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ABSTRACT OF THE DISSERTATION
CHARACTERIZING INTERNET WORM SPATIAL-TEMPORAL INFECTION
STRUCTURES
by
Qian Wang
Florida International University, 2010

Miami, Florida

Professor Niki Pissinou, Major Professor

Since the Morris worm was released in 1988, Internet wormsiitoe to be one of top
security threats. For example, the Conficker worm infected 95 million machines in
early 2009 and shut down the service of some critical goventrand medical networks.
Moreover, it constructed a massive peer-to-peer (P2P)ebotBotnets are zombie net-
works controlled by attackers setting out coordinatecckfialn recent years, botnets have
become the number one threat to the Internet.

The objective of this research is to characterize spagialporal infection structures of
Internet worms, and apply the observations to study P2Bebbstnets formed by worm
infection.

First, we infer temporal characteristics of the Internetwaonfection structurej.e.,
the host infection time and the worm infection sequence,thuad pinpoint patient zero or
initially infected hosts. Specifically, we apply statisti@stimation techniques on Darknet
observations. We show analytically and empirically that poposed estimators can sig-
nificantly improve the inference accuracy. Second, we Héweekey spatial characteristics
of the Internet worm infection structuree., the number of children and the generation of
the underlying tree topology formed by worm infection. Speally, we apply probabilistic
modeling methods and a sequential growth model. We showiggadly and empirically

that the number of children has asymptotically a geometsicidution with parameter 0.5,
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and the generation follows closely a Poisson distributieimally, we evaluate bot detec-
tion strategies and effects of user defenses in P2P-baseetbformed by worm infection.
Specifically, we apply the observations of the number ofdrkih and demonstrate ana-
lytically and empirically that targeted detection thatdees on the nodes with the largest
number of children is an efficient way to expose bots. Howeawveralso point out that fu-
ture botnets may self-stop scanning to weaken targetedtaetewithout greatly slowing
down the speed of worm infection. We then extend the worniapatection structure and
show empirically that user defensesg.,patching or cleaning, can significantly mitigate
the robustness and the effectiveness of P2P-based boffetsounterattack, we evalu-
ate a simple measure by future botnets that enhances tgpalbgstness through worm

re-infection.
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CHAPTER 1
INTRODUCTION

Internet worms are malicious software that can compromidgsevable hosts and use them
to attack other victims, and have been one of top securigatsrsince the Morris worm
in 1988. Botnets are zombie networks controlled by attackemough Internet relay chat
(IRC) systems€.g.,GT Bot) or peer-to-peer (P2P) systenasg(, Storm) to execute co-
ordinated attacks and have become the number one threa toténet in recent years.
The main difference between worms and botnets lies in thatns@mphasize the proce-
dures of infecting targets and propagating among vulnerabsts, whereas botnets focus
on the mechanisms of organizing the network of compromisadputers and setting out
coordinated attacks, such as sending denial-of-serviaelat producing spams, and steal-
ing financial information. Most botnets, however, still pporm-scanning methods to
recruit new bots or collect network information [1, 2, 3, Moreover, although many P2P-
based botnets use the existing P2P networks to build a baptstocedure, Conficker C
forms a P2P botnet through scan-based peer discovery [S5@écifically, Conficker C
searches for new peers by randomly scanning the entirenkttaddress space. As a result,
the way that Conficker C constructs a P2P-based botnet isriniple the same as worm
scanning/infection. Therefore, characterizing struegwof worm infection is important and
imperative for defending against current and future epidsrsuch as Internet worms and

Conficker C like P2P-based botnets.

1.1 Internet Worm Spatial-Temporal Infection Structures

Since the Code Red worm in 2001, Internet worms have been tare aesearch topic.
Many research works have been developed to characterizpthad of worms, estimate

worm behaviors, and contain worm propagation. Most previaorks, however, have



focused on thenacro-levelcharacteristics of worm infection. For example, differanga-
lytical approaches have been applied to study the total eanmiinfected hosts over time
[7, 8,9, 10, 11, 1, 12]. Thenicro-levelinformation of worm infection that focuses on
individual hosts, however, has been investigated litthethis thesis, we focus on individ-
ual infected hosts and study their infection relationshijgs, the Internet worm infection
structure.

When a host infects another host, they form a “father-amd-selationship, which is
represented by a directed edge in a graph formed by wormtiofeche worm infection
family tree, called the “worm tree” in short (see Fig. 1.1hat is, the procedure of worm
propagation constructs a directed tree where patient gdfeeiroot and the infected hosts
that do not compromise any vulnerable host are leaves. Barsdbe perspective from
which the worm tree is investigated, we divide the Internetrw infection structure into
two domains: the temporal and spatial infection structufidse worm temporal infection
structure describes the temporal infection relationskigveen individual infected hosts in
the worm tree by studying their infection times, and there&heds light on the information
of “who infects before whaithe worm spatial infection structure characterizes thegtisl
infection relationship between individual infected holysstudying the topology of the

worm tree, and therefore provides insights into the infaromeof “who infects whor

1.2 Research Objectives and Contributions

The objective of this thesis is to characterize the sp#tiadporal infection structures of
Internet worms, and apply the observations to study P2Bebbstnets formed by worm
infection. Specifically, we investigate the following terpics:

1. Characterizing Internet worm temporal infection structure: First, we infer the
temporal infection relationship between individual irtest hosts by answering the follow-

ing two questions:



Patient zero

Figure 1.1: A worm tree.

e Hostinfection timeWhen exactly does a specific host get infected? This infaonat

is critical for the reconstruction of the worm infection seqce.

e Worm infection sequencaihat is the order in which hosts are infected by worm

propagation? Such an order can help identify patient zenaoitoally infected hosts.

The information of both the infection time and the infectisequence is important for
defending against worms. First, the identification of patieero or initially infected hosts
and their infection times provide forensic clues for lawa@nément against the attackers
who wrote and spread the worm. Second, the knowledge of teetion sequence provides
insights into how a worm spread across the Internet and homonlke defense systems were
breached.

To answer these two questions analytically, we apply Iretienorm tomography, which
refers to inferring the characteristics of Internet wormmsf the observations of Darknet
that monitor a routable but unused IP address space. Spdlgifize introduce statistical
estimation techniques and propose method of moments, maxilikelihood, and linear
regression estimators. We then apply Monte Carlo simuiatoverify our analytical re-

sults. Our research work makes several contributions:



e We propose method of moments, maximum likelihood, and finegression statisti-
cal estimators to infer the host infection time. We show winadlly and empirically
that the mean squared error of our proposed estimators caimumest half of that
of the naive estimator used in the previous work [13] in irifeg the host infection

time.

e We extend our proposed estimators to infer the worm infacsiequence. Specif-
ically, we formulate the problem of estimating the worm @tfen sequence as a
detection problem and derive the probability of error detecfor different estima-
tors. We demonstrate analytically and empirically that m@thod performs much

better than the algorithm proposed in the previous work.[13]

e We show empirically that our estimators have a better peréoce in identifying
patient zero or initially infected hosts of the smart worrartlthe naive estimator.
We also demonstrate that our estimators can be applied tmsvasing different

scanning strategies such as random scanning and locatiaadiag.

2. Characterizing Internet worm spatial infection structure: Next, we investigate
the spatial infection relationship between individuakicted hosts by studying the follow-

ing two metrics of the worm tree:

e Number of children:For a randomly selected node in the tree, how many children

does it have? This metric represents the infection abifiipdividual hosts.

e Generation: For a randomly selected node in the tree, which generatioteyel)
does it belong to? This metric indicates the average patthesf the graph formed

by worm infection.

These two metrics have important implications and appbaoatfor security analysis. For
example, the distribution of the number of children can bedus answer questions such

as what is the probability that an infected host comprommsa® than 10 vulnerable hosts.



Moreover, some schemes have been proposed to trace workn®liheir origins through
the cooperation between infected hosts [14], and the bligion of generations can provide
the information on the number of hosts required to cooperate

To study these two metrics analytically, we apply probabdimodeling methods and
a sequential growth model. Specifically, we start from a winee with only patient zero
and add new nodes into the worm tree sequentially. We thessiigate the relationship
between the two worm trees before and after a new node is addkderify our analysis

through simulation. Our research work makes several darttans:

e We show both analytically and empirically that if a worm usescanning method
for which a new victim is compromised by each existing inégichost with equal
probability, the number of children has asymptotically ametric distribution with
parameter 0.5. This means that on average half of infectst$ Im@ver compromise
any target and over 98% of infected hosts have no more thawclilgren. On the
other hand, this also indicates that a small portion of hiodéxt a large number of

vulnerable hosts.

e We demonstrate analytically and empirically that the gati@n closely follows a
Poisson distribution with parametéf, — 1, wheren is the number of nodes arid,
is then-th harmonic number [15]. This means that the average patitheof the

worm tree increases approximately logarithmically wita ttumber of nodes.

e We show empirically that if a worm uses localized scannihg,rtumber of children
still has approximately a geometric distribution with paeger 0.5. Moreover, the
generation still follows a Poisson distribution, but witiretparameter depending on
the probability of local scanning. Therefore, most pregiobservations also apply

to localized-scanning worms.

3. Evaluating P2P-based botnets formed by worm infectionFinally, we study P2P-

based botnets formed by worm infection and answer the faligwvo questions:



e Bot detectionWhat is the most effective method to detect bots? This in&ion is

critical for defenders to combat against botnets.

e User defensesHow do user defenseg.@.,host patching or cleaning) affect P2P-
based botnets formed by worm infection? This informatiolpfidefenders evaluate

the effectiveness of their defense systems.

The answer of the first question is directly related to the In@inof children of the
worm spatial infection structure. For example, if a very Bmamber of hosts infect a
large number of machines and the majority of hosts have nofeswchildren, such botnets
are robust to random defenses, but are vulnerable to targefenses of a small portion
of nodes with highest node degrees [16]. On the other harehdh host has a similar
node degree, then such botnets are robust to both defersaesifil6]. The answer of the
second question reflects the robustness and the effectvehéhe botnet topology formed
by worm infection under user defenses. For example, if usnsdes disrupt the botnet
into a collection of small isolated botnets, then the effectess is lower than the single
connected botnet with the same total number of bots.

To answer these two questions, we first evaluate efficientlétgction methods both
analytically and empirically by applying the results of témber of children of the worm
spatial infection structure. We then empirically studyeett of user defenses on the botnet
topology formed by worm infection. Specifically, we study thumber of peers.é., the
number of father and children for a randomly selected badhénltotnet topology), and the
botnet sizei(e., the number of bots for a randomly selected botnet in the t@pgl Our

research work makes several contributions:

e We show both analytically and empirically that while randgraxamining a small
portion of nodes in a botnet¢.,random detection) can only expose a limited number
of bots, examining the nodes with the largest number of ofild.e., targeted de-

tection) is much more efficient in detecting bots. For exameur simulation shows



that when 3.125% nodes are examined, random detectionexpaially 9.10% bots,

whereas targeted detection reveals 22.36% bots.

¢ We find empirically that when user countermeasures are deresd, the distribution
of the number of peers has an exponential scaling with thaydeanstant increasing
with the number of patched or cleaned hosts. This impliesaisanall percentage of
bots have a large number of peers and the majority of bots inawe or few peers.
Moreover, the distribution of the disconnected botnet biag a power-law tail with
the scaling exponent increasing with the number of patchedleaned hosts. This
reflects that patching or cleaning severely disrupts thgdsiworm tree. We also find
that the size of the largest isolated botnet is relativelplsnTherefore, P2P-based
botnets formed by worm infection are vulnerable to targeliefgnses and ineffective
due to patching or cleaning. However, we discover that bstema may potentially
enhance the robustness and the effectiveness of P2P-basextsbthrough worm

re-infection.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter Zestsrthe related work. Chapter
3 infers temporal characteristics of the Internet wormdtite structurej.e., the host in-
fection time and the worm infection sequence. Chapter 4adtarizes the Internet worm
spatial infection structure and reveals two key charasties,i.e., the number of children
and the generation of the underlying tree topology formedbym infection. Next, Chap-
ter 5 evaluates bot detection strategies and effects ofdefenses in P2P-based botnets
formed by worm infection. Finally, Chapter 6 concludes thesis and identifies future

research directions.



CHAPTER 2
RELATED WORK

In the first chapter, we identified our research objectivesaurtlined our contributions. In
this chapter, we answer the following questions: Why arstag techniques or models
not sufficient for characterizing the worm infection stiwet? And how are they related to

or different from our solution?

2.1 Internet Worm Temporal Infection Structure

Under the framework of Internet worm tomography, severalkadave applied Darknet
observations to infer the characteristics of worms. Formgda, Cheret al. studied how
the Darknet can be used to monitor, detect, and defend adaiamet worms [9]. Moore
et al. applied network telescope observations and least squétiag fnethods to infer
the number of infected hosts and scanning rates of infeastsi17]. Some works have
researched on how to use Darknet observations to detegpi@aeance of worms [18, 12,
19, 20]. For instance, Zoet al. used a Kalman filter to infer the infection rate of a worm
and then detect the worm [12]. Moreover, the Darknet obsien&have been used to study
the feature of a specific worm, such as Code Red [21], Slam22¢rgnd Witty [23].
Internet worm tomography has been applied to infer worm teadpcharacteristics.
For example, Kumaet al. used network telescope data and analyzed the pseudo-random
number generator to reconstruct the “who infected whon®gtibn tree of the Witty worm
[24]. Hamadetet al. further described a general framework to recover the irdacte-
guence for both TCP and UDP scanning worms from networkdefes data [25]. Rajab
et al. applied the same data and studied the “infection and detetitnes” to infer the
worm infection sequence [13]. Different from the above vgik Chapter 3, we employ

advanced statistical estimation techniques to Interneintomography.



2.2 Internet Worm Spatial Infection Structure

Some efforts have been focused on individual infected avststudied the worm infection
sequence [24, 13, 14, 26]. The prior work investigates thaildeof the random number
generator of worm propagation [24] or infers the worm inf@esequence through the ob-
servations of network telescopes [13, 26]. In Chapter 4, pp@yaprobabilistic modeling
methods and reveal key micro-level information of the woimatgl infection structure,
such as the infection ability of individual hosts and the entying tree topology formed
by worm infection. Moreover, Sellket al. applied a branching process to study the effec-
tiveness of a containment strategy [27]. They assume tleabthl number of scans of an
infected host is bounded. As a result, the worm tree studidiadir work is fundamentally
different from the one in our work.

