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ABSTRACT OF THE DISSERTATION 

AN IMPROVED FRAMEWORK FOR DYNAMIC ORIGIN-DESTINATION (O-D) 

MATRIX ESTIMATION  

by 

Hongbo Chi 

Florida International University, 2010 

Miami, Florida 

Professor Mohammed Hadi, Co-Major Professor 

Professor Fang Zhao, Co-Major Professor 

This dissertation aims to improve the performance of existing assignment-based dynamic 

origin-destination (O-D) matrix estimation models to successfully apply Intelligent 

Transportation Systems (ITS) strategies for the purposes of traffic congestion relief and 

dynamic traffic assignment (DTA) in transportation network modeling.  

The methodology framework has two advantages over the existing assignment-

based dynamic O-D matrix estimation models. First, it combines an initial O-D 

estimation model into the estimation process to provide a high confidence level of initial 

input for the dynamic O-D estimation model, which has the potential to improve the final 

estimation results and reduce the associated computation time. 

Second, the proposed methodology framework can automatically convert traffic 

volume deviation to traffic density deviation in the objective function under congested 

traffic conditions. Traffic density is a better indicator for traffic demand than traffic 

volume under congested traffic condition, thus the conversion can contribute to 

improving the estimation performance.  
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The proposed method indicates a better performance than a typical assignment-

based estimation model (Zhou et al., 2003) in several case studies. In the case study for I-

95 in Miami-Dade County, Florida, the proposed method produces a good result in seven 

iterations, with a root mean square percentage error (RMSPE) of 0.010 for traffic volume 

and a RMSPE of 0.283 for speed. In contrast, Zhou’s model requires 50 iterations to 

obtain a RMSPE of 0.023 for volume and a RMSPE of 0.285 for speed. In the case study 

for Jacksonville, Florida, the proposed method reaches a convergent solution in 16 

iterations with a RMSPE of 0.045 for volume and a RMSPE of 0.110 for speed, while 

Zhou’s model needs 10 iterations to obtain the best solution, with a RMSPE of 0.168 for 

volume and a RMSPE of 0.179 for speed.  

The successful application of the proposed methodology framework to real road 

networks demonstrates its ability to provide results both with satisfactory accuracy and 

within a reasonable time, thus establishing its potential usefulness to support dynamic 

traffic assignment modeling, ITS systems, and other strategies.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In urban areas, traffic congestion is becoming increasingly frustrating for commuters and 

businesses. Despite the billions of dollars invested in transportation systems each year in 

America, traffic congestion continues to worsen. Schrank and Lomax (2009) estimated 

that, in 2007, congestion caused urban Americans to travel 4.2 billion hours more and to 

purchase an extra 2.8 billion gallons of fuel for a congestion cost of $87.2 billion in 439 

American urban areas. In addition to wasting fuel and money, congestion also adds to 

business costs, increases pollution, and contributes to various environmental problems. 

Traffic congestion happens when traffic demand overwhelms the capacity of a 

transportation system. Solutions to the congestion problem usually focus on two principal 

aspects: increasing the physical capacity of the network system and reducing the travel 

demand. Given the limited availability of land and the negative impacts of construction 

on the environment, many local governments and researchers have focused on increasing 

the efficiency of transportation systems instead of continuing to increase road network 

capacity. For example, through Intelligent Transportation Systems (ITS) strategies the 

efficiency of transportation systems can be increased by using advanced information and 

telecommunication technologies. Two basic components of ITS are Advanced Traveler 

Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS). ATIS 

changes travel demand patterns by providing real-time traffic information to commuters 

to help them better plan their trips through bypassing congested routes, choosing different 

departure times, or using different travel modes. ATMS uses a variety of detectors, 
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cameras, and communication systems to monitor, manage, and control traffic, based on 

information collected from different sources.  

A dynamic O-D matrix contains time dependent traffic demand information for a 

road network. Given a dynamic O-D matrix, it is possible to estimate and predict time 

dependent traffic flow in a road network. Thus, an accurate dynamic O-D matrix can act 

as a critical input to ITS to implement short-term traffic controls, real-time route 

guidance, and so on. In addition, the dynamic O-D matrix is important for the success of 

dynamic traffic assignment applications. 

