

time. Also, once meshes are constructed, they severely constrain the geometric model,

thus limiting possible changes to the geometry, motions, and deformations such as those

needed for shape optimization and dynamic simulations [24]. This stimulated the devel-

opment of alternative engineering analysis methods known as meshfree methods, which

employ spatial discretizations that do not necessarily have to conform to the shape of

the geometric model.

By contrast, meshfree methods discretize not the geometric domain but the under-

lying functional space. In meshfree systems, the geometric model of the domain neither

conforms to nor is restricted by spacial discretization. Meshfree systems for engineering

analysis therefore offer numerous advantages such as better handling of moving bound-

aries and changing geometry, over systems that are based on the traditional mesh-based

methods. But they also require radical approaches to enforcing boundary conditions.

Therefore, one of the main challenges for meshfree methods lies in constructing solutions

to boundary value problems that satisfies the boundary conditions. In recent years a

number of techniques with basis functions that do not have to conform to the geometry

of the domain have been developed, example: Smooth Particle Hydrodynamics (SPH)

[11], the diffuse element method (DEM) [14], the HP cloud method [3], partition of unity

methods (PUM) [13], the reproducing kernel particle method (RKPM) [9], and others.

The geometric non-conformance of all such meshfree methods makes treatment of

the boundary condition more challenging. Proposed remedies for this problem include

the combination of Element Free Galerkin Method (EFG) with finite element shape

4

functions near the boundary [7], window or correction functions that vanishes on the

boundary [3], the use of modified variational principle [10], and lagrange multipliers.

Although these techniques appeared promising, they often contradict the meaning of

meshfree because of the nature of the approximation near the boundary.

In this thesis work, we adopted the meshfree method with distance fields, also

called R-function method (RFM), to support solutions of nonlinear transient heat trans-

fer problems. The salient feature of this method is that it allows all prescribed boundary

to be satisfied exactly on all boundary points.

1.4 Meshfree Method with Distance Fields

1.4.1 Basic idea of meshfree method with distance fields

In this thesis work, we employed meshfree methods with distance fields to support

solutions of nonlinear transient heat transfer problems. The initial idea of the meshfree

method with distance fields was first proposed by Kantorovich [6]. Kantorovich pro-

posed to represent a field that satisfied homogeneous Dirichlet boundary conditions as

a product of two functions: u = !Φ, where

1. ! is an implicit representation of geometry with zero set corresponding to the

geometry and non-vanishing gradient at all points of the zero set [6].

2. Φ is an unknown function that allows to satisfy (exactly or approximately) the

differential equation of the problem.

A key feature of this formulation is the ability to exactly satisfy boundary conditions on

the zero set of !. The idea at first appeared to have limited use because it was not clear

at the time how to construct function ! for complex shapes, and because the method

did not seem to generalized to other types of boundary value problems.

Several years later, Rvachev proposed that functions taking on zero value on

boundary of the geometric domain can be constructed for virtually any geometric ob-

ject using the theory of R-functions [23]. R-functions serves as a construction toolkit

transforming a set-theoretic description of the boundary of the geometric object into a

real valued function whose zero set coincides with the boundary. Details on R-functions

and implementation techniques can be found in [1, 23]. Functions constructed using

R-functions behave as distance to the boundaries near the boundary points and posses

5

desired differential properties required for solution of the boundary value problem. In

meshfree method with distance fields we are using the theory of R-functions to construct

the approximate distance fields, therefore, meshfree method with distance fields is often

referred to as R-function method. However, besides techniques based on the theory of

R-functions, other methods may also be applied for construction of approximate distance

fields. For example, the level set method [19], which results in distance-like functions

can be used [4].

Representing boundaries of a geometric object by approximate distance fields

made possible the extension of Kantorovich initial idea into the meshfree method with

distance fields. Shapiro and Tsukanov showed that the method may be completely au-

tomated for a wide class of geometric and physical problems in a common meshfree

environment [24]. Theoretical completeness of the method is shown in [17]. Meshfree

method with distance fields allows the satisfaction of many types of boundary condi-

tions exactly by employing solution structures that incorporate boundary conditions,

approximate distance fields, and basis functions with unknown coefficients [17].

1.4.2 Principle of meshfree method with distance fields

The idea of the method is based on the observation that the solution of a differ-

ential equation with Dirichlet boundary conditions

u∣∂Ω = ', (1.7)

can be represented in the form

u = !Φ+ ', (1.8)

where ! is a distance field to the boundary ∂Ω, and Φ is an arbitrary function. The

distance field ! is constructed to take on zero value on the boundary ∂Ω and is positive

in the interior of the domain Ω (Figure 1.1). Function u satisfies the prescribed Dirichlet

boundary condition regardless of the function Φ. This representation of the solution in

expression (1.8) is classified as a solution structure. The advantages of representing the

solution u as a solution structure of this form are:

6

¶W 0w =

Figure 1.1: The domain for the heat transfer problem

∙ The expression (1.8) includes two independent types of information:

1. The function ! completely describes all the geometric information of the

problem.

2. The function Φ whose sole purpose is to satisfy the analytical constraints of

the boundary value problem exactly or approximately.

∙ Since ! is constructed to be identically zero on the boundary ∂Ω of the geometric

domain, any function u of the form expression (1.8) will satisfy the boundary

condition (1.7) exactly, independently of the properties of the unknown function

Φ or the type of differential equation.

∙ Expression (1.8) contains no information about the differential equation of the

boundary value problem. Rather, it represents the structure of the given geometric

constraints.

∙ For any given boundary value problem, determination of the unknown Φ translates

into solution to the boundary value problem. Since we cannot expect to determine

such Φ exactly, we can approximate it by a finite-independent series

Φ =

n
∑

i=1

Ci�i (1.9)

where Ci are scalar coefficient and �i are some basis function.

∙ The solution structure (1.8) does not place any constraint on the choice of the

functions �i that approximate the function Φ. And in particular, the choice of the

7

coordinate functions does not depend on any particular spatial discretization of

the geometric domains or its boundary conditions.

∙ For any given boundary value problem and a choice of the coordinate basis �i, the

approximate solution is obtained as

u = !
n

∑

i=0

Ci�i (1.10)

and a variety of numerical methods can be used to solve for the numerical values

of the coefficients Ci.

From a computational point of view, the intrinsic advantage of this procedure is in the

clean modular separation of the geometric information represented by the function !

from the differential equation and the numerical method used to determine the unknown

function Φ.

1.4.3 Solution Structures for Any Boundary Conditions

Rvachev, later noticed that the expression (1.8) is a zero order Taylor series ex-

pansion of u by the powers of the distance field ! with the product !Φ playing the role

of a remainder term. Generalizing Kantorovich idea, Rvachev showed that any function

can be represented by the powers of a distance field ! [16]:

u = u∗0 +

m
∑

i=1

u∗i
!i

i!
+ !m+1Φ (1.11)

This power series looks very familiar to the classical Taylor series. In fact, if coefficients

u∗i
m
i=0

represent normal derivatives of u prescribed at the zero set of the distance field !,

the power series (1.11) represent a generalized Taylor series expansion of the function u

by the powers of the distance field !.

This straightforward generalization of Kantorovich idea allows systematic con-

struction of solution structures for any and all boundary conditions. In each case, the

solution structure will exactly interpolate all values and derivatives prescribed on the

boundary and will contain necessary degrees of freedom (approximating the remainder

term in the Taylor series expansion) in order to approximate the governing equations

8

of the problem. It can be shown that such a solution structure forms a complete space

of functions that satisfy the given boundary conditions exactly and approximate the

governing equation of the problem [17].

However in order to represent normal derivatives of u prescribed on the boundary

∂Ω, these coefficients u∗i
m
i=0

have to be constant up to mth order of the normal direction

to the boundary. This implies that

∂ku∗i
∂nk

∣∂Ω = 0, i = 1,, m. (1.12)

Most functions prescribed as boundary conditions do not satisfy condition (1.12) auto-

matically. An operation known as conditioning of the function is used to transform any

function u into a function satisfying the condition (1.12). One satisfactory means to

condition a function appears as follows:

u∗ = u−

m
∑

i=0

1

i!
!iD!

i (u), (1.13)

where the differential operator D!
i is given as

D!
i () = (∇() ⋅ ∇!)i. (1.14)

The remainder term !m+1Φ in equation (1.11) ensures the completeness on u [17], and

it can be used to enforce additional constraints.

Using this generalized form, solution structures have been derived and catalog for

most boundary conditions. Table 1.1 presents the solution structures for most popular

boundary conditions for second order partial differential equation. Function ! in the

solutions structure is constructed as an approximate distance field using R-functions.

Depending on the desired computational properties, basis function can be selected form

B-splines, polynomials, trigonometric polynomials, or any other popular choices.

9

Table 1.1: Example solution structures corresponding to boundary conditions for the
second order partial differential equation

Type of
Boundary
Condition

Mathematical
Formulation

Corresponding Solution Structure

Dirichlet
u∣∂Ω = ' u = !Φ+ '

Neumann
∂u
∂n
∣∂Ω = ' u = Φ− !D!

1 (Φ)− !Φ+ !'+ !2Φ

3-rd kind
(∂u
∂n

+ ℎu)∣∂Ω = ' u = Φ− !D!
1 (Φ)− ℎ!Φ+ !'+ !2Φ

Mixed u∣∂Ω = '
(∂u
∂n

+ ℎu)∣∂Ω2
=

u = !1Φ + !1!2

!1+!2

(+ !2Φ − D!2

1 (!1Φ) −
D!2

1 (')− ℎ!1Φ− ℎ') + '

1.5 Personal Contribution

Many practical engineering analyses require solving nonlinear heat transfer prob-

lems caused by temperature-dependent material properties. These problems are usually

solved only approximately by using one of the many known numerical techniques. In this

thesis work, we extended the meshfree method with distance fields to support numerical

solutions of such nonlinear transient heat transfer problems.

The thesis work involved developing and implementing numerical algorithms, data

structure and software. Numerical algorithms were developed to solve nonlinear tran-

sient heat transfer problems with Dirichlet boundary conditions, and convective bound-

ary conditions. Numerical formulation of the approximate solution of nonlinear heat

transfer problems was based on Galerkin residual method. We applied Oseen and

Newton-Kantorovich linearization schemes to linearize the nonlinear terms in nonlinear

equations, which leads to an iterative procedure. We observed that Newton-Kantorovich

scheme may not converge to the solution when temperature-dependence of thermal con-

ductivity is very steep, and Oseen may be slow to converge to the solution. Therefore,

we developed and implemented numerical algorithms that applied both schemes during

the linearization process. This formulation produced an efficient linearization procedure

which was observed to always converged to the solution.

10

The meshfree method with distance fields explicitly incorporates the temperature-

dependent material properties in the approximate solution and it enables all prescribed

boundary conditions to be satisfied exactly. Therefore, solving nonlinear transient heat

transfer problems using the meshfree method with distance fields module that we devel-

oped, has the potential to produce fast converging and accurate results. The software

was developed using C++ programming language. The computational methodology was

validated by FEM.

1.6 Thesis Outline

The thesis is arranged as follows: Chapter 2 presents numerical formulations of

solution to nonlinear transient heat transfer problems with Dirichlet boundary condi-

tions and convective boundary conditions. The basis for the formulation to approximate

solution of the nonlinear heat transfer problem is the Galerkin method [8], as a special

case of the method of weighted residual. To solve the transient problem, a backward

(implicit Euler) finite difference scheme is applied to the partial derivative of tempera-

ture with respect to time. The nonlinear equation is linearized by applying Oseen and

Kantorovich linearization schemes [25].

In Chapter 3, results of the numerical experiments are discussed. Numerical exper-

iments were conducted for both constant and temperature-dependent thermal conductiv-

ities. The behavior of the numerical algorithms are observed for temperature-dependence

of thermal conductivity of real materials with actual temperature-dependency taken

from standard materials database. Convergence and accuracy of the numerical solutions

obtained by the meshfree method with distance fields are compared with analytical so-

lutions, and solutions produced by commercial FEM package ANSYS 12.1. Chapter 4

discusses the benefits of using meshfree method with distance fields to solve nonlinear

transient heat transfer problems, conclusion, and recommendations for future develop-

ment of this project.

11

CHAPTER 2

NUMERICAL FORMULATION

2.1 Temperature-Dependent Thermal Conductivity

Solution of any field problem depends on the physical law governing the distribu-

tion of the physical quantities throughout the domain, boundary conditions describing

the interaction of the domain and its external environment, and the initial conditions

which determine the field at some point in time. The balance equation that described

the transient heat conduction in solids with temperature-dependent thermal properties,

thermal conductivity �(T), specific heat c(T) and density �(T), is given as a partial

differential expression

c(T)�(T)
∂T

∂t
− div[�(T)∇T]−Q = 0. (2.1)

For this thesis work, specific heat and density are assumed to be constant, and there is

no internal heat generation Q. The balanced equation (2.1) is therefore expressed as a

nonlinear differential equation of the form

c�
∂T

∂t
− div[�(T)∇T] = 0. (2.2)

Equation (2.2) is a transient equation with three spacial coordinates (x, y, z). The

approximate solution along these spacial coordinates are themselves function of time

and their values at any time instant are dependent on the earlier solutions. The function

describing the temperature distribution in space and time is presented as T (x, y, z, t).

To solve the problem, we first discretize by time, and then apply linearization scheme

to obtain solution of the quasi-steady nonlinear problem.

12

2.2 Time stepping

We expressed the relationship between the temperatures and the rate of temper-

atures (∂T
∂t
) at two different time instances , tn+1 and tn, as

∂T

∂t
=
T n+1 − T n

Δt
, (2.3)

where T n+1 expressed the temperature distributions at the current time tn+1 and T n

expressed the temperature distributions at the previous time tn. Substituting expression

(2.3) into equation (2.2) leads to two choices of finite difference time stepping schemes:

1. Explicit (forward Euler) method. The explicit method is very fast but requires

small time steps to insure numerical stability. Applying this method to equation

(2.2), we obtain

T n+1 =
Δt

c�
�(T)∇2T n + T n. (2.4)

2. Implicit (backward Euler) method. The implicit method requires much more com-

puter storage than the explicit method but it has the advantage of using large time

step, thus resulting in a more efficient procedure. Equation (2.2) for this method

becomes

Δt

c�
�(T)∇2T n+1 − T n+1 = −T n. (2.5)

The backward implicit method is adopted and applied to solve the transient problem

because this method is unconditionally stable, and it tends to eliminate oscillations

in the solution. To complete the formulation of the nonlinear transient heat transfer

problem we need to prescribe the initial conditions. We can apply known distribution

of the temperature field, or assume that the initial temperature distribution occurred

sufficiently far in advance, therefore, satisfies the steady-state version of the equation.

13

2.3 Galerkin Method for Modeling Heat Transfer Problems

A variety of numerical methods can be used to approximate the solution of equa-

tion (2.5). For this thesis, we used the weighted residual method known as Galerkin

method [8] to obtain approximate solutions of nonlinear transient heat transfer prob-

lems. First, the balance equation (2.5) is written in the residual form as

rB =
Δt

c�
�(T)∇2T n+1 − T n+1 + T n. (2.6)

The Galerkin approach is formulated by describing the balance residual equation (2.6)

as the weighted residual equation of the form

∫

Ω

rB!�j dΩ = 0 j = 1, ..., N. (2.7)

In equation (2.7), the residual rB is multiplied by a test function !�j, where ! is a

distance field to the boundary ∂Ω and �i is a basis function. Substituting the balance

residual expression (2.6) into equation (2.7), we obtain

∫

Ω

Δt

c�
�(T)∇2T n+1(!�j) dΩ−

∫

Ω

T n+1(!�j) dΩ = −

∫

Ω

T n(!�j) dΩ. (2.8)

Meshfree method with distance fields requires that solution of the boundary value prob-

lem equation (2.8) must incorporate the analytic information about the boundary con-

ditions, as well as geometric information about the boundaries where these conditions

are specified. As described in section 1.4.3, Rvachev proposed to represent the solution

T n+1 we sought by a solution structure. A solution structure is a function that satis-

fies exactly all the prescribe boundary conditions. Solution structures corresponding to

boundary conditions for heat transfer problems are well documented in Table 1.1.

