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ABSTRACT OF THE DISSERTATION 

BIOMIMETIC MODELING OF THE NITROGEN-CENTERED RADICAL 

POSTULATED TO OCCUR DURING THE INHIBITION OF RIBONUCLEOTIDE 

REDUCTASES BY 2'-AZIDO-2'-DEOXYNUCLEOTIDES 

by 

Thao P. Dang 

Florida International University, 2010 

Miami, Florida 

Professor Stanislaw Wnuk, Major Professor 

Ribonucleotide reductases (RNR) are essential enzymes that catalyze the reduction of 

ribonucleotides to 2'-deoxyribonucleotides, which is a critical step that produces 

precursors for DNA replication and repair. The inactivation of RNR, logically, would 

discontinue producing the precursors of the DNA of viral or cancer cells, which then 

would consequently end the cycle of DNA replication.  Among different compounds that 

were found to be inhibitors of RNR, 2'-azido-2'-deoxynucleotide diphosphates (N3NDPs) 

have been investigated in depth as potent inhibitors of RNR. Decades of investigation has 

suggested that the inactivation of RNR by N3NDPs is a result of the formation of a 

nitrogen-centered radical (N•) that is covalently attached to the nucleotide at C3' and 

cysteine molecule C225 [3'-C(R-S-N•-C-OH)]. Biomimetic simulation reactions for the 

generation of the nitrogen-centered radicals similar to the one observed during the 

inactivation of the RNR by azionuclotides was investigated.  The study included several 

modes: (i) theoretical calculation that showed the feasibility of the ring closure reaction 

between thiyl radicals and azido group; (ii) synthesis of the model azido nucleosides with 
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a linker attached to C3' or C5' having a thiol or vicinal dithiol functionality; (iii) 

generation of the thiyl radical under both physiological and radiolysis conditions whose 

role is important in the initiation on RNR cascades; and (iv) analysis of the nitrogen-

centered radical species formed during interaction between the thiyl radical and azido 

group by electron paramagnetic resonance spectroscopy (EPR). Characterization of the 

aminyl radical species formed during one electron attachment to the azido group of 2'-

azido-2'-deoxyuridine and its stereospecifically labelled 1'-, 2'-, 3'-, 4'- or 5,6-[2H2]-

analogues was also examined.  This dissertation gave insight toward understanding the 

mechanism of the formation of the nitrogen-centered radical during the inactivation of 

RNRs by azidonucleotides as well as the mechanism of action of RNRs that might 

provide key information necessary for the development of the next generation of antiviral 

and anticancer drugs. 
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1. INTRODUCTION 

1.1 Ribonucleotide Reductases: Function and Structure 

Ribonucleotide reductases (RNRs) are enzymes that catalyze the conversion of 

ribonucleotides to 2'-deoxyribonucleotides, which is essential in providing the 

monomeric precursors required for DNA replication and repair. 1-3  This is the only 

known pathway for generating deoxyribonucleotides de novo.1-3  The critical role of 

RNRs has made them an appealing target for drug design on the basis of the concept of 

disrupting the primary source of DNA components.  The inhibition of RNRs has been 

extensively studied in the past several decades for the purpose of producing antiviral and 

anticancer agents.  

After RNRs reduce the purine and pyrimidine ribonucleotides (NDPs) to their 

deoxyribonucleotide substrates (dNDPs), 5’-nucleoside diphosphate kinase continues the 

process of DNA replication and repair by converting dNDPs to their corresponding 2'-

deoxyribonucleoside-5'-triphosphates (dNTPs). The last step of the DNA biosynthesis is 

the incorporation of dNTPs by DNA polymerization into DNA fragments. 4,5  However, 

the conversion of the uridine diphosphate substrate (dUDPs) into its triphosphates 

substrate involves a different pathway. The dUDPs are first transformed into 

deoxyuridine 5'-monophosphates (dUMPs), followed by thymidylate synthase 

methylating at C5' of the uracil ring to produce thymidine 5'-monophosphates (TMPs). 

Lastly, the formation of thymidine 5'-triphosphates (TTPs) occurs via 5'-nucleoside 

kinases.4,5 (Figure 1) Overall, RNRs catalyze a fundamental reaction to produce dNDPs, 

which are the precursors necessary for DNA replication and repair. 
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 Figure 1. The process of DNA replication and repair with RNRs catalyzing the 

 first step. 

The structure of RNRs consists of two subunits, R1 and R2.  The R1 subunit is 

composed of allosteric control sites and active sites that regulate activity and specificity. 

The R2 subunit contains cofactors that have radical components, which generate a thiyl 

radical in the R1 subunit to initiate the mechanism of ribonucleotide reduction.  An 

important characteristic to note about the R1 and R2 subunits is that they have no 

enzymatic activities of their own, except for when they interact with each other.1,6-9 

Ribonucleotide reductases are classified into four classes on the basis of the 

different cofactors in their R2 subunits. Class I RNRs are found in many aerobic bacteria 

such as Escherichia coli (E. coli), DNA viruses such as herpes simplex virus, and all 
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eukaryotic species. Their cofactors contain a tyrosyl radical and a diferric iron center, 

which generate a thiyl radical C439 in the R1 subunit. 1,10-12 

The prototype of Class II RNRs was isolated from Lactobacillus leichmannii. 

Adenosylcobalamin (AdoCbl), or coenzyme B12, acts as a cofactor for this monomeric 

enzyme. It has been suggested that AdoCbl abstracts the hydrogen atom from the cysteine 

residue (cys408) in the R1 subunit to form a thiyl radical, generating cob(II)alamin and, 

supposedly, an 5'-deoxyadenosyl radical. 1,10-12 

The RNR that was isolated from the facultative anaerobic E. coli is the prototype 

of Class III RNRs. The prototypical Class III RNR has a quaternary structure containing 

a glycyl radical as the cofactor, which is formed from S-adenosylmethionine and an iron-

sulfur cluster.  Like other classes of RNRs, the glycyl radical also generates a thiyl 

radical in the R1 subunit. 1,10-12  

Class IV RNRs were isolated from Brevibacterium ammoniagenes, which in 

comparison to other classes of RNRs, have not been studied extensively. However, they 

also have the cofactor that generates a thiyl radical. It is believed that the cofactor is 

composed of a dinuclear Mn3+ cluster similar to the diferric cluster of the class I  

RNR.1,10-12 

Class I RNRs, which was isolated from E. coli grown under aerobic conditions, 

are composed of two homodimeric subunits, R1 and R2 (Figure 2). The structure of the 

R1 protein contains five cysteine residues, a glutamic acid residue, an aspargine residue, 

and allosteric-effector binding sites that execute important functions in the mechanism of 

ribonucleotide reduction. The ribonucleotide substrates are positioned between the 

cys439 and the cys225-cys462.  The cys225-cys462 is located at the 2'-position of the 
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substrate while the cys439 is located at the other side of the substrate where it has van der 

Waals interaction with the 3'-carbon atom.  The other two cysteine residues, cys754 and 

cys759, are located at the end of the N-terminal of the R1 protein. The glutamic acid 

residue 441 is positioned in such a way that it is hydrogen-bonded to the 3'-oxygen atom, 

whereas asn437 is hydrogen-bonded to the 2'-oxygen atom. 6,8,12-14 

The R2 subunit is comprised of a stable tyrosyl radical (•Tyr122) and a diferric 

iron center (Fe—O—Fe) as its cofactors. The R2 protein possesses an unusual α-helical 

structure that resembles an antiparallel hairpin.  The tyrosyl radical, which is generated 

from the diferric cluster, performs a crucial task as the initiator of ribonucleotide 

reduction by generating a thiyl radical (S•) on the cysteine residue (cys439) of the R1 

subunit.9,15 
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 Figure 216. Structure of Class I RNR.  

1.1.1 Mechanism for conversion of RNA monomers into DNA 

The mechanism of ribonucleotide reduction has been extensively investigated in 

the past three decades. Stubbe et al. postulated the accepted mechanism on the basis the 

long-range interaction between the tyrosyl radical on the R2 subunit and the cysteine 

residue (cys439) on the R1 unit, about 35 Å apart. Even though only the tyrosyl radical is 

stable enough to be characterized by electron paramagnetic resonance spectroscopy 

(EPR), the mechanism of radical chemistry is generally accepted.1,8 The reduction of 

ribonucleotides to deoxynucleotides catalyzed by RNRs is initiated by the tyrosyl radical 

on Tyrosine 122 generating the reactive cysteine thiyl radical at cys439 via a long-range 
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electron transfer process.17-19. The study of the reduction of uridine 5'-diphosphate (UDP) 

to deoxyuridine 5'-diphosphate (dUDP) using isotopically labeled [3'-3H]-UDP and [14C]-

UDP provided evidence of the cleavage of 3'-carbon hydrogen bond, which suggested 

that the first step in ribonucleotide reduction is the abstraction of 3'-hydrogen and the 

formation of a substrate radical 2.20 The radical at 3'-position (C3') of the substrate is then 

transferred to 2'-position (C2'). With glu441 accepting a proton from the hydrogen of the 

hydroxyl group on C3' and cys225 donating a proton to the oxygen atom on C2', the 

radical on C3' is then transferred to C2' eliminating the hydroxyl group on C2' while 

releasing H2O and oxidizing the hydroxyl group on C3' to form 3'-keto-2-

deoxyribonucleotides 3.3,7,21-23 The next step of the mechanism involves the radical on 

C2' abstracting the hydrogen atom on cys462, and cys225 donating the hydride ion to 

cys462 forming a disulfide radical anion 4. The radical from the cys225-cys462 is then 

transferred to C3' reducing the keto to hydroxyl with the help of glu441. 1,18 The last step 

of the mechanism is the regenerating of thiyl radical on cys439 by the radical on C3' 

abstracting the hydrogen from cys439.18,24 (Figure 3)  

Deoxynucleotides then leave the active site allowing for other ribonucleotides to 

enter and to be reduced by RNRs.  The cys225-cys462 disulfide unit formed during the 

reduction is reduced to regenerate the free sulfhydryl groups by the two cysteine residues 

located at the end of the N-terminal of the R1 protein, cys754 and cys759, in order to 

continue the mechanistic cycle. The regeneration is done by a coenzyme, nicotiamide 

adenine dinucleotide phosphate (NADPH), acting as a reducing agent donating a 

hydrogen atom to the disulfide unit. 1,18,25 
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 Figure 3.  Acceptable mechanism of the conversion of ribonucleotide to 

 deoxyribonucleotide catalyzed by RNR.  

There is no question that the mechanism of RNR involves radical chemistry, but 

the structure of the natural substrate derived radical has still not been known. The Sjoberg 

group from Sweden and Stubbe from MIT observed an interesting protein and nucleotide-

based radical formed during reaction of natural substrates, cytidine diphosphates (CDPs), 

with a mutant glutamate protein E441Q, in which the side chain group is an amide 

instead of a carboxylate.26 They observed two radicals: one radical occured on a 

millisecond time scale was proposed to be a thiyl or disulfide radical anion; the second 

radical, observed on the three minute time scale, was substrate-derived. These studies 
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provided the first insight into the mechanism of reduction of the 3'-ketodeoxynucleotide. 

The effect of the isotopic substitution on the hyperfine couplings with 9 and 140 GHz 

EPR pulsed spectroscopy was studied using E441Q and a series of specifically and 

isotopically labeled CDPs.  Surprisingly, the 9 GHz EPR spectra of the radical generated 

from E441Q with CDP and [1'-2H], [2'-2H], and [4'-2H]-CDP taken at 77 K at 3 min 

reaction time showed that deuteration at either C1' or C4' collapsed the triplet, that was 

observed for unlabeled-CDP, to a doublet; while no such collapse occurred by 

deuteration at C2' (Figure 1.4).26  

 

  A                             B 

Figure 426. A) Nine GHz and B) 140 GHz pulsed EPR spectra of the radical 

 generated from E441Q with CDP and [1'-2H], [2'-2H], and [4'-2H]-CDP taken at 

 77 K and 60 K, respectively, and hand quenched at 3 min reaction time. 

Spectroscopic evidence and quantum chemical calculations indicated that the 

structure of the nucleotide-derived radical species is a semidione of type 9 (Figure 5), an 
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off-pathway radical with additional oxygen in the nucleotide. The semidione was resulted 

from rapid exchange between radicals 7 and 8 through hydrogen transfer between the 

oxygen atoms at C2' and C3' (Figure 5). This structure was an unexpected result that gave 

important insight into the intermediates involved in the mechanism of RNR.26  

 

Figure 5. The structure of semidione formed during interaction of E441Q mutant 

 of RNR with CDP 

1.1.2  Inhibition of ribonucleotide reductases by 2'-azido-2'-deoxynucleotides 

In 1976, Thelander et al. discovered that 2'-azido-2'-deoxynucleotides (N3NDPs) 

can be potent inactivators of RNRs from aerobic E. coli, Lactobacillus leichmannii, and 

calf thymus cells. Thelander originally reported that the incubation of RNR with N3NDPs 

resulted in the destruction of the tyrosyl radical at the R2 subunit without affecting the R1 

subunit.27 They also observed an increase in the absorption at 320 nm, which is linked to 

the dissociation of the 3'-ketonucleotides 13 via the cleavage of the base from the sugar 

moiety, the release of inorganic pyrophosphate, and the formation of 2-methylene-3(2H)-

furanone 18.27-30 The electrophilic furanone can inactivate protein R1 by Michael 

alkylation and form the new chromophore with the absorption at 320 nm.31-33  
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 1.1.2.1 Proposed mechanism on the basis of the experimental data 

Although the mechanism of the irreversible inactivation of RNRs by 

azidonucleotides has been investigated in details, the mechanism is still not fully 

understood. In an effort to identify the substrate radical, Sjoberg used EPR spectroscopy 

to study the reaction between RNR and 2'-azido-2'-deoxyuriidne 5'-diphosphate (2'-

N3UDP).  A new transient radical was observed, which marked the first evidence of a 

free radical intermediate in the reaction between a substrate-like inhibitor and the E. coli 

RNR. This new radical species had a characteristic EPR hyperfine structure of a major 

triplet with ~25 G splitting and a smaller doublet splitting of 6.3 G, in which the unpaired 

electrons were found to be localized at the proximal nitrogen of the azido group of the 

nucleotide molecule.34 In 1984, Stubbe labeled 2'-azido-2'-deoxyuridine-5'-diphosphates 

(N3UDPs) with 15N and observed the collapse of a triplet splitting into a doublet; 

therefore, their data suggested that the radical was indeed derived from the azide 

moiety.35  

Reactions of labeled N3UDPs with ribonucleotide diphosphates reductases 

(RDPR) offered important information about the inactivation of RNR by 

azidonucleotides:  the R1 subunit was also modified during the inhibition along with the 

destruction of the tyrosyl radical of the R2 subunit.  The study also recorded the potency 

of the inactivation of N3NDPs: 1 equivalent can completely eliminate enzymatic activity 

of RNR.29 The structure of the nitrogen-centered radical (N•) was elusive during this 

time; it was thought that the nitrogen-centered radical was still attached at 2'-carbon of 

N3NDPs. By double labeling of N3NDPs with 13C and 15N3 and incubating with RDPR, 

Stubbe and Robins reported in 1993 that there was no hyperfine interaction between the 
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nitrogen-centered radical and the 13C nucleus, which suggested the cleavage of the 

nitrogen bond on the 2'-carbon (11⇒12).24  Incubation of oxidized R1 and mutated 

cysteine proteins C225SR1 and C462SR1 with N3UDPs suggested the release of N3
-, N3

•, 

or HN3.  On the basis of the results, it was proposed the thiyl radical at C225 13 reacted 

with the released hydrazoic acid (HN3) to form a sulfinylimine radical 14. 24 In summary, 

the experimental data suggested that the inhibitory mechanism of RNR by N3UDP started 

with the abstraction of a hydrogen atom from the carbon at C3' by cysteinyl radical C439 

to give 11. However, rather than releasing H2O upon oxidizing the hydroxyl group on 

C3', azide ion was released to form the ketyl radical 12. The released azide ion, which 

picked up hydrogen to form HN3, then reacted with thiyl radical on C225 to give the 

sulfinylimine radical 14 (Figure 6). 
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 Figure 6. Proposed mechanism of inhibition of RNR by N3UPD on the basis of 

 the experimental data 

Further EPR investigations of the [β-2H]cysteine labeled RNR incubating with 

N3UDPs produced a radical signal without the hyperfine splitting of 6.3 G, which gave 

evidence for the involvement of the thiyl radical of C225-R1.  The structure of the 

nitrogen-centered radical was proposed to be either 16 or 18 as a result of the 

sulfinylimine radical adding to either the carbonyl carbon or the oxygen of the carbonyl 

group, respectively, of the intermediate 3'-keto-2'-deoxyuridine 5'-diphosphate 14 (Figure 

7).30  



 13 

To distinguish between the two proposed structures of 16 and 18 the inactivation 

of RNR was performed with 3'-[17O]-N3UDP, in which broadening of the N• signal was 

detected. Density functional theory (DFT) calculations were employed to determine that 

structure 16 was most consistent with the EPR data.  This [17O]-labeled experiment also 

afforded the first evidence for the trapping of 2'-deoxy-3'-ketonucleotide in the reduction 

process of the natural substrate of RNR.18  

 

 Figure 7. Proposed structure of the nitrogen-centered radical 

 1.1.2.2 Alternative mechanism derived from theoretical calculations 

 The theoretical modeling study of Pereira and coworkers36 proposed an alternative 

pathway for the formation of the identical nitrogen-center radical 16. Using DFT with the 

Gaussian98 suite of programs, Pereira and coworkers checked the viability of the 



 14 

reactions proposed to make a distinction between the two radical intermediates and found 

a different and kinetically more favorable mechanism.  

The putative mechanistic pathway proposed by Stubbe (Figure 6) was calculated 

to be plausible with an overall reaction free energy ∆Gr of -62.3 kcal/mol. Even though 

the formation of the sulfinylimine radical with the release of N2 (13→14) was calculated 

to be greatly exothermic (∆Gr of -52.5 kcal/mol), it also had a high activation free energy 

∆G≠ of 26.6 kcal/mol, which led to the exploration of alternative pathways. The last 

reaction to form the radical intermediate 16 involving the direct transfer of the hydrogen 

atom from the nitrogen to the 3'O was reported to be acceptable in terms of feasibility 

with ∆G≠ of 14.6 kcal/mol and a ∆Gr of -19.5 kcal/mol.  Overall, the mechanistic 

pathway proposed by Stubbe derived from experimental data is plausible; however, the 

energy barriers for several reactions are high.36   

An alternative mechanistic pathway was explored to find a route that was 

kinetically favored.  The new mechanism proposed that the azide ion released from 

N3UDP was added to the 2'-ketyl radical 12→20, followed by the reduction at the 2'-

position by C225 to generate the C225 thiyl radical 21. Subsequent attack of the thiyl 

radical 21 on an alkyl azide led to the formation of the nitrogen-center radical 16 along 

with the loss of N2, which was detected experimentally (Figure 8). 36 
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 Figure 8. Alternative mechanism of the formation of N• derived from theoretical 

 calculations 

 The addition of the azide to the C3' keto group was reported to be 

stereochemically favored by the fact that the azide became very well positioned to 

achieve the addition to the carbon upon leaving the ring. The abstraction of a thiol 

hydrogen of cysteine residue C225 by the carbon radical 20 was plausible with ∆G≠ of 

7.2 kcal/mol and a ∆Gr of -10.3 kcal/mol. Formation of the transient radical 16 is 

consisted of the newly-formed thiyl radical attacking the nitrogen of the azide bound to 

the C3' atom.  The calculations suggested that the reaction is kinetically possible and very 

exoenergetic (∆Gr = -53.8 kcal/mol and ∆G≠ = 15.6 kcal/mol).36 
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 1.1.3 Inhibition of ribonucleotide reductases by other 2'-substituted-nucleosides 

 The discovery of 2'-azido 10 and 2'-chloro 22 nucleotides inactivating the active 

site of E. coli RNR in 1976 led to the development of other 2'-substituted derivatives that 

were also potent inhibitors of RNR such as 2'-mercapto 23, 2'-fluoro 24, 2',2"-difluoro 

25, and 2'-fluoromethylene 26 nucleotides (Figure 9).  Of those derivatives, 2',2'-difluoro-

2'-deoxycytidine became an approved anticancer drug under the name of Gemcitabine  or 

Gemzar for the treatment of non-small cell lung cancer , adenocarcinoma of the pancreas, 

bladder cancer, and murine leukemias.37-40 Also, (E)-2'-fluoromethylene-2'-deoxycytidine 

26 is on clinical trials as a new antitumor agent.41  

  

 Figure 9.  2'-Substituted pyrimidine nucleosides that are potent inbititors of RNR.  

Thelander et al. reported that 2'-chloronucleotides 22 (ClNDPs) inactivate RNR; 

and although less effective than the 2'-azido derivatives, ClNDPs offered a different 

paradigm for the inhibition.  While N3NDPs destroyed the tyrosyl radical of R2 subunit, 

ClNDPs only inactivated R1 without affecting R2; even though the inhibition required 

the presence of active R2.27,35 The mechanism of the inhibition of RNR by ClNDPs 
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begins similarly to the inhibition of N3NDPs. However, after the release of the chloro 

group at 3' position and forming the 3'-keto-2'-deoxynucleotide 14, it was reported that 

the 3'-keto intermediate collapses to generate a reactive sugar intermediate 2-methylene-

3-furanone 19, diphosphates, and base without the formation of any transient radical 

(Figure 10).  It was rationalized that the inactivation of the enzyme is the result of the 

alkylation of the R1 subunit by 2-methylene-2-furanone.32,42

 

 Figure 10.  Mechanism of the inhibition of RNR by ClNDPs. 

 In 1996, Coves and coworkers showed that 2'-deoxy-2'-mercaptouridine 5'-

diphosphate 23 is a very potent inactivator of RNR.43,44 It was found that the irreversible 

inactivation of RDPR by 23 was achieved efficiently at the concentration of Ki = 35 µM 

and at the rate of kinact = 0.18 s-1.  Different from the azido and chloro analogs, the thiol 

analog 23 was reported to selectively inactivate the R2 subunit; while R1 might have 

been modified but did not affect the activity of RDPR.  The EPR studies detected a 

transient organic radical during the reaction of inactivation with hyperfine structure 

consistent with a perthiyl RSS• radical.  Experiments with deuterium labeled R1 cysteines 

of the β protons show that the perthiyl radical was located on protein R1 as a result of the 

loss of the hyperfine structure.  Even though formation of the observed perthiyl radical is 

still under investigation, the mechanism was proposed to first generate a disulfide 28 in 



 18 

the presence of oxygen involving sulfur atoms from the substrate analog and a cysteine 

residue of R1.  In the absence of oxygen, the inactivation was not achieved.  The thiyl 

radical from C439, generated from the R2 tyrosyl radical, abstracts the 3'-hydrogen of the 

disulfide intermediate, which is followed by the homolytic cleavage of the 2'-

carbonsulfur bond, and the release of a 3'-keto derivative to form the observed perthiyl 

radical 30 (Figure 11).  Theoretical calculations also led to a proposal of an alternative 

pathway for the formation of the perthiyl radical, which might be also spontaneously 

formed upon the 3'-H atom abstraction without the stepwise mechanism. 

 

 Figure 11.  Proposed mechanism of the inhibition of RNR by 2'-

 mercaptonucleotides. 

 The development of 2'-halo-substituted nucleotides has resulted in some powerful 

anticancer and antitumor drugs.  While 2'-deoxy-2'-fluoronucleotides 24 inactivate RNR, 

substitution of difluoro 25 and fluoromethylene 26 increases the potency.28,41,45,46 

Gemcitabine, 2',2'-dideoxydifluorocytidine, is currently being clinically used as a drug 

for the treatment of nonsmall cell lung carcinomas and advanced pancreatic cancer.37,47 It 

was first synthesized and demonstrated to have antitumor activity by Hertel and 

coworkers in 1990.48 The mode of action of Gemcitabine is cell phase specific, meaning 

that it kills cells undergoing DNA synthesis. Gemcitabine is metabolized by 
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deoxycytidine kinase to give the corresponding 5'-diphosphate (dFdCDP), which inhibits 

RNR and reduces the cellular concentration of the four DNA monomers. Deoxycytidine 

kinase further metabolized dFdCDP to form the corresponding 5'-triphosphate (dFdCTP), 

which competes with the natural deoxycytidine 5'-triphosphate (dCTP) for DNA 

replication. When a molecule of dFdCTP replaced a molecule of dCTP, DNA synthesis 

can no longer continue.38,40,49,50 These two mechanism for disrupting DNA synthesis by 

Gemcitabine are responsible for its efficacy as an anticancer drug.  

Much research has been performed to elucidate the complex mechanism of the 

inhibition of RNR by Gemcitabine. Incubation of Gemcitabine with RDPR from E. coli 

resulted in 1 equiv. of cytosine, 2 equiv. of fluoride, reduction of the tyrosyl radical on 

the R2 subunit, and inactivation of R1.  However, no detection of the furanone at 320 nm 

was observed like most 2'-substituted nucleotides during the inactivation.39,51 Instead,  

formation of a new stable substrate derived radical was detected as a triplet EPR signal at 

9 GHz during the inhibition of RNR by Gemcitabine.51 Moreover, unlike other 2'-

substituted nucleotides that require the presence of reductants (namely cysteine residues 

C754 and C759 and NADPH) for the inhibition, the presence or absence of reductants did 

not affect the inhibitory action of Gemcitabine. Inhibition in the presence of the reducing 

system happened through covalent labeling, which increased interaction between the two 

subunits. In the absence of the reducting system, inhibition happened through the loss of 

the tyrosyl radical and the formation of the new radical species.  

A complex mechanism of the inhibition of RNR by Gemcitabine was also 

proposed on the basis of the theoretical work by the Ramos group.37,40 The proposed 

mechanism initiates as in the mechanism for the natural substrate by the abstraction of 
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H3' by the thiyl radical C439, which leads to the release of HF 31 and formation of 

fluoroketyl radical 32.  Subsequent abstraction of hydrogen led to the formation of the 

disulfide anion radical and fluoroketo nucleotides 33. The cycle is then repeated resulting 

in releasing another HF to form the 3'-ketyl intermediate 35. In the absence of the 

reductants, it was proposed that that 3'-ketyl radical abstracts the hydrogen from C439 

and generates the 3'-keto intermediate 36. The cycle of the RNR cascade was inhibited by 

the abstraction of 4'-hydrogen by the cysteinyl radical to form the 4'-ketyl radical 37. In 

the presence of the reductants, the RNR cascade was stopped by C225 anion abstracting 

2'-hydrogen and forming 39.  
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 Figure 12. Proposed mechanism of RNR inhibition by Gemcitabine derived from 

 theoretical calculations. 

Recently, the Stubbe group reported new information on the inhibitory 

mechanism of RNR by Gemcitabine. The research provided new insight on the 

mechanism of RNR.  To identify the new radical species that formed during inhibition, 

they incubated [1'-2H-] 25 with wild type RNR as well as mutant C225S-RNR, and found 

the collapse of the 9 GHz triplet hyperfine pattern to a doublet.  The EPR characteristics 

of this new readical species shared many similarities with the semidione 9 generated 

when E441Q-RNR reacting with CDP.26,47,52  A new dual-mechanism was proposed, as 

shown in Figure 13.52,53 Stubbe proposed that following H3' abstraction and elimination 

of HF, the 3'-fluoroketyl radical 32 is formed, which is in resonance with the fluoro 

enone form 40. Addition of water to 40 and elimination of fluoride ion led to radical 41 

without reductants, with EPR characteristics similar to semidione 9 (see Figure 5). In the 

presence of the reductant, the cysteine residue directly attached to C2' as shown in 42. 

Similar EPR features of a radical species were detected during the inactivation of p53-

RNR and Lactobacillus leichmannii RNR with Gemcitabine.47,53,54  The detection and 

elucidation of this new radical species not only provided information for the mechanism 

of inhibition of RNR by Gemcitabine, but also suggested of a new intermediate for the 

mechanism of the natural substrate. 
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 Figure 13. Proposed mechanism of RNR inhibition by Gemcitabine on the basis 

 of the detection of the new radical species. 

