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ABSTRACT OF THE DISSERTATION

CHARACTERIZING INTERNET WORM SPATIAL-TEMPORAL INFECTION

STRUCTURES

by

Qian Wang

Florida International University, 2010

Miami, Florida

Professor Niki Pissinou, Major Professor

Since the Morris worm was released in 1988, Internet worms continue to be one of top

security threats. For example, the Conficker worm infected 9to 15 million machines in

early 2009 and shut down the service of some critical government and medical networks.

Moreover, it constructed a massive peer-to-peer (P2P) botnet. Botnets are zombie net-

works controlled by attackers setting out coordinated attacks. In recent years, botnets have

become the number one threat to the Internet.

The objective of this research is to characterize spatial-temporal infection structures of

Internet worms, and apply the observations to study P2P-based botnets formed by worm

infection.

First, we infer temporal characteristics of the Internet worm infection structure,i.e.,

the host infection time and the worm infection sequence, andthus pinpoint patient zero or

initially infected hosts. Specifically, we apply statistical estimation techniques on Darknet

observations. We show analytically and empirically that our proposed estimators can sig-

nificantly improve the inference accuracy. Second, we reveal two key spatial characteristics

of the Internet worm infection structure,i.e., the number of children and the generation of

the underlying tree topology formed by worm infection. Specifically, we apply probabilistic

modeling methods and a sequential growth model. We show analytically and empirically

that the number of children has asymptotically a geometric distribution with parameter 0.5,
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and the generation follows closely a Poisson distribution.Finally, we evaluate bot detec-

tion strategies and effects of user defenses in P2P-based botnets formed by worm infection.

Specifically, we apply the observations of the number of children and demonstrate ana-

lytically and empirically that targeted detection that focuses on the nodes with the largest

number of children is an efficient way to expose bots. However, we also point out that fu-

ture botnets may self-stop scanning to weaken targeted detection, without greatly slowing

down the speed of worm infection. We then extend the worm spatial infection structure and

show empirically that user defenses,e.g.,patching or cleaning, can significantly mitigate

the robustness and the effectiveness of P2P-based botnets.To counterattack, we evalu-

ate a simple measure by future botnets that enhances topology robustness through worm

re-infection.
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CHAPTER 1

INTRODUCTION

Internet worms are malicious software that can compromise vulnerable hosts and use them

to attack other victims, and have been one of top security threats since the Morris worm

in 1988. Botnets are zombie networks controlled by attackers through Internet relay chat

(IRC) systems (e.g.,GT Bot) or peer-to-peer (P2P) systems (e.g.,Storm) to execute co-

ordinated attacks and have become the number one threat to the Internet in recent years.

The main difference between worms and botnets lies in that worms emphasize the proce-

dures of infecting targets and propagating among vulnerable hosts, whereas botnets focus

on the mechanisms of organizing the network of compromised computers and setting out

coordinated attacks, such as sending denial-of-service attacks, producing spams, and steal-

ing financial information. Most botnets, however, still apply worm-scanning methods to

recruit new bots or collect network information [1, 2, 3, 4].Moreover, although many P2P-

based botnets use the existing P2P networks to build a bootstrap procedure, Conficker C

forms a P2P botnet through scan-based peer discovery [5, 6].Specifically, Conficker C

searches for new peers by randomly scanning the entire Internet address space. As a result,

the way that Conficker C constructs a P2P-based botnet is in principle the same as worm

scanning/infection. Therefore, characterizing structures of worm infection is important and

imperative for defending against current and future epidemics such as Internet worms and

Conficker C like P2P-based botnets.

1.1 Internet Worm Spatial-Temporal Infection Structures

Since the Code Red worm in 2001, Internet worms have been an active research topic.

Many research works have been developed to characterize thespread of worms, estimate

worm behaviors, and contain worm propagation. Most previous works, however, have
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focused on themacro-levelcharacteristics of worm infection. For example, differentana-

lytical approaches have been applied to study the total number of infected hosts over time

[7, 8, 9, 10, 11, 1, 12]. Themicro-level information of worm infection that focuses on

individual hosts, however, has been investigated little. In this thesis, we focus on individ-

ual infected hosts and study their infection relationships, i.e., the Internet worm infection

structure.

When a host infects another host, they form a “father-and-son” relationship, which is

represented by a directed edge in a graph formed by worm infection, the worm infection

family tree, called the “worm tree” in short (see Fig. 1.1). That is, the procedure of worm

propagation constructs a directed tree where patient zero is the root and the infected hosts

that do not compromise any vulnerable host are leaves. Basedon the perspective from

which the worm tree is investigated, we divide the Internet worm infection structure into

two domains: the temporal and spatial infection structures. The worm temporal infection

structure describes the temporal infection relationship between individual infected hosts in

the worm tree by studying their infection times, and therefore sheds light on the information

of “who infects before whom”; the worm spatial infection structure characterizes the spatial

infection relationship between individual infected hostsby studying the topology of the

worm tree, and therefore provides insights into the information of “who infects whom”.

1.2 Research Objectives and Contributions

The objective of this thesis is to characterize the spatial-temporal infection structures of

Internet worms, and apply the observations to study P2P-based botnets formed by worm

infection. Specifically, we investigate the following three topics:

1. Characterizing Internet worm temporal infection structure: First, we infer the

temporal infection relationship between individual infected hosts by answering the follow-

ing two questions:

2



Patient zero

Figure 1.1: A worm tree.

• Host infection time:When exactly does a specific host get infected? This information

is critical for the reconstruction of the worm infection sequence.

• Worm infection sequence:What is the order in which hosts are infected by worm

propagation? Such an order can help identify patient zero orinitially infected hosts.

The information of both the infection time and the infectionsequence is important for

defending against worms. First, the identification of patient zero or initially infected hosts

and their infection times provide forensic clues for law enforcement against the attackers

who wrote and spread the worm. Second, the knowledge of the infection sequence provides

insights into how a worm spread across the Internet and how network defense systems were

breached.

To answer these two questions analytically, we apply Internet worm tomography, which

refers to inferring the characteristics of Internet worms from the observations of Darknet

that monitor a routable but unused IP address space. Specifically, we introduce statistical

estimation techniques and propose method of moments, maximum likelihood, and linear

regression estimators. We then apply Monte Carlo simulation to verify our analytical re-

sults. Our research work makes several contributions:
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• We propose method of moments, maximum likelihood, and linear regression statisti-

cal estimators to infer the host infection time. We show analytically and empirically

that the mean squared error of our proposed estimators can bealmost half of that

of the naive estimator used in the previous work [13] in inferring the host infection

time.

• We extend our proposed estimators to infer the worm infection sequence. Specif-

ically, we formulate the problem of estimating the worm infection sequence as a

detection problem and derive the probability of error detection for different estima-

tors. We demonstrate analytically and empirically that ourmethod performs much

better than the algorithm proposed in the previous work [13].

• We show empirically that our estimators have a better performance in identifying

patient zero or initially infected hosts of the smart worm than the naive estimator.

We also demonstrate that our estimators can be applied to worms using different

scanning strategies such as random scanning and localized scanning.

2. Characterizing Internet worm spatial infection structure: Next, we investigate

the spatial infection relationship between individual infected hosts by studying the follow-

ing two metrics of the worm tree:

• Number of children:For a randomly selected node in the tree, how many children

does it have? This metric represents the infection ability of individual hosts.

• Generation:For a randomly selected node in the tree, which generation (or level)

does it belong to? This metric indicates the average path length of the graph formed

by worm infection.

These two metrics have important implications and applications for security analysis. For

example, the distribution of the number of children can be used to answer questions such

as what is the probability that an infected host compromisesmore than 10 vulnerable hosts.

4



Moreover, some schemes have been proposed to trace worms back to their origins through

the cooperation between infected hosts [14], and the distribution of generations can provide

the information on the number of hosts required to cooperate.

To study these two metrics analytically, we apply probabilistic modeling methods and

a sequential growth model. Specifically, we start from a wormtree with only patient zero

and add new nodes into the worm tree sequentially. We then investigate the relationship

between the two worm trees before and after a new node is addedand verify our analysis

through simulation. Our research work makes several contributions:

• We show both analytically and empirically that if a worm usesa scanning method

for which a new victim is compromised by each existing infected host with equal

probability, the number of children has asymptotically a geometric distribution with

parameter 0.5. This means that on average half of infected hosts never compromise

any target and over 98% of infected hosts have no more than fivechildren. On the

other hand, this also indicates that a small portion of hostsinfect a large number of

vulnerable hosts.

• We demonstrate analytically and empirically that the generation closely follows a

Poisson distribution with parameterHn − 1, wheren is the number of nodes andHn

is then-th harmonic number [15]. This means that the average path length of the

worm tree increases approximately logarithmically with the number of nodes.

• We show empirically that if a worm uses localized scanning, the number of children

still has approximately a geometric distribution with parameter 0.5. Moreover, the

generation still follows a Poisson distribution, but with the parameter depending on

the probability of local scanning. Therefore, most previous observations also apply

to localized-scanning worms.

3. Evaluating P2P-based botnets formed by worm infection:Finally, we study P2P-

based botnets formed by worm infection and answer the following two questions:
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• Bot detection:What is the most effective method to detect bots? This information is

critical for defenders to combat against botnets.

• User defenses:How do user defenses (e.g.,host patching or cleaning) affect P2P-

based botnets formed by worm infection? This information helps defenders evaluate

the effectiveness of their defense systems.

The answer of the first question is directly related to the number of children of the

worm spatial infection structure. For example, if a very small number of hosts infect a

large number of machines and the majority of hosts have none or few children, such botnets

are robust to random defenses, but are vulnerable to targeted defenses of a small portion

of nodes with highest node degrees [16]. On the other hand, ifeach host has a similar

node degree, then such botnets are robust to both defense schemes [16]. The answer of the

second question reflects the robustness and the effectiveness of the botnet topology formed

by worm infection under user defenses. For example, if user defenses disrupt the botnet

into a collection of small isolated botnets, then the effectiveness is lower than the single

connected botnet with the same total number of bots.

To answer these two questions, we first evaluate efficient botdetection methods both

analytically and empirically by applying the results of thenumber of children of the worm

spatial infection structure. We then empirically study effects of user defenses on the botnet

topology formed by worm infection. Specifically, we study the number of peers (i.e., the

number of father and children for a randomly selected bot in the botnet topology), and the

botnet size (i.e., the number of bots for a randomly selected botnet in the topology). Our

research work makes several contributions:

• We show both analytically and empirically that while randomly examining a small

portion of nodes in a botnet (i.e.,random detection) can only expose a limited number

of bots, examining the nodes with the largest number of children (i.e., targeted de-

tection) is much more efficient in detecting bots. For example, our simulation shows

6



that when 3.125% nodes are examined, random detection exposes totally 9.10% bots,

whereas targeted detection reveals 22.36% bots.

• We find empirically that when user countermeasures are considered, the distribution

of the number of peers has an exponential scaling with the decay constant increasing

with the number of patched or cleaned hosts. This implies that a small percentage of

bots have a large number of peers and the majority of bots havenone or few peers.

Moreover, the distribution of the disconnected botnet sizehas a power-law tail with

the scaling exponent increasing with the number of patched or cleaned hosts. This

reflects that patching or cleaning severely disrupts the single worm tree. We also find

that the size of the largest isolated botnet is relatively small. Therefore, P2P-based

botnets formed by worm infection are vulnerable to targeteddefenses and ineffective

due to patching or cleaning. However, we discover that botmasters may potentially

enhance the robustness and the effectiveness of P2P-based botnets through worm

re-infection.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 surveys the related work. Chapter

3 infers temporal characteristics of the Internet worm infection structure,i.e., the host in-

fection time and the worm infection sequence. Chapter 4 characterizes the Internet worm

spatial infection structure and reveals two key characteristics,i.e., the number of children

and the generation of the underlying tree topology formed byworm infection. Next, Chap-

ter 5 evaluates bot detection strategies and effects of userdefenses in P2P-based botnets

formed by worm infection. Finally, Chapter 6 concludes the thesis and identifies future

research directions.
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CHAPTER 2

RELATED WORK

In the first chapter, we identified our research objectives and outlined our contributions. In

this chapter, we answer the following questions: Why are existing techniques or models

not sufficient for characterizing the worm infection structure? And how are they related to

or different from our solution?

2.1 Internet Worm Temporal Infection Structure

Under the framework of Internet worm tomography, several works have applied Darknet

observations to infer the characteristics of worms. For example, Chenet al. studied how

the Darknet can be used to monitor, detect, and defend against Internet worms [9]. Moore

et al. applied network telescope observations and least squares fitting methods to infer

the number of infected hosts and scanning rates of infected hosts [17]. Some works have

researched on how to use Darknet observations to detect the appearance of worms [18, 12,

19, 20]. For instance, Zouet al. used a Kalman filter to infer the infection rate of a worm

and then detect the worm [12]. Moreover, the Darknet observations have been used to study

the feature of a specific worm, such as Code Red [21], Slammer [22], and Witty [23].

Internet worm tomography has been applied to infer worm temporal characteristics.

For example, Kumaret al. used network telescope data and analyzed the pseudo-random

number generator to reconstruct the “who infected whom” infection tree of the Witty worm

[24]. Hamadehet al. further described a general framework to recover the infection se-

quence for both TCP and UDP scanning worms from network telescope data [25]. Rajab

et al. applied the same data and studied the “infection and detection times” to infer the

worm infection sequence [13]. Different from the above works, in Chapter 3, we employ

advanced statistical estimation techniques to Internet worm tomography.
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2.2 Internet Worm Spatial Infection Structure

Some efforts have been focused on individual infected hostsand studied the worm infection

sequence [24, 13, 14, 26]. The prior work investigates the details of the random number

generator of worm propagation [24] or infers the worm infection sequence through the ob-

servations of network telescopes [13, 26]. In Chapter 4, we apply probabilistic modeling

methods and reveal key micro-level information of the worm spatial infection structure,

such as the infection ability of individual hosts and the underlying tree topology formed

by worm infection. Moreover, Sellkeet al. applied a branching process to study the effec-

tiveness of a containment strategy [27]. They assume that the total number of scans of an

infected host is bounded. As a result, the worm tree studied in their work is fundamentally

different from the one in our work.

Modeling the topology generation process has been an activeresearch area. For ex-

ample, Barabásiet al. developed the well-known Barabási-Albert (BA) model and used a

mean-field approach to characterize the growth of a topologywith both preferential attach-

ment and uniform attachment [28, 29]. Moreover, two exact mathematical models have

been studied for the BA model [30, 31]. From the theoretical aspect, our proposed worm

tree is similar to the random tree. For example, Devroye usedthe records theory to derive

the distribution of the level of a random ordered tree in [32]. Compared with these theoreti-

cal efforts, our work studies a very different problem (i.e.,worm spatial infection structure)

and uses a very different approach (i.e.,probabilistic modeling).

2.3 P2P-based Botnets Formed by Worm Infection

Botnets have become the top threat to the Internet in recent years [33, 34], and are rapidly

transiting from IRC systems to P2P systems [35]. In [36], Wang et al. gave a systematic

study on P2P-based botnets. Moreover, it has been shown thatin current botnets, worm
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infection is still a main tool for recruiting new bots or collecting network information,

and random scanning has been widely used [2]. Several methods have been proposed to

construct P2P-based botnets through worm infection and re-infection [3, 4]. Different from

the above works, in our P2P-based botnets studied in Chapter5, there is no grouping of

bots or exchange of peers between bots. Infected hosts are only peers to their own infectors

and infectees.