14

According to [16], the solution structure (sought solution) can be split into homogeneous

and nonhomogeneous parts:

T n+1 = T n+1
0 + T n+1

1 . (2.9)

The homogeneous part T n+1
0 is a linear combination of basis function satisfying the ho-

mogeneous boundary conditions. The nonhomogeneous part T n+1
1 satisfies the boundary

conditions, and contains the functions prescribed in the boundary conditions (1.2), (1.5)

and (1.6). Substituting the two part solution structure (2.9) into equation (2.8) yields

∫

Ω

Δt

c�
∇2(T n+1

0 + T n+1
1)�(T)(!�j) dΩ−

∫

Ω

(T n+1
0 + T n+1

1)(!�j) dΩ =

−

∫

Ω

T n(!�j) dΩ.

(2.10)

Expanding equation (2.10) and keeping only the homogeneous terms on the left side of

the equations , we obtain

∫

Ω

Δt

c�
∇2(T n+1

0)�(T)(!�j) dΩ−

∫

Ω

(T n+1
0)(!�j) dΩ =

−

∫

Ω

Δt

c�
∇2(T n+1

1)�(T)(!�j) dΩ+

∫

Ω

(T n+1
1)(!�j) dΩ−

∫

Ω

T n(!�j) dΩ.

(2.11)

At time tn+1, equation (2.11) describes a quasi-steady nonlinear problem for the unknown

temperature distribution T n+1. Note that the right side of equation (2.11) contains only

known quantities including the nonhomogeneous solution T n+1
1 and the temperature

distribution T n obtained at the previous time step tn. The next step of solving equation

(2.11) is to substitute for T n+1
0 and T n+1

1 the appropriate solution structure that defines

the problem. The subsequent solution procedure will determine the coefficients that

approximate the differential equation (2.2) and thus the temperature field T n+1.

15

2.4 Dirichlet Boundary Conditions

The Dirichlet boundary conditions for nonlinear transient heat transfer is written

as follows:

T∣∂Ω = T1(x, y, z, t), (2.12)

where T1(x, y, z, t) is the value of the temperature prescribed on the boundary ∂Ω of

the geometric domain. The solution structure for nonhomogeneous Dirichlet boundary

conditions is given as follows:

T n+1 = !Φn+1 + T n+1
1 , (2.13)

where the product of the approximate distance to the boundary ! of the geometric

domain and the unknown function Φn+1 is the homogeneous part T n+1
0 of the two part

solution structure (2.9). The function Φn+1 cannot be determined exactly, therefore it

is represented by linear combination of basis functions {�i}
N
i=1

Φn+1 =

N
∑

i=1

Cn+1
i �i. (2.14)

Substituting expression (2.14) into (2.13), the homogeneous part of the solution can be

written as

T n+1
0 = !

N
∑

i=1

Cn+1
i �i. (2.15)

The nonhomogeneous part T n+1
1 of the solution structure is given as

T n+1
1 = 'n+1 (2.16)

and is the prescribed temperatures on the boundary ∂Ω.

16

Substituting expressions (2.44) and (2.16) into equation (2.11) and computing

for the unknown coefficients will yield approximate solution to the problem. But note

that the first integral on both sides of equation (2.11) contains second derivatives of

temperatures. Balancing the order of the differentiation by shifting one derivative from

temperature to the test function (!�j) in these integrals has proven to be beneficial. We

can do this by applying Gauss (divergence) theorem to these integral which yields:

∫

Ω

Δt

c�
∇2(T n+1

0)�(T)(!�j) dΩ =

−

∫

Ω

Δt

c�
∇(T n+1

0)�(T)∇(!�j) dΩ+

∫

∂Ω

Δt

c�

∂(T n+1
0)

∂n
�(T)(!�j) dS

j = 1, ..., N

(2.17)

and

−

∫

Ω

Δt

c�
∇2(T n+1

1)�(T)(!�j) dΩ =

∫

Ω

Δt

c�
∇(T n+1

1)�(T)∇(!�j) dΩ−

∫

∂Ω

Δt

c�

∂(T n+1
1)

∂n
�(T)(!�j) dS

j = 1, ..., N.

(2.18)

Since ! vanishes on the boundary ∂Ω, the boundary integrals in (2.17) and (2.18) become

zero. Substituting the results of (2.17) and (2.18) into equation (2.11) yields:

−

∫

Ω

Δt

c�
∇(T n+1

0)�(T)∇(!�j) dΩ−

∫

Ω

(T n+1
0)(!�j) dΩ =

∫

Ω

Δt

c�
∇(T n+1

1)�(T)∇(!�j) dΩ+

∫

Ω

(T n+1
1)(!�j) dΩ−

∫

Ω

T n(!�j) dΩ

j = 1, ..., N.

(2.19)

Equation (2.19) is now a single weighted residual equation which contains the solution

to nonlinear transient heat transfer problems with Dirichlet boundary conditions. Since

the meshfree method with distance fields solution structure satisfies the given boundary

17

conditions exactly, solving the problem entails computing the set of unknown coefficients

{Cn+1
i }Ni=1 in the solution structure that gives the best approximation to the differential

equation (2.2). However, equation (2.19) contains the nonlinear terms that have to be

linearized before solution to the problem can be found.

Since the way of linearization can significantly affect the rate of convergence to-

wards the final solution, choice of an appropriate linearization method is important. In

this thesis work, we employed two different linearization schemes to linearize the non-

linear terms in equation (2.19); Oseen linearization scheme and Newton-Kantorovich

linearization scheme. Both Oseen and Newton-Kantorovich linearization schemes lead

to an iterative solution procedure. Since the problem is also transient, the numerical

algorithm requires two loops:

1. Loop that solves the quasi-steady nonlinear problem at the current time tn+1 by

updating the nonlinear terms until solution converges. In the derivation that

follows, superscripts k + 1 and k denote solutions at the current and previous

iterations respectively for this loop.

2. Loop that propagates the converged solution in time Δt.

2.4.1 Oseen Linearization

Oseen linearization is the simplest linearization scheme used to linearize the non-

linear terms in equation (2.19). It leads to an iterative procedure that involves updating

the nonlinear terms with values evaluated using solutions obtained at the previous itera-

tion counter. Updating the terms continues until the difference between two consecutive

solutions is sufficiently small. Applying Oseen linearization scheme to equation (2.19),

we obtain

∫

Ω

Δt

c�
∇(T k+1

0)�(T k)∇(!�j) dΩ−

∫

Ω

∇(T k+1
0)(!�j) dΩ =

∫

Ω

Δt

c�
∇(T n+1

1)�(T k)∇(!�j) dΩ+

∫

Ω

(T n+1
1)(!�j) dΩ−

∫

Ω

T k(!�j) dΩ

(2.20)

18

Note that T k in equation (2.20) is the solution obtained at kth iteration during the

iterative procedure that linearizes the nonlinear terms. The nonhomogeneous solution

T n+1
1 is evaluated at the current time step but it is not temperature-dependent.

Equation (2.20) is a system of linear algebraic equations [aij][C
k+1
i] = [bj] whose

solution gives the numerical values of the unknown coefficients Ck+1
i in the solution

structure. The unknown coefficients Ck+1
i are computed as follows:

ai,j = −
Δt

c�

∫

Ω

∇(!�i)�(T
k)∇(!�j) dΩ−

∫

Ω

(!�i)(!�j) dΩ

bj =
Δt

c�

∫

Ω

∇(T n+1
1)�(T k)∇(!�j) dΩ+

∫

Ω

(T n+1
1)(!�j) dΩ−

∫

Ω

T k(!�j) dΩ

(2.21)

Solving the linear system (2.55) and substituting the value of coefficients Ck+1
i into

the solution structure (2.13) yields an approximate solution T n+1 to the quasi-steady

nonlinear problem at time tn+1.

2.4.2 Newton-Kantorovich Linearization

Applying Newton-Kantorovich linearization scheme to equation (2.19) leads to and

iterative procedure. The procedure involves updating the nonlinear terms with values

evaluated using solutions obtained at the previous iteration counter. Updating the terms

continues until the difference between the two consecutive solutions is sufficiently small.

Newton-Kantorovich linearization enjoys rapid convergence and has been successfully

applied to solve for nonlinear equations in fluid dynamics and heat transfer [25].

Consider a function uv, we can expand it in a Taylor series about the current

value and terminate the series expansion after the first-derivative terms. As shown in

19

[25], the result is as follows:

uk+1vk+1 = ukvk +

[

∂

∂u
(uv)k

]

(uk+1 − uk) +

[

∂

∂v
(uv)k

]

(vk+1 − vk) +H.O.T

= ukvk + vk(uk+1 − uk) + uk(vk+1 − vk)

= ukvk + uk+1vk − ukvk + ukvk+1 − ukvk

uk+1vk+1 = uk+1vk + ukvk+1 − ukvk

(2.22)

Linearization of the temperature-dependent terms in equation (2.19) by Newton-Kantorovich

scheme, starts from rewriting equation (2.19) as

−

∫

Ω

Δt

c�
∇(T k+1

0)�(T k+1)∇(!�j) dΩ−

∫

Ω

(T k+1
0)(!�j) dΩ =

∫

Ω

Δt

c�
∇(T k+1

1)�(T k+1)∇(!�j) dΩ+

∫

Ω

(T n+1
1)(!�j) dΩ−

∫

Ω

T k(!�j) dΩ

j = 1, ..., N.

(2.23)

According to (2.22), we can rewrite the terms ∇(T k+1
0)�(T k+1) and ∇(T k+1

1)�(T k+1) in

equation (2.23) as:

∇T k+1
0 �(T k+1) = ∇T k+1

0 �(T k) +∇T k
0 �(T

k+1)−∇T k
0 �(T

k) (2.24)

and

∇T k+1
1 �(T k+1) = ∇T k+1

1 �(T k) +∇T k
1 �(T

k+1)−∇T k
1 �(T

k) (2.25)

Since Newton-Kantorovich linearization strategy is to evaluate the nonlinear terms using

solutions obtained at the previous iteration counter k, we expressed �(T k+1) as a Taylor

series expansion

�(T k+1) = �(T k) +
∂�

∂T k
(T k+1 − T k). (2.26)

20

Expanding expression (2.26) and substituting into expressions (2.24) and (2.25) yields:

∇T k+1
0 �(T k+1) = ∇T k+1

0 �(T k) +∇T k
0

∂�

∂T k
T k+1 −∇T k

0

∂�

∂T k
T k (2.27)

and

∇T k+1
1 �(T k+1) = ∇T k+1

1 �(T k) +∇T k
1

∂�

∂T k
T k+1 −∇T k

1

∂�

∂T k
T k (2.28)

In expressions (2.27) and (2.28), the nonlinear terms are now expressed as functions of the

temperature distribution obtained at the previous iteration T k. Substituting expressions

(2.27) and (2.28) into equation (2.23), we obtained the single weighted residual equation

with Newton-Kantorovich linearization scheme applied as

−

∫

Ω

Δt

c�
∇(T k+1

0)�(T k)∇(!�j) dΩ−

∫

Ω

Δt

c�
∇(T k

0)
∂�

∂T k
T k+1∇(!�j) dΩ

+

∫

Ω

Δt

c�
∇(T k

0)
∂�

∂T k
T k∇(!�j) dΩ−

∫

Ω

(T k+1
0)(!�j) dΩ =

∫

Ω

Δt

c�
∇(T n+1

1)�(T k)∇(!�j) dΩ+

∫

Ω

Δt

c�
∇(T k

1)
∂�

∂T k
T k+1∇(!�j) dΩ

−

∫

Ω

Δt

c�
∇(T k

1)
∂�

∂T k
T k
1 ∇(!�j) dΩ+

∫

Ω

(T n+1
1)(!�j) dΩ−

∫

Ω

T k(!�j) dΩ

j = 1, ..., N.

(2.29)

We can express T k+1 as a two part homogeneous and nonhomogeneous solution structure

T k+1 = T k+1
0 + T k+1

1 which yields:

−

∫

Ω

Δt

c�
∇(T k+1

0)�(T k)∇(!�j) dΩ−

∫

Ω

Δt

c�
(T k+1

0)
∂�

∂T k
∇(T k)∇(!�j) dΩ

−

∫

Ω

(T k+1
0)(!�j) dΩ =

∫

Ω

Δt

c�
∇(T n+1

1)�(T k)∇(!�j) dΩ+

∫

Ω

Δt

c�
∇(T k)

∂�

∂T k
(T n+1

1)∇(!�j) dΩ

−

∫

Ω

Δt

c�
∇(T k)

∂�

∂T k
(T k)∇(!�j) dΩ+

∫

Ω

(T n+1
1)(!�j) dΩ−

∫

Ω

T k(!�j) dΩ

j = 1, ..., N.

(2.30)

21

Note that the nonhomogeneous solution T n+1
1 is evaluated at the current time step but

it is not temperature-dependent, therefore it is denoted by the superscript n + 1.

Equation (2.30) is a system of linear algebraic equations [aij][C
k+1
i] = [bj] whose

solution gives the numerical values of the unknown coefficients in the solution structure.

The unknown coefficients Ck+1
i are computed as follows:

ai,j = −

∫

Ω

Δt

c�
∇(!�i)�(T

k)∇(!�j) dΩ−

∫

Ω

Δt

c�
(!�i)

∂�

∂T k
∇T k∇(!�j) dΩ

−

∫

Ω

(!�i)(!�j) dΩ

bj =

∫

Ω

Δt

c�
∇(T n+1

1)�(T k)∇(!�j) dΩ+

∫

Ω

Δt

c�
(T n+1

1)
∂�

∂T k
∇T k∇(!�j) dΩ

−

∫

Ω

Δt

c�
∇(T k)

∂�

∂T k
T k∇(!�j) dΩ+

∫

Ω

T n+1
1 (!�j) dΩ−

∫

Ω

T k(!�j) dΩ

(2.31)

Solving the linear system (2.65) and substituting the value of coefficients Ck+1
i into

the solution structure (2.13) yields an approximate solution T n+1 to the quasi-steady

nonlinear problem at time tn+1.

2.5 Convective Boundary Conditions

Nonlinear convective boundary conditions has the general form

�(T)
∂T

∂n

∣

∣

∣

∣

∂Ω

= −�(T − Tenv), (2.32)

where �(T) is temperature-dependent thermal conductivity, Tenv is temperature of the

medium surrounding the convective boundary, and � is heat transfer coefficient. We can

rewrite (2.32) as
(

∂T

∂n
+

�

�(T)
T

)
∣

∣

∣

∣

∂Ω

=
�Tenv
�(T)

(2.33)

and expressed the following terms in (2.33) as

�

�(T)
= ℎ (2.34)

22

�Tenv
�(T)

= ' (2.35)

Substituting expressions (2.34) and (2.35) into (2.32), we can rewrite the nonlinear

convective boundary condition as

∂T

∂n

∣

∣

∣

∣

∂Ω

= '− ℎT

∣

∣

∣

∣

∂Ω

. (2.36)

According to [16], the solution structure for a boundary value problem with any types

boundary conditions can be represented by the generalized Taylor series expansion of

the form

T = T (0) + !T ′(0) + !2T ′′(0) + (!3)O, (2.37)

where T (0) = T ∣∂Ω and T (0)′ = ∂T
∂n
∣∂Ω.

From this generalized representation of the solution structure, the corresponding

solution structure for boundary value problems with convective boundary conditions

(2.36) can be written in the form

T = Φ1 − !D!
1 (Φ) + !('− ℎΦ1) + !2Φ2, (2.38)

where

D!
1 (Φ) =

∂!

∂x

∂Φ

∂x
+
∂!

∂y

∂Φ

∂y
+
∂!