Another nucleotide analog, (E)-2'-fluoromethylene-2'-deoxycitidine 5'-

diphosphates, which was synthesized by McCarthy and coworkers in 1991, is currently 

under clinical trials as an antitumor agent.31,41,46 The inhibitory pathway of compound 26 

is also very complex with the formation of a new chromophore at 334 nm. It was 

proposed that inhibition of RNR is achieved by the generation of 2'-methylene-3'-

ketocytidine 5'-diphosphate after the protonation and subsequent release of fluoride.41,55,56  

1.2 Thiyl radical in biological systems  

 Functionalized aliphatic thiols (RSH) are abundant in living organisms. The most 

common thiols in the body are glutathione (GSH) — a tripeptide made up of three amino 

acids: cysteine, glutamic acid, and glycine — and amino acids such as cysteine (CysH) 

and homocysteine (HSH).57,58 Thiyl radicals (RS•), generated from thiols, are sulphur-
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centered free radicals that can undergo electron transfer and hydrogen transfer reactions 

with different biological molecules.59-61  

The generation of thiyl radicals is vital for different biological mechanisms 

including enzymatic functioning in ribonucleotide reductase and pyruvate formate 

lyase.58,62 However, thiols in biological systems are best known for their ability to 

"repair" the radical-induced damage to biomolecules from free radicals.58,60,63 Free 

radicals are atoms carrying an unpaired electrons that can cause damages to tissues and 

organs.63 For example, damage to biomolecules (including DNA species) through 

enzyme activity, radiation or toxic agents can generate carbon-centered radicals by the 

breakage of a CH bond, in which thiols can perform the "repair" reaction by donating a 

hydrogen atom (eq 1).58 While thiols are remarkable antioxidants protecting cells from 

damage caused by free radicals, such processes of biochemical oxidation/reduction also 

produce the reactive thiyl radicals, which can have harmful effects such as enzyme 

inactivation and peroxidative injury.58,60,63  

RSH + DNA• →  DNA + RS•     eq 1 

Thiyl radicals are also important intermediates during oxidative stress in living 

cells.63,64 During oxidative stress, reactive oxygen species (ROS), including hydroxyl 

radicals (•OH), superoxide radical anion (O2
•-), and hydroperoxyl radical (HO2

•), abstract 

electrons from biomolecules such as proteins, nucleic acids and lipids. The exceptionally 

active ROS are continuously produced during oxygen metabolism. Electron abstraction 

by ROS of biomolecules initiates a free radical chain reaction that leads to peroxidation. 

63,64 Although both proteins and nucleic acids are subjected to perioxidation, lipids are 

more susceptible to reactions with ROS because they are fatty acids located at the cell 
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membranes. The reaction between ROS and lipids yields the alkyl radical of L• (eq 2a), 

which leads to the formation of lipid peroxide radicals L-OO• by oxidation (eq 2b) and 

then the production of lipid peroxides LOOH (eq 2c). However, lipid peroxidation causes 

the formation of polar peroxidic, carbonyl and hydroxyl groups, which lowers 

hydrophobicity and generates toxic aldehydes and hydrocarbons. Thiols, in particular 

glutathione (GSH), perform detoxification by reacting with organic peroxides generated 

during lipid perioxidation.63 However, the generated thiyl radicals can also cause lipid 

isomerization. Thiyl radicals convert the natural all-cis double bonds of unsaturated 

phospholipids to the unnatural trans form, which affects the membrane structures, lipid 

metabolism, and enzymatic reactions.58,65-67 Furthermore, thiols are also very reactive 

toward ROS, generating dangerous thiyl radicals.60,63   

LH + ROS→ L•      eq 2a 

L•  + O2 → L-OO•      eq 2b 

LH + L-OO• → LOOH + L•     eq 2c 

1.2.1 Generation of the thiyl radicals  

Thiyl radicals are formed through many different means. Thiols undergo one-

electron oxidation in antioxidant reactions and form thiyl radicals in the process (eq 3).63  

RSH → RS• + H+ + e      eq 3 

Figure 14 shows the multiple pathways by which biological oxidations produce thiyl 

radicals. All reactions of thiols with other free radicals afford thiyl radicals, including 

carbon-centered radicals (R•), reduced oxygen species such as superoxide (O2
•-), 

perhydroxyl radical (•OOH), hydroxyl radicals (•OH), and peroxyl radicals (ROO•).59,60 
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Peroxidases and myoglobin also can oxidize RSH to RS• using H2O2 or ROOH.68,69 

Peroxynitrite (-OONO), generated from the reaction between nitric oxide (•NO) and 

superoxide, and nitrogen dioxide have also shown to form thiyl radicals from oxidizing 

thiols.60  

 

 Figure 14. Formation of thiyl radicals by oxidation of thiols by other free 

 radicals. The dashed arrows refer to enzyme-catalyzed reactions.59 

 Reactions of thiols with transition metal ions such as Fe3+ and Cu2+, which can 

change their oxidation state, can also generate thiyl radicals by one-electron oxidation (eq 

4a).58,63 Thiyl radicals can be formed thermally59 from disulfide functionalities either by 

directly breaking the sulfur-sulfur bond under free-radical conditions (eq 4b) or single-

electron reduction processes (eq 4c).58  
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RSH + Fe3+ → (RS-)-Fe3+ → RS• + Fe2+   eq 4a 

 X• + RS-SR→ RSX + RS•     eq 4b 

 RS-SR + e- →(RSSR)-•→ RS• + RS-    eq 4c 

Photolysis, in addition, can cause homolysis and form RS• from disulfides and all 

other functionalities.58,59 Other techniques for the formation of thiyl radicals include 

radiolysis and sonolysis. Gamma or X-irradiation of aqueous solutions generates 

hydroxyl and hydrogen radicals, and hydrated electrons (eq 5a) that can abstract the 

hydrogen atom from thiols to afford thiyl radicals (eq 5c).59,70,71 

 H2O  •OH + eaq
- + H•     eq 5a   

 eaq
- + N2O → •OH + N2 + -OH     eq 5b 

 •OH/H• + RSH → RS• + H2O     eq 5c  

1.2.2 Reactions of thiyl radicals 

 Since the "repairing" reactions of thiol compounds and biomolecules 

simultaneously generates the thiyl radicals, the chemical character and reactivity of the 

formed RS• are critical. The protective and repairing efficacy of thiols depend on the 

regenerative reduction of thiyl radicals (eq 6).  

 RS• + e- + H+ → RSH      eq 6 

Thiyl radicals can take part in addition reactions, hydrogen abstraction and electron 

transfer reactions, as well as intramolecular rearrangements of free radicals.63,72 Thiyl 

radicals are presumed to be inert and disappear by dimerization, comparing to oxygen-

centered analogues.72,73 For example, the dimerization of glutathionyl radicals (eq 7) 
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occurs at the rate of k = 1.5 x 109 M-1s-1.73 However, steady-state levels of RS• would in 

general be low in vivo and therefore these radicals would not be likely to meet.73  

 GS• + GS• → GSSG      eq 7 

A more likely reaction would be between the RS• and the thiolate anion, which generate 

disulfide radical anions (eq 8b).63,70,73  At physiological conditions, pH ≈ 7.0, about 1 to 

2% of RSH exists as its thiolate form (eq 8a).73 Disulfide radical anions are powerful 

reducing agents, reducing with metal ions as well as molecular oxygen.63,70,72,73 They also 

react rapidly with protons (k ≈ 1010 dm3 mol-1 s-1)72,74, but collapse quickly into thiyl 

radicals and thiols (eq 8c) (k in the order of 106 s-1)72.  

 RSH RS- + H+       eq 8a 

 RS• + RS- → (RSSR)-•     eq 8b 

 (RSSR)-• + H+ (RSSRH)• RS• + RSH  eq 8c 

Two important addition reactions of thiyl radicals are with oxygen and 

unsaturated fatty acids. The reaction of thiyl radicals and oxygen produce the thiyl 

peroxyl radicals (eq 9a), which are unstable and undergo further reactions with thiols to 

form sulphinyl radicals or sulphonyl radicals (eq 9b-9c).63,73,75 With unsaturated fatty 

acids, thiyl radicals added to the double bonds (eq 10) causing the cis/trans isomerization 

that affects the packing and density of bilayer lipid cell membranes and their biological 

functions.63,72  

 RS• + O2 → RSOO•      eq 9a 

 RSOO• + RSH  → RSO• + RSOH    eq 9b 

 RSOO• + RSH → RSOOH + RS•    eq 9c 
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   eq 10  

 Hydrogen abstraction by thiyl radicals from activated C-H bonds constitutes the 

reverse "repair" reactions.  Alcohols and ethers, unsaturated fatty acids, and nucleotides 

such as NADH or NADPH are among the compounds that undergo hydrogen transfer 

with thiyl radicals. Glutathionyl, cysteinyl, and cysteaminyl radicals are probably the 

most active and abundant thiyl radicals in biological systems that can abstract hydrogen 

from linoleic and arachidonic acids, or DNA bases and deoxyribose. The success of the 

repair reactions depends on the subsequent reactions of the resulting thiyl radicals, in 

which hydrogen transfer reactions with NADH (eq 11) normally facilitate repair because 

of its nature to regenerate. However, hydrogen abstraction by thiyl radicals of unsaturated 

fatty acids also causes damages to lipids.72,73 Electron transfer by thiyl radicals is another 

important reaction. It can occur with molecular oxygen and reductants such as ascorbate. 

Oxidation of ascorbate (AH-) by electron transfer of thiyl radicals (eq 12) to form 

ascorbyl radicals (A•-) plays an important role in detoxification of the thiyl radicals since 

the formed A•- can enter a disproportiation reaction to regenerate ascorbate and 

dehydroascrobate.63,73  

 RS• + NADH → RS- + NAD• + H+    eq 11 

 AH- + RS• → RSH + A•-     eq 12 

1.2.3 Detection of thiyl radicals 

 Electron paramagnetic resonance (EPR) spectroscopy can be used to detect thiyl 

radicals that are generated by pulse radiolysis.60 However, thiyl radicals in most cases can 

hardly be directly detected by EPR spectrosopy because of line broadening as a result of 
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their large anisotropy g factor. Direct EPR can only detect thiyl radicals in condensed 

systems at low temperature.76 To solve such problems, organic nitrone or nitroso 

compounds were applied as spin traps to catch the reactive thiyl radicals by forming more 

stable nitroxides. The common spin traps for thiyl radicals are 2-methyl-2-nitrosopropane 

(MNP), α-phenyl-tert-butyl-N-nitrone (PBN), 5,5-dimethyl-1-pyrolline-N-oxide 

(DMPO), and 5-diethoxyphosphosphoryl-5-methyl-1-pyrroline-N-oxide (DEMPMO).  

With MNP, thiyl radicals are identified by the characteristic g-value of the MNP/•RS 

adduct (43, Figure 15), formed by the reaction between the spin trap and thiyl radicals. 

The PBN/•RS adduct 44 is useful to characterize high-molecular-mass thiyl radicals, but 

the EPR features are not characteristic for detecting small-molecular-mass thiyl 

radicals.60,77 However, Mullins and coworkers showed that adducts of PBN with thiyl 

radicals (44) of low-molecular weight thiols such as cysteine, homocysteine and 

glutathione can also be detected and identified. They reported that the differences in the 

β-proton hyperfine couplings are significant for identification of thiyl radicals. The EPR 

lineshapes and the radical adduct lifetimes also are individual characteristics that 

distinguish the nature of the trapped thiyl radical.47  

 5,5-Dimethyl-1-pyrolline-N-oxide is probably the most successful spin trap for 

thiyl radicals since EPR spectra of DMPO-cysteinyl, DMPO-gluthionyl and DMPO-

penicillamine adducts 45 are easily differentiated.78 DEMPMO is a phosphorylated spin 

trap that reacts with thiyl radicals to produce EPR spectra from two diastereomers (46-

47). The phosphorus hyperfine coupling of the DEMPMO/•RS adduct gives very 

complex EPR spectral patterns, but the spectral features used to distinguish between thiyl 

and hydroxyl radical adducts are distinct. 
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 Figure 15. Structures of spin adducts of thiyl radicals. 

1.3 Chemistry of alkyl azides  

Since phenyl azide was first synthesized by Peter Grieβ in 1864, syntheses and 

application of electron-rich organic azides in organic synthesis have been widely 

examined.79-81 Most organic azides are explosive; especially hydrogen azide, methyl 

azide, and heavy-metal azide.79,80 However, azides have contributed greatly as substrates 

and/or intermediates to organic synthesis in such processes as cycloadditions, synthesis of 

aniline N-alkyl-substituted-anilines, and nitrenes.80-84 In the last century, organic azides 

have also contributed to industrial uses as well as to medicine. For example, azides were 

employed in the synthesis of heterocycles such as triazoles and tetrazoles, and 

azidonucleosides for treatment of AIDS, as well as for use as detonators in explosive 

technology.79,80,85  

Figure 16 shows the structure of azide as polar mesomeric structures. The dipolar 

structures of 48c and 48d suggest the facile decomposition to nitrene and dinitrogen. 
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From structure 48d, the regioselectivity of reactions with nucleophiles and electrophiles 

is explained: attack on Nγ by nucleophiles and on Nα by electrophiles. Mesomeric 

structures 48b and 48c provide justification to some of the properties of azides:  strong IR 

absorption at ≈ 2114 cm-1 for phenyl azide, UV absorption at both 287 nm and 216 nm 

for alkyl azides, weak dipole moment, and acidity of aliphatic azides. As a result, the 

azide ion behaves often as a pseudohalide, which means it resembles halide.80. 

 

 Figure 16. The resonance structure of azide80 

Since the first synthesis of alkyl azides by Curtius, there have been many reported 

syntheses of alkyl azides.80 The classic nucleophilic substitution has the most abundant 

usage, however many other methods have also been examined including the Mitsunobu, 

polar 1,2- and 1,4-addition, C-H activation, and diazo transfer reactions.80 Sodium azide 

is most often used as a source of azide for nucleophilic substitution in addition to other 

azides such as alkali azides, tetraalkylammonium azides, polymer-bound azides, and 

silver azide. The substitution usually occurs by replacing a good leaving group such as 

triflates, halides, carboxylates, and mesylates. The reactions generally take place in DMF 

or DMSO at thermal conditions, even though different conditions such as ionic liquids, 

supercritical carbon dioxide, and even microwave have reported to be used for the 

nucleophilic substitution. The synthesis of α-azidoketones 50, reported by Enders et. al., 

is an example of the classic nucleophilic substitution to afford alkyl azides with inversion 

of configuration (Scheme 1).86 
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 Scheme 1. Synthesis of α-azidoketones 

The Mitsunobu reaction is frequently applied to the synthesis of alkyl azides from 

primary and secondary alcohols. Both primary and secondary alcohols react with 

hydrogen azide or more preferentially with diphenylphosporyl azide (DPPA) in the 

presence of diethyl azodicarboxylate (DEAD) to yield alkyl azide.  Under this condition, 

secondary alcohols afford azide compounds with an inversion of stereochemistry. 

Reduction of the azide moiety to amine is an important reaction for organic 

azides. There are numerous methods to perform reduction including hydrogenation, the 

Staudinger method, or by the use of reducing agents such as sodium borohydride, lithium 

aluminum hydride, or dithiolthreitol.79 The hydrogenation method, by employing H2 in 

the presence of a catalyst such as palladium or Raney nickel, has been commonly applied 

to reduce azides. Hydrogenation generally gives very good yield for reduction; however, 

it is not very selective.  Hydrogenation can reduce numerous other groups such as alkene, 

alkyne, carbonyl, nitro, and imine. The Staudinger method, on the other hand, is one of 

the most selective and mildest methods for the conversion of azides to amines. The 

Staudinger reaction involves treatment of triphenylphosphine to azides forming the 

corresponding iminophosphorane, which follows by hydrolysis to afford the amines.  

Reducing agents also effectively convert azides to amines, but they lack selectivity.79  
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1.3.1 Reduction of alkyl azides by radicals 

Radical reactions of azides have been also of great interest and importance 

providing valuable synthetic tools in the last thirty years.82,87-92 Aliphatic, aromatic, and 

sulfonyl azides serve as good acceptors of carbon- and heteroatom-centered 

radicals.82,92,93 Reported studies have suggested that homolytic addition to an azide can 

occur at either position Nα or Nχ of 48a, generating 3,3-triazenyl (51) or 1,3-triazenyl 

radical (52), respectively.94,95 It is unclear at which position the addition would occur 

preferentially because the aminyl radicals can be formed from both triazenyl radicals by 

the release of dinitrogen. As for sulfonyl azides, homolytic addition is more likely to take 

place at the terminal nitrogen Nχ, generating the 1,3-trianenyl radical intermediate.82 

Under the radical conditions, the aminyl radicals are further reduced to amines.  

  

 Figure 1782. Formation of aminyl radicals from homolytic addition of radicals to 

 aliphatic and aromatic azides 

Recently, reactions of aliphatic azides and alkyl radicals have been gaining 

interest as a result of their utility in the synthetic routes of N-heterocycles.82,87,91,92 Carbon 

radicals are usually not very reactive species toward aliphatic and aromatic azides. 

However, carbon radicals including alkyl, vinyl, aryl, and acyl radicals, can undergo 

intramolecular additions onto aliphatic and aromatic azides affording six- and/or five-
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membered cyclic aminyl radicals that can be further converted into various N-

heterocycles. 82,93,96  

One of the very first evidence of the reaction between the carbon radical and an 

azide group was the intramolecular addition of 2'-azido-2-biphenylyl radical 53, onto an 

aromatic azide yielding the cyclic carbazolyl radical 54.  However, despite such 

discovery, studies involving aryl radical cyclization with aryl azides have not gained 

much interest (Figure 18).82,97  

 

 Figure 18. Cyclization of aryl radicals onto aromatic azides 

In 1994, Kim reported the intramolecular addition of alkyl radicals to alkyl azides 

via the intermediate aminyl radical 59 (Scheme 2). The alkyl radical 58 was generated by 

treatment of aliphatic bromides and iodides bearing an azido substituent 57 with 

tributyltin hydride (Bu3SnH) and azobisisobutyronitrile (AIBN) in refluxing benzene.91 

There have been reports of 1-hydroxy-1-methylethyl radicals (Me2C•OH) reacting with 

sulphonyl, aryl, and acyl azides to form the substituted aminyl radicals.93,98 Surprisingly, 

Me2C•OH was also found to react with primary alkyl azides to yield dialkylaminyl 

radicals (H3CN•CH3), while no reaction occured with t-butyl azide.94 
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 Scheme 2. Intramolecular addition of alkyl radical to alkyl azide  

The t-butoxyl radicals 60, which were formed by thermolysis of di-t-butyl 

hyponitrite, also were found to react with alkyl azides to form iminyl radicals. On the 

basis of the EPR data, the iminyl radicals 61 were observed during the reaction of the t-

butoxyl radical and alkyl azide in t-butylbenzene or cyclopropane (Figure 19). 

 

 Figure 19. Reaction of t-butoxyl radical with alkyl azide  

Although very few references in azide chemistry involve tin chemistry, the 

radical-mediated reduction of azides to amines using tributylstannane in the presence of 

AIBN as the radical initiator is a major contribution.99 The method was first applied to 

the conversion of acyl azides to amides. However, the reaction of stannyl radicals 

(Bu3Sn•) with alkyl azides was also reported to be very efficient. The reduction was 

proposed to proceed via the generation of radicals 63a or 63b, follow by the loss of 

nitrogen to give the aminyl radical 64. Further reduction of the aminyl radical afforded 

amines (Figure 20).91,100  
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 Figure 20. Reduction of alkyl azide with stannyl radicals to amines 

 Although radical chemistry involving alkyl azides is less developed, the reaction 

of silyl radicals with alkyl azides is well documented.  In spite of the fact that tin 

chemistry using tributylstannane under radical conditions toward organic azides is 

inarguably successful and important, this application is limited by the known toxicity of 

organotin compounds, and also by the difficulty of full removal of tin residues from 

reaction mixtures.87,101 Therefore, to replace the toxic tin with the nontoxic organosilicon 

and organogermanium is of great interest.  Triorganogermanium hydride (Bu3GeH) was 

discovered to efficiently reduce aryl azides;102 though no example to our knowledge has 

been reported of its application toward alkyl azides.  In 2006, it was reported by Benati 

and coworkers that aromatic azides in the presence of triethylsilane and a radical initiator 

with the addition of catalytic amounts of tert-dodecanethiol in toluene were successfully 

reduced to corresponding anilines in quantitative yields (Scheme 3).87  Interestingly, 

without tert-dodecanethiol, triethylsilane alone was not capable of reducing the aryl 

azides under radical conditions because of the inhibition of the chain reaction caused by 

inefficient H-transfer from the nucleophilic silane to the intermediary N-silylaminyl 

radicals, which are nucleophilic as well. The method reported by Benati did not apply to 

alkyl azides.  
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 Scheme 3. Reduction of aromatic azide with t-dodecanethiol in the presence of 

 triethylsilane 

In 2007, the Chatgilialoglu group reported that tris(trimethylsilyl)silyl radicals 

reduced alkyl azides to the corresponding amines in the presence of  2-mercaptoethanol 

as the radical carrier and ACCN as the radical initiator.103 Unlike the typical radical 

reactions which are performed in organic solvents such as benzene and toluene, the 

reported methodology also was successful in water.  The addition of the amphiphilic 2-

mercaptoethanol was also the key to the reaction, since no reaction was observed without 

its presence.  The mechanism, which involved the formation of a silyl-substituted aminyl 

radical  by the addition of silyl radicals to the azide function, following by the loss of 

nitrogen is shown in Figure 21.   The thiol acted as the hydrogen atom donor to give the 

silylamine and the thiyl radical, which in turn reacted with (TMS)3SiH to regenerate the 

silyl radical and the thiol.  The mechanistic chain followed with the hydrolysis of the 

silylamine in water to afford the final product as a primary amine. 

 

 Figure 21. Reduction of alkyl azide by silyl radical  
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1.3.2 Reduction of alkyl azides by thiols 

 Thiols such as dithiolthreitol, glutathione, and 2-mercaptoethanol have 

demonstrated their ability to reduce alkyl azides under nonphysiological conditions.104,105 

and aryl azides under physiological conditions.106 Furthermore, 3'-azido-3'-

deoxythymidine was reduced by thiols to 3'-amino-3'-deoxythymidine under 

physiological conditions (pH 7.2 and at 37oC in water).104,107 The second-order rate 

constants for the reduction were reported to be 2.77 x 10-3, 6.55 x 10-5, and  

6.35 x 10-6 M-1s-1, for the dithiothreitol, glutathione, and mercaptoethanol, respectively. 

According to these rate constants, the reduction happens faster with dithiothreitol, and 

slowly with glutathione and mercaptoethanol.  
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2. RESEARCH OBJECTIVES 

Mechanism-based inhibitors of ribonucleotide reductases (RNRs) such as 2'-

azido-2'-deoxyuridine-5'-diphosphate (N3UDP) have provided insight into the mechanism 

of reduction of the natural nucleotides into 2'-deoxynucleotides. Experiments with 13C, 

15N and 17O labeled N3UDP established a mechanism of the RNR inhibition which 

proposed an azide loss from the initial C3' radical to generate 2'-deoxy-3'-ketonucleotide. 

Subsequent addition of the initial sulfinylimine radical, formed from the reaction of HN3 

with Cys225-based thiyl radical, to 3'-keto group, generated the elusive nitrogen-center 

radical, and provided the first evidence for the trapping of 2'-deoxy-3'-ketonucleotides in 

the reduction process (Figure 6-8). Herein, I design a biomimetic modeling of the 

nitrogen-centered radical postulated to occur during the inactivation of the RNR by 

azidonucleotides, which will allow us to understand better the mechanism of the 

inhibition of RNR by N3NDPs.   

The purpose of this dissertation was planned to be executed in several steps. First, 

the design of model compounds (65-70) that have all the attributes which upon the 

generation of the thiyl radical can mimic the environment of the mechanism proposed for 

the inactivation of RNR by 2'-azido-2'-deoxynucleotides was completed.  Model 

compounds as modifications of adenosine or thymidine will all share an azido group at 

C3', and a thiol or dithiol functionality at either C2' or C5' (Figure 22).  Secondly, the 

theoretical calculations will be performed in order to check the feasibility of the ring 

closure reaction between the thiyl radical and azide group within the model compounds 

(Figure 23).  Thirdly, the designed model compounds (65-70) will be synthesized. 
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 Figure 22. Selected 3'-azido nucleosides with thiol or vicinal disulfide groups 

 attached at the 2'- or 5'-OH via an ester or ether linkage 

 

 Figure 23. Plausible pathway of the intramolecular reactions between the thiyl 

 radical and azide 

Biomimetic studies involving the generation of the thiyl radical at physiological 

conditions will be performed to study the interaction between the generated thiyl radicals 

and the alkyl azide. The stability of the model compounds will first be examined, 

especially the azido group, under the physiological conditions, using 2,2'-azobis-(2-

methyl-propionamidine)-dihydrochloride (AAPH) in water at a relatively low 

temperature of 37 oC, to selectively generate a thiyl radical.  The interaction between the 

generated thiyl radical and azide will then be monitored by 1H NMR spectroscopy. Also, 

biomimetic studies involving the generation of the alkyl thiyl radical by gamma 
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irradiation will be followed to examine the interaction between the alkyl thiyl radicals 

and the alkyl azide. Finally, the nitrogen-centered radical species postulated to occur 

during the reaction between the thiyl radical and azido group will be analyzed by electron 

paramagnetic resonance spectroscopy (EPR).  Characterization of the aminyl radical 

species formed during one electron attachment to the azido group of 2'-azido-2'-

deoxyuridine and its stereospecifically labelled 1'-, 2'-, 3'-, 4'- or 5,6-[2H2]-analogues will  

also be a target for study of the transient sugar-based radicals suggested to occur during 

the inhibition of RNR by 2'-azido-2'-deoxynucleotides. Understanding the mechanism of 

the formation of the nitrogen-centered radical during the inactivation of RNR by 

azidonucleotides may help to understand the mechanism of action of RNR and provide 

key information necessary for the development of the next generation antiviral and 

anticancer drugs. 
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3. RESULTS AND DISCUSSION 

3.1 Design of 3'-azido-3'-deoxynucleosides with thiol or dithiol vicinal moieties  

As discussed in the Introduction, experiments with 13C, 15N and 17O labeled 

N3UDP established the mechanism for the inhibition of RNR by N3NDPs which involves 

an azide loss from the C3' radical to generate 2'-deoxy-3'-ketonucleotide. Subsequent 

addition of the initial sulfinylimine radical 14 (see Figure 6-7), formed from the reaction 

of HN3 with Cys225-based thiyl radical, to 3'-keto group provided the first evidence for 

the trapping of 2'-deoxy-3'-ketonucleotides in the reduction process.  In a theoretical 

modeling study by Pereira and coworkers36 an alternative pathway for the formation of 

the identical nitrogen-center radical 16 was proposed via direct addition of the released 

azide ion to 3'-ketonucleotide (Figure 8). 3'-Azido-3'-deoxynucleosides bearing a 

cysteinyl or vicinal disulfide substituent attached to C2' or C5' were designed to mimic 

the interaction between the thiyl radical 21 and the azido group, which were hypothesized 

to produce the nitrogen-center radical 16.  

Taking into consideration the mechanism for the inhibition of azidonucleotides by 

RNR presented in Introduction (Figure 6-8), I designed a series of nucleoside derivatives 

with the azido group attached at C3' and thiol/vicinal dithiol attached to either C2' or C5'.  

I envisioned that inducing an intramolecular reaction between either the alkyl thiyl 

radical or radical disulfide anion and the alkyl azido group would lead to the formation of 

the aminyl radical, which would parallel the reaction postulated to occur during inhibition 

of RNR by N3NDP.  Compounds 65-70 were designed to have the azide moiety at C3' 

and a thiol functionality either at C2' or C5', which are modifications of adenosine or 

thymidine bearing a cysteinyl or dithiol functionality connected via an ester and/or ether 
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linkage. A cysteinyl chain with a free thiol group (65, 67) might mimic the cysteine 

residue C225 that participates in the formation of 16. Vicinal disulfide groups (as in 66, 

68) are meant to mimic the two cysteine residues C225 and C462 that are proposed to 

play an important role in the reduction of ketonucleotides as the disulfide radical anion in 

the mechanism of RNR. The nitrogen centered radical was proposed to be formed from 

the interaction between a thiyl radical and the azide, but the involvement of another 

cysteine molecule is also possible. The difference in the ester and the ether linkage is 

purely for the stability of the compounds. The ether linkage was designed to improve the 

stability by avoiding a possible breakage/hydrolysis of the ester group that bears the thiol 

or vicinal dithiol functions.  

Upon generating the thiyl radical from the model compounds, it is hypothesized 

that an interaction between the thiyl radical and the azido moiety would occur.  The 

plausible mechanism involves the ring closure, which would result in the loss of nitrogen 

and generate the nitrogen centered radical species (Figure 23).  

3.1.1 Synthesis of 3'-azido-3'-deoxyadenosine with a linkage at C2' 

 3.1.1.1 Preparation of 3'-azido-3'-deoxyadenosine  

The 3'-azido-3'-deoxyadenosine analogues with modifications at C2' were 

prepared starting from 3'-azido-3'-deoxyadenosine 79. The traditional synthesis 

pathway108 was followed by first selectively protecting adenosine 74 at C5' and C3' with 

tert-butyldimethylsilylchloride in pyridine (Scheme 4). Subsequent oxidation using 

pyridinium chromate complex afforded unstable 3'-ketoadenosine 75. Reduction with 

sodium borohydride in acetic acid afforded xylofuranosyl adenosine 76 with inversion 

of configuration of the hydroxyl group on C2'. Subsequent triflation of 76 with 
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trifluorosulfonylchloride afforded 77 generating a good leaving group to undergo 

nucleophilic substitubtion with sodium azide in N,N-dimethylformamide to give 

protected azido nucleoside 78. Subsequent desilylation of 78 with 

tetrabutylammoniumchloride in tetrahydrofuran afforded 79 as a white solid. Instead of 

employing this traditional pathway, which involved the time-consuming six-steps 

synthesis, I also attempted the synthesis of 79 in fewer steps. Thus, addition of azide to 

ketosugars and ketonucleosides using lithium azide in the presence of 

chlorotrimethylsilane was first attempted.  The Mitsonobu reaction109 was also applied 

to add azide directly to ribonucleosides; however the reaction yielded only undesired 

side products.  