In [16], Dagonet al. surveyed different P2P-based botnet topologies, such as random

graphs and power-law topologies. It has been shown that power-law topologies are robust

to random node removal, but are vulnerable to the removal of asmall portion of nodes with

highest node degrees; random graphs are robust to both removal schemes [16, 37]. Our

work takes one step further to quantitatively evaluate bot detection strategies and effects of

user defenses by exploiting the P2P-based botnet topology formed by worm infection.
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CHAPTER 3

CHARACTERIZING INTERNET WORM TEMPORAL INFECTION

STRUCTURE

Since Code Red and Nimda worms were released in 2001, epidemic-style attacks have

caused severe damages. Internet worms can spread so rapidlythat existing defense systems

cannot respond until most vulnerable hosts have been infected. For example, on January

25th, 2003, the Slammer worm reached its maximum scanning rate of more than 55 mil-

lion scans per second in about 3 minutes, and infected more than 90% of vulnerable ma-

chines within 10 minutes [22]. It cost over one billion US dollars in cleanup and economic

damages. Therefore, worm attacks pose significant threats to the Internet and meanwhile

present tremendous challenges to the research community.

To counteract these notorious plague-tide attacks, various detection and defense strate-

gies have been studied in recent years. According to where the detectors are located, these

strategies can generally be classified into three categories: source detection and defenses,

detecting infected hosts in the local networks [38, 39, 40, 41]; middle detection and de-

fenses, revealing the appearance of worms by analyzing the traffic going through routers

[14, 42, 43]; anddestination detection and defenses, monitoring unwanted traffic arriving

at Darknet or network telescopes, a globally routable address space where no active ser-

vices or servers reside [44, 45, 46, 47, 48]. There are two types of Darknet:active Darknet

that responds to malicious scans to elicit the payloads of the attacks [46, 47], andpassive

Darknetthat observes unwanted traffic passively [45, 48].

Different from source and middle detection and defenses, destination detection and

defenses offer unique advantages in observing large-scalenetwork explosive events such

as distributed denial-of-service (DDoS) attacks [49] and Internet worms [21, 22, 23]. There

is no legitimate reason for packets destined to Darknet. Hence, most of the traffic arriving at

Darknet is malicious or unintended, including hostile reconnaissance scans, probe activities
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Figure 3.1: Internet worm tomography.

from active worms, DDoS backscatter, and packets from mis-configured hosts. Moreover,

it has been shown that for a large-scale worm event, most of infected hosts, if not all, can

be observed by the Darknet with a sufficiently large size [9].

In this chapter, we focus on the destination detection and defenses. Specifically, we

study the problem of inferring the characteristics of Internet worms from Darknet observa-

tions. We refer to such a problem asInternet worm tomography, as illustrated in Fig.3.1.

Most worms use scan-based methods to find vulnerable hosts and randomly generate target

IP addresses. Thus, Darknet can observe partial scans from infected hosts. Together with

the worm propagation model and the statistical model, Darknet observations can be used

to detect worm appearance [18, 50, 19, 20] and infer worm characteristics (e.g., infection

rate [12], number of infected hosts [9, 17], and worm infection sequence [24, 13, 26]).

Internet worm tomography is named afternetwork tomography, which infers the charac-

teristics of the internal network (e.g., link loss rate, link delay, and topology) through the

observations from end systems [51, 52]. Network tomographycan be formulated as a linear

inverse problem. Internet worm tomography, however, cannot be translated into the linear

inverse problem due to the specific properties of worm propagation, and thus presents new

challenges.
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Under the framework of Internet worm tomography, researchers have studied worm

temporal characteristics of the worm infection structure (i.e., the host infection time and

the worm infection sequence) [13, 24]. For example, a simpleestimator has been proposed

in [13] to infer worm temporal behaviors. The estimator usesthe observation time when an

infected host scans the Darknet for the first time as the approximation of the host infection

time to infer the worm infection sequence. Such a naive estimator, however, does not fully

exploit all information obtained by the Darknet. Moreover,an attacker can design a smart

worm that uses lower scanning rates for patient zero or initially infected hosts and higher

scanning rates for other infected hosts. In this way, the smart worm would weaken the

performance of the naive estimator.

The goal of this chapter is to infer the Internet worm temporal characteristics accurately

by exploiting Darknet observations and applying statistical estimation techniques. Specifi-

cally, we introduce statistical estimation techniques andpropose method of moments, max-

imum likelihood, and linear regression estimators. We thenapply Monte Carlo simulation

to verify our analytical results.

The remainder of this chapter is organized as follows. Section 3.1 introduces estimators

for inferring the host infection time. Section 3.2 presentsour algorithms in estimating

the worm infection sequence. Section 3.3 gives simulation results. Finally, Section 3.4

discusses the assumptions, the limitations, and the extensions of our estimators.

3.1 Estimating the Host Infection Time

We use Darknet observations to estimate when a host gets infected and usehit to denote

the event that a worm scan hits the Darknet. As shown in Fig. 3.2, suppose that a certain

host is infected at timet0. The Darknet monitors a portion of the IPv4 address space and

can observe some scans from this host and record hit timest1, t2, · · · , tn, wheren is the

number of hit events from this host. The problem of estimating the host infection time can
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then be stated as follows: Given the Darknet observationst1, t2, · · · , tn, what is the best

estimate oft0?

To study this problem analytically, we make the following assumptions: 1) There is

no packet loss in the Internet. In Section 3.4, however, we relax this assumption and use

simulations to study the effect of packet losses on different estimators. 2) An infected host

uses its actual source IP address and does not apply IP spoofing, which is the case for TCP

worms. 3) The scanning rates (i.e., the number of scans sent by an infected host per time

unit) is time-invariant for an infected host, whereas the scanning rates of infected hosts can

be different from each other. The last assumption comes fromthe observation that famous

worms, such as Code Red, Nimda, Slammer, and Witty, do not apply any scanning rate

variation mechanisms. An infected host always scans for vulnerable hosts at the maximum

speed allowed by its computing resources and network conditions [53].

Obviously, inferringt0 from Darknet observations is affected by the Internet-worm

scanning methods. In this work, we focus on random scanning and localized scanning.

However, our estimation techniques can be applied to other worm-scanning methods, such

as importance scanning [54], for which a scan from an infected host hits Darknet with a

time-invariant probability. To analytically estimate thehost infection time, we consider

a discrete-time system. For random scanning (RS), a worm selects targets randomly and
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scans the entire IPv4 address space withΩ addresses (i.e.,Ω = 232). We assume that Dark-

net monitorsω addresses. Thus, the probability for a scan to hit the Darknet is ω/Ω; and

the probability of a hit event in the discrete-time system (i.e., the probability that Darknet

observes at least one scan from the same infected host in a time unit) is

PrRS(hit event) = 1 −
(

1 −
ω

Ω

)s

. (3.1)

Sinces is time-invariant for a given infected host, PrRS(hit event) is also time-invariant.

Localized scanning (LS) preferentially searches for vulnerable hosts in the “local” ad-

dress space [55]. For simplicity, in this work we only consider the/l LS: pa(0 ≤ pa < 1)

of the time, a “local” IP address with the same firstl bits as the attacking host is chosen

as the target;1 − pa of the time, a random address is chosen. We consider a centralized

Darknet that occupies a continuous address space and monitorsω addresses. Moreover, we

assume that the Darknet is contained in a/l prefix with no vulnerable hosts. For example,

network telescopes used by CAIDA are such a centralized Darknet and contain a/8 subnet.

Since no infected hosts exist in the/l subnet where the Darknet resides, the probability for

a worm scan to hit the Darknet is(1 − pa) · ω/Ω. Therefore, the probability of a hit event

in the discrete-time system is

PrLS(hit event) = 1 −
(

1 − (1 − pa) ·
ω

Ω

)s

, (3.2)

which is time-invariant. Since PrRS(hit event) has a similar form as PrLS(hit event) and is

the special case of PrLS(hit event) whenpa = 0, we usep (0 < p < 1) to denote the hit

probability in general for both cases to simplify our discussion.

Denoteδ0 as the time interval between when a host gets infected and when Darknet

observes the first scan from this host,i.e., δ0 = t1 − t0, as shown in Fig. 3.2. Denote

δi as the time interval betweeni-th hit and(i + 1)-th hit on Darknet,i.e., δi = ti+1 − ti,

i ≥ 1. Thus,δ0, δ1, · · · , δn−1 are independent and identically distributed (i.i.d.) and follow
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a geometric distribution with parameterp, i.e.,

Pr(δ = k) = p · (1 − p)k−1, k = 1, 2, 3, · · · , (3.3)

E(δ) =
1

p
= µ, Var(δ) =

1 − p

p2
. (3.4)

Denoteµ as the mean value ofδ and µ̂ as the estimate ofµ. We then estimatet0 by

subtractinĝµ from t1, i.e.,

t̂0 = t1 − µ̂. (3.5)

Therefore, our problem is reduced to estimatingµ.

3.1.1 Naive Estimator

Sinceδ follows the geometric distribution as described by Equation (5.6), Pr(δ) is maxi-

mized whenδ = 1. Then, anaive estimator(NE) of µ is

µ̂NE = 1. (3.6)

Thus, the NE oft0 is

t̂0NE = t1 − µ̂NE = t1 − 1. (3.7)

Note thatt̂0NE depends only ont1, but not ont2, t3, · · · , tn. This estimator has been used

in [13] to infer the host infection time and the worm infection sequence. In this work,

however, we consider more advanced estimation methods.

3.1.2 Method of Moments Estimator

Since E(δ) = µ, we design amethod of moments estimator(MME), i.e.,

µ̂MME = δ =
1

n − 1

n−1
∑

i=1

δi =
tn − t1
n − 1

. (3.8)
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Thus, the MME oft0 is

t̂0MME = t1 − µ̂MME = t1 −
tn − t1
n − 1

. (3.9)

Note thatt̂0MME is not only related tot1, but also ton andtn.

3.1.3 Maximum Likelihood Estimator

Rewrite the probability mass function ofδ in Equation (5.6) with respect toµ,

Pr(δ; µ) = 1
µ

(

1 − 1
µ

)δ−1

, δ = 1, 2, 3, · · · . (3.10)

Sinceδ1, δ2, · · · , δn−1 are i.i.d., the likelihood function is given by the following product

L(µ) =
n−1
∏

i=1

Pr(δi; µ)

=
(1

µ

)n−1(

1 −
1

µ

)(
n−1
∑

i=1

δi)−(n−1)

. (3.11)

We then design amaximum likelihood estimator(MLE), i.e.,

µ̂MLE = arg max
µ

L(µ). (3.12)

Rather than maximizing L(µ), we choose to maximize its logarithmlnL(µ). That is,

d

dµ
lnL(µ) = 0 (3.13)

=⇒ µ̂MLE =
1

n − 1

n−1
∑

i=1

δi =
tn − t1
n − 1

, (3.14)

which has the same expression as the MME. Thus,

t̂0MLE = t1 − µ̂MLE = t1 −
tn − t1
n − 1

. (3.15)
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3.1.4 Linear Regression Estimator

Under the assumption that the scanning rate of an individualinfected host is time-invariant,

the relationship betweenti andi can be described by a linear regression model as illustrated

in Fig. 3.3,i.e.,

ti = α + β · i + εi, (3.16)

whereα andβ are coefficients, andεi is the error term. To fit the observation data, we

apply the least squares method to adjust the parameters of the model. That is, we choose

the coefficients that minimize the residual sum of squares (RSS)

RSS=
n

∑

i=1

[ti − (α + β · i)]2. (3.17)

The minimum RSS occurs when the partial derivatives with respect to the coefficients are

zero






















∂RSS
∂α

= −2

n
∑

i=1

(ti − α − β · i) = 0

∂RSS
∂β

= −2
n

∑

i=1

i · (ti − α − β · i) = 0,

(3.18)
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which leads to














α̂ = t − β̂ · i

β̂ =
i · t − i · t

i2 − (i)2
,

(3.19)

where the bar symbols denote the average values






















i =
1

n

n
∑

i=1

i, i2 =
1

n

n
∑

i=1

i2

t =
1

n

n
∑

i=1

ti, i · t =
1

n

n
∑

i=1

i · ti.

(3.20)

We then design alinear regression estimator(LRE), i.e.,

µ̂LRE = β̂ = t̂1 − t̂0. (3.21)

Thus, the LRE oft0 is

t̂0LRE = t1 − µ̂LRE = t1 −
i · t − i · t

i2 − (i)2
. (3.22)

There is another way to estimatet0, which uses the point of interception shown in Fig.

3.3 as the estimation oft0, i.e.,

t̂0
′

LRE = α̂ = t − µ̂LRE · i. (3.23)

However, we find that the mean squared error oft̂0
′

LRE increases whenn increases. That is,

the performance of the estimator worsens with the increasing number of hits, which makes

this estimator undesirable.

3.1.5 Comparison of Estimators

To compare the performance of the naive estimator and our proposed estimators, we com-

pute the bias, the variance, and the mean squared error (MSE). For estimatingµ,






















Bias(µ̂) = E(µ̂) − µ

Var(µ̂) = E [(µ̂ − E(µ̂))2]

MSE(µ̂) = E [(µ̂ − µ)2] = Bias2(µ̂) + Var(µ̂).

(3.24)
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Table 3.1: Comparison of estimator properties (µ̂).

µ̂ Bias(µ̂) Var(µ̂) MSE(µ̂)

µ̂NE = 1 1 − 1
p

0 (1−p)2

p2

µ̂MME = µ̂MLE = tn−t1
n−1

0 1−p

p2(n−1)
1−p

p2(n−1)

µ̂LRE = i·t−i·t

i2−(i)2
0 6(n2+1)(1−p)

5n(n2−1)p2

6(n2+1)(1−p)
5n(n2−1)p2

Table 3.2: Comparison of estimator properties (t̂0).

t̂0 = t1 − µ̂ Bias(t̂0) Var(t̂0) MSE(t̂0)

t̂0NE
1−p

p

1−p

p2

(1−p)(2−p)
p2 (≈ 2(1−p)

p2 , whenp ≪ 1)

t̂0MME = t̂0MLE 0 1−p

p2 · n
n−1

1−p

p2 · n
n−1

(≈ 1−p

p2 , whenn ≫ 1)

t̂0LRE 0 1−p

p2 · 5n3+6n2−5n+6
5n(n2−1)

1−p

p2 · 5n3+6n2−5n+6
5n(n2−1)

(≈ 1−p

p2 , whenn ≫ 1)

Here, thebiasdenotes the average deviation of the estimator from the truevalue; thevari-

anceindicates the distance between the estimator and its mean; and theMSEcharacterizes

the closeness of the estimated value to the true value. A smaller MSE indicates a better

estimator. Table 3.1 summarizes the results of NE, MME (or MLE), and LRE for estimat-

ing µ. The details of the derivations of Table 3.1 are given in Appendix A. It is noted that

MME and LRE are unbiased, while NE is biased. Moreover, MME and LRE have a smaller

MSE than NE ifn > 2 andp < 0.5, a condition that is usually satisfied. Specifically, when

n → ∞, MSE(µ̂MME) → 0 and MSE(µ̂LRE) → 0, but MSE(µ̂NE) → (1 − p)2/p2. It is also

observed that MME is slightly better than LRE in terms of MSE whenn > 2.

Similarly, we compute the bias, the variance, and the MSE of the estimators for estimat-

ing t0 in Table 3.2. The details of the derivations of Table 3.2 are given in Appendix B. We

also observe that MME (or MLE) and LRE are unbiased, whereas NE is biased. Moreover,

MSE(t̂0MME) and MSE(t̂0LRE) are smaller than MSE(t̂0NE), and MSE(t̂0MME) is the smallest

whenn > 3 andp < 0.5. Specifically, in practice, Darknet only covers a relatively small

portion of the IPv4 address space (i.e.,ω ≪ Ω), which leads top ≪ 1. Thus, we have the

following theorem:
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Figure 3.4: A scenario of the worm infection sequence.

Theorem 3.1.1 When the Darknet observes a sufficient number of hits (i.e., n ≫ 1) and

p ≪ 1,

MSE(t̂0MME) ≈ MSE(t̂0LRE) ≈
1

2
MSE(t̂0NE). (3.25)

That is, the MSE of our proposed estimators is almost half of that of the naive estimator.