∂z

∂Φ

∂z
= ∇! ⋅ ∇Φ (2.39)

is a differential operator in the direction of the internal normal to the boundary ∂Ω.

It should be noted clearly that the remainder term !2Φ2 assures completeness of this

solution structure [17]. The solution structure representing the sought solution T n+1 of

our nonlinear transient heat transfer problem with convective boundary conditions can

be written as

T n+1 = Φn+1 − !D!
1 (Φ

n+1)− !ℎΦn+1 + !'n+1. (2.40)

23

As shown in [16], it is convenient to represent (2.40) as sum T n+1 = T n+1
0 + T n+1

1 of

homogeneous and nonhomogeneous parts:

T n+1
0 = Φn+1 − !D!

1 (Φ
n+1)− !ℎΦn+1 (2.41)

T n+1
1 = !'n+1. (2.42)

The function Φn+1 cannot be determined exactly, therefore it is represented by linear

combination of basis functions {�i}
N
i=1

Φn+1 =

N
∑

i=1

Cn+1
i �i (2.43)

Substituting expression (2.43) into (2.40), the homogeneous part of the solution can be

written as

T n+1
0 =

N
∑

i=1

Cn+1
i

(

�i −D!
1�i + ℎ�i

)

! (2.44)

and further represented as

T n+1
0 =

N
∑

i=1

Cn+1
i (�i) (2.45)

Substituting expressions (2.42) and (2.45) into equation (2.11) and computing

for the unknown coefficients will yield approximate solution to the problem. But note

that the first integral on both sides of equation (2.11) contains second derivatives of

temperatures. Balancing the order of the differentiation by shifting one derivative from

temperature to the test function (!�j) in these integrals has proven to be beneficial. We

can do this by applying Gauss (divergence) theorem to these integral.

24

Applying Gauss (divergence) theorem to the first integral on the left side of equa-

tion(2.11)) yields:

∫

Ω

Δt

c�
∇2(T n+1

0)�(T)�j dΩ =

−

∫

Ω

Δt

c�
∇(T n+1

0)�(T)∇�j dΩ+

∫

∂Ω

Δt

c�

∂(T n+1
0)

∂n
�(T)�j dS

(2.46)

From equation (2.33) we can write the homogeneous convective boundary conditions as

(

∂T n+1
0

∂n
+

�

�(T)
T n+1
0

)
∣

∣

∣

∣

∂Ω

= 0 (2.47)

∂T n+1
0

∂n

∣

∣

∣

∣

∂Ω

= −
�

�(T)
T n+1
0

∣

∣

∣

∣

∂Ω

(2.48)

Substituting expression (2.48 into (2.46) gives

∫

Ω

Δt

c�
∇2(T n+1

0)�(T)�j dΩ =

−

∫

Ω

Δt

c�
∇(T n+1

0)�(T)∇�j dΩ−

∫

∂Ω

Δt

c�
T n+1
0 ��j dS

(2.49)

Applying Gauss (divergence) theorem to the first integral on the right side of equa-

tion(2.11)) yields:

−

∫

Ω

Δt

c�
∇2(T n+1

1)�(T)�j dΩ =

∫

Ω

Δt

c�
∇(T n+1

1)�(T)∇�j dΩ−

∫

∂Ω

Δt

c�

∂(T n+1
1)

∂n
�(T)�j dS

(2.50)

From equation (2.33) we can write the nonhomogeneous convective boundary condition

as

∂T n+1
1

∂n

∣

∣

∣

∣

∂Ω

=
�Tenv
�(T)

∣

∣

∣

∣

∂Ω

(2.51)

25

Substituting expression (2.51 into (2.46) we obtain,

−

∫

Ω

Δt

c�
∇2(T n+1

1)�(T)�j dΩ =

∫

Ω

Δt

c�
∇(T n+1

1)�(T)∇�j dΩ−

∫

∂Ω

Δt

c�
�Tenv�j dS

(2.52)

We now substitute (2.46) and (2.46) into (2.11) which yields:

−

∫

Ω

Δt

c�
∇T n+1

0 �(T)∇�j dΩ−

∫

∂Ω

Δt

c�
T n+1
0 ��j dS

−

∫

Ω

T n+1
0 �j dΩ =

∫

Ω

Δt

c�
∇T n+1

1 �(T)∇�j dΩ−

∫

∂Ω

Δt

c�
�Tenv�j dS

+

∫

Ω

T n+1
1 �j dΩ−

∫

Ω

T n�j dΩ

j = 1, ..., N.

(2.53)

Equation (2.53) is now a single weighted residual equation which contains the solution to

nonlinear transient heat transfer problems with convective boundary conditions. Solving

the problem entails computing the set of unknown coefficients {Cn+1
i }Ni=1 in the solution

structure that gives the best approximation to the differential equation (2.2). However,

equation (2.53) contains the nonlinear terms that have to be linearized before solution

to the problem can be found.

Since the way of linearization can significantly affect the rate of convergence to-

wards the final solution, choice of an appropriate linearization method is important. In

this thesis work, we employed two different linearization schemes to linearize the non-

linear terms in equation (2.53); Oseen linearization scheme and Newton-Kantorovich

linearization scheme. Both Oseen and Newton-Kantorovich linearization schemes lead

to an iterative solution procedure. Since the problem is also transient, the numerical

algorithm requires two loops:

1. Loop that solves the quasi-steady nonlinear problem at the current time tn+1 by

26

updating the nonlinear terms until solution converges. In the derivation that

follows, superscripts k + 1 and k denote solutions at the current and previous

iterations respectively for this loop.

2. Loop that propagates the converged solution in time Δt.

2.5.1 Oseen Linearization

Application of Oseen linearization to linearize the nonlinear terms in equation

(2.53) leads to an iterative solution procedure. The procedure involves updating the

nonlinear terms with values evaluated using solutions obtained at the previous iteration

counter. Updating the nonlinear terms continues until the difference between the current

and previous solutions is sufficiently small. Applying Oseen linearization scheme to

equation (2.53) yields

−

∫

Ω

Δt

c�
∇T n+1

0 �(T)∇�j dΩ−

∫

∂Ω

Δt

c�
T n+1
0 ��j dS

−

∫

Ω

T n+1
0 �j dΩ =

∫

Ω

Δt

c�
∇T n+1

1 �(T)∇�j dΩ−

∫

∂Ω

Δt

c�
�Tenv�j dS

+

∫

Ω

T n+1
1 �j dΩ−

∫

Ω

T k�j dΩ

j = 1, ..., N.

(2.54)

Note that T k in equation (2.54) is the solution obtained at kth iteration during the

iterative procedure that linearize the nonlinear terms. The nonhomogeneous solution

T n+1
1 is evaluated at the current time step but it is not temperature-dependent.

Equation (2.54) is a system of linear algebraic equations [aij][C
k+1
i] = [bj] whose

solution gives the numerical values of the unknown coefficients in the solution structure.

27

The unknown coefficients Ck+1
i are computed as follows:

ai,j = −
Δt

c�

∫

Ω

∇�i�(T
k)∇�j dΩ−

∫

Ω

�i�j dΩ

−

∫

∂Ω

Δt

c�
�i��j dS

bj =
Δt

c�

∫

Ω

∇T n+1
1 �(T k)∇�j dΩ+

∫

Ω

T n+1
1 �j dΩ−

∫

Ω

T k�j dΩ

−

∫

∂Ω

Δt

c�
Tenv��j dS

(2.55)

Solving the linear system (2.55) and substituting the value of coefficients Ck+1
i into

the solution structure (2.40) yields an approximate solution T n+1 to the quasi-steady

nonlinear problem at time tn+1.

2.5.2 Newton-Kantorovich Linearization

Applying Newton-Kantorovich linearization scheme to equation (2.53) leads to

and iterative procedure. The procedure involves updating the nonlinear terms with

values evaluated using solutions obtained at the previous iteration counter. Updating

the term continues until the difference between the current and previous solutions is

sufficiently small. Newton-Kantorovich linearization enjoys rapid convergence and has

been successfully applied to solve for nonlinear equations in fluid dynamics and heat

transfer [25].

Consider a function uv, we can expand it in a Taylor series about the current

value and terminate the series expansion after the first-derivative terms. As shown in

[25], the result is as follows:

uk+1vk+1 = ukvk +

[

∂

∂u
(uv)k

]

(uk+1 − uk) +

[

∂

∂v
(uv)k

]

(vk+1 − vk) +H.O.T

= uk+1vk + ukvk+1 − ukvk
(2.56)

28

Linearization of the nonlinear terms in equation (2.53) by Newton-Kantorovich scheme,

starts from rewriting equation (2.53) as

−

∫

Ω

Δt

c�
∇T k+1

0 �(T k+1)∇�j dΩ−

∫

∂Ω

Δt

c�
T n+1
0 ��j dS

−

∫

Ω

T n+1
0 �j dΩ =

∫

Ω

Δt

c�
∇T k+1

1 �(T k+1)∇�j dΩ−

∫

∂Ω

Δt

c�
�Tenv�j dS

+

∫

Ω

T n+1
1 �j dΩ−

∫

Ω

T k�j dΩ

j = 1, ..., N.

(2.57)

According to (2.56), we can rewrite ∇T n+1
0 �(T k+1) and ∇(T k+1

1)�(T k+1) in equation

(2.57) as:

∇T k+1
0 �(T k+1) = ∇T k+1

0 �(T k) +∇T k
0 �(T

k+1)−∇T k
0 �(T

k) (2.58)

and

∇T k+1
1 �(T k+1) = ∇T k+1

1 �(T k) +∇T k
1 �(T

k+1)−∇T k
1 �(T

k) (2.59)

Since Newton-Kantorovich linearization strategy is to evaluate the nonlinear terms using

solutions obtained at the previous iteration counter k, we expressed �(T k+1) as a Taylor

series expansion

�(T k+1) = �(T k) +
∂�

∂T k
(T k+1 − T k). (2.60)

Expanding expression (2.60) and substituting it into expressions (2.58) and (2.59) yields:

∇T k+1
0 �(T k+1) = ∇T k+1

0 �(T k) +∇T k
0

∂�

∂T k
T k+1 −∇T k

0

∂�

∂T k
T k (2.61)

and

∇T k+1
1 �(T k+1) = ∇T k+1

1 �(T k) +∇T k
1

∂�

∂T k
T k+1 −∇T k

1

∂�

∂T k
T k (2.62)

29

In expressions (2.61) and (2.62), the nonlinear terms are now expressed as functions of the

temperature distribution obtained at the previous iteration T k. Substituting expressions

(2.61) and (2.62) into equation (2.57), we obtain the single weighted residual equation

with Newton-Kantorovich linearization scheme applied as

−

∫

Ω

Δt

c�
∇T n+1

0 �(T k)∇�j dΩ−

∫

Ω

Δt

c�
∇T k

0

∂�

∂T k
T k+1∇�j dΩ

+

∫

Ω

Δt

c�
∇T k

0

∂�

∂T k
T k∇�j dΩ−

∫

Ω

T n+1
0 �j dΩ

−

∫

∂Ω

Δt

c�
T n+1
0 ��j dS =

∫

Ω

Δt

c�
∇T n+1

1 �(T k)∇�j dΩ+

∫

Ω

Δt

c�
∇T k

1

∂�

∂T k
T k+1∇�j dΩ

−

∫

Ω

Δt

c�
∇T k

1

∂�

∂T k
T k
1∇�j dΩ+

∫

Ω

T n+1
1 �j dΩ−

∫

Ω

T k�j dΩ

−

∫

∂Ω

Δt

c�
�Tenv�j dS

j = 1, ..., N.

(2.63)

We can express T k+1 as a two part homogeneous and nonhomogeneous solution structure

T k+1 = T k+1
0 +T k+1

1 . Substituting the two part solution structure for T k+1 into equation

(2.29) and keeping the homogeneous solution T k+1
0 terms on the left side of the equation

yields:

−

∫

Ω

Δt

c�
∇T n+1

0 �(T k)∇�j dΩ−

∫

Ω

Δt

c�
T n+1
0

∂�

∂T k
∇T k∇�j dΩ

−

∫

Ω

T n+1
0 �j dΩ−

∫

∂Ω

Δt

c�
T n+1
0 ��j dS =

∫

Ω

Δt

c�
T n+1
1 �(T k)∇�j dΩ+

∫

Ω

Δt

c�
∇T k ∂�

∂T k
T n+1
1 ∇�j dΩ

−

∫

Ω

Δt

c�
∇T k ∂�

∂T k
T k∇�j dΩ+

∫

Ω

T n+1
1 �j dΩ−

∫

Ω

T n�j dΩ

−

∫

∂Ω

Δt

c�
�Tenv�j dS

j = 1, ..., N.

(2.64)

30

Note that the nonhomogeneous solution T n+1
1 is evaluated at the current time step but

it is not temperature-dependent.

Equation (2.64) is a system of linear algebraic equations [aij][C
k+1
i] = [bj] whose

solution gives the numerical values of the unknown coefficients in the solution structure.

The unknown coefficients Ck+1
i are computed as follows:

ai,j = −

∫

Ω

Δt

c�
∇�i�(T

k)∇�j dΩ−

∫

Ω

Δt

c�
�i
∂�

∂T k
∇T k∇�j dΩ

−

∫

Ω

�i�j dΩ−

∫

∂Ω

Δt

c�
�i��j dS

bj =

∫

Ω

Δt

c�
∇T n+1

1 �(T k)∇�j dΩ +

∫

Ω

Δt

c�
T n+1
1

∂�

∂T k
∇T k∇�j dΩ

−

∫

Ω

Δt

c�
∇T k ∂�

∂T k
T k∇�j dΩ+

∫

Ω

T n+1
1 �j dΩ−

∫

Ω

T n�j dΩ

−

∫

∂Ω

Δt

c�
Tenv��j dS

(2.65)

Solving the linear system (2.65) and substituting the value of coefficients Ck+1
i into

the solution structure (2.40) yields an approximate solution T n+1 to the quasi-steady

nonlinear problem at time tn+1.

2.6 Solving the Nonlinear Transient Problem

The numerical algorithms involve stepping through time by step size Δt. At each

time step equations (2.20), (2.30, 2.54 and 2.64 are solved by an iterative algorithm,

and the superscripts k + 1 and k in the equations denote solutions computed at the

current and previous iterations respectively. The iterative process is stopped as soon as

the difference between two consecutive solutions becomes acceptably small.

At the first time step, we begin the iterative procedure by assuming a constant

value for temperature-dependent �(T) term and solving the problem as steady-state.

At the next iteration k + 1, �(T) is updated with values evaluated using the solu-

tions obtained at the previous iteration k. This updating continues until the dif-

ference between two consecutive solutions becomes sufficiently small. The difference

31

between two consecutive solutions is measured by computing the difference as ratio

� =
∑K

i=1
(Ck+1

i − Ck
i)

2/
∑K

i=1
(Ck+1

i)2. Substituting the value of the coefficients Ck+1
i

into the solution structure yields an approximate solution to the quasi-steady problem

at time tn+1.

At the next time step, we begin the iterative process by updating the �(T) term

with values evaluated using the converged solution T n obtained at the previous time step

tn. Again, the updating of the thermal conductivity �(T) term continues until converged

solution is obtained. At this point we solved the quasi-steady problem and the solution

in propagated by time step delta Δt.

32

CHAPTER 3

NUMERICAL EXPERIMENTS

3.1 Construction of Approximate Distance Fields

We saw in Chapter 2 that formulation of a meshfree method with distance fields

solution structure depends critically on the ability to construct a distance field ! for the

boundary of the geometric domain. The function ! is constructed in such a way that it

vanishes precisely on the boundary of the geometric domain and nowhere else. Equation

! = 0 defines the geometry of the domain implicitly, and such functions ! are called

implicit functions for the specified geometric domain. In this thesis work, construction

of the implicit functions has been solved using the theory of R-functions [21, 23]. The

theory of R-functions was developed in Ukraine by Rvachev and his students and is well

documented in the Russian language. Documentation of the theory of R-functions is

also available in English [20, 22].