 

 Scheme 4. Synthesis of 3'-azido-3'-deoxyadenosine.  
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 3.1.1.2 Synthesis of 3'-azido-3'-deoxy-2'-O-cysteinyladenosine 

Silylation of 79108 with tert-butyldiphenylsilyl chloride (TBDPSCl) gave 80 

(Scheme 5).  Standard condensation of 80 with N-Boc-S-trityl-cysteine with 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (EDCI) as the activator in the presence of 4-

dimethylaminopyridine (DMAP)110 afforded 81 (80%). Treatment of 81 with TFA/H2O111 

effectively removed the silyl and Boc protection groups to give 82, but protic acids per se 

were found ineffective for cleavage of the trityl thioether.112 The S-detritylation was also 

unsuccessful upon treatment with Hg salts.112 I found, however, that treatment of 82 with 

TFA in the presence of Et3SiH113 cleanly removed the S-trityl group affording 65 (80%). 

It is noteworthy that the azido group was not affected114 by Et3SiH employed in the S-

detritylation step, although reduction of the azido group to the primary amino group by 

more reactive radical-based reducing agent (Me3Si)3SiH is known.103 Compound 65 was 

found to be prone to oxidation to the corresponding disulfide and/or cleavage of the 

cysteinyl ester bond at the 2' position during silica gel column purification. The thiol 

group in 65 could approach the azido group from the α face via a non-constrained eight-

membered ring, which might mimic the interaction between Cys225 of the enzyme and 

the azide group at C3' (e.g., 21 → 16, Figure 8). 
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 Scheme 5. Synthesis of 3'-azido-3'-deoxy-2'-O-cysteinyladenosine. 

 3.1.1.3 Synthesis of 3'-azido-3'-deoxy-2'-O-(2,3-

 dimercaptopropanoyl)adenosine  

Condensation of 80 and 2,3-S-isopropylidene-2,3-dimercaptopropionic acid (vide 

infra) with EDCI as the activator in the presence of DMAP110 afforded 83 (99%, Scheme 

6). The removal of the isopropylidene group from 84 to yield 66 although challenging, 

was achieved by the generation of the mercuric salt complex with HgCl2 followed by 

treatment with hydrogen sulfide.115 Thus, selective 5'-O-desilylation (TFA/H2O)111 of 83 

and subsequent deacetonization (HgCl2/H2S/MeCN/H2O)115 of 84 afforded 66 (55%). 

Thiyl radicals generated from 66 might interact with the azido group via seven- (S● at 

Cα) or eight-membered transition states (S● at Cβ). Analogue 66 with a vicinal dithiol 

moiety could mimic the Cys225/Cys462 pair that is oxidized to a cysteine disulfide 

complex during the catalytic cycle of RNR. Also, the absence of a reactive α-amino C-H 

bond in 66, as opposed to cysteine containing analogues (e.g., 65), which were showed to 

be reactive with thiyl radicals,116,117 could prove to be more selective.  
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 Scheme 6. Synthesis of 3'-azido-3'-deoxy-2'-O-(2,3-

 dimercaptopropanoyl)adenosine  

Surprisingly, practical procedures for the synthesis of 2,3-S-isopropylidene-2,3-

dimercaptopropionic acid 89 (Scheme 7) were either not available in the literature or 

were lacking critical experimental data.  Compound 89 was first prepared from ethyl 2,3-

dibromopropionate 85 in four steps: (i) nucleophilic substitution of bromides with 

thiolacetic acid; (ii) acid-catalyzed deacetylation; (iii) acetonization and (iv) 

saponification.118,119 Thus, the substitution of bromides with thiolacetates by the reaction 

of 85 with thiolacetic acid in the presence of triethylamine afforded ethyl 2,3-

bis(acetylthio)propanoate 86 in good yield (98%) with sufficient purity without 

purification by chromatography. Acid-catalyzed S-deacetylation of 86 by dry HCl in 

anhydrous ethanol at ambient temperature provided ethyl 2,3-dimercaptopropanoate 87; 

however, this reaction required 3 days for completion and gave low yield (35%). 

Acetonization and saponification of 87 were then performed to afford 89 in sufficient 

yield and purity by using (i) dry HCl and acetone at ambient temperature for 12 h and (ii) 

aqueous sodium hydroxide (1M) in ethanol. Later a different method to synthesize 89 
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from 85 in better yield was developed, which was also less time-consuming. Thus, 

refluxing 86 in aqueous HCl (1 M) for 24h affected both deacetylation and hydrolysis of 

the ester to afford free acid 88 in very good overall yield (99%).  Subsequent standard 

acetonization of 88 in acetone in the presence of HCl afforded 89.   

 

 Scheme 7. Synthesis of 2,3-S-isopropylidene-2,3-dimercaptopropionic acid 

 3.1.1.4 Synthesis of 3'-azido-3'-deoxy-2'-O-(2,3-

 dimercaptopropyl)adenosine 

To increase the stability of the linker through which the thiol group is attached to 

2' hydroxyl group, model compounds with 2'-O-alkyl linker were also synthesized (e.q. 

69). Thus, careful treatment of 90 with allyl bromide and NaH120 gave 2' monoallylated 

product 91 although only in 48% yield. Attempted allylation of 90 with allyl ethyl 

carbonate in the presence of Pd(0) catalyst gave, as expected,110 a mixture of the 6-N and 

2'-O allylated products. Bromination121 of 91 (Br2, -50oC) yielded dibromo compound 92 

(90%) as a 1:1 mixture of diastereoisomers. Treatment of 92 with potassium 

thioacetate119 (DMF, 3 days) gave the bis(acetylthio) derivative 93 (98%). The attempted 
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reaction of 92 at low temperature with NaHS resulted in the formation of the thiirane 

mixture(s), among other byproducts. Deprotection of the 93 was accomplished in a two-

steps procedure. Thus, desilylation with TFA/H2O111 followed by subsequent S-

deacylation122 with NaOH/EtOH gave the desired dithiol 69 (Scheme 8). It is also 

noteworthy that attempted deacylation with NH3/MeOH failed to yield dithiol 69 

producing instead a complex reaction mixture. 

 

Scheme 8. Synthesis of 3'-azido-3'-deoxy-2'-O-(2,3-dimercaptopropyl)adenosine 

3.1.2 Synthesis of 3'-azido-3'-deoxythymidine with modifications at C5' 

 3.1.2.1 Preparation of 3'-azido-3'-deoxythymidine 

 The 3'-azido-3'-deoxythymidine 97 (AZT) was prepared from thymidine 94 in 

several steps following literature reports. [AZT, also called Zidovudine, is used for 

treatment of HIV positive patients. Its mode of action is either by its anti-human 

telomerase reverse transcriptase activity or being a radiosensitizer in irradiated tumor 

cells.123-125] Thus, one-pot 5'-O-tritylation and 3'-O-mesylation of 94 with trityl chloride 

and methanesulfonyl chloride in dry pyridine afforded protected thymidine 95.126 

Cyclization of 95 to 2,3'-O-anhydrothymidine 96 was accomplished following the Fox 

and Miller method127.  Hence, refluxing 95 in a mixed solution of 90% ethanol and 1 N 
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sodium hydroxide achieved the cyclization. However, the time required for the 

completion of the reaction was very critical. Exactly six minutes of reflux provided the 

product 96 in good yield. Less than six minutes of reflux gave unreacted starting material 

while more than six minutes resulted the undesired hydrolysis to xylo analogue. 

Azidation128 of 96 by the addition of sodium azide in DMF in the presence of water under 

reflux condition and subsequent detritylation with 80% acetic acid afforded 3'-azido-3'-

deoxythymidine 97.  

 

 Scheme 9. Synthesis of 3'-azido-3'-deoxythymidine 

 3.1.2.2 Synthesis of 3'-azido-5'-O-cysteinyl-3'-deoxythymidine  

Condensation110 of AZT 97 with N-Boc-S-trityl-cysteine gave 98 in good yield 

(79%).  Successive treatment with TFA/Et3SiH113 affected removal of the Boc and S-

trityl protection groups to give desired nucleoside 67a in one step (85%). Compound 67a 

slowly oxidizes to the corresponding disulfide 67b while exposing to the air during 

purification. [Compound 67b is more polar than 67a on TLC; 67b is shifted downfield by 

Δ 0.18 ppm for Hβ,β' as compared to 67a on 1H NMR; see experimental]  
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 Scheme 10. Synthesis of 3'-azido-5'-O-cysteinyl-3'-deoxythymidine 

 3.1.2.3 Synthesis of 3'-azido-3'-deoxy-5'-O-(2,3-

 dimercaptopropanoyl)thymidine 

The 3'-azido-3'-deoxythymidine analogue 68 with vicinal disulfide function 

attached at C5' via an ester linker was prepared from compound 97 analogously to the 

procedure described above for 67a. Shortly, condensation of 97 with 2,3-S-

isopropylidene-2,3-dimercaptopropionic acid 88 afforded 99 in 95% yield as a mixture of 

diastereomers (1:1.3; Scheme 11). Deprotection of 99 with a mercuric salt complex 

followed by treatment with hydrogen sulfide provided 68 with good overall yield. The 

thiyl radical generated from 67a/67b could add to the azido group via a nine-membered 

intermediate, whereas thiyl radical(s) from 68 could add via an eight- (S● at Cα) or nine-

membered TS (S● at Cβ).  These AZT analogues do not have a hydroxyl group at C2', 

and have a closer electronic resemblance to the 2'-deoxy-3'-ketonucleotide intermediates 

generated during inhibition of RNR by N3UDP. The addition of thiyl radicals at C6 of the 

thymine129,130 was not expected. 
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 Scheme 11. Synthesis of 3'-azido-3'-deoxy-5'-O-(2,3-

 dimercaptopropanoyl)thymidine 

 3.1.2.4 Synthesis of 3'-azido-5'-O-(2,3-dimercaptopropyl)-3'-deoxy-N-

 methylthymidine 

 To increase the stability of the linker through which thiol group is attached to 5' 

hydroxyl group, AZT analogue 70 with 5'-O-alkyl linker was synthesized. In principle, a 

four-step procedure, which was developed for the synthesis of adenosine analogue 69 

was followed: allylation, bromination, thioacetylation, and S-deacetylation.  However, 

attempted allylation of 97 by treatment with allyl bromide and sodium hydride produced 

uracil N-allylation instead of 5'-O-allylation. To avoid such competitive N-3 allylation, 

3'-azido-3'-deoxythymidine 97 was 3-N-methylated with diazomethane to afford 100 

(Scheme 12).  Treatment of 100 with allyl bromide in the presence of sodium hydride as 

a base did not achieve allylation of at 5'-O-position of 100.  However, reaction of 100 

with allyl bromide in the presence of 18-crown-6 and potassium hydroxide successfully 

afforded 5'-O-allyllated nucleoside 101. Subsequent procedures, as described for 69, were 

then followed to afford thymidine analogue 70.  
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 Scheme 12. Synthesis of 3'-azido-5'-O-(2,3-dimercaptopropyl)-3'-deoxy-N-   

 methylthymidine 

 3.1.2.5 Developing selective O-allylation versus N-allylation for the 

 pyrimidine nucleosides 

Because our results on the selective 5'-O-allylation of 3'-azido-3'-deoxythymidine 

differ from the literature report, I had undertaken effort to further investigate 

regioselective allylation of pyrimidine nucleosides. As an alternative to the classical 

method of 5'-O-allylation of thymidine that involves several steps of protection and 

deprotection of the hydroxyl groups and the base, Zerrouki et. al.131 reported a procedure 

using microwave or ultrasound activation that selectively acheive 5'-O-allylation in one 
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step with high yield. Following the method described by Zerrouki, allylation of 3'-

azido-3'-deoxythymidine with allyl bromide in the presence of NaH in DMF was 

performed under both ultrasound and microwave (100 W) activation. However, 1H NMR 

data showed a broad singlet peak at approximately 3.30 ppm that corresponds to a 

hydroxyl group.  Under closer examination of the 13C NMR data, the peak that 

corresponds to the Cα of the allyl was located at 43.34 ppm. According to literature, the 

Cα of the O-allyl should be located at approximately 73 ppm whereas the Cα of the N-

allyl would be present at approximately 43 ppm. Therefore, it can be concluded that N-

allylation occurred instead of 5'-O-allylation to give 104 (Scheme 13).  

 Classical methods as described in the literature131 were then employed to produce 

the 5'-O-allyl-3'-azido-3'-deoxythymidine. The first step was the protection of the 5' 

primary hydroxyl group and of the N-3 aminyl group of thymine by selective silylation 

and benzylation, respectively. The silylated group was then removed by treatment with 

carbon tetrabromide in dry methanol to afford 106.  The structure of 106 was confirmed 

on the basis of  the 1H NMR and 13C NMR data. The 1H NMR data showed a broad 

singlet peak at approximately 3.20 ppm that corresponds to a hydroxyl group. The peak 

that corresponds to C5' in 13C NMR spectra was located at 110.95 ppm, which is 

consistent with literature value for a carbon attached to a hydroxyl group. Allylation of 

106 with NaH and allyl bromide in DMF was then performed. Interestingly, instead of 5'-

O-allylation, compound 107 was produced as judged by our 13C NMR data (the peak at 

43.3 ppm for Cα of the allyl group attached to nitrogen atom was observed).  Deacylation 

of 107 gave the idendical N-allylated product 104 according to 1H and 13C NMR data. 
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 Scheme 13. Allylation of 3'-azido-3'-deoxythymidine 

 Recently, Zhong et al.132 reported successfully reproduction of Zerrouki's method 

of 5'-O-allylation using microwave activation at 40 oC with 2'-3'-O-

isopropylideneuridine.  Therefore, applications of ultrasound or microwave activation for 

the selective 5'-O-allylation was also studied. In order to understand the complete story of 

the regioselective 5'-O-allylation, allylation of thymidine 94, 3'-azido-3'-deoxythymidine 

97, and 2'-3'-O-isopropylideneuridine 113 using both the classical method and the newly 
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reported ultrasound and microwave  procedures were performed following the 

methologies described by Zhong and Zerrouki.  

 Thus, regioselective 5'-silylation of thymidine, followed by benzoylation afforded 

5'-tBDMS-3',N-dibenzoyl nucleoside 108. Selective desilylation using carbon 

tetrabromide (CBr4) in methanol gave thymidine analogue 109 with free 5'-hydroxyl. 

Allylation of 109 by classical method using stirring at ambient temperature for 30 min 

upon adding NaH and another hour after adding allyl bromide afforded 110, which 

according to both 1H and 13C NMR data suggested N-allylation. Debenzoylation uisng 

methanoic ammonina afforded N-allyl-thymidine 111. On the other hand, direct allylation 

of thymidine 94 was also studied using classical stirring, ultrasound and microwave 

activation.  Allylation of 94 using classical stirring was accomplished by stirring the 

reaction mixture of thymidine and NaH in DMF at ambient temperature under N2 for 30 

min, following by stirring for another 4h after adding allyl bromide.  Ultrasound 

methodology was followed by sonication of the reaction mixture for 30 min at ambient 

temperature before adding allyl bromide, in which stirring was continued in the 

ultrasound bath for another 4h.  Microwave activation was performed at 100 W for 2 min 

upon adding NaH, and then continued for another 2 min after adding allyl bromide.  All 

three conditions afforded identical product, which corresponded to N-allylated 111 by 

NMR data (Scheme 14). Allylation of 2'-3'-O-isopropylideneuridine 113 under classical 

stirring, ultrasound and microwave conditions also gave the N-allylated product 114 

(Scheme 15).  
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 Scheme 14. Allylation of thymidine by classical methods, ultrasound and 

 microwave activation. 

  

 Scheme 15. Allylation of 2'-3'-O-isopropylideneuridine 
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3.1.3 Attempted synthesis of other nucleoside derivatives 

I have also attempted to synthesize nucleoside derivatives that have both the 

azido and hydroxyl group at C3'. For example, compound 115 is the closest analog to 

mimic the proposed intermediate in Ramos' mechanism for the inhibition of RNR by 

N3UPD (21, Figure 8).  This compound can be considered as an azidohydrin (at C3') and 

might be comparable to a cyanohydrin functional group. Cyanohydrins are normally 

formed by treatment of a ketone or aldehyde with hydrogen cyanide (HCN) in the 

presence of sodium cyanide as a catalyst.133  [Cyanohydrins are stable, and act as 

important metabolites in cyanide detoxification processes in our body.134]  In theory, 

analogous treatment of ketones with hydrazoic acid (HN3) in the presence of sodium 

azide should produce the azidohydrin. However, such reaction is rather speculative and 

so far unknown in literature. The azidohydrin might be less stable than the cyanohydrin. 

Different pka values of HCN (9.3)133 and HN3 (4.6)135 might be the reason for the sharp 

difference in reactivity.and stability between them. Attempts to react sodium azide with 

the simplified models such as 3-ketoisopropylidineglucose and protected 3'-

ketothymidine were tried, but failed to produce the corresponding azidohydrin.  

Synthesis of compounds 116 and 117, which have the O-Si bond as a linker to 

the thiol moiety, were also attempted. Presumably, derivatives 116 and 117 would 

require 7 and 6-membered ring closure transition states, respectively, during the 

interaction between the generated thiyl radical and azide group. The procedure for the 

attempted synthesis of 116 or 117 involved several steps such as: (i) silylation of 3'-

azidoadenosine with chloro(chloromethyl)dimethyl silane or dichlorodimethyl silane; 

(ii) treatment with potassium thioacetate; (iii) and S-deacetylation (Scheme 16).  Instead 
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of testing such approaches with laborous 3'-azido-adenosine and AZT, the synthesis on 

3',5'-disilylated adenosine was attempted.  Following a standard silylation108 procedure 

using pyridine as the solvent in the presence of 4-dimethylaminopyridine (DMAP) did 

not yield the desired products with the chloromethyldimethyl silane or chlorodimethyl 

silane attached to 2'-O-carbon. However, the treatment of chloro(chloromethyl)dimethyl 

silane with diethylamine in ether136 was found to give the ClCH2SiMe2NEt2, in which in 

its presence along with chloro(chloromethyl)dimethyl silane in ether successfully added 

the chlorosilyl chain to 2'-position.   Treatment with potassium thiolacetate119 effectively 

substituted chloro with thiolacetate.  However, S-deacetylation122,137 cleaved the O-Si 

bond and yielded the original protected adenosine. 

 

 Figure 24. Other attempted model derivatives 

 

 Scheme 16. Approach for the synthesis of 3'-azido nucleosides with the thiol 

 moiety attached via O-Si bond linkage 
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3.2 Theoretical feasibility studies 

3.2.1 General method 

Density functional calculations of the reaction pathways were performed to 

understand the reaction mechanism of the ring closure accompanied by N2 elimination 

(presented earlier in Figure 23). The method of calculations was the hybrid DFT B3LYP 

with the 6-31G* basis set, which provided a semiquantitative accuracy within 3-5 

kcal/mol for the reaction energies and barrier heights. Model molecules obtained by 

replacement of the bulky heterocyclic ring with NH2 group were used (Figure 25). The 

strategy involved: (a) finding an appropriate conformation of the open structure with a 

minimal S...N distance, (b) calculation the radical structures obtained by removal of H 

from the S-H group, (c) searching for transition states for the ring closure, and (d) 

calculation the closed-ring structures formed after elimination of N2. 

 

Figure 25. Model azido sugars with NH2 at C1 positions instead of the heterocyclic ring 

3.2.2 Feasibility of the ring-closure reaction between cysteine-derived thiyl radical   

and azido group 

Nucleosides 65 and 67, bearing the cysteinyl moeity at 2' and 5', respectively, 

were assummed to partake in a ring-closure reaction between the cysteine-derived thiyl 



 61 

radical and azido group, via an 8 and 9-membered transition states, respectively (see 

Figure 23). The feasibility of such ring-closure reaction was studied using replaced 

cysteinate substrates 119 and 120 (Figure 25). The heterocyclic rings of adenine and 

thymine were replaced with the amine group to be cost effective. The calculations 

suggested that intramolecular reactions between thiyl radical and azido group are facile 

for both 2'- and 5'-O-cysteinate subtrates 119 and 120. As shown in Table 1, the reaction 

was calculated to be exothermic by 33.6 to 40.6 kcal/mol and to have a low energy 

barrier of only 9.3 to 12.1 kcal/mol, which can be overcome at ambient temperature. The 

effect of the stereochemistry difference of the amino group on the cysteinyl moiety was 

also investigated. The transition state energy barrier and the total energy of the reaction 

were calculated to be very similar regardless of the stereochemistry at Cα.  

 TS energy barrier 
(kcal/mol) 

Energy 
(kcal/mol) 

119 (R at Cα) 12.1 -35.6 
119 (S at Cα) 10.4 -33.6 
120 (R at Cα) 13.5 -37.8 
120 (S at Cα) 11.7 -40.6 

 

 Table 1. Optimized (DFT B3LYP with the 6-31G*set) energies for the ring 

 closure energy calculated for model substrates bearing a cysteinyl moiety 

On the basis of the results, the ring closure reaction between the thiyl radical and 

azide of compounds 65 and 67 that required an 8 and 9-membered transition states was 

confirmed to be feasible. Figure 26 shows a molecular model of the ring closure reaction 

of 119 and 120 between the thiyl radical and azide through an 8 and 9-membered 

transition states with release of nitrogen, which represents the best approximation of the 

geometry of the transition state as well as the ring-closured product.  Not only that the 
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reaction was exothermic with low activation energy (E#, see Table 1), but the distance 

between the Nα atom and the thiyl radical was also small (for example, 4.33 Å for 120). 

 

 Figure 26. Ring closure reaction between a thiyl radical from a cysteinyl moiety 

 and azide through 8 and 9-membered transition states  

3.2.3 Feasibility of the ring-closure reaction between vicinal dithiols-derived thiyl 

radical and azido group  

For substrates 121 and 122 bearing the vicinal disulfide, the calculation also 

suggested that the ring-closure reactions were exothermic (ΔE = from -35.7 to -38.4 

kcal/mol) with low transition state energy barriers (from 9.1 to 17.8 kcal/mol; Table 2). 

Figure 27 shows a molecular model of the ring closure reaction of 121 and 122 between 

the thiyl radical from vicinal disulfide and azide through an 8 and 9-membered transition 
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states with the best approximation of geometry of the transition state and the ring-

closured product.  However, the position of the thiyl radical seemed to affect the ring-

closure reaction greatly.  With the primary thiyl radical at the β position, the ring closure 

reaction between the thiyl radical and the azido group was feasible through both 8 and 9-

membered transition states for both S and R diastereomers at Cα.  However, the reaction 

between a secondary α thiyl radical and the azido group, which required a 7 and 8-

membered transition states, did not occur or occurred at a high energy barrier of 43.4 

kcal/mol. It was also noted that the stereochemistry at Cα did not affect the ring closure 

reaction for substrate 121, which  would require an 8-membered transition state. 

However, for substrate 122, which required 9-membered transition state, the energy 

barrier increased when the stereochemistry is R at Cα (17.8 kcal/mol as compared to 9.1 

kcal/mol for S at Cα). Although there was a difference in the energy barriers, the 

calculated data still suggested that the ring-closure reactions for substrate 122 for both S 

and R diastereomers at Cα were facile.  

 TS energy barrier 
(kcal/mol) 

Energy 
(kcal/mol) 

121 (R at Cα), Sβ 11.4 -38.1 
121 (S at Cα), Sβ 12.6 -36.7 
121 (R at Cα), Sα does not occur - 
121 (S at Cα), Sα 43.4 -35.7 
122 (R at Cα), Sβ 17.8 -34.5 
122 (S at Cα), Sβ 9.1 -38.4 
122 (R at Cα), Sα does not occur - 
122 (S at Cα), Sα does not occur - 

 

 Table 2. Optimized (DFT B3LYP with the 6-31G*set) energies for the ring 

 closure energy calculated for model substrates bearing a vicinal disulfide 
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 Figure 27. Ring closure reaction between a thiyl radical from vicinal disulfide 

 and azide through 8 and 9-membered transition states  

3.3 Biomimetic studies of alkyl thiyl radicals and alkyl azides using AAPH as 

radical initiator  

In order to study the generation of thiyl radicals and their interaction with the 3'-

azido group, the first criterion was to examine the stability of the azido group under both 

thermal and photolytic conditions used for the generation of thiyl radicals. Instead of 

testing the conditions on the "expensive" model compounds, commercially available 3'-

azido-3'-deoxythymidine (AZT, 97) was used to study the stability of the azido group.   

 Dr. Schoneichdeveloped a method for generating thiyl radicals by first producing 

carbon-centered radicals 124 from the radical initiator, 2,2’-azobis-(2-methyl-
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propionamidine)-dihydrochloride (AAPH) 123, using deuterated water as the solvent at a 

relatively low temperature of 37 oC.138 The thiyl radical 126 is then generated by the 

reaction between 124 and a thiol (cysteamine 125, Figure 28). We found this method to 

be very suitable for the generation of thiyl radicals from our model compounds because 

the structure of cysteamine is comparable to the thiol functionality of our model 

compounds. Also, the method uses relatively low-temperature under the physiological 

condition in water, which is important in maintaining the stability of our model 

nucleosides, especially the azido group. For these reasons, this methodology is more 

appealing than γ-radiolysis139 and experiments that require di-tert-butyl hyponitrite as the 

radical initiator in organic solvents.140-142  Generation of thiyl radicals employing stannyl 

radicals143 is inapplicable because azides undergo reduction to amines with tin radicals.144 

However, silane radicals [with exception of (Me3Si)3Si●]145 might provide an alternative 

approach for generation of thiyl radicals since they do not affect reduction of azido 

groups.146  
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 Figure 28. Thermal conditions for the generation of thiyl radicals uisng  AAPH 

 as radical initiator.  

The fragmentation of AAPH 123 in D2O at 37, 47, and 56 oC was examined using 

1H NMR. To evaluate the decomposition of AAPH, the ratio of the integration between 

the two singlets at δ 1.54 and δ 1.29 was monitored, which corresponded to the methyl 

groups of AAPH 123 and decomposed AAPH 124, respectively. From the results (Table 

3), that the best temperature to generate thiyl radicals from the model compounds was 

concluded to be at 50 oC.  

Entry Time 
(h) 

Temp 
(oC) 

AAPH 
(mM) 

% of AAPH 
fragmentation 

1 15 37 18 5.0 
2 17 47 18 20.8 
3 17 56 18 73.2 

   

 Table 3. Decomposition of AAPH in D2O at different temperature  
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3.3.1 Stability of azido group in the presence of AAPH 

 The stability of AZT in the presence of AAPH was investigated at 47 and 57 oC 

(Table 4). The stability of AZT was examined by comparing the integration between the 

singlet peak at δ 7.65, which corresponds to hydrogen at position 6 from the pyrimidine 

ring of AZT, and the triplet peak at δ 6.23, which corresponds to the anomeric proton at 

H1' of the sugar ring of AZT. At the two temperatures tested, the ratio of the integration 

between H1' and H6 peaks and their chemical shifts did not change. There were also no 

other peaks in the area of 5.5 to 6.5 ppm present, which is the expected area for the 

anomeric proton H1' for almost all nucleosides including 3'-amino-3'-deoxythymidine. 

The two peaks at δ 5.76 and δ 5.91 correlating to the minor products formed from 

decomposition of AAPH was also observed. These results suggested that the azido group 

is stable under the studied conditions that are required to generate thiyl radicals. 

Moreover, no additions to the pyrimidine ring and/or substitution of H5 or H6 with 

deuterium, or rearrangement within AZT was observed, which indicated that the 

condition is suitable for generating the thiyl radical from our model compounds. 

 Because the solubility of the model nucleosides in D2O was found to be limited, 

the fragmentation of AAPH in deuterated methanol (MeOH-d4) was also investigated. 

During the decomposition, the ratio of the integration between the two singlets at δ 1.47 

and δ 1.20 was monitored, which corresponded to the methyl groups of AAPH 123 and 

decomposed AAPH 124 in MeOH-d4, respectively. I found that using MeOH-d4 instead 

of D2O did not affect the rate of AAPH decomposition. AZT was also found to be stable 

in MeOH-d4 in the presence of AAPH. 
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3.3.2 Model studies of 2-(2-azidocyclohexyl)ethanethiol with AAPH 

Since the purpose of our study was to investigate the ring closure reaction 

between the thiyl radical and azide of the model nucleosides,  compounds such as 2-(2-

azidocyclohexyl)ethanethiol 133 (Scheme 17) was also designed to simplify the ring 

closure reaction via 6-membered transition state.  The formation of the 6-membered ring 

was assumed to be a driving force for such reaction to occur.  

 3.3.2.1 Synthesis and biomimetic study of 2-(2-azidocyclohexyl)ethanethiol  

Addition of Grignard reagent, vinylmagnesium bromide at the low temperature of 

-30 oC, to the commercially available cyclohexene oxide 129, along with catalytic 

amount of CuI salts, resulted in the ring opening of the epoxide to afford trans-2-

ethenylcyclohexanol 130. Although according to literature, the method147 was not 

stereoselective, but I observed only the trans isomer.   Free radical addition148 of 

thiolacetic acid to 130 afforded trans-2-ethylthiolacetatecyclohexanol 131.  The 

Mitsonobu149 reaction was applied to 131 to convert the hydroxyl group to azide directly 

with inversion of configuration, affording cis product 132.  Subsequent S-deacetylation122 

of 132 with NaOH/MeOH gave the desired 2-(2-azidocyclohexyl)ethanethiol 133 in good 

yield (87%).  