Modeling the topology generation process has been an aebearch area. For ex-
ample, Barabasit al. developed the well-known Barabasi-Albert (BA) model aséd a
mean-field approach to characterize the growth of a topoltjyboth preferential attach-
ment and uniform attachment [28, 29]. Moreover, two exacthematical models have
been studied for the BA model [30, 31]. From the theoretisple&t, our proposed worm
tree is similar to the random tree. For example, Devroye tisedecords theory to derive
the distribution of the level of a random ordered tree in [$Z2)mpared with these theoreti-
cal efforts, our work studies a very different problere.(worm spatial infection structure)

and uses a very different approacle. probabilistic modeling).

2.3 P2P-based Botnets Formed by Worm Infection

Botnets have become the top threat to the Internet in re@ansy[33, 34], and are rapidly
transiting from IRC systems to P2P systems [35]. In [36], Wahal. gave a systematic

study on P2P-based botnets. Moreover, it has been showmthatrent botnets, worm



infection is still a main tool for recruiting new bots or aatting network information,
and random scanning has been widely used [2]. Several nmetren been proposed to
construct P2P-based botnets through worm infection amufeetion [3, 4]. Different from
the above works, in our P2P-based botnets studied in Chapthere is no grouping of
bots or exchange of peers between bots. Infected hosts lgrpe®rs to their own infectors
and infectees.

In [16], Dagonet al. surveyed different P2P-based botnet topologies, suchna®na
graphs and power-law topologies. It has been shown thatplemetopologies are robust
to random node removal, but are vulnerable to the removasaoiall portion of nodes with
highest node degrees; random graphs are robust to both aésthemes [16, 37]. Our
work takes one step further to quantitatively evaluate letection strategies and effects of

user defenses by exploiting the P2P-based botnet topotwgyed by worm infection.
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CHAPTER 3
CHARACTERIZING INTERNET WORM TEMPORAL INFECTION
STRUCTURE

Since Code Red and Nimda worms were released in 2001, edsyhe attacks have
caused severe damages. Internet worms can spread so tapiddxisting defense systems
cannot respond until most vulnerable hosts have been ededtor example, on January
25th, 2003, the Slammer worm reached its maximum scanntegofanore than 55 mil-
lion scans per second in about 3 minutes, and infected mare38% of vulnerable ma-
chines within 10 minutes [22]. It cost over one billion USldeod in cleanup and economic
damages. Therefore, worm attacks pose significant thredketinternet and meanwhile
present tremendous challenges to the research community.

To counteract these notorious plague-tide attacks, vadetection and defense strate-
gies have been studied in recent years. According to wherddtectors are located, these
strategies can generally be classified into three categg@oeirce detection and defenses
detecting infected hosts in the local networks [38, 39, 40; tiddle detection and de-
fensesrevealing the appearance of worms by analyzing the traffioggthrough routers
[14, 42, 43]; anddestination detection and defensasonitoring unwanted traffic arriving
at Darknet or network telescopgea globally routable address space where no active ser-
vices or servers reside [44, 45, 46, 47, 48]. There are twestgb Darknetactive Darknet
that responds to malicious scans to elicit the payloadseottacks [46, 47], andassive
Darknetthat observes unwanted traffic passively [45, 48].

Different from source and middle detection and defensestirdgion detection and
defenses offer unique advantages in observing large-se@ileork explosive events such
as distributed denial-of-service (DDoS) attacks [49] artdinet worms [21, 22, 23]. There
is no legitimate reason for packets destined to Darknetcklenost of the traffic arriving at

Darknet is malicious or unintended, including hostile reTaissance scans, probe activities
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Figure 3.1: Internet worm tomography.

from active worms, DDoS backscatter, and packets from midigured hosts. Moreover,
it has been shown that for a large-scale worm event, most@tted hosts, if not all, can
be observed by the Darknet with a sufficiently large size [9].

In this chapter, we focus on the destination detection ariendes. Specifically, we
study the problem of inferring the characteristics of Inetworms from Darknet observa-
tions. We refer to such a problem bgernet worm tomographyas illustrated in Fig.3.1.
Most worms use scan-based methods to find vulnerable hastsiadomly generate target
IP addresses. Thus, Darknet can observe partial scanstifeated hosts. Together with
the worm propagation model and the statistical model, Datrbibservations can be used
to detect worm appearance [18, 50, 19, 20] and infer wormacheristics €.g, infection
rate [12], number of infected hosts [9, 17], and worm inf@ctsequence [24, 13, 26]).
Internet worm tomography is named afteetwork tomographywhich infers the charac-
teristics of the internal networle(g, link loss rate, link delay, and topology) through the
observations from end systems [51, 52]. Network tomograjaimbe formulated as a linear
inverse problem. Internet worm tomography, however, cabedranslated into the linear
inverse problem due to the specific properties of worm prapag, and thus presents new

challenges.
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Under the framework of Internet worm tomography, reseaschave studied worm
temporal characteristics of the worm infection structure.,(the host infection time and
the worm infection sequence) [13, 24]. For example, a siraglenator has been proposed
in [13] to infer worm temporal behaviors. The estimator usesobservation time when an
infected host scans the Darknet for the first time as the appeadion of the host infection
time to infer the worm infection sequence. Such a naive estmhowever, does not fully
exploit all information obtained by the Darknet. Moreo\am, attacker can design a smart
worm that uses lower scanning rates for patient zero omlfytinfected hosts and higher
scanning rates for other infected hosts. In this way, thersmarm would weaken the
performance of the naive estimator.

The goal of this chapter is to infer the Internet worm tempcharacteristics accurately
by exploiting Darknet observations and applying statitestimation techniques. Specifi-
cally, we introduce statistical estimation techniquesaimghose method of moments, max-
imum likelihood, and linear regression estimators. We thaply Monte Carlo simulation
to verify our analytical results.

The remainder of this chapter is organized as follows. 8e@&il introduces estimators
for inferring the host infection time. Section 3.2 preseonis algorithms in estimating
the worm infection sequence. Section 3.3 gives simulatesults. Finally, Section 3.4

discusses the assumptions, the limitations, and the eatensf our estimators.
3.1 Estimating the Host Infection Time

We use Darknet observations to estimate when a host getstedfand usdit to denote

the event that a worm scan hits the Darknet. As shown in Fig}. stippose that a certain
host is infected at tim&,. The Darknet monitors a portion of the IPv4 address space and
can observe some scans from this host and record hit times- - - , t,,, wheren is the

number of hit events from this host. The problem of estintatire host infection time can
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Figure 3.2: An illustration of Darknet observations.

then be stated as follows: Given the Darknet observatigrts, - - - , ¢,,, what is the best
estimate ot,?

To study this problem analytically, we make the following@asptions: 1) There is
no packet loss in the Internet. In Section 3.4, however, Waxrihis assumption and use
simulations to study the effect of packet losses on diffeestimators. 2) An infected host
uses its actual source IP address and does not apply IP sposhich is the case for TCP
worms. 3) The scanning rate(i.e., the number of scans sent by an infected host per time
unit) is time-invariant for an infected host, whereas thensing rates of infected hosts can
be different from each other. The last assumption comes fh@nobservation that famous
worms, such as Code Red, Nimda, Slammer, and Witty, do ndy &pyy scanning rate
variation mechanisms. An infected host always scans forerable hosts at the maximum
speed allowed by its computing resources and network dondif53].

Obviously, inferringt, from Darknet observations is affected by the Internet-worm
scanning methods. In this work, we focus on random scanmidgl@calized scanning.
However, our estimation techniques can be applied to otbemwscanning methods, such
as importance scanning [54], for which a scan from an intebtiest hits Darknet with a
time-invariant probability. To analytically estimate thest infection time, we consider

a discrete-time system. For random scanning (RS), a worettseiargets randomly and
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scans the entire IPv4 address space Witiddressesd.g., 2 = 2%?). We assume that Dark-
net monitorsv addresses. Thus, the probability for a scan to hit the Daiikne/(2; and
the probability of a hit event in the discrete-time system.,(the probability that Darknet

observes at least one scan from the same infected host ireautiit) is

Prs(hiteven) =1 — (1 - 5) . (3.1)

Sinces is time-invariant for a given infected host:Rhit even} is also time-invariant.
Localized scanning (LS) preferentially searches for vidb& hosts in the “local” ad-
dress space [55]. For simplicity, in this work we only corsithe /! LS: p,(0 < p, < 1)
of the time, a “local” IP address with the same firdiits as the attacking host is chosen
as the targetj — p, of the time, a random address is chosen. We consider a ceeattal
Darknet that occupies a continuous address space and msanaddresses. Moreover, we
assume that the Darknet is contained if @refix with no vulnerable hosts. For example,
network telescopes used by CAIDA are such a centralizedrigadnd contain @3 subnet.
Since no infected hosts exist in thesubnet where the Darknet resides, the probability for
a worm scan to hit the Darknet {$ — p,) - w/2. Therefore, the probability of a hit event

in the discrete-time system is

Prs(hiteveny =1 — (1 — (1= pa) - %)S, (3.2)

which is time-invariant. Since R(hit eveny has a similar form as Rfhit eveny and is
the special case of Rfhit eveny whenp, = 0, we usep (0 < p < 1) to denote the hit
probability in general for both cases to simplify our diszios.

Denoted, as the time interval between when a host gets infected and WDaeknet
observes the first scan from this hosst., 6o = t; — ¢y, as shown in Fig. 3.2. Denote
J; as the time interval betweerth hit and(i + 1)-th hit on Darknetj.e., d; = t;.1 — t;,

1 > 1. Thus,dg, 41, - - - ,9,_1 are independent and identically distributed (i.i.d.) aoitbfv
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a geometric distribution with parameteri.e.,

Pl(6=k)=p-(1—p)* " k=1,23,---, (3.3)

1 —
—p,  Var(d) = —2. (3.4)
p
Denotey as the mean value of and i as the estimate ofi. We then estimate, by
subtracting: from ¢y, i.e.,

~

Therefore, our problem is reduced to estimating

3.1.1 Naive Estimator

SinceJ follows the geometric distribution as described by Equaff®.6), P(J) is maxi-

mized wheny = 1. Then, anaive estimato(NE) of 1 is

ﬂNE =L (3-6)
Thus, the NE ot is
tone =t — fine = t1 — 1. (3.7)
Note thatt,,. depends only om;, but not ont,, t5, - - - , t,. This estimator has been used

in [13] to infer the host infection time and the worm infectisequence. In this work,

however, we consider more advanced estimation methods.

3.1.2 Method of Moments Estimator

Since Ho) = pu, we design anethod of moments estimaiMME), i.e.,

n—1

. = 1 by —1
e =0 = —— Gi="—. (3.8)
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Thus, the MME oft, is

A R t, —t
Lomme = 11 — fwve = t1 — . (3.9)
n—1
Note thatt,,,, is not only related te,, but also ton andt,,.
3.1.3 Maximum Likelihood Estimator
Rewrite the probability mass function &fin Equation (5.6) with respect o,
PI(s: )—1(1—l)6_15—123-.- (3.10)
JILL - n I ) T Sy N .
Sincedy, 6o, - - -, 0,1 are i.i.d., the likelihood function is given by the follovgmproduct
n—1
L) = J]Pre:m
=1
1\n-1 1\ (S 6)—(n-1)
= — - =1
<u> (1 u> . (3.11)
We then design enaximum likelihood estimat§MLE), i.e.,
fae = arg mBX L (k). (3.12)
Rather than maximizing (), we choose to maximize its logarithimL (1). That is,
d InL(p) =0 (3.13)
—In = .
dp a
1 St —t
~ n — Ul
= [we = m; 0; = n—1" (314)
which has the same expression as the MME. Thus,
~ R t, —t
tome = 11 — fime = t1 — 1- (3.15)
n—1
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Figure 3.3: Linear regression model.

3.1.4 Linear Regression Estimator

Under the assumption that the scanning rate of an individéedted host is time-invariant,
the relationship betweenand: can be described by a linear regression model as illustrated
in Fig. 3.3,i.e.,

wherea and 3 are coefficients, ane; is the error term. To fit the observation data, we
apply the least squares method to adjust the parameters aidlkel. That is, we choose

the coefficients that minimize the residual sum of squar&S)R

RSS= zn: [t — (a+ 3 -4)] (3.17)
i=1

The minimum RSS occurs when the partial derivatives witpeesto the coefficients are

Zero
ORSS "
o ——25_1(t2—a—ﬁ i)=10
IRSS Z:L (3.18)
W_—QE Z‘(tl—a—ﬁ 7,):0,
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which leads to

a=t—p3-1
i2 — ()2 ’
where the bar symbols denote the average values
B 1 n . 1 n
i==) i, ?=-Y i
B 1 n - 1 n .
t=— tiy 1-t=— vt
n 4 n 4
i=1 1=1
We then design Anear regression estimatqiRE), i.e.,
,ELLRE — B — t/\l - tAO (321)
Thus, the LRE oty is
. . iot—i-t
lore = 11 — fire =11 — ==~ (3.22)

~.|

7=y

There is another way to estimatg which uses the point of interception shown in Fig.

3.3 as the estimation af, i.e.,

’

toee = @ = — flige - 1. (3.23)

However, we find that the mean squared errof,gf increases when increases. That is,
the performance of the estimator worsens with the incrgasimber of hits, which makes

this estimator undesirable.

3.1.5 Comparison of Estimators

To compare the performance of the naive estimator and oyogeal estimators, we com-

pute the bias, the variance, and the mean squared error (M8E¢stimatingu,

Bias(j) = E(1) - p
Var(i) = E(fi - E(@)? (3.24)
MSE(j2) = E[(ji — )?] = Bias’ (1) + Var(i).
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Table 3.1: Comparison of estimator propertigs (

fi Bias(j1)  Var(i) MSE(1)
N 1 (1—p)?

fine = 1 1 » 0 —fz
e e oy PGT)

O T 0 6(n?+1)(1—p) 6(n*+1)(1—p)
IU/LRE - Z_Q_G)Q 5n(n2—1)p2 5n(n2—1)p2

Table 3.2: Comparison of estimator propertig3.(

to=t, — o Biag(ty) Var(ty) MSE(%,)

tone Le P (1_”;# (= 2(;;’7), whenp < 1)
tAOMME = tAOMLE 0 lp;zp : % lp;zp : ﬁ (=~ %, whenn > 1)
tAOLRE 0 lp;zp : % lp;zp : % (% :Lp;2p7 whenn > 1)

Here, thebiasdenotes the average deviation of the estimator from thevalue; thevari-
anceindicates the distance between the estimator and its madrthaMSEcharacterizes
the closeness of the estimated value to the true value. AlemMBE indicates a better
estimator. Table 3.1 summarizes the results of NE, MME (oB)]land LRE for estimat-
ing p. The details of the derivations of Table 3.1 are given in Agpe A. It is noted that
MME and LRE are unbiased, while NE is biased. Moreover, MM& BRE have a smaller
MSE than NE ifn. > 2 andp < 0.5, a condition that is usually satisfied. Specifically, whe
n — 00, MSE(fiye) — 0 and MSE i re) — 0, but MSE i) — (1 — p)?/p%. Itis also
observed that MME is slightly better than LRE in terms of MSEenn > 2.