Due to the importance of dynamic O-D matrices over the past two decades, much 

effort has been devoted to developing effective and efficient methods to estimate 

dynamic O-D matrices. Existing dynamic O-D matrix estimation models can be classified 

into assignment-based and non-assignment-based. Assignment-based estimation models 

employ a dynamic traffic assignment (DTA) simulator to determine the relationship 

between traffic demand and traffic measurement data. They then use an optimization 

method to estimate a dynamic O-D matrix by minimizing the difference between the 

observed traffic measurements and the simulated ones. Representative works include 

those by Ashok and Ben-Akiva (1993, 2000, and 2002) and Zhou et al. (2006 and 2007). 

The advantages of assignment-based dynamic O-D matrix estimation models are, (1) they 

have a simple model structure; (2) they can be applied to large road networks; and (3) 

they can easily combine available traffic information, such as automatic vehicle 

identification (AVI) data, into the estimation function to improve accuracy. In contrast, 

the drawbacks of assignment-based O-D matrix estimation models are, (1) estimation 

results depend heavily on an initial O-D matrix, so the initial O-D matrix must first be 
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accurate to get a good estimation; and (2) the DTA simulator employed needs to be 

accurately calibrated in order to correctly imitate travelers’ behavior and traffic 

conditions in the real world.  

Non-assignment-based models do not rely on a DTA simulator. Instead, they 

establish relationships between dynamic traffic demand and traffic measurements based 

on the traffic conservation relationship between trips at entries, exits, and mainstreams of 

a road network. Studies by Cremer Keller (1981, 1984, and 1987), Bell (1991a and 

1991b), Chang and Wu (1994), and Lin (2006) fall into this category. Although non-

assignment-based dynamic O-D matrix estimation models are independent of a DTA 

simulator, they still have problems in three aspects: (1) the traffic conservation equations 

cannot describe complicated traffic situations such as queuing and signal delay; (2) the 

traffic conservation models are too cumbersome to apply accurately to a large road 

network; (3) extra traffic measurement data, such as AVI data, are not easy to integrate 

into the model. Currently, the main applications of non-assignment-based models are for 

freeway segments. 

Despite the progress made by researchers in the past 20 years, developing an 

improved model for dynamic O-D matrix estimations based on available traffic 

measurements remains a challenge. 

1.2 Problem Statement 

Assignment based dynamic O-D matrix estimation models have attracted an increasing 

amount of attention because they do not require the construction of complicated traffic 

conservation equations. This dissertation focuses on improving assignment-based 

dynamic O-D matrix estimation models. 
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A general O-D matrix estimation is the inverse process of a traffic assignment, 

with the observed traffic measurement as input and the traffic demand as output. The 

criterion used in the estimation addresses if the estimated demand can reproduce 

observed traffic conditions. Existing assignment-based dynamic O-D matrix estimation 

models have two types of problems: (1) they implicitly contain a problematical 

assumption, namely the proportional assignment assumption defined by Bell and Lida 

(1997), meaning a doubling in demand causes a doubling in traffic volume; and (2) they 

ignore the initial O-D matrix estimation.  

With the implicit proportional assumption, the existing assignment-based 

dynamic O-D matrix estimation models try to minimize the deviation between 

assignment and observed traffic volume, based on a fixed linear relationship between the 

O-D demand and assignment traffic volume. This relationship is often denoted as the 

dynamic traffic mapping matrix.  

The proportional assumption ignores the real relationship between traffic demand 

and traffic volume, as illustrated by Figure 1.1, based on the modified Greenshields 

model (Mahmasani et al., 2005). Under the proportional assumption, traffic volume is 

assumed to have the positive proportional relationship with traffic demand. However, 

Figure 1.1 illustrates that the positive proportional relationship between traffic volume 

and traffic demand only holds true in Region A, indicated by the solid line, where traffic 

volume is below road capacity. In Region B of Figure 1.1, upon reaching the link’s 

capacity, the relationship between traffic volume and demand becomes negative. Clearly, 

in Region B, the assumption is totally inapplicable, as increasing traffic demand only 

causes traffic volume to drop. 
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Figure 1.1 The relationship between link traffic volume and link traffic density. 