An R-function is a real-valued function whose sign is completely determined by

the signs of its arguments. For example, the function xyz can be negative only when

the number of its arguments is odd. A similar property is possessed by functions x+y+

√

xy + x2 + y2 and xy + z + ∣z − yx∣, and so on. Such functions encoded Boolean logic

functions and called R-functions. Every Boolean function is a companion to infinitely

many R-function, which form a branch of set of R-functions. For example, it is well

known that min(x1, x2) is an R-function whose companion Boolean function is logical

”and” (∧), and max(x1, x2) is an R-function whose companion Boolean function is logical

”or” (∨). But the same branches of R-functions contain many other functions, example:

x1 ∧� x2 ≡
1

1 + �

(

x1 + x2 −
√

x21 + x22 − 2�x1x2

)

;

x1 ∧� x2 ≡
1

1 + �

(

x1 + x2 +
√

x21 + x22 − 2�x1x2

)

,

(3.1)

33

where �(x1, x2) is an arbitrary function such that −1 < �(x1, x2) ≤ 1. The precise value

of � may not matter, and often it can be set to a constant. For example setting � = 1

yields the functions min and max respectively, but setting � = 0 results in function ∨0

and ∧0 [17], that are analytic everywhere except when x1 = x2 = 0 .

Using R-functions, any object defined by a predicate on geometric domain can be

represented by a single function !. The function ! can be evaluated, differentiated, and

possesses many other useful properties such as:

∙ function ! can be constructed in a logical fashion and can be controlled through

intuitive user-defined parameters;

∙ ! can be normalized, in which case it behaves as a distance function near the

boundary of the object and can be differentiated everywhere [20];

∙ the function can also be constructed for individual cells and cells complex, given

prescribed values for the function and their gradients.

The theory of R-functions provides the connection between logical and set operations

on geometric primitives and analytic constructions. For every logical or set-theoretic

construction, there is a corresponding approximate distance function with the above

properties. Furthermore, the translation from logical and set-theoretic description is a

matter of simple syntactic substitution that does not require expensive symbolic compu-

tations. For example, the geometric domain in Figure 3.1(a) can be defined as a Boolean

(Constructive Solid Geometry) of two primitives:

Ω = !1 ∩ !2,

where the individual primitives !1 Figure 3.1(b) and !2 Figure 3.1(c) are defined by the

following inequalities:

!1 = 1− y2 − x2 ≥ 0; !2 = −0.0625 + y2 + x2 ≥ 0.

34

w1

w2

(a) (b)

(c) (d)

Figure 3.1: (a) Two dimensional representation of the geometric domain of the bench-
mark problem; (b) outer boundary representation !2; (c) inner boundary representation
!1; (d) the corresponding approximate distance field.

The constructed Boolean representation can be translated into the approximate distance

field shown in Figure 3.1(d) using R--functions:

! = !1 ∧0 !2. (3.2)

This example clearly shows any Boolean representation of a geometric domain may be

translated into the corresponding approximated distance field. This logical description

can also be directly translated into a function such that is zero for every point on the

boundary and positive elsewhere.

3.2 Computation Validation

The developed algorithms for meshfree method with distance fields solution pro-

cedure has been validated on the simple two-dimensional benchmark problem shown in

Figure 3.1(a). Accuracy and convergence of the numerical solutions computed by the

35

meshfree method with distance fields are compared to analytical solutions, and solu-

tions produced by commercial FEM software ANSYS 12.1. We conducted numerical

experiments for steady-state and transient heat transfer problems with constant and

temperature-dependent thermal conductivities.

(a) (b)

Figure 3.2: (a)Temperature-dependency of thermal conductivity for alumina. Data
taken from online materials database matweb. (b) Temperature-dependency of thermal
conductivity for copper. Data taken from Journal of Physical and Chemical Reference
Data.

We studied the behavior of our developed meshfree method with distance fields algo-

rithms to solve problems for a material with weak temperature-dependency of thermal

conductivity (alumina), and for a material with very steep temperature-dependency of

thermal conductivity (copper).

Copper has very steep temperature-dependency of thermal conductivity in range

of very low temperatures. At very low temperature, thermal conductivity of copper

reaches very high values because the lattice waves are harmonic and can be superimposed

without mutual interference [12]. There, the lattice thermal conductivity of crystals

depends upon the grain size. As the temperature increases, the lattice vibrations become

nonharmonic, scattering is increased, and the thermal conductivity decreases sharply.

Figure 3.2(b) shows the actual dependence of the thermal conductivity of copper on the

36

temperature. Alumina has a weaker temperature-dependency of thermal conductivity

as shown in Figure 3.2(a).

3.3 Experiment 1: Steady-State Problem with Constant Thermal Conduc-

tivity and Dirichlet Boundary Conditions

The meshfree method with distance fields was applied to modeling steady-state

heat transfer in the benchmark problem Figure 3.1(a) with Dirichlet boundary condi-

tions. The Dirichlet boundary conditions are formulated by a prescribed temperature

of 1 ∘K on the outer boundary !1, and a prescribed temperature of 40 ∘K on the in-

ner boundary !2. The temperature distribution is represented by the solution structure

(2.13). Basis functions {�i}
N
i=1 in the solution structure have been chosen as B -splines

of the fourth degree, distributed over a uniform rectangular grid.

Analytical solution of this problem is available from a very easily solvable equation

of the form

T = C1ln(r) + C2, (3.3)

where

r =
√

x2 + y2 (3.4)

and

C1ln(0.25) + C2 = 40

C2ln(1) + C2 = 1.

(3.5)

Meshfree method with distance fields allows the given boundary conditions to be satis-

fied exactly and it discretizes not the geometric domain but the underlying functional

space. However, meshfree does not necessarily imply the absence of spacial grid. A

grid may be convenient or even necessary for integration and/or visualization purposes.

In this experiment, we studied the error of the meshfree method with distance fields

37

approximation. In particular, we studied the error that is introduced in the numerical

computations due to grid size specification.

Figure 3.3: Convergence in terms of estimated errors produced by meshfree method with
distance fields and FEM software ANSYS 12.1 for five different grid sizes.

To study this error of the meshfree method with distance fields we solved the

problem using five different uniform rectangular grids: 11×11, 22×22, 44×44, 88×88,

and 176× 176 grids of B -splines. The error of the meshfree method with distance fields

is estimated by the L2-norm of the form (3.6), computed over the domain Ω.

"mesℎfree =
∣∣Tmesℎfree − Texact∣∣

∣∣Texact∣∣
=

√

∫

Ω
(Tmesℎfree − Texact)2 dΩ
√

∫

Ω
(Texact)2 dΩ

(3.6)

We compared the meshfree method with distance fields error with error produced by

commercial FEM software ANSYS 12.1 for the same grid size specifications that we

used for meshfree method with distance fields. Here, grid size means the mesh size or

element size h, which is calculated from (3.7)

ℎ =
xmax − xmin

nx − 1
, (3.7)

38

where xmax and xmin are the maximum and minimum size of the bounding box used for

meshfree method with distance fields grid, and nx is the number of grids.

The error produced by the ANSYS 12.1 is estimated by computing the difference

(L2-norm) between the ”exact” temperature and temperature predicted by ANSYS 12.1

at location x = 0.8, y = 0.0 in the geometrical domain of the benchmark problem.

"FEM =

√

(TFEM − Texact)2
√

(Texact)2
(3.8)

The plots shown in Figure (3.3) clearly illustrates that the meshfree method with dis-

tance fields converged smoothly to the ”exact” solution. We estimated that the error

produced by meshfree method with distance fields and ANSYS 12.1 becomes sufficiently

small for a 60 × 60 rectangular grid size (ℎ = 0.034). Therefore, for all subsequent nu-

merical experiments conducted on the benchmark problem, we studied the behavior of

the meshfree method with distance fields algorithms using a unform 60×60 rectangular

grid of B -splines, and an equivalent element size ℎ = 0.034 for ANSYS 12.1.

Table 3.1: The relative difference between meshfree method with distance fields and ana-
lytical solutions: steady-state problem with Dirichlet boundary conditions and constant
thermal conductivity.

Location (x, y)
Analytical
Solution (K)

Meshfree
Solution (K)

Relative Difference
between Analytical
& Meshfree (%)

0.4, 0 26.777598 26.776998 0.0022

0.5, 0 20.5 20.499527 0.0023
0.6, 0 15.370829 15.370474 0.0023

0.7, 0 11.034177 11.033921 0.0023
0.8, 0 7.277598 7.277434 0.0022

Accuracy of the meshfree method with distance fields computation is confirmed

by the experimental results shown in Table 3.1. The results show that temperatures

computed by meshfree method with distance fields at five different locations in the

geometric domain of the benchmark problem, are essentially identical to temperatures

39

Figure 3.4: Temperature distribution in the benchmark problem Figure (3.1a) computed
analytically, by meshfree method with distance fields and ANSYS 12.1: steady-state
problem with Dirichlet boundary conditions and constant thermal conductivity.

calculated analytically. The meshfree method with distance fields solution is further

validated by the temperature distribution shown in Figure 3.4. Figure 3.4 demonstrates

that the temperature distribution computed by meshfree method with distance fields is

almost identical to the temperature distribution computed analytically and by ANSYS

12.1.

3.4 Experiment 2: Steady-State Problem with Constant Thermal Conduc-

tivity and Convective Boundary Conditions

The meshfree method with distance fields was applied to modeling steady-state

heat transfer in the benchmark problem Figure 3.1(a) with convective boundary condi-

tions. The convective boundary conditions are formulated by setting the temperature of

the medium surrounding the outer boundary !1 to 1 ∘K, and setting the temperature of

the medium surrounding the inner boundary !2 to 40 ∘K. Heat transfer on the bound-

aries is at 450 W/m2-K. The temperature distribution is represented by the solution

structure (2.38). Basis functions {�i}
N
i=1 in the solution structure have been chosen as

B -splines of the fourth degree, distributed over a uniform rectangular grid. The solution

40

Table 3.2: The relative difference between meshfree method with distance fields and
ANSYS 12.1 solutions: steady-state problem with convective boundary conditions and
constant thermal conductivity.

Location (x, y)
Meshfree

Solution (K)
ANSYS 12.1
Solution (K)

Relative Difference
between Meshfree
& ANSYS 12.1 (%)

0.4, 0 20.9066 20.907 0.0019

0.5, 0 16.679 16.679 0.0000

0.6, 0 13.2248 13.305 0.0015

0.7, 0 10.3044 10.305 0.0058

0.8, 0 7.7746 7.7748 0.0026

computed by meshfree method with distance fields is compared to solution produced by

ANSYS 12.1.

Figure 3.5: Temperature distribution in the benchmark problem Figure (3.1a) computed
by meshfree method with distance fields and ANSYS 12.1: steady-state with convective
boundary conditions and constant thermal conductivity.

Accuracy of the numerical computations by computed by meshfree method with

distance fields is confirmed by the experimental results shown in Table 3.2. The results

illustrate that temperatures computed by meshfree method with distance fields and

temperatures predicted by FEM software ANSYS 12.1 at five different locations in the

benchmark problem, exhibits almost no difference. The meshfree method with distance

fields solution is further validated by the temperature distributions presented in Figure

41

3.5. The plots in Figure 3.5 illustrates that the temperature distributions computed by

meshfree method with distance fields is almost identical to the temperature distributions

produced by ANSYS 12.1.

3.5 Experiment 3: Transient Problem with Constant Thermal Conductivity

and Dirichlet Boundary Conditions

The meshfree method with distance fields was applied to modeling transient heat

transfer in the benchmark problem Figure 3.1(a) with Dirichlet boundary conditions.

The Dirichlet boundary conditions are formulated by a prescribed temperature of 1 ∘K

on the outer boundary !1, and a prescribed temperature of 40 ∘K on the inner boundary

!2. The temperature distribution is represented by the solution structure (2.13). Basis

functions {�i}
N
i=1 in the solution structure have been chosen as B -splines of the

(a) (b)

Figure 3.6: Comparing time evolution of temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two different
time steps, constant thermal conductivity, and Dirichlet boundary conditions.

Figure 3.6 shows temperature prediction at location x = 0.8, y = 0.0 in the benchmark

problem with thermal conductivity � = 60.5 W/m-K, density � = 7850 kg/m3 and spe-

cific heat c = 434 J/kg-K. The problem is defined to have an initial uniform temperature

of T = 0.0 ∘K.

42

(a) 500 sec (b) 2000 sec.

(c) 4000 sec (d) 10000 sec

Figure 3.7: Quasi-steady temperature fields computed by meshfree method with distance
fields: constant thermal conductivity, Dirichlet boundary conditions, and time step t =
100 sec

Figures 3.6(a) and (b) show time evolution of the temperature at location x =

0.8, y = 0.0, computed by meshfree method with distance fields and ANSYS 12.1 for two

different time steps: 500 seconds in Figure 3.6(a) and 100 seconds in Figure 3.6(b). The

plots illustrate that time evolution of the temperature computed by meshfree method

with distance fields is essentially identical that of ANSYS 12.1. Comparison of Figure

3.7 with Figure 3.8 shows almost no difference between the quasi-steady temperature

fields computed by meshfree method with distances and quasi-steady temperature fields

produced by ANSYS 12.1.

43

(a) 500 sec (b) 2000 sec

(c) 4000 sec (d) 10000 sec

Figure 3.8: Quasi-steady temperature fields computed by ANSYS 12.1: constant thermal
conductivity, Dirichlet boundary conditions, and time step t = 100 sec.

3.6 Experiment 4: Transient Problem with Constant Thermal Conductivity

and Convective Boundary Conditions

The meshfree method with distance fields was applied to modeling transient heat

transfer in the benchmark problem Figure 3.1(a) with convective boundary conditions.

The convective boundary conditions are formulated by setting the temperature of the

medium surrounding the outer boundary !1 to 1 ∘K, and setting the temperature of the

medium surrounding the inner boundary !2 to 40 ∘K. Heat transfer on the boundaries is

at 450 W/m2-K. The temperature distribution is represented by the solution structure

(2.38). Basis functions {�i}
N
i=1 in the solution structure have been chosen as B -splines of

the fourth degree, distributed over a uniform rectangular grid. The solution computed

44

by meshfree method with distance fields is compared to solution produced by ANSYS

12.1 using the same grid size specification. Figure 3.9 shows temperature prediction

(a) (b)

Figure 3.9: Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two different
time steps, constant thermal conductivity, and convective boundary conditions.

at location x = 0.8, y = 0.0 in the benchmark problem with thermal conductivity � =

60.5 W/m-K, density � = 7850 kg/m3 and specific heat c = 434 J/kg-K. The problem

is defined to have an initial uniform temperature of T = 0.0 ∘K. Figures 3.9(a) and (b)

show the time evolution of the temperature at location x = 0.8, y = 0.0, computed by

meshfree method with distance fields and by FEM software ANSYS 12.1 for two different

time steps: 500 seconds in Figure 3.9(a) and 100 seconds in Figure 3.9(b). The plots

illustrate that time evolution of the temperature computed by meshfree method with

distance fields is essentially identical that of ANSYS 12.1. Comparison of Figure 3.10

with Figure 3.11 shows almost no difference between the quasi-steady temperature fields

computed by meshfree method with distances and ANSYS 12.1.

45

(a) 500 sec (b) 2000 sec

(c) 4000 sec (d) 10000 sec

Figure 3.10: Quasi-steady temperature fields computed by meshfree method with dis-
tance fields: constant thermal conductivity, convective boundary conditions, and time
step t = 100 sec.

3.7 Nonlinear Heat Transfer Problems with Dirichlet Boundary Conditions

The meshfree method with distance fields was applied to modeling nonlinear

steady-state and transient heat transfer in the benchmark problem (Figure 3.1(a)) with

Dirichlet boundary conditions. The temperature distribution is represented by the solu-

tion structure (2.13). Basis functions {�i}
N
i=1 in the solution structure have been chosen

as B -splines of the fourth degree distributed over a uniform rectangular grid. To val-

idate the accuracy and convergence properties of the meshfree method with distance

fields we compared solutions computed by meshfree method with distance with ANSYS

12.1 solutions.