Treatment of 2-(2-azidocyclohexyl)ethanethiol with AAPH in MeOH-d4 did not 

result in the hypothesized 6-membered ring closure. Instead, only the oxidation of 133 to 

its disulfide form was observed on the basis of the 'H NMR downfield shift of the Hα. 

Perhaps constraint conformation and energy barriers due to the relative orientation of 

substituents: one substituted functional group is located at the axial position while 
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another group is located at the equitorial position precluded the formation of the planar 6-

membered transition state.  

  

 Scheme 17. Synthesis of 2-(2-azidocyclohexyl)ethanethiol 

3.3.3 Intermolecular interaction between AZT and 2,3-dimercaptopropionic acid or 

cysteine 

Intermolecular interaction between the thiyl radical and azido group was studied 

using AZT 97 and 2,3-dimercaptopropionic acid 134 or cysteine 136 (Figure 29). 

Surprisingly, heating of AZT and 134 or 136 in the presence of AAPH resulted in 

deuterium exchange for both HβHβ' and Hα in 2,3-dimercaptopropionic acid and cysteine 

to give the fully deuterated analogues 135 and 137, respectively. This result, however, 

also implied that the generated  thiyl radical(s) did not interact intermolecularly with the 
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azido group since intact AZT was observed from the reaction mixtures. 

 

 Figure 29. Intermolecular interaction between AZT and 2,3-dimercaptopropionic 

 acid or cysteine 

3.3.4 Intramolecular reaction of 3'-azido-nucleosides bearing thiol or vicinal-dithiol 

functionalities attached at C5' or C2' via ester linkage 

The intramolecular reaction of 3'-azido-nucleosides 65-68 (see Figure 22) bearing 

thiol or vicinal-dithiol functionalities attached at C5' or C2' via an ester linkage was 

studied in the presence of AAPH as the thiyl radical initiator.  However, treatment of 65-

68 with AAPH in a mixture of MeOH-d4: D2O for 24 h at 50 oC also affected the 

hydrolysis of the ester bond from C5' or C2' to give mainly either 3'-azido-3'-

deoxyadenosine 79 or 3'-azido-3'-deoxythymidine 97 as the product.  

I did, however, observe a new nucleoside product X from the reaction of 3'-azido-

3'-deoxy-5'-O-(2,3-dimercaptopropionyl)thymidine 68 with AAPH along with AZT 

(~4:1, X:AZT). This result indicated that there was interaction between the generated 
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thiyl radical and the azido group. From our 1H NMR spectra (Figure 30), I observed that 

new nucleoside-based product X has distinctive chemical shifts of H3' and H4' when 

compared to their respective protons of 68 and AZT 97. The 1H NMR data of X was also 

not comparable to 3'-amino-deoxythymidine (AminoT) as different chemical shifts of H3' 

and H4' were observed.  From these 1H NMR data, it was safe to deduce that compound 

X has (i) a frame of thymine and all sugar protons as the proton peaks for H6 and CH3 of 

the thymine base as well as for all protons for the ribose ring were clearly observed, (ii) 

no modification at C2' position since proton peak for H1' remains a triplet comparing to 

the starting material 68, (iii) and the deprotection of the 5'-O-vicinal dithiol linkage as 

implied by the upfield chemical shifts of H5' and H5''. Compound X could be formed by 

either intramolecular reaction of thiyl radical or thiolate and the azido group, followed by 

the cleavage of the ester bond. Alternatively, the ester bond at C5' could be hydrolyzed 

first, followed by the intermolecular reaction between mercaptopropionic acid and azide. 

However, as reported in section 3.3.3 above, there was no intermolecular reaction 

between 2,3-dimercaptopropionic acid and AZT.    

I first suspected the structure of X to be 3'-N-acylamino-3'-deoxythymidine 

(3AcNHT) analog (Figure 31). The 3'-amino-3'-deoxythymidine was acetylated for 

comparison; however, according to the resulted 1H NMR data for 5'-O-acetyl-3'-N-acetyl-

3'-deoxythymidine (5'-Ac-3'-AcNHT), as presented in Table 4, as well as the literature 

values for 3'-N-acetyl-3'-deoxythymidine150 (3'-AcNHT), it can be concluded from the 

chemical shifts of H3' and H4' that compound X does not have the acylamino group at 

C3'.  Comparing to the spectroscopical data to 3'-hydroxylamino-2'-3'-

dideoxythymidine151 (HONHT), I observed that H4' chemical shift is more downfield 
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than H3' for both compounds X and HONHT even though the structure of X is not 

HONHT. Tentatively, the structure of X was assigned to have a 3'-hydroxylamino frame, 

probably acetylated further at the hydroxy group. Furthermore, the structure of X could 

also have a hydrazine group attached at C3' (NHNH2T) due to the reaction between 

fragments from AAPH with AZT. It has to be noted that X was obtained clean by 

partioning between CHCl3 and H2O. Attempts to purify compound X using HPLC 

resulted in isolation of AminoT, which indicated that the hydroxyl amino fragment is 

unstable. The unstability of the hydroxyl amino fragment was also indicated by the mass 

of X was observed at m/z 242 (M + H)+, which is comparable to AminoT.  

 

 Figure 30. 1H NMR in MeOH-d4 showing H3', 4', 5' and 5'' of compounds 68, X, 

 AZT, and AminoT. 
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 1' (δ) 3' (δ) 4' (δ) 5',5'' (δ) 2',2'' (δ) 
X 6.32 (t) 4.05  4.12 3.88, 3.82 2.49-2.57 
68 6.20 (t) 4.49 4.22 4.54, 4.47 2.89-3.04 
AZT 6.18 (t) 4.36 3.92 3.84, 3.74 2.35-2.46 
AminoT 6.19 (dd) 3.55 3.71 3.85, 3.77 2.17-2.32 
5'-Ac-3'-AcNHT 6.21 (dd) 4.46 4.02 4.35, 4.31 2.89-3.04 
3'-AcNHT* 6.21 (t) 4.50 3.88 3.82, 3.75 2.28-2.43 
OHNHT 6.22 (t) 3.72 4.03 3.84, 3.70 2.18-2.35 

 

 Table 4. 1H NMR chemical shifts of the sugar-based protons of X, 68, AZT, 

 AminoT, 5'-Ac-3'-AcNHT, 3'-AcNHT (*in acetone-d6), and OHNHT. 

 

 Figure 31. Tentative proposal of the structure of compound X. 

3.3.5 Intramolecular reaction of 3'-azido-nucleotides bearing a vicinal-dithiol 

functionality attached at C5' or C2' via ether linkage 

Because of the instability of the ester bond linkage bearing the thiol moiety 

attached to C5' and C2' of our model 3'-azido nucleosides, compounds 69 and 70 were 

also synthesized having thiol functionality attached to C2' or C5' via an ether linkage in 

effort to improve the stabililty. The 3'-azido model nucleosides 69 and 70 were heated at 

50 oC in the presence of AAPH in MeOH-d4. A mixture of products were observed after 

24 h, and extensive purification by HPLC allowed us to isolate new products. For 

compound 69 with vicinal disulfide attached at C2', one of the observed products was 3'-

azido-3'-deoxyadenosine along with another nucleoside product Y.  On the basis of the 

1H NMR and MS data, I tentatively proposed that the structure of Y might have a 1,3,2-
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dithiazolidine ring.152  Dithiazolidines has been reported in literature although their 

chemistry has not been studied in depth. Figure 32 shows the proposed structure of Y and 

its plausible generation through the intramolecular interaction between the thiyl radical 

and azido group.   

 

 Figure 32. Formation of adenosine-based 1,3,2-dithioazolidine product Y. 

Analogous reaction of AZT-derived dithiol 70 with AAPH resulted in a formation 

of a complex mixture of products. Laborious purfication led to the separation of few 

products whose tentative structures are presented in Figure 33 on the basis of their 1H 

NMR and HRMS data.  
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 Figure 33. Reaction of 3'-azido-5'-O-(2,3-dimercaptopropyl)-3'-deoxy-N-

 methylthymidine and AAPH 

3.4 Studies of the interactions between alkyl thiyl radicals generated by gamma 

irradiation and alkyl azides  

Because the biomimetic simulation studies, which utilized AAPH for the 

generation of thiyl radicals, did not provide conclusive results, I turned my attention to 

gamma radiation as a method for generation of thiyl radicals. Before studying the 

interaction between the thiyl radical and azide of 3'-azido nucleosides, the preliminary 

study of the reaction between aliphatic thiyl radicals and alkyl azides was examined first. 

As mentioned in the Introduction, there has not been clear evidence of such reaction in 

literature.    

Briefly, gamma radiation is electromagnetic radiation emitted in the process of 

nuclear transformation or particle annihilation. Gamma rays have high frequency above 

1019 Hz, energy above 100 keV, and wavelength less than 10 pm. Emission of gamma 

radiation occurs when the nucleus of a radioactive atom has too much energy. For 
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example, one of the most widely used source of gamma radiation emission is 

radionuclide Cobalt-60, which is produced by Cobalt-59 via neutron activation. Cobalt-

60 decays by beta decay to the stable isotope nickel-60, in which its activated nickel 

nucleus emits two gamma rays with energies of 1.17 and 1.33 MeV.153  

A cobalt-60 gamma cell was used to generate thiyl radicals via radiolysis of water 

under N2O-saturated condition. As shown in eq 13, radiolyis of  neutral water led to 

solvated electrons (eaq
-), HO•, and H•, in which the values in parentheses represent the 

radiation chemical yields (G) in units of µmolJ-1.154  Under a  N2O-saturated condition 

producing around 0.02 M of N2O, eaq
- reacted with N2O and efficiently transformed into 

HO• at the rate of 9.1 x 109 M-1s-1 (eq 14). This means that the radiolysis of water 

afforded G(HO•) = 0.55 µmolJ-1, and that HO• and H• atoms make up 90 and 10%, 

respectively, of the reactive species.154-156 The produced hydroxyl and hydrogen radicals 

then reacted with thiols to generate thiyl radicals (eq 15). 

  eq 13   

   eq 14 

   eq 15 

3.4.1 Gamma irradiation of cysteine in the presence of AZT  

As mentioned above, a preliminary study between alkyl thiyl radicals and alkyl 

azide was first conducted.  Cysteine (CySH) was the chosen alkyl thiol while 3'-azido-3'-

deoxythymidine (AZT) was the chosen alkyl azide.  As reported in literature157, the rate 

of the addition of HO• and H• to the methyl group of the pyrimidine ring of thymidine 
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are 4.7 x 109 and 3.2 x 108 M-1s-1, respectively; and the rate of the similar addition of 

HO• to AZT is reported158 to be 9.0 x 109 M-1s-1.  On the basis of the reported rates, we 

estimated that the rate for the reaction of H• and AZT would be 6.1 x 108 M-1s-1.  As 

shown in eq 16 and 17, the rates159 for the formation of thiyl radical by reaction of HO• 

and H• with cysteine are 4.7 x 1010 and 1.0 x 109 M-1s-1, respectively.    

 

 On the basis of the reported kinetics, we had chosen to use 1.0 mM of AZT and 

10 mM of cysteine to ensure that hydroxyl and hydrogen radicals would react with 

cysteine to generate thiyl radicals at a faster rate than their reactions with AZT (Table 5). 

 HO• (s-1) H• (s-1) 

[AZT] = 1.0 mM 9.0 x 106 6.1 x 105 

[CySH] = 10 mM 4.7 x 108 1.0 x 107 

 

 Table 5. The rate HO• and H• radicals would react with cysteine and AZT at 

 the chosen concentrations.  

Gamma irradiation of 1.0 mM of AZT and 10 mM of cysteine at doses of 2, 4, 

and 6 kGy with a dose rate of ca. 6.5 Gy/min at pH 7.0 (by using a 10 mM phosphate 

buffer) was carried out under deaerated (N2O-saturated) conditions.  The experiment 

resulted in the formation of 3'-amino-3'-deoxythymidine (tR = 15 min), thymine (tR = 12 

min), H2S (tR = 5 min), cysteine (tR = 4.9 min) and cystine (tR = 4.8 min) on the basis of 



 78 

the HPLC retention time of the standard samples and MS analysis as well as the 

consumption of AZT (tR = 22 min (Figure 34).  

 

 Figure 34. HPLC analysis of the γ-irradiation of a N2O-purged solution 

 containing 1.0 mM AZT and 10 mM cysteine.  

The G values, which quantify the number of molecules of reactant consumed or 

product formed per 100eV of energy absorbed, for the consumption of AZT and for the 

formation of products were calculated (Figure 35). The literature reported Gtotal value for 

the generation of radicals is 0.61 µmolJ-1 (see eq 13).155,156 In this experiment, the G 

value for the consumption of AZT was 0.05 µmolJ-1. Of the AZT consumed by the 

reaction, the G value for the formation of  3'-amino-3'-deoxythymidine (aminoT) was 

0.03 µmolJ-1 while the G value for the formation of thymine was 0.01 µmolJ-1. The G 

value for the formation of cystine (0.46 µmolJ-1) suggested that a large percentage 
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(~75%) of generated cysteinyl radicals recombined to form the disulfide in the 

termination step.  Also, the reaction generated the noticeable formation of H2S (estimated 

~0.10 µmolJ-1). Even though only ~10 % of radicals reacted with AZT in our system, it 

was gratifying to see that our data corresponded to the total value of radiation chemical 

yield in terms of the total amount of chemical reactions (G = 0.05, 0.46, 0.10 µmolJ-1) 

equals the total value of radiation chemical yield (Gtotal = 0.61 µmolJ-1).  Since the 

reaction resulted in the formation of aminoT, thymine, and hydrogen sulfide, it was still 

uncertain whether thiyl radicals reacted with AZT to generate both aminoT and thymine 

or thiyl radicals reacted with AZT to give only thymine while hydrogen sulfide reacted 

via ionic pathway with the azido group of AZT to generate the reduced aminoT.  

 

 Figure 35. G values vs. dose for the γ-irradiation of a N2O-purged solution of  

 1.0 mM AZT and 10 mM cysteine. 

To understand the pathway of the formation of aminoT, thymine and other species 

through gamma-irradiation of cysteine and AZT, pH-dependent and O2-dependent 
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experiments were studied. In the pH-dependent experiments, an increase or decrease 

formation of aminoT was expected to be observed as the changes in pH (7.00, 8.34, and 

9.65) corresponded to the increase of disulfide radical anions and decrease of thiyl 

radicals. At pH 8.34, it can be assumed that 50% of thiyl radicals and disulfide radical 

anions are formed on the basis of  the pKa value159 of cysteine ( pKa = 8.3).  Hence, at pH 

7.00 and 9.65, we can also assume an increase formation of thiyl radicals and disulfide 

radical anions, respectively. However, the results showed that the formation of both 

aminoT and thymine remained relatively constant, which suggested that the reduction of 

AZT to its amino counterpart was not due to the reactions with thiyl radicals or disulfide 

radical anions.  

Gamma irradiation of a 10% oxygen-saturated solution of AZT and cysteine was 

also performed at dosage of 2 kGy at the pH of 7.0 in 10 mM phosphate buffer. Figure 36 

shows that the gamma irradation reaction of a 9:1 N2O:O2-purged solution containing 1.0 

mM of AZT and 10 mM of cysteine yielded a similar amount of 3'-amino-3'-

deoxythymidine as in the N2O-saturated reaction. More interestingly, in the presence of 

O2, a noticeable increase formation of thymine was observed. According to the results, a 

pathway of the formation of thymine via γ-irradiation of a 9:1 N2O:O2-purged solution 

containing AZT and cysteine was proposed. The reaction of cysteinyl radicals (CyS•) 

with oxygen is reversible and the equilibrium is strongly on the left (Figure 37). The 

CyS• are suspected to abstract hydrogen from the ribose ring of AZT to form various 

alkyl radical (sugar radicals), which then add to the oxygen to form alkyl peroxyl 

radicals. These alkyl peroxyl radicals are known to facilitate the formation of thymine. 31-

33 
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 Figure 36. HPLC analysis of the γ-irradiation of a 9:1 N2O:O2-purged solution 

 containing 1.0 mM of AZT and 10 mM of cysteine 

 



 82 

 Figure 37. Proposed mechanistic pathway of the formation of thymine via gamma 

 irradiation of a 9:1 N2O:O2-purged solution containing AZT and cysteine 

3.4.2 Proposed mechanism 

Figure 38 shows a proposed mechanistic pathway for the reaction between 

cysteinyl radicals and AZT at pH 7.0 under described conditions. It is assumed that 

cysteinyl radicals reacted with AZT to form thymine while the reduction of azide was the 

result of the ionic reaction with hydrogen sulfide.  In literature, gamma irradiation of 

cysteine has been reported to generate hydrogen sulfide;160-163 and H2S, as a reducing 

agent, can spontaneously reduce AZT to its amino counterpart, which was also confirmed 

experimentally.80,82,164  Under the described condition, I did not find evidence of the 

interaction between alkyl thiyl radicals and alkyl azide. It is also worth to mention that 

reactions of γ-irradiation of 2-mercaptoethanol and AZT was studied. However, both our 

experiments and literature showed that the reduction of AZT occurred from the thiyl 

radical generated by γ-irradiation of 2-mercaptoethanol happened spontaneously rather 

than through radical stress. 104,105 These results suggested that alkyl thiyl radicals are 

unlikely to react with alkyl azide.  
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 Figure 38. Proposed mechanistic pathway for the reaction between cysteinyl 

 radicals and AZT 

3.4.3 Gamma-irradiation of cysteamine and AZT in aqueous (H2O or D2O) glassy (7.5 

M LiCl) systems 

 Under a different condition of γ-irradiation in aqueous (H2O or D2O) glassy (7.5 

M LiCl) systems an absorbed dose of 525-700 Gy at 77 K123 (see chapter 3.5.1), the 

reactions between the thiyl radicals generated from cysteamine and the azido group of 

AZT and 2'-azido-2'-deoxyuridine (2'-AZdU) were examined.  Our ESR specroscopic 

data (Figure 39) indicated cysteaninyl radicals, appeared as broad singlets, were 

generated but subsequent reaction with the azido group of AZT and 2'-AZdU was not 
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observed. This result strongly supported the above proposed pathway (Figure 38) that 

alkyl thiyl radicals are not likely to react chemically with the alkyl azide. 

     

 Figure 39. ESR spectral studies of cysteamine and 3'-AZT and 2'-AZdU in D2O 

 glasses (7.5 M LiCl/D2O) 

 

 

 

A

Cysteamine (0.1 mg/mL) 
+ 2'-AZdU (1 mg/mL)

7.5 M LiCl/D2O + K2S2O8 (excess)
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B

Cysteamine (1 mg/mL)
+ 2'-AZdU (1 mg/mL)

Cysteamine (0.1 mg/mL)
+3'-AZT (1 mg/ mL) 

Cysteamine (1 mg/mL)
+ 3'-AZT (1 mg/ mL)

D

C
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3.5 Structure of the aminyl radicals formed from single-electron attachment to 

2'-azido-2'-deoxyuridine  

3.5.1 Characterization of aminyl radicals formed from one-electron attachment to 3'-

azido-3'-deoxythymidine and its analogues.  

Recently, Sevilla's group123 reported the formation of the aminyl radical via 

electron attachment to 3'-azido-3'-deoxythymidine (3'-AZT), as well as 5'-azido-5'-

deoxythymidine (5'-AZT) and 3'-azido-2',3'-dideoxyguanosine (3'-AZG). They were able 

to characterize the aminyl radical derived from azido group and sugar-based radicals 

using electron spin resonance (ESR) spectroscopy. Gamma-irradiation was performed in 

aqueous (H2O or D2O) glassy (7.5 M LiCl) systems at an absorbed dose of 525-700 Gy at 

77 K with the aid of a 109-GR 9 irradiator, which has a shielded 60Co source.  

The generally accepted mechanism123 for reduction of organic azides to amines 

initiated by one-electron attachment involved the formation of azide anion radical (eq 

18a). Next, the nitrene anion radical is formed after expulsion of N2 (eq 18b), which 

captured a proton to give the aminyl radical (eq 18c). Finally, the plausible pathways for 

the formation of amine were proposed to be either by H-atom abstraction (eq 18d) or one-

electron reduction and proton capture (eq 18e). However, up until this report, no evidence 

of the proposed radical intermediates (eq 18a to eq 18e) has been demonstrated for 

organoazides. Trapping the azide anion radical or the aminyl radical might provide key 

information for better understanding of several mechanistic pathways including the 

mechanism for the inhibition of RNRs by N3NDPs and the radiosensitization effects of 

AZT.  
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RN3 + e- → RN3•-       eq 18a 

RN3•- → RN•- + N2       eq 18b 

RN•- + H2O → RNH•      eq 18c 

RNH• + R'-H → RNH2 + R'•     eq 18d 

RNH• + e- + H2O → RNH2 + OH-     eq 18e 

Sevilla and coworkers123 reported several important observations regarding the 

mechanism for the formation of amines from organic azides initiated by one-electron 

reduction. They first showed that the predominant site of electron attachment to AZT is at 

the azide group and not at the thymine moiety by ESR spectral data and theoretical 

calculation. Although they did not observe the unstable azide anion radical intermediate 

(RN3•-), they did observe the one-electron additon to the azide group resulting in the 

formation of a neutral aminyl radical (RNH•) in both acidic and basic media by ESR 

spectroscopy. The observed hyperfine splitting of ca. 116G and 117G (3' and 5'-AZT, 

respectively) and g-values for the new radical species were nearly identical to the 

simulated data. On annealing to higher temperature (ca. 160-170 K), they also observed 

the bimolecular hydrogen abstraction reactions between the aminyl radical and the 

thymine methyl group and the sugar moiety resulted in the formation of the stable 

thymine allyl radical and a sugar-based radical (Figure 40).  Even though it is unclear at 

which position of ribose that the bimolecular hydrogen abstraction occurred, the proposed 

structure of the sugar-based radical is indeed very similar to the radical species formed 

during inhibition of RNRs by N3UPDs (see structure 11, Figure 8).
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 Figure 40. Bimolecular hydrogen abstraction reactions between the aminyl 

 radical and the thymine methyl group and the sugar moiety of AZT 

Although Sevilla's work demonstrated the formation of an aminyl radical from 

azido group, which then underwent bimolecular hydrogen abstraction from the sugar ring 

in nucleosides, its subsequent chemistry has not yet been elucidated. To further study the 

structure and chemistry of the aminyl radical formed during RNR inhibition by 2'-azido-

2'-deoxyuridine (2'-N3-dUrd), labeled analogues of 2'-N3-dUrd at ribose 1', 2', 3', and 4' 

positions, as well as 5,6 position of the uracil base were prepared. Elucidation of the 

structure of the aminyl radical might provide key mechanistic information for the 

inhibition of RNRs since 2'-N3-dUrds are one of the most powerful inhibitor of the 

enzyme. 

3.5.2 Synthesis of 2'-azido-2'-deoxyuridine 

Synthesis of 2'-azido-2'-deoxyuridine 141 was initially accomplished by 

conversion of uridine to 2',3'-O-sulfinyluridine 139 with thionyl chloride.165 Subsequent 

cyclization165,166 in the presence of sodium acetate yielded 2',2-anhydrouridine 140. 
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Nucleophilic ring opening with azide anion in 140 afforded the desired 2'-azido-2'-

deoxyuridine 141 according to the earlier literature reports (Scheme 18).167,168 As a result 

of the observed instability of the sulfinyl group in 139, I also synthesized 2',2-

anhydrouridine convienniently by treatment of uridine with diphenyl carbonate169 in 

DMF with catalytic amount of sodium bicarbonate at 150 oC. Azidation167 of 140 with 

trimethylsilylazide (TMSN3) in the presence of lithium fluoride (LiF) and 

tetramethylethylenediamine (TMEDA) for 48h afforded 141 in low yield of 26%. 

Addition of azide165,168 was also achieved using sodium azide in 

hexamethylphosphoramide (HMPA) at 150 oC in the presence of benzoic acid, which 

provided 141 in 30 min in a better yield of 56%. The latter method of azidation, however, 

also yielded the undesired 2'-arabinouridine byproduct (~40%). 

 

 Scheme 18. Synthesis of 2'-azido-2'-deoxyuridine 
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3.5.  Synthesis of 1'[2H]-, 2'[2H]-, 3'[2H]-, and 4'[2H]-2'-azido-2'- deoxyuridine 

In order to fully characterize and identify radicals produced during gamma 

radiation with 2'-azido-2'-dexoyuriidine (2'-N3-dUrd), I have undertaken synthesis of the 

selectively labeled 2'-N3-dUrd with deuterium at position C1', C2', C3', and C4'. 

Synthesis of these compounds was accomplished by the coupling of the suitable labeled 

ribofuranoses with uracil, followed by the well-established incorporation of the azido 

group at C2' position via the ring opening of 2',2-O-anhydrouridine. Synthesis of the 1'-

[2H], 2'-[2H], 3'-[2H], and 4'-[2H]-N3-Urd will be discussed below separately since the 

preparation of the deuterium labeled sugar precursors required different approaches.  

 3.5.3.1 Synthesis of 1'-[2H]-2'-azido-2'-deoxyuridine 

The 1-[2H]-1,2,3,5-tetra-O-acetyl-D-ribofuranose 144b was prepared10 by 

methylation of commercially available 1-[2H]-ribose 142b, followed by standard 

acetylation and acetolysis (Scheme 19). Several methods were employed for conversion 

of 142b into methyl ribofuranose 143b. Thus, treatment of ribose with HCl gas in MeOH 

or AcCl/MeOH afforded the desired methylated product. However, the yield and purity 

were irreproducible because it was difficult to control to amount of HCl gas that was 

generated in the reaction mixture. Neutralization with both Dowex OH- and pyridine was 

also inconvennient and did not give desired product in high yield nor purity. Finally, 

treatment of ribose with catalytic amount of sulfuric acid in MeOH at 0 oC, followed by 

neutralization with small amount of pyridine, afforded the methylated product 143b in 

high yield and purity. Acetylation of 143b followed by acetolysis provided the desired 

fully acetylated 1-[2H]-ribose precursor 144b. Coupling24 of 144b with persilylated uracil 

in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) according to the 
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Vorbugen procedure afforded acetylated 1'-[2H]-uridine in 69% yield. Subsequent 

standard deacetylation with NH3/MeOH yielded 1'-[2H]-uridine 145 in 85% yield. Level 

of deuteriation was above 98% as judged by MS and 1H NMR. Cyclization of 145 with 

diphenyl carbonate afforded 1'-[2H]-2',2-anhydrouridine 146. Introduction of the azido 

group at 2' position of uridine was accomplished by ring opening of 146 with sodium 

azide in HMPA in the presence of benzoic acid to yield 1'-[2H]-2'-N3-dUrd 147. 

 

 Scheme 19. Synthesis of 1'-[2H]-2'-azido-2'-deoxyuridine 

 3.5.3.2 Synthesis of 2'-[2H]-2'-azido-2'-deoxyuridine 

 The deuterium incorporation170 at C2 position was accomplished by acid-

catalyzed acetonation of D-ribose at C2 and C3, followed by deuterium incorporation at 

C2 position by base-catalyzed hydrogen/deuterium exchange of H2 via enolization 



 91 

process. Thus, heating of 2,3-O-isopropylidineribose with triethylamine in D2O, dioxane 

,and tetrahydrofuran at 90 oC for 6 days afforded 148 in over 98% deuterium 

incorporation. Subsequent standard acetylation and acetolysis yielded 2-[2H]-1,2,3,5-

tetra-O-acetyl-D-ribofuranose 149. Coupling to uracil provided 2'-[2H]-2',2-

anhydrouridine, which upon cylization and azidation afforded 2'-[2H]-2'-azido-2'-

deoxyuridine 152 (Scheme 20).  

 

 Scheme 20. Synthesis of 2'-[2H]-2'-azido-2'-deoxyuridine  

 3.5.3.3 Synthesis of 3'-[2H]-2'-azido-2'-deoxyuridine 

 The 3-[2H]-1,2,3,5-tetra-O-acetyl-D-ribofuranose 157 was prepared from 

commercially available diacetone-D-glucose 153 through several steps.26 The deuterium 

incorporation at C3 position (>98%) with inversion of configuration was achieved by 

oxidation of 153 with chromium complex, followed by reduction of the resulting 3-
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ketoglucose with NaBD4 in acetic acid to afford 154. Dehomologation of 154 with 

periodic acid (H5IO6) in ethyl acetate afforded the ribofuranose 155 after reduction of the 

intermediate 5-aldehyde with NaBH4. The tetra-O-acetyl ribofuranose 157 was then 

prepared by standard acetylation, deacetonization, and acetolysis. Subsequent coupling of 

157 with persilylated uracil afforded 3'-[2H]-uridine 158, which was then converted to 3'-

[2H]-N3-dUrd 160. 

 

 Scheme 21. Synthesis of 3'-[2H]-2'-azido-2'-deoxyuridine  
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 3.5.3.4 Synthesis of 4'-[2H]-2'-azido-2'-deoxyuridine 

The protected 4'-[2H]-ribofuranoside 165 was also prepared from diacetone-D-

glucose precursor with incorporation of deuterium at C4 position by hydrogen/deuterium 

exchange process by heating 3-ketoglucose 161 in D2O/pyridine mixture for 3 days.26 

Subsequent reduction and benzoylation afforded 4-[2H]-allose 163. Dehomologation of 

163, followed by acetolysis yielded the desired precursor 164. Removal of isopropylidine 

protection group and standard acetylation provided the 4-[2H]-labeled ribofuranose 165. 