The proportional assignment assumption cannot be entirely abandoned for its 

weakness, as analyzed above. The point is that the link traffic condition needs to be 

identified before applying the assumption. The assumption can be used for those links 

with traffic conditions that fall in Region A, as shown in Figure 1.1. In Region B, some 

necessary modifications to the assumption are needed. 

The second problem of the existing dynamic O-D matrix model is the ignorance 

of the initial O-D matrix estimation. An inaccurate initial O-D matrix can cause problems 

in two aspects: 

1. First, if an initial O-D matrix is much larger than the real one, then the traffic 

conditions in many road links will fall in Region B of Figure 1.1. Under this 

condition, it will be much less likely for the existing estimation model to yield an 

accurate result because the proportional assignment assumption cannot hold true 

in Region B.  
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2. Secondly, the final estimation result relies heavily on the initial O-D matrix 

because of the limited information from an insufficient number of traffic detectors 

in a road network. Known as an under-specification problem, Zhou and 

Mahmassani (2006) define it as when the number of estimated, unknown O-D 

demand is higher than the available constraints. The under-specification problem 

can be seen in the example shown by the hypothetical road networks of Figure 1.2. 

 

(a)                                                                  (b)  
Figure 1.2 Two simple road networks 

In Figure 1.2 (a), there are two O-D pairs (1→3 and 2→3) with only one detector 

installed in link 4-3, thus the O-D matrix estimation for the network in Figure 1.1 (a) has 

the under-specification problem. In order to see the impact of the under-specification 

problem, two scenarios can be assumed in the hypothetical network: (1) the detector 

observed volume is 100, and initial trips for 1→3 and 2→3 are assumed 10 and 10; and (2) 

the detector observed volume is 100, and initial trips for 1→3 and 2→3 are assumed as 10 

and 0. Based on the proportional assumption, the estimation result for scenario (1) is 50 

for 1→3 and 2→3, and the result for scenario (2) is 100 for 1→3 and 0 for 2→3. 

Differences in the initial O-D demand can result in different estimations with under-
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specification problem. The O-D matrix estimation for the road network in Figure 1.2 (b) 

does not have the under-specification problem because there are as many detectors as 

unknown demands.  

An accurate initial O-D matrix can provide not only the approximate demand 

information for an individual O-D pair but also useful information on traffic demand 

temporal distribution pattern. Suggested by Lin (2006), the accuracy of an initial O-D 

matrix is important for the estimation result. However, current assignment-based dynamic 

O-D matrix estimation studies ignore the estimation of an initial O-D matrix. 

1.3 Research Goal and Objectives 

Designed to develop an assignment-based dynamic O-D matrix estimation framework 

both efficient in computation and accurate in estimation, this study has the following 

main objectives: 

1. Develop an initial O-D matrix estimation model to provide an improved initial O-

D matrix for the proposed dynamic O-D matrix estimation model and thereby 

increase the accuracy of the final estimation results. 

2. Develop a dynamic O-D matrix estimation model with efficient and accurate 

estimation performance under congested traffic conditions. The model is designed 

to detect links with heavy simulated traffic congestion in Region B of Figure 1.1 

(where the proportional assumption cannot hold), and then modify the 

corresponding element in the dynamic mapping matrix to improve the 

performance of the dynamic O-D matrix estimation under congested traffic 

conditions.  
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1.4 Dissertation Organization 

This dissertation consists of seven chapters. Chapter 1 introduces the background of the 

research, describes the major problems, and sets forth the project’s goals and objectives. 

Chapter 2 presents an extensive literature review covering classic static O-D 

matrix estimation models, assignment-based dynamic O-D matrix estimation models, and 

non-assignment-based dynamic O-D matrix estimation models. The purpose of the 

review is to understand the current studies in order to analyze the existing problems in 

those models.  