46

(a) 500 sec (b) 2000 sec

(c) 4000 sec (d) 1000 sec

Figure 3.11: Quasi-steady temperature fields computed by ANSYS 12.1: constant ther-
mal conductivity, convective boundary conditions, and time step t = 100 sec.

Solutions were computed by meshfree method with distance fields using algorithms

based on Oseen linearization scheme and Newton-Kantorovich linearization scheme. The

linearization schemes applied to linearize the nonlinear terms in the equations that de-

fined the problem leads to an iterative procedure. The convergence of iterative solutions

is achieved when the difference between two consecutive solutions becomes sufficiently

small. In this experiment, we measured the relative difference between two consecutive

solutions by the ratio

" =

∑K

i=1
(Ck+1

i − Ck
i)

2

∑K

i=1
(Ck+1

i)2
, (3.9)

where Ck+1
i and Ck

i are the values of the coefficients computed at the current and pre-

47

vious iterations respectively. The iterations are stopped as soon as " ≤ 10−6. For both

steady-state and transient heat transfer problems with Dirichlet boundary conditions,

we conducted experiments using a material with weak temperature-dependency of ther-

mal conductivity, and a material with very steep temperature-dependency of thermal

conductivity.

3.7.1 Experiment 5: Steady-state problem with weak temperature depen-

dency of thermal conductivity

We applied the meshfree method with distance fields to modeling heat transfer

in the benchmark problem Figure 3.1(a) made from a material with weak temperature-

dependency of thermal conductivity (alumina).

Figure 3.12: Convergence of Oseen and Newton-Kantorovich linearization schemes in
terms of relative difference between two consecutive solutions " (Equation 3.9): observed
for a material with weak temperature-dependence of thermal conductivity.

The temperature-dependency of thermal conductivity data for alumina, used in this

experiment, is taken from Figure 3.2(a). We observed the behavior of the meshfree

method with distance fields using algorithms based on Oseen and Newton-Kantorovich

linearization schemes. The Dirichlet boundary conditions are formulated by a prescribed

temperature of 320 ∘K on the outer boundary !1, and a prescribed temperature of 650

∘K on the inner boundary !2. The plots shown in Figure 3.12 illustrate that Newton-

48

Figure 3.13: Temperature distribution in the benchmark problem Figure (3.1a) com-
puted by meshfree method with distance fields and ANSYS 12.1: steady-state problem
with Dirichlet boundary conditions and weak temperature-dependency of thermal con-
ductivity.

Kantorovich linearization scheme produced fast converging solutions in comparison to

Oseen linearization scheme, when applied to solve the steady-state problem with Dirich-

let boundary, and temperature-dependency of thermal conductivity is weak. Accuracy

of the solution computed by meshfree method with distance fields is confirmed by the ex-

perimental results shown in Table 3.3. The results illustrate that temperatures computed

by meshfree method with distance fields and temperatures predicted by FEM ANSYS

Table 3.3: The relative difference between meshfree method with distance fields and
ANSYS 12.1 solutions: steady-state problem with Dirichlet boundary conditions and
weak temperature-dependence of thermal conductivity.

Location
(x, y)

Meshfree
Oseen (K)

Meshfree
Newton-

Kantorovich
(K)

ANSYS
12.1 (K)

Relative
Difference
Oseen-
Ansys
(%)

Relative
Difference
Kantorovich-
Ansys (%)

0.4, 0 502.184530 502.184529 502.05 0.0268 0.0268
0.5, 0 447.633637 447.633633 447.4 0.0522 0.0522

0.6, 0 408.637386 408.637386 408.4 0.0581 0.0581
0.7, 0 378.996733 378.996729 378.62 0.0994 0.0994

0.8, 0 355.474403 355.474401 355.27 0.0575 0.0575

49

12.1, exhibits almost no difference. Comparison of Figures 3.13(a) and (b) with Figure

3.15(c) demonstrate that the temperature distribution computed by meshfree method

with distances fields is essentially identical to the temperature distributions produced

by ANSYS 12.1.

3.7.2 Experiment 6: Steady-state problem with strong temperature-dependency

of thermal conductivity

The meshfree method with distance fields was applied to modeling heat trans-

fer in the benchmark problem Figure 3.1(a) made from a material with very strong

temperature-dependency of thermal conductivity (copper). The temperature-dependency

of thermal conductivity data for copper,

Figure 3.14: Convergence in terms of relative difference between two consecutive solution
" (Equation 3.9). Convergence was observed for Oseen, Newton-Kantorovich, and both
Oseen and Newton-Kantorovich applied in the linearization process for a material with
very strong temperature-dependence of thermal conductivity.

used in this experiment, is taken from Figure 3.2(b). The Dirichlet boundary conditions

are formulated by a prescribed temperature of 1 ∘K on the outer boundary !1, and a

prescribed temperature of 60 ∘K on the inner boundary !2. We observed the behavior

of the meshfree method with distance fields using algorithms based Oseen and Newton-

Kantorovich linearization schemes.

50

Table 3.4: The relative difference between meshfree method with distance fields and
ANSYS 12.1 solutions: Solutions obtained for steady-state with Dirichlet boundary
conditions and very strong temperature-dependence of thermal conductivity.

Location
(x, y)

Oseen
Meshfree

(K)

Newton-
Kantorovich
Meshfree

(K)

ANSYS
12.1 (K)

Relative
Difference
Oseen-
Ansys
(%)

Relative
Difference
Kantorovich-
Ansys (%)

0.4, 0 18.993867 18.993783 18.76 0.1783 0.1779

0.5, 0 14.305141 14.305152 14.276 0.1947 0.2038
0.6, 0 11.318277 11.318317 11.3 0.1654 0.1618

0.7, 0 9.019745 9.01979 9.0057 0.1181 0.1562
0.8, 0 6.95337 6.953409 6.9415 0.1707 0.1713

We observed that for this defined problem, steady-state with Dirichlet boundary

conditions and very strongtemperature-dependency of thermal conductivity, the solu-

tion diverges as shown in the plots Figure 3.14 when Newton-Kantorovich linearization

scheme is applied. In contrast, the solution is very slow to converged when Oseen lin-

earization scheme is applied. Therefore, we developed numerical algorithm that applied

Oseen linearization at the initial iteration, and then applied Newton-Kantorovich when

the difference between two consecutive solutions becomes less than one (" > 1). We

observed that by applying both schemes during the linearization process, insure fast

converging solution as shown in Figure 3.14 if the temperature-dependency of thermal

conductivity is very strong.

Accuracy of the computation by meshfree method with distance fields is confirmed

by the experimental results shown in Table 3.4. The results illustrate that temperatures

computed by meshfree method with distance fields and temperatures predicted by FEM

ANSYS 12.1 exhibits almost no difference. Comparison of Figure 3.15(a) with Figure

3.15(b) demonstrate that the temperature distribution computed by meshfree method

with distances fields is essentially identical to the temperature distributions produced

by ANSYS 12.1.

51

Figure 3.15: Temperature distribution in the benchmark problem Figure (3.1a) com-
puted by meshfree method with distance fields and ANSYS 12.1: steady-state problem
with Dirichlet boundary conditions and very strong temperature-dependency of thermal
conductivity.

3.7.3 Experiment 7: Transient problem with weak temperature depen-

dency of thermal conductivity

The Dirichlet boundary conditions are formulated by a prescribed temperature of

320 ∘K on the outer boundary !1, and a prescribed temperature of 650 ∘K on the inner

boundary !2. Figure 3.16 shows temperature prediction at location x = 0.8, y = 0.0

in the benchmark problem with weak temperature-dependence of thermal conductivity,

�(T) taken from data given in Figure 3.2(a), density � = 3960 kg/m3 and specific heat

c = 850 J/kg-K. The problem is defined to have an initial uniform temperature of T

= 215.15 ∘K. Figures 3.16(a) and (b) show the time evolution of the temperature at

location x = 0.8, y = 0.0, computed by meshfree method with distance fields

and by FEM software ANSYS 12.1 for two different time steps: 1000 seconds in Figure

3.16(a) and 500 seconds in Figure 3.26(b). The plots shown in Figure 3.16 illustrate that

time evolution of the temperature computed by meshfree method with distance fields is

essentially identical that of ANSYS 12.1.

52

(a) (b)

Figure 3.16: Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two different
time steps, Dirichlet boundary conditions and weak temperature-dependence of thermal
conductivity.

3.7.4 Experiment 8: Transient problem with strong temperature depen-

dency of thermal conductivity

The Dirichlet boundary conditions are formulated by a prescribed temperature of

1 ∘K on the outer boundary !1, and a prescribed temperature of 60 ∘K on the inner

boundary !2. Figure 3.17 shows temperature prediction at location x = 0.8, y = 0.0 in

the benchmark problem with strong temperature-dependence of thermal conductivity,

�(T) taken from data given in Figure 3.2(b), density � = 8300 kg/m3 and specific heat

c = 385 J/kg-K. The problem is defined to have an initial uniform temperature of T =

0.0 ∘K. Figures 3.17(a) and (b) show the time evolution of the temperature at location

x = 0.8, y = 0.0, computed by meshfree method with distance fields and by FEM

software ANSYS 12.1 for two different time steps: 5 seconds in Figure 3.17(a) and 1

seconds in Figure 3.17(b).

53

(a) (b)

Figure 3.17: Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two different
time steps, Dirichlet boundary conditions and strong temperature-dependence of thermal
conductivity.

The plots shown in Figure 3.17 illustrate that time evolution of the temperature

computed by meshfree method with distance fields is essentially identical that of ANSYS

12.1. Comparison of Figure 3.18 with Figure 3.19 shows almost no difference between

the quasi-steady temperature fields computed by meshfree method with distances and

the quasi-steady temperature fields predicted by ANSYS 12.1. This experiment also

confirm that the accuracy of the meshfree method with distance fields computation to

obtain solution of nonlinear transient heat transfer problem using material with strong

temperature-dependency of thermal conductivity and Dirichlet boundary conditions.

3.8 Nonlinear Heat Transfer Problems with Convective Boundary Condi-

tions

The meshfree method with distance fields was applied to modeling nonlinear

steady-state and transient heat transfer in the benchmark problem Figure 3.1(a) with

convective boundary conditions. The temperature distribution is represented by the

solution structure (2.38). Basis functions {�i}
N
i=1 in the solution structure have been

54

(a) 5 sec (b) 15 sec

(c) 25 sec (d) 100 sec

Figure 3.18: Quasi-steady temperature fields computed by meshfree method with dis-
tance fields: very strong temperature-dependence of thermal conductivity, Dirichlet
boundary conditions, and time step t = 1 sec.

chosen as B -splines of the fourth degree distributed over a uniform rectangular grid. To

validate the accuracy and convergence properties of the meshfree method with distance

fields we compared solutions computed by meshfree method with distance with ANSYS

12.1 solutions.

Solutions were computed by meshfree method with distance fields using algorithms

based on Oseen linearization scheme and Newton-Kantorovich linearization scheme. The

linearization schemes applied to linearize the nonlinear terms in the equations that de-

fined the problem leads to an iterative procedure. The convergence of iterative solutions

is achieved when the difference between two consecutive solutions becomes sufficiently

small " (Equation 3.9). The iterations are stopped as soon as " ≤ 10−6. For steady-state

55

(a) 5 sec (b) 15 sec

(c) 25 sec (d) 100 sec

Figure 3.19: Quasi-steady temperature fields computed by ANSYS 12.1: very strong
temperature-dependence of thermal conductivity, Dirichlet boundary conditions, and
time step t = 1 sec.

and transient problems with convective boundary conditions, we conducted experiments

using a material with weak temperature-dependence of thermal conductivity, and a ma-

terial with very strong temperature-dependency of thermal conductivity.

3.8.1 Experiment 9: Steady-state with weak temperature dependency of

thermal conductivity

The meshfree method with distance fields was applied to modeling heat transfer

in the benchmark problem Figure 3.1(a) made from a material with weak temperature-

dependency of thermal conductivity (alumina).

The convective boundary conditions are formulated by setting the temperature of

the medium surrounding the outer boundary !1 to 320 ∘K, and setting the temperature

56

Figure 3.20: Temperature distribution in the benchmark problem Figure (3.1a) com-
puted by meshfree method with distance fields and ANSYS 12.1: steady-state problem
with convective boundary conditions and weak temperature-dependency of thermal con-
ductivity.

of the medium surrounding the inner boundary !2 to 650 ∘K. Heat transfer on the

boundaries is at 13.1 W/m2-K. We observed the behavior of the meshfree method with

distance fields using algorithms based on Oseen and Newton-Kantorovich linearization

schemes. The plots shown in Figure 3.21 illustrate that both schemes converges very

fast to the solution.

Table 3.5: Relative difference between meshfree method with distance fields and ANSYS
12.1 solutions: steady-state with weak temperature-dependence of thermal conductivity
and convective boundary conditions.

Location
(x, y)

Oseen
Meshfree

(K)

Newton-
Kantorovich
Meshfree

(K)

ANSYS
12.1 (K)

Relative
Difference
Oseen-
Ansys
(%)

Relative
Difference
Kantorovich-
Ansys (%)

0.4, 0 400.983807 400.987542 400.67 0.0783 0.0792

0.5, 0 395.776579 395.77294 395.33 0.1128 0.1119
0.6, 0 391.545055 391.546676 391.06 0.1239 0.1243

0.7, 0 387.96168 387.962464 387.5 0.1190 0.1192
0.8, 0 384.861649 384.861931 384.5 0.0940 0.0940

57

Figure 3.21: Convergence in terms of relative difference between two consecutive solu-
tions " (Equation 3.9). Convergence was observed for Oseen linearization, Newton-
Kantorovich linearization, and both Oseen and Newton-Kantorovich applied in the
linearization process. Steady-state with weak temperature-dependency and convective
boundary conditions.

Accuracy of the computation by meshfree method with distance fields is confirmed

by the experimental results shown in Table 3.5. The results illustrate that temperatures

computed by meshfree method with distance fields and temperatures predicted by FEM

ANSYS 12.1 exhibits almost no difference. Comparison of Figures 3.20(a) and (b) with

Figure 3.20(c) demonstrate that the temperature distribution computed by meshfree

method with distances fields is essentially identical to the temperature distributions

produced by ANSYS 12.1.

3.8.2 Experiment 10: Steady-state with strong temperature dependency of

thermal conductivity

The meshfree method with distance fields was applied to modeling heat trans-

fer in the benchmark problem Figure 3.1(a) made from a material with very strong

temperature-dependency of thermal conductivity (copper). The temperature-dependency

of thermal conductivity data for cooper, used in this experiment, is taken from Figure

3.2(b). The convective boundary conditions are formulated by setting the temperature

58

of the medium surrounding the outer boundary !1 to 1 ∘K, and setting the temper-

ature of the medium surrounding the inner boundary !2 to 60 ∘K. Heat transfer on

the boundaries is at 13.1 W/ m-K. We observed the behavior of the meshfree method

with distance fields using algorithms based Oseen and Newton-Kantorovich linearization

schemes.The plots shown in Figure 3.22 illustrate that both schemes converges very fast

to the solution. Accuracy of the computation by meshfree method with distance fields

is confirmed by the experimental results shown in Table 3.6.

Figure 3.22: Convergence in terms of relative difference between two consecutive so-

lutions " (Equation 3.9). Convergence was observed for Oseen linearization, Newton-

Kantorovich linearization, and both Oseen and Newton-Kantorovich applied in the lin-

earization process. Steady-state with strong temperature-dependency and convective

boundary conditions.

59

Figure 3.23: Temperature distribution in the benchmark problem Figure (3.1a) com-

puted by meshfree method with distance fields and ANSYS 12.1: steady-state problem

with convective boundary conditions and very strong temperature-dependency of ther-

mal conductivity

Table 3.6: Relative difference between meshfree method with distance fields and ANSYS
12.1 solutions.: Solutions obtained for steady-state with convective boundary conditions
very strong temperature-dependence of thermal conductivity.