That is, our proposed estimators are nearly twice as accurate as the naive estimator in

estimating the host infection time.

3.2 Estimating the Worm Infection Sequence

In this section, we extend our proposed estimators for inferring the worm infection se-

quence.

3.2.1 Algorithm

Our algorithm is that we first estimate the infection time of each infected host. Then, we

reconstruct the infection sequence based on these infection times. That is, if̂t0A < t̂0B, we

infer that host A is infected before host B. It is noted that the algorithm used in [13] to

infer the worm infection sequence can be regarded as using this approach with the naive

estimator.

The naive estimator, however, can potentially fail to inferthe worm infection sequence

in some cases. Fig. 3.4 shows an example, where hosts A and B get infected att0A andt0B,
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respectively, andt0A < t0B. Moreover, these two infected hosts have scanning ratessA < sB

such that Darknet observest1A > t1B. If the naive estimator is used,t̂0A > t̂0B, which means

that host A is incorrectly inferred to be infected after hostB. Intuitively, if our proposed

estimators are applied, it is possible to obtaint̂0A < t̂0B and thus recover the real infection

sequence.

3.2.2 Performance Analysis

To analytically show that our estimators are more accurate than the naive estimator in es-

timating the worm infection sequence, we formulate the problem as a detection problem.

Specifically, in Fig. 3.4, suppose that host B is infected after host A (i.e., t0A < t0B). If

t̂0A < t̂0B, we call it “success” detection; otherwise, ift̂0A > t̂0B, we call it “error” detec-

tion1. We intend to calculate the probability of error detection for different estimators.

Note thatδ0A = t1A − t0A and δ0B = t1B − t0B follow the geometric distribution (i.e.,

Equation (5.6)) with parameterpA andpB, respectively. Here,pA (or pB) is the probability

that at least one scan from host A (or B) hits the Darknet in a time unit and follows Equation

(3.1) for random scanning and Equation (3.2) for localized scanning. Moreover,pA (or pB)

depends onsA (or sB) so that ifsA < sB, thenpA < pB. Sinceω ≪ Ω, we havepA ≪ 1

and pB ≪ 1. Hence, for simplicity we use the continuous-time analysisand apply the

exponential distribution to approximate the geometric distribution for δ0A andδ0B [56], i.e.,

f(x; λ) =











λe−λx, x ≥ 0

0, x < 0,
(3.26)

whereλ = pA or pB.

To calculate the probability of error detection for different estimators, we first define a

new random variable

Z = δ0A − δ0B, (3.27)

1We ignore the casêt0A = t̂0B here.
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and calculate its probability density function (pdf)fZ(z). From Equation (3.26), we can

obtain the pdf ofδ′0B = −δ0B, which is

fδ′0B
(x) =











pB epBx, x ≤ 0

0, x > 0.
(3.28)

Sinceδ0A andδ′0B are independent, the pdf ofZ = δ0A + δ′0B is given by the convolution of

fδ0A(x) andfδ′0B
(x), i.e.,

fZ(z) =

∫ +∞

−∞

fδ0A(x)fδ′0B
(z − x) dx. (3.29)

For z ≥ 0, this yields

fZ(z) =

∫ +∞

z

pA e−pAx · pB epB(z−x) dx

= pApB
pA+pB

e−pAz. (3.30)

For z < 0, we obtain

fZ(z) =

∫ +∞

0

pA e−pAx · pB epB(z−x) dx

= pApB
pA+pB

epBz. (3.31)

Hence,

fZ(z) =















pApB
pA+pB

e−pAz, z ≥ 0

pApB
pA+pB

epBz, z < 0.

(3.32)

Naive Estimator

The naive estimator useŝt0 = t1 − 1 to estimatet0. Thus, the probability of error detection

is

PrNE(error) = Pr(t1A − 1 > t1B − 1) = Pr(δ0A > τ + δ0B), (3.33)
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whereτ = t0B−t0A, the time interval between the infection of host A and host B;andτ > 0.

We then have

PrNE(error) = Pr(Z > τ)

= pB
pA+pB

e−pAτ . (3.34)

Note that another way to derive PrNE(error) is based on the memoryless property of the

exponential distribution and Pr(δ0A > δ0B) = pB/(pA + pB), i.e.,

PrNE(error) = Pr(δ0A > τ + δ0B) = Pr(δ0A > τ)Pr(δ0A > δ0B), (3.35)

which leads to the same result.

Proposed Estimators

We assume that Darknet observes a sufficient number of scans from hosts A and B so that

our proposed estimators can estimateµA (i.e., 1
pA

) andµB (i.e., 1
pB

) accurately. Then, the

probability of error detection of our proposed estimators is

PrMME(error) = PrMLE(error) = PrLRE(error)

= Pr(t1A −
1
pA

> t1B −
1
pB

)

= Pr(Z > τ + pB−pA
pApB

)

=

∫ +∞

τ+
pB−pA
pApB

fZ(z) dz. (3.36)

Whenτ + pB−pA
pApB

≥ 0,

PrMME(error) =

∫ +∞

τ+
pB−pA
pApB

pApB
pA+pB

e−pAz dz

= pB
pA+pB

e
−pA

(

τ+
pB−pA
pApB

)

. (3.37)
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Whenτ + pB−pA
pApB

< 0,

PrMME(error) =

∫ 0

τ+
pB−pA
pApB

pApB
pA+pB

epBz dz +

∫ +∞

0

pApB
pA+pB

e−pAz dz

= 1
pA+pB

(

pA + pB − pA e
pB

(

τ+
pB−pA
pApB

)

)

. (3.38)

Performance Comparison

Since PrNE(error) = Pr(Z > τ) and PrMME(error) = Pr
(

Z > τ + pB−pA
pApB

)

, for a givenτ

(τ > 0), comparing Equation (3.34) with Equations (3.37) and (3.38),










PrNE(error) > PrMME(error), pA < pB

PrNE(error) < PrMME(error), pA > pB.
(3.39)

Hence, it is unclear which estimator is better based on the expressions of PrNE(error) and

PrMME(error). However, we can compare the performance of our estimators with the naive

estimator through numerical analysis. We first demonstratethe probabilities of error detec-

tion (i.e.,PrNE(error) and PrMME(error)) as the functions ofpA andpB in Figs. 3.5 (a) and (b),

whereτ = 50 time units. It can be seen that for the naive estimator, when host A hits the

Darknet with a very low probability, PrNE(error) is almost 1 regardless ofpB. However, the

worst case of PrMME(error) is slightly above 0.6 whenpB is small. Moreover, we show the

probabilities of error detection as a function ofτ with a given pair ofpA andpB in Fig.s 3.5

(c) and (d). The performance of two estimators improves asτ increases. Furthermore, the

sum of the integral
∫ 500

0
PrNE(error) dτ of the two figures is 41.43, while the sum of the inte-

gral
∫ 500

0
PrMME(error) dτ in these two cases is only 34.76. This shows that the improvement

gain of our estimators over the naive estimator whenpA < pB outweighs the degradation

suffered whenpA > pB, indicating the benefits of applying our estimators.

Note thatpA, pB, andτ can be random variables. To evaluate the overall performance

of each estimator, we consider the average probability of error detection overpA, pB, andτ ,
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(a) PrNE(error) (τ = 50 time units).
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(b) PrMME(error) (τ = 50 time units).
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(c) Pr(error) (pA = 0.02, pB = 0.05).
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(d) Pr(error) (pA = 0.05, pB = 0.02).

Figure 3.5: Numerical analysis of Pr(error).

i.e.,

E [Pr(error)] =

∫

τ

∫

pA

∫

pB

Pr(error) · f(pA, pB, τ) d pB d pA dτ. (3.40)

SincepA, pB, andτ are independent,

f(pA, pB, τ) = f(pA) · f(pB) · f(τ). (3.41)

We then consider some cases in which we are interested and apply the numerical integration

toolbox in Matlab [57] to calculate the triple integration.For example, we assume thatsA

andsB follow a normal distributionN(u, σ2) andτ is uniform over(0, τ1]. We find that

whenu, σ2, andτ1 are set to realistic values, we always have

E [PrNE(error)] > E [PrMME(error)]. (3.42)
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That is, our proposed estimators perform better than NE on average, which will further be

verified in Section 3.3 through simulations.

Moreover, in Fig. 3.5(a), it can be seen that the majority of detection error for the

naive estimator comes from the case thatpA < pB. Specifically, it is obvious to derive the

following theorem from Equations (3.34) and (3.37).

Theorem 3.2.1 WhenpA < pB,

PrMME(error) = PrMLE(error) = PrLRE(error)

= PrNE(error) · e−
(

1−
pA
pB

)

. (3.43)

That is, the error probability is decreased by a factor ofe
−

(

1−
pA
pB

)

by applying our estimators

as compared with the naive estimator.

3.3 Simulations and Verification

In this section, we use simulations to verify our analyticalresults and then apply estimators

to identify the patient zero or the hitlist. As far as we know,there is no publicly available

data to show the real worm infection sequence. That is, thereis no dataset available with

the real infection sequence to serve as the ground truth and acomparison basis for per-

formance evaluation. Therefore, we apply empirical simulations to provide the simulated

worm infection time and infection sequence.

3.3.1 Estimating the Host Infection Time

We evaluate the performance of estimators in estimating thehost infection time. For the

case of random-scanning worms, we simulate the behavior of ahost infected by the Code

Red v2 worm. The host is infected at time tick 0 and uses a constant scanning rate. The time

unit is set to 20 seconds. The Darknet records hit times during an observation window. The
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Figure 3.6: Comparison of MSE(t̂0) for random-scanning worms.

results are averaged over 100 independent runs. Fig. 3.6 compares the performance (i.e.,

MSE of estimators fort0) of NE, MME, and LRE. In our simulations, we use a Darknet size

of 220, a scanning rate of 358 scans/min, and an observation windowsize of 800 mins as

default values. Moreover, when a parameter is studied and varied, we keep other parameters

unchanged. Specifically, we consider the effects of the Darknet size, the scanning rate, and

the observation window size on the performance of the estimators. It is observed that for

all cases, our proposed estimators have a better performance (smaller MSE) than the naive

estimator in estimating the host infection time. Specifically, the simulation results verify
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(d) Changing thepa.

Figure 3.7: Comparison of MSE(t̂0) for localized-scanning worms.

Theorem 3.1.1,i.e., that the MSE of our estimators is almost half of that of the naive

estimator, when the observation window size is sufficientlylarge (e.g.,> 200 mins).

Next, we study a host infected by localized-scanning worms and adopt the same sim-

ulation parameters and settings as the above. The main difference is that here the host

preferentially searches for vulnerable hosts in the “local” address space with a probability

pa. In Fig. 3.7, we compare MSE(t̂0) for different estimators. The default parameter values

are a Darknet size of220, a scanning rate of 358 scans/min, an observation window size

of 800 mins, and apa value of 0.7. We find that the results are similar to those for the
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random-scanning case shown in Fig. 3.6. That is, the MSE of our estimators is almost half

of that of the naive estimator. On the other hand, it can be seen that the MSE(̂t0) in Fig.s

3.7 (a)-(c) is larger for all cases than that in Fig. 3.6 sincethe localized-scanning worm hits

the Darknet less frequently than the random-scanning worm.

3.3.2 Estimating the Worm Infection Sequence

We evaluate the performance of our algorithms in estimatingthe worm infection sequence

and simulate the propagation of the Code Red v2 worm. Specifically, the simulator consid-

ers a discrete-time system and mimics the random-scanning behavior of infected hosts dur-

ing each discrete time interval. Moreover, the parameter setting is based on the Code Red

v2 worm’s characteristics. The Code Red worm has a vulnerable population of 360,000.

Different infected hosts may have different scanning rates. Thus, we assign a scanning rate

(scans/min) from a normal distributionN(358, σ2) to a newly infected host. Moreover, we

start our simulation at time tick 0 from one infected host. The time unit is set to 20 seconds.

Detailed information about how the parameters are chosen can be found in Section VII of

[12]. Each point in Fig. 3.8 is averaged over 20 independent runs. Table 3.3 gives the

results of a sample run with a Darknet size of220, an observation window size of 1,600

mins, andσ = 110. In the table,Si is the actual infection sequence (i.e.,Si = i), whereas

Ŝi is the estimated sequence. In this example, we find that MME and LRE can pinpoint the

patient zero successfully, while NE fails.

To compare the performance of estimators quantitatively, we consider a simplel1 se-

quence distance, i.e.,

D =

N
∑

i=1

∣

∣

∣
Si − Ŝi

∣

∣

∣
, (3.44)

whereN is the length of the infection sequence considered,Si is the actual infection se-

quence (i.e.,Si = i), andŜi is the estimated sequence. Note that the smaller the sequence

distance is, the better the estimator performance will be. Fig. 3.8 compares the perfor-
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(b) Changing the scanning rate standard de-
viation.
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(c) Changing the infection sequence length.

Figure 3.8: Comparison of the sequence distance for random-scanning worms.

mance of different estimators for random-scanning worms, where the default parameter

values are a Darknet size of220, a scanning rate standard deviation of 115, an observation

window size of 1,600 mins, and a length of the infection sequence considered of 1,000.

Specifically, Fig. 3.8(a) shows the sequence distances of NE, MME, and LRE with vary-

ing Darknet sizes from219 to 224. It is observed that when the Darknet size increases, the

performance of all estimators improves dramatically. Moreover, the performance of MME

and LRE is always better than that of NE. For example, when theDarknet size equals219,

MME and LRE improve the inference accuracy by 24%, compared with NE. Fig. 3.8(b)
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Table 3.3: A sample run of simulations for random scanning.

Si ŜiNE ŜiMME ŜiLRE t0 t̂0NE t̂0MME t̂0LRE

1 2 1 1 0 114 20 20
2 1 2 2 85 98 74 73
3 3 3 3 105 165 116 116
: : : : : : : :

520 498 533 534 593 622 589 589
521 433 488 477 594 611 581 580

: : : : : : : :

demonstrates the sequence distances of these three estimators by changing the standard de-

viation of the scanning rate (i.e.,σ) from 100 to 125. It is noted that whenσ increases, the

performance of all estimators deteriorates. The performance of MME and LRE, however,

is always better than that of NE. For example, whenσ = 120, MME and LRE reduce the

sequence distance by 30%, compared with NE. In Fig. 3.8(c), we increase the length of the

infection sequence considered,N , from 1,000 to 11,000. It is intuitive that the sequence

distances of all estimators become larger asN increases. However, MME and LRE are

always better than NE.

Next, we extend our simulator to imitate the spread of localized-scanning worms.

Specifically, we consider /8 localized-scanning worms and acentralized /8 Darknet with

224 IP addresses. We still use the Code Red v2 worm parameters andthe same setting as

random scanning, except that the observation window size is1,000 mins (this is because

localized-scanning worms spread faster). The distribution of vulnerable hosts is extracted

from the dataset provided by DShield [58]. DShield obtains the information of vulnera-

ble hosts by aggregating logs from more than 1,600 intrusiondetection systems distributed

throughout the Internet. Specifically, we use the dataset with port 80 (HTTP) that is ex-

ploited by the Code Red v2 worm to generate the vulnerable-hosts distribution. Each point

in Fig. 3.9 is averaged over 20 independent runs. Fig. 3.9 compares the sequence distances

of different estimators for localized scanning. Specifically, the results in Fig. 3.9(a) and (b)
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(a) Changing the scanning rate
standard deviation.
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(b) Changing the infection sequence length.
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(c) Changing thepa.

Figure 3.9: Comparison of the sequence distance for localized-scanning worms.

are similar to those in Fig. 3.8(b) and (c). In Fig. 3.9(c), wecompare the performance of

the estimators by increasingpa from 0 to 0.7. Here,N = 1,000, andσ = 115. It is observed

that the sequence distances of all estimators increase aspa becomes larger. However, our

estimators are always better than NE. For example, whenpa = 0.5, MME and LRE increase

the inference accuracy by 27%, compared with NE.