Similarly, we compute the bias, the variance, and the MSE®g&stimators for estimat-
ing to in Table 3.2. The details of the derivations of Table 3.2 avergin Appendix B. We
also observe that MME (or MLE) and LRE are unbiased, wherdasNiased. Moreover,
MSE(foue ) and MSEt ) are smaller than MSE,,.), and MSEt,,..) is the smallest
whenn > 3 andp < 0.5. Specifically, in practice, Darknet only covers a rgkdi small
portion of the IPv4 address space(w < (), which leads tgp < 1. Thus, we have the

following theorem:
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Figure 3.4: A scenario of the worm infection sequence.

Theorem 3.1.1 When the Darknet observes a sufficient number of hds ¢ > 1) and
p K1,
. . 1 .
MSE(tOMME) ~ MSE(tOLRE) ~ QMSE(tONE)~ (3-25)

That is, the MSE of our proposed estimators is almost halhaf of the naive estimator.
That is, our proposed estimators are nearly twice as aecaithe naive estimator in

estimating the host infection time.

3.2 Estimating the Worm Infection Sequence

In this section, we extend our proposed estimators for iimgrthe worm infection se-

quence.

3.2.1 Algorithm

Our algorithm is that we first estimate the infection time atle infected host. Then, we
reconstruct the infection sequence based on these infeati@s. That is, if,, < f.s, We
infer that host A is infected before host B. It is noted tha #igorithm used in [13] to
infer the worm infection sequence can be regarded as usisgpiproach with the naive
estimator.

The naive estimator, however, can potentially fail to irtfeg worm infection sequence

in some cases. Fig. 3.4 shows an example, where hosts A andiffeyged att,, andt,
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respectively, and,, < t,;. Moreover, these two infected hosts have scanning ratess,
such that Darknet observes > t,,. If the naive estimator is usefi, > t,,, which means
that host A is incorrectly inferred to be infected after hBstintuitively, if our proposed
estimators are applied, it is possible to obtgjn< t,, and thus recover the real infection

sequence.

3.2.2 Performance Analysis

To analytically show that our estimators are more accutea the naive estimator in es-
timating the worm infection sequence, we formulate the [@wbas a detection problem.
Specifically, in Fig. 3.4, suppose that host B is infecte@ralfiost A {.e., ton < o). If
ton < tos, We call it “success” detection; otherwisetif > t,,, we call it “error” detec-
tion!. We intend to calculate the probability of error detectiondifferent estimators.
Note thatd,, = t,4 — ton @Nd s = tz — tos fOllow the geometric distributioni.g.,
Equation (5.6)) with parameter, andp;, respectively. Herey, (or pg) is the probability
that at least one scan from host A (or B) hits the Darknet ima tinit and follows Equation
(3.1) for random scanning and Equation (3.2) for localizemhsing. Moreoven, (or ps)
depends o, (or sg) so that ifs, < sg, thenp, < ps. Sincew < 2, we havep, < 1
andps < 1. Hence, for simplicity we use the continuous-time analysid apply the

exponential distribution to approximate the geometritritigtion for é,, andd,s [56], i.€.,

e A, x>0
Flas ) = (3.26)
0, x <0,
where\ = p, Or ps.
To calculate the probability of error detection for diffetestimators, we first define a
new random variable

7 = Gon — Oos, (3.27)

\We ignore the casg, = ., here.
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and calculate its probability density function (pdfYz). From Equation (3.26), we can

obtain the pdf ob), = —d.e, Which is

Pg €PBT <0
fo (x) = (3.28)
0, x> 0.

Sinced,, andd;, are independent, the pdf af = §,, + d; IS given by the convolution of

f50A<x) andfé{)B(x)l ie.,

+oo

fa(2) = foon(2) f5,,(2 — ) dux. (3.29)

Forz > 0, this yields

+00
f(2) = / pae PN - pg e dy

_ PAPB Pz (3.30)

pA+pB

Forz < 0, we obtain

+o00
f(2) = / pae A pp e dy
0

_ PAPB pBZ. (3.31)

pA+pB

Hence,
p—pﬁf’; ePAr 2 >0
f2(2) = AR (3.32)
bAPB PBZ
patpe & 2 <0.

Naive Estimator

The naive estimator usés= t, — 1 to estimate,. Thus, the probability of error detection
is

Pre(erron = Pr(ty,, — 1 > tig — 1) = Pr(0pa > 7 + o), (3.33)
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wherer = t,; — 1,4, the time interval between the infection of host A and hosaigj > 0.

We then have

Pre(erron = PrZ > 1)

_ _ms ot (3.34)

PA+DPB

Note that another way to derive Berror) is based on the memoryless property of the

exponential distribution and Rk, > dos) = ps/(pa + Ps), i€,

Pre(erron = Pr(dea > T + 0s) = Pr(doa > 7)PM(dpa > dos), (3.35)

which leads to the same result.

Proposed Estimators

We assume that Darknet observes a sufficient number of seamshbsts A and B so that

our proposed estimators can estimate(i.e., plA) and i (i.e., piB) accurately. Then, the

probability of error detection of our proposed estimaters i

Pruve (€rrorn

Whenr + =LA > (),
PAPB

P (error

Pry.e(error = Prec(error)
Pr(tlA - IJLA > tlB - IJLB>

Pr(Z > 1+ B=LA)

PADPB
—+00

f2(2) dz. (3.36)

“+oo
/ PAPB 6—p/_\z dZ

4 PBPA PA+DB
PAPB
_ PB—PA )
_pPB e PA (T+ PAPB
PA+DB

(3.37)
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Whenr + EB=PA (),
PADB

+pB pa PATDPB
PAPB

—+00
PAPB 6_pAZ dZ
0 PA+DPB

(00 + 00— pe e+ 5), (3.38)

0
Plue(erron = / PAPB P8 (] -

pA +pB

Performance Comparison

Since Pyc(error) = Pr(Z > 7) and Pl (erron) = Pr(Z > 7+ ’%) for a givenr

(7 > 0), comparing Equation (3.34) with Equations (3.37) and§3.3

Pre(errorn > Prye(erron, pa. < ps
(error) (error) (3.39)

Pr(error) < Prye(error, pa > pe.

Hence, it is unclear which estimator is better based on tpeessions of Rg(error) and
Pr.ve (error). However, we can compare the performance of our estimatidnstiae naive
estimator through numerical analysis. We first demonsthet@robabilities of error detec-
tion (i.e.,Pr(error) and Py, (error)) as the functions g#, andps in Figs. 3.5 (a) and (b),
wherer = 50 time units. It can be seen that for the naive estimatoenattost A hits the
Darknet with a very low probability, Rx(error) is almost 1 regardless of. However, the
worst case of Ry (error) is slightly above 0.6 whep; is small. Moreover, we show the
probabilities of error detection as a functionmodvith a given pair ofp, andps in Fig.s 3.5
(c) and (d). The performance of two estimators improves mg€reases. Furthermore, the
sum of the integrafo500 Pr(error) dr of the two figures is 41.43, while the sum of the inte-

500 Pruve (€rror) dr in these two cases is only 34.76. This shows that the impremém

gral |,
gain of our estimators over the naive estimator when< p, outweighs the degradation
suffered whem, > ps, indicating the benefits of applying our estimators.

Note thatp,, ps, andr can be random variables. To evaluate the overall performanc

of each estimator, we consider the average probabilityrof eletection ovep,, ps, andr,
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Figure 3.5: Numerical analysis of @rror).

E [Pr(error)| = // / Pr(error) - f(pa, pe, T) dps dpadr. (3.40)
Sincep,, ps, andr are independent,
f(pAapB7 T) = f(pA) ) f(pB> : f(T) (3-41)

We then consider some cases in which we are interested atydlappumerical integration
toolbox in Matlab [57] to calculate the triple integratiofor example, we assume that
and s, follow a normal distributionVN (u, o) andr is uniform over(0, ;]. We find that

whenu, o2, andr; are set to realistic values, we always have

E [Pre(erron] > E[Pre(error)]. (3.42)
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That is, our proposed estimators perform better than NE erage, which will further be
verified in Section 3.3 through simulations.

Moreover, in Fig. 3.5(a), it can be seen that the majority etedtion error for the
naive estimator comes from the case thak ps. Specifically, it is obvious to derive the

following theorem from Equations (3.34) and (3.37).

Theorem 3.2.1 Whenp, < ps,

Pruve(error) = Pr,.(error) = Pr(error)

— Pry(error) - e_<1_5_g). (3.43)

Thatis, the error probability is decreased by a fact@r_(gf_z_é) by applying our estimators

as compared with the naive estimator.

3.3 Simulations and Verification

In this section, we use simulations to verify our analytreslults and then apply estimators
to identify the patient zero or the hitlist. As far as we knélere is no publicly available
data to show the real worm infection sequence. That is, tisare dataset available with
the real infection sequence to serve as the ground truth aingarison basis for per-
formance evaluation. Therefore, we apply empirical sirtioies to provide the simulated

worm infection time and infection sequence.

3.3.1 Estimating the Host Infection Time

We evaluate the performance of estimators in estimatindgtse¢ infection time. For the
case of random-scanning worms, we simulate the behaviohottinfected by the Code
Red v2 worm. The hostis infected at time tick O and uses a anhstanning rate. The time

unitis set to 20 seconds. The Darknet records hit times danmnobservation window. The
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Figure 3.6: Comparison of MSE,) for random-scanning worms.

results are averaged over 100 independent runs. Fig. 3.par@sthe performanced.,
MSE of estimators fot,) of NE, MME, and LRE. In our simulations, we use a Darknet size
of 22°, a scanning rate of 358 scans/min, and an observation wisdmwof 800 mins as
default values. Moreover, when a parameter is studied amedyave keep other parameters
unchanged. Specifically, we consider the effects of the Detrkize, the scanning rate, and
the observation window size on the performance of the estirmalt is observed that for
all cases, our proposed estimators have a better perfoefamaller MSE) than the naive

estimator in estimating the host infection time. Specificdahe simulation results verify
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Figure 3.7: Comparison of MSE,) for localized-scanning worms.

Theorem 3.1.1j.e., that the MSE of our estimators is almost half of that of theveai
estimator, when the observation window size is sufficielatige €.g.,> 200 mins).

Next, we study a host infected by localized-scanning worntsadopt the same sim-
ulation parameters and settings as the above. The mainetiffe is that here the host
preferentially searches for vulnerable hosts in the “lbaddress space with a probability
pa. In Fig. 3.7, we compare MSE) for different estimators. The default parameter values
are a Darknet size af*’, a scanning rate of 358 scans/min, an observation windosv siz

of 800 mins, and &, value of 0.7. We find that the results are similar to those lier t
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random-scanning case shown in Fig. 3.6. That is, the MSE roéstimators is almost half
of that of the naive estimator. On the other hand, it can be #e& the MSEf) in Fig.s
3.7 (a)-(c) is larger for all cases than that in Fig. 3.6 sihedocalized-scanning worm hits

the Darknet less frequently than the random-scanning worm.

3.3.2 Estimating the Worm Infection Sequence

We evaluate the performance of our algorithms in estimahegvorm infection sequence
and simulate the propagation of the Code Red v2 worm. Spaityfithe simulator consid-
ers a discrete-time system and mimics the random-scaneimayior of infected hosts dur-
ing each discrete time interval. Moreover, the parametitinges based on the Code Red
v2 worm’s characteristics. The Code Red worm has a vulnenatpulation of 360,000.
Different infected hosts may have different scanning ratésis, we assign a scanning rate
(scans/min) from a normal distributio¥(358, o) to a newly infected host. Moreover, we
start our simulation at time tick O from one infected hosteTiime unit is set to 20 seconds.
Detailed information about how the parameters are chosemedound in Section VII of
[12]. Each point in Fig. 3.8 is averaged over 20 independens.r Table 3.3 gives the
results of a sample run with a Darknet size26f, an observation window size of 1,600
mins, ands = 110. In the tables; is the actual infection sequendee(, S; = i), whereas
S; is the estimated sequence. In this example, we find that MMEL&E can pinpoint the
patient zero successfully, while NE fails.

To compare the performance of estimators quantitativedycansider a simplg se-
guence distange.e.,

Si_gi

N
D=Y" : (3.44)

i=1
where N is the length of the infection sequence considefgds the actual infection se-
quencei(e., S; = i), andS; is the estimated sequence. Note that the smaller the sezuenc

distance is, the better the estimator performance will big. B.8 compares the perfor-
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Figure 3.8: Comparison of the sequence distance for ranst@mning worms.

mance of different estimators for random-scanning wormsgre the default parameter
values are a Darknet size ?1°, a scanning rate standard deviation of 115, an observation
window size of 1,600 mins, and a length of the infection segaeconsidered of 1,000.
Specifically, Fig. 3.8(a) shows the sequence distances oMNEE, and LRE with vary-

ing Darknet sizes froma'” to 224, It is observed that when the Darknet size increases, the
performance of all estimators improves dramatically. Mweg, the performance of MME
and LRE is always better than that of NE. For example, wheDtrd&net size equalz’?,

MME and LRE improve the inference accuracy by 24%, comparig ME. Fig. 3.8(b)

31



Table 3.3: A sample run of simulations for random scanning.

~

SiNE SiMME Si RE tO tONE tOMME tOLRE

~

Si L
1 2 1 1 0 114 20 20
2 1 2 2 85 98 74 73
3 3 3 3

105 165 116 116

520 498 533 534 593 622 589 589
521 433 488 477 594 611 581 580

demonstrates the sequence distances of these three essilmathanging the standard de-
viation of the scanning rate.€., o) from 100 to 125. It is noted that whenincreases, the
performance of all estimators deteriorates. The perfoomari MME and LRE, however,

is always better than that of NE. For example, when 120, MME and LRE reduce the
sequence distance by 30%, compared with NE. In Fig. 3.8@&)narease the length of the
infection sequence considered, from 1,000 to 11,000. It is intuitive that the sequence
distances of all estimators become larger\asncreases. However, MME and LRE are
always better than NE.