Location
(x, y)

Oseen
Meshfree

(K)

Newton-
Kantorovich
Meshfree

(K)

ANSYS
12.1 (K)

Relative
Difference
Oseen-
Ansys
(%)

Relative
Difference
Kantorovich-
Ansys (%)

0.4, 0 12.805553 12.805553 12.801 0.0356 0.0356

0.5, 0 12.803614 12.803614 12.804 0.0030 0.0030

0.6, 0 12.80203 12.80203 12.802 0.0002 0.0002

0.7, 0 12.80069 12.80069 12.801 0.0024 0.0024
0.8, 0 12.79953 12.79953 12.8 0.0037 0.0037

The results illustrate that temperatures computed by meshfree method with distance

fields and temperatures predicted by FEM ANSYS 12.1 exhibits almost no difference.

Comparison of Figures 3.23(a) with Figure 3.23(b) demonstrate that the temperature

distribution computed by meshfree method with distances fields is essentially identical

to the temperature distributions produced by ANSYS 12.1.

60

3.8.3 Experiment 11: Transient with weak temperature dependency of

thermal conductivity

The convective boundary conditions are formulated by setting the temperature of

the medium surrounding the outer boundary !1 to 320 ∘K, and setting the temperature

of the medium surrounding the inner boundary !2 to 650 ∘K. Heat transfer on the

boundaries is at 13.1 W/m2-K.

(a) (b)

Figure 3.24: Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two differ-
ent time steps, convective boundary conditions and weak temperature-dependence of
thermal conductivity.

Figure 3.24 shows temperature prediction in the benchmark problem with weak temperature-

dependence of thermal conductivity, �(T) given in Figure 3.2, density � = 3960 kg/m3

and specific heat c = 850 J/kg-K. The initial temperature is T = 215.15 ∘K. Figures

3.24(a) and (b) show the time evolution of the temperature at location x = 0.8, y = 0.0,

computed by meshfree method with distance fields and by FEM software ANSYS 12.1

for two different time steps: 1000 seconds in Figure 3.24(a) and 300 seconds in Fig-

ure 3.24(b). Figure 3.24 illustrate that time evolution of the temperature computed by

meshfree method with distance fields is essentially identical that of ANSYS 12.1.

61

(a) 10 sec (b) 100 sec

(d) 400 sec (c) 1000 sec

Figure 3.25: Quasi-steady temperature fields computed by meshfree method with dis-
tance fields: very strong temperature-dependence of thermal conductivity, convective
boundary conditions, and time step t = 10 sec.

3.8.4 Experiment 12: Transient with strong temperature dependency of

thermal conductivity

The convective boundary conditions are formulated by setting the temperature of

the medium surrounding the outer boundary !1 to 1 ∘K, and setting the temperature of

the medium surrounding the inner boundary !2 to 60
∘K. Heat transfer on the boundaries

is at 13.1 W/m2-K. Figure 3.26 shows temperature prediction at location x = 0.8, y =

0.0 in the benchmark problem with very strong temperature-dependence of thermal

conductivity, �(T) taken from data given in Figure 3.2(b), density � = 8300 kg/m3

and specific heat c = 385 J/kg-K. The problem is defined to have an initial uniform

temperature of T = 0.0 ∘K. Figures 3.26(a) and (b) show the time evolution of the

62

(a) (b)

Figure 3.26: Comparing time evolution of the temperature at location x = 0.8, y = 0.0
predicted by meshfree method with distance fields and ANSYS 12.1: for two different
time steps, convective boundary conditions and material with very strong temperature-
dependence of thermal conductivity.

temperature at location x = 0.8, y = 0.0, computed by meshfree method with distance

fields and by FEM software ANSYS 12.1 for two different time steps: 50 seconds in

Figure 3.26(a) and 10 seconds in Figure 3.26(b).

The plots in Figure 3.26 illustrate that time evolution of the temperature com-

puted by meshfree method with distance fields is essentially identical that of ANSYS

12.1. Comparison of Figure 3.25 with Figure 3.27 shows almost no difference between

the quasi-steady temperature fields computed by meshfree method with distances and

the quasi-steady temperature fields predicted by ANSYS 12.1. This experiment also

confirm the accuracy of the meshfree method with distance fields computation to ob-

tain solution of nonlinear transient heat transfer problem using material with strong

temperature-dependency of thermal conductivity and convective boundary conditions.

63

(a) 10 sec (b) 100 sec

(d) 400 sec (e) 1000 sec

Figure 3.27: Quasi-steady temperature fields computed by ANSYS 12.1: very strong

temperature-dependence of thermal conductivity, convective boundary conditions, and

time step t = 10 sec.

64

CHAPTER 4

DISCUSSION AND CONCLUSION

In this thesis work, we successfully developed and implemented numerical algo-

rithms for solving nonlinear transient heat transfer problems, using meshfree method

with distance fields. The results of the numerical experiments presented in chapter

3 illustrate the accuracy and convergence of the numerical algorithms. We validated

the numerical computations on a simple two-dimensional benchmark problem Figure

3.1(a) since analytical solution of this benchmark problem is easily available. However,

the meshfree method with distance fields algorithms as implemented can be applied to

any two-dimensional geometry. Solutions obtained by meshfree method with distance

fields and commercial FEM software ANSYS 12.1, were observed to exhibits almost no

difference.

Meshfree method with distance field requires that solution of the nonlinear tran-

sient heat transfer problem equation must incorporate the analytic information about

the boundary conditions, as well as geometric information about the boundaries where

these conditions are specified. This feature of meshfree method with distance fields al-

lows for boundary conditions to be satisfied exactly. The equations to be solved contains

nonlinear terms which must be linearized. Since the way of linearization can significantly

affect the of convergence towards the final solution, choice of an appropriate linearization

method was therefore important. We developed numerical algorithms with two different

linearization schemes applied to linearize the nonlinear terms in the equations; Oseen

linearization scheme and Newton-Kantorovich linearization scheme, which both lead to

an iterative procedure. The iterative procedure involves updating the nonlinear terms

with values evaluated using solutions obtained at the previous iteration. We assumed a

constant value for the nonlinear terms at the initial iteration.

65

(a) (b)

Figure 4.1: (a) Two dimensional representation of the geometric domain of the fin type
heat exchanger; (d) the corresponding approximate distance field.

As illustrated in Figure 3.14 we observed that Newton-Kantorovich scheme enjoys

rapid convergence when applied in problem with Dirichlet boundary conditions and the

temperature-dependence of thermal conductivity is weak. However, for a problem with

Dirichlet boundary conditions and the temperature-dependence of thermal conductivity

is very steep, the solution diverged when Newton-Kantorovich scheme is applied. The

solution was very slow to converged with Oseen scheme applied. We know that because

a constant value is assumed for the thermal conductivity at the initial iteration, the

computed solution at this step may be far from the true solution.

It is well known that Newton method can potentially diverge from the solution if

the initial solution in the iterative process is sufficiently far from the desired solution.

Since Oseen scheme was slow to converged and Newton-Kantorivich scheme resulted in

divergence, we implemented algorithm that incorporated both schemes into the lineariza-

tion process. This algorithm applies Oseen linearization scheme at the initial iteration.

Newton-Kantorovich scheme is then applied when the difference between two consecu-

tive solutions is computed to be less than one " < 1. We observed that by applying

both linearization schemes into the linearization process, we developed algorithm that

produced fast converged solutions and insured convergence.

66

Figure 4.2: Comparing time evolutions of temperatures predicted by meshfree method
with distance fields and ANSYS 12.1.

To demonstrate that the meshfree method as implemented can be applied to geo-

metric domain other than the geometric domain of the benchmark problem, we applied

the meshfree method with distance fields to modeling nonlinear transient heat transfer

in a fin type heat exchanger. Figure 4.1(a) shows the geometric primitives that defined

the geometric domain of the fin type heat exchanger. These primitives, as we described

in chapter 3, can be combined using R--functions set operations ∧0 and ∨0 to define the

two-dimensional domain Ω as:

! = (!1 ∧0 !2 ∧0 !3) ∧0 (!4 ∨0 !5) ∧0 (!4 ∨0 !6) ∧0 (!4 ∨0 !7),

where the symbols ∧0 and ∨0 denote R0-conjunction and R0-disjunction respectively.

The domain representation can be translated into the approximate distance field !

shown in Figure 4.1(b) using R--functions.

The problem is formulated as a nonlinear transient heat transfer problem with

Dirichlet boundary conditions. The heat exchanger is made from a material with very

steep temperature-dependence of thermal conductivity. Boundary conditions are formu-

lated by a prescribed temperature of 65 ∘K on the lower boundary !2, and a temperature

67

(a) 0.001 sec (b) 0.003 sec

(d) 0.25 sec (e) 0.5 sec

Figure 4.3: Quasi-steady temperature fields computed by meshfree method with distance
fields.

of 2 ∘K prescribed on all other boundaries. Figure 4.2 shows time evolution of the tem-

perature at point denoted by Ta in Figure 4.1 of the heat exchanger. The material

in the region has very steep temperature-dependence of thermal conductivity �(T) as

described by the plot shown in Figure 3.2(b), density � = 8300 kg/m3 and specific heat c

= 850 J/kg-K. The problem is defined to have an initial uniform temperature of T = 0.0

K.

Time evolution of the temperature plots shown in Figure 4.2 illustrate good agree-

ment between the temperatures computed by meshfree method with distance fields and

ANSYS 12.1. Comparison of Figure 3.25 with Figure 3.27 shows almost no difference be-

tween the quasi-steady temperature fields computed by meshfree method with distances

and the quasi-steady temperature fields predicted by ANSYS 12.1.

The Meshfree method with distance fields explicitly incorporates the temperature-

dependent materials properties into the approximate solution and it enables the all

68

(a) 0.001 sec (b) 0.003 sec

(d) 0.25 sec (e) 0.5 sec

Figure 4.4: Quasi-steady temperature fields computed by ANSYS 12.1.

prescribed boundary conditions to be satisfied exactly. Although we modeled only two-

dimensional problems in this thesis work, the algorithms that we developed in this

thesis work can be easily extended solve three-dimensional problems. Since meshfree

method with distances fields does not require meshing that have to conform to the

geometric domain, we can potentially of save a lot of resource time by using our developed

algorithms to obtain solution of nonlinear transient heat transfer problems.

69

REFERENCES

[1] A. Biswas and V. Shapiro. Approximate distance fields with non-vanishing gradi-
ents. Graphical Models, 66:133–159, 2004.

[2] G. Comini, S Del Guidance, R. W. Lewis, and O. C. Zienkiewicz. Finite element so-
lution on nolinear heat conduction problems with special reference to phase change.
International Journal for Numerical Methods in Engineering, 8:613–624, 1974.

[3] C. A. Duarte and J. T. Oden. An h-p adaptive methods using clouds. Computer
Methods in Applied Mechanics and Engineering, 139:237–262, 1996.

[4] M. Freytag, V. Shapiro, and I. Tsukanov. Field modeling with sampled distance.
Computer-Aided Design, 38:87–100, 2006.

[5] C. Y. Ho, R. W. Powell, and P. E. Liley. Thermal conductivity of elements. Journal
of Physical and Chemical Reference Data, 3(1), 1974.

[6] L. V. Kantorovich and V. I. Krylov. Approximate Methods of Higher Analysis.
Interscience Publishers, 1958.

[7] Y. Krongauz and T. Belytschko. Enforcement of essential boundary conditions
in meshless approximations using finite elements. Computer Methods in Applied
Mechanics and Engineering, 131:133–145, 1996.

[8] P. Krysl. A Pragmatic Introduction to Finite Element Method for Thermal and
Stress Analysis. World Scientific Publishing Co. Pte. Ltd, 2008.

[9] W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko. Reproducing kernel particle
methods for structural mechanics. International Journal for Numerical Methods in
Engineering., 38:1655–1679, 1995.

[10] Y.Y. Lu, T. Belytschko, and L. Gu. A new implementation of the element-free
Galerkin. Computer Methods in Applied Mechanics and Engineering, 113:397–414,
1994.

[11] L. Lucy. A numerical approach to testing the fission hypothesis. Astron. J., 82:1013–
1024, 1977.

[12] T. J. Martin and G. S. Dulikravich. Inverse determination of temperature-
dependent thermal conductivity using steady surface data on orbitrary objects.
Journal of Heat Transfer, 122:450–459, 2000.

[13] J. M. Melenk and I. Babuska. The partition of unity finite element method: Basic
theory and applications. Computer Methods in Applied Mechanics and Engineering,
139:289–314, 1996.

[14] B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element method:
diffuse approximation and diffuse elements. Computational Mechanics, 10:307–318,
1992.

[15] M. N. Ozisic. Heat Conduction. John Wiley and Sons, 1993.

70

[16] V. L. Rvachev and T. I. Sheiko. R-functions in boundary value problems in me-
chanics. Applied Mechanics Reviews, 48(4):151–188, 1995.

[17] V. L. Rvachev, T. I. Sheiko, V. Shapiro, and I. Tsukanov. On completeness of RFM
solution structures. Computational Mechanics, 1999. Accepted for publication in
the special issue on meshfree methods.

[18] G. E. Schneider. A physical aaproach to the finite-difference solution of the con-
duction equation in generalized coordinates. Numerical Heat Transfer, Part A: An
iternational journal of computation and methodology., 5(1):1–19, 1982.

[19] J.A. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics,
Computer Vision and Material Sciences. Cambridge University Press, 1996.

[20] V. Shapiro. Theory of R-functions and applications: A primer. Report TR91-1219,
Computer Science Department, Cornell University, 1991.

[21] V. Shapiro. Real functions for representation of rigid solids. Computer-Aided Goe-
metric Design, 11(2):153–175, 1994.

[22] V. Shapiro. Semi-analytic geometry with r-functions. Acta Numerica, 12:239–303,
2007.

[23] V. Shapiro and I. Tsukanov. Implicit functions with guaranteed differential prop-
erties. In Fifth ACM Symposium on Solid Modeling and Applications, Ann Arbor,
MI, 1999.

[24] V. Shapiro and I. Tsukanov. Meshfree simulation of deforming domains. Computer-
Aided Design, 31(7):459–471, 1999.

[25] T. H. Sheu and R. K. Lin. Newton linearization of incompressible navier-stoke
equations. International Journal for Numerical Methods in Engineering, 44(3):297–
312, 2004.

[26] L. C. Wrobel and M. H. Aliabadi. Boundary Element Method. John Wiley and
Sons, 2002.