Therefore, our proposed estimators perform much better than the naive estimator for

both random-scanning and localized-scanning worms in estimating the worm infection se-

quence.
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3.3.3 Identifying the Patient Zero or the Hitlist

A smart worm can assign lower scanning rates to the initiallyinfected host(s) and higher

scanning rates to other infected hosts. In this way, the Darknet might observe later infected

hosts first, and therefore the smart worm would weaken the performance of the naive esti-

mator. In Fig. 3.10, we compare the performance of estimators in identifying the hitlist of

such a smart worm. Specifically, the worm assigns scanning rates fromN(50, 202) to the

host(s) on the hitlist and scanning rates fromN(358, 1102) to other infected hosts. Then,

we calculate the percentage of the host(s) on the hitlist that are successfully identified by

an estimator. For example, if the size of the hitlist is 100 and 50 hosts that belong to the

hitlist are identified among the first 100 hosts of the estimated infection sequence, the suc-

cessful identification percentage of the estimator is 50%. The results are averaged over 100

independent runs. Fig. 3.10(a) shows the case of random scanning, where the Darkent size

is 220 and the observation window size is 1,000 mins. It is seen thatour estimators have a

higher successful identification percentage and a smaller variance than the naive estimator.

For instance, when the size of the hitlist is 1 (i.e., the worm starts from the patient zero),

MME and LRE can pinpoint the patient zero around 80% of the time, while NE can detect

it only 70% of the time. When the size of the hitlist is 10 or 100, compared with NE, our

proposed estimators increase the number of successfully identified hosts from 5 to 7 or 51

to 72, and reduce the variance from 2.6 to 1.6 or 23 to 13, respectively. Fig. 3.10(b) shows

the results of localized scanning, where the Darkent size is224, pa = 0.7, and all other pa-

rameters are the same as the case of random scanning. The results are similar to those in

Fig. 3.10(a). Therefore, the simulation results demonstrate that our proposed estimators are

much more effective in identifying the histlist of the smartworm than the naive estimator.
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(a) Random scanning (the Darknet size is
220 IP addresses).
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(b) Localized scanning (the Darknet size is
224 IP addresses, and the value ofpa is 0.7).

Figure 3.10: Comparison of estimators in identifying the patient zero or the hitlist.

3.4 Discussions

In this section, we first analyze the chance that Darknet misses an infected host and then

discuss the limitations and the extensions of our proposed estimators.

3.4.1 Host Missing Probability

By applying Darknet observations, we have made an assumption: The infected host will hit

the Darknet. Then, an intuitive question would be: What is the probability that the Darknet

misses an infected host within a given observation window?

We consider the case of localized scanning and regard randomscanning as a special

case of localized scanning whenpa = 0. The probability for a scan from an infected host to

hit the Darknet is(1−pa) ·ω/Ω; and then the probability that the Darknet misses observing

the host in a time unit is(1− (1− pa) · ω/Ω)s. Thus, the host missing probability (i.e., the

probability that the Darknet misses the infected host in ak time units observation window)

is

PrLS(missing) =
(

1 − (1 − pa) ·
ω

Ω

)s·k

. (3.45)
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Figure 3.11: Host missing probability.

In Fig. 3.11, we show the host missing probability as the observation window size

changes. In this example, we setω = 224, time unit = 20 seconds, ands = 358 scans/min.

We find that ifpa = 0.7, the infected host will almost hit the Darknet for sure when the

observation window size is larger than 20 mins. Ifpa = 0, which is the case of random

scanning, a 5-min observation window is sufficient to guarantee the capture of the infected

host. Therefore, in our previous analysis and simulation, the assumption that the Dark-

net can observe scans from the infected host, especially at the early stage, is reasonable.

Moreover, our estimator can still work even for self-stopping worms [59].

3.4.2 Estimator Limitations and Extensions

Our proposed estimators are built based on some assumptionslisted in Section 3.1. At-

tackers that design future worms may exploit these assumptions to weaken the accuracy

of our estimators. In the following, we discuss some limitations of our estimators and the

potential extensions.
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Darknet Avoidance

The majority of active worms up to date do not attempt to avoidthe detection of Darknet.

As a result, CAIDA’s network telescopes have been observingmany active Internet worms

such as Code Red, Slammer, Witty, and even recently the Conficker worm (also known as

the April Fool’s worm). Most worms apply random scanning andlocalized scanning, and

Darknet can observe the traffic from such worms.

Recent work, however, has shown that attackers can potentially detect the locations of

Darknet or network sensors [60]. Thus, a future worm can be specially designed to avoid

scanning the address space of the Darknet. The countermeasure against such an intelligent

worm is to apply the distributed Darknet instead of the centralized Darknet [17]. That

is, unused IP addresses in many subnets are used to observe worm traffic, which is then

reported to a collection center for further processing. A prototype of distributed Darknet

has been designed and evaluated in [61].

Scanning Rate Variation

Although there have been no observations of worms that use scanning rate variation mech-

anisms (i.e., the scanning rate of an individual infected host is time-variant) [53], future

worms may employ such schemes to invalidate our basic assumption and thus weaken the

performance of our estimators. Changing the scanning rate,however, introduces additional

complexity to worm design and can slow down worm spreading. Moreover, if the change

of scanning rates is relatively slow, our estimators can be enhanced with the change-point

detection [62] to detect and track when the scanning rate hasa significant change and then

apply the early observations to derive the infection time ofan infected host.
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Figure 3.12: Comparison of the sequence distance varying with the worm packet loss rate.

Measurement Errors

The measurement errors can affect the performance of estimators. There are two types of

measurement errors. The false positive denotes that Darknet incorrectly classifies the traffic

from a benign host as worm traffic, whereas the false negativeis that Darknet incorrectly

classifies worm traffic as benign traffic or misses worm trafficdue to congestion or device

malfunction.

For the false positives, most of time we can distinguish wormtraffic from other traf-

fic. First, our estimation techniques are used as a form of post-mortem analysis on worm

records logged by Darknet. As a result, we can limit our analysis to the records logged dur-

ing the outbreak of the worm when it is most rampant. More importantly, worm packages

always contain information about infection vectors that distinguish worm traffic from other

traffic. For example, the Witty worm uses a source port of 4,000 to attack Internet Security

Systems firewall products [16]. It is very unlikely that a benign host uses a source port of

4,000. By filtering the records based on infection vectors specific to the worm under inves-

tigation, we can eliminate most of the effects of false positives on Darknet observations.

False negatives are much harder to eliminate. A packet towards Darknet may be lost

due to congestion caused by the worm (such as the Slammer worm[22]) or the malfunc-
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tion of Darknet monitoring devices. To study the effects of false negatives, we modify our

simulator to mimic the packet loss and evaluate the performance of our estimators under

false negatives. Here we assume that the loss rate of the wormpackets towards Darknet

(denoted asrloss) is the same for each infected host. Fig. 3.12 shows how the sequence

distances of different estimators vary with the worm packetloss rate. The results are aver-

aged over 20 independent runs. It is intuitive that when the packet loss rate becomes larger,

the performance of all estimators worsens. Our proposed estimators, however, always per-

form much better than NE. For example, compared with NE, our estimators (i.e.,MME and

LRE) improve the inference accuracy by 28% whenrloss = 0.4. A mechanism to recover

from worm-induced congestion has been proposed in [53], which estimates the packet loss

rates of infected hosts based on Darknet observations and BGP atoms. This method can be

incorporated into our estimators to enhance their robustness against worm-induced conges-

tion.
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CHAPTER 4

CHARACTERIZING INTERNET WORM SPATIAL INFECTION STRUCTURE

Modeling Internet worm infection has been focused on the macro level. Most, if not

all, mathematical models study the total number of infectedhosts over time [7, 8, 9, 11, 1].

For example, Stanifordet al. used a simple differential equation to estimate the global

propagation speed of the Code Red v2 worm [7], whereas Rohloff et al. applied a stochastic

model to reflect the variation of the number of infected hostsat the early stage of worm

infection [10]. The models of some key micro-level information of worm infection, such

as the infection ability of individual hosts and the underlying topology formed by worm

infection, has been investigated little.

The goal of this chapter is to bridge the gap by characterizing the spatial infection

relationship between individual infected hosts,i.e., the worm spatial infection structure.

Specifically, we reveal the key characteristics of the underlying topology formed by worm

infection, i.e., the number of children and the generation of the worm tree. Tostudy these

two metrics analytically, we apply probabilistic modelingmethods and derive the probabil-

ity distributions of the number of children and the generation through a sequential growth

model. Different from other models that characterize the dynamics of worm propagation

(e.g.,the total number of infected hosts over time), our sequential growth model aims at

capturing the main features of the topology formed by worm infection (e.g., the number

of children and the generation). To the best of our knowledge, there is yet no mathemati-

cal model for characterizing the structure of the worm tree.We then verify the analytical

results through simulations.

The remainder of this chapter is structured as follows. Section 4.1 presents our sequen-

tial growth model and assumptions used in analyzing the wormtree. Section 4.2 gives our

analysis on the worm tree. Section 4.3 then uses simulationsto verify the analytical results

and provide observations on the worm tree using the localized-scanning method.
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Figure 4.1: An example of the worm tree.

4.1 Worm Tree and Sequential Growth Model

In this section, we provide the background on the worm tree, and present the assumptions

and the growth model.

An example of a worm tree is given in Fig. 4.1. Here, patient zero is the root and

belongs to generation 0. The tail of an arrow is from the “father” or the infector, whereas

the head of an arrow points to the “son” or the infectee. If a father belongs to generation

i, then its children lie in generationi + 1. In a worm tree withn nodes, we useLn(i, j)

(0 ≤ i, j ≤ n − 1) to denote the number of nodes that havei children and belong to gen-

erationj. Note that
∑n−1

i=0

∑n−1
j=0 Ln(i, j) = n. We also useCn(i) (i = 0, 1, 2, · · · , n − 1)

to denote the number of nodes that havei children andGn(j) (j = 0, 1, 2, · · · , n − 1)

to denote the number of nodes in generationj. Moreover,Ln(i, j), Cn(i), andGn(j) are

random variables. Thus, we definepn(i, j) = E[Ln(i,j)]
n

, representing the joint distribu-

tion of the number of children and the generation. Similarly, we definecn(i) = E[Cn(i)]
n

to represent the marginal distribution of the number of children andgn(j) = E[Gn(j)]
n

to

represent the marginal distribution of the generation. Note thatcn(i) =
∑n−1

j=0 pn(i, j) and

gn(j) =
∑n−1

i=0 pn(i, j).
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Figure 4.2: Two extreme cases of worm trees.

Although we model worm infection as a tree, different worm trees can show very dif-

ferent structures. Fig. 4.2 demonstrates two extreme casesof worm trees. Specifically, in

Fig. 4.2 (a), each infected host compromises one and only onehost except the last infected

host. In this case, if the total number of nodes isn, Cn(0) = 1, andCn(1) = n − 1, which

lead tocn(0) = 1
n

andcn(1) = n−1
n

≈ 1 whenn is large. That is, almost each node has

one and only one child. Moreover,Gn(j) = 1, j = 0, 1, 2, · · · , n − 1, which means that

gn(j) = 1
n
. Thus, the average path length is

∑n−1
j=0 j · gn(j) = n−1

2
∼ O(n). That is, the av-

erage path length increases linearly with the number of nodes. Comparatively, Fig. 4.2 (b)

shows another case where all hosts (except patient zero) areinfected by patient zero. For

the distribution of the number of children,cn(n − 1) = 1
n
, andcn(0) = n−1

n
≈ 1 whenn is

large, indicating that almost every node has no child. For the distribution of the generation,

gn(0) = 1
n
, andgn(1) = n−1

n
, which leads to that the average path length isn−1

n
≈ 1 when

n is large. Thus, the path length is close to a constant of 1. In this chapter, we attempt to

identify the structure of the worm tree formed by Internet worm infection.

To study the worm tree analytically, in this work we make several assumptions and

considerations. First, to simplify the model, we assume that infected hosts have the same
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scanning rate. This assumption is removed in Section 4.3.2,where we use simulations to

study the effect of the variation of scanning rates on the worm tree. Second, we consider a

wide class of worms for which a new victim is compromised by each existing infected host

with equal probability. Such worms include random-scanning worms, routable-scanning

worms, importance-scanning worms, OPT-STATIC worms, and SUBOPT-STATIC worms.

Random scanning selects targets in the IPv4 address space randomly and has been the main

scanning method for both worms and botnets [7, 2]; routable scanning finds victims in the

routable IPv4 address space [63, 8]; and importance scanning probes subnets according to

the vulnerable-host distribution [54]. OPT-STATIC and SUBOPT-STATIC are optimal and

suboptimal scanning methods that are proposed in [64] to minimize the number of worm

scans required to reach a predetermined fraction of vulnerable hosts. In Section 4.3.3,

we extend our study to localized scanning, which preferentially searches for targets in the

local subnet and has also been used by real worms [65, 55]. Third, we consider the classic

susceptible→ infected (SI) model, ignoring the cases that an infected host can be cleaned

and becomes vulnerable again, or can be patched and becomes invulnerable. The SI model

assumes that once infected, a host remains infected. Such a simple model has been widely

applied in studying worm infection [7, 8, 64], and presents the worst case scenario. Fourth,

we assume that there is no re-infection. That is, if an infected host is hit by a worm scan,

this host will not be further re-infected. As a result, everyinfected host has one and only

one father except for patient zero, and the resulting graph formed by worm infection is a

tree. Fifth, we assume that the worm starts from one infectedhost,i.e., patient zero or a

hitlist size of 1. When the hitlist size is larger than 1, the underlying infection topology

is a worm forest, instead of a worm tree. Our analysis, however, can easily be extended

to model the worm forest. Finally, to simplify the analysis,we assume that no two nodes

are added to the worm tree at the same time. That is, no two vulnerable hosts are infected

simultaneously. We relax this assumption in Section 4.3 where simulations are performed.
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Based on these considerations and assumptions, the sequential growth model of a worm

tree works as follows: We consider a fixed sequence of infected hosts (i.e.,nodes)v1, v2, · · ·

and inductively construct a random worm tree(Tn)n≥1, wheren is the number of nodes and

T1 has only patient zero. Infecting a new host is equivalent to adding a new node into the

existing worm tree. Hence, givenTn−1, Tn is formed by adding nodevn together with an

edge directed from an existing nodevf to vn. According to the assumption,vf is randomly

chosen among then−1 nodes in the tree,i.e., Pr(f = k) = 1
n−1

, k = 1, 2, · · · , n−1. Note

that such a sequential growth model and its variations have been widely used in studying

topology generators [28]. In this chapter, we apply this model to characterize worm spatial

infection strucutre.

4.2 Characterizing Internet Worm Spatial Infection Structure

In this section, we characterize the topology of the worm tree through mathematical anal-

ysis. Specifically, we first derive the joint distribution ofthe number of children and the

generation,i.e.,pn(i, j), by applying probabilistic methods. We then usepn(i, j) to analyze

two marginal distributions,i.e., cn(i) andgn(j), and obtain their closed-form approxima-

tions. Finally, we find a closed-form approximation topn(i, j).

4.2.1 Joint Distribution

For a worm tree with only patient zero (i.e.,n = 1), sinceL1(0, 0) = 1 with probability 1,

p1(0, 0) = 1. Similarly, for a worm tree withn = 2, it is evident thatL2(1, 0) = L2(0, 1) =

1. Thus,p2(1, 0) = p2(0, 1) = 1
2
. We now considerpn(i, j) (0 ≤ i, j ≤ n−1) whenn ≥ 3.

Specifically, we study two cases:

(1) pn(0, j), i.e., the proportion of the number of leaves in generationj in Tn. Assume

thatTn−1 is given, and there areLn−1(0, j) leaves in generationj and totallyGn−1(j−1) =
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∑n−2
i=0 Ln−1(i, j − 1) nodes in generationj − 1. Note that we have extended the notation

so thatGn−1(−1) = Ln−1(i,−1) = 0, 0 ≤ i ≤ n − 2. When a new nodevn is added,vn

becomes a leaf ofTn. If vn is connected to one of existing nodes in generationj − 1, vn

belongs to generationj; and the probability of such an event isGn−1(j−1)
n−1

. Moreover, if a

leaf in generationj in Tn−1 connects tovn, this node is no longer a leaf and now has one

child; and the probability of this event isLn−1(0,j)
n−1

. Therefore, we can obtain the stochastic

recurrence ofLn(0, j):

Ln(0, j) =



























Ln−1(0, j) + 1, w.p. Gn−1(j−1)
n−1

Ln−1(0, j) − 1, w.p. Ln−1(0,j)
n−1

Ln−1(0, j), otherwise.