Next, we extend our simulator to imitate the spread of l@ealiscanning worms.
Specifically, we consider /8 localized-scanning worms armeraralized /8 Darknet with
224 |P addresses. We still use the Code Red v2 worm parameterthesame setting as
random scanning, except that the observation window si2¢080 mins (this is because
localized-scanning worms spread faster). The distrilbutiovulnerable hosts is extracted
from the dataset provided by DShield [58]. DShield obtahmes information of vulnera-
ble hosts by aggregating logs from more than 1,600 intrugeaction systems distributed
throughout the Internet. Specifically, we use the datastt port 80 (HTTP) that is ex-
ploited by the Code Red v2 worm to generate the vulnerabdtshihstribution. Each point
in Fig. 3.9 is averaged over 20 independent runs. Fig. 3.9enes the sequence distances

of different estimators for localized scanning. Specificaéhe results in Fig. 3.9(a) and (b)
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Figure 3.9: Comparison of the sequence distance for lamszanning worms.

are similar to those in Fig. 3.8(b) and (c). In Fig. 3.9(c), @@enpare the performance of
the estimators by increasipg from 0 to 0.7. Here)N = 1,000, andr = 115. It is observed
that the sequence distances of all estimators increagglacomes larger. However, our
estimators are always better than NE. For example, wher0.5, MME and LRE increase
the inference accuracy by 27%, compared with NE.

Therefore, our proposed estimators perform much better tthe naive estimator for
both random-scanning and localized-scanning worms imasitng the worm infection se-

quence.
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3.3.3 lIdentifying the Patient Zero or the Hitlist

A smart worm can assign lower scanning rates to the initialigcted host(s) and higher
scanning rates to other infected hosts. In this way, the m&nkight observe later infected
hosts first, and therefore the smart worm would weaken tHermeance of the naive esti-
mator. In Fig. 3.10, we compare the performance of estirsatoidentifying the hitlist of
such a smart worm. Specifically, the worm assigns scannteg feomN (50, 20%) to the
host(s) on the hitlist and scanning rates frafi358, 110?) to other infected hosts. Then,
we calculate the percentage of the host(s) on the hitlistateasuccessfully identified by
an estimator. For example, if the size of the hitlist is 106 &0 hosts that belong to the
hitlist are identified among the first 100 hosts of the estadanfection sequence, the suc-
cessful identification percentage of the estimator is 50B& results are averaged over 100
independent runs. Fig. 3.10(a) shows the case of randomiscamvhere the Darkent size
is 220 and the observation window size is 1,000 mins. It is seenabagestimators have a
higher successful identification percentage and a smadlgivce than the naive estimator.
For instance, when the size of the hitlist isilk(, the worm starts from the patient zero),
MME and LRE can pinpoint the patient zero around 80% of thetiwhile NE can detect
it only 70% of the time. When the size of the hitlist is 10 or 166mpared with NE, our
proposed estimators increase the number of successfaltyiii@d hosts from 5to 7 or 51
to 72, and reduce the variance from 2.6 to 1.6 or 23 to 13, otispdy. Fig. 3.10(b) shows
the results of localized scanning, where the Darkent si2é&'jg, = 0.7, and all other pa-
rameters are the same as the case of random scanning. The aeswsimilar to those in
Fig. 3.10(a). Therefore, the simulation results demotestheat our proposed estimators are

much more effective in identifying the histlist of the smaxrm than the naive estimator.
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3.4 Discussions

In this section, we first analyze the chance that Darknetesias infected host and then

discuss the limitations and the extensions of our proposechators.

3.4.1 Host Missing Probability

By applying Darknet observations, we have made an assumftie infected host will hit
the Darknet. Then, an intuitive question would be: What ésghobability that the Darknet
misses an infected host within a given observation window?

We consider the case of localized scanning and regard rasgamming as a special
case of localized scanning whgn= 0. The probability for a scan from an infected host to
hit the Darknetig1 —p,) -w/(2; and then the probability that the Darknet misses observing
the host in atime unitisl — (1 — p,) - w/Q)°. Thus, the host missing probabilitye., the
probability that the Darknet misses the infected hostirtiane units observation window)
is

w

Pr.s(missing = (1 — (1 —pa) - 5)3.1?' (3.45)
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Figure 3.11: Host missing probability.

In Fig. 3.11, we show the host missing probability as the olag®n window size
changes. In this example, we set 224, time unit = 20 seconds, and= 358 scans/min.
We find that ifp, = 0.7, the infected host will almost hit the Darknet for surkeen the
observation window size is larger than 20 mins.pJf= 0, which is the case of random
scanning, a 5-min observation window is sufficient to gusramhe capture of the infected
host. Therefore, in our previous analysis and simulatiba,assumption that the Dark-
net can observe scans from the infected host, especialheadrly stage, is reasonable.

Moreover, our estimator can still work even for self-stogpworms [59].

3.4.2 Estimator Limitations and Extensions

Our proposed estimators are built based on some assump#tatsin Section 3.1. At-
tackers that design future worms may exploit these assomgpto weaken the accuracy

of our estimators. In the following, we discuss some linnta$ of our estimators and the

potential extensions.
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Darknet Avoidance

The majority of active worms up to date do not attempt to atb@ldetection of Darknet.
As a result, CAIDA's network telescopes have been obsemiagy active Internet worms
such as Code Red, Slammer, Witty, and even recently the ®enficorm (also known as
the April Fool's worm). Most worms apply random scanning #&mchlized scanning, and
Darknet can observe the traffic from such worms.

Recent work, however, has shown that attackers can pdtgmteiect the locations of
Darknet or network sensors [60]. Thus, a future worm can leeiafly designed to avoid
scanning the address space of the Darknet. The counterreeaminst such an intelligent
worm is to apply the distributed Darknet instead of the adided Darknet [17]. That
is, unused IP addresses in many subnets are used to obsamvetnatiic, which is then
reported to a collection center for further processing. 8t@iype of distributed Darknet

has been designed and evaluated in [61].

Scanning Rate Variation

Although there have been no observations of worms that wsestg rate variation mech-
anisms i e., the scanning rate of an individual infected host is timeaar) [53], future
worms may employ such schemes to invalidate our basic asgmgnd thus weaken the
performance of our estimators. Changing the scanninghiateever, introduces additional
complexity to worm design and can slow down worm spreadingrddver, if the change
of scanning rates is relatively slow, our estimators canrti&eced with the change-point
detection [62] to detect and track when the scanning ratelsagnificant change and then

apply the early observations to derive the infection timarmfnfected host.
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Measurement Errors

The measurement errors can affect the performance of detsnd here are two types of
measurement errors. The false positive denotes that Darlawerectly classifies the traffic
from a benign host as worm traffic, whereas the false negatitteat Darknet incorrectly
classifies worm traffic as benign traffic or misses worm traftie to congestion or device
malfunction.

For the false positives, most of time we can distinguish winaffic from other traf-
fic. First, our estimation techniques are used as a form dfipostem analysis on worm
records logged by Darknet. As a result, we can limit our agialto the records logged dur-
ing the outbreak of the worm when it is most rampant. More irtgoaly, worm packages
always contain information about infection vectors thatidguish worm traffic from other
traffic. For example, the Witty worm uses a source port of @ faCattack Internet Security
Systems firewall products [16]. It is very unlikely that a lggnhost uses a source port of
4,000. By filtering the records based on infection vectoexHje to the worm under inves-
tigation, we can eliminate most of the effects of false pess#ton Darknet observations.

False negatives are much harder to eliminate. A packet ttsv2arknet may be lost

due to congestion caused by the worm (such as the Slammer [28thor the malfunc-
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tion of Darknet monitoring devices. To study the effectsaléé negatives, we modify our
simulator to mimic the packet loss and evaluate the perfoomaf our estimators under
false negatives. Here we assume that the loss rate of the packets towards Darknet
(denoted as,s9) is the same for each infected host. Fig. 3.12 shows how theesee
distances of different estimators vary with the worm padéss$ rate. The results are aver-
aged over 20 independent runs. It is intuitive that when teket loss rate becomes larger,
the performance of all estimators worsens. Our proposeuna&strs, however, always per-
form much better than NE. For example, compared with NE, stimators (.e., MME and
LRE) improve the inference accuracy by 28% whegg = 0.4. A mechanism to recover
from worm-induced congestion has been proposed in [53chvbstimates the packet loss
rates of infected hosts based on Darknet observations afdaBéns. This method can be
incorporated into our estimators to enhance their robgstagainst worm-induced conges-

tion.
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CHAPTER 4
CHARACTERIZING INTERNET WORM SPATIAL INFECTION STRUCTURE

Modeling Internet worm infection has been focused on thermbavel. Most, if not
all, mathematical models study the total number of infettests over time [7, 8, 9, 11, 1].
For example, Staniforét al. used a simple differential equation to estimate the global
propagation speed of the Code Red v2 worm [7], whereas Ra#tlaf. applied a stochastic
model to reflect the variation of the number of infected hasthe early stage of worm
infection [10]. The models of some key micro-level inforimatof worm infection, such
as the infection ability of individual hosts and the undenytopology formed by worm
infection, has been investigated little.

The goal of this chapter is to bridge the gap by characteyifive spatial infection
relationship between individual infected hosts,, the worm spatial infection structure.
Specifically, we reveal the key characteristics of the ulyttey topology formed by worm
infection,i.e., the number of children and the generation of the worm treestddy these
two metrics analytically, we apply probabilistic modelimgthods and derive the probabil-
ity distributions of the number of children and the genemathrough a sequential growth
model. Different from other models that characterize theagyics of worm propagation
(e.g.,the total number of infected hosts over time), our sequegt@vth model aims at
capturing the main features of the topology formed by worfadtion (.g.,the number
of children and the generation). To the best of our knowletlgere is yet no mathemati-
cal model for characterizing the structure of the worm tné&e. then verify the analytical
results through simulations.

The remainder of this chapter is structured as follows.i8ea.1 presents our sequen-
tial growth model and assumptions used in analyzing the wogm Section 4.2 gives our
analysis on the worm tree. Section 4.3 then uses simulatoreyify the analytical results

and provide observations on the worm tree using the loasoanning method.
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Figure 4.1: An example of the worm tree.

4.1 Worm Tree and Sequential Growth Model

In this section, we provide the background on the worm tred,@esent the assumptions
and the growth model.

An example of a worm tree is given in Fig. 4.1. Here, patiembze the root and
belongs to generation 0. The tail of an arrow is from the ‘#attor the infector, whereas
the head of an arrow points to the “son” or the infectee. Iftadabelongs to generation
i, then its children lie in generation+ 1. In a worm tree withn nodes, we usé., (i, j)

(0 <i,7 < n —1)to denote the number of nodes that haehildren and belong to gen-
eration;. Note thaty " 3"~ L, (i, j) = n. We also us&,(i) (i = 0,1,2,--- ,n — 1)
to denote the number of nodes that hawhildren andG,(j) (j = 0,1,2,--- ,n — 1)
to denote the number of nodes in generatoiMoreover,L, (i, j), C,.(i), andG,,(j) are

random variables. Thus, we defipg(i, j) = w representing the joint distribu-
Ejc..)]

Elc.0)]

n

tion of the number of children and the generation. Similanhg definec, (i) =
to represent the marginal distribution of the number ofdreih andg,,(j) = to

represent the marginal distribution of the generation.eNbatc,, (i) = Z;L:‘OI pa(i,7) and

gn(d) = 205 pali. ).
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Figure 4.2: Two extreme cases of worm trees.

Although we model worm infection as a tree, different worees can show very dif-
ferent structures. Fig. 4.2 demonstrates two extreme adsesrm trees. Specifically, in
Fig. 4.2 (a), each infected host compromises one and onlyosteexcept the last infected
host. In this case, if the total number of nodes,i€’,(0) = 1, andC,,(1) = n — 1, which
lead toc,(0) = 1 and¢, (1) = =+ ~ 1 whenn is large. That is, almost each node has
one and only one child. Moreovet,(j) = 1,5 = 0,1,2,--- ,n — 1, which means that
9.(j) = L. Thus, the average path Iength}[s?:‘olj - gn(j) = 5 ~ O(n). Thatis, the av-
erage path length increases linearly with the number of io@emparatively, Fig. 4.2 (b)
shows another case where all hosts (except patient zera)faoted by patient zero. For
the distribution of the number of childrea,(n — 1) = 1, andc,(0) = 2= ~ 1 whenn is
large, indicating that almost every node has no child. Fediktribution of the generation,
9.(0) = %, andg,(1) = “=1, which leads to that the average path lengtiis ~ 1 when
n is large. Thus, the path length is close to a constant of lhitnahapter, we attempt to
identify the structure of the worm tree formed by Internetrvanfection.

To study the worm tree analytically, in this work we make sal/assumptions and

considerations. First, to simplify the model, we assumeitifacted hosts have the same
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scanning rate. This assumption is removed in Section 4B312re we use simulations to
study the effect of the variation of scanning rates on thenwtvee. Second, we consider a
wide class of worms for which a new victim is compromised bgheexisting infected host
with equal probability. Such worms include random-scagmmorms, routable-scanning
worms, importance-scanning worms, OPT-STATIC worms, ddBSPT-STATIC worms.
Random scanning selects targets in the IPv4 address spatmwly and has been the main
scanning method for both worms and botnets [7, 2]; routadd@sing finds victims in the
routable IPv4 address space [63, 8]; and importance scgupnaies subnets according to
the vulnerable-host distribution [54]. OPT-STATIC and SOIBT-STATIC are optimal and
suboptimal scanning methods that are proposed in [64] tanmze the number of worm
scans required to reach a predetermined fraction of vubteraosts. In Section 4.3.3,
we extend our study to localized scanning, which prefeadigtsearches for targets in the
local subnet and has also been used by real worms [65, 55, M« consider the classic
susceptible— infected (SI) model, ignoring the cases that an infected ¢es be cleaned
and becomes vulnerable again, or can be patched and beacorakrable. The SI model
assumes that once infected, a host remains infected. Suctpkesnodel has been widely
applied in studying worm infection [7, 8, 64], and presehtsworst case scenario. Fourth,
we assume that there is no re-infection. That is, if an imf@dtost is hit by a worm scan,
this host will not be further re-infected. As a result, everfgcted host has one and only
one father except for patient zero, and the resulting grapinéd by worm infection is a
tree. Fifth, we assume that the worm starts from one infelted, i.e., patient zero or a
hitlist size of 1. When the hitlist size is larger than 1, thderlying infection topology
is a worm forest, instead of a worm tree. Our analysis, howean easily be extended
to model the worm forest. Finally, to simplify the analysise assume that no two nodes
are added to the worm tree at the same time. That is, no tweraldfe hosts are infected

simultaneously. We relax this assumption in Section 4.3revBenulations are performed.
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Based on these considerations and assumptions, the siadjgeswth model of a worm
tree works as follows: We consider a fixed sequence of infldubsts (.e.,nodesy, v, - - -
and inductively construct a random worm t(g¢),,~1, wheren is the number of nodes and
T, has only patient zero. Infecting a new host is equivalentitireg a new node into the
existing worm tree. Hence, giveh,_i, 7,, is formed by adding node, together with an
edge directed from an existing nodgto v,,. According to the assumption; is randomly
chosen among the— 1 nodes in the tree.e., Pr(f = k) = ﬁ k=1,2,--- ,n—1. Note
that such a sequential growth model and its variations haea lwidely used in studying
topology generators [28]. In this chapter, we apply this elod characterize worm spatial

infection strucutre.