Subsequent coupling of 165 with persilylated uracil gave 4'-[2H]-uridine 166, which was 

further converted to 4'-[2H]-2'-N3-dUrd 168. 
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 Scheme 22. Synthesis of 4'-[2H]-2'-azido-2'-deoxyuridine 

3.5.4 Synthesis of 5,6-[2H2]-2'-azido-2'-deoxyuridine 

The 5,6-[2H2]-2'-azido-2'-deoxyuridine 171 was prepared by analogous procedure 

as described above. Thus, cyclization of the commerically available 5,6-[2H2]-uridine and 

subsequent azidation of the 5,6-[2H2]-2',2-anhydrouridine 170 afforded  5,6-[2H2]-N3-

dUrd 171. 
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 Scheme 23. Synthesis of 5,6-[2H2]-2'-azido-2'-deoxyuridine 

3.5.5 Establishing the structure of the aminyl radicals formed from 2'-azido-2'-

deoxyuridine and its deuterium-labeled analogues 

Gamma radiation experiments with 2'-azido-2'-deoxyuridine (2'-N3-dUrd) and its 

deuterium labeled analogues were carried out similarly as the experiment performed for 

AZT using ESR detection for characterization of the aminyl radical species. Before the 

actual experiment, simulated structure of the aminyl radical and the azide anion radical of 

2'-N3-dUrd was calculated. Figure 41 shows the B3LYP/6-31G* optimized structure of 

the azide anion radical (dU(C2')-N3•-) and the aminyl radical (dU(C2')-NH•) of 2'-N3-

dUrd.  
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 dU(C2')-N3•-      dU(C2')-NH•) 

 Figure 41. B3LYP/6-31G* optimized structure of the azide anion radical  

(dU(C2')-N3•-) and the aminyl radical (dU(C2')-NH•) of 2'-N3-dUrd 

Single-electron attachment in 2'-N3-dUrd at 77 K under the aqueous (H2O or D2O) glassy 

(7.5 M LiCl) systems led to the formation of the neutral aminyl radical (dU(C2')-ND•). In D2O 

solutions, for dU(C2')-ND•, the major hyperfine coupling were expected from two sources – the 

anisotropic hyperfine coupling owing to the N-atom from azide and the isotropic beta-hydrogen 

coupling due to the H2'- atom (Figure 42, spectrum A). The collapse of the ca. 51.5 G doublet 

because of the electron attachment in 2'-D-2'-N3-dUrd at 77 K unequivocally established the 

presence of the H2'- beta hyperfine coupling in dU(C2')-ND• (see spectrum E vs A). The 51.5 G 

doublet present in non-labelled 2'-N3-dUrd did not collapse with deuterium labelled analogs of 

2'-N3-dUrd at positions 3', 4', and 5,6 (see spectra B, C, and D). As expected, ESR spectra 

characteristic for the aminyl radical derived from 2'-N3-Urd has similar characteristic to the 

radical generated from AZT (spectrum D). 
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 Figure 42. ESR spectral studies of electron attachment to 2'-N3-dUrd in D2O 

 glasses (7.5 M LiCl/D2O) 

 The ESR spectral studies of one-electron attachment to 2'-N3-dUrd in H2O glasses (7.5M 

LiCl/H2O) were also performed and compared with the results obtained in D2O glasses (7.5 M 

LiCl/D2O) (Figure 43). Comparison of widths of these two spectra clearly showed that the 

central doublet due to an extra proton hyperfine coupling in the aminyl radical in H2O (dU(C2')-

NH•) (red color) was present in the H2O glasses which was missing in the D2O glasses (green 

color). 
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 Figure 43. ESR spectral studies of electron attachment to 2'-N3-dUrd in H2O 

 glasses (7.5 M LiCl/H2O) 

 Figure 44 shows the comparision among the ESR spectra of the RND• generated from 2'-

N3-dUrd, 3'-N3-dUrd, 3'-AZT, and in 5'-AZT via one-electron attachment at 77 K. Analyses of 

these spectra along with theoretical calculations showed that the conformational flexibility of the 

RND• larger when the substitution of the OH group by the azido group takes place at C2' and 

C5'.  

dU(C2')-ND•

dU(C2')-NH•

7.5 M LiCl D2O vs. H2O

A Exp

SIM

Exp

SIM

2'-N3dUrd

B
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 Figure 44. Spectra of the RND• found in 2'-N3-dUrd, 3'-N3-dUrd, 3'-AZT, and in 

 5'-AZT via one-electron attachment at 77 K. 

 These preliminary ESR results clearly established structure of the aminyl radical with the 

nitrogen bearing an unpaired electron still attached to the ribose ring. No elimination of azido 

group via heterolytic cleavage of C2'-N3 bond, as proposed in RNR inhibition assays, was 

observed. Other experiments are planned with 13C labeled analogues of 2'-N3-Urd to characterize 

the transient sugar-derived radical at ribose ring since its analysis in present spectra were 

inconclusive because of the strong signal of the nitrogen-centered radical. 
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4. EXPERIMENTAL 

The 1H (400 MHz) and 13C (100 MHz) NMR spectra were determined with 

solutions in CDCl3 unless otherwise noted. Mass spectra (MS) were obtained with 

atmospheric pressure chemical ionization (APCI) technique and HRMS in AP-ESI mode. 

TLC was performed with Merck kieselgel 60-F254 sheets with products detected with 254 

nm light or by development of color with I2 or Ellman reagent. Merck kieselgel 60 (230-

400 mesh) was used for column chromatography. HPLC purifications were performed 

using XTerra® preparative RP18 OBDTM column (5µm 19 x 150 mm) with gradient 

program using CH3CN/H2O as a mobile phase. Reagent grade chemicals were used, and 

solvents were dried by reflux over and distillation from CaH2 (except THF/potassium) 

under argon.  

 Theoretical calculations were performed by Professor Alexander Mebel at Florida 

International University in Miami, FL. Allylation experiments, activated by microwave 

(100W), was carried out in the laboratory of Professor Hyun Min Jung at the Korea 

Research Institute of Chemical Technology (KRICT) in Daejeon, Korea Republic. The 

study of the interaction between alkyl azide and alkyl thiyl radical, generated via gamma 

irradiation, was performed in the laboratory of Dr. Chryssostomos Chatgilialoglu at the 

Consiglio Nazionale delle Ricerche in Bologna, Italy. The study of the interaction 

between alkyl azide and alkyl thiyl radical, generated via gamma irradiation in glassy 

(7.5 M LiCl/D2O) systems, and gamma radiation experiments with 2'-azido-2'-

deoxyuridine and its deuterium labeled analogues were investigated by Dr. Amitava 

Adhikary in the laboratory of Professor Michael Sevilla at Oakland University in 

Rochester, Michigan. 
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 3'-Azido-5'-O-(tert-Butyldiphenylsilyl)adenosine (80). TBDPSiCl (0.18 mL, 

190 mg, 0.69 mmol) was added to a stirred solution of 3'-azido-3'-deoxyadenosine 79108 

(0.10 g, 0.34 mmol) in anhydrous pyridine (1.5 mL) under N2 atmosphere at ambient 

temperature. After 48 h, volatiles were evaporated and the resulting residue was 

partitioned (CHCl3//HCl/H2O). The organic layer was washed (NaHCO3/H2O, brine), 

dried (MgSO4), and evaporated and the residue was column chromatographed (1 → 6% 

MeOH/CHCl3) to give 80 (161 mg, 89%):  1H NMR (400 MHz, CDCl3) δ 1.02 (s, 9, t-

Bu), 3.82 (dd, J = 11.8, 3.0 Hz, 1, H5''), 3.98 (dd, J = 11.8, 3.4 Hz, 1, H5'), 4.28 ("q", J = 

4.3 Hz, 1, H4'), 4.36 (t, J = 5.0 Hz, 1, H3'), 4.92 (t, J = 5.2 Hz, 1, H2'), 5.99 (d, J = 4.9 

Hz, 1, H1'), 6.20 (br s, 2, NH2), 7.37-7.64 (m, 10, Ar), 8.10 (s, 1, H2), 8.24 (s, 1, H8); MS 

(APCI) m/z 531 (MH+); HRMS (AP-ESI) calcd for C26H31N8O3Si [M+H]+ 531.6615. 

 3'-Azido-3'-deoxy-5'-O-TBDPS-2'-O-(2-N-tert-butylcarboxyl-3-S-

tritylcysteinyl)adenosine (81). Compound 80 (30 mg, 0.057 mmol) was added to a 

stirred solution of  N-t-butylcarboxyl-S-tritylcysteine (0.052 g, 0.113 mmol), 1-ethyl-3-

(3'-dimethylaminopropyl)carbodiimide (EDCI; 0.030 mL, 0.30 g, 0.170 mmol), and 

DMAP (0.014 g, 0.113 mmol) in CH2Cl2 (5 mL) under N2 atmosphere at 0oC (ice bath).  

After 4 h, aqueous 5% HCl (20 mL) was added and the resulting mixture was extracted 

with CH2Cl2. The combined organic layer was washed with NaHCO3/H2O, brine, dried 

(MgSO4), and evaporated. Purification on silica gel column (EtOAc/hexane, 1:1) gave 81 

(44 mg, 80%): 1H NMR (400 MHz, CDCl3) δ 0.94 (s, 9, t-Bu), 1.34 (s, 9, t-Bu), 2.54 (dd, 

J = 4.5, 12.6 Hz, 1, Hβ"), 2.63 (dd, J = 7.5, 12.4 Hz, 1, Hβ'), 3.71 (dd, J = 3.6, 11.4 Hz, 1, 

H5"), 3.89-3.95 (m, 2, H4',5'), 4.09 ("q", J = 6.5 Hz, 1, Hα), 4.83 (t, J = 6.3 Hz, 1, H3'),  
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5.05 (d, J = 8.0 Hz, 1, NH), 5.88-5.92 (m, 2, H1',2'), 5.97 (s, 2, NH2), (7.10-7.54 (m, 25, 

Ar), 7.80 (s, 1, H8), 8.11 (s, 1, H2); MS (APCI) m/z 976 [M + H]+. 

 3'-Azido-3'-deoxy-2'-O-(S-tritylcysteinyl)adenosine (82) The solution of 81 (90 

mg, 0.092 mmol) and TFA/H2O (9:1, 3 mL) was stirred at 0 oC for 2h. The volatiles were 

evaporated and coevaporated with toluene under high vacuum. Purification on silica gel 

column (CHCl3/MeOH, 9:1) gave 82 (45 mg, 76%): 1H NMR (MeOH-d4) δ 2.91 (dd, J = 

5.9, 13.9 Hz, 1, Hβ"), 2.96 (dd, J = 8.5, 13.9 Hz, 1, Hβ'), 3.23 (dd, J = 5.3, 8.4 Hz, 1, Hα), 

3.76 (dd, J = 2.8, 12.7 Hz, 1, H5"), 3.92 (dd, J = 2.6, 12.7 Hz, 1, H5'), 4.03 ("p", J = 2.8 

Hz, 1, H4'), 4.80 (t, J = 5.9 Hz, 1, H3'), 5.93 (dd, J = 4.1, 5.5 Hz, 1, H2'), 6.16 (d, J = 3.9 

Hz, 1, H1'), 7.27-7.49 (m, 15, Tr), 8.21 (s, 1, H8), 8.39 (s, 1, H2); 13C NMR (MeOH-d4): 

δ 33.36 (Cβ), 53.08 (Cα), 61.59 (C3'), 69.06 (C5'), 78.31 (C2'), 85.17 (C4'), 88.11 (C1'), 

120.56 (C5), 128.43, 129.40, 130.67, 145.17 (Tr), 141.39 (C8), 149.98 (C6), 153.42 (C2), 

157.14 (C4), 168.43 (CO). MS (APCI) m/z 638 [M + H]+. 

 3'-Azido-3'-deoxy-2'-O-cysteinyladenosine (65). TFA (1.0 mL) and Et3SiH 

(TES; 0.040 mL, 0.029 g, 0.25 mmol), was added to the solution of 82 (10 mg, 0.016 

mmol) in anhydrous CH2Cl2 (1.5 mL) at ambient temperature. After 1 h, the volatiles was 

evaporated and coevaporated with toluene under high vacuum. The residual solid was 

washed with ethyl ether to give 65 (5 mg, 80%): 1H NMR (MeOH-d4) δ 3.19 (dd, J = 4.5, 

15.1 Hz, 1, Hβ"), 3.25 (dd, J = 5.4, 15.2 Hz, 1, Hβ'), 3.83 (dd, J = 2.8, 12.7 Hz, 1, H5''), 

3.99 (dd, J = 2.8, 12.7 Hz, 1, H5'), 4.22 (dt, J = 2.8, 6.6 Hz, 1, H4'), 4.54 (dd, J = 4.5, 5.3 

Hz, 1, Hα), 4.92 (t, J = 6.5 Hz, 1, H3'), 6.09 (dd, J = 3.6, 5.5 Hz, 1, H2'), 6.32 (d, J = 3.5 

Hz, 1, H1'), 8.32 (s, 1, H8), 8.52 (s, 1, H2); 13C NMR (MeOH-d4) δ 25.34 (Cβ), 55.71 

(Cα), 61.61 (C3'), 66.93 (C5'), 78.70 (C1'), 85.17 (C4'), 88.47 (C2'), 120.51 (C5), 142.32 
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(C8), 145.69 (C6), 150.41 (C2), 151.91 (C4), 172.30 (CO); MS (APCI) m/z 396 [M + 

H]+; HRMS (AP-ESI) m/z 396.1195 [M + H]+. 

 3'-Azido-3'-deoxy-5'-O-TBDPS-2'-O-(2,3-S-isopropylidene-2,3-

dimercaptopropyl)adenosine (83). Compound 80 (0.12 g, 0.23 mmol) was added to a 

stirred solution of  2,3-S-isopropylidene-2,3-dimercaptopropanoic acid (0.080 g, 0.45 

mmol), 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide (EDCI; 0.16 mL, 0.16 g, 0.90 

mmol), and DMAP (0.084 g, 0.68 mmol) in CH2Cl2 (10 mL) under N2 atmosphere at 0oC 

(ice bath). After 4 h, aqueous 5% HCl (30 mL) was added and the resulting mixture was 

extracted with CH2Cl2. The combined organic layer was washed with aqueous NaHCO3, 

brine, dried (MgSO4), and evaporated. Purification on silica gel column (EtOAc/hexane, 

1:1) gave 83 (80 mg, 53%; 4:1): 1H NMR (400 MHz, CDCl3) δ 1.05 (s, 9, 0.8, t-Bu), 1.07 

(s, 9, 0.2, t-Bu), 1.81, 1.82 (2 × s, 4.8, CH3), 1.82 (2 × s, 1.2, CH3), 3.51 (dd, J = 6.2, 12.6 

Hz, 0.2, Hβ"), 3.55 (dd, J = 6.1, 12.6 Hz, 0.8, Hβ"), 3.76-3.78 (m, 0.2, Hβ'), 3.79 (dd, J = 

5.9, 12.6 Hz, 0.8, Hβ'), 3.85 (dd, J = 3.4, 11.8 Hz, 1, H5"), 4.04 (dd, J = 3.2, 11.8 Hz, 0.8, 

H5'), 4.06 (dd, J = 3.2, 11.8 Hz, 0.2, H5'), 4.16 (dd, J = 3.4, 6.7 Hz, 1, H4'), 4.61 ("q", J = 

4.0 Hz, 1, Hα), 4.87 (t, J = 6.5 Hz, 0.67, H3'), 4.78 (t, J = 6.5 Hz, 0.33, H3'), 6.03 ("q", J 

= 2.7 Hz, 0.67, H2'), 5.97 ("q", J =2.7 Hz, 0.33, H2'), 6.10 (d, J = 3.8 Hz, 0.67, H1'), 6.13 

(d, J = 3.8 Hz, 0.33, H1'), 6.29 (s, 2, NH2), 7.35-7.66 (m, 10, Ar), 7.99 (s, 0.67, H8), 8.07 

(s, 0.33, H8), 8.27 (s, 1, H2); 13C NMR Major isomer: δ 19.19 (t-Bu), 26.79 (C-t-Bu), 

33.17 (CH3), 40.17 (Cβ), 56.58 (Cα), 59.87 (C3'), 62.64 (C5'), 63.47 (CCH3), 76.39 (C1'), 

82.61 (C4'), 86.89 (C2'), 120.06 (C5), 127.83, 127.86, 129.95, 130.03, 132.46, 132.53, 

135.49, & 135.59 (Ar), 139.26 (C8), 149.51 (C6), 153.31 (C2), 155.57 (C4), 169.94 

(CO); Minor isomer: 19.19 (t-Bu), 26.84 (C-t-Bu), 33.30 (CH3), 40.21 (Cβ), 56.50 (Cα), 
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60.00 (C3'), 62.64 (C5'), 63.52 (CCH3), 76.31 (C1'), 82.78 (C4'), 86.71 (C2'), 120.06 

(C5), 127.86,127.91, 129.98, 130.07, 132.41, 132.50, 135.49, & 135.59 (Ar), 139.07 

(C8), 149.51 (C6), 153.31 (C2), 155.57 (CNH2), 169.99 (CO); MS (APCI) m/z 691 [M + 

H]+. 

 3'-Azido-3'-deoxy-2'-O-(2,3-S-isopropylidene-2,3-

dimercaptopropyl)adenosine (84). A solution of 83 (0.050 g, 0.072 mmol) in TFA/H2O 

(9:1, 1.5 mL) was stirred at 0 oC for 2 h. The volatiles were evaporated and coevaporated 

(toluene) in vacuo. Purification on silica gel column (EtOAc) gave 84 (10 mg, 31%, 9:1): 

1H NMR (400 MHz, CDCl3) δ 1.75 (s, 3 x 0.9, CH3), 1.82 (s, 3 x 0.1, CH3), 1.80 (s, 3 x 

0.9, CH3), 1.83 (s, 3 x 0.1, CH3),  3.47 (dd, J = 6.2, 12.6, Hz, 0.9, Hβ"), 3.45 (dd, J = 6.2, 

12.6, Hz, 0.1, Hβ"), 3.68 (dd, J = 5.8, 12.6 Hz, 0.9, Hβ'), 3.70 (dd, J = 5.8, 12.6 Hz, 0.1, 

Hβ'), 3.76 (dd, J = 0.9, 13.2 Hz, 1, H5"), 4.02 (dd, J = 1.3, 13.2 Hz, 1, H5'), 4.30 ("d", J = 

1.5 Hz, 0.9, H4'), 4.33 ("d", J = 1.5 Hz, 0.1 H4'), 4.57 (t, J = 6.0 Hz, 0.9, Hα), 4.53 (t, J = 

6.0 Hz, 0.1, Hα), 4.74 (dd, J = 1.8, 5.7 Hz, 0.9, H3'), 4.76 (dd, J = 1.8, 5.7 Hz, 0.1, H3'), 

5.97-6.00 (m, 3, H2', NH2), 6.08 (dd, J = 1.3, 7.1 Hz, 1, H1'), 7.83 (s, 1, H8), 8.33 (s, 1, 

H2); 13C NMR major isomer: δ 32.91 and 33.17 (CH3), 39.64 (Cβ), 55.95 (Cα), 61.67 

(C3'), 62.99 (C5'), 63.55 (CCH3), 75.38 (C1'), 86.13 (C4'), 88.59 (C2'), 121.08 (C5), 

140.25 (C8), 148.47 (C6), 152.64 (C2), 156.00 (C4), 169.79 (CO); Minor isomer: δ 32.98 

and 33.26 (CH3), 39.72 (Cβ), 56.32 (Cα), 62.03 (C3'), 62.99 (C5'), 63.55 (CCH3), 75.38 

(C1'), 86.30 (C4'), 88.45 (C2'), 121.08 (C5), 140.25 (C8), 148.47 (C6), 152.64 (C2), 

156.00 (C4), 169.79 (CO); MS (APCI) m/z 453 [M + H]+. 

 3'-Azido-3'-deoxy-2'-O-(2,3-dimercaptopropyl)adenosine (66). HgCl2 (0.078 g, 

0.28 mmol) was added to a stirred solution of 84 (10 mg, 0.022 mmol) in MeCN/H2O 
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(3:1, 2 mL) at room temperature. After 3 h, the resulting mixture was concentrated to 

dryness and the residue solid was washed with water, and dried. Hydrogen sulfide, 

generated from HCl/NaSH, was bubbled through a capillary into the stirring suspension 

of the dried residue in MeOH (8 mL). After 30 min, the resulting black solid was filtered, 

and the filtrate was concentrated. Purification on a silica gel column gave 66 (5 mg, 

55%): 1H NMR (MeOH-d4) δ 2.88 (dd, J = 9.6, 13.7 Hz, 1, Hβ"), 2.96 (dd, J = 5.2, 13.7 

Hz, 1, Hβ'), 3.65 ("q", J = 4.8 Hz, 1, Hα), 3.83 (dd, J = 3.0, 12.6 Hz, 1, H5"), 3.96 (dd, J 

= 2.8, 12.6 Hz, 1, H5'), 4.23 ("p", J = 2.8 Hz, 1, H4'), 4.78 (t, J = 7.3 Hz, 1, H3'), 5.99 

(dd, J = 4.3, 5.6 Hz, 1, H2'), 6.35 (d, J = 4.3 Hz, 1, H1'), 8.45 (s, 1, H8), 8.70 (s, 1, H2); 

13C NMR (MeOH-d4) 29.78 (Cβ), 44.35 (Cα), 61.77 (C3'), 61.84 (C5'), 78.15 (C1'), 85.52 

(C4'), 88.36 (C2'), 120.51 (C5), 143.94 (C8), 145.69 (C6), 149.75 (C2), 151.91 (C4), 

172.30 (CO); MS (APCI) m/z 413 [M + H]+; HRMS (AP-ESI) m/z 413.0816 [M + H]+. 

 2,3-S-isopropylidene-2,3-dimercaptopropanoic acid (89). Method A. (Step A). 

TEA (6.6 mL, 4.81 g, 47.48 mmol) and thiolacetic acid (3.38 mL, 3.62 g, 47.48 mmol) 

were added dropwise to a stirred solution of ethyl 2,3-dibromopropanoate 85 (3.13 mmol, 

5.61 g, 21.58 mmol) in EtOH (60 mL) at 0 °C under Ar atmosphere. After 4 h, the 

volatiles were evaporated and the yellowish solid residue was dissolved in CH2Cl2 and 

was washed with 1 M HCl/H2O (2×), saturated NaHCO3/H2O, dried (Na2SO4), and 

evaporated  to give ethyl 2,3-bis(acetylthio)propanoate 86118 (5.29 g, 98%) of sufficient 

purity ( 1H NMR) for direct use in the subsequent reaction: 1H NMR δ 1.28 (t, J = 7.1 Hz, 

3, Et), 2.35 (s, 3, Acα), 2.39 (s, 3, Acβ), 3.31 (dd, J = 6.2, 13.8 Hz, 1, Hβ), 3.42 (dd, J = 

7.7, 13.8 Hz, 1, Hβ'), 4.20 (q, J = 7.1 Hz, 2, Et), 4.37 (dd, J = 6.3, 7.6 Hz, 1, Hα ). (Step 

B). A dry HCl was bubbled through a vigorously stirred solution of 86 (2.54 g, 10.14 



 106 

mmol; from step a) in anhydrous EtOH (80 mL) for 3 h at ambient temperature and the 

resulting solution was continued to stir for 3 days.   The reaction mixture was diluted 

with water (20 mL) and was concentrated. The resulting aqueous solution over yellow oil 

was extracted with CH2Cl2 (2×). The combined organic layer was dried (Na2SO4) and 

was evaporated to give 1.62 g of the brownish oil, which was column chromatographed 

(EtOAc/hexane, 5:95) to give ethyl 2,3-dimercaptopropanoate 87118 (631 mg, 35%): 1H 

NMR δ (400 MHz, CDCl3) 1.34 (t, J = 7.1 Hz, 3, Et) 1.82 (t, J = 8.9 Hz, 1, SH), 2.25 (d, 

J = 10.1 Hz, 1, SH), 2.86-3.04 (m, 2, CH2), 3.47 and 3.49 (ddd, J = 5.5, 9.1, 10.0 Hz, 1, 

CH) 4.27 (q, J = 7.1 Hz, 2, Et). (Step C). A dry HCl was bubbled through a stirred 

solution of 87 (93 mg, 0.56 mmol; from step b) in anhydrous acetone (40 mL) for 80 min. 

at ambient temperature, and the resulting mixture was allowed to stir for 12 h. The 

mixture was neutralized (NaHCO3/H2O) and concentrated, and the aqueous residue was 

extracted with CH2Cl2 (2×). The combined organic layer was dried (Na2SO4) and was 

evaporated to give ethyl 2,3-S-isopropylidene-2,3-dimercaptopropanoate171 (101 mg, 

88%) as a colorless oil of sufficient purity (1H NMR) for direct use in next step: 1H NMR 

(400 MHz, CDCl3) δ 1.31 (t, J = 7.1 Hz, 3, Et), 1.83 (s, 3, CH3), 1.87(s, 3, CH3), 3.51 

(dd, J = 6.1, 12.4 Hz, 1, Hβ), 3.77 (dd, J = 6.9, 12.4 Hz, 1, Hβ'), 4.23 (q, J = 7.2 Hz, 2, Et), 

4.52 (t, J = 6.5 Hz, 1, Hα); 13C NMR δ 14.11 (Et), 33.07 (CH3), 33.67 (CH3), 40.22 

(CH2S), 57.09 (CHS), 61.85 (Et), 63.08 (CMe2), 170.70 (CO). Step (d). An aqueous 

solution of NaOH (1 M, 3 mL) was added to a solution of ester (100 mg, 0.48 mmol; 

from step c) in EtOH (3 mL) and the turbid mixture was stirred at ambient temperature 

for 3 h. The clear solution was concentrated and the aqueous residue was extracted with 

CH2Cl2. The water phase was acidified with diluted HCl (0.5 M), and extracted with 
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CH2Cl2 (2×). The combined organic layer was dried (Na2SO4) and was evaporated to give 

2,3-S-isopropylidene-2,3-dimercaptopropanoic acid 89171 (69 mg, 80%) as a colorless oil: 

1H NMR (400 MHz, CDCl3) δ 1.83 (s, 3, CH3), 1.88 (s, 3, CH3), 3.53 (dd, J = 6.1, 12.6 

Hz, 1, Hβ), 3.76 (dd, J = 5.9, 12.6 Hz, 1, Hβ'), 4.57 (t, J = 6.0 Hz, 1, Hα ), 9.31 (br s, 1, 

COOH); 13C NMR δ 33.21 (CH3), 33.34 (CH3), 40.13 (CH2), 57.08 (CH), 63.50 (CMe2), 

176.40 (COOH); MS (APCI) m/z 179 (MH+). 

Method B. (Step D) 2,3-Dimercaptopropanoic acid (88). HCl/H2O (1 M, 4 mL) was 

added to ethyl 2,3-bis(acetylthio)propanoate 86 (120 mg, 0.51 mmol; step a from Method 

A described above) and the resulting mixture was heated at reflux for 24 h.  The cooled 

reaction mixture was extracted with CH2Cl2 (2×). The combined  organic layer was dried 

(Na2SO4) and evaporated to give 2,3-dimercaptopropanoic acid 88171 (70 mg, 99%): 1H 

NMR (400 MHz, CDCl3) δ 1.88 (dd, 1H, J = 9.1, 8.6 Hz, 1, SH), 2.35 (d, J = 10.1 Hz, 1, 

SH), 2.93-3.00 (m, 2, CH2), 3.54 (ddd, J = 10.1, 8.4, 5.9 Hz, 1, CH); MS (APCI) m/z 139 

(MH+). 

Step (E). The 2,3-dimercaptopropanoic acid 88 (538 mg, 3.89 mmol) was heated in 

acetone (20 mL) in the presence of concentrated HCl (0.1 mL) at 50 oC for 16 h. 

Volatiles were evaporated and the residue was partitioned between HCl/H2O//CHCl3. The 

organic layer was separated, dried (MgSO4), and evaporated to give 2,3-S-

isopropylidene-2,3-dimercaptopropanoic acid 89171 (593 mg, 86%) with identical 

spectroscopic data as reported above. 

 3'-Azido-5'-O-(tert-butyldimethylsilyl)-3'-deoxyadenosine (90). A solution of 

79108 (190 mg, 0.65 mmol) in anhydrous pyridine (3 mL) containing TBDMSCl (128 mg, 

0.85 mmol) was stirred overnight at ambient temperature. Next, the volatiles were 
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evaporated, coevaporated with toluene, and residue was column chromatographed to 

separate some intact starting material, and next (hexane/EtOAc, 2:8) to give 90 (201 mg, 

76%): 1H NMR (400 MHz, CDCl3) δ 0.00 (s, 3, SiMe), 0.07 (s, 3, SiMe), 0.81 (s, 9, 

CMe3), 3.81 (dd, J = 2.7, 11.5 Hz, 1, H5'), 3.89 (dd, J = 3.5, 11.5 Hz, 1, H5''), 4.29 ('q', J 

= 3.2 Hz, 1, H4'), 4.37 (dd, J = 3.4, 5.6 Hz, 1, H3'), 4.85 ('t', J = 5.3 Hz, 1, H2'), 5.56 (br., 

1, OH), 5.62 (br., 2, NH2), 5.94 (d, J = 5.3 Hz, 1, H1'), 8.07 (s, 1, H8), 8.33 (s, 1, H2); 13C 

NMR δ -5.57 (SiMe), -5.49 (SiMe), 18.27 (CMe3), 25.78 (CMe3), 61.62 (C3'), 62.63 

(C5'), 76.51 (C2'), 83.88 (C4'), 90.17 (C1'), 119.84 (C5), 138.83 (C8), 148.90 (C4), 

152.44 (C2), 155.50 (C6); MS m/z (APCI) 407 [MH+]; 

 2'-O-Allyl-3'-azido-5'-O-(tert-butyldimethylsilyl)-3'-deoxyadenosine (91). 