(4.1)

GivenTn−1 (i.e.,Ln−1(0, j) andGn−1(j−1)), the conditional expected value ofLn(0, j) is

[Ln−1(0, j) + 1]·Gn−1(j−1)
n−1

+[Ln−1(0, j) − 1]·Ln−1(0,j)
n−1

+Ln−1(0, j)·
[

1 − Gn−1(j−1)+Ln−1(0,j)
n−1

]

,

i.e.,

E[Ln(0, j)|Tn−1] = n−2
n−1

Ln−1(0, j) + 1
n−1

Gn−1(j − 1). (4.2)

Applying E[Ln(0, j)] = E[E[Ln(0, j)|Tn−1]] (i.e., the law of total expectation), we obtain

E[Ln(0, j)] = n−2
n−1

E[Ln−1(0, j)] +
1

n−1
E[Gn−1(j − 1)]. (4.3)

Using the definitionspn(0, j) = E[Ln(0,j)]
n

andgn−1(j−1) = E[Gn−1(j−1)]
n−1

=
∑n−2

i=0 pn−1(i, j − 1),

the above equation leads to

pn(0, j) = n−2
n

pn−1(0, j) + 1
n
gn−1(j − 1) (4.4)

= n−2
n

pn−1(0, j) + 1
n

∑n−2
i=0 pn−1(i, j − 1). (4.5)

(2) pn(i, j), 1 ≤ i ≤ n − 1. GivenLn−1(i, j) andLn−1(i − 1, j) in Tn−1, we study

Ln(i, j) in Tn. When the new nodevn is added intoTn−1, vn is connected to a node with

i − 1 children and in generationj with probability Ln−1(i−1,j)
n−1

, or is connected to a node
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with i children and in generationj with probability Ln−1(i,j)
n−1

. Thus, inTn,

Ln(i, j) =



























Ln−1(i, j) + 1, w.p. Ln−1(i−1,j)
n−1

Ln−1(i, j) − 1, w.p. Ln−1(i,j)
n−1

Ln−1(i, j), otherwise.

(4.6)

This relationship leads to

E[Ln(i, j)|Tn−1] = n−2
n−1

Ln−1(i, j) + 1
n−1

Ln−1(i − 1, j). (4.7)

Therefore,

E[Ln(i, j)] = n−2
n−1

E[Ln−1(i, j)] + 1
n−1

E[Ln−1(i − 1, j)]. (4.8)

That is,

pn(i, j) = n−2
n

pn−1(i, j) + 1
n
pn−1(i − 1, j). (4.9)

Summarizing the above two cases, we have the following theorem:

Theorem 4.2.1 Whenn ≥ 3, the joint distribution of the number of children and the gen-

eration in a worm treeTn follows

pn(i, j) =











n−2
n

pn−1(0, j) + 1
n
gn−1(j − 1), i = 0

n−2
n

pn−1(i, j) + 1
n
pn−1(i − 1, j), otherwise,

(4.10)

where0 ≤ i, j ≤ n − 1.

Theorem 4.2.1 provides a way to calculatepn(i, j) recursively fromp2(i, j). Fig. 4.3

shows a snapshot ofpn(i, j) whenn = 2000. It can be seen that when the generation

is specified (i.e., j is fixed),pn(i, j) is a monotonous function and decreases quickly asi

increases. On the other hand, when the number of children is given (i.e.,i is fixed),pn(i, j)

has a bell shape. Moreover, since
∑10

i=0

∑15
j=0 pn(i, j) = 0.9976, most nodes do not have a

large number of children, and the worm tree does not have a large average path length.
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Figure 4.3: Joint distribution of the number of children andthe generation.

4.2.2 Number of Children

We usepn(i, j) to derive the marginal distribution of the number of children, i.e., cn(i).

Similarly, we study two cases:

(1) cn(0), i.e.,the proportion of the number of leaves inTn. Sincecn(0) =
∑n−1

j=0 pn(0, j)

and
∑n−1

j=0 gn−1(j − 1) = 1, we obtain the recursive relationship ofcn(0) from Equation

(4.4):

cn(0) = n−2
n

cn−1(0) + 1
n
. (4.11)

Moreover, note thatc2(0) = 1
2
. If we assume thatcn−1(0) = 1

2
, we can obtain by induction

that

cn(0) = 1
2
. (4.12)

This indicates that no matter how many nodes are in the worm tree, on average half of

nodes are leaves,i.e.,on average 50% of infected hosts never compromise any target.

(2) cn(i), 1 ≤ i ≤ n − 1. From Equation (4.9) andcn(i) =
∑n−1

j=0 pn(i, j), we find the

recurrence ofcn(i) as follows

cn(i) = n−2
n

cn−1(i) + 1
n
cn−1(i − 1). (4.13)
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Summarizing the above two cases, we have the following theorem on the distribution

of the number of children:

Theorem 4.2.2 Whenn ≥ 3, the distribution of the number of children in a worm treeTn

follows

cn(i) =











1
2
, i = 0

n−2
n

cn−1(i) + 1
n
cn−1(i − 1), 1 ≤ i ≤ n − 1.

(4.14)

From Theorem 4.2.2, we can derive the statistical properties of the number of children

as follows.

Corollary 4.2.3 Whenn ≥ 1, the expectation and the variance of the number of children

are

En[C] =
∑n−1

i=0 i · cn(i) = n−1
n

(4.15)

Varn[C] =
∑n−1

i=0 (i − En[C])2 · cn(i) = 2 − n−1
n2 − 2Hn

n
, (4.16)

whereHn =
∑n

i=1
1
i

is then-th harmonic number [15].

The proof of Corollary 4.2.3 is given in Appendix B.1. One intuitive way to derive

En[C] is that in worm treeTn, there aren − 1 directed edges andn nodes. Thus, the

average number of edges (i.e, the average number of children) of a node isn−1
n

. Moreover,

sinceHn is O(1 + ln n), lim
n→∞

En[C] = 1, and lim
n→∞

Varn[C] = 2.

Theorem 4.2.2 also leads to a simple closed-form expressionof the distribution of the

number of children whenn is very large, as shown in the following corollary.

Corollary 4.2.4 Whenn → ∞, the number of children has a geometric distribution with

parameter1
2
, i.e.,

c(i) = lim
n→∞

cn(i) =
(1

2

)i+1

, i = 0, 1, 2, · · · . (4.17)
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Figure 4.4: Number of children.

Proof. It is already known thatc(0) = 1
2
. Wheni ≥ 1, this corollary follows readily from

Equation (4.13). Sincen → ∞, cn−1(i) = cn(i) = c(i), which yields

c(i) = n−2
n

c(i) + 1
n
c(i − 1). (4.18)

That is,

c(i) = 1
2
c(i − 1), i ≥ 1. (4.19)

Hence, fromc(0) = 1
2
, we can recursively obtain Equation (5.6).

Corollary 4.2.4 indicates that whenn is very large,cn(i) decreases approximately ex-

ponentially with a decay constant ofln 2 as the number of children increases. We further

study when bothn andi are finite and large, howcn(i) varies withn, i.e.,how the tail of the

distribution of the number of children changes withn. First, note thatc3(0) = 1
2
, c3(1) = 1

3
,

andc3(2) = 1
6
. Thus, from Equation (4.13), we can prove by induction thatcn(i) (n ≥ 3)

is a decreasing function ofi, i.e., cn(i) < cn(i − 1), for 1 ≤ i ≤ n − 1. Next, putting this

inequality into Equation (4.13), we havecn(i) > n−1
n

cn−1(i). Hence, whenn is very large,

n−1
n

≈ 1, andcn(i) > cn−1(i), which indicates that the tail ofcn(i) increases withn. Fig.

4.4 verifies this result, showingcn(i) obtained from Theorem 4.2.2 whenn = 1000, 2000,

5000, and20000, as well as the geometric distribution with parameter 0.5 obtained from
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Corollary 4.2.4. Note that the y-axis uses log-scale. It canbe seen that whenn increases

from 1000 to 20000, the tail ofcn(i) also increases to approach the tail of the geometric

distribution. Moreover, it is shown that the geometric distribution well approximates the

distribution of the number of children whenn is large.

4.2.3 Generation

Next, we derive the generation distribution (i.e., gn(j)) in a similar manner to the case of

cn(i). Using Theorem 4.2.1 andgn(j) =
∑n−1

i=0 pn(i, j), we obtain the following theorem:

Theorem 4.2.5 Whenn ≥ 3, the distribution of the generation in a worm treeTn follows

gn(j) = n−1
n

gn−1(j) + 1
n
gn−1(j − 1), 0 ≤ j ≤ n − 1, (4.20)

wheregn−1(−1) = 0.

Theorem 4.2.5 gives a method to calculate the distribution of the generation recursively.

Moreover, from Theorem 4.2.5, we can derive the statisticalproperties of the generation

distribution in the following corollary.

Corollary 4.2.6 Whenn ≥ 1, the expectation and the variance of the generation are

En[G] =
∑n−1

j=0 j · gn(j) = Hn − 1. (4.21)

Varn[G] =
∑n−1

j=0 (j − En[G])2 · gn(j) = Hn − Hn,2, (4.22)

whereHn =
∑n

i=1
1
i

andHn,2 =
∑n

i=1
1
i2

.

The proof of Corollary 4.2.6 is given in Appendix B.2. From Corollary 4.2.6, we have

some interesting observations. SinceHn is O(1 + ln n) andH∞,2 = ζ(2) = π2

6
≈ 1.645

is the Riemann zeta function of 2 [66], both En[G] and Varn[G] areO(1 + ln n). This

indicates that the average path length of the worm tree (i.e., En[G]) increases approxi-

mately logarithmically withn. Moreover, whenn → ∞, lim
n→∞

En[G] − ln n = γ − 1, and
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lim
n→∞

Varn[G] − ln n = γ − ζ(2), whereγ ≈ 0.577 is the Euler-Mascheroni constant [67].

Therefore, whenn is large, En[G] ≈ Varn[G]. Furthermore, we can use Theorem 4.2.5 to

obtain a closed-form approximation togn(j) as follows.

Corollary 4.2.7 Whenn is very large, the generation distributiongn(j) can be approxi-

mated by a Poisson distribution with parameterλn = En[G] = Hn − 1. That is,

gn(j) ≈ λ
j
n

j!
e−λn , 0 ≤ j ≤ n − 1. (4.23)

Proof. We prove this corollary by applying z-transform. If a randomvariableX follows a

Poisson distribution with parameterλ,

Pr(X = k) =
λk

k!
e−λ, k = 0, 1, 2, · · · . (4.24)

Using z-transform, we have

X(z) =

∞
∑

k=0

Pr(X = k)z−k = eλ(z−1−1). (4.25)

Meanwhile, using Equation (4.20) in Theorem 4.2.5, we find the z-transform ofgn(j)

Yn(z) =
∑n−1

j=0 gn(j)z−j =
(

1 + z−1−1
n

)

Yn−1(z). (4.26)
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Note that whenx → 0, ex ≈ 1 + x. Thus, whenn is very large,1 + z−1−1
n

≈ exp((z−1 −

1)/n). That is,

Yn(z) ≈ e
z−1

−1

n Yn−1(z). (4.27)

UsingY1(z) = 1, we can recursively obtain

Yn(z) ≈ e(z−1−1)
∑n

i=2

1

i = e(Hn−1)(z−1−1). (4.28)

Therefore, comparing Equations (4.25) and (4.28), we find thatgn(j) can be approximated

by the Poisson distribution with parameterHn − 1 as in Equation (4.23).

Fig. 4.5 verifies Corollary 4.2.7, showinggn(j) obtained from Theorem 4.2.5 when

n = 1000, 2000, 5000, and20000, as well as the Poisson distribution with parameter En[G].

It can be seen that whenn is large, the Poisson distribution fits the generation distribution

closely.

4.2.4 Approximation to the Joint Distribution

Finally, we derive a closed-form approximation to the jointdistributionpn(i, j). From

Equation (4.9), we can see that whenn → ∞, pn(i, j) = pn−1(i, j), which yields

pn(i, j) = 1
2
pn(i − 1, j). (4.29)

Hence, we can obtain

pn(i, j) =
(

1
2

)i
pn(0, j) ≈

(

1
2

)i+1
gn(j). (4.30)

Since whenn is very large,gn(j) follows closely the Poisson distribution as in Corollary

4.2.7,

pn(i, j) ≈
(

1
2

)i+1
· λ

j
n

j!
e−λn , 0 ≤ i, j ≤ n − 1, (4.31)

whereλn = Hn−1. The above derivation also shows that whenn is very large, the number

of children and the generation are almost independent random variables.
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Figure 4.6: Joint distribution.

Fig. 4.6 shows the parity plot of the approximation to the joint distribution whenn =

2000. In the figure, the x-axis is the actualpn(i, j) obtained from Theorem 4.2.1, and the

y-axis is the approximatedpn(i, j) from Equation (4.31), where0 ≤ i, j ≤ 30. It can be

seen that most points are on or near the diagonal line, indicating that the approximation to

the joint distribution is reasonable.

4.3 Simulations and Verification

In this section, we study the worm spatial infection structure through simulations. As far as

we know, there is no publicly available data to show the real worm tree and verify our ana-

lytical results. Moreover, real experiments in a controlled environment are impractical for

this study since the closed-form approximations are derived based on the assumption that

the number of nodes is very large. Therefore, we apply empirical simulations. Specifically,

we first simulate the spatial infection structure of the CodeRed v2 worm and then study

the effects of important parameters on the worm tree. Finally, we extend our simulation to

localized-scanning worms.
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(c) Joint distribution (n = n0).

Figure 4.7: Simulating the spatial infection structure of the Code Red v2 worm.

4.3.1 Code Red v2 Worm Verification

Similarly to Chapter 3, we simulate the propagation of the Code Red v2 worm by using

and extending the simulator in [68]. Here, the vulnerable population isn0 = 360, 000, and

a newly infected host is assigned with a scanning rate of 358 scans/min. We then extend

the simulator to track the worm spatial infection structureby adding the information of the

number of children and the generation to each infected host.Moreover, we set the time unit

to 20 seconds and start our simulation at time tick 0 with patient zero. Note that we remove

the assumption used in the sequential growth model that no two hosts are compromised at
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the same time. That is, multiple hosts can be compromised at one time tick. Moreover, all

new victims of the current time tick start scanning at the next time tick. The simulation

results (mean± standard deviation) are obtained from 100 independent runswith different

seeds and are presented in Fig. 4.7.

Fig. 4.7(a) shows the distribution of the number of children, comparing the simulation

results ofcn(i) for n = n0/4, n0, and4n0 with the geometric distribution obtained from

Corollary 4.2.4. Note that the y-axis uses the log-scale. The vertical dotted line represents

the standard deviation that goes into the negative territory. It can be seen that the distribu-

tion of the number of children can be well approximated by thegeometric distribution with

parameter 0.5. This implies thatcn(i) decreases approximately exponentially with a decay

constant ofln 2. Specifically, in all three cases, on average 50.0% of the infected hosts do

not have children, about 98.4% of them have no more than five children, and 0.1% of them

have no less than ten children. We also calculate the expectation and the variance of the

number of children from the simulation and find that they are identical to the analytical

results obtained from Corollary 4.2.3. Fig. 4.7(b) demonstrates the generation distribution,

comparing the simulation results ofgn(j) for n = n0/4, n0, and4n0 with the Poisson distri-

butions with parameter En[G] = Hn − 1 obtained from Corollary 4.2.7. It can be seen that

the simulation results ofgn(j) closely follow the Poisson distributions for all three cases.