4.2 Characterizing Internet Worm Spatial Infection Structure

In this section, we characterize the topology of the worra tteough mathematical anal-
ysis. Specifically, we first derive the joint distribution thie number of children and the
generationi.e.,p, (i, 7), by applying probabilistic methods. We then pgéi, j) to analyze

two marginal distributions,e., ¢, (i) andg,(j), and obtain their closed-form approxima-

tions. Finally, we find a closed-form approximationgd, ;).

4.2.1 Joint Distribution

For a worm tree with only patient zerod.,n = 1), sinceL;(0,0) = 1 with probability 1,
p1(0,0) = 1. Similarly, for a worm tree withh = 2, it is evident that,(1,0) = L,(0,1) =
1. Thus,ps(1,0) = p»(0,1) = 1. We now considep, (i, j) (0 < i,j < n—1) whenn > 3.
Specifically, we study two cases:

(1) p.(0, j), i.e., the proportion of the number of leaves in generation 7,,. Assume

that7,,_, is given, and there ark, (0, j) leaves in generatiopand totallyG,,_1(j—1) =
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Z;‘;OZ L,_1(i,j — 1) nodes in generation — 1. Note that we have extended the notation
so thatG,,_1(—1) = L,_1(i,—1) = 0,0 < ¢ < n — 2. When a new node, is addedyp,
becomes a leaf df;,. If v, is connected to one of existing nodes in generajienl, v,
belongs to generatioft and the probability of such an event%ﬁ. Moreover, if a
leaf in generatiory in T,,_; connects ta,, this node is no longer a leaf and now has one
child; and the probability of this event i%“;f_# Therefore, we can obtain the stochastic

recurrence of, (0, j):

;

L, 1(0,7)+1, w.p. Gna(j=1)

n—1
Ln<07j) = Ln—l(oaj) - ]-7 W.p. Ln;l_(fvj) (41)
\ L,-1(0,7), otherwise

GivenT,,_, (i.e.,L,_1(0, j) andG,,_1(j — 1)), the conditional expected value bf,(0, j) is

[Ln1(0,9) + 1 C0 4 (L (0,) = 122220041, (0, )1 — Sl

i.e.,

E[Ln(07j)|Tn—1] = Z—jLn—l(Oaj) + ﬁGn—l(]’ - 1)- (4-2)

Applying E[L,,(0, j)] = E[E[L,(0, j)|T,.-1]] (i.e.,the law of total expectation), we obtain

Using the definitions,, (0, j) = w andg,_,(j—1) = w = (i) — 1),

the above equation leads to

Pa(0,5) = "2pp-1(0,5) + 1 gn-1(j — 1) (4.4)

= 2p (0,5) + L3 paca(i g — 1) (4.5)

(2) pu(i,j), 1 < i <n-—1. GivenL,_1(i,j) andL,,_1(i — 1, ) in T,,_;, we study
L,(i,7) inT,. When the new node, is added intdl’,_,, v, is connected to a node with

i — 1 children and in generation with probability »=1¢~29) or is connected to a node
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with 7 children and in generationwith probabilityL"%_(f’j). Thus, inT,,,

;

L, 1(1,5)+ 1, w.p. Ln-1(i=1,j)

n—1
L,(i,7) = Lo 1(i,j) —1, w.p. Ln%(llvﬁ) (4.6)
\ L,_1(1,7), otherwise

This relationship leads to

Therefore,
E[Ln (i, 7)) = 2=2E[Ly—1(i, )] + 5 E[Ln-1(i — 1, 5)]. (4.8)
That is,
pn(7'7.]> = nT_2pn—1<i7j) + %pn—lﬁ - 17.]) (49)

Summarizing the above two cases, we have the following #mor

Theorem 4.2.1 Whenn > 3, the joint distribution of the number of children and the gen
eration in a worm tre€l,, follows
. = pp-1(0,7) + > gn1(j —1), =0
pali, j) = (4.10)
nT_Qpn—l(iaj) + %pn—l(l - 17j)7 OtherWiSe

where) <i,j <n — 1.

Theorem 4.2.1 provides a way to calculatgi, j) recursively fromp, (i, j). Fig. 4.3
shows a snapshot ¢f, (i, j) whenn = 2000. It can be seen that when the generation
is specifiedite., j is fixed), p, (i, j) is @ monotonous function and decreases quickly as
increases. On the other hand, when the number of childrewda §.e.,i is fixed),p,, (i, 7)
has a bell shape. Moreover, sifgg”; >~ p, (i, j) = 0.9976, most nodes do not have a

large number of children, and the worm tree does not haveya Ererage path length.
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Figure 4.3: Joint distribution of the number of children dhe generation.

4.2.2 Number of Children

We usep,(i, j) to derive the marginal distribution of the number of childree., ¢, (7).
Similarly, we study two cases:

(1) ¢,(0),i.e.,the proportion of the number of leavesiiy. Sincec,,(0) = E‘:& n(0,7)
and Z;:Ol gn-1(j — 1) = 1, we obtain the recursive relationship ©f(0) from Equation
(4.4):

en(0) = "=2¢,1(0) + L. (4.11)

n

Moreover, note that,(0) = L. If we assume that,_;(0) = %, we can obtain by induction
that
cn(0) = 1. (4.12)

This indicates that no matter how many nodes are in the woem wn average half of
nodes are leavese.,on average 50% of infected hosts never compromise any target
(2) culi), 1 < i < n — 1. From Equation (4.9) and, (i) = "~ p.(i, j), we find the

recurrence of,, (i) as follows

(i) = 2=2c, 1 (1) + Lenoi (i = 1). (4.13)

n
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Summarizing the above two cases, we have the following #mamn the distribution

of the number of children:

Theorem 4.2.2 Whenn > 3, the distribution of the number of children in a worm trEe

follows

cn(i) = (4.14)

From Theorem 4.2.2, we can derive the statistical propedi¢he number of children

as follows.

Corollary 4.2.3 Whenn > 1, the expectation and the variance of the number of children
are

E[C] =30 i ca(i) = 22 (4.15)

1= n

Var,[C] = 300 (i — E,[C)) - cu(i) = 2 — 25t — 2u (4.16)

n2 n

whereH, = >"" | % is then-th harmonic number [15].

The proof of Corollary 4.2.3 is given in Appendix B.1. Oneuitive way to derive
E.[C] is that in worm tre€Tl,,, there aren — 1 directed edges and nodes. Thus, the
average number of edgese(the average number of children) of a nodét;i;é,. Moreover,
sinceH,, isO(1 + Inn), nh—{go E.[C] =1, andr}LrgOVarn[C] = 2.

Theorem 4.2.2 also leads to a simple closed-form expressitire distribution of the

number of children when is very large, as shown in the following corollary.

Corollary 4.2.4 Whenn — oo, the number of children has a geometric distribution with
parameter, i.e,,

c(i) = lim en(i) = (1)”1, i=0,1,2,---. (4.17)

n—o00 2
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Figure 4.4: Number of children.

Proof. It is already known that(0) = 1. Wheni > 1, this corollary follows readily from

Equation (4.13). Since — oo, ¢,,_1(1) = ¢, (i) = (i), which yields

(i) = 2=2¢(i) + 2e(i — 1), (4.18)

n

That is,
c(i) =

Hence, from:(0) = % we can recursively obtain Equation (5.6)

c(i—1), i>1. (4.19)

N [—=

Corollary 4.2.4 indicates that whenis very large, (i) decreases approximately ex-
ponentially with a decay constant bf2 as the number of children increases. We further
study when both and: are finite and large, howy, () varies withn, i.e.,how the tail of the
distribution of the number of children changes withFirst, note that;(0) = 1, ¢3(1) = £,
andc3(2) = % Thus, from Equation (4.13), we can prove by induction thét) (n > 3)
is a decreasing function @fi.e.,c,(i) < ¢,(i: — 1), for1 < i < n — 1. Next, putting this
inequality into Equation (4.13), we havg(i) > "T‘lcn_l(z'). Hence, whem is very large,
2=l ~ 1, andc, (i) > ¢,—1(i), which indicates that the tail ef, (i) increases with. Fig.

4.4 verifies this result, showing, (i) obtained from Theorem 4.2.2 when= 1000, 2000,

5000, and20000, as well as the geometric distribution with parameter O.Gioled from
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Corollary 4.2.4. Note that the y-axis uses log-scale. Itlvarseen that when increases
from 1000 to 20000, the tail of ¢, (i) also increases to approach the tail of the geometric
distribution. Moreover, it is shown that the geometric dittion well approximates the

distribution of the number of children whenis large.

4.2.3 Generation

Next, we derive the generation distributidre(, g,,(7)) in a similar manner to the case of

¢,(i). Using Theorem 4.2.1 ang,(j) = > pa(i, j), we obtain the following theorem:
Theorem 4.2.5Whenn > 3, the distribution of the generation in a worm trég follows

9n(7) = 52 gn-1(3) + 3 9n-1( = 1),0 < j <n — 1, (4.20)
whereg,,_1(—1) = 0.

Theorem 4.2.5 gives a method to calculate the distributidineogeneration recursively.
Moreover, from Theorem 4.2.5, we can derive the statispcaperties of the generation

distribution in the following corollary.

Corollary 4.2.6 Whenn > 1, the expectation and the variance of the generation are
E.[G] =707 guly) = Hy — 1. 4.21)

whereH, ="  tandH,, = > " | +.

The proof of Corollary 4.2.6 is given in Appendix B.2. FromrGltary 4.2.6, we have
some interesting observations. Sinégis O(1 + Inn) andH.» = ((2) = %2 ~ 1.645
is the Riemann zeta function of 2 [66], both [E] and Vay,|G] are O(1 4 Inn). This
indicates that the average path length of the worm tree E,[G]) increases approxi-

mately logarithmically withn. Moreover, whem — oo, lim E,[G] —Inn =~ — 1, and

n—oo
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Figure 4.5: Generation.

lim Var,|G] — Inn = v — ((2), wherey ~ 0.577 is the Euler-Mascheroni constant [67].

n—oo

Therefore, whem is large, E[G] ~ Var,[G]. Furthermore, we can use Theorem 4.2.5 to

obtain a closed-form approximation ¢g(;j) as follows.

Corollary 4.2.7 Whenn is very large, the generation distributiap,(j) can be approxi-

mated by a Poisson distribution with parameer= E, |G| = H,, — 1. That s,

gu(j) =M™ 0<j<n— 1. (4.23)

Proof. We prove this corollary by applying z-transform. If a randeaniableX follows a

Poisson distribution with parametgy

k
PrX =k) = %e—k, k=0,1,2,---. (4.24)
Using z-transform, we have
X(2) =Y PrX = k) k= A, (4.25)
k=0

Meanwhile, using Equation (4.20) in Theorem 4.2.5, we firelztransform ofy,,(5)

Yal2) = X550 9a)27 = (14 572) Yara ). (4.26)
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Note that when: — 0, ¢” ~ 1 + z. Thus, whem is very large,l + ! ~ exp((z~! —

n

1)/n). Thatis,

Yo(z) e n Y, 1(2). (4.27)
UsingY;i(z) = 1, we can recursively obtain
Yi(2) & el DT b = (Ham ), (4.28)

Therefore, comparing Equations (4.25) and (4.28), we fiatl¢h(j) can be approximated

by the Poisson distribution with parametéy, — 1 as in Equation (4.23). O

Fig. 4.5 verifies Corollary 4.2.7, showing (j) obtained from Theorem 4.2.5 when
n = 1000, 2000, 5000, and20000, as well as the Poisson distribution with parametg:
It can be seen that whenis large, the Poisson distribution fits the generation ithstion

closely.

4.2.4 Approximation to the Joint Distribution

Finally, we derive a closed-form approximation to the jodstributionp, (i, 7). From

Equation (4.9), we can see that wher- oo, p,,(7,j) = p,_1(, j), which yields
palis 5) = 5pa(i — 1. 7). (4.29)
Hence, we can obtain
paliof) = (3) Pu0,5) = (5)" 9a()- (4.30)

Since whem: is very large g, (j) follows closely the Poisson distribution as in Corollary
4.2.7,

o i1 N .
paliyj) = (3)7 - e, 0<i,j<n—1, (4.31)

where)\,, = H, — 1. The above derivation also shows that wheg very large, the number

of children and the generation are almost independent rana@oiables.
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Figure 4.6: Joint distribution.

Fig. 4.6 shows the parity plot of the approximation to thefjalistribution whem =
2000. In the figure, the x-axis is the actual(i, j) obtained from Theorem 4.2.1, and the
y-axis is the approximategl, (i, j) from Equation (4.31), where < 7,5 < 30. It can be
seen that most points are on or near the diagonal line, itidgcehat the approximation to

the joint distribution is reasonable.

4.3 Simulations and Verification

In this section, we study the worm spatial infection stroetinrough simulations. As far as
we know, there is no publicly available data to show the reaimtree and verify our ana-
lytical results. Moreover, real experiments in a contrbkgvironment are impractical for
this study since the closed-form approximations are dérased on the assumption that
the number of nodes is very large. Therefore, we apply eoglisimulations. Specifically,
we first simulate the spatial infection structure of the C&del v2 worm and then study
the effects of important parameters on the worm tree. Binakk extend our simulation to

localized-scanning worms.
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Figure 4.7: Simulating the spatial infection structureled Code Red v2 worm.

4.3.1 Code Red v2 Worm Verification

Similarly to Chapter 3, we simulate the propagation of thel€Red v2 worm by using

and extending the simulator in [68]. Here, the vulnerableybation isn, = 360, 000, and

a newly infected host is assigned with a scanning rate of 888sgmin. We then extend
the simulator to track the worm spatial infection structoyeadding the information of the

number of children and the generation to each infected Msteover, we set the time unit
to 20 seconds and start our simulation at time tick O withguaitzero. Note that we remove

the assumption used in the sequential growth model that adbsts are compromised at
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the same time. That is, multiple hosts can be compromisedetime tick. Moreover, all
new victims of the current time tick start scanning at thetrigme tick. The simulation
results (mean: standard deviation) are obtained from 100 independentwithglifferent
seeds and are presented in Fig. 4.7.