NaH (20 mg, 0.492 mmol, 60% dispersion in oil) was added to a stirred solution of 90 

(100 mg, 0.246 mmol, vacuum dried at 110ºC for 3h) in DMF (2.5 mL) at room 

temperature and after 15 min allyl bromide (64 μL, 90 mg, 0.37 mmol) was added. 

Almost no starting material was detected by TLC, and the volatiles were evaporated after 

2h. Residue was partitioned (sat. NaHCO3/H2O//CHCl3), organic layer was washed 

(brine), dried (Na2SO4), evaporated, and column chromatographed (hexane/EtOAc, 2:8 to 

EtOAc/ MeOH, 95:5 ) to give 91 (52 mg, 47%) as a transparent oil: 1H NMR (400 MHz, 

CDCl3) δ 0.14 (s, 3, SiMe), 0.15 (s, 3, SiMe), 0.95 (s, 9, CMe3), 3.85 (dd, J = 2.5, 11.7 

Hz, 1, H5'), 4.10 (dd, J = 2.8, 11.7 Hz, 1, H5''), 4.16 (dd, J = 5.2, 6.9 Hz, 1, H3'), 4.26 

(tdd, J = 1.3, 6.0, 12.8 Hz, 1, OCH2CH=CH2), 4.26- 4.29 (m, 1, H4'), 4.33 (tdd, J = 1.3, 

5.5, 12.8 Hz, 1, OCH2CH=CH2), 4.58 (dd, J = 3.1, 5.1 Hz, 1, H2'), 5.21 (dq, J = 1.3, 10.4 

Hz, 1, CH=CHaHb), 5.31 (dq, J = 1.5, 17.2 Hz, 1, CH=CHaHb), 5.90 (ddt, J = 5.7, 10.4, 

17.2 Hz, 1, CH=CHaHb), 6.15 (br., 2, NH2), 6.18 (d, J = 3.1 Hz, 1, H1'), 8.21 (s, 1, H8), 
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8.35 (s, 1, H2); 13C NMR δ -5.50 (SiMe), -5.35 (SiMe), 18.46 (CMe3), 25.96 (CMe3), 

58.68 (C3'), 61.88 (C5'), 71.88 (OCH2CH=CH2), 81.85 (C2'), 82.20(C4'), 87.42 (C1'), 

118.65 (OCH2CH=CH2), 120.06 (C5), 133.29 (OCH2CH=CH2), 138.77 (C8), 149.40 

(C4), 153.09 (C2), 155.59 (C6); MS (APCI) m/z 447 [MH+]. 

3'-Azido-5'-O-(tert-butyldimethylsilyl)-2'-O-(2,3-dibromopropyl)-3'-

deoxyadenosine (92). A solution of bromine (6 uL, 19 mg, 0.117 mmol) in CHCl3 (1.0 

mL) was added to a stirred solution of 91 (52 mg, 0.117 mmol) in CHCl3 (1.5 mL) 

dropwise, at -50ºC, under Ar atmosphere. The reaction mixture was stirred for 20 min at 

that temperature. Trace of starting material was detected by TLC, and reaction was 

allowed to warm to 0ºC for another 20 min. Next, after  the volume of solution was 

reduced, reaction mixture was directly applied to a silica gel column, and 

chromatographed (hexane/EtOAc, 2:8 to EtOAc) to give 92 (31.5 mg, 44%) as a 1:1 

mixture of diastereomers: 1H NMR (400 MHz, CDCl3) δ 0.16 (s, 3, Me), 0.17 (s, 3, Me) 

0.96 (s, 9, CMe3), 3.83-3.86 (m, 2, CH2Br), 3.879 & 3.885 (2×d, J = 11.8 Hz, 1, H5'), 

4.13 & 4.14(2×d, J = 11.8 Hz, 1, H5''), 4.14-4.25 (m, 3, H3', OCH2CHBr), 4.27-4.40 (m, 

2, H4', CHBr), 4.66 (dd, J = 2.7, 5.1 Hz, 0.5, H2'), 4.67 (dd, J = 2.7, 5.1 Hz, 0.5, H2'), 

5.76 (br., 2, NH2), 6.21 (d, J = 2.7 Hz, 0.5, H1'), 6.22 (d, J = 2.7 Hz, 0.5, H1'), 8.22 (s, 1, 

H8), 8.36 (s, 0.5, H2), 8.37 (s, 0.5, H2); 13C NMR δ -5.49, -5.34 (SiMe2), 18.47 (CMe3), 

25.97 (CMe3), 32.25, 32.38 (CH2Br), 47.99, 48.08 (CHBr), 58.70, 58.76 (C3'), 61.66, 

61.68 (C5'), 72.02, 72.16 (OCH2CHBr), 81.94, 81.98 (C4'), 83.98 (C2'), 87.45, 87.48 

(C1'), 120.22 (C5), 138.77 (C8), 149.34 (C4), 153.17, 153.20 (C2), 155.38 (C6); MS 

(APCI) m/z 605 (50), 607 (100), 609 (50) [MH+]. 
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       3'-Azido-5'-O-(tert-butyldimethylsilyl)-3'-deoxy-2'-O-[(2,3-

diacethylmercapto)propyl]adenosine (93a). KSAc (106 mg, 0.93 mmol) was added to a 

solution of 92 (47 mg, 0.078 mmol) in DMF (3 mL) stirred under Ar atmosphere, at 

ambient temperature. No starting material was observed by TLC and 1H NMR after 18h, 

and the volatiles were evaporated. The residue was partitioned (sat. 

NaHCO3/H2O//CH2Cl2), the organic layer was washed (NaHCO3/H2O, brine), dried 

(Na2SO4), evaporated to give 48 mg of colorless oil. The crude product was column 

chromatographed (Hexane/EtOAc, 1:4 to EtOAc/MeOH, 95:5) to give 93a (37.5 mg, 

81%) as a 1:1 mixture of diastereomers: 1H NMR (400 MHz, CDCl3) δ 0.14 (s, 3, Me), 

0.15 (s, 3, Me), 0.94 (s, 9, t-Bu), 2.31 (s, 1.5, Ac), 2.33 (s, 1.5, Ac), 2.34 (s, 3, Ac), 3.17 

(dd, J = 6.6, 13.9 Hz, 0.5, CH2SAc), 3.20 (dd, J = 6.6, 13.9 Hz, 0.5, CH2SAc), 3.36 (dd, J 

= 7.1, 13.9 Hz, 0.5, CH2SAc), 3.37 (dd, J = 6.6, 13.9 Hz, 0.5, CH2SAc), 3.81 (dd, J = 5.4, 

10.0 Hz, 0.5, OCH2CHSAc), 3.858 (d, J = 11.8 Hz, 0.5, H5'), 3.864 (d, J = 11.8 Hz, 0.5, 

H5'), 3.86-3.91 (m, 1.5, OCH2CHSAc, CHSAc), 3.92-3.97 (m, 0.5, OCH2CHSAc) 4.01 

(dd, J = 4.2, 10 Hz, 0.5, OCH2CHSAc), 4.10 (br. d, J = 11.8 Hz, 0.5, H5''), 4.11 (br. d, J 

= 11.8 Hz, 0.5, H5''), 4.17 (dd, J = 2.5, 5.1 Hz, 0.5, H3'), 4.19 (dd, J = 2.5, 5.1 Hz, 0.5, 

H3'), 4.27 ('t', J = 2.7 Hz, 0.5, H4'), 4.29 ('t', J = 2.7 Hz, 0.5, H4'), 4.57 (dd, J = 2.7, 5.5 

Hz, 0.5, H2'), 4.58 (dd, J = 2.7, 5.5 Hz, 0.5, H2'), 5.99 ( br. s, 2, NH2), 6.15 (d, J = 2.7 

Hz, 0.5, H1'), 6.16 (d, J = 2.7 Hz, 0.5, H1'), 8.20 (s, 0.5, H8), 8.21 (s, 0.5, H8), 8.33 (s, 

0.5, H2), 8.34 (s, 0.5, H2); 13C NMR δ -5.36 (Me), -5.07 (Me), 18.46 (CMe3), 25.96 

(CMe3), 30.16, 30.39 (CH2SAc), 30.48, 30.57, 30.60 (Ac), 43.59, 43.70 (CHSAc), 58.73, 

58.77 (C3'), 61.75, 61.76 (C5'), 71.79, 71.82 (OCH2CHSAc), 81.94 (C4'), 83.43, 83.64 

(C2'), 87.32, 87.45 (C1'), 120.11, 120.14 (C5), 138.83, 138.87 (C8), 149.32, 149.35 (C4), 
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153.11, 153.12 (C2), 155.48 (C6), 194.10, 194.36, 194.52, 194.55 (SAc); MS (APCI) m/z 

597 [MH+]; 

3'-Azido-3'-deoxy-2'-O-[(2,3-diacetylmercapto)propyl]adenosine (93b). A 

solution of 93a (37.5 mg, 0.063 mmol) in TFA/H2O (9:1, 1 mL) was stirred at 0 oC for 

1h. Next volatiles were evaporated and coevaporated with toluene in to give 93b (37 mg, 

99%) as a 1:1 mixture of diastereomers: 1H NMR (400 MHz, CDCl3) δ 2.291 (s, 1.5, Ac), 

2.293 (s, 1.5, Ac), 2.32 (s, 1.5, Ac), 2.33 (s, 1.5, Ac), 2.97 (dd, J = 6.6, 14.1 Hz, 0.5, 

CHaHbSAc), 3.12 (dd, J = 6.4, 14.1 Hz, 0.5, CHaHbSAc), 3.29 (dd, J = 6.4, 14.1 Hz, 0.5, 

CHaHbSAc), 3.34 (dd, J = 6.6, 14.1 Hz, 0.5, CHaHbSAc), 3.65 (dd, J = 5.6, 9.6 Hz, 0.5, 

OCH2CHSAc), 3.68-3.78 (m, 1.5, OCH2CHSAc, OCH2CHSAc), 3.79-3.88 (m, 1, 

OCH2CHSAc, OCH2CHSAc), 3.88 (d, J = 12.6 Hz, 1, H5'), 4.12 (d, J = 12.6 Hz, 1, H5''), 

4.34-4.37 (m, 1, H4'), 4.37-4.40 (m, 1, H3'), 4.68-4.72 (m, 1, H2'), 6.12 (d, J = 4.8 Hz, 

0.5, H1'), 6.17 (d, J = 4.8 Hz, 0.5, H1'), 8.41 (s, 1, H2), 8.72 (s, 0.5, H8), 8.74 (s, 0.5, 

H8), 8.89 (br., 1, OH); 13C NMR δ 29.87, 30.16 (CH2SAc), 30.39, 30.43, 30.53, 30.59 

(Ac), 43.50, 43.57 (CHSAc), 59.91, 60.00 (C3'), 61.57 (C5'), 71.93, 72.20 

(OCH2CHSAc), 83.35, 83.41 (C2'), 84.31, 84.33 (C4'), 88.66, 88.79 (C1'), 119.42 (C5), 

137.87 (C4), 142.89, 142.92 (C8), 145.05, 145.07 (C2), 151.68 (C6), 194.22, 194.65, 

194.93, 194.94 (SAc); MS (APCI) m/z 483 (100), 484 (19), [MH+]; 

 3'-Azido-3'-deoxy-2'-O-(2,3-dimercaptopropyl)adenosine (69). A saturated 

solution of NaOH in MeOH (2.0 mL) was added to a stirred solution of crude 93b 

(yielded from 37.5 mg, 0.063 mmol of 19) in MeOH (1.0 mL) under Ar atmosphere, at -

30˚C. The stirring was continued for 30 min, and no starting material was detected by 

TLC. The temperature was diminished to -50 ˚C, reaction mixture was acidified with HCl 
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(1:1) and allowed to stir for 20 min. Next, reaction mixture was extracted with CH2Cl2, 

extracts were washed with NaHCO3/H2O, brine, and dried (Na2SO4) to give 69 (25 mg, 

99%; 1:1 mixture of diastereomers) as a white foam. 1H NMR (400 MHz, CDCl3)  δ 1.44 

(t, J = 8.7 Hz, 0.5, CH2SH), 1.50 (dd, J = 7.9, 9.5 Hz, 0.5, CH2SH), 1.67 (d, J = 9.2, 0.5, 

CHSH), 1.76 (d, J = 8.9, 0.5, CHSH), 2.64-2.80 (m, 1, CH2SH), 2.77 (dd, J = 5.7, 8.7 Hz, 

1, CH2SH), 2.87-2.95 (m, 0.5, CHSH), 2.97-3.05 (m, 0.5, CHSH), 3.41 (dd, J = 6.9, 9.5 

Hz, 0.5, OCHaHbCHSH), 3.55 (dd, J = 5.2, 9.6 Hz, 0.5, OCHaHbCHSH), 3.70 (dd, J = 

6.7, 9.7 Hz, 0.5, OCHaHbCHSH), 3.73 (br. 'd', J =13 Hz, 1, H5'), 3.82 (dd, J = 4.7, 9.5 

Hz, 0.5, OCHaHbCHSH), 3.98 (br. d, J =13.2 Hz, 1, H5''), 4.24 & 4.26 (2× 'q', J = 1.0 Hz, 

1, H4'), 4.51 (d, J = 5.4 Hz, 1, H3'), 5.08 & 5.09 (2×dd, J = 5.4, 7.6 Hz, 1, H2') 5.87 & 

5.89 (2×d, J = 7.6 Hz, 1, H1'), 6.23 (br. 's', 2, NH2), 6.77 (br., 1, OH), 7.90 & 7.91 (2×s, 

1, C8), 8.33 (s, 1, C2); 13C NMR δ 29.37, 29.68 (CH2SH), 41.49, 41.71 (CHSH), 62.10, 

62.12 (C3'), 63.36, 63.38 (C5'), 73.48, 73.73 (OCH2CHSH), 81.33, 81.69 (C2'), 85.67, 

85.70 (C4'), 89.29, 89.32 (C1'), 121.22 (C5), 140.63 (C8), 148.42 (C4), 152.64, 152.66 

(C2), 156.19 (C6); MS (APCI) m/z 399 [MH+] 

 3'-Azido-5'-O-(2-N-tert-butylcarboxyl-3-S-tritylcysteinyl)-3'-deoxythymidine 

(98). 3'-Azido-3'-deoxythymine (97; 100 mg, 0.37 mmol) was added to a stirred solution 

of N-t-butylcarboxyl-S-tritylcysteine (0.35 g, 0.75 mmol), EDCI (0.17 mL, 0.17 g, 1.1 

mmol), and DMAP (0.090 g, 0.75 mmol) in CH2Cl2 (7.0 mL) under N2 atmosphere at 0 

oC (ice bath). After 4 h, the resulting mixture was added to aqueous 5% HCl (30 mL) and 

was extracted with CH2Cl2. The organic layer was washed with aqueous NaHCO3, brine, 

dried (MgSO4), and evaporated. Purification on a silica gel column (EtOAc/hexane, 1:1) 

gave 98 (211 mg, 79%): 1H NMR (400 MHz, CDCl3) δ 1.55 (s, 9, t-Bu), 2.02 (s, 3, CH3), 
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2.33 (dt, J = 6.9, 13.9 Hz, 1, H2"), 2.50 (dt, J = 6.0, 13.9 Hz, 1, H2'), 2.71 (dd, J = 5.5, 

12.3 Hz, 1, Hβ"), 2.76 (dd, J = 6.2, 12.3 Hz, 1, Hβ'), 4.14 ("q", J = 3.7 Hz, 1, H4'), 4.28 

(dt, J = 4.8, 7.4 Hz, 1, H3'), 4.38 ("q", J = 7.0 Hz, 1, Hα), 4.44 (dd, J = 3.3, 12.3 Hz, 1, 

H5"), 4.52 (dd, J = 3.6, 12.3 Hz, 1, H5'), 5.31 (d, J = 7.7 Hz, 1, NH), 6.23 (t, J = 6.3 Hz, 

1, H1'), 7.31-7.50 (m, 15, Tr); 13C NMR δ 12.67 (CH3), 28.29 (t-Bu), 33.90 (CH2S), 

37.43 (C2'), 52.71 (C3'), 60.28 (CHNH), 64.22 (C5'), 67.08 (Tr), 80.44 (t-Bu), 81.48 

(C4'), 85.18 (C1'), 111.50 (C5), 127.05, 128.11, 129.39, & 144.05 (Tr), 135.13 (C6), 

150.35 (C2), 154.97 (Boc), 163.98 (C4), 170.73 (CO). 

 3'-Azido-5'-O-cysteinyl-3'-deoxythymidine (67a). TFA (9 mL) and Et3SiH 

(0.062 mL, 0.046 mg, 0.393 mmol) were added to a stirring solution of 98 (80 mg, 0.112 

mmol) in anhydrous CH2Cl2 (9 mL) at 0 oC. After 3 h, the volatiles were evaporated and 

the residue was purified on silica gel column (EtOAc → SSE) to give 67a (35 mg, 85%): 

1H NMR (MeOH-d4) δ 1.80 (s, 3, CH3), 2.34 (ddd, J = 6.1, 7.7, 13.9 Hz, 1, H2"), 2.48 

(ddd, J = 5.6, 6.9, 12.8 Hz, 1, H2'), 3.05 (dd, J = 6.7, 14.2 Hz, 1, Hβ"), 3.11 (dd, J = 5.4, 

14.3 Hz, 1, Hβ'), 3.94-3.99 (m, 2, H4',α), 4.30-4.38 (m, 3, H3',5",5'), 6.0 (t, J = 6.5 Hz, 1, 

H1'), 7.36 (s, 1, H6); 13C NMR (MeOH-d4) δ 12.59 (CH3), 37.39 (Cβ), 38.27 (C2'), 61.70 

(C5'), 54.17 (Cα), 65.87 (C3'), 82.70 (C4'), 86.03 (C1'), 111.93 (C5), 138.11 (C6), 152.14 

(C2), 166.33 (C4); MS (APCI) m/z 371 [M + H]+. 

 Disulfide of 67a (67b): During purification and/or manipulation in open air, 

compound 67a (Rf 0.45 in SSE ) slowly oxidized to the corresponding disulfide 67b (Rf 

0.40 in SSE ): 1H NMR (MeOH-d4) δ 1.80 (s, 1, CH3), 2.34 (ddd, J = 5.8, 7.3, 13.8 Hz, 1, 

H2"), 2.54 (ddd, J = 5.8, 8.0, 13.9 Hz, 1, H2'), 3.22 (dd, J = 7.0, 14.9 Hz, 1, Hβ"), 3.29 

(dd, J = 4.9, 14.9 Hz, 1, Hβ'), 3.98 ("p", J = 7.3, 13.2 Hz, 1, H4') 4.34-4.44 (m, 4, H3',α, 
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5", 5'), 5.97 (t, J = 5.9 Hz, 1, H1'), 7.36 (s, 1, H6); 13C NMR (MeOH-d4) δ 12.47 (CH3), 

36.94 (Cβ), 38.31 (C2'), 53.04 (Cα), 64.39 (C3'), 66.76 (C5'), 82.50 (C4'), 87.91 (C1'), 

112.00 (C5), 139.07 (C6), 152.17 (C2), 166.30 (C4), 169.16 (CO). MS (APCI) m/z 371 

[M + H]+; HRMS (AP-ESI) m/z 371.1134 [M + H]+. 

 3'-Azido-3'-deoxy-5'-O-(2,3-S-isopropylidene-2,3-

dimercaptopropyl)thymidine (99). Under an argon atmosphere at 0°C, a stirred solution 

of 2,3-S-isopropylidene-2,3-dimercaptopropionic acid (67 mg, 0.376mmol, 2eq) in 

CH2Cl2 (4 mL) was added DMAP (69 mg, 0.562 mmol, 3 eq), and EDCI (131μl, 0.749 

mmol, 4 eq). After 5 min AZT (97; 50 mg, 0.187 mmol) was added to the reaction 

mixture, and after 50 min the only product was detected by TLC (progress 30%, after 

another 50 min – 80%). No starting material was observed after 3h, and RM was diluted 

with CH2Cl2, washed with saturated, aqueous NaHCO3. Next, the organic phase was 

treated with water, and the pH was adjusted to < 7 with diluted HCl (1:9). Acidic water 

layer was extracted with CH2Cl2, extracts were combined with organic phase, washed 

with NaHCO3, followed by brine, dried with Na2SO4 to give after concentration 105 mg 

of yellow, oily residue. Silica gel chromatography (EtOAc/hexane, 6:4) gave pure 99 (80 

mg, 99%; 0.45:0.55 mixture of diastereomers): 1H NMR (400 MHz, CDCl3) δ 1.81 (s, 

1.35, CH3), 1.82 (s, 1.65, CH3), 1.83 (s, 1.35, CH3), 1.84 (s, 1.65, CH3), 1.97 (s, 3, CH3), 

2.31-2.52 (m, 2, H2',2''), 3.512 (dd, J = 6.1, 12.6 Hz, 0.45, CHaHbS), 3.515 (dd, J = 6.1, 

12.6 Hz, 0.55, CHaHbS), 3.76 (dd, J = 6.5, 12.6 Hz, 0.45, CHaHbS), 3.80 (dd, J = 6.0, 

12.6 Hz, 0.55, CHaHbS), 4.06-4.11 (m, 1, H4'), 4.23-4.29 (m, 1, H3'), 4.31 (dd, J = 3.1, 

12.4 Hz, 0.55, H5'), 4.39 (dd, J = 4.2, 12.2 Hz, 0.45, H5'), 4.45 (dd, J = 3.5, 12.2 Hz, 

0.45, H5''), 4.556 (t, J = 6.0 Hz, 0.55, CHS), 4.560 (t, J = 6.3 Hz, 0.45, CHS), 4.59 (dd, J 
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= 3.4, 12.4 Hz, 0.55, H5''), 6.12 (t, J = 6.6 Hz, 0.45, H1'), 6.20 (t, J = 6.6 Hz, 0.55, H1') 

7.21 ('q', J = 1.1 Hz, 0.45, H6), 7.27 ('q', J = 1.1 Hz, 0.55, H6), 9.54 (br., 1, NH); 13C 

NMR δ 12.61 (0.45, C5-CH3), 12.66 (0.55, C5-CH3), 33.19 (0.45, SCCaH3), 33.20 (0.55, 

SCCaH3), 33.22 (0.55, SCCbH3), 33.24 (0.45, SCCbH3), 37.38 (0.45, C2'), 37.48 (0.55, 

C2'), 39.83 (0.55, CH2S), 39.86 (0.45, CH2S), 56.51 (0.45, CHS), 56.59 (0.55, CHS), 

60.35 (0.55, C3'), 60.60 (0.45, C3'), 63.56 (0.45, SCS), 63.69 (0.55, SCS), 64.12 (0.55, 

C5'), 64.43 (0.45, C5'), 81.41 (0.45, C4'), 81.69 (0.55, C4'), 85.02 (0.55, C1'), 85.38 

(0.45, C1'), 111.49 (1, C5), 135.27 (0.55, C6), 135.31 (0.45, C6), 150.24 (0.45, C2) 

150.29 (0.55, C2), 163.78 (0.55, C4), 163.80 (0.45, C4), 170.30 (0.45, COO), 170.32 

(0.55, COO). 

 3'-Azido-3'-deoxy-5'-O-(2,3-dimercaptopropyl)thymidine (68). HgCl2 (760 

mg, 2.8 mmol, 15 eq) was added in one portion to a stirred solution of 99 (80 mg, 0.187 

mmol) in MeCN/H2O (3:1, 8 mL) at ambient temperature. The resulting white suspension 

was continued to stir for 60 min. and only trace of starting material was detected. The 

reaction mixture was decanted, and the white solid was washed with water (twice), and 

dried (evaporated). The mercury complex was suspended in MeOH (25 mL), and H2S 

was bubbled into the stirring suspension (through a capillary). Almost immediately, the 

white solid was dissolved, and the black HgS precipitated. After 15 min the reaction 

mixture was evaporated to dryness, and the black residue was treated with CHCl3 giving 

a slurry, which was directly chromatographed (60 → 70 %, EtOAc/hexane) to give pure 

68 (33.5 mg, 46%; 0.45:0.55 mixture of diasteromers) as an colorless oil: 1H NMR (400 

MHz, CDCl3) δ 1.86 (t, J = 8.9 Hz, 0.45, SH), 1.88 (t, J = 8.9 Hz, 0.55, SH), 1.969 (d, J = 

1.2 Hz, 1.35, CH3), 1.973 (d, J = 1.2 Hz, 1.65, CH3), 2.32 (d, J = 10.4 Hz, 0.45, SH), 2.33 
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(d, J = 10.5 Hz, 0.55, SH), 2.38-2.54 (m, 2, H2',2''), 2.92-3.04 (m, 2, CH2SH), 3.51 (ddd, 

J = 5.7, 8.7, 10.5 Hz, 0.45, CHSH), 3.53 (ddd, J = 5.7, 8.7, 10.5 Hz, 0.55, CHSH), 4.12 

('q', J = 4.3 Hz, 1, H4'), 4.27-4.33 (m, 1, H3'), 4.41 (dd, J = 3.6, 12.2 Hz, 0.55, H5'), 4.46 

(dd, J = 3.6, 12.2 Hz, 0.45, H5'), 4.52 (dd, J = 4.3, 12.2 Hz, 0.45, H5'') 4.58 (dd, J = 4.2, 

12.2 Hz, 0.55, H5''), 6.12 (t, J = 6.6 Hz, 0.45, H1'), 6.14 (t, J = 6.6 Hz, 0.55, H1'), 7.24 (q, 

J = 1.2 Hz, 0.45, H6), 7.25 (q, J = 1.2 Hz, 0.55, H6), 8.81 (br., 1, NH); 13C NMR δ 12.67 

(0.45, CH3), 12.71 (0.55, CH3), 29.43 (1, CH2SH), 37.44 (1, C2'), 43.56 (0.45, CHSH), 

43.62 (0.55, CHSH), 60.38 (0.55, C3'), 60.51 (0.45, C3'), 64.06 (0.55, C5'), 64.26 (0.45, 

C5'), 81.53 (0.45, C4'), 81.69 (0.55, C4'), 85.56 (0.55, C1'), 85.62 (0.45, C1'), 111.46 (1, 

C5), 135.43 (1, C6), 149.98 (1, C2), 163.44 (1, C4), 171.50 (0.55, COO), 171.55 (0.45, 

COO); MS (APCI) m/z 388 (MH+). HRMS (AP-ESI) m/z calcd for C13H18N5O5S2 [M + 

H]+ 388.0744; found 388.0748. 

 3'-Azido-3'-deoxy-N-methylthymidine (100).  Diazomethane solution in ether 

(10 mL), generated from a solution of Diazald (3.0g, 14.0 mmol) in ether (25 mL), 

ethanol (20 mL), and KOH (10 M, 10 mL), was added dropwise to a stirred solution of 

3'-azido-3'-deoxythymidine (97; 200 mg, 0.75 mmol) in ethanol (15 mL) at 0 oC.  After 

30 min, the volatiles were evaporated to give 100 (208 mg, 99 %):  1H NMR (400 MHz, 

CDCl3) δ 1.95 (s, 3, CH3), 2.38 (ddd, J = 13.8, 6.4, 5.4 Hz, 1, H2"), 2.45 (dt, J = 13.5, 6.8 

Hz, 1, H2'), 3.35 (s, 1, NCH3), 3.83 (dd, J = 11.0, 1.3 Hz, 1, H5''), 3.97-4.04 (m, 2, H4' 

and H5'), 4.43 (dt, J = 7.2, 5.0 Hz, H3'), 6.06 (t, J = 6.5 Hz, H1'), 7.37 (s, 1, H6); 13C 

NMR (CDCl3) δ 13.20 (CH3), 27.82 (NCH3), 37.58 (C2'), 59.96 (C3'), 61.77 (C5'), 84.64 

(C4'), 86.81 (C1'), 109.98 (C5), 134.58 (C6), 150.95 (C2), 163.70 (C4); MS (APCI) m/z 

282 [M + H]+. 
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 5'-O-Allyl-3'-azido-3'-deoxy-N-methylthymidine (101).  A stirred solution of 

100 (130 mg, 0.46 mmol) in dry THF (3 mL) at ambient temperature were added KOH 

(78 mg, 1.39 mmol), 18-crown-6 (5 mg, 0.020 mmol), and allyl bromide (0.12 mL, 168 

mg, 1.39 mmol). After 2 h, the volatiles were evaporated and the residue was partitioned 

between H2O and CHCl3.  The organic layer was concentrated and purified on silica gel 

column (EtOAc/hexane, 3:7) to afford 101 (120 mg, 80%):  1H NMR (400 MHz, CDCl3) 

δ 1.80 (s, 3, CH3), 2.31 (dt, J = 13.6, 6.6  Hz, 1, H2"), 2.41 (ddd, J = 13.8, 6.3, 5.1 Hz, 1, 

H2'), 3.31 (s, 3, NCH3), 3.63 (dd, J = 10.8, 2.5 Hz, 1, H5''), 3.78 (dd, J = 10.8, 2.5 Hz, 

H5'), 4.02 ("quint", J = 2.5 Hz, 1, H4'), 4.06 ("q",  J = 1.4 Hz, 1, OCH2CHCH2"), 4.08 

("q", J = 1.4 Hz, 1, OCH2CHCH2"), 4.31 (dt, J = 6.9, 4.8 Hz, H3'), 5.23 (dq, J = 10.4, 1.2 

Hz, 1, OCH2"CHCH2), 5.29 (dq, J = 17.2, 1.6 Hz, 1, OCH2'CHCH2), 5.90 (ddt, J =  

17.2, 10.4, 5.6 Hz, 1, OCH2CHCH2), 6.27 (t, J = 6.2 Hz, 1, H1'), 7.60 (s, 1, H6); 13C 

NMR (CDCl3) δ 13.28 (CH3), 27.75 (NCH3), 38.09 (C2'), 60.49 (C3'), 69.38 (C5'), 72.44 

(OCH2CHCH2), 83.37 (C4'), 85.47 (C1'), 109.89 (C5), 117.87 (OCH2CHCH2), 133.40 

(OCH2CHCH2), 133.73 (C6), 150.96 (C2), 163.56 (C4); MS (APCI) m/z 322 [M + H]+. 