Hence, simulation results verify that the average path length of the worm tree increases

approximately logarithmically with the total number of infected hosts. Moreover, we also

compute the expectation and the variance of the generation in simulations and verify the

analytical results in Corollary 4.2.6. Fig. 4.7(c) compares the measured joint distribution

from simulations with the approximated joint distributionfrom Equation (4.31) by using

the parity plot. It can be seen that most points are on or near the diagonal line, indicating

that the approximation works well.
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4.3.2 Effects of Worm Parameters

Next, we extend our simulator to examine the effects of threeimportant parameters of worm

propagation on the worm tree: the scanning rate, the scanning rate standard deviation, and

the hitlist size. When a parameter is studied and varied, we set other parameters to the

parameters of the Code Red v2 worm as used in Section 4.3.1. The simulation results are

obtained from 100 independent simulation runs and are shownin Fig. 4.8.

Fig.s 4.8(a) and (b) show the effect of varying the scanning rates (scans/min) from 158

to 558 on the distributions of the number of children and the generation. Here, the scanning

rate is set to a fixed value for every infected host,i.e., the scanning rate standard deviation
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Figure 4.8: Effects ofs, σ, and the hitlist size oncn(i) andgn(j).

is 0. The figures also plot the geometric distribution with parameter 0.5 and the Poisson

distribution with parameterHn0
−1 for reference. It can be seen that the scanning rate does

not affect the worm tree structure.

Fig.s 4.8(c) and (d) demonstrate the effect of the variationof the scanning rates among

different hosts (i.e., σ). In our simulation, a newly infected host is assigned with ascanning

rate (scans/min) from a normal distributionN(358, σ2). The figures show the simulation

results whenσ = 0, 100, and200. It can be seen that while the scanning rate standard

derivationσ has no effect on the generation distribution, it does affectthe distribution of

the number of children. Specifically, whenσ increases, the tail ofcn(i) moves upward from

the geometric distribution with parameter 0.5. This is because whenσ becomes larger, the

variation of the scanning rate among infected hosts is greater. That is, there are more hosts

with high scanning rates and also more hosts with low scanning rates. As a result, those

hosts with high scanning rates tend to infect a large number of hosts, making the tail of

cn(i) move upward. However, it is also observed that whenσ is not very large (the case for

real worms), the geometric distribution with parameter 0.5is still a good approximation.

In Fig.s 4.8(e) and (f), we show the effect of the hitlist sizeon the worm tree. As pointed
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out in Section 4.1, when the hitlist size is greater than 1, the underlying infection topology

is a worm forest with the number of trees equal to the hitlist size. Moreover, in a worm

forest, it is intuitive that each tree is a smaller version ofthe single worm tree of hitlist size

1 and has fewer nodes. Hence, it is not surprising to see that in Fig. 4.8(f), the generation

distribution moves leftward when the hitlist size increases. However, the generation distri-

bution can still be well approximated by the Poisson distribution with parameterHnh
− 1,

wherenh is the average number of nodes in a tree. Moreover, since in each tree the distri-

bution of the number of children can be approximated by the geometric distribution with

parameter 0.5, in the worm forestcn(i) still follows closely the same distribution.

4.3.3 Localized Scanning

Finally, we extend our simulation study to the infection tree of localized-scanning worms.

Different from random scanning, localized scanning preferentially searches for targets in

the “local” address space [7]. As a result, when a new node is added to the worm tree,

it connects to one of the existing nodes that are in the same “local” address space with a

higher probability. That is, the growth model is no longer uniform attachment as studied in

Section 4.2. For simplicity, in this work we only consider the/l localized scanning [55]:

• Local scanning: pa(0 ≤ pa < 1) of the time, a “local” IP address with the same first

l (0 ≤ l ≤ 32) bits as the attacking host is chosen as the target.

• Global scanning: 1 − pa of the time, a random address is chosen.

Note that random scanning can be regarded as a special case oflocalized scanning when

pa = 0. Moreover, if local scanning is selected, it can be regardedas random scanning in

a local/l subnet. It has been shown that since the vulnerable-hosts distribution is highly

uneven, localized scanning can spread a worm much faster than random scanning [65].
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Figure 4.9: Simulating the spatial infection structure of the localized-scanning worm.

We extend our simulator to imitate the spread of localized-scanning worms. We extract

the distribution of vulnerable hosts in/l subnets from the dataset provided by DShield

[58, 69]. Specifically, we use the dataset in [69] with port 80(HTTP) that is exploited

by the Code Red worm to generate the vulnerable-host distribution. Moreover, we use

similar parameters as in Section 4.3.1 (e.g.,n = 360, 000, s = 358 scans/min,σ = 0,

andhitlist = 1) and set the subnet level to 8 (i.e., l = 8). The results are obtained from

100 independent simulation runs and are shown in Fig. 4.9. For each run, patient zero is

randomly chosen from vulnerable hosts.
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Fig. 4.9(a) compares the simulation results of the distributions of the number of children

(i.e.,cn(i)) whenpa = 0, 0.3, and 0.6 with the geometric distribution with parameter 0.5. It

is surprising thatcn(i) of localized-scanning worms can still be well approximatedby the

geometric distribution. That is, the majority of nodes havefew children, whereas a small

portion of compromised hosts infect a large number of hosts.An intuitive explanation is

given as follows. From Fig. 4.7(a), it can be seen that the total number of nodes has a

minor effect oncn(i). Hence, if in a /8 subnet the majority of vulnerable hosts areinfected

through local scanning, it is expected thatcn(i) of these hosts still closely follows the

geometric distribution since the local scanning can be regarded as random scanning inside

a /8 subnet. Therefore, both local infection and global infection leadcn(i) towards the

geometric distribution with parameter 0.5. On the other hand, it can also be seen that when

pa increases, the tail ofcn(i) moves slightly downward. This is because aspa increases,

more vulnerable hosts are infected through local scanning.Hence, it is more difficult for

an infected host to find targets after vulnerable hosts in this host’s local subnet have been

exhausted. As a result, whenpa increases, fewer nodes can have a large number of children.

Fig. 4.9(b) demonstrates that the generation distributionof localized-scanning worms

(i.e., gn(j)) can be well approximated by the Poisson distribution for the cases ofpa = 0,

0.3, and 0.6. The Poisson parameter, however, depends not only on n, but also onpa. We

further defineλpa
n = Epa

n [G] as the expectation of the generation for a localized-scanning

worm with parameterpa. Here, Epa

n [G] can be easily estimated from the simulation results

of gn(j). Fig. 4.9(c) further shows the parity plot of the simulated joint distribution and the

approximated joint distribution from Equation (4.31) whenpa = 0.6, indicating that the

approximation is reasonable.

Moreover, Fig. 4.10 shows the effect of the subnet level (i.e.,l) on the distribution of the

number of children (i.e.,cn(i)). It can be seen that whenl increases, the tail ofcn(i) moves

downward. The reason is similar to the argument used in Fig. 4.9(a), i.e., as l increases,
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Figure 4.10: Effect of the subnet level (pa = 0.6).

fewer nodes can infect a large number of children. However, the figure also demonstrates

that the geometric distribution with parameter 0.5 is stilla good approximation tocn(i),

especially when the number of children is not large.
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CHAPTER 5

EVALUATING P2P-BASED BOTNETS FORMED BY WORM INFECTION

A botnet is a zombie network controlled by a malicious attacker called thebotmaster

and is capable of sending denial-of-service attacks, producing spams, and stealing financial

information. For example, the Storm botnet affected tens ofmillions of hosts and was used

for spam emails and distributed DoS attacks in 2007 [35]. Therefore, botnets have become

one of top threats to the Internet.

There are two major types of botnets: IRC-based botnets and P2P-based botnets. While

IRC-based botnets require central servers for command delivery, P2P-based botnets make

use of peer-to-peer systems and can form different command communication networks

such as random graphs or power-law topologies [16]. As a result, P2P-based botnets are

more resilient to defenses and have plagued the Internet [36]. In this chapter, we consider a

P2P-based botnet formed by worm scanning/infection. That is, once a host infects another

host, they become peers in the resulting P2P-based botnet. Note that P2P-based botnets

formed by worm infection are a real threat. For example, Conficker C uses random scan-

ning to locate peers and forms a P2P botnet through scan-based peer discovery [5, 6]. Thus,

the way that Conficker C builds the botnet is in principle the same as worm infection.

Our observations on the worm spatial infection structure inChapter 4 have important

applications on Conficker C like P2P-based botnets. For example, we have found that

the generation distribution closely follows the Poisson distribution and the average path

length increases approximately logarithmically with the number of nodes. This average

path length reflects the delay or the effort for a botmaster todeliver a command to all bots

in a P2P-based botnet like Conficker C, and our results show that the botnet is scalable

and can efficiently forward commands to a large number of bots. In this chapter, we further

study other aspects of a Conficker C like P2P-based botnet forboth defenders and attackers.
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The goal of this chapter is to evaluate bot detection strategies and effects of user de-

fenses in P2P-based botnets formed by worm infection. Specifically, we first apply the

observations of the number of children in Chapter 4 on a Conficker C like P2P-based bot-

net to study efficient bot detection strategies. We then further extend the worm spatial

infection structure to investigate the P2P-based botnet topologies under user patching and

cleaning through simulations.

The remainder of this chapter is structured as follows. Section 5.1 evaluates bot detec-

tion methods and studies potential countermeasures by future botnets. Section 5.2 evaluates

the effect of user defenses on the P2P-based botnet structure, and further studies effects of

worm re-infection against user countermeasures.

5.1 Evaluating Bot Detection Strategies

In this section, we evaluate efficient bot detection methodsby applying the observations of

the number of children in Chapter 4 and then study a potentialcountermeasure by future

botnets.

5.1.1 Bot Detection Strategies

In a P2P-based botnet formed by worm scanning/infection (e.g., Fig. 5.1), when a defender

captures an infected hostx in a botnet, the defender can process the historic records inside

the host or monitor the traffic going into or out of the host, and will potentially detect other

infected hosts such as the father (hosty) and the children (hostz) of the infected hostx.

Then, our question is that if a defender can only access a small portion of nodes in a botnet,

how many bots will be detected by the defender. Moreover, inspired by the random removal

and targeted removal methods used in analyzing the robustness of a topology [37], here we

study two bot detection strategies:

• Random detection: Access bots randomly.
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Figure 5.1: Bot detection in P2P-base botnet formed by worm infection.

• Targeted detection: Access bots that have the largest number of children.

Analytically, we suppose that a defender can access a small ratio of bots in a botnet.

We assume that an accessed bot exposes itself, its father, and its children to the defender.

To simplify the analysis, we also assume that the accessed bot ratio, A, is a power of 0.5

and all exposed nodes are different nodes. We then calculatethe average percentages of

exposed bots by random detection and targeted detection.

Since from Corollary 4.2.3 a randomly selected node has approximately one child, the

average percentage of bots that can be exposed by random detection is then

DR = 3A. (5.1)

For targeted detection, since the nodes with the largest number of children are chosen

and the number of children follows asymptotically a geometric distribution with parameter

0.5 as shown in Corollary 4.2.4,

A =
∑

i≥d cn(i) =
∑∞

i=d

(

1
2

)i+1
=

(

1
2

)d
, (5.2)

whered is the smallest number of children of accessed nodes. That is, d = − log2 A.

Therefore, the average percentage of exposed nodes by targeted detection is

DT =
∑∞

i=d (2 + i) · cn(i) = (d + 3)
(

1
2

)d
= A(3 − log2 A). (5.3)
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Figure 5.2: Random and targeted detection.

Compared with random detection, targeted detection can expose(−A log2 A) × n more

nodes. For example, ifA = 1
64

, on average random detection can detect 4.69% of nodes,

whereas targeted detection can expose 14.06% of bots.

We simulate a P2P-based botnet formed through worm infection by using our simulator

in Section 4.3.1. We then extend the simulator to study the effectiveness of random and

targeted detection strategies. Fig. 5.2 shows the simulation results over 100 independent

runs for both strategies, as well as the analytical results from Equations (5.1) and (5.3),

whenA = 1
64

, 1
32

, and 1
16

. It can be seen that the analytical results slightly overestimate

the exposed host percentage. This is because in our analysiswe ignore the case that two

exposed nodes can be duplicate. Fig. 5.2 also demonstrates that targeted detection performs

much better than random detection. For example, in our simulation, whenA = 3.125%,

9.10% of the bots are exposed under random detection, whereas 22.36% of the bots are

detected under targeted detection. Therefore, when a smallportion of bots are examined,

the botnets formed by worm infection are robust to random detection, but are relatively

vulnerable to targeted detection.
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5.1.2 A Countermeasure by Future Botnets

To counteract the targeted detection method, an intuitive way for botnets is to limit the

maximum number of children for each node. That is, set a smallnumberm. Once an

infected host has compromisedm other hosts, this host stops scanning. In this way, there

is no node with a large number of children. Moreover, the infected hosts can self-stop

scanning, potentially reducing the worm traffic [59].

To analyze the robustness of such botnets against targeted detection, we extend Corol-

lary 4.2.4 to obtain an approximated distribution of the number of children in a botnet with

the countermeasure:

cn(i) =











(

1
2

)i+1
, i = 0, 1, 2, · · · , m − 1

(

1
2

)m
, i = m.

(5.4)

The distribution is based on the observation that those nodes having more thanm children

in a botnet without the countermeasure can now have onlym children. Hence, the expected

percentage of exposed nodes under targeted detection can becalculated:

D′
T =











(m + 2) · A, A ≤
(

1
2

)m

A(3 − log2 A) −
(

1
2

)m
, A >

(

1
2

)m
.

(5.5)

Compared withDT in Equation (5.3),D′
T is smaller. This means that under the counter-

measure the number of exposed nodes can be reduced significantly. For example, when

m = 3 andA = 1
64

, DT = 9
64

, andD′
T = 5

64
.

We then extend our simulation in Section 5.1.1 to simulate the worm tree generated

using the above countermeasure and evaluate its performance against targeted detection.

Fig. 5.3(a) shows the distribution of the number of childrenwhenm = 2, 3, 4, and 5.

It can be seen that except form = 2, cn(i) is well approximated by Equation (5.4). For

m = 2, since an infected host stops scanning when it has hit two vulnerable hosts, leaves in

the worm tree have more chances to recruit a child. Fig. 5.3(b) demonstrates the expected
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Figure 5.3: A worm countermeasure via limiting the maximum number of children.

percentage of exposed nodes (i.e., D′
T ), whenA = 1

64
, 1

32
, and 1

16
, andm = 2, 3, 4, and

5. It can be seen thatD′
T follows approximately the analytical results in Equation (5.5).

Moreover, the expected percentage of exposed nodes under the countermeasure is reduced

significantly. For example, whenA = 1
32

, the percentage is reduced from 22.36% without

the countermeasure to 19.80%, 15.99%, 12.58%, and 9.38% when m = 5, 4, 3, and 2,

respectively.

On the other hand, since not every infected host keeps scanning the targets, the coun-

termeasure can potentially slow down the speed of worm infection. Thus, we also simulate
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the propagation speed of worms that limit the maximum numberof children and plot the

results in Fig. 5.3(c) form = 2, 3, 4, and 5, as well as the original worm without the coun-

termeasure. It can be seen that except form = 2, the worm does not slow down much. But

even whenm = 2, the worm can infect most vulnerable hosts within 17 hours. Moreover,

Fig.s 5.3(b) and (c) demonstrate the tradeoff between the efficiency of worm infection and

the robustness of the formed botnet topology. That is, a wormwith the countermeasure

spreads slower, but the resulting botnet is more robust against targeted detection.