Chapter 3 proposes a complete methodology framework. In response to the 

problems stated in Chapter 1, this chapter puts forward a series of models: a traffic flow 

model calibration (TFMC) model, an initial O-D matrix estimation (IODE) model, a 

dynamic O-D matrix estimation (DODE) model, and a traffic flow model fine-tuning 

(TFMFT) model.  

Chapter 4 uses a hypothetical road network to test the dynamic O-D matrix 

estimation (DODE) model in the proposed methodology framework. In this case study, 

with the simulation data, each term in the estimation model is analyzed. Finally, a 

comparison of the DODE model’s performance with that of the existing one demonstrates 

the advantage of the proposed model. 

Chapter 5 applies the proposed methodology to a road segment of I-95. The case 

study is designed to test the feasibility and efficiency of the proposed methodology for a 

middle-sized road network. 

Chapter 6 applies the proposed methodology to a regional road network from 

Jacksonville to test the feasibility and efficiency of the proposed methodology for a large-
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sized road network.  

Chapter 7 summarizes the major research results in each chapter, draws 

conclusions, and recommends issues for future research.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter reviews the literature on O-D matrix estimation models, including static and 

dynamic approaches. Static O-D matrix estimation models are the foundation of dynamic 

O-D matrix estimation approaches. There are two types of dynamic O-D matrix 

estimation models, namely assignment-based and non-assignment-based estimation 

models, and these are reviewed separately. 

2.1 Static O-D Matrix Estimation Models 

Developed mainly for the purpose of transportation planning, static O-D matrix 

estimation models can be categorized into two groups, namely entropy maximization- 

based (EM) and econometrics based. 

The EM approach means applying the concept of entropy to quantitative methods 

to forecast spatial interaction (Wilson, 1967). The entropy of an O-D matrix is the 

number of different permutations of trips. The hypothesis is that an O-D matrix that 

maximizes the entropy subject to the constraints of link traffic measurements would be 

the most likely O-D matrix.  

Van Zuylen and Willumsen (1980) developed an EM-based static O-D matrix 

estimation model. In their study, O-D matrix estimation problems are formulated as 

Equations 2.1 and 2.2. 

])ln(max[argˆ ∑ −−=
ij

ijijij
T

ij TTTT
ij

      (2.1) 

subject to 

∑=
ij

a
ijija PTV          (2.2) 
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where Tij is the O-D trips from i to j that are to be estimated; ijT̂  is the best estimation of 

Tij; a
ijP  is the proportion of O-D demand from i to j passing link a; and Va is the observed 

traffic volume on link a. 

The advantages of the EM approaches are, (1) their full utilization of observed 

data; (2) their ability to easily incorporate prior estimations of O-D matrices; (3) their 

ability to produce estimation when knowledge of travel behavior is lacking; and (4) their 

potential application for equilibrium assignment. However, EM approaches assume that 

link flows are measured without error, which conflicts with real situations; furthermore, 

the assumption of EM approaches may not be consistent with the traveler’s route choice 

behaviors in the real world. 

Econometrics based approaches aim to build statistical models between O-D 

matrices and measured traffic counts. Econometrics approaches can be categorized into 

three groups: maximum likelihood-based (ML) models, Bayesian inference-based (BI) 

models, and generalized least square-based (GLS) models.  

Spiess (1987) presented a ML-based O-D matrix estimation model from the 

observed traffic volumes of several links and a sample O-D matrix. The assumption is 

that the elements of a sample O-D matrix ti follow an independent Poisson distribution 

with mean ρiTi. The coefficient ρi represents the sampling rate factor for the O-D pair Ti 

that is to be estimated. The proposed estimation model is presented as Equations 2.3 and 

2.4, below: 

∑
∈

−=
Oi

iiiii TtTMinTf )ln()( ρ       (2.3) 

subject to 
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∑
∈

=
Oi

aiia VTn , Ia ∈         (2.4) 

where the coefficient nia corresponds to the proportion of trips for O-D pair i that uses 

link a; Va denotes the observed volume of link a; I stands for the set of links with 

observed traffic volumes; and O represents the total number of O-D pairs.  