Fig. 4.7(a) shows the distribution of the number of childreamparing the simulation
results ofc, (i) for n = ny/4, ng, and4n, with the geometric distribution obtained from
Corollary 4.2.4. Note that the y-axis uses the log-scale vidrtical dotted line represents
the standard deviation that goes into the negative teyritbcan be seen that the distribu-
tion of the number of children can be well approximated bygbemetric distribution with
parameter 0.5. This implies that(:) decreases approximately exponentially with a decay
constant ofn 2. Specifically, in all three cases, on average 50.0% of thectetl hosts do
not have children, about 98.4% of them have no more than fikgreh, and 0.1% of them
have no less than ten children. We also calculate the expmctand the variance of the
number of children from the simulation and find that they aentical to the analytical
results obtained from Corollary 4.2.3. Fig. 4.7(b) demmatst the generation distribution,
comparing the simulation results @f(j) for n = ny/4, ny, anddn, with the Poisson distri-
butions with parameter,fiG] = H,, — 1 obtained from Corollary 4.2.7. It can be seen that
the simulation results af,,(j) closely follow the Poisson distributions for all three caise
Hence, simulation results verify that the average pathtten§the worm tree increases
approximately logarithmically with the total number of éeted hosts. Moreover, we also
compute the expectation and the variance of the generatisimulations and verify the
analytical results in Corollary 4.2.6. Fig. 4.7(c) comzatiee measured joint distribution
from simulations with the approximated joint distributilom Equation (4.31) by using
the parity plot. It can be seen that most points are on or ieadiagonal line, indicating

that the approximation works well.
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Next, we extend our simulator to examine the effects of thrgmrtant parameters of worm

propagation on the worm tree: the scanning rate, the scgmaia standard deviation, and

the hitlist size. When a parameter is studied and varied, ev®ther parameters to the

parameters of the Code Red v2 worm as used in Section 4.3¢€lsifrtulation results are

obtained from 100 independent simulation runs and are slowig. 4.8.

Fig.s 4.8(a) and (b) show the effect of varying the scanratgsr(scans/min) from 158

to 558 on the distributions of the number of children and theegation. Here, the scanning

rate is set to a fixed value for every infected hast, the scanning rate standard deviation
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Figure 4.8: Effects o, o, and the hitlist size on, (i) andg, (j).

is 0. The figures also plot the geometric distribution withgmaeter 0.5 and the Poisson
distribution with parameteH,,, — 1 for reference. It can be seen that the scanning rate does
not affect the worm tree structure.

Fig.s 4.8(c) and (d) demonstrate the effect of the variatifcthe scanning rates among
different hostsi(e., o). In our simulation, a newly infected host is assigned wisitanning
rate (scans/min) from a normal distributiofi(358, 2). The figures show the simulation
results whenr = 0, 100, and200. It can be seen that while the scanning rate standard
derivationo has no effect on the generation distribution, it does affleetdistribution of
the number of children. Specifically, whetincreases, the tail of, (i) moves upward from
the geometric distribution with parameter 0.5. This is hseawhero becomes larger, the
variation of the scanning rate among infected hosts is gre@hat is, there are more hosts
with high scanning rates and also more hosts with low scagnrates. As a result, those
hosts with high scanning rates tend to infect a large humbhosts, making the tail of
cn (1) move upward. However, it is also observed that whés not very large (the case for
real worms), the geometric distribution with parameteri® &till a good approximation.

In Fig.s 4.8(e) and (f), we show the effect of the hitlist simethe worm tree. As pointed
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out in Section 4.1, when the hitlist size is greater than & uhderlying infection topology
is a worm forest with the number of trees equal to the hitize.s Moreover, in a worm
forest, it is intuitive that each tree is a smaller versiothef single worm tree of hitlist size
1 and has fewer nodes. Hence, it is not surprising to seerthagi 4.8(f), the generation
distribution moves leftward when the hitlist size increagdowever, the generation distri-
bution can still be well approximated by the Poisson distidn with parametef?,,, — 1,
wheren,, is the average number of nodes in a tree. Moreover, sincecinteege the distri-
bution of the number of children can be approximated by thengric distribution with

parameter 0.5, in the worm fores(i) still follows closely the same distribution.

4.3.3 Localized Scanning

Finally, we extend our simulation study to the infectioretd localized-scanning worms.
Different from random scanning, localized scanning pesi@ally searches for targets in
the “local” address space [7]. As a result, when a new nodédgcto the worm tree,
it connects to one of the existing nodes that are in the saowal address space with a
higher probability. That is, the growth model is no longeiform attachment as studied in

Section 4.2. For simplicity, in this work we only consideetfi localized scanning [55]:
e Local scanningp,(0 < p, < 1) of the time, a “local” IP address with the same first
1 (0 <1 < 32) bits as the attacking host is chosen as the target.
e Global scanning1 — p, of the time, a random address is chosen.
Note that random scanning can be regarded as a special cksmlied scanning when
p. = 0. Moreover, if local scanning is selected, it can be regaatechndom scanning in

a local /Il subnet. It has been shown that since the vulnerable-hastibdiion is highly

uneven, localized scanning can spread a worm much faster@naom scanning [65].
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Figure 4.9: Simulating the spatial infection structurelsf tocalized-scanning worm.

We extend our simulator to imitate the spread of localizemhaing worms. We extract
the distribution of vulnerable hosts ifi subnets from the dataset provided by DShield
[58, 69]. Specifically, we use the dataset in [69] with port(BIOF'TP) that is exploited
by the Code Red worm to generate the vulnerable-host disimiln Moreover, we use
similar parameters as in Section 4.3€lg(,n = 360,000, s = 358 scans/ming = 0,
andhitlist = 1) and set the subnet level to Be(, ! = 8). The results are obtained from
100 independent simulation runs and are shown in Fig. 4.9.e&ch run, patient zero is

randomly chosen from vulnerable hosts.
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Fig. 4.9(a) compares the simulation results of the distitinis of the number of children
(i.e.,c, (7)) whenp, = 0, 0.3, and 0.6 with the geometric distribution with paramété. It
is surprising that,, (i) of localized-scanning worms can still be well approximabgdhe
geometric distribution. That is, the majority of nodes h&ex children, whereas a small
portion of compromised hosts infect a large number of ho&tsintuitive explanation is
given as follows. From Fig. 4.7(a), it can be seen that thal tmimber of nodes has a
minor effect onc, (7). Hence, if in a /8 subnet the majority of vulnerable hostsiiected
through local scanning, it is expected that:) of these hosts still closely follows the
geometric distribution since the local scanning can berteghas random scanning inside
a /8 subnet. Therefore, both local infection and globaldtife leadc, (i) towards the
geometric distribution with parameter 0.5. On the otherdh#@rcan also be seen that when
pao increases, the tail of, (i) moves slightly downward. This is becausepadncreases,
more vulnerable hosts are infected through local scanritence, it is more difficult for
an infected host to find targets after vulnerable hosts mhbst’s local subnet have been
exhausted. As a result, whgpincreases, fewer nodes can have a large number of children.

Fig. 4.9(b) demonstrates that the generation distributidocalized-scanning worms
(i.e., g.(j)) can be well approximated by the Poisson distribution ferd¢ases of, = 0,
0.3, and 0.6. The Poisson parameter, however, depends Iyatron, but also orp,. We
further define\?: = EP+[(] as the expectation of the generation for a localized-scanni
worm with parametep,. Here, E*[G] can be easily estimated from the simulation results
of g, (j). Fig. 4.9(c) further shows the parity plot of the simulateithj distribution and the
approximated joint distribution from Equation (4.31) when= 0.6, indicating that the
approximation is reasonable.

Moreover, Fig. 4.10 shows the effect of the subnet level,() on the distribution of the
number of childreni(e., ¢, (7)). It can be seen that whéiincreases, the tail af, (i) moves

downward. The reason is similar to the argument used in Figa}i.e., asl increases,
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fewer nodes can infect a large number of children. Howeterfigure also demonstrates

that the geometric distribution with parameter 0.5 is stijood approximation te, (i),

especially when the number of children is not large.
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CHAPTER 5
EVALUATING P2P-BASED BOTNETS FORMED BY WORM INFECTION

A botnet is a zombie network controlled by a malicious attactalled thebotmaster
and is capable of sending denial-of-service attacks, miadispams, and stealing financial
information. For example, the Storm botnet affected termitifons of hosts and was used
for spam emails and distributed DoS attacks in 2007 [35].rdfoee, botnets have become
one of top threats to the Internet.

There are two major types of botnets: IRC-based botnets 2Reb@sed botnets. While
IRC-based botnets require central servers for commandengliP2P-based botnets make
use of peer-to-peer systems and can form different commamunainication networks
such as random graphs or power-law topologies [16]. As dtred?2P-based botnets are
more resilient to defenses and have plagued the Internktl[8this chapter, we consider a
P2P-based botnet formed by worm scanning/infection. ®hatrice a host infects another
host, they become peers in the resulting P2P-based botrmge thiat P2P-based botnets
formed by worm infection are a real threat. For example, @&efi C uses random scan-
ning to locate peers and forms a P2P botnet through sca-pasediscovery [5, 6]. Thus,
the way that Conficker C builds the botnet is in principle tame as worm infection.

Our observations on the worm spatial infection structur€lmapter 4 have important
applications on Conficker C like P2P-based botnets. For pi@gmve have found that
the generation distribution closely follows the Poissostribution and the average path
length increases approximately logarithmically with thenber of nodes. This average
path length reflects the delay or the effort for a botmasteletwver a command to all bots
in a P2P-based botnet like Conficker C, and our results shawtlie botnet is scalable
and can efficiently forward commands to a large number of. Botthis chapter, we further

study other aspects of a Conficker C like P2P-based botnkbtbrdefenders and attackers.
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The goal of this chapter is to evaluate bot detection stresegnd effects of user de-
fenses in P2P-based botnets formed by worm infection. 8Spabty, we first apply the
observations of the number of children in Chapter 4 on a Ckafi€ like P2P-based bot-
net to study efficient bot detection strategies. We therh@&rextend the worm spatial
infection structure to investigate the P2P-based botpetiogies under user patching and
cleaning through simulations.

The remainder of this chapter is structured as follows. i8ed.1 evaluates bot detec-
tion methods and studies potential countermeasures befbtiinets. Section 5.2 evaluates
the effect of user defenses on the P2P-based botnet seuand further studies effects of

worm re-infection against user countermeasures.
5.1 Evaluating Bot Detection Strategies

In this section, we evaluate efficient bot detection methmydapplying the observations of
the number of children in Chapter 4 and then study a potetwiahtermeasure by future

botnets.

5.1.1 Bot Detection Strategies

In a P2P-based botnet formed by worm scanning/infeceam (ig. 5.1), when a defender
captures an infected hastin a botnet, the defender can process the historic recositein
the host or monitor the traffic going into or out of the host anll potentially detect other
infected hosts such as the father (hgstind the children (host) of the infected host.
Then, our question is that if a defender can only access d poréibn of nodes in a botnet,
how many bots will be detected by the defender. Moreovepjiad by the random removal
and targeted removal methods used in analyzing the rolssstriie topology [37], here we

study two bot detection strategies:

e Random detection: Access bots randomly.
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Patient zero

Figure 5.1: Bot detection in P2P-base botnet formed by woifection.

e Targeted detection: Access bots that have the largest muwhbkildren.

Analytically, we suppose that a defender can access a sat@llaf bots in a botnet.
We assume that an accessed bot exposes itself, its fatldeitsarhildren to the defender.
To simplify the analysis, we also assume that the accesdedtim, A, is a power of 0.5
and all exposed nodes are different nodes. We then caldhlataverage percentages of
exposed bots by random detection and targeted detection.

Since from Corollary 4.2.3 a randomly selected node hasoxppately one child, the

average percentage of bots that can be exposed by randoctiaieis then
Dr = 3A. (5.1)

For targeted detection, since the nodes with the largesbeuof children are chosen
and the number of children follows asymptotically a geomaetistribution with parameter

0.5 as shown in Corollary 4.2.4,
. foe) i+1 d
A=3saen() =327, (3) =) (5.2)

whered is the smallest number of children of accessed nodes. Thdtis —log, A.

Therefore, the average percentage of exposed nodes btetdgtection is

Dr=3"2,2+i) i) = (d+3) (1) = A3 — log, A). (5.3)
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Figure 5.2: Random and targeted detection.

Compared with random detection, targeted detection canse(p-Alog, A) x n more
nodes. For example, il = 6%1 on average random detection can detect 4.69% of nodes,
whereas targeted detection can expose 14.06% of bots.

We simulate a P2P-based botnet formed through worm infebtyaising our simulator
in Section 4.3.1. We then extend the simulator to study thectfeness of random and
targeted detection strategies. Fig. 5.2 shows the sinalagisults over 100 independent
runs for both strategies, as well as the analytical resubi®: fEquations (5.1) and (5.3),
whenA = &, &, and-. It can be seen that the analytical results slightly overese
the exposed host percentage. This is because in our anaigsgnore the case that two
exposed nodes can be duplicate. Fig. 5.2 also demonstiate¢argeted detection performs
much better than random detection. For example, in our sitioul, whenA = 3.125%,
9.10% of the bots are exposed under random detection, wh@2386% of the bots are
detected under targeted detection. Therefore, when a gpardibn of bots are examined,

the botnets formed by worm infection are robust to randonedin, but are relatively

vulnerable to targeted detection.
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5.1.2 A Countermeasure by Future Botnets

To counteract the targeted detection method, an intuitisg fer botnets is to limit the
maximum number of children for each node. That is, set a smatiberm. Once an
infected host has compromisedother hosts, this host stops scanning. In this way, there
is no node with a large number of children. Moreover, theatdd hosts can self-stop
scanning, potentially reducing the worm traffic [59].

To analyze the robustness of such botnets against targetection, we extend Corol-
lary 4.2.4 to obtain an approximated distribution of the temof children in a botnet with

the countermeasure:

(%)H_l? i:071727”' 7m_1
i) = (5.4

(

The distribution is based on the observation that thosesbdeing more tham children

m .
) , 1 =m.

N[

in a botnet without the countermeasure can now havenarghildren. Hence, the expected

percentage of exposed nodes under targeted detection cafch&ated:

D= (m+2)- A, A< (3) (5.5)

A(B—logy A) — (5)", A>(H)".

2
Compared withD in Equation (5.3),D/. is smaller. This means that under the counter-

N[

N =

measure the number of exposed nodes can be reduced sighifidaor example, when

m=3andA =L

9 /! 5
o Dr = ¢, andDy. = 2.

64
We then extend our simulation in Section 5.1.1 to simulagevilorm tree generated
using the above countermeasure and evaluate its perfoaregainst targeted detection.
Fig. 5.3(a) shows the distribution of the number of childremenm = 2, 3, 4, and 5.
It can be seen that except for = 2, ¢, (i) is well approximated by Equation (5.4). For
m = 2, since an infected host stops scanning when it has hit twaevable hosts, leaves in

the worm tree have more chances to recruit a child. Fig. bdmonstrates the expected
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Figure 5.3: A worm countermeasure via limiting the maximwmiver of children.

percentage of exposed nodés.( D), whenA = L, &, and -

64 397 16 andm = 2, 3, 4, and

5. It can be seen thdD’. follows approximately the analytical results in Equati&b).
Moreover, the expected percentage of exposed nodes uredeotntermeasure is reduced
significantly. For example, wheA = 3—12 the percentage is reduced from 22.36% without
the countermeasure to 19.80%, 15.99%, 12.58%, and 9.38% whe 5, 4, 3, and 2,
respectively.