5.2 Evaluating Effects of User Defenses

In Chapter 4, we studied the worm tree,i.e., the network structure of P2P-based botnets

formed by Internet worm infection. Specifically, we considered that once an infected host

compromises another host, they form the “father” and “child” relationship, as shown in

Fig. 5.4(a). In Chapter 4, we found through theoretical analysis that the number of children

has asymptotically a geometric distribution with parameter 0.5 and the generation follows

closely a Poisson distribution. In our prior work, however,we focused on the process of

worm infection and the formation of P2P-based botnets, and did not consider the potential

countermeasures from users.

Users can respond to worm outbreaks by patching or cleaning discovered infected hosts.

For example, to counterattack the Conficker worm, Microsoftreleased a removal guide to

clean and patch the Conficker compromised machines after theoutbreak of the worm [70].

When an infected host is patched, it becomes invulnerable; and when it is cleaned, it is no

longer infectious, but is still vulnerable to worm infection. It is obvious that a patched or

cleaned infected host can break its relationships with its father and children in the worm

tree. Specifically, when an infected host is patched or cleaned, the corresponding node

along with its associated links are removed from the worm tree. As a result, the infection

topology is no longer a tree, but a forest, as shown in Figure 5.4(b). When user countermea-
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(a) A worm tree. (b) A worm forest.

Figure 5.4: User defenses in P2P-based botnets formed by worm infection.

sures are considered, therefore, two interesting questions arise: Are patching and cleaning

methods effective against P2P-based botnets, and how do user countermeasures affect the

botnets formed by worm infection?

To answer these questions, in this section we extend our previous work to investigate the

structure of P2P-based botnets under user countermeasures. Specifically, we consider that

a vulnerable host has three states: susceptible, infected,and removed. A susceptible host

can become infected through worm infection. An infected host can either become removed

by user patching or become susceptible again by user cleaning. Note that user cleaning

is a real method against some worms. For example, a Code-Red infected host becomes

susceptible once rebooted [21]. The effectiveness of patching and cleaning against worms

has been studied in terms of the total number of infected hosts over time [9, 71]. In this

work we focus on the effect of user countermeasures on the P2P-based botnet structure.

To characterize the key features of botnet topologies underboth worm infection and user

countermeasures, we study two important metrics in particular:

• Number of peers:For a randomly selected node in the botnet topology, how many

peers (i.e., an infected host’s father and children) does it have? This metric represents

the node degree of individual hosts.
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• Botnet size:For a randomly selected tree in the forest, how many nodes does it have?

This metric represents the size of disconnected botnets after node removal.

These two metrics shed light on the robustness and the effectiveness of formed P2P-

based botnets. For example, if a very small number of hosts have a large number of peers

and the majority of hosts have none or few peers, such botnetsare robust to random de-

fenses, but are vulnerable to targeted defenses (i.e., quarantining the hosts with the largest

node degree) [72, 16]. On the other hand, if each host has a similar node degree, then such

botnets are robust to both defense schemes [72, 16]. Moreover, the bigger a botnet is, the

more effective and dangerous it is [16]. For example, if the forest consists of a collection of

small isolated botnets, then its effectiveness is significantly lower than the single connected

botnet with the same total number of nodes.

5.2.1 Worm Forest and Simulation Settings

In this section, we first provide the background of the worm forest and then introduce our

simulation settings.

In Chapter 4, we studied the topology of P2P-based botnets formed by Internet worm

infection without considering user defenses. Specifically, we analyzed the tree structure

of P2P-based botnets formed by a wide class of worms startingfrom patient zero, for

which a new victim is compromised by each existing infected host with equal probabil-

ity. Such worms include well known random-scanning worms, routable-scanning worms,

importance-scanning worms, OPT-STATIC worms, and SUBOPT-STATIC worms. Here,

we assume that all vulnerable hosts are globally reachable and do not consider the effect

of network address translation [73]. In this section, we construct the worm forest by ran-

domly patching or cleaning hosts in the worm tree studied in [72]. Since most Internet

worms spread so fast that existing defense systems cannot respond until they have infected

most vulnerable hosts [22, 23], we assume that user patchingor cleaning starts when the
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entire vulnerable population (denoted asn0) gets infected. We userp to denote the patching

rate at which a machine is patched and becomes invulnerable,andrc to denote the clean-

ing rate at which the infection is cleaned on a machine without patching. Once patched

or cleaned, the node and its associated links are then removed from the botnet topology.

Suppose thatnd hosts get patched or cleaned, and the number of remaining infected hosts

and trees are denoted asnr andtr, respectively. We useBnd
n0

(i) (i = 0, 1, 2, · · · , nr − 1) to

denote the number of nodes that havei peers andT nd
n0

(j) (j = 1, 2, 3, · · · , nr) to denote the

number of trees that havej nodes. Note that
∑nr−1

i=0 Bnd
n0

(i) = nr, and
∑nr

j=1 T nd
n0

(j) = tr.

Moreover,Bnd
n0

(i) andT nd
n0

(j) are random variables. Thus, we definebnd
n0

(i) =
E[B

nd
n0

(i)]

nr
to

represent the distribution of the number of peers andtnd
n0

(j) =
E[T

nd
n0

(j)]

tr
to represent the

distribution of the botnet size. Note that the worm tree is a special case of the worm forest

whennd = 0 (i.e.,without user defenses). For such a tree, we have

lim
n0→∞

b0
n0

(i) = (1
2
)i, i = 1, 2, 3, · · · (5.6)

by extending the result in Chapter 4. While our previous workonly considers the number

of children, this section studies the number of peers including both the father and children.

Therefore, in P2P-based botnets formed by worm infection without user countermeasures,

the distribution of the number of peers has asymptotically ageometric distribution with

parameter 0.5, and decreases exponentially with a decay constant ofln 2. Moreover, Since

there is only one botnet, we then have the distribution of thebotnet sizet0n0
(n0) = 1.

To investigate the P2P-based botnet topology under user patching and cleaning, in this

work we studybnd
n0

(i) andtnd
n0

(j) through simulations. As far as we know, there is no pub-

licly available data to show the real botnet topologies. Moreover, the complex dynamics of

patching and cleaning make the botnet structure difficult tobe characterized analytically.

Therefore, we apply Monte Carlo simulation. Monte Carlo simulation is widely applied

in probability modeling and is the only viable method for themodeling of many com-

plex stochastic systems [74]. Specifically, we simulate a P2P-based botnet formed through
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worm infection by using our simulator in Section 4.3.1. We then extend the simulator to

mimic the dynamics of user countermeasures and capture the resulting botnet structure.

Specifically, after all vulnerable machines get compromised, we randomly patch or clean

hosts withrp = 2 × 10−5/sec orrc = 2 × 10−5/sec. We also record the information of the

number of peers and the botnet size to track the botnet structure. Moreover, we set the time

unit to 20 seconds and start our simulation at time tick 0 withpatient zero. The simulation

results are obtained from 100 independent runs with different seeds.

5.2.2 P2P-based Botnet Structure under User Countermeasures

In this section, we present the P2P-based botnet structure under user countermeasures.

Specifically, we examine the distributions of the number of peers and the botnet size under

three different defense schemes: host patching only, host cleaning only, and host patch-

ing/cleaning schemes. The results are shown in Fig.s 5.5-5.7. Scaling parametersλ and

k are estimated through regression analysis on empirical data by using the Matlab curve

fitting toolbox [75], and the coefficient of determinationR2 is very close to 1 for all esti-

mates.

Host Patching Only Scheme

Under this defense scheme, we begin to randomly patch infected hosts withrp = 2 ×

10−5/sec after all vulnerable machines get infected. Once patched, an infected host be-

comes invulnerable, and the node and its associated links are removed from the worm

forest. We then examine the P2P-based botnet structure whennd hosts get patched. The

results are shown in Fig. 5.5.

Fig. 5.5(a) shows the distribution of the number of peers, comparing the simulation

results ofbnd
n0

(i) for nd = 0, n0/4, andn0/2 with the exponential scaling obtained through

regression. Note that the y-axis uses the log-scale and the error bar represents the standard
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Figure 5.5: Host patching only scheme.

deviation over 100 runs. The dotted line represents the standard deviation that goes into

the negative territory. It can be seen that the distributionof the number of peers has an

exponential tail. Specifically, without user defenses (i.e., whennd = 0), b0
n0

(i) can be

well approximated by the geometric distribution with parameter 0.5 shown in Equation

(5.6), and therefore decreases exponentially with the decay constantλ = ln 2. However, as

infected hosts get patched, nodes that do not have any peer emerge in the forest. Moreover,

whennd increases,bnd
n0

(i) still has an exponential tail, but decays faster. This is because

when more infected hosts get removed, there are fewer hosts with a large node degree and

more hosts becoming isolated nodes without any peer. On one hand, the exponential scaling

of bnd
n0

(i) implies that after random patching, a small portion of bots still have a large number

of peers and the majority of bots have none or few peers. For example, whennd = n0/2, on

average over 99.7% of bots have no more than five peers. On the other hand, an increasing

decay constant indicates that the node degree of a bot decreases due to patching. For

example, the average node degree decreases from2 whennd = 0 to 1 whennd = n0/2.

Moreover, through extensive regression analysis, we find that after user patching, in the

resulting P2P-based botnet topology, the decay constantλ ≈ ln ((n0 + nr)/nr), where
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nr = n0 − nd. For example, when half of infected hosts are patched,bnd
n0

(i) decreases

exponentially with a decay constant approximately ofln 3.

Fig. 5.5(b) demonstrates the distribution of the botnet size, comparing the simulation

results oftnd
n0

(j) for nd = 0, n0/4, andn0/2 with the power-law tails obtained through

regression. Note that the x- and y-axes use the log-scale. Itcan be seen that whennd = 0,

t0n0
(n0) = 1. That is, without patching, worm infection forms a single botnet with n0

nodes. However, with infected hosts being patched, the distribution of the botnet size has

a power-law tail. Moreover, whennd increases, the scaling exponentk becomes larger.

This is because as we patch more infected hosts, the number oftrees in the forest increases,

whereas the maximum size of trees decreases. For example, whennd = n0/2, on average

there are90, 011 trees1 in the forest with an average size of2 nodes. The average maximum

tree size is622 nodes, comprising less than 0.04% of infected hosts in the forest. Therefore,

the size of the largest botnet is relatively small, indicating that patching infected hosts

severely disrupts the single botnet formed by worm infection.

After performing sensitivity analysis on the parameterrp whennd is fixed, we find that

the patching rate does not affect the botnet structure.

Host Cleaning Only Scheme

Under this defense scheme, we begin to randomly clean infected hosts withrc = 2 ×

10−5/sec after all vulnerable machines get compromised. Once cleaned, an infected host

becomes susceptible, and the host and its associated links are removed from the forest. Note

that different from patching, cleaned infected hosts can becompromised again and rejoin

the forest. We then examine the P2P-based botnet structure whennd hosts get cleaned. The

results are shown in Fig. 5.6.

1We consider that isolated nodes without any peer are a special tree of size one.
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Figure 5.6: Host cleaning only scheme.

Fig.s 5.6(a) and (b) show the results of the distributions ofthe number of peers and the

botnet size. It can be seen thatbnd
n0

(i) still has an exponential decay andtnd
n0

(j) has a power-

law tail. As a result, after user cleaning, a small portion ofbots still have a large number

of peers, and the majority of bots have none or few peers. For example, whennd = n0/2,

the average node degree of bots is1.36, and on average about 99.3% of them have a node

degree of no more than five. Moreover, cleaning infected hosts severely disrupts the single

botnet formed by worm infection. For example, whennd = n0/2, on average there are

110, 740 disconnected botnets in the forest with an average size of3 nodes. The average
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maximum size of the disconnected botnets is2, 954 nodes, comprising about 0.85% of the

remaining infected hosts in the forest. However, compared with the patching only scheme,

the exponential and power-law scaling parameters under thehost cleaning only scheme

are smaller. This is due to the different nature of patching and cleaning. Under the host

cleaning only scheme, whennd hosts are cleaned, some of them get compromised again

and rejoin the worm forest. As a result, the number of remaining infected hosts in the

forestnr > (n0 − nd). Comparatively, under the host patching only scheme, whennd

nodes are patched,nr = n0 − nd. Therefore, as expected, the host cleaning only scheme

less disrupts the botnet structure than the host patching only scheme. Moreover, as shown

in Fig. 5.6(c), we find that under the host cleaning only scheme, on averagenr stabilizes

at around345, 950. This happens when the number of nodes being cleaned,nr · rc, is

about the same with the number of susceptible hosts getting infected again,(n0 − nr) · pi,

wherepi = nr · s ·
1

232 is the probability of a susceptible host being compromised.Setting

nr · rc = (n0 − nr) · nr · s ·
1

232 , we then obtain that the number of nodes in the worm forest

will stabilize atnr = n0 −
rc

s
· 232. For example, withrc = 2 × 10−5/sec ands = 358

scans/min,nr = 345, 603, which is very close to our simulation result. In the figure, we

also find thatnr is about the same for the cases ofnd = n0/4 andn0/2. However,bnd
n0

(i)

andtnd
n0

(j) of the casend = n0/2 has larger scaling parameters. This is due to the fact that

hosts with a large number of peers might get cleaned, whereassusceptible hosts rejoin the

forest as leaves with a node degree of one. As a result, although the number of infected

hosts stabilizes at the same level, the host cleaning process decreases the node degree of

infected hosts over time and further disrupts the worm forest. Furthermore, we find that

the cleaning raterc has little effect on the botnet structure whennd is fixed. On one hand,

a smaller cleaning rate corresponds to a larger stabilized botnets populationnr. One the

other hand, it takes more time to cleannd nodes with a smaller cleaning rate.
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Figure 5.7: Host patching/cleaning scheme.

Host Patching/Cleaning Scheme

Under this defense scheme, we consider both user patching and cleaning, which is the

case in real world scenarios. Specifically, we begin to randomly clean infected hosts with

rc = 2 × 10−5/sec after all vulnerable hosts get compromised. Meanwhile, susceptible

and infected hosts are randomly patched withrp = 2 × 10−5/sec. We then examine the

P2P-based botnet structure whennd hosts get patched or cleaned. The results are shown

in Fig. 5.7. It is intuitive that the distributions of the number of peers and the botnet size

exhibit the combined effects of the host patching only and the host cleaning only schemes.

Specifically, the exponential decay constantλ and the power-law scaling exponentk are

smaller than those under the host patching only scheme but greater than those under the

host cleaning only scheme. For example, whennd = n0/2, the average node degree of

bots is1.21, and on average about 99.5% of them have no more than five peers. Moreover,

on average there are100, 535 disconnected botnets in the forest with an average size of2.5

nodes. The average maximum size of the disconnected botnetsis 1, 636 nodes, comprising

about 0.64% of the remaining infected hosts in the forest.

The simulation results of all three defense schemes show that when users patch or clean
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Figure 5.8: Worm re-infection topology.

part of infected hosts, P2P-based botnets formed by worm infection suffer two weaknesses.

First, the botnets are highly centralized to a small percentage of the “hub” bots that have

a large node degree, and thus vulnerable to targeted defenses [72, 16]. Second, the single

botnet formed by worm infection is severly disrupted into a collection of small isolated

low-effective botnets.

5.2.3 P2P-based Botnets Formed by Worm Re-infection

In this section, we study a potential countermeasure by future botnets to combat against

user patching or cleaning.

A simple potential countermeasure for botmasters to construct more robust and effective

P2P-based botnets is through worm re-infection. That is, ifan infected host is hit by a worm

scan, this host will be further re-infected and become a peerof the infector. As a result, the

remaining bots may have a balanced node degree and stay well connected even when some

infected hosts get patched or cleaned (see Fig. 5.8). Note that different from the botnet

formed by re-infection discussed in [4], in our P2P-based botnet, there is no exchange of

peers between bots. Infected hosts are only peers to their own infectors and infectees.