Maher (1983) and Cascetta and Nguyen (1988) proposed BI-based O-D matrix 

estimation models. There are three advantages to BI-based models (Maher, 1983): (1) 

they are flexible when considering the confidence level of an a priori O-D matrix and 

observed traffic volumes; (2) they can successively update O-D matrices by observed link 

volumes; and (3) they can produce confident intervals for the estimation results. In a 

typical BI model, the a priori information on trip demand T can be formulated as the a 

priori probability function g(T). Traffic volumes are considered an additional source of 

information about T, with given probability L(V|T), and BI methods allow the 

combination of these two sources of information to provide the a posteriori probability 

function f(T|V): 

f(T|V) ∝  L(V|T)·g(T)       (2.5) 

Based on the maximization of an a posteriori distribution, T can be estimated as: 

T=arg max ln f(T|V) = arg max[ln L(V|T)+ln g(T)]    (2.6) 

Generally speaking, the a priori distribution function of g(T) can be assumed to 

be a multinomial Poisson or a multivariate normal distribution function. The traffic 

volume distribution function L(V|T) can be a Poisson or a multivariate normal likelihood 

function. One of the disadvantages of BI estimation is that the estimation result varies 

with different a priori distribution functions for g(T). Usually, the historical information 
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on the large dimensional vector T is insufficient to derive a reliable g(T), which can 

render the estimation result erroneous. 

Cascetta (1984) proposed a GLS-based O-D matrix estimation model. The model 

combines O-D demands with traffic volume through an assignment model. O-D demands 

are modeled as Equation 2.7, below: 

εtt +=ˆ          (2.7) 

where t̂ is an estimated O-D vector; t is a true O-D vector; and ε is a random vector with 

mean µ and variance and covariance matrix V.  

The relationship between O-D demands and traffic volumes, also known as the 

assignment model, is formulated as Equation 2.8: 

ηtAf += ˆ          (2.8) 

where f is a traffic volume vector; Â  is an assignment matrix; and η is a random vector 

with mean δ and variance and covariance matrix W.  

Based on Equations 2.7 and 2.8, Cascetta (1984) models the O-D matrix 

estimation problem as Equation 2.9: 
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min       (2.9) 

In the above GLS model, if the random vector (ε, η)T follows a multivariate 

normal distribution with a mean of 0, the estimator is the best linear unbiased estimator 

(BLUE) of the O-D matrix t, which is the same as the maximum likelihood estimator. 

Generally speaking, GLS models can account for measurement errors in traffic flows 
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explicitly. The disadvantage of GLS models is that the results may contain bias due to 

error in the initial O-D matrices’ values and from the assignment models. 

To solve the O-D matrix estimation problem from available traffic measurements, 

a bi-level structure is often needed, where the upper-level problem minimizes a distance 

metric between measured and estimated traffic conditions, and the lower-level generates 

an equilibrium assignment mapping matrix to feed the upper level problem. Considering 

the heavy computation required by bi-level approaches, Nie et al. (2005) proposed a path 

flow estimation framework that integrates a decoupled path flow estimator (PFE) into a 

generalized least square (GLS) model as shown in Equation 2.10. The GLS model 

minimizes the combined errors from link volume and historical the O-D demand matrix.  

  

           (2.10) 

subject to: f ≥ 0 

where P represents an user equilibrium assignment mapping matrix, obtained from a K-

shortest path ranking procedure; M is a matrix that converts equilibrium path flows to O-

D demands; f represents path flows; and S and T represent the variance-covariance 

matrices for target matrix q and traffic counts x. The decoupled PFE model can 

exogenously calculate user-equilibrium optimal paths based on a K-shortest path 

algorithm, which simplifies the work in equilibrium assignment. 

By relaxing the user equilibrium conditions, Nie and Zhang (2008) proposed 

another O-D estimation model that can incorporate travelers’ route choice behavior. 