On the other hand, since not every infected host keeps suatime targets, the coun-

termeasure can potentially slow down the speed of wormfiiiecThus, we also simulate
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the propagation speed of worms that limit the maximum nunatbehildren and plot the
results in Fig. 5.3(c) forn = 2, 3, 4, and 5, as well as the original worm without the coun-
termeasure. It can be seen that excepbios 2, the worm does not slow down much. But
even whenn = 2, the worm can infect most vulnerable hosts within 17 hoursrédver,
Fig.s 5.3(b) and (c) demonstrate the tradeoff between fimegfcy of worm infection and
the robustness of the formed botnet topology. That is, a weitim the countermeasure

spreads slower, but the resulting botnet is more robushagtirgeted detection.

5.2 Evaluating Effects of User Defenses

In Chapter 4, we studied the worm trees., the network structure of P2P-based botnets
formed by Internet worm infection. Specifically, we consetethat once an infected host
compromises another host, they form the “father” and “chitlationship, as shown in
Fig. 5.4(a). In Chapter 4, we found through theoretical gsialthat the number of children
has asymptotically a geometric distribution with paramét& and the generation follows
closely a Poisson distribution. In our prior work, howeweg focused on the process of
worm infection and the formation of P2P-based botnets, ahdat consider the potential
countermeasures from users.

Users can respond to worm outbreaks by patching or cleamogyvered infected hosts.
For example, to counterattack the Conficker worm, Microsslfased a removal guide to
clean and patch the Conficker compromised machines afteutteeak of the worm [70].
When an infected host is patched, it becomes invulnerabtéydnen it is cleaned, it is no
longer infectious, but is still vulnerable to worm infegtiolt is obvious that a patched or
cleaned infected host can break its relationships withaitiser and children in the worm
tree. Specifically, when an infected host is patched or eléathe corresponding node
along with its associated links are removed from the worra.t¥es a result, the infection

topology is no longer a tree, but a forest, as shown in Figutgh When user countermea-
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Figure 5.4: User defenses in P2P-based botnets formed by iméection.

sures are considered, therefore, two interesting quesséinge: Are patching and cleaning
methods effective against P2P-based botnets, and how doeasgtermeasures affect the
botnets formed by worm infection?

To answer these questions, in this section we extend ouiqu®work to investigate the
structure of P2P-based botnets under user countermeaSyesfically, we consider that
a vulnerable host has three states: susceptible, infeatelremoved. A susceptible host
can become infected through worm infection. An infected kbaa either become removed
by user patching or become susceptible again by user cpamote that user cleaning
is a real method against some worms. For example, a CoderRaxtad host becomes
susceptible once rebooted [21]. The effectiveness of paiand cleaning against worms
has been studied in terms of the total number of infectedshmatr time [9, 71]. In this
work we focus on the effect of user countermeasures on thebRB2&d botnet structure.
To characterize the key features of botnet topologies ubdgr worm infection and user

countermeasures, we study two important metrics in pdaticu

e Number of peersfor a randomly selected node in the botnet topology, how many
peersi.e. aninfected host’s father and children) does it have? Tleigiorepresents

the node degree of individual hosts.
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e Botnet sizefor a randomly selected tree in the forest, how many nodesitlbave?

This metric represents the size of disconnected botnetsradde removal.

These two metrics shed light on the robustness and the igéaess of formed P2P-
based botnets. For example, if a very small number of hosts aidarge number of peers
and the majority of hosts have none or few peers, such bosinetsobust to random de-
fenses, but are vulnerable to targeted defensesquarantining the hosts with the largest
node degree) [72, 16]. On the other hand, if each host hasikasimde degree, then such
botnets are robust to both defense schemes [72, 16]. Mardbeebigger a botnet is, the
more effective and dangerous it is [16]. For example, if tre$t consists of a collection of
small isolated botnets, then its effectiveness is sigmflgdower than the single connected

botnet with the same total number of nodes.

5.2.1 Worm Forest and Simulation Settings

In this section, we first provide the background of the worme$b and then introduce our
simulation settings.

In Chapter 4, we studied the topology of P2P-based botnatseid by Internet worm
infection without considering user defenses. Specifically analyzed the tree structure
of P2P-based botnets formed by a wide class of worms stafitimg patient zero, for
which a new victim is compromised by each existing infectedtiwith equal probabil-
ity. Such worms include well known random-scanning worrmsitable-scanning worms,
importance-scanning worms, OPT-STATIC worms, and SUBSPATIC worms. Here,
we assume that all vulnerable hosts are globally reachaloleda not consider the effect
of network address translation [73]. In this section, westarct the worm forest by ran-
domly patching or cleaning hosts in the worm tree studied7R].[ Since most Internet
worms spread so fast that existing defense systems carspatne until they have infected

most vulnerable hosts [22, 23], we assume that user patchinlpaning starts when the
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entire vulnerable population (denoteda$ gets infected. We useg to denote the patching
rate at which a machine is patched and becomes invulneiatdie,. to denote the clean-
ing rate at which the infection is cleaned on a machine withpaiching. Once patched
or cleaned, the node and its associated links are then rehfova the botnet topology.
Suppose that, hosts get patched or cleaned, and the number of remainiaegtéd hosts
and trees are denoted@sandt,, respectively. We usg,¢(i) (i = 0,1,2,--- ,n, — 1) to
denote the number of nodes that hayeers and¢(j) (j = 1,2, 3, - - ,n,) to denote the

number of trees that hayenodes. Note thay /""" Ba(i) = n,, andy " Tra(j) = t,.
Moreover, B¢ (i) andT;(j) are random variables. Thus, we defifje(i) = SIS

ElTd ()
tr

T

represent the distribution of the number of peers gpndj) = to represent the
distribution of the botnet size. Note that the worm tree ipecsal case of the worm forest

whenn, = 0 (i.e.,without user defenses). For such a tree, we have

lim b) (i) = (3)", i=1,2,3,-- (5.6)
np—0oo

by extending the result in Chapter 4. While our previous wamky considers the number
of children, this section studies the number of peers inolydoth the father and children.
Therefore, in P2P-based botnets formed by worm infectidghaut user countermeasures,
the distribution of the number of peers has asymptoticalfeametric distribution with
parameter 0.5, and decreases exponentially with a decayasdrofln 2. Moreover, Since
there is only one botnet, we then have the distribution obitteet size? (nq) = 1.

To investigate the P2P-based botnet topology under usehipgtand cleaning, in this
work we studyb;¢ (i) andt;¢(j) through simulations. As far as we know, there is no pub-
licly available data to show the real botnet topologies. &wer, the complex dynamics of
patching and cleaning make the botnet structure difficuligaharacterized analytically.
Therefore, we apply Monte Carlo simulation. Monte Carlo etion is widely applied
in probability modeling and is the only viable method for tmedeling of many com-

plex stochastic systems [74]. Specifically, we simulate B-Ba@sed botnet formed through
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worm infection by using our simulator in Section 4.3.1. Wertlextend the simulator to
mimic the dynamics of user countermeasures and captureetiudting botnet structure.
Specifically, after all vulnerable machines get comprouhisee randomly patch or clean
hosts withr, = 2 x 10~°/sec orr, = 2 x 10~°/sec. We also record the information of the
number of peers and the botnet size to track the botnet steud¥ioreover, we set the time
unit to 20 seconds and start our simulation at time tick O wétient zero. The simulation

results are obtained from 100 independent runs with diffieseeds.

5.2.2 P2P-based Botnet Structure under User Countermeasures

In this section, we present the P2P-based botnet struchderwser countermeasures.
Specifically, we examine the distributions of the numberexdng and the botnet size under
three different defense schemes: host patching only, Heahing only, and host patch-
ing/cleaning schemes. The results are shown in Fig.s 5.5&caling parameters and

k are estimated through regression analysis on empirical lshausing the Matlab curve
fitting toolbox [75], and the coefficient of determinatiéii is very close to 1 for all esti-

mates.

Host Patching Only Scheme

Under this defense scheme, we begin to randomly patch edduebsts withr, = 2 x
10-5/sec after all vulnerable machines get infected. Once pdtcan infected host be-
comes invulnerable, and the node and its associated lirkseanoved from the worm
forest. We then examine the P2P-based botnet structure wheasts get patched. The
results are shown in Fig. 5.5.

Fig. 5.5(a) shows the distribution of the number of peerspmaring the simulation
results oft;i¢(i) for nq = 0, no/4, andn,/2 with the exponential scaling obtained through

regression. Note that the y-axis uses the log-scale andrivebar represents the standard
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Figure 5.5: Host patching only scheme.

deviation over 100 runs. The dotted line represents thelatdndeviation that goes into
the negative territory. It can be seen that the distributbthe number of peers has an
exponential tail. Specifically, without user defenses.(whenn, = 0), b, (i) can be
well approximated by the geometric distribution with paeden 0.5 shown in Equation
(5.6), and therefore decreases exponentially with theydemastant\ = In 2. However, as
infected hosts get patched, nodes that do not have any peegein the forest. Moreover,
whenn, increases)¢ (i) still has an exponential tail, but decays faster. This isabee
when more infected hosts get removed, there are fewer hastgawarge node degree and
more hosts becoming isolated nodes without any peer. Onam the exponential scaling
of bj¢ (i) implies that after random patching, a small portion of btitdsve a large number
of peers and the majority of bots have none or few peers. Fonple, whem, = ny/2, on
average over 99.7% of bots have no more than five peers. Onteeland, an increasing
decay constant indicates that the node degree of a bot desrelne to patching. For
example, the average node degree decreasesXmohenn, = 0 to 1 whenn, = ng/2.
Moreover, through extensive regression analysis, we fiatldfter user patching, in the

resulting P2P-based botnet topology, the decay constast In ((ng + n,)/n,), where
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n. = ng — nq. For example, when half of infected hosts are patchgd;) decreases
exponentially with a decay constant approximatelynof.

Fig. 5.5(b) demonstrates the distribution of the botnet,stobmparing the simulation
results oft7¢(j) for ng = 0, no/4, andny/2 with the power-law tails obtained through
regression. Note that the x- and y-axes use the log-scatanlbe seen that whery = 0,
to (ng) = 1. That is, without patching, worm infection forms a singletrim with n,
nodes. However, with infected hosts being patched, theldlision of the botnet size has
a power-law tail. Moreover, when, increases, the scaling exponénbecomes larger.
This is because as we patch more infected hosts, the numtreesfin the forest increases,
whereas the maximum size of trees decreases. For exampa;wh- n,/2, on average
there are)0, 011 trees in the forest with an average sizedfiodes. The average maximum
tree size i$22 nodes, comprising less than 0.04% of infected hosts in ttestoTherefore,
the size of the largest botnet is relatively small, indiegtthat patching infected hosts
severely disrupts the single botnet formed by worm infectio

After performing sensitivity analysis on the parametewhenn, is fixed, we find that

the patching rate does not affect the botnet structure.

Host Cleaning Only Scheme

Under this defense scheme, we begin to randomly clean eddobsts withr, = 2 x

10~°/sec after all vulnerable machines get compromised. Oreaneld, an infected host
becomes susceptible, and the host and its associated takeraoved from the forest. Note
that different from patching, cleaned infected hosts candmepromised again and rejoin
the forest. We then examine the P2P-based botnet struchaeny hosts get cleaned. The

results are shown in Fig. 5.6.

We consider that isolated nodes without any peer are a $peaf size one.
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Figure 5.6: Host cleaning only scheme.

Fig.s 5.6(a) and (b) show the results of the distributionthefnumber of peers and the

botnet size. It can be seen tht () still has an exponential decay atjd(;j) has a power-

law tail. As a result, after user cleaning, a small portioroofs still have a large number

of peers, and the majority of bots have none or few peers. ¥anple, whem, = n,/2,

the average node degree of bot$ i%, and on average about 99.3% of them have a node

degree of no more than five. Moreover, cleaning infecteddwesterely disrupts the single

botnet formed by worm infection. For example, when= n,/2, on average there are

110, 740 disconnected botnets in the forest with an average sizenofdes. The average
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maximum size of the disconnected botnet?,i854 nodes, comprising about 0.85% of the
remaining infected hosts in the forest. However, compard tive patching only scheme,
the exponential and power-law scaling parameters undehdaie cleaning only scheme
are smaller. This is due to the different nature of patching eleaning. Under the host
cleaning only scheme, when, hosts are cleaned, some of them get compromised again
and rejoin the worm forest. As a result, the number of remaginnfected hosts in the
forestn, > (ny — ng). Comparatively, under the host patching only scheme, when
nodes are patched, = ny — ny. Therefore, as expected, the host cleaning only scheme
less disrupts the botnet structure than the host patchilygscsheme. Moreover, as shown

in Fig. 5.6(c), we find that under the host cleaning only sabeom average, stabilizes

at around345,950. This happens when the number of nodes being cleamedy., is
about the same with the number of susceptible hosts gettfegted again(n, — n,) - p;,
wherep; = n, - s - 2% is the probability of a susceptible host being compromi&sdtting

Ny Te = (Mog—ny) Ny s- 2% we then obtain that the number of nodes in the worm forest
will stabilize atn, = ny — = - 2*2. For example, withr. = 2 x 10~°/sec ands = 358
scans/minp, = 345,603, which is very close to our simulation result. In the figures w
also find thatr, is about the same for the casesf= n,/4 andn,/2. However,b (i)
andt(j) of the caser; = n/2 has larger scaling parameters. This is due to the fact that
hosts with a large number of peers might get cleaned, whereseptible hosts rejoin the
forest as leaves with a node degree of one. As a result, glththe number of infected
hosts stabilizes at the same level, the host cleaning ppamseases the node degree of
infected hosts over time and further disrupts the worm tor€sirthermore, we find that
the cleaning rate. has little effect on the botnet structure whepis fixed. On one hand,

a smaller cleaning rate corresponds to a larger stabilip&els populatiom,.. One the

other hand, it takes more time to cleapnodes with a smaller cleaning rate.
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Figure 5.7: Host patching/cleaning scheme.

Host Patching/Cleaning Scheme

Under this defense scheme, we consider both user patchohgleaning, which is the
case in real world scenarios. Specifically, we begin to ramgalean infected hosts with
r. = 2 x 107°/sec after all vulnerable hosts get compromised. Meanwhilsceptible
and infected hosts are randomly patched with= 2 x 10~°/sec. We then examine the
P2P-based botnet structure whenhosts get patched or cleaned. The results are shown
in Fig. 5.7. It is intuitive that the distributions of the nber of peers and the botnet size
exhibit the combined effects of the host patching only amdhibst cleaning only schemes.
Specifically, the exponential decay constardand the power-law scaling exponentre
smaller than those under the host patching only scheme bategrthan those under the
host cleaning only scheme. For example, whgn= n,/2, the average node degree of
bots is1.21, and on average about 99.5% of them have no more than five péersover,
on average there ai®0, 535 disconnected botnets in the forest with an average si2éof
nodes. The average maximum size of the disconnected badriet36 nodes, comprising
about 0.64% of the remaining infected hosts in the forest.