78



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Number of peers (i)

bn
d

n
0
(i

)

 

 

nd = n0/2 (infection only)
nd = n0/2 (re-infection)

(a) Number of peers (host patching only).

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

G
ia

n
t

co
m

p
on

en
t

p
er

ce
n
ta

ge

 

 
nd = n0/2 (infection only)
nd = n0/2 (re-infection)

(b) Giant component percentage (host patch-
ing only).

Figure 5.9: P2P-based botnets formed by worm re-infection.

To show the effectiveness of worm re-infection on P2P-basedbotnets against user

patching or cleaning, we consider the host patching only scheme, which is the worst case

scenario. As shown in Section 5.2.2, under the host patchingonly scheme,bnd
n0

(i) andtnd
n0

(j)

have the largest scaling parameters among the three schemes, and therefore the resulting

P2P-based botnets are least robust and effective. In Fig. 5.9, we compare the network struc-

ture of botnets formed by worm infection only and by worm re-infection whennd hosts get

patched. Here, the vulnerable populationn0 is set to10, 000. All other parameters ramain

the same as the ones used in Section 5.2.2. Moreover, for wormre-infection, once a vulner-

able host gets compromised, it is open for re-infection fromthe next time tick. We begin

to randomly patch infected hosts withrp = 2× 10−5/sec when all vulnerable machines get

compromised. Once patched, the infected host becomes invulnerable, and the host and its

associated links are then removed from the botnet topology.Fig. 5.9(a) shows the distribu-

tion of the number of peers. It can be seen that in the P2P-based botnet formed by worm

re-infection, when half of infected hosts get patched,bnd
n0

(i) has a bell shape and therefore

the node degree of a bot is more evenly distributed. For example, on average 92.56% of

bots have a node degree between 5 and 15, and the average node degree of bots is 9. On
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one hand, such a botnet is resilient to both random and targeted defenses [72, 16]. On the

other hand, the P2P-based botnet formed by worm re-infection may have an average node

degree similar to other P2P networks [76]. As a result, it mayappear to have normal P2P

traffic and can potentially avoid detection [16]. Moreover,by further connecting to other

bots, the P2P-based botnet formed by worm re-infection stays well connected. In [16],

Dagonet al. used the giant component or the size of the largest connectedbotnet to mea-

sure the effectiveness. In Fig. 5.9(b), we show the percentage of the giant component to the

available bots. It can be seen that for the botnets formed by worm re-infection, almost all

of the remaining bots are connected, whereas the giant component of the botnets formed

by worm infection comprises only 2.2% of the remaining infected hosts. Therefore, P2P-

based botnets formed by worm re-infection are much more robust and effective than those

formed by worm infection only.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Characterizing Internet Worm Temporal Infection Struc ture

In Chapter 3, we have attempted to estimate the temporal characteristics of Internet worms

through both analysis and simulation under the framework ofInternet worm tomography.

Specifically, we have proposed method of moments, maximum likelihood, and linear re-

gression estimators to infer the host infection time and reconstruct the worm infection se-

quence. We have shown analytically and empirically that themean squared error of our

proposed estimators can be almost half of that of the naive estimator in estimating the host

infection time. Moreover, we have formulated the problem ofestimating the worm infec-

tion sequence as a detection problem and have calculated theprobability of error detection

for different estimators. We have demonstrated empirically that our estimation techniques

perform much better than the algorithm used in [13] in estimating the worm infection

sequence and in identifying the hitlist for both random-scanning and localized-scanning

worms.

6.2 Characterizing Internet Worm Spatial Infection Structure

In Chapter 4, we have attempted to capture the key characteristics of the tree topology

formed by worm infection. We have shown analytically and empirically that for the in-

fection tree formed by a wide class of worms, the number of children asymptotically has

a geometric distribution with parameter 0.5; and the generation closely follows a Poisson

distribution with parameter En[G] (i.e., Hn − 1). As a result, on average half of infected

hosts never compromise any target, over 98% of nodes have no more than five children,

and a small portion of hosts have a large number of children. Moreover, the average path
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length of the worm tree increases approximately logarithmically with the number of nodes.

We have also demonstrated empirically that similar observations can be found in localized-

scanning worms.

6.3 Evaluating P2P-based Botnets Formed by Worm Infection

In Chapter 5, we have attempted to evaluate bot detection strategies and effects of user

defenses in P2P-based botnets formed by worm infection. Specifically, we have applied

the observations of the number of children to bot detection and found analytically and em-

pirically that targeted detection is an efficient way to expose bots in a Conficker C like

botnet. However, we have also pointed out that a simple countermeasure by future botnets

can weaken the performance of targeted detection, without greatly slowing down the speed

of worm infection. Moreover, we have characterized the network structure of P2P-based

botnets formed by worm infection under user countermeasures. We have shown that when

part of infected hosts are randomly patched or cleaned afterall vulnerable hosts get com-

promised, the distribution of the number of peers of a bot hasan exponential scaling and

the distribution of the size of disconnected botnets has a power-law tail. As a result, P2P-

based botnets formed by worm infection are vulnerable to targeted defenses and ineffective

due to patching or cleaning. We have then applied the observations to design future botnets

and found that botmasters can significantly enhance the robustness and the effectiveness of

P2P-based botnets through worm re-infection.
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6.4 Future Work

6.4.1 Real-World Data Verification

One limitation of this work is that our analytical results are verified through simulations

rather than real-world data. As far as we know, there is no direct dataset of the worm

spatial-temporal infection structures publicly available. However, we may extract some

indirect knowledge from worm traces to serve as an approximation of the ground truth.

For example, for the worm temporal infection structure, we may use first hits observed

at a large Darknet (e.g., a /8 network telescope) to serve as a comparison basis, and then

apply estimators to observations of a much smaller Darknet (e.g., a /24 network telescope)

for performance evaluation. Moreover, some works have inferred the information of “who

infected whom” [24, 14], which may be used as an approximation of the real worm tree to

verify our analytical results of the worm spatial infectionstructure.

6.4.2 Fractal Analysis

A fractal is a rough or fragmented geometric shape that can besplit into parts, each of

which is a reduced-size copy of the whole [77]. The defining characteristic of a fractal is

self-similarity. Fractals have broad applications in ecology, biology and the Earth sciences

[78]. One of the most familiar examples of self-similarity is a tree. The pattern of branching

is very similar and repeated throughout the tree. If we capture a small group of infected

hosts that are connected as a branch in the worm tree, one interesting question is that, by

analyzing the fractal patterns of the captured branch, can we predict characteristics of worm

propagation or P2P-based botnets formed by worm infection as a whole? This enables us

to understand and defend against worms or botnets with significantly reduced efforts and

costs.
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APPENDIX A

INTERNET WORM TEMPORAL INFECTION STRUCTURE

A.1 Estimator Properties (µ̂)

We calculate the bias, the variance, and the MSE of differentestimators for estimatingµ.

A.1.1 Naive Estimator

Sinceµ̂NE = 1, the bias of NE is

Bias(µ̂NE) = E(µ̂NE) − µ = 1 − 1
p
. (1)

Note thatµ̂NE is constant. Thus, the variance of NE is

Var(µ̂NE) = E [(µ̂NE − E(µ̂NE))
2] = 0. (2)

Therefore,

MSE(µ̂NE) = Bias2(µ̂NE) + Var(µ̂NE) = (1−p)2

p2 . (3)

A.1.2 Method of Moments Estimator / Maximum Likelihood Estimator

Since E(δi) = µ for i = 1, 2, · · · , n − 1 and Equations (3.8) and (3.14) hold, the bias of

µ̂MME (or µ̂MLE) is calculated as

Bias(µ̂MME) = E
(

1
n−1

∑n−1
i=1 δi

)

− µ = 0, (4)

which is unbiased. Note that Var(δi) = 1−p

p2 for i = 1, 2, · · · , n−1 andδi’s are independent.

Thus, we have

Var(µ̂MME) = Var
(

1
n−1

∑n−1
i=1 δi

)

= 1−p

p2(n−1)
. (5)
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Therefore, the MSE of̂µMME (or µ̂MLE) is

MSE(µ̂MME) = Bias2(µ̂MME) + Var(µ̂MME) = 1−p

p2(n−1)
. (6)

It is noted that for an unbiased estimator, the MSE is identical to its variance.

A.1.3 Linear Regression Estimator

Note thatµ̂LRE = i·t−i·t

i2−(i)2
. From Equation (3.20) andti = t0 +

∑i−1
j=0 δj , i = 1, 2, · · · , n, we

have

i · t = 1
n

∑n

i=1 i · ti

= n+1
2

t0 + 1
n

∑n−1
i=0

∑n

j=i+1 j · δi

= n+1
2

t0 +
∑n−1

i=0
(n−i)(n+i+1)

2n
δi (7)

and

i · t = i · 1
n

∑n
i=1 ti = i · t0 + i ·

∑n−1
i=0

n−i
n

δi. (8)

Sincei = n+1
2

andi2 = (n+1)(2n+1)
6

,

i · t − i · t =
∑n−1

i=1
i(n−i)

2n
δi (9)

and

i2 −
(

i
)2

= n2−1
12

. (10)

Note that E(δi) = µ and Var(δi) = 1−p

p2 , i = 0, 1, · · · , n − 1, andδi’s are independent.

Moreover,
∑n

i=1 i3 =
(

n(n+1)
2

)2

and
∑n

i=1 i4 = 1
30

(6n5 + 15n4 + 10n3 − n). Then, we

have

E(i · t − i · t) =
∑n−1

i=1
i(n−i)

2n
µ = n2−1

12
µ (11)
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and

Var(i · t − i · t) =
∑n−1

i=1

(

i(n−i)
2n

)2

· 1−p

p2

= 1−p

4n2p2 (n
2
∑n−1

i=1 i2 − 2n
∑n−1

i=1 i3 +
∑n−1

i=1 i4)

= 1−p

p2 · n4−1
120n

. (12)

Therefore, the bias of̂µLRE can be calculated as

Bias(µ̂LRE) = E
(

i·t−i·t

i2−(i)2

)

− µ = 0, (13)

which is unbiased. Moreover, the variance and the MSE ofµ̂LRE are

MSE(µ̂LRE) = Var(µ̂LRE)

= Var
(

i·t−i·t

i2−(i)2

)

= 6(n2+1)(1−p)
5n(n2−1)p2 . (14)

A.2 Estimator Properties (t̂0)

We calculate the bias, the variance, and the MSE of differentestimators for estimatingt0.

A.2.1 Naive Estimator

Sincet̂0NE = t1 − µ̂NE = t0 + δ0 − 1, E(δ0) = 1
p
, and Var(δ0) = 1−p

p2 ,

Bias(t̂0NE) = t0 + E(δ0) − 1 − t0 = 1−p

p
(15)

Var(t̂0NE) = Var(t0 + δ0 − 1) = 1−p

p2 (16)

MSE(t̂0NE) = Bias2(t̂0NE) + Var(t̂0NE)

= (1−p)(2−p)
p2 . (17)

Note that whenp ≪ 1, MSE(t̂0NE) ≈
2(1−p)

p2 .
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A.2.2 Method of Moments Estimator / Maximum Likelihood Estimator

Note thatt̂0MME = t̂0MLE = t0 + δ0 − µ̂MME and E(δ0) = E(µ̂MME) = µ. Thus,

Bias(t̂0MME) = t0 + E(δ0) − E(µ̂MME) − t0 = 0 (18)

MSE(t̂0MME) = Var(t̂0MME) = Var(δ0 − µ̂MME). (19)

Sinceµ̂MME = 1
n−1

∑n−1
i=1 δi that is independent ofδ0,

MSE(t̂0MME) = Var(t̂0MME)

= Var(δ0) + Var(µ̂MME)

= 1−p

p2 · n
n−1

, (20)

based on Equation (5) and Var(δ0) = 1−p

p2 . Note that whenn ≫ 1, MSE(t̂0MME) ≈
1−p

p2 .

A.2.3 Linear Regression Estimator

Sincet̂0LRE = t0 + δ0 − µ̂LRE and E(δ0) = E(µ̂LRE) = µ,

Bias(t̂0LRE) = t0 + E(δ0) − E(µ̂LRE) − t0 = 0 (21)

MSE(t̂0LRE) = Var(t̂0LRE) = Var(δ0 − µ̂LRE). (22)

Note that from Equations (9) and (10),µ̂LRE = 12
n2−1

∑n−1
i=1

i(n−i)
2n

δi that is independent ofδ0.

Hence,

MSE(t̂0LRE) = Var(t̂0LRE)

= Var(δ0) + Var(µ̂LRE)

= 1−p

p2 · 5n3+6n2−5n+6
5n(n2−1)

, (23)

based on Equation (14) and Var(δ0) = 1−p

p2 . Note that whenn ≫ 1, MSE(t̂0LRE) ≈
1−p

p2 .
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APPENDIX B

INTERNET WORM SPATIAL INFECTION STRUCTURE

B.1 Statistical Properties of the Number of Children

We apply z-transform to derive the expectation and the variance of the number of children.

First, note that Corollary 4.2.3 holds forn = 1 and 2. Next, whenn ≥ 3, we define

z-transform

Xn(z) =
∑n−1

i=0 cn(i)z−i. (24)

Settingcn−1(−1) = 1, we can transform Theorem 4.2.2 to

cn(i) = n−2
n

cn−1(i) + 1
n
cn−1(i − 1), 0 ≤ i ≤ n − 1, (25)

whenn ≥ 3. Then, putting Equation (25) into Equation (24), we can obtain the difference

equation of z-transform

Xn(z) =
(

1
n
z−1 + n−2

n

)

Xn−1(z) + 1
n
. (26)

Note that En[C] = −dXn(z)
dz

|z=1 andXn−1(1) = 1, which leads to

En[C] = n−1
n

En−1[C] + 1
n
. (27)

Since E2[C] = 1
2
, we can show by induction that

En[C] = n−1
n

. (28)

Moreover, En[C2] = d
dz

[

z dXn(z)
dz

]

|z=1 yields

En[C2] = n−1
n

En−1[C
2] + 2

n
En−1[C] + 1

n
(29)

= n−1
n

En−1[C
2] + 3n−5

n2 . (30)

Thus, we can use E2[C2] = 1
2

to prove by induction that

En[C2] = 2 + (n−1)(n−2)
n2 − 2Hn

n
, (31)
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whereHn =
∑n

i=1
1
i

is then-th harmonic number [15]. Therefore,

Varn[C] = En[C2] − E2
n[C] (32)

= 2 − n−1
n2 − 2Hn

n
. (33)

B.2 Statistical Properties of the Generation

Similar to the proof of Corollary 4.2.3, we apply z-transform to derive the expectation and

the variance of the generation. First, note that Corollary 4.2.6 holds forn = 1 and2. Next,

whenn ≥ 3, we define z-transform

Yn(z) =
∑n−1

j=0 gn(j)z
−j . (34)

Putting Equation (4.20) into Equation (34), we can obtain the difference equation of z-

transform

Yn(z) =
(

1
n
z−1 + n−1

n

)

Yn−1(z). (35)

Note that En[G] = −dYn(z)
dz

|z=1 andYn−1(1) = 1, which leads to

En[G] = En−1[G] + 1
n
. (36)

Since E2[G] = 1
2
, we can show by induction that

En[G] = Hn − 1. (37)

Moreover, En[G2] = d
dz

[

z dYn(z)
dz

]

|z=1 yields

En[G2] = En−1[G
2] + 2

n
En−1[G] + 1

n
. (38)

Therefore, combining Equations (36) and (38) gives

Varn[G] = En[G2] − E2
n[G]

= En−1[G
2] + 1

n
(2En−1[G] + 1)

−(En−1[G] + 1
n
)2

= Varn−1[G] + 1
n
− 1

n2 . (39)
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Thus, we can use Var2[G] = 1
4

to prove by induction that

Varn[G] = Hn − Hn,2, (40)

whereHn =
∑n

i=1
1
i

andHn,2 =
∑n

i=1
1
i2

.
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