71

72

APPENDIX

Appendix 1: Analytical Solution of the Benchmark Problem: Steady-State Problem

with Dirichlet Boundary Conditions

#include "rfms.h"

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <math.h>

int pre(void);

tuple omega(void);

double om(void);

double fa(int flag, int i, int j);

double fb(int flag, int i);

double fu(void);

void u0(void);

tuple u1(void);

tuple *w1, *w2;

tuple_seq *p;

// Compute exact solution

73

double u_exact(void)

{

double x, y;

 double c1, c2, r1, r2, d1, d2;

 r1 = 0.25; r2 = 1; d1 = 40; d2 = 1;

 c2=(((d1*log(r2)))-(d2*log(r1)))/((log(r2))-(log(r1)));

 c1=((d1-(c2))/log(r1));

 x = GetArgumentX(1); y = GetArgumentX(2);

 return c1 * log(sqrt(x*x + y*y)) + c2;

}

// Error computation

double u_diff2(void)

{

 double temp;

 temp = (u_exact() - fu());

 return temp * temp;

}

double u_exact2(void)

74

{

 double temp = u_exact();

 return temp * temp;

}

int main(void)

{

 timerclass T;

 T.ShowTimeBegin();

// Allocation of the data structure for automatic differentiation

 SetTupleDimensionOrder(2,1); //2D, max order = 1;

// Defining the bounding box

 double xmin, ymin, xmax, ymax;

 double xmin_ext, ymin_ext, xmax_ext, ymax_ext;

 xmin = ymin = -1.0;

 xmax = ymax = 1.0;

 SetBoundingBox2D(xmin, ymin, xmax, ymax);

 w1 = new tuple;

 w2 = new tuple;

// Defining information about B-splines: degree, grid

75

 int ns, nx, ny gauss, n_random;

 ns = 4; // degree of B-splines nx = ny = 22; // grid nx x ny

n_gauss = 5; n_random= 5;

// Allocation of the matrix and vector

 matrixclass a;

 vectorclass b;

 a.CreateMatrix(M_BANDED_SYMMETRIC, ns, nx, ny);

 b.CreateVector(ns, nx, ny);

// Defining information about basis functions

 tuple_seq P(1); p = &P; //An empty entry; (1) means the number of sequences

// The first sequence is B-splines of degree ns, with grid nx*ny

 P.SetBsplines2DDegree(0, ns, nx, ny); // 0's sequence

// Define which matrix and vector will be assembled by the integration procedures

 SetMatrixPointer(&a); SetVectorPointer(&b);

AdjustBoundingBox2D(xmin, ymin, xmax, ymax, xmin_ext, ymin_ext,

xmax_ext, ymax_ext);

 quadtreeclass tree(nx, ny, xmin_ext, ymin_ext, xmax_ext, ymax_ext);

 tree.BuildTree(n_gauss,0.5, n_random, pre);

// Assemble matrix and vector using functions fa and fb

76

 tree.IntegrateMV(fa,fb);

 a.Solve(b); // on return b contains values of C_i

// Compute L2-norm of the error

 double I1, I2, error;

 tree.Integrate(u_diff2);

 I1 = sqrt(GetIntegralValue());

 tree.Integrate(u_exact2);

 I2 = sqrt(GetIntegralValue());

 error = I1/I2 * 100;

 // save results

 filexy("u_approx",199, 199, xmin,ymin, xmax, ymax, fu, om);

 T.ShowTime();

 return(0);

}

//Point membership classification function

int pre(void)

{

 if(om() >= 0.0)

 {

77

 return 1;

 }

 else

 {

 return -1;

 }

}

double om(void)

{

 return omega().GetValue();

}

// The omega function

tuple omega(void)

{

 *w1 = circle(0,0,1); *w2 = mcircle(0,0,0.25);

 return (*w1) & (*w2);

}

//Solution structure

void u0(void)

78

{

 p->Compute(0);

 p->Mult(omega());

 return;

}

tuple u1(void)

{

 tuple f1, f2; f1 = 1; f2 = 40;

 omega();

 return paste((*w1),(*w2), f1,f2);

}

// Matrix function

double fa(int flag, int i, int j)

{

 double result1,result2;

 if(flag == 0) // new integration point

 {

 u0();

 }

79

// Computation of the dot product of the gradients

 result1 = dx_direct(p->GetTuple(0,i), 1)* dx_direct(p->GetTuple(0,j), 1);

 result2 = dx_direct(p->GetTuple(0,i), 2)*dx_direct(p->GetTuple(0,j), 2);

 return (result1 + result2);

}

// Vector function

double fb(int flag, int i)

{

 double result1,result2;

 static tuple uu1(GetTupleMaxOrder());

 if(flag == 0)

 {

 u0();

 uu1 = u1();

 }

 result1 = dx_direct(p->GetTuple(0,i), 1) *dx_direct(&uu1, 1);

 result2 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&uu1, 2);

 return -(result1 + result2);

}

80

// SOLUTION

double fu(void)

{

 static vectorclass *c;

 c = GetVectorPointer();

u0();

return (sum(c, u1(), *p).GetValue());

}

Appendix 2: Solution of Nonlinear Transient Heat Conduction Problem with

Dirichlet Boundary Conditions

#include "rfms.h"

#include <stdio.h>

#include <math.h>

int pre(void);

tuple omega(void);

double fa(int flag, int i, int j);

double fb(int flag, int i);

double fu(void);

double om(void);

81

void u0(void);

tuple u1(void);

double fa_Initial(int flag, int i, int j);

double fb_Initial(int flag, int i);

double fa_InitialT(int flag, int i, int j);

double fb_InitialT(int flag, int i);

double dirLambda_prev(void);

double fu_initial(void);

double lambda_prev(void);

tuple *w1, *w2;

tuple_seq *p;

vectorclass *c_previous, *c_current,*c_previousT, *c_currentT;

double t, dt, lambda, Rho, Cp, Cp_Rho, TempMax, TempMin;;

SplineInterpolation *lambda_table;

double regularization_parameter = 0.0; // set zero to start computation Oseen

int main(void)

{

 timerclass T;

82

 T.ShowTimeBegin();

// Allocation of the data structure for automatic differentiation

 SetTupleDimensionOrder(2,1); //2D, max order = 1;

// Defining the bounding box

 double xmin, ymin, xmax, ymax;

 double xmin_ext, ymin_ext, xmax_ext, ymax_ext;

 xmin = ymin = -1.0; xmax = ymax = 1.0;

 SetBoundingBox2D(xmin, ymin, xmax, ymax);

 w1 = new tuple; w2 = new tuple;

// Thermal conductivity (W/m-K) data for Alumina (Temp in K)

 double Temp[10], K[10];

 int number_of_data_pts = 5;

 Temp[0] = 298.15; K[0] = 46.0;

 Temp[1] = 400.15; K[1] = 32.3;

 Temp[2] = 500.15; K[2] = 24.2;

 Temp[3] = 600.15; K[3] = 18.9;

 Temp[4] = 800.15; K[4] = 13.0;

 Rho = 3960; Cp = 850;

lambda_table = new SplineInterpolation(Temp, K, number_of_data_pts);

83

 TempMin = Temp[0]; TempMax = Temp[32]; lambda = K[0];

 dt = 2; Cp_Rho = 1/(Cp*Rho);

// Defining information about B-splines: degree, grid

 int ns, nx, ny, ngauss, random;

 ns = 4; // degree of B-splines

 nx = ny = 61; // grid nx x ny

ngauss = 5; random = 5;

// Allocation of the matrix and vector

 matrixclass a;

 vectorclass b, C_previous, C_current, C_previousT, C_currentT;

 a.CreateMatrix(M_BANDED, ns, nx, ny);

 b.CreateVector(ns, nx, ny);

// Assign C for time iteration

C_previousT.CreateVector(ns, nx, ny); C_currentT.CreateVector(ns, nx, ny);

 c_previousT = &C_previousT; c_currentT = &C_currentT;

// Assign C for Conductivity iteration

C_previous.CreateVector(ns, nx, ny); C_current.CreateVector(ns, nx, ny);

 c_previous = &C_previous; c_current = &C_current;

84

// Defining information about basis functions

tuple_seq P(1); p = &P; //An empty entry; (1) means the number of sequences

// The first sequence is B-splines of degree ns, with grid nx*ny

 P.SetBsplines2DDegree(0, ns, nx, ny); // 0's sequence

// Define which matrix and vector will be assembled by the integration procedures

 SetMatrixPointer(&a);

 SetVectorPointer(&b);

AdjustBoundingBox2D(xmin, ymin, xmax, ymax, xmin_ext, ymin_ext,

xmax_ext, ymax_ext);

 quadtreeclass tree(nx, ny, xmin_ext, ymin_ext, xmax_ext, ymax_ext);

// Create quad-tree decomposition of the space using defined gaussian integration points;

 tree.BuildTree(random, 0.5, ngauss, pre);

// Assemble initial matrix and vector for first "time" iteration

 tree.IntegrateMV(fa, fb_Initial);

 a.Solve(b); // on return b contains values of C_i

 C_currentT = b;

// Nonlinear loop for the first iteration

double err; int k;

85

 C_previous = C_currentT;

 do{

 a.SetZero();

 b.SetZero();

 tree.IntegrateMV(fa, fb_Initial);

 // Solve linear algebra problem

 a.Solve(b);

 C_current = b;

 err = C_current.RelativeErrorEstimation(C_previous, V_NORM_2);

 C_previous = C_current;

 // Apply Oseen or Newton-Kantorovich Linearization

 if (err < 1.0)

 {

 regularization_parameter = 1.0;

 }

 else

 {

 regularization_parameter = 0.0;

 }

86

 } while(err > 0.00001); // Setting convegence criteria

 filexy(299,299, xmin, ymin, xmax, ymax, fu, om);

// Stepping through time

 for(k=1;k<50;k++)

 {

 C_previousT = C_current;

 do{

 a.SetZero();

 b.SetZero();

 tree.IntegrateMV(fa, fb);

 a.Solve(b);

 C_current = b;

 err = C_current.RelativeErrorEstimation(C_previous, V_NORM_2);

 C_previous = C_current;

 if (err < 1.0)

 {

 regularization_parameter = 1.0;

 }

 else

87

 {

 regularization_parameter = 0.0;

 }

 } while(err > 0.00001); // Setting convegence criteria

 filexy(299,299, xmin, ymin, xmax, ymax, fu, om);

 }

 T.ShowTime();

 return(0);

}

//Point membership classification function

int pre(void)

{

 if(om() >= 0.0)

 {

 return 1;

 }

 else

 {

 return -1;

88

 }

}

double om(void)

{

 return omega().GetValue();

}

// The omega function

tuple omega(void)

{

 *w1 = circle(0,0,1); *w2 = mcircle(0,0,0.25);

 return (*w1) & (*w2);

}

// Initial temperature distribution

double fu_Initial(void)

{

 double x, y;

 x = GetArgumentX(1);

 y = GetArgumentX(2);

89

 return 0.0;

}

//Solution structure

void u0(void)

{

 p->Compute(0);

 p->Mult(omega());

 return;

}

tuple u1(void)

{

 tuple f1, f2; f1 = 1; f2 = 60;

 omega();

 return paste((*w1),(*w2), f1,f2);

}

// Matrix function for initial iteration

double fa_InitialT(int flag, int i, int j)

{

 double result1,result2, result3;

90

 if(flag == 0) // Compute basis function at the point new integration point

 {

 u0();

 }

// Computation of the dot product of the gradients

result1 = dx_direct(p->GetTuple(0,i), 1)*dx_direct(p->GetTuple(0,j), 1);

result2 = dx_direct(p->GetTuple(0,i), 2)*dx_direct(p->GetTuple(0,j), 2);

result3 = dx_direct(p->GetTuple(0,i), 0)*dx_direct(p->GetTuple(0,j), 0);

return Cp_Rho*dt*(result1 + result2)*lambda + result3;

}

double fb_InitialT(int flag, int i)

{

 double result1,result2;

 static tuple uu1(GetTupleMaxOrder());

 static double prev;

 if(flag == 0)

 {

 u0();

 uu1 = u1();

91

 prev = fu_Initial() - dx_direct(&uu1, 0);

 }

 result1 = dx_direct(p->GetTuple(0,i), 1) * dx_direct(&uu1, 1);

 result2 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&uu1, 2);

return -Cp_Rho*dt*(result1 + result2)*lambda + dx_direct(p->GetTuple(0,i), 0)

* prev;

}

double fa(int flag, int i, int j)

{

 double result1,result2, result3, result4, result5;

 static double lambda_Tprev;

 static double dirLambda_Tprev; // Change in lambda with repect to temp.

 static tuple fu_prev(GetTupleMaxOrder());

 if(flag == 0) // new integration point

 {

 u0();

 lambda_Tprev = lambda_prev();

 dirLambda_Tprev = dirLambda_prev();

 // compute solution at previous iteration

92

 fu_prev = sum(c_previous, u1(), *p);

 }

// Computation of the dot product of the gradients

result1 = dx_direct(p->GetTuple(0,i), 1)* dx_direct(p->GetTuple(0,j), 1);

result2 = dx_direct(p->GetTuple(0,i), 2)*dx_direct(p->GetTuple(0,j), 2);

result3 = dx_direct(p->GetTuple(0,i), 0)*dx_direct(p->GetTuple(0,j), 0);

result4 = dx_direct(p->GetTuple(0,i), 1)*dx_direct(&fu_prev, 1);

result5 = dx_direct(p->GetTuple(0,i), 2)*dx_direct(&fu_prev, 2);

return Cp_Rho*dt*(result1 + result2)*lambda_Tprev + result3 +

 (

Cp_Rho*dt*(result4 + result5)*dirLambda_Tprev * dx_direct(p-

>GetTuple(0,j), 0)

) * regularization_parameter;

}

double fb_Initial(int flag, int i)

{

 double result1,result2, result3, result4;

 static tuple uu1(GetTupleMaxOrder());

 static tuple fu_prev(GetTupleMaxOrder());

93

 static double prev, lambda_Tprev, dirLambda_Tprev;

 if(flag == 0)

 {

 u0();

 uu1 = u1();

 lambda_Tprev = lambda_prev();

 prev = fu_Initial() - dx_direct(&uu1, 0);

 dirLambda_Tprev = dirLambda_prev();

 fu_prev = sum(c_previous, u1(), *p);

 }

 result1 = dx_direct(p->GetTuple(0,i), 1) * dx_direct(&uu1, 1);

 result2 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&uu1, 2);

 result3 = dx_direct(p->GetTuple(0,i), 1)* dx_direct(&fu_prev, 1);

 result4 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&fu_prev, 2);

 return -Cp_Rho*dt*(result1 + result2)*lambda_Tprev

+ dx_direct(p->GetTuple(0,i), 0) * prev +

 (

94

- Cp_Rho*dt*(result3 + result4)*dirLambda_Tprev * dx_direct(&uu1, 0)

+ Cp_Rho*dt*(result3 + result4)*dirLambda_Tprev * dx_direct(

&fu_prev, 0)

) * regularization_parameter;

}

double fb(int flag, int i)

{

 double result1,result2, result3, result4;

 static double lambda_Tprev, dirLambda_Tprev, prev;;

 static tuple fu_prev(GetTupleMaxOrder());

 static tuple uu1(GetTupleMaxOrder());

 if(flag == 0)

 {

 t = t - dt; // go to previous time

 double prev_u1 = u1().GetValue();

 t = t + dt;

 uu1 = u1();

 prev = prev_u1 - uu1.GetValue();

 u0();

95

 lambda_Tprev = lambda_prev();

 prev = (sum(c_previousT, *p).GetValue()) + prev;

 dirLambda_Tprev = dirLambda_prev();

 fu_prev = sum(c_previous, u1(), *p);

 }

 result1 = dx_direct(p->GetTuple(0,i), 1) *dx_direct(&uu1, 1);

 result2 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&uu1, 2);

 result3 = dx_direct(p->GetTuple(0,i), 1)* dx_direct(&fu_prev, 1);

 result4 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&fu_prev, 2);

 return -Cp_Rho*dt*(result1 + result2)*lambda_Tprev +

 dx_direct(p->GetTuple(0,i), 0) * prev +

 (

- Cp_Rho*dt*(result3 + result4)*dirLambda_Tprev * dx_direct(

&uu1, 0)

+ Cp_Rho*dt*(result3 + result4)*dirLambda_Tprev * dx_direct(

&fu_prev, 0)

) * regularization_parameter;

 }

// Compute previous thermal conductivity k_prev

96

double lambda_prev(void)

{

 double fu_prev;

// Compute basis functions at the point

 u0();

// Compute the sum

 fu_prev= (sum(c_previous, u1(), *p).GetValue());

 if(fu_prev < TempMin) fu_prev = TempMin;

 if(fu_prev > TempMax) fu_prev = TempMax;

 return lambda_table->Compute(fu_prev);

}

// Compute dirivative of lambda with respect to temperature obtained at previous iteration

double dirLambda_prev(void)

{

 double fu_prev;

 u0();

// Compute the sum

 fu_prev= (sum(c_previous, u1(), *p).GetValue());

 if(fu_prev < TempMin) fu_prev = TempMin;

97

 if(fu_prev > TempMax) fu_prev = TempMax;

 return lambda_table->ComputeDx1(fu_prev);