Through relaxation, efficient algorithm solutions can be developed to handle large-scale 
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estimation problems. A column generation algorithm was used to solve the relaxed model. 

The relaxed model is formulated by Equation 2.11, as follows: 

 

          (2.11) 

subject to: f ≥0 

where f is a vector of path flows; q is a vector of historical travel demands; x is a vector 

of measured traffic counts; τa (w) is a travel cost function of link a; P and M are 

corresponding path-link incidence and path-OD incidence matrices; wx >0 and wq > 0 are 

relative weight factor for x and q; and θ is a dispersion parameter for travel cost. 

2.2 Dynamic O-D Matrix Estimation Models 

A dynamic O-D matrix provides the critical input information for implementing and 

evaluating traffic management strategies. According to Lin (2006), dynamic O-D matrix 

estimation models can be categorized into two groups: assignment-based and non-

assignment-based. In the following two subsections, these two methods are reviewed. 

2.2.1 Assignment-Based Estimation Models 

With the assistance of DTA simulators to obtain complex traffic dynamics, assignment -

based dynamic O-D matrix estimation models yield the best estimation by minimizing the 

difference between observed traffic measurements and simulated ones. Based on 

modeling approaches, assignment-based dynamic O-D matrix estimation models can be 

classified into three groups: generalized least square-based (GLS) models, variational 

inequality-based (VI) models, and state-space-based models. Currently, with more traffic 

data available, people are trying to combine traffic data from different resources into 
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dynamic O-D estimation models. As such, the last subsection will introduce some studies 

on the dynamic O-D matrix estimation models that use combination of AVI data, called 

AVI data-based estimation models. The following subsections review the four dynamic 

O-D matrix estimation models. 

This group of models extends the static GLS O-D matrix estimation models by adding a 

temporal dimension in both O-D matrices and traffic measurement data. 

Cascetta et al. (1993) transformed static GLS O-D matrix estimation models into 

dynamic ones. In their study, traffic volume can be formulated as shown in Equation 2.12, 

below: 

2.2.1.1 GLS based Estimation Models 

lhV̂ = Vlh + Wlh        (2.12) 

where lhV̂ is a measured link volume vector for link l in time interval h; Vlh is a real link 

volume vector for link l in time interval h; and Wlh is a random term. 

Link volume Vlh results from O-D demand passing link l during time interval h, 

and the relation between O-D matrices and link volumes can be formulated as Equation 

2.13, shown below:  

Vlh = ∑∑
=

h

t r
rt

rt
lh

1
dp         (2.13) 

where drt is a vector of a time-dependent O-D matrix, and rt
lhp  is the fraction of O-D 

matrix drt which contributes to the observed traffic volume of link l. rt
lhp can be formulated 

as the product of link-path fraction and route choice probability, as shown in Equation 

2.14 below: 
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∑
∈

=
rKk

kt
lh

rt
lh αP q(k, t)        (2.14) 

where kt
lhα is a link path incidence fraction, and q(k, t) is the probability of an O-D trip 

choosing path k with departure time interval t. 

In actual applications, q̂ (k, t) and kt
lhα̂  may be obtained through the simulation 

result from a DTA model, which is subject to estimation errors. Therefore, the 

relationship between O-D matrices and link volumes can be revised as follows: 

∑∑
=

=
h

1t r

rt
lhlh PV ˆˆ drt +  πh       (2.15) 

where πh is a random error vector. 

After redefining the dynamic relationship between the dynamic O-D matrices and 

link volumes, the dynamic O-D matrix estimation model can be represented as a GLS: 

d = )]ˆ(f)ˆ([fminarg 21 vv,ds,
Ss

+
∈

      (2.16) 

where d is a dynamic O-D demand vector; s is an a priori known dynamic O-D demand 

vector (sample O-D matrix); S is a feasible set of s; and f1(·) and f2(·) measure the 

distance between observed and estimated measurements. 