The simulation results of all three defense schemes shawvtien users patch or clean
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Patient Zero

Figure 5.8: Worm re-infection topology.

part of infected hosts, P2P-based botnets formed by wormctiioin suffer two weaknesses.
First, the botnets are highly centralized to a small pesgabf the “hub” bots that have
a large node degree, and thus vulnerable to targeted defgfs€el6]. Second, the single
botnet formed by worm infection is severly disrupted intocdlection of small isolated

low-effective botnets.

5.2.3 P2P-based Botnets Formed by Worm Re-infection

In this section, we study a potential countermeasure byrdubotnets to combat against
user patching or cleaning.

A simple potential countermeasure for botmasters to coatstnore robust and effective
P2P-based botnets is through worm re-infection. That &) ihfected host is hit by a worm
scan, this host will be further re-infected and become a pktre infector. As a result, the
remaining bots may have a balanced node degree and stayonected even when some
infected hosts get patched or cleaned (see Fig. 5.8). Natdalifierent from the botnet
formed by re-infection discussed in [4], in our P2P-basetméip there is no exchange of

peers between bots. Infected hosts are only peers to thaiimdectors and infectees.
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Figure 5.9: P2P-based botnets formed by worm re-infection.

To show the effectiveness of worm re-infection on P2P-bassdets against user
patching or cleaning, we consider the host patching onlgseh which is the worst case
scenario. As shown in Section 5.2.2, under the host patahitygscheme; (i) andt ;¢ ()
have the largest scaling parameters among the three schantetherefore the resulting
P2P-based botnets are least robust and effective. In Figwg.compare the network struc-
ture of botnets formed by worm infection only and by wormméection whem,; hosts get
patched. Here, the vulnerable populatignis set to10, 000. All other parameters ramain
the same as the ones used in Section 5.2.2. Moreover, for vesmfiection, once a vulner-
able host gets compromised, it is open for re-infection ftbmnext time tick. We begin
to randomly patch infected hosts with = 2 x 10~°/sec when all vulnerable machines get
compromised. Once patched, the infected host becomesignaldle, and the host and its
associated links are then removed from the botnet topokigy.5.9(a) shows the distribu-
tion of the number of peers. It can be seen that in the P2Rdldast@et formed by worm
re-infection, when half of infected hosts get patchigg(:) has a bell shape and therefore

the node degree of a bot is more evenly distributed. For el@mop average 92.56% of

bots have a node degree between 5 and 15, and the averageagpde df bots is 9. On
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one hand, such a botnet is resilient to both random and &tgktfenses [72, 16]. On the
other hand, the P2P-based botnet formed by worm re-infectiay have an average node
degree similar to other P2P networks [76]. As a result, it magyear to have normal P2P
traffic and can potentially avoid detection [16]. Moreougy,further connecting to other
bots, the P2P-based botnet formed by worm re-infectionsstail connected. In [16],
Dagonet al. used the giant component or the size of the largest connboteét to mea-
sure the effectiveness. In Fig. 5.9(b), we show the pergeraéthe giant component to the
available bots. It can be seen that for the botnets formeddynwe-infection, almost all
of the remaining bots are connected, whereas the giant coempof the botnets formed
by worm infection comprises only 2.2% of the remaining inéechosts. Therefore, P2P-
based botnets formed by worm re-infection are much morestand effective than those

formed by worm infection only.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Characterizing Internet Worm Temporal Infection Structure

In Chapter 3, we have attempted to estimate the temporahcteaistics of Internet worms
through both analysis and simulation under the frameworktafrnet worm tomography.
Specifically, we have proposed method of moments, maximketiiood, and linear re-
gression estimators to infer the host infection time andmstruct the worm infection se-
guence. We have shown analytically and empirically thatnttean squared error of our
proposed estimators can be almost half of that of the natua&i®r in estimating the host
infection time. Moreover, we have formulated the problenestimating the worm infec-
tion sequence as a detection problem and have calculateddbability of error detection
for different estimators. We have demonstrated empigidakt our estimation techniques
perform much better than the algorithm used in [13] in edtiilngathe worm infection
sequence and in identifying the hitlist for both randomrastag and localized-scanning

worms.

6.2 Characterizing Internet Worm Spatial Infection Structure

In Chapter 4, we have attempted to capture the key charsiitsrof the tree topology
formed by worm infection. We have shown analytically and eroally that for the in-
fection tree formed by a wide class of worms, the number dfiotm asymptotically has
a geometric distribution with parameter 0.5; and the gdimralosely follows a Poisson
distribution with parameter EG| (i.e., H, — 1). As a result, on average half of infected
hosts never compromise any target, over 98% of nodes haveon® timan five children,

and a small portion of hosts have a large number of childrearelgver, the average path
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length of the worm tree increases approximately logaritdathy with the number of nodes.
We have also demonstrated empirically that similar obsemacan be found in localized-

scanning worms.

6.3 Evaluating P2P-based Botnets Formed by Worm Infection

In Chapter 5, we have attempted to evaluate bot detectiategies and effects of user
defenses in P2P-based botnets formed by worm infectioncifgadly, we have applied
the observations of the number of children to bot detectrmhfaund analytically and em-
pirically that targeted detection is an efficient way to espdots in a Conficker C like
botnet. However, we have also pointed out that a simple evonrg@asure by future botnets
can weaken the performance of targeted detection, withreatly slowing down the speed
of worm infection. Moreover, we have characterized the oétvstructure of P2P-based
botnets formed by worm infection under user countermeasWie have shown that when
part of infected hosts are randomly patched or cleaned alftgulnerable hosts get com-
promised, the distribution of the number of peers of a botdrasxponential scaling and
the distribution of the size of disconnected botnets hasreptaw tail. As a result, P2P-
based botnets formed by worm infection are vulnerable ggetad defenses and ineffective
due to patching or cleaning. We have then applied the obi$engao design future botnets
and found that botmasters can significantly enhance thestobss and the effectiveness of

P2P-based botnets through worm re-infection.
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6.4 Future Work

6.4.1 Real-World Data Verification

One limitation of this work is that our analytical result® arerified through simulations
rather than real-world data. As far as we know, there is nectlidataset of the worm
spatial-temporal infection structures publicly avaieblHowever, we may extract some
indirect knowledge from worm traces to serve as an appraxmaf the ground truth.
For example, for the worm temporal infection structure, wayrse first hits observed
at a large Darknete(g, a /8 network telescope) to serve as a comparison basishand t
apply estimators to observations of a much smaller Darlengt & /24 network telescope)
for performance evaluation. Moreover, some works havetiafethe information of “who
infected whom” [24, 14], which may be used as an approximaticthe real worm tree to

verify our analytical results of the worm spatial infectistnucture.

6.4.2 Fractal Analysis

A fractal is a rough or fragmented geometric shape that caspbeinto parts, each of
which is a reduced-size copy of the whole [77]. The definingrabteristic of a fractal is
self-similarity. Fractals have broad applications in eggi biology and the Earth sciences
[78]. One of the most familiar examples of self-similaritya tree. The pattern of branching
is very similar and repeated throughout the tree. If we aapausmall group of infected
hosts that are connected as a branch in the worm tree, omestitg) question is that, by
analyzing the fractal patterns of the captured branch, epredict characteristics of worm
propagation or P2P-based botnets formed by worm infecam\&hole? This enables us
to understand and defend against worms or botnets withfignily reduced efforts and

costs.
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APPENDIX A
INTERNET WORM TEMPORAL INFECTION STRUCTURE

A.1 Estimator Properties ()

We calculate the bias, the variance, and the MSE of diffegstitnators for estimating.

A.1.1 Naive Estimator
Sincej,e = 1, the bias of NE is
Bias(fine) = E/ine) — 11 =1 — L. (1)
Note that/,e is constant. Thus, the variance of NE is
Var(jive) = E[(fne — E(fine))’] = 0. (2

Therefore,

MSE(fine) = Bias(fie) + Var(fie) = 4=22°. 3)

p

A.1.2 Method of Moments Estimator / Maximum Likelihood Esétor

Since B§;) = pfori = 1,2,--- ,n — 1 and Equations (3.8) and (3.14) hold, the bias of

fve (OF fiye) IS calculated as

Bias(fiwe) = E(7L7 3005 6:) — 1 =0, (4)
which is unbiased. Note that @) = 1p;f fori =1,2,--- ,n—1andj;’s are independent.
Thus, we have

Var(jie ) = Var(ﬁzgll 5i) = P (5)
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Therefore, the MSE Ofiye (OF jiye) IS

MSE(fiwe) = Bias (fime) + Var(fie) = 2. (6)

p?(n—1)

It is noted that for an unbiased estimator, the MSE is idaht@its variance.

A.1.3 Linear Regression Estimator

Note thatji,.e = +=2L. From Equation (3.20) and = to + > 0;,i = 1,2,- - ,n, we

2—(3)?

have
it = % iyt
n n—1 n .
n n—1 (n—i)(n+i+1
= o+ Xy B W
and
=T RNt =it Y B (8)
Sincei = ! andi? = el
AERE DV 9)
and
-5 = 2 n2_
2= () =" (10)

Note that Eo;) = p and Vald;) = % i=20,1,---,n— 1, andd;’s are independent.
2
Moreover,y " | * = (@) and) " | i* = &(6n° + 15n* 4+ 10n® — n). Then, we

have

Bt - 1) = 30 e = gt (11)
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and

_ _ . AN\ 2
Vari - i—i-7) = S (%) o
- 41;52 (n? Zyz_ll i* —2n Z?:_f i+ Z?:_f i)

= Lp.o-l (12)

p? 120n

Therefore, the bias gf - can be calculated as

Bias(fire) = E<Zizt__(;)z2> —pn=0, (13)
which is unbiased. Moreover, the variance and the MSE, @fare

M SE(,&LRE) - Var(ﬂLRE)

= var(55i%)

_ 6(*+1)(1-p) (14)

5n(n2—1)p2 -

A.2 Estimator Properties (t,)

We calculate the bias, the variance, and the MSE of diffegstitnators for estimating.

A.2.1 Naive Estimator

SlncetAONE — tl — /:LNE — to —+ 50 — 1, E(ao) = %, and Va(éo) = 1p;2p|

Bia(fone) = to+E(d) — 1 —to = =2 (15)
Var(foe) = Var(to+ 6 —1) = £ (16)
MSE(fone) = Bias'(fone) + Var(fone)

_ (-pe-p) (17)

p2

Note that whem < 1, MSE(fy,.) ~ 242,

p2
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A.2.2 Method of Moments Estimator / Maximum Likelihood Es#étor
Note thatoyye = towe = to + 0o — fiwve aNd Edy) = E(fiwve) = p1. Thus,
Bias(foue) = to + E(%) — E(fime) —to =0 (18)
MSE(foue) = Var(foue) = Var(do — fiwe)- (19)

Sincejime = 5> 1 §; that is independent @,

MSE(foue) = Var(foue)
= Var(dg) + Var(fime)

= Lp.» (20)

p n—17

based on Equation (5) and Vag) = % Note that whem > 1, MSE({oyye) ~ %

A.2.3 Linear Regression Estimator
SincetAoLRE =to + 0o — flure and H(SO) - E(:&LRE) = I
BiaS<tA0LRE> = tO + E((SO) - E(/:LLRE) - to =0 (21)

MSE(tAOLRE) = Var(t/\OLRE) - Var((so - :&LRE)' (22)

Note that from Equations (9) and (1@) e = —2- 5"~ ! {29 5. that is independent ..

n?—1 i=1  2n

Hence,

MSE(foe) = Var(foe)

= Var(éo) + Var(,&LRE)

1-p 5n3+6n2—5n+6
p2 T bn(n2—1) (23)

based on Equation (14) and V&) = % Note that whem >> 1, MSE(f) ) ~ 1,,;2p
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APPENDIX B
INTERNET WORM SPATIAL INFECTION STRUCTURE

B.1 Statistical Properties of the Number of Children

We apply z-transform to derive the expectation and the magaf the number of children.
First, note that Corollary 4.2.3 holds far = 1 and2. Next, whenn > 3, we define
z-transform

Xo(2) = 0 enli)2 (24)

Settingc,_1(—1) = 1, we can transform Theorem 4.2.2 to

(i) =2, (i) + 2epa(i— 1), 0< i <n—1, (25)

n

whenn > 3. Then, putting Equation (25) into Equation (24), we can wbtiae difference

equation of z-transform
Xo(2) = (2271 +22) X, a(2) + 2. (26)

Note that [C] = —Z2) | _ andX,, (1) = 1, which leads to

E.[C] = =LE, 4[C] + 1. (27)
Since E[C] = 5, we can show by induction that
E.[C] = "7+ (28)

Moreover, E,[C?] = £ [zd%(z)} |.—, yields

E.[C?] = "HE,[C?+ 2B [C]+ ¢ (29)
= "HEL[C7)+ 52 (30)

Thus, we can useJ°?] =  to prove by induction that
E,[C?] =2+ =2 — 2, (31)
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whereH,, = > | 1 is then-th harmonic number [15]. Therefore,
Var,[C] = E,[C? —E}[C] (32)
= 22—l 2 (33)

n

B.2 Statistical Properties of the Generation

Similar to the proof of Corollary 4.2.3, we apply z-transfoto derive the expectation and
the variance of the generation. First, note that Corolla@y¢dholds fom = 1 and2. Next,

whenn > 3, we define z-transform

Ya(2) = 3020 gali)=. (34)
Putting Equation (4.20) into Equation (34), we can obtai difference equation of z-
transform

Vo(z) = (2271 4+ 22) Vi (2). (35)

Note that E [G] = —%Lz(z) |.—1 andY,,_;(1) = 1, which leads to
E.[G] = Eua[G] + L. (36)
Since E[G] = 3, we can show by induction that
E.|G]=H, —1. (37)
Moreover, E[G?] = &L [z%ﬁz)] |.—; yields
E.[G?] = E,1[G* + 2E, 1 [G] + L. (38)
Therefore, combining Equations (36) and (38) gives

Var,[G] = E,[G? - EXG]

= BG4 5 (2E[G] + 1)
= Var,[G]+2-2L. (39)
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Thus, we can use VgG] =  to prove by induction that

1
4

Var,|G] = H,, — Hy2, (40)

wheref, = >" T andH,, =", .

i=1 4
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