}

double fu(void)

{

// Compute basis functions at the point

 u0();

// Compute the sum

 return (sum(c_current, u1(), *p).GetValue());

}

Appendix 3: Solution of Nonlinear Transient Heat Conduction Problem with

Convective Boundary Conditions

#include "rfms.h"

#include <stdio.h>

#include <math.h>

int pre (void);

tuple omega(void);

tuple fi(void);

98

double om(void);

double fa(int flag, int i, int j);

double fa1(int flag, int i, int j);

double fb(int flag, int i);

double fb1(int flag, int i);

double fu(void);

double fb_initial(int flag, int i);

double fu_initial(void);

double fa_InitialT(int flag, int i, int j);

double fa1_initial(int flag, int i, int j);

double fb_initialT(int flag, int i);

double fb1_initial(int flag, int i);

double fu1(void);

double lambda_interpolate(void);

void u0(void);

tuple u1(void);

vectorclass *c;

vectorclass *c_previous, *c_current,*c_previousT, *c_currentT;

tuple_seq *p, *pu;

99

double dt, Rho, Cp, Cp_Rho, t;

double alpha = 450; // Heat transfer coefficient

double lambda; // Thermal conductivity Structural Steel

double TempMax, TempMin;

SplineInterpolation *lambda_table;

approximation *fu_approximate, *fu_approximate1;

double regularization_parameter = 0.0; // set to zero to begin with Oseen

int main(void)

{

 timerclass T;

 T.ShowTimeBegin();

// Definition of the dimension of space and order of the derivatives

 SetTupleDimensionOrder(2,2);

// Defining the bounding box

 double xmin, ymin, xmax, ymax;

 double xmin_ext, ymin_ext, xmax_ext, ymax_ext;

 xmin = ymin = -1.0; xmax = ymax = 1.0;

 SetBoundingBox2D(xmin, ymin, xmax, ymax);

100

 AdjustBoundingBox2D(xmin, ymin, xmax, ymax, xmin_ext, ymin_ext,

xmax_ext, ymax_ext);

// Defining information about B-splines: degree, grid

 int degree, nx,ny, gauss_points, n_random;

 degree = 4; // degree of B-splines

 nx = ny = 61; // grid nx X ny

 gauss_points = 5; n_random = 5;

 double eps = 0.5;

// Thermal conductivity (W/m-K) data for Alumina (Temp in K)

 double Temp[10], K[10];

 int number_of_data_pts = 5;

 Temp[0] = 298.15; K[0] = 46.0;

 Temp[1] = 400.15; K[1] = 32.3;

 Temp[2] = 500.15; K[2] = 24.2;

 Temp[3] = 600.15; K[3] = 18.9;

 Temp[4] = 800.15; K[4] = 13.0;

 Rho = 3960; // density kg/m^3 Cp = 850; // J/kg-K

 lambda_table = new SplineInterpolation(Temp, K, number_of_data_pts);

101

 TempMin = Temp[0]; TempMax = Temp[4];

 lambda = K[0]; dt = 1000; Cp_Rho = 1/(Cp*Rho);

// Allocation of the matrix and vector

 matrixclass a;

 vectorclass b, C_previous, C_current, C_previousT, C_currentT;

 a.CreateMatrix(M_BANDED, degree, nx, ny);

 b.CreateVector(degree, nx, ny);

// Assign C for time iteration

C_previousT.CreateVector(degree, nx, ny); C_currentT.CreateVector(degree, nx, ny);

 c_previousT = &C_previousT; c_currentT = &C_currentT;

// Assign C for Conductivity iteration

C_previous.CreateVector(degree, nx, ny); C_current.CreateVector(degree, nx, ny);

 c_previous = &C_previous; c_current = &C_current;

// Defining information about basis functions

 tuple_seq P1(1), Pu(1); p = &P1; pu = &Pu;

// The first sequence is B-splines of degree ns, with grid nx*ny

 p->SetBsplines2DDegree(0, degree, nx, ny); // 0's sequence

 pu->SetBsplines2DDegree(0, degree, nx, ny);

102

 quadtreeclass tree(nx, ny, xmin_ext, ymin_ext, xmax_ext, ymax_ext);

// Create quad-tree decomposition of the space using specified number gaussian

integration points;

 tree.BuildTree(gauss_points, eps, n_random, pre);

// Define which matrix and vector will be assembled by the integration procedures

 SetMatrixPointer(&a);

 SetVectorPointer(&b);

// Assemble matrix and vector for initial time step

 tree.IntegrateMV(fa_InitialT, fb_initialT); // domain

 ContourIntegrateArcMV(nx, ny, gauss_points, 0.0, 0.0, 0.25, 0.0, PI2,

 fa1_initial, fb1_initial); // boundary

 ContourIntegrateArcMV(nx, ny, gauss_points, 0.0, 0.0, 1.0, 0.0, PI2,

 fa1_initial, fb1_initial);

// Solve linear algebra problem

 a.Solve(b);

 C_currentT = b; // on return b contains values of C_i for first time step

 fu_approximate = new approximation(degree, nx, ny, gauss_points, eps,

 n_random, xmin, ymin, xmax,ymax, fu1, pre);

103

 C_previous=C_currentT;

 do

 {

 a.SetZero();

 b.SetZero();

 tree.IntegrateMV(fa, fb_initial);

 ContourIntegrateArcMV(nx, ny, gauss_points, 0.0, 0.0, 0.25, 0.0, PI2,

 fa1, fb1);

 ContourIntegrateArcMV(nx, ny, gauss_points,0.0, 0.0, 1.0, 0.0, PI2,

 fa1, fb1);

 a.Solve(b); // on return b contains values of C_i

 C_current = b;

 fu_approximate1 = new approximation(degree, nx, ny, gauss_points, eps,

 n_random, xmin, ymin, xmax,ymax, fu, pre);

 delete fu_approximate;

 fu_approximate = fu_approximate1;

 err = C_current.RelativeErrorEstimation(C_previous, V_NORM_2);

 C_previous = C_current;

104

 }while(err > 0.001); // Setting convegence criteria

 SetArgumentX(1, x);

 SetArgumentX(2, y);

 filexy(299,299, xmin, ymin, xmax, ymax, fu, om);

// Stepping through time

 int k;

 for(k=1;k<30;k++)

 {

 C_previousT = C_current;

 do

 {

 a.SetZero();

 b.SetZero();

 tree.IntegrateMV(fa,fb);

 ContourIntegrateArcMV(nx, ny, gauss_points,0.0, 0.0, 0.25, 0.0, PI2,

 fa1, fb1);

 ContourIntegrateArcMV(nx, ny, gauss_points, 0.0, 0.0, 1.0, 0.0, PI2,

105

 fa1, fb1);

 a.Solve(b); // on return b contains values of C_i

 C_current = b;

 u_approximate1 = new approximation(degree, nx, ny, gauss_points, eps,

 n_random, xmin, ymin, xmax,ymax, fu, pre);

 delete fu_approximate;

 fu_approximate = fu_approximate1;

 err = C_current.RelativeErrorEstimation(C_previous, V_NORM_2);

 C_previous = C_current;

 } while(err > 0.001); // Setting convegence criteria

 filexy(299,299, xmin, ymin, xmax, ymax, fu, om);

}

 T.ShowTime();

 return(0);

}

//Point membership classification function

int pre(void)

{

 if(om() >= 0.0)

106

 return 1;

 else

 return -1;

}

// Initial temperature distribution

double fu_initial(void)

{

 double x, y;

 x = GetArgumentX(1);

 y = GetArgumentX(2);

 return 295.15; // Initial temperature set to zero

}

tuple omega(void)

{

 return circle(0,0,1) & mcircle(0,0,0.25);

}

double om(void)

{

 return omega().GetValue();

107

}

// Set temperature surrounding boundaries (T_env can be a function of time)

tuple fi(void)

{

 tuple w1, w2, f1, f2;

 w1 = circle(0,0,1);

 w2 = mcircle(0,0,0.25);

 f1 = 320*alpha; f2 = 650*alpha;

 return paste(w1,w2,f1,f2);

}

// Nonhomogeneous part of solution structure

tuple u1(void)

{

 return - fi() * omega()/lambda;

}

//Homogeneous part of solution structure

void u0(void)

{

 static double h;

108

 h = alpha/lambda;

 static tuple om(GetTupleMaxOrder());

 om = omega();

 pu->Compute(0);

 *p = *pu + ((*pu*h) - d1(*pu, om))*om;

 return;

}

// Matrix function for damain integral

double fa_InitialT(int flag, int i, int j)

{

 double result1,result2,result3;

// Compute basis function at the point

 if(flag == 0) // new integration point

 {

 u0();

 }

// Computation of the dot product of the gradients

 result1 = dx_direct(p->GetTuple(0,i), 1)*dx_direct(p->GetTuple(0,j), 1);

109

 result2 = dx_direct(p->GetTuple(0,i), 2)*dx_direct(p->GetTuple(0,j), 2);

 result3 = dx_direct(p->GetTuple(0,i), 0)*dx_direct(p->GetTuple(0,j), 0);

 return Cp_Rho*dt*(result1 + result2)*lambda + result3;

}

// Matrix fuction for boundary integral

double fa1_initial(int flag, int i, int j)

{

 if(flag == 0)

 {

 u0();

 }

 return Cp_Rho*dt*alpha* dx_direct(p->GetTuple(0,i), 0) * dx_direct(p-

>GetTuple(0,j), 0);

}

// Initial time step vector function for domain integral

double fb_initialT(int flag, int i)

{

 double result1,result2;

110

 static double prev;

 static tuple uu1(GetTupleMaxOrder());

 if(flag == 0)

 {

 u0();

 uu1 = u1();

 prev = fu_initial() - dx_direct(&uu1, 0); ;

 }

 result1 = dx_direct(p->GetTuple(0,i), 1) * dx_direct(&uu1, 1);

 result2 = dx_direct(p->GetTuple(0,i), 2)*dx_direct(&uu1, 2);

 return -Cp_Rho*dt*(result1 + result2)*lambda + dx_direct(p-

>GetTuple(0,i), 0) * prev;

}

// Initial Vector function for boundary integral

double fb1_initial(int flag, int i)

{

 static double fi1;

 if(flag == 0)

 {

111

 fi1 = fi().GetValue();

 u0();

 }

 return Cp_Rho*dt*fi1*dx_direct(p->GetTuple(0,i), 0);

}

double fa(int flag, int i, int j)

{

 double result1,result2,result3, result4, result5;

// Compute basis function at the point

 if(flag == 0) // new integration point

 {

 lambda = lambda_interpolate();

 u0();

 }

// Computation of the dot product of the gradients

 result1 = dx_direct(p->GetTuple(0,i), 1)*dx_direct(p->GetTuple(0,j), 1);

 result2 = dx_direct(p->GetTuple(0,i), 2)*dx_direct(p->GetTuple(0,j), 2);

 result3 = dx_direct(p->GetTuple(0,i), 0)*dx_direct(p->GetTuple(0,j), 0);

112

 result4 = dx_direct(p->GetTuple(0,i), 1)*dx_direct(&fu_prev, 1);

 result5 = dx_direct(p->GetTuple(0,i), 2)*dx_direct(&fu_prev, 2);

 return Cp_Rho*dt*(result1 + result2)*lambda + result3 +

 (

 Cp_Rho*dt*(result4 + result5)*dirLambda_Tprev * dx_direct(p-

>GetTuple(0,j), 0)

) * regularization_parameter;

}

double fa1(int flag, int i, int j)

{

 if(flag == 0)

 {

 lambda = lambda_interpolate();

 u0();

 }

 return Cp_Rho*dt*alpha* dx_direct(p->GetTuple(0,i), 0) * dx_direct(p-

>GetTuple(0,j), 0);

}

113

double fb1(int flag, int i)

{

 static double fi1;

 if(flag == 0)

 {

 lambda = lambda_interpolate();

 fi1 = fi().GetValue();

 u0();

 }

 return Cp_Rho*dt*fi1*dx_direct(p->GetTuple(0,i), 0);

}

double fb_initial(int flag, int i)

{

 double result1,result2, result3, result4;

 static double prev,dirLambda_Tprev;;

 static tuple uu1(GetTupleMaxOrder());

 static tuple fu_prev(GetTupleMaxOrder());

114

 if(flag == 0)

 {

 lambda = lambda_interpolate();

 u0();

 uu1 = u1();

 dirLambda_Tprev = dirLambda_prev();

 prev = fu_initial() - dx_direct(&uu1, 0);

 fu_prev = sum(c_previous, u1(), *p);

 }

 result1 = dx_direct(p->GetTuple(0,i), 1) * dx_direct(&uu1, 1);

 result2 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&uu1, 2);

 result3 = dx_direct(p->GetTuple(0,i), 1)* dx_direct(&fu_prev, 1);

 result4 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&fu_prev, 2);

 return -Cp_Rho*dt*(result1 + result2)*lambda + dx_direct(p->GetTuple(0,i), 0)

* prev +

 (

 - Cp_Rho*dt*(result3 + result4)*dirLambda_Tprev * dx_direct(&uu1, 0)

 + Cp_Rho*dt*(result3 + result4)*dirLambda_Tprev * dx_direct(&fu_prev, 0)

115

) * regularization_parameter;

}

// Vector function for domain integral

double fb(int flag, int i)

{

 double result1,result2, result3, result4;

 static tuple uu1(GetTupleMaxOrder());

 static double prev;

 if(flag == 0)

 {

 t = t - dt; // go to the previous time

 double prev_u1 = u1().GetValue();

 t = t + dt; // return to the current time

 lambda = lambda_interpolate();

 uu1 = u1();

 prev = prev_u1 - uu1.GetValue();

 u0();

 prev = (sum(c_previousT, *p).GetValue()) + prev;

116

 dirLambda_Tprev = dirLambda_prev();

 fu_prev = sum(c_previous, u1(), *p);

 }

 result1 = dx_direct(p->GetTuple(0,i), 1) *dx_direct(&uu1, 1);

 result2 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&uu1, 2);

 result3 = dx_direct(p->GetTuple(0,i), 1)* dx_direct(&fu_prev, 1);

 result4 = dx_direct(p->GetTuple(0,i), 2)* dx_direct(&fu_prev, 2);

 return -Cp_Rho*dt*(result1 + result2)*lambda + dx_direct(p->GetTuple(0,i), 0)

* prev +

 (

 - Cp_Rho*dt*(result3 + result4)*dirLambda_Tprev * dx_direct(&uu1, 0)

 + Cp_Rho*dt*(result3 + result4)*dirLambda_Tprev * dx_direct(&fu_prev, 0)

) * regularization_parameter;

}

// Interpolating thermal conductivity

double lambda_interpolate(void)

{

 double fu_prev;

 fu_prev = fu_approximate->Compute().GetValue();

117

 if(fu_prev < TempMin) fu_prev = TempMin;

 if(fu_prev > TempMax) fu_prev = TempMax;

 return lambda_table->Compute(fu_prev);

}

// Compute dirivative of lambda with respect to temperature obtained at previous iteration

double dirLambda_prev(void)

{

 double fu_prev;

 u0();

// Compute the sum

 fu_prev= (sum(c_previous, u1(), *p).GetValue());

 if(fu_prev < TempMin) fu_prev = TempMin;

 if(fu_prev > TempMax) fu_prev = TempMax;

 return lambda_table->ComputeDx1(fu_prev);

}

// SOLUTION

118

// Solution for Initial Iteration

double fu1(void)

{

 u0();

 return (sum(c_currentT, u1(), *p).GetValue());

}

// Solution for iteration procedure

double fu(void)

{

 lambda = lambda_interpolate();

 u0();

 return (sum(c_current, u1(), *p).GetValue());

}

	Florida International University
	FIU Digital Commons
	11-9-2010

	Solution of Nonlinear Transient Heat Transfer Problems
	Donovan O. Buckley
	Recommended Citation

	myThesis_pdfa.pdf
	Appendix A2_pdfa