Sherali and Park (2001) developed a dynamic path flow estimation method based 

on an optimization algorithm that uses link volume data in a general road network. The 

proposed model aims to determine the path flows with the least cost O-D paths and the 

least deviation between assignment and observed link traffic volumes. The developed 

model can be decomposed into a restricted master programming model and a sub-

programming model. The purpose of the master programming model is to find a set of 

path flows that minimize the combination of the total network travel cost and the 
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difference between the assignment and the observed link volumes. The sub-programming 

model’s purpose is to solve the problem of a time dependent shortest path on an 

expanded time-space network. The result of the sub-programming model feeds into the 

master programming model for the next round of estimation. The proposed methodology 

is conducive only for off-line processing purposes. A constrained least square model 

formulates the master-programming model in their study, as shown by Equations 2.17 

and 2.18 below: 

Minimize z(f) = ∑ ∑∑∑∑ ∑ ∑∑
∈ ∈ == ∈ ∈ ∈ ∈

+−
ODr Kk

T

t

r
kt

r
kt

T

h Ll ODr Kk Tt
lh

r
kt

ktr
lh fcyfP

r 11

2]ˆ[
2
1 µ   

           (2.17) 

0≥r
ktf           (2.18) 

where r is the number of O-D pairs; k is the number of routes connecting a given O-D 

pair; l is the number of links with measured traffic volumes; h is a specific time interval; 

r
ktf  is the dynamic O-D route flow for O-D pair r departing at interval t in route k; lhŷ  is 

the traffic volume on link l and during interval h; ktr
lhP is the proportion of r

ktf  

contributing to lhŷ ; r
ktc  is the travel delay for vehicles entering route k at interval t; and µ 

is the weight for path travel cost. 

Gajewski et al. (2002) developed an integrated square error (L2E) dynamic O-D 

matrix estimation model instead of an existing least square (LS) model, which is 

vulnerable to the traffic measurement error. The authors assume that the possibility for 

measurement error in observed traffic volume is high, so the LS model is not ideal for 

dynamic O-D matrix estimation. In contrast, the L2E model is theoretically more robust 
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than the LS model in defending against large measurement error because it measures the 

integrated squared difference between the observed and estimated traffic volume 

probability density functions. The L2E model for dynamic O-D matrix estimation is 

shown, as follows, in Equation 2.19: 

})]|()|([{min 2
2 ∫

+∞

∞−

−= tjOjttjjttjEL dDDfDfF POPO
P

   (2.19) 

where t is the number of time periods (t=1, 2…, T); Dtj is the observed traffic volume in 

destination j during time interval t; Ot is a row vector that stands for the original observed 

traffic volumes vector in time period t for destination j; Pj is a column vector that 

represents the estimated split proportions from all origins to destination j; POj is a column 

vector that represents the real split proportions from all origins to destination j; and f(.|.) 

is a conditional probability distribution function. After certain approximations, Equation 

2.19 can be converted into Equation 2.20, as shown: 

});(2
2

1{min
1 1

2
2 ∑∑

= =

−−=
T

t

p

j
jttjEL DN

Tp
F σ

πσ
PO

p
    (2.20) 

where T is the total number of time periods; σ is the standard deviation for the difference 

between observed estimated traffic volumes; p represents the number of destinations; and 

N(Dtj – OtPj; σ2) stands for a normal probability distribution function. 

According to Equation 2.20, L2E models minimize the sum of probability density 

functions while the maximum likelihood estimation (MLE) or LS models minimize the 

negative product of probability density functions. The effect of data outliers on MLE or 

LS models is more severe than that on L2E models. Thus, L2E dynamic O-D matrix 
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estimation models have the potential to obtain better results in the case of large data 

errors.  