 3'-Azido-5'-O-(2,3-dibromopropyl)-3'-deoxy-N-methylthymidine (102). To a 

stirred solution of 101 (90 mg, 0.28  mmol) in CHCl3 (2 mL) maintained at -50 oC, a 

solution of bromine (0.014 mL, 0.045g, 0.28 mmol) in CHCl3 (1 mL) was added 

dropwise. After 40 min, the reaction mixture was concentrated and purified on a silica gel 

(EtOac/hexane, 3:7) to give 102 (80 mg, 60%): 1H NMR (400 MHz, CDCl3) δ 1.95 (s, 3, 

CH3), 2.31 (ddd, J = 13.8, 7.8, 0.92  Hz, 1, H2"), 2.40-2.47 (m, 1, H2'), 3.32 (s, 3, NCH3), 

3.69-3.76 (m, 2, H4' and H5"), 3.80 (dd, J = 10.4, 4.5 Hz, H5'), 3.92 ("dq", J = 11.1, 2.3 

Hz, 2, OCH2CHCH2), 4.01- 4.06 (m, 2, OCH2CHCH2), 4.26-4.32 (m, 1, OCH2CHCH2), 
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4.36 ("dt", J = 11.5, 4.5 Hz, 1, H3'), 6.25 ("dt", J = 10.3, 6.5 Hz, 1, H1'), 7.38 (s, 0.47, 

H6), 7.42 (s, 0.53, H6); 13C NMR (CDCl3) δ 13.48 (CH3), 27.85 (NCH3), 31.77 and 

32.04(C4'), 37.80 (C2'), 48.50 and 48.61 (OCH2CHCH2), 60.55 and 60.68 (C3'), 70.76 

(C5'), 72.61 and 72.66 (OCH2CHCH2), 82.97 and 82.98 (OCH2CHCH2), 85.48 and 85.50 

(C1'), 110.21 and 110.24 (C5), 133.01 and 133.10 (C6), 150.91 and 150.93 (C2), 163.47 

and 163.50 (C4); MS (APCI) m/z 322 [M + H]+. 

 3'-Azido-5'-O-[(2,3-diacethylmercapto)propyl]-3'-deoxy-N-methylthymidine 

(103). Potassium thioacetate (KSAc, 0.18g, 1.56 mmol) was added to a stirred solution of 

102 (75 mg, 0.156 mmol) in DMF (5 mL) at ambient temperature under N2 atmosphere. 

After 24 h, the volatiles were evaporated and the residue was partitioned between H2O 

and CHCl3. The organic layer was concentrated and purified on silica gel (EtOac/hexane, 

4:6) to give 103 (55 mg, 75%): 1H NMR (400 MHz, CDCl3) δ 1.96 (d, J = 1.1 Hz, 1.5, 

CH3), 1.98 (d, J = 1.1 Hz, 1.5, CH3), 2.27-2.38 (m, 7, 2Ac and H2"), 2.41-2.48 (m, 1, 

H2'), 3.03 (dd, J = 13.9, 6.6 Hz, 0.5, SCH2"), 3.11 (dd, J = 13.9, 7.1 Hz, 0.5, SCH2"), 

3.34-3.43 (m, 4, NCH3 and SCH2'), 3.53-3.75 (m, 3, H5", 5', CHSAc), 3.79-3.87 (m, 2, 

OCH2CHSAc), 4.03 ("dt", J =  7.0, 2.6 Hz, 1, H4'), 4.37 (dt, J = 7.0, 4.4 Hz, 0.5, H3'), 

4.43 (dt, J = 7.0, 4.1 Hz, 0.5, H3'), 6.28 ("q", J = 7.0 Hz, 1, H1'), 7.44 (d, J = 1.2 Hz, 0.5, 

H6), 7.45 (d, J = 1.2 Hz, 0.5, H6); 13C NMR (CDCl3) δ 13.36 and 13.44 (CH3), 27.83 and 

27.85 (NCH3), 30.44, 30.49, 30.51, and 30.54 (2Ac), 30.67 and 30.68 (CHCH2SAc), 

37.89 (C2'), 43.73 and 43.78 (OCH2CH), 60.64 and 60.75 (C3'), 70.50 and 70.60 (C5'), 

71.95 and 72.18 (CHSAc), 83.05 and 83.08 (C4'), 85.40 and 85.50 (C1'), 110.09 and 

110.14 (C5), 133.12 and 133.21 (C6), 150.99 (C2), 163.57 and 163.58 (C4), 193.97, 

194.09, 194.48, and 194.53 (2COSAc); MS (APCI) m/z 472 [M + H]+.  
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 3'-Azido-5'-O-(2,3-dimercaptopropyl)-3'-deoxy-N-methylthymidine (70). A 

saturated solution of NaOH in MeOH (4 mL) was added to a stirred solution of 103 (55 

mg, 0.117 mmol) in MeOH (2 mL) at -30 oC under N2 atmosphere.  After 2 h, the 

reaction mixture was acidified with aqueous HCl (1:1) at -50 oC and allowed to stir for 

another 30 min. Next, the reaction mixture was extracted with CHCl3, and the organic 

layer was washed with aqueous NaHCO3, brine, and dried over MgSO4 to give crude 70 

(45 mg, 99 %): 1H NMR (400 MHz, CDCl3) δ 1.63 (ddd, J = 12.7, 8.6, 4.0 Hz, 1, 

CH2SH), 1.84 (dd, J =  8.1, 2.0 Hz, 1, CHSH), 1.96 ("t", J = 1.1 Hz, 3, CH3), 2.28-2.36 

(m, 1, H2"), 2.43 (dd, J =  6.4, 5.2 Hz, 0.6, H2'), 2.46 (dd, J = 6.4, 5.2 Hz, 0.4, H2'), 2.84 

(ddd, J = 8.6, 5.8, 2.3 Hz, 2, CH2SH), 3.12-3.21 (m, 1, CHSH), 3.34 (s, 3, NCH3), 3.65-

3.72 (m, 2, OCH2CHSH), 3.75 (dd, J = 5.6, 1.6 Hz, 0.6, H5''), 3.77 (dd, J = 6.2, 2.1 Hz, 

0.4, H5"), 3.83 (dd, J = 4.9, 2.9 Hz, 0.6, H5'), 3.86 (dd, J = 5.0, 2.9 Hz, 0.4, H5'), 4.00-

4.03 (m, 1, H4'), 6.22 ("dt", J = 8.9, 3.8 Hz, 1, H1'), 7.38 (dd, J = 4.0, 1.2 Hz, 1, H6); 13C 

NMR (CDCl3) δ13.44 and 13.48 (CH3), 27.84 (NCH3), 29.91 and 29.93 (CH2SH), 37.80 

and 37.87 (C2'), 41.93 and 42.13 (CHSH), 60.36 and 60.44 (C3'), 70.31 and 70.41 (C5'), 

74.11 and 74.16 (OCH2CHSH), 82.97 (C4'), 85.62 and 85.72 (C1'), 110.18 and 110.22 

(C5), 133.08 and 133.14 (C6), 150.90 (C2), 163.47 and 163.48 (C4); MS (APCI) m/z 388 

[M + H]+.  

General procedure for reactions of nucleosides 65-70 in the presence of 

AAPH. To Ar-saturated MeOH-d4:D2O (5:3, 4 mL) solution, 3'-azido nucleosides (65-

70) (~10 mg, 0.026 mmol) and AAPH (~42 mg, 0.16 mmol) were added. The reaction 

mixture was then heated at 50 oC. Aliquots were taken at 6h, 12h, 18h, and 24h to 

monitor the process of the reaction via 'H NMR.  
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Compound X : After heating compound 68 in the presence of AAPH for 24h, the 

resulting mixture was evaporated, dissolved in CHCl3, and decanted. The resulting solid 

was dried to give compound X: 1H NMR D2O δ 1.80 (s, 3, Me), 2.62-2.67 (m, 2, H2',2''), 

3.83 (dd, J = 4.8, 12.7 Hz, 1, H5'), 3.92 (dd, J = 3.4, 12.6 Hz, 1, H5''), 4.08 ("td", J = 4.1, 

8.3 Hz, 1, H3'), 4.25 (q, J = 4.5 Hz, 1, H4'), 6.31 (t, J = 6.7 Hz, 1, H1'), 7.65 (s, 1, H6); 

1H NMR MeOH-d4 δ 1.92 (s, 3, Me), 2.49-2.57 (m, 2, H2',2''), 3.82 (dd, J = 3.5, 12.0 Hz, 

1, H5'), 3.88 (dd, J = 3.2, 12.0 Hz, 1, H5''), 4.05 (td, J = 4.8, 7.9 Hz, 1, H3'), 4.12 (q, J = 

3.8 Hz, 1, H4'), 6.32 (t, J = 6.8 Hz, 1, H1'), 7.84 ( s, 1, H6);  MS (APCI) m/z 242 [M + 

H]+. 

3'-Azido-3'-deoxythymine (97). Commerically available 97: 1H NMR D2O δ 

2.00 (s, 3, Me), 2.60 (t, J = 6.52, H2',2''), 3.88 (dd, J = 4.6, 12.6 Hz, 1, H5'), 3.96 (dd, J = 

3.5, 12.6 Hz, 1, H5''), 4.11 ("td", J = 3.6, 6.4 Hz, 1, H4'), 4.45 (q, J = 6.2 Hz, 1, H3'), 6.31 

(t, J = 6.4 Hz, 1, H1'), 7.74 ( s, 1, H6); 1H NMR MeOH-d4 δ 1.90 (s, 3, Me), 2.35-2.46 

(m, 2, H2',2''), 3.74 (dd, J = 3.4, 12.2 Hz, 1, H5'), 3.92 (dd, J = 3.2, 12.2 Hz, 1, H5''), 3.92 

(td, J = 3.3, 4.8 Hz, 1, H4'), 4.36 (q, J = 5.7,  Hz, 1, H3'), 6.18 (t, J = 6.4 Hz, 1, H1'), 7.82 

( s, 1, H6). 

3'-Amino-3'-deoxythymine (AminoT). A solution of 97 (50 mg, 0.19 mmol) in 

dry DMAC (0.75 ml) and dry benzene (4.5 ml) was treated with Bu3SnH (0.01 ml, 0.11 

g, 0.38 mmol) and a few crystals of AIBN. The solution was deoxygenaed (N2, 1h) and 

heated at reflux for 1h. The volatiles were evaporated and the resulting residue was 

partitioned between CHCl3 and H2O. The aqueous layer was washed with CHCl3 (3x) and 

concentrated to give AminoT (42 mg, 93 %): 1H NMR D2O δ 1.79 (s, 3, Me), 2.13-2.35 

(m, 2, H2',2''), 3.48 (q, J = 7.4 Hz, 1, H3'), 3.69 (dd, J = 4.5, 12.1 Hz, 1, H5'), 3.75 



 121 

("quint", J = 3.5 Hz, 1, H4'), 3.80 (dd, J = 2.8, 12.1 Hz, 1, H5''), 6.12 (dd, J = 4.6, 7.3 Hz, 

1, H1'), 7.58 ( s, 1, H6); 1H NMR MeOH-d4 δ 1.90 (s, 3, Me), 2.17-2.32 (m, 2, H2',2''), 

3.55 (q, J = 7.1 Hz, 1, H3'), 3.71 ("quint", J = 3.3 Hz, 1, H4'), 3.77 (dd, J = 3.6, 12.2 Hz, 

1, H5'), 3.85 (dd, J = 3.0, 12.2 Hz, 1, H5''), 6.19 (dd, J = 4.7, 6.9 Hz, 1, H1'), 7.89 ( s, 1, 

H6). 

5'-O-acetyl-3'-N-acetyl-3'-deoxythymine (5'-Ac-3'-AcNHT).  AminoT (10 mg, 

0.04 mmol) was dissolved in dry pyridine (0.5 ml) and added Ac2O (0.03 ml, 0.14 

mmol). The reaction mixture was stirred at 0 oC under N2 overnight. The volatiles were 

evaporated and co-evaporated with toluene to give 5'-Ac-3'-AcNHT (12 mg, 92%): 1H 

NMR MeOH-d4 δ 1.91 (s, 3, Ac), 1.97 (s, 3, Ac), 2.10 (s, 3, Me), 2.28-2.44 (m, 2, 

H2',2''), 4.02 (td, J = 3.6, 6.4 Hz, 1, H4'), 4.31 (dd, J = 3.5, 12.4 Hz, 1, H5'), 4.34 (dd, J = 

4.7, 12.4 Hz, 1, H5''), 4.46 (q, J = 7.2 Hz, 1, H3'), 6.21 (dd, J = 5.7, 6.8 Hz, 1, H1'), 7.55 ( 

s, 1, H6). 

Compound Y: After heating compound 69 in the presence of AAPH for 24h, the 

resulting mixture was concentrated, extracted in H2O/CHCl3, evaporated, and dried. The 

aqueous layer was purified on a silica gel (CHCl3/MeOH, 8:2) and reverse phase HPLC 

(H2O/ACN, 85:15) to give compound Y: 1H NMR MeOH-d4 δ 2.73-2.84 (m, 1, CHS), 

3.01-3.13 (m, 2, CH2S), 3.64-3.72 (m, 1, OCH2), 3.77 (dd, J = 2.1, 12.7 Hz, 1, H5'), 3.90 

(dd, J = 2.0, 12.6 Hz, 0.8, H5''), 4.17-4.22 (m, 1, H4'), 4.52-4.56 (m, 1, H3'), 6.09 (m, 1, 

H1'), 8.23 (s, 1, H2), 8.38 ( s, 1, H6); MS (ESI) m/z 369 [M + H]+. 

 N-Allyl-3'-azido-3'-deoxythymidine (104).  The reaction mixture containing 97 

(0.67 mmol, 180 mg) and NaH (60%, 0.81 mmol, 32 mg) in DMF (3 mL) was stirred at 

room temperature under N2 atmosphere in an ultrasound bath. After 30 min, allyl 
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bromide (0.81 mmol, 98 mg, 0.070 mL) was added to the reaction mixture and was 

allowed to stir for another 3h. The volatiles were evaporated, and the residue was purified 

on silica gel column (EtOac/hexane, 6:4) to give 104 (177 mg, 86%): 1H NMR (400 

MHz, CDCl3) δ 1.90 (s, 3, CH3), 2.36-2.49 (m, 2, H2" and H2'), 3.12-3.48 (br, 1, OH), 

3.79 (dd, J = 12.6, 3.3 Hz, 1, H5"), 3.93-3.96 (m, 2, H5' and H4'), 4.37 ("dt",  J = 7.0, 5.1 

Hz, 1, H3'), 4.51 (d, J = 4.8, 2, NCH2CHCH2), 5.18 (qd, J =  17.2, 1.3 Hz, 2, 

NCH2CHCH2), 5.78-5.88 (m, 1, NCH2CHCH2), 6.12 (t, J = 6.4 Hz, 1, H1'), 7.55 (d, J = 

1.0 Hz, 1, H6); 13C NMR (CDCl3) δ 13.18 (CH3), 37.63 (C2'), 43.34 (NCH2CHCH2), 

59.93 (C3'), 61.76 (C5'), 84.58 (C4'), 86.60 (C1'), 110.16 (C5), 118.03 (NCH2CHCH2), 

131.49 (NCH2CHCH2), 134.79 (C6), 150.56 (C2), 163.21 (C4); MS (APCI) m/z 308 [M 

+ H]+. 

 3'-Azido-N-benzoyl-5'-O-tBDMSi-3'-deoxythymidine (105). A solution of  tert-

Butyldimethylsilylchloride (0.79 mmol, 119 mg) and 97 (0.75 mmol, 200 mg) in 

anhydrous pyridine (5 mL) was stirred overnight at ambient temperature. DMAP (1.13 

mmol, 137 mg) and benzoyl chloride (2.25 mmol, 316 mg, 0.26 mL) were added to the 

reaction mixture and was allowed to stir for another 24h at room temperature.  After the 

volatiles were evaporated, the residue was dissolved in EtOAc and washed with aqueous 

HCl, NaHCO3 and brine, dried (MgSO4), and concentrated. Purification on silica gel 

column (EtOAc/hexane, 1:1) afforded 105 (300 mg, 82%): 1H NMR (400 MHz, CDCl3) δ 

0.16 (s, 6, CH3), 0.96 (s, 9, t-Bu), 1.97 (s, 3, CH3), 2.29 (dt, J = 13.7, 7.0 Hz, 1, H2"), 

2.46 (dq, J = 13.6, 4.2 Hz, 1, H2'), 3.82 (dd, J = 11.1, 2.0 Hz, 1, H5"), 3.97 (dd, J = 11.1, 

2.5 Hz, 1, H5'), 3.98 ("q", J = 3.1 Hz, 1, H4'), 4.26 (quint,  J = 3.8 Hz, 1, H3'), 6.22 (t, J = 

6.5 Hz, 1, H1'), 7.50 (t, J = 8.2 Hz, 2, Bz), 7.57 (d, J = 1.2 Hz, H6), 7.65 (tt, J = 7.4, 1.2 
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Hz, 1, Bz), 7.93 (dd, J = 8.5, 1.4 Hz, 2, Bz); 13C NMR (CDCl3) δ -5.41 (CH3), -5.33 

(CH3), 12.61 (CH3), 18.39 (C-tBu), 25.96 (tBu), 38.00 (C2'), 60.53 (C3'), 62.98 (C5'), 

84.68 (C4'), 86.98 (C1'), 110.92 (C5), 129.15, 130.42, 131.61 and 135.10 (Bz), 135.05 

(C6), 149.19 (C2), 162.75 (C4), 168.90 (CO); MS (APCI) m/z 486 [M + H]+.   

 3'-Azido-N-benzoyl-3'-deoxythymidine (106).  The solution of 105 (0.60 mmol, 

290 mg) and CBr4 (0.060 mmol, 20 mg) in dry MeOH was heated at reflux for 1.5h. The 

volatiles were evaporated. Purification on silica gel column (EtOAc/hexane, 1:1) afforded 

106 (200 mg, 90%): 1H NMR (400 MHz, CDCl3) δ 1.91 (s, 3, CH3), 2.30-2.45 (m, 2, H2" 

and H2'), 3.14-3.41 (br, 1, OH), 3.71 (dd, J = 12.0, 2.5 Hz, 1, H5"), 3.87 (dd, J = 12.1, 

2.6 Hz, 1H5'), 3.91 ("quint", J = 2.4 Hz, 1, H4'), 4.30 ("dt",  J = 6.8, 5.0 Hz, 1, H3'), 6.12 

(t, J = 6.4 Hz, 1, H1'), 7.50 (t, J = 8.0 Hz, 2, Bz), 7.66 (t, J = 7.4 Hz, 1, Bz), 7.73 (d, J = 

0.92 Hz, 1, H6), 7.91 (dd, J = 8.5, 1.3 Hz, 2, Bz); 13C NMR (CDCl3) δ 12.52 (CH3), 

37.70 (C2'), 60.01 (C3'), 61.77 (C5'), 84.76 (C4'), 85.98 (C1'), 110.95 (C5), 129.26, 

130.44, 131.40 and 136.66 (Bz), 135.33 (C6), 149.32 (C2), 163.03 (C4), 169.03 (CO); 

MS (APCI) m/z 372 [M + H]+.   

 N-Allyl-3'-azido-5'-O-benzoyl--3'-deoxythymidine (107).  The reaction mixture 

containing 106 (0.54 mmol, 200 mg) and NaH (60%, 0.65 mmol, 26 mg) in DMF (3 mL) 

was stirred at room temperature under N2 atmosphere. After 30 min, allyl bromide (0.65 

mmol, 78 mg, 0.056 mL) was added to the reaction mixture and was allowed to stir for 

another 1h. The volatiles were evaporated, and the residue was purified on silica gel 

column (EtOac/hexane, 3:7) to give 107 (70 mg, 32%): 1H NMR (400 MHz, CDCl3) δ 

1.71 (s, 3, CH3), 2.38 (ddd, J = 13.9, 7.5, 6.3 Hz, 1, H2"), 2.56 (dq, J = 14.0, 5.1 Hz, 1, 

H2'), 4.21 (dt, J = 5.1, 3.5 Hz, 1, H4'), 4.35 (dt,  J = 7.6, 5.1 Hz, 1, H3'), 4.52 (dd, J = 5.9, 
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1.7 Hz, 2, NCH2CHCH2), 4.57 (dd, J = 12.4, 3.8 Hz, 1, H5"), 4.69 (dd, J = 12.4, 3.3 Hz, 

1, H5'), 5.18 (qd, J =  17.2, 1.4 Hz, 2, NCH2CHCH2), 5.81-5.90 (m, 1, NCH2CHCH2), 

6.21 (t, J = 6.4 Hz, 1, H1'), 7.20 (d, J = 1.2 Hz, 1, H6), 7.47 (t, J = 7.9 Hz, 2, Bz), 7.62 (tt, 

J = 7.5, 1.2 Hz, 1, Bz), 8.04 (dd, J = 8.4, 1.4 Hz, 2, Bz) ; 13C NMR (CDCl3) δ 12.99 

(CH3), 37.89 (C2'), 43.33 (NCH2CHCH2), 60.54 (C3'), 63.54 (C5'), 81.97 (C4'), 85.91 

(C1'), 110.58 (C5), 118.09 (NCH2CHCH2), 128.72, 129.21, 129.57 and 133.71 (Bz), 

131.58 (NCH2CHCH2), 133.00 (C6), 150.39 (C2), 162.80 (C4), 166.00 (CO); MS (APCI) 

m/z 412 [M + H]+. 

 N-Allyl-3'-azido-3'-deoxythymidine (104).  The solution of 107 (50 mg, 0.12 

mmol) in NH3/MeOH (3 mL, 7M) was stirred at ambient temperature for 5h. After the 

evaporation of the volatiles, the residue was partitioned between CHCl3 and aqueous 

HCl, washed with aqueous NaHCO3 and brine, dried over MgSO4, and concentrated to 

give 104 (35 mg, 95%): NMR data are described above.  

Methyl D-ribofuranoside (143a). Procedure A. Concentrated H2SO4 (10 µL) 

was added to a solution of D-ribose (142a, 125 mg, 0.83 mmol) in anhydrous MeOH (2 

mL) under N2 at 0 oC (ice bath). The reaction mixture was maintained at 4 oC overnight. 

Neutralization with dry pyridine (0.38 mL) and evaporation of the resulting mixture 

afforded 143a172 as (α/β, 2:3; 160 mg, 85%) of sufficient purity to be used in the next 

step: 1H NMR (400 MHz, CDCl3) δ 3.41 (s, 1.8H, Me), 3.49 (s, 1.2H, Me), 3.70 (dd, J = 

4.0, 12.0 Hz, 0.6H, H5), 3.73 (dd, J = 4.1, 12.0 Hz, 0.4H, H5'), 3.83 (dd, J = 3.2, 11.6 Hz, 

0.6H, H5), 3.87 (dd, J = 3.2, 11.7 Hz, 0.4H, H5'), 3.98 (dd, J = 3.6, 6.4 Hz, 0.4, H3), 

4.07-4.14 (m, 2, H2,4), 4.37 (t, J = 5.5 Hz, 0.6H, H3), 4.90 (s, 0.6H, H1β), 4.99 (d, J = 4.4 

Hz, 0.4H, H1α); MS (ESI) m/z 165 (MH+). 
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 Methyl 1-[2H]-D-ribofuranoside (143b). Methylation of 142b (125 mg, 0.83 

mmol) by procedure A gave 143b172 (160 mg, 85%) as a 3:5 mixture of α and β anomers. 

1H NMR was as described for 143a except for disappearance of H1 peaks at 4.90 and 

4.99 ppm and simplification of H2 proton splitting within 4.07-4.14 ppm multiplet: MS 

(ESI) m/z 166 (MH+). 

 1,2,3,5-Tetra-O-acetyl-D-ribofuranose (144a). Procedure B. (Step A) Acetic 

anhydride (0.37 mL) was added to the solution of 143a (160 mg, 0.71 mmol) in dry 

pyridine (1 mL) under N2 at 0 oC. The reaction mixture was allowed to warm up to rt and 

continued to stir overnight. EtOAc was added and the solution was washed with water 

and brine. Evaporation and co-evaporation with toluene gave a 1:5 mixture of α and β 

anomers of methyl 2,3,5,-tri-O-acetyl-D-ribofuranoside172 (190 mg, 95%): 1H NMR (400 

MHz, CDCl3) δ 1.94 (s, 3H, Ac), 1.98 (s, 3.6H, Ac), 2.00 (s, 3H, Ac), 2.02 (s, 1.3H, Ac), 

3.26 (s, 3, Me), 3.33 (s, 0.6, Me), 3.99 (dd, J = 5.6, 11.6 Hz, 1, H5'), 4.10 (dd, J = 4.2, 

11.7 Hz, 0.2, H5'), 4.15-4.28 (m, 2.4, H5, H4), 4.79 (s, 1, H1β), 4.87 (dd, J = 4.5, 7.3 Hz, 

0.2, H2), 5.01 (d, J = 4.5 Hz, 0.2, H1α), 5.06 (dd, J = 3.7, 7.4 Hz, 0.2, H3), 5.09 (d, J = 

4.8 Hz, 1, H2), 5.20 (dd, J = 4.9, 6.7 Hz, 1, H3). (Step B). The crude material from 

acetylation (Step A) was dissolved in acetic acid (1.2 mL) under N2 in an ice bath. Acetic 

anhydride (0.27 mL) and concentrated H2SO4 (0.070 mL) were added and the resulting 

mixture was allowed to stir overnight. Ice (2.0g) was added and stirring was continued 

for 10 min. The product was extracted with CHCl3, and the combined organic layers were 

washed with water and aqueous NaHCO3, and concentrated. Purification on silica gel 

column (EtOAc/hexane, 3:7) yielded 144a172 (200 mg, 96%) as a 2:5 mixture of α and β 

anomers: 1H NMR (400 MHz, CDCl3) δ 1.99 (s, 3, Ac), 1.99 (s, 1.2, Ac), 2.00 (s, 3, Ac), 
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2.01 (s, 4.2, Ac), 2.03 (s, 1.2, Ac), 2.04 (s, 4.2, Ac), 4.05 (dd, J = 5.2, 11.9 Hz, 1, H5'), 

4.11 (dd, J = 4.0, 12.1 Hz, 0.4, H5'), 4.21-4.30 (m, 2.4, H5, H4), 4.35 ("q", J = 3.0 Hz, 

0.4, H4), 5.14 (dd, J = 4.1, 6.8 Hz, 0.4, H2), 5.16 (dd, J = 3.0, 6.6 Hz, 0.4, H3), 5.24 (d, J 

= 4.0 Hz, 1, H2), 5.25 ("q", J = 4.8 Hz, 1, H3), 6.06 (s, 1, H1β), 6.32 (d, J = 4.1 Hz, 0.4, 

H1α). 

 1-[2H]-1,2,3,5-Tetra-O-acetyl-D-ribofuranose (144b). Acetylation of 143b 

(160, 0.71 mmol) by procedure B (step A) gave 1:5 mixture of α and β anomers of 

methyl 1-[2H]-2,3,5-tri-O-acetyl-D-ribofuranoside172 (200 mg, 96%). 1H NMR was as 

described above except for disappearance of H1' peaks at 5.01 and 4.79 ppm and 

simplification of the proton splitting for H2' at 4.87 ppm (d, J = 7.4 Hz). Subsequent 

acetolysis by procedure B (step B) afforded a 2:5 mixture of α and β anomers of 144b172 

(215 mg, 98%). 1H NMR was as described above for 144a except for disappearance of 

H1 peaks at 6.06 and 6.32 ppm and simplification of proton splitting for H2 at 5.14 ppm 

(d, J = 6.8 Hz) and 5.24 ppm (s). 

 2-[2H]-2,3-O-Isopropylidene-D-ribose (148). Conc. H2SO4 (0.075 mL) was 

added to a suspension of D-ribose (3 g, 0.02 mol) in dry acetone (30 mL) at rt. After 

stirring for 1.5 h, the reaction mixture was washed with aqueous NaHCO3, dried with 

MgSO4, and concentrated. The crude residue (~0.40 g, 2.1 mmol) was coevaporated in 

D2O and then was dissolved in a mixture of dioxane/tetrahydrofuran/triethylamine/D2O 

(2.4:2.4:1.2:1.6 mL). After 6 days of heating the solution at 90 oC, the reaction mixture 

was evaporated to give 148170 (0.40 g, 10%) with NMR data as reported in literature. 

 2-[2H]-1,2,3,5-Tetra-O-acetyl-D-ribofuranose (149). Procedure C.The solution 

of 148 (0.40 g, 2.1 mmol) in Ac2O:pyridine (1:1, 4.0 mL) was stirred at rt overnight. The 
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concentrated residue was dissolved in EtOAc and washed with aqueous HCl, NaHCO3, 

and NaCl. Purification on silica gel column (EtOAc/hexane, 3:7) gave [2-2H]-1,5-O-

diacetyl-2,3-O-isopropylidene-D-ribofuranose as an oil residue (150 mg, 26%). 

Procedure D. The above crude material (60 mg, 0.23 mmol) was dissolved in TFA:H2O 

at 0 oC and stirred for 30 min. The reaction mixture was concentrated, coevaporated with 

toluene, and dried to give [2-2H]-1,5-O-diacetyl-D-ribofuranose (50 mg, 98%) as an oily 

residue.  Acetic anhydride (0.5 mL) and pyridine (2 mL) were added and stirring was 

continued overnight at rt. The reaction mixture was concentrated, dissolved in EtOAc, 

washed with aqueous HCl, NaHCO3, and brine, and dried. Purification on silica gel 

column (EtOAc/hexane, 3:7) gave only the β anomer of 149173 (56 mg, 82%) as a clear 

oil. 1H NMR was as described above for 144a except for disappearance of H2 peak at 

5.24 ppm and simplification of proton splitting for H3 at 5.25 ppm (d, J = 6.9 Hz). 

 3-[2H]-diacetone-D-allose (154). Diacetone-D-glucose 153 (2.0 g, 7.7 mmol) was 

added to a premixed solution of chromium oxide (3.08 g, 30.8 mmol), pyridine (5.0 mL, 

61.5 mmol), and CH2Cl2 (20 mL) at 0 oC. Acetic anhydride (2.9 mL, 30.7 mmol) was 

then added slowly to the reaction mixture and continued to stir for 30 min. The reaction 

mixture was concentrated to half its volume and added into the silica-gel column packed 

in EtOAc. Elution with EtOAc afforded crude 3-ketoglucose (1.6 g, 81%). The 3-

ketoglucose was then dissolved in absolute ethanol (23 mL) and NaBD4 was added (1.14 

g, 30.7 mmol). The reaction mixture was first stirred at 0 oC and then at rt overnight. 

Purification on flash chromatography (EtOac) gave 154174 (1.2 g, 75%). The NMR data 

were as reported. 
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 3-[2H]-1,2-O-Isopropylidene-D-ribofuranose (155). Procedure E. A solution of 

154 (0.50g, 1.9 mmol) in ethyl acetate (12 mL) and periodic acid (0.57 g, 2.5 mmol) was 

stirred at rt for 3 h. The precipitate was filtered off and washed with EtOAc. The 

combined filtrate was concentrated, and was dissolved in EtOH (12 mL).  NaBH4 was 

added (146 mg, 3.83 mmol) and stirring was continued for 12 h.  Acetic acid (0.5 mL) 

was added and the volatiles were evaporated. Purification on silica gel column 

(CHCl3/MeOH, 9:1) afforded 155172 (280 mg, 60%) with NMR data were as reported. 

 3-[2H]-1,2-O-Isopropylidine-3,5-diacetyl-D-ribofuranose (156). Acetylation of 

155 (0.28 g, 1.47 mmol) as described in procedure C (3h) afforded 156175 (300 mg, 75%) 

with NMR data were as reported. 

 3-[2H]-1,2,3,5-Tetra-O-acetyl-D-ribofuranose (157). Removal of isopropylidine 

and acetylation of 156 (0.30 g, 1.10 mmol) by procedure D afforded 157173 (310 mg, 

89%) as a 1:3 mixture of α and β anomers. 1H NMR was as described above for 144a 

except for disappearance of H3 peaks at 5.25 and 5.16 ppm, simplification of H4β 

splitting within 4.21-4.30 ppm multiplet and the collapse of the quartet to triplet of H4α 

peak at 4.35 ppm (t, J = 3.7 Hz), as well as simplification of proton splitting for H2 at 

5.24 (s) and 5.14 (d, J = 4.6 Hz). 

 4-[2H]-5-O-acetyl-3-O-benzoyl-1,2-O-isopropylidene-α-D-ribofuranose (164). 

Dehomologation of 163 (0.30 g, 0.82 mmol) as described in procedure E afforded 16426 

(259 mg, 95%) with NMR data were as reported. 

 4-[2H]-1,2,5-Tri-O-acetyl-3-O-benzoyl-α-D-ribofuranose (165). Removal of 

isopropylidene and standard acetylation of 164 (257 mg, 0.76 mmol) as described in 

procedure D afforded 16526 (200 mg, 68%) as a 1:4 mixture of α and β anomers. 1H 
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NMR (400 MHz, CDCl3) δ 2.03 (s, 0.75, Ac), 2.10 (s, 3, Ac), 2.11 (s, 3, Ac), 2.12 (s, 

0.75, Ac), 2.17 (s, 0.75, Ac), 2.15 (s, 3, Ac), 4.25 (d, J = 12.0 Hz, 1, H5), 4.32 (d, J = 

12.1 Hz, 0.25, H5), 4.39 (d, J = 12.1 Hz, 0.25, H5'), 4.42 (d, J = 12.0 Hz, 1, H5'), 5.36 

(dd, J = 4.5, 6.4 Hz, 0.25, H2), 5.50 (dd, J = 1.3, 5.0 Hz, 1, H2), 5.55 (d, J = 6.4 Hz, 0.25, 

H3), 5.61 (d, J = 4.9 Hz, 1, H3), 6.25 (d, J = 1.3 Hz, 1, H1β), 6.53 (d, J = 4.5 Hz, 0.25, 

H1α), 7.47-7.50 (m, 3, Ar), 7.61-7.65 (m, 0.75, Ar), 8.01-8.11 (m, 2.5, Ar). 

 Uridine (138). Procedure F. ( Step A) Uracil (32 mg, 0.28 mmol) and 

chlorotrimethylsilane (0.047 mL, 0.040 g, 0.37 mmol) were dissolved in 

hexamethyldisilazane (1.5 mL) at 120 oC under N2, and stirred for 3 h to give the 

presilylated uracil. The clear solution of presilylated uracil was evaporated and 

immediately added to the solution of 144a (50 mg, 0.16 mmol) in acetonitrile (4 mL). 

Trimethylsilyl trifluoromethanesulfonate (TMSOTf, 0.035 mL, 0.043 g, 0.20 mmol) was 

added and allowed to stir at rt for 15 min. The reaction mixture was heated at 70 oC under 

N2 for 2h. Evaporation and standard work up (EtOAC//aq. NaHCO3, brine) gave 2',3',5'-

O-triacetyl-uridine (56 mg, 96%). (Step B) NH3/MeOH (2 mL) was added to the 2',3',5'-

O-triacetyl-uridine in MeOH (2mL) at 0 oC. The reaction mixture was stirred for 6 h, 

evaporated, washed with ether, and dried to give 13824 (35 mg, 95%).1H NMR (400 

MHz, D2O) δ 3.70 (dd, J = 12.8, 4.4 Hz, 1, H5''), 3.80 (dd, J = 12.8, 3.0 Hz, 1, H5'), 4.03 

("q", J = 4.1 Hz, 1, H4'), 4.13 (t, J = 5.4 Hz, 1, H3'), 4.25 (t, J = 5.1 Hz, 1, H2'), 5.89 (d, J 

= 8.1 Hz, 1, H5), 5.81 (d, J = 4.8 Hz, 1, H1'), 7.77 (d, J = 8.1 Hz, 1, H6); MS (ESI) m/z 

245 (MH+). 

 1'-[2H]-Uridine (145). Coupling of 144b (50 mg, 0.16 mmol) with uracil by 

procedure F (step A) gave 2',3',5'-O-triacetyl-[1'-2H]-uridine (40 mg, 69%). Subsequent 
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deacetylation by procedure F (step B) gave 145 (22 mg, 85%). 1H NMR was as described 

above for 138 except for disappearance of H1' peak at 5.81 ppm and simplification of 

proton splitting for H2' at 4.25 ppm (d, J = 5.4 Hz). MS (ESI) m/z 246 (MH+). 

 2'-[2H]-Uridine (150). Coupling of 149 with uracil by procedure F (step A) gave 

2',3',5'-O-triacetyl-[2'-2H]-uridine (56 mg, 96%). Subsequent deacetylation by procedure 

F (step B) gave 150170 (35 mg, 95%).1H NMR was as described for 138 except for 

disappearance of H2' peak at 4.25 ppm and simplification of proton splitting for H1' at 

5.81 ppm (s) and H3' at 4.13 ppm (d, J = 4.6 Hz). MS (ESI) m/z 246 (MH+). 

 3'-[2H]-Uridine (158). Coupling of 157 (0.20 g, 0.63 mmol) with uracil by 

procedure F (step A) gave 2',3',5'-O-triacetyl-[3'-2H]-uridine (230 mg, 99%). Subsequent 

deacetylation by procedure F (step B) gave 158 (140 mg, 97 %).1H NMR was as 

described for 138 except for disappearance of H3' peak at 4.13 ppm and simplification of 

proton splitting for H2' at 4.25 ppm (d, J = 4.6 Hz) and H4' at 4.03 ppm (t, J = 2.8 Hz). 

MS (ESI) m/z 246 (MH+). 

 4'-[2H]-Uridine (166). Coupling of 165 (148 mg, 0.39 mmol) with uracil by 

procedure F (step A) gave 2',5'-O-diacetyl-3'-O-benzoyl-[4'-2H]-uridine (110 mg, 58 %). 

Subsequent deacetylation by procedure F (step B) gave 166 (55 mg, 60%).1H NMR was 

as described for 138 except for disappearance of H4' peak at 4.03 ppm and simplification 

of proton splitting for H3' at 4.13 ppm (d, J = 5.3 Hz), H5' at 3.80 ppm (d, J = 12.2 Hz), 

and H5'' at 3.70 ppm (d, J = 12.2 Hz). MS (ESI) m/z 246 (MH+). 

 2',3'-O-Sulfinyl Uridine (139). Uridine (138, 0.50 g, 2.0 mmol) was dissolved 

into a mixed solution of thionyl chloride (0.65 mL) and ACN (5 mL) with vigourously 

stirring. The reaction mixture was maintained at 5 oC for 5 h. The white precipitate 
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formed after the addition of water (0.2 mL) was filtered, washed with cold ether, and then 

dried in vacuum. Purification on silica gel column (CHCl3/MeOH, 8:2) gave 139165,166 as 

diastereomers (0.42 g, 67%, 4:1). The NMR data were as reported. 

 1-(2,2'-Anhydro-β-D-arabinofuranosyl)uracil (140). Method A. The solution 

of 139 (0.30 g, 1.03 mmol) and NaOAc (0.42 g, 5.2 mmol) was heated in DMF at 85 oC, 

stirred for 4 h, and then cooled. The volatiles were evaporated and the residue was 

purified on silica gel column (SSE) to afford 140165,166 (210 mg, 90%).  

Method B. Procedure G .Uridine 138 (50 mg, 0.21 mmol) was dissolved in DMF (1.0 

mL) and treated with diphenyl carbonate (57 mg, 0.27 mmol) and NaHCO3 (5 mg). The 

reaction mixture was heated at 150 oC for 20 min, cooled down and poured into cold 

ether (5 mL), and concentrated. Purification by silica gel column (CHCl3/MeOH, 8:2) 

afforded 140 (20 mg, 43%).1H NMR (400 MHz, D2O) δ 3.47 (dd , J = 4.2, 12.6 Hz, 1, 

H5'), 3.51 (dd , J = 3.6, 12.6 Hz, 1, H5''), 4.31 ("dt", J = 1.8, 3.8 Hz, 1, H4'), 4.58 ("br s", 

1, H3'), 5.38 (d, J = 5.9 Hz, 1, H2'), 6.11 (d, J = 7.4 Hz, 1, H5), 6.45 (d, J = 5.9 Hz, 1, 

H1'), 7.83 (d, J = 7.4 Hz, 1, H6); MS (ESI) m/z 227 (M + H+). 

 1'-[2H]-1-(2,2'-Anhydro-β-D-arabinofuranosyl)uracil (146). Treatment of 2'-

[2H]-uridine 145 (25 mg, 0.10 mmol) by procedure G gave 146 (17 mg, 75 %) with 

identical physical, chemical, and spectroscopical properties as 140 except except for the 

disappearance of H1' peak at 6.45 ppm and simplification of proton splitting for H2' at 

5.38 ppm (s). MS (ESI) m/z 228 (M + H+). 

 2'-[2H]-1-(2,2'-Anhydro-β-D-arabinofuranosyl)uracil (151). Treatment of 2'-

[2H]-uridine 150 (35 mg, 0.14 mmol) by procedure G gave 151 (22 mg, 69 %) with 

identical physical, chemical, and spectroscopical properties properties as 140 for presence 
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of residual for H2' peak (~ <5%) and simplification of proton splitting for H1' at 6.45 

ppm (s).  

 3'-[2H]-1-(2,2'-Anhydro-β-D-arabinofuranosyl)uracil (159). Treatment of 3'-

[2H]-uridine 158 (50 mg, 0.20 mmol) by procedure G gave 159 (20 mg, 43%) with 

identical physical, chemical, and spectroscopical properties as 140 except for the 

disappearance of H3' at 4.58 ppm and simplification of proton splitting for H4' at 4.31 

ppm ("t", J = 3.9 Hz).  

 4'-[2H]-1-(2,2'-Anhydro-β-D-arabinofuranosyl)uracil (167). Treatment of 4'-

[2H]-uridine 166 (44 mg, 0.18 mmol) by procedure G gave 167 (25 mg, 63 %) with 

identical physical, chemical, and spectroscopical properties as 140 except for the 

disappearance of H4' peak at 4.31 ppm and simplification of proton splitting for H5' at 

3.47 ppm (d, J = 12.8 Hz) and H5'' at 3.51 (d, J = 12.8 Hz). 

 5,6-[2H]-1-(2,2'-Anhydro-β-D-arabinofuranosyl)uracil (113). Treatment of 5,6-

[2H]-uridine 169 (50 mg, 0.20 mmol) by procedure G gave 170 (20 mg, 43 %) with 

identical physical, chemical, and spectroscopical properties as 140 except for the 

disappearance of H5 and H6 peaks at 6.11 ppm and 7.83 ppm, respectively.  

 2'-Azido-2'-deoxyuridine (141). Method A. The stirred suspension of LiF (36 

mg, 1.33 mmol) in DMF (1.2 mL) was heated to 105 oC for 10 min. Then, N,N,N,N-

tetramethylethylenediamine (TMEDA, 0.66 mL) and trimethylsilylazide (1.8 mL, 0.15 g, 

1.33 mmol) were added. After 30 min of stirring at 105 oC, 2,2'-O-anhydro-1-(β-D-

arabinofuranosyl)uracil 140 ( 0.15 g, 0.66 mmol) was added and allowed to stir at 110 oC 

for 48h. The volatiles were evaporated, and MeOH was added to the residue and 

evaporated (3x). The oily residue was then dissolved in MeOH and EtOAc. The 
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precipitate salts were filtered, and the filtrate was concentrated and purified on silica gel 

column (EtOAc/MeOH, 9:1) to afford 141165,168 (47 mg, 26%).  

Method B. Procedure H. The solution of 140 (30 mg, 0.13 mmol) and NaN3 (60 mg, 

0.93 mmol) in 0.5 mL of HMPA was heated at 150 oC. After 30 min of stirring, benzoic 

acid (16 mg, 0.13 mmol) was added and continued stirring for another 15 min. The 

reaction mixture was diluted with H2O and washed with CHCl3. The organic layer was 

back-extracted with H2O. The combined aqueous layers were concentrated and purified 

on silica gel column (EtOAC/MeOH, 9:1) to afford 141 (20 mg, 56%).1H NMR (400 

MHz, D2O) δ 3.70 (dd, J = 4.3, 12.8 Hz, 1, H5''), 3.82 (dd, J = 2.8, 12.8 Hz, 1, H5'), 4.00 

("ddd", J = 2.9, 4.2, 6.0 Hz, 1, H4'), 4.22 ("dd", J = 4.5, 5.7 Hz, 1, H2'), 4.35 (t, J = 5.9 

Hz, 1, H3'), 5.77 (d, J = 8.1 Hz, 1, H5), 5.80 (d, J = 4.4 Hz, 1, H1'), 7.75 (d, J = 8.1 Hz, 1, 

H6); MS (ESI-) m/z 268 (MH-). 

 1'-[2H]-2'-Azido-2'-deoxyuridine (147). Azidation of 146 (20 mg, 0.09 mmol) 

by procedure H afforded 147 (10 mg, 42%) with identical physical, chemical, and 

spectrosopical properties as 141 except for the disappearance of H1' peak at 5.80 ppm 

and simplification of proton splitting for H2' at 4.22 ppm (d, J = 5.8 Hz); MS (ESI) m/z 

269 (M + H-). 

 2'-[2H]-2'-Azido-2'-deoxyuridine (152). Azidation of 151 (22 mg, 0.10 mmol) 

by procedure H afforded 152 (7 mg, 27%) with identical physical, chemical, and 

spectrosopical properties as 141 except for the disappearance of H2' at 4.22 ppm and 

simplification of proton splitting for H1' at 5.80 ppm (s) and H3' at 4.35 ppm (d, J = 6.0 

Hz); MS (ESI) m/z 269 (M + H-). 
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 3'-[2H]-2'-Azido-2'-deoxyuridine (160). Azidation of 159 (20 mg, 0.09 mmol) 

by procedure H afforded 160 (15 mg, 63%) with identical physical, chemical, and 

spectrosopical properties as 141 except for the disappearance of H3' peak at 4.35 ppm 

and simplification of proton splitting for H2' at 4.22 ppm (d, J = 4.5 Hz) and H4' at 4.00 

ppm ("dd", J = 2.9, 4.2 Hz); MS (ESI) m/z 269 (M + H-). 

 4'-[2H]-2'-Azido-2'-deoxyuridine (168). Azidation of 167 (25 mg, 0.11 mmol) 

by procedure H afforded 168 (20 mg, 67%) with identical physical, chemical, and 

spectrosopical properties as 141 except for the disappearance of H4' peak at 4.00 ppm 

and simplification of proton splitting for H3' at 4.35 ppm (d, J = 5.8 Hz), H5' at 3.82 ppm 

(d, J = 12.8 Hz), and H5'' at 3.70 ppm (d, J = 12.8 Hz); MS (ESI) m/z 269 (M + H-). 

 5,6-[2H2]-2'-Azido-2'-deoxyuridine (171). Azidation of 170 (18 mg, 0.08 mmol) 

by procedure H afforded 171 (11 mg, 52%) with identical physical, chemical, and 

spectrosopical properties as 141 except for the disappearance of H6 peak at 7.75 ppm and 

the presence of the residual peak (~ 30%) for H5 at 5.77 ppm (s); MS (ESI) m/z 270 (M + 

H-). 

trans-2-Ethenylcyclohexanol (130). Cyclohexene oxide (5.05 mL, 0.050 mol) 

was added to a stirred solution of CuI (0.95 g, 5.0 mmol) in dry ether (20 mL) at -30 oC,. 

Vinyl magnesium bromide (60 mL, 1.0 mmol) was then added dropwise over a period of 

1h and the resulting mixture was subsequently stirred for another 1.5h while maintaining 

the temperature at -30 oC.  Saturated ammonium chloride was added to the red-brown 

reaction mixture. Washing with aqueous NaCl, drying of the organic layer with Mg2SO4, 

and evaporation afforded 130176 (6.1 g, 98%). 1H NMR (400 MHz, CDCl3) δ 1.65-2.10 
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(m, 9H), 3.67-3.75 (m, 1, CHOH), 5.10-5.19 (m, 2, CH2 alkene), 5.68 ("quintet", 1, J = 

8.5, 17.1 Hz, CH alkene); bp = 40 oC [lit.176,177 bp 44 oC].  

 trans-2-Ethylthioatecyclohexanol (131).  Thiolacetic acid (0.050 mol, 3.84 g, 

3.59 mL) was added slowly to 130 (5.33 g, 0.042 mol) while irradiating with a 250 W 

bulb under a reflux condenser at ambient temperature.  After 24h, the reaction was 

diluted with ether and washed with aqueous NaHCO3 and brine, dried, and evaporated. 

Purification on column chromatography (hexane: EtOAc, 85:15) afforded 131 (7.7 g, 

91%). 1H NMR (400 MHz, CDCl3) δ 0.95-1.02 (m, 1H), 1.15-1.34 (m, 4H), 1.40-1.49 

(m, 1H), 1.63-1.91 (m, 3H), 1.92-2.01 (m, 2H), 2.32 (s, 3, CH3), 2.80-2.87 (m, 1, 

CHaHbSAc), 2.98-3.04 (m, 1 CHaHbSAc), 3.23 (dt J = 5.4, 9.8 Hz, 1, CHOH); 13C 

NMR (CDCl3) δ 24.82 (CH2), 25.44 (CH2),  26.89 (CH2), 30.26 (CH2SAc), 30.59 (CH3), 

32.70 (CH2), 44.50 (CH), 74.35 (COH), 196.49 (CO). 

 cis-2-(2-Azidocyclohexyl)ethanethioate (132). Triphenylphosphine (4.44 mmol, 

1.17 g), diphenylphosphoryl azide (DPPA, 4.44 mmol, 1.22 g, 0.96 mL), and diisopropyl 

azodicarboxylate (DIAD, 4.44 mmol, 0.90 g, 0.86 mL) were added sequentially to the 

solution of 131 (0.030 mmol, 6.0 g) in dry THF (20 mL). The reaction mixture was 

stirred at 0 oC for 1h.  Evaporation and purification on column chromatography (hexane: 

EtOAc, 95:5) afforded 132 (176 mg, 25%). 1H NMR (400 MHz, CDCl3) δ 1.23-1.32 (m, 

3H), 1.45-1.69 (m, 7H), 1.95-1.98 (m, 1H), 2.33 (s, 3, CH3), 2.83-2.92 (m, 2, CH2SAc), 

3.77 (s, 1, CHN3); 13C NMR (CDCl3) δ 20.91 (CH2), 24.83 (CH2), 26.62 (CH2SAc), 

26.86 (CH2), 29.54 (CH2), 30.63 (CH3), 32.19 (CH2), 39.58 (CH), 61.63 (CHN3), 195.81 

(CO); MS (ESI) m/z 203 [M + H]+. 
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 cis-2-(2-Azidocyclohexyl)ethanethiol (133). Saturated NaOH in MeOH (10 mL) 

was added to a solution of 132 (176 mg, 0.77 mmol) in MeOH (5 mL), and stirred under 

N2 at -30 oC for 3h. HCl solution (1:1) was added to neutralize he reaction mixture and 

stirred at -50 oC for another 30 min. The volatiles were evaporated and washed with cold 

water//chloroform.  The organic layer was washed with cold aqueous NaHCO3 and brine 

to afford 133 (125 mg, 87%). 1H NMR (400 MHz, CDCl3) δ 1.25-1.35 (m, 3H), 1.43-

1.72 (m, 8H), 1.96-2.00 (m, 1H), 2.54-2.60 (m, 2, CH2SH), 3.77 (s, 1, CHN3); 13C NMR 

(CDCl3) δ 20.94 (CH2), 22.06 (CH2), 24.85 (CH2SH), 26.84 (CH2), 29.57 (CH2), 36.66 

(CH2), 38.93 (CH), 61.71 (CHN3); [Turned yellow upon applying Elleman's reagent].  

Disulfide 1H NMR (400 MHz, CDCl3) δ 1.19-1.36 (m, 3H), 1.47-1.72 (m, 8H), 1.96-1.98 

(m, 1H), 2.68-2.72 (m, 2, CH2SS), 3.77 (s, 1, CHN3); [No changes was observed when 

applying Elleman's reagent]. 

General method for gamma irradiation.  AZT (14.1 mg, 1.0 mM) and l-

cysteine (60.7 mg, 10 mM) were dissolved in 50 mL of phosphate buffer solution at pH 

7.08. [Buffer solution was made by dissolving 1.56 g and 3.58 g of NaH2PO4 • 2H2O and 

Na2HPO4 •12 H2O, respectively, in 1 L of Milli-Q water.] The solution was divided into 

5 vials of 9 mL each. The 5 vials of solution were saturated with N2O (or 9:1 N2O: O2) 

for 30 min before irradiated at 2 kGy, 4 kGy, and 6 kGy, where were equivalent to 313.3, 

622.7, and 919.5 min in the gamma cell respectively. At the equivalent time of the 

dosage, the sample was taken for HPLC and LCMS analysis.   
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5. CONCLUSION 

 In this dissertation, I presented a biomimetic simulation reaction for the 

generation of the nitrogen-centered radicals similar to the one observed during the 

inactivation of the RNR by azionuclotides. First, density functional calculations disclosed 

that intramolecular reactions between thiyl radical and azido group resulting in ring 

closure are facile for both 5'- and 2'-O-cysteinate substrates (~40 kcal/mol). For 

substrates having vicinal disulfide linkage, the calculations also indicated that the 

reactions are exothermic with low transition state energy barriers (~12.9 kcal/mol) for the 

β thiyl radical requiring 9-membered transition state for both S and R diastereomers at 

Cα. However, the reaction between the α thiyl radical and the azido group did not occur. 

 Following the encouraging results from theoretical calculations, 3'-azido-3'-

deoxynucleosides bearing a cysteinyl or vicinal disulfide substituent attached to C2' or 

C5' via an ester linkage were successfully synthesized by condensation of the 3'-azido-3'-

deoxynucleosides with the cysteine or dimercaptopropionic acid.  The more robust 

analogues having vicinal dithiol group attached at the 2'-OH or 5'-OH groups of the 3'-

azido nucleosides via O-alkyl linkage were also prepared to improve stability. To avoid 

competitive allylation of thymine, the nitrogen at position 3 of the heterocyclic base of 

AZT was methylated with diazomethane prior to the allylation of the 5'-hydroxyl group 

with allyl bromide.  Subsequent bromination and replacement of bromides with 

thioacetate afforded the AZT analogue with a vicinal dithiol substituent attached through 

a 5'-O-alkyl linkage. 

  Control experiments of AZT in the presence of AAPH as a radical initiator 

demonstrated that the azido group of AZT was stable under the studied conditions. 
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Reactions between cysteine or dimercaptopropionic acid and AZT in the presence of 

AAPH also indicated that there was also no intermolecular interaction between the 

generated thiyl radicals and the azido group of AZT.  The results from the intramolecular 

interaction studies between the thiyl radical and azido group of the model nucleosides 

proved to be a challenging endeavor. Both the ester and ether linkages that attached the 

thiol or dithiol functionalities to C5' or C2' of the 3'-azido nucleosides were either 

unstable under the conditions required for the generation of thiyl radicals or underwent 

other side reactions.  However, from heating of 3'-azido-3'-deoxy-2'-O-(2,3-

dimercaptopropyl)adenosine in the presence AAPH, the data showed the formation of a 

new nucleoside product that is tentatively assigned as an adenosine derivative with a 

1,3,2-dithiazolidine ring attached at C3'.  

 The aim to study the intramolecular interaction between the thiyl radical and azide 

was continued with using gamma radiation as a source of radical generator. Both 

literature and my experiments showed that the reduction of AZT occured from the thiyl 

radical generated by γ-irradiation of mercaptoethanol happened spontaneously rather than 

through radical stress. The reaction between cysteine and AZT under γ-irradiation at 

different conditions provided the plausible conclusion that thiyl radicals from cysteine 

reacted with AZT to give thymine while the hydrogen sulfide formed during the radical 

stress from cysteine reduced AZT to its amino counterpart.  Under a different condition 

of γ-irradiation in aqueous (H2O or D2O) glassy (7.5 M LiCl) systems, the reaction 

between the thiyl radicals generated from cysteamine and the azido group of AZT was 

also shown to be unfeasible. My results suggested that alkyl thiyl radicals are not likely to 
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react chemically with the alkyl azide to form the nitrogen-centered radical as proposed in 

the mechanism of the inactivation of the RNR by azidonucleotides.   

Although evidence for the reaction between the alkyl thiyl radical and alkyl azide 

remains elusive, preliminary ESR results from 2'-azido-2'-deoxyuridine and its deuterium-

labeled analogues clearly established the structure of the aminyl radical with the nitrogen bearing 

an unpaired electron still attached to the ribose ring. Furthermore, a transient sugar-derived 

radical at ribose ring was detected as proposed in RNR inhibition assays. These results give 

insight toward understanding the mechanism of the formation of the nitrogen-centered radical 

during the inactivation of RNRs by azidonucleotides as well as the mechanism of action of 

RNRs that might provide key information necessary for the development of the next generation 

antiviral and anticancer drugs.  
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