Tavana and Mahmassani (2001) propose a bi-level optimization method to 

estimate dynamic O-D matrices based on observed traffic measurement data. In their 

method, a least-squares estimation model is used at the upper-level and a DTA simulator 

solves a user-equilibrium problem at the lower-level. Equations 2.21, 2.22, and 2.23 show 

the proposed model, as follows: 

Upper-level: 

2

, ,,
,,,),,(),,( ][∑ ∑ −⋅=

hl jit
hljitjithl cdpZ       (2.21) 

subject to 

dt,i,j ≥ 0          (2.22) 

Lower-level: 

p(l.h),(t,i,j)=assignment |d(t,i,j)| from DTA      (2.23) 

where i and j are, respectively, the origin and destination zones; t and h represent, 

respectively, trip departure time interval and link volume observation time interval; l 

stands for the link number; p(l.h),(t,i,j) represents the link-flow proportion that is to the ratio 

of demand dt,i,j, which flows onto link l during observation interval h; dt,i,j is the demand 

that initiates trips during time interval t with origin i and destination j; and cl,h, is the 

observed traffic count from link l in time interval h. Case studies show that when the 

network is congested, the proposed model cannot guarantee satisfactory estimation 

results because observed link volume data cannot provide enough information on the O-D 

pattern under congested traffic conditions. 
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Zhou et al. (2003) improved the dynamic O-D matrix estimation method of 

Tavana and Mahmassani (2001) by incorporating multi-day link traffic volumes into the 

objective function. Composed of two terms, the objective function’s first term is the 

deviation between observed and estimated link flows for multiple days, and the second 

term is the deviation between target and estimated demand for multiple days. The 

updated model can help analyze traffic demand patterns using multi-day data, and is 

formulated by Equations 2.24, 2.25 and 2.26 below: 

Upper-level: 

}][}][)1{(
,

2
),(),,,(

2

, ,,
),,(),,,(),,,(),,(∑ ∑ ∑∑ ∑ −+−⋅−=

m ji t
jimjit

hl jit
mhlmjitmjithl gdwcdpwZ  

           (2.24) 

subject to 

d(t,i,j),m≥0         (2.25) 

Lower-level: 

p(l.h),(t,i,j),m=assigning d(t,i,j) based on a DTA simulator   (2.26) 

where i and j respectively stand for origin and destination zone number; t and h represent, 

respectively, trip departure time interval and link volume observation time interval; l is 

the link number; m denotes the day; w is a weighting factor; p(l.h),(t,i,j),m is a link-flow 

proportion, which is the proportion of demand d(t,i,j),m that flows onto link l during 

observation interval h; d(t,i,j),m is the demand that activates trips during interval t on day m 

with origin i and destination j; c(l,h),m is the observed traffic count from link l in time 

interval h of day m; and g(i,j) is the target demand from i to j. 
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Recently, off-line GLS-based dynamic O-D matrix estimation methods (Kim, 

2006 and Balakrishna et al., 2007) have provided an approach to jointly estimate time-

dependent O-D matrices and DTA supply-side parameters, without using traffic mapping 

matrices, by using a stochastic optimization algorithm. The typical model of this group 

has the following generalized least squared format: 

}][min{),( 1'

1

1'1'
βββ εΩεεΩεεΩεβX −

=

−− ++= ∑
H

h
xhxhxhMhMhMhZ    (2.27) 

O
hhMh MMε −=         (2.28) 

a
hhxh XXε −=          (2.29) 

a
hhxh ββε −=          (2.30) 

Mh = f(X, β, G)        (2.31) 

LX ≤ X ≤ Ux         (2.32) 

Lβ  ≤ β ≤ Uβ         (2.33) 

where X represents an O-D demand vector; β denotes the DTA simulator model 

parameters; M stands for observed traffic measurement data, such as speed and link 

volume; a
hX  represents a historical O-D demand vector; G denotes a road network; ε 

stands for the deviation vectors between observed or historical variables with the 

variables awaiting estimation; and Ω represents the variance and covariance matrix for 

observed or historical variables.  

Kim (2006) proposed a bi-level structure to jointly calibrate the dynamic O-D 

matrix and a micro-simulation model for a real road network in Texas. A genetic 

algorithm (GA) is employed to calibrate the simulation model parameters in the upper-
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level because of the significant complexity in the relationship between traffic 

measurements and subsequent model parameters.  

Balakrishna et al. (2007) employed a stochastic approximation algorithm 

developed by Spall (1998) to simultaneously calibrate a mescoscopic DTA model in 

terms of supply parameters and demand parameters, based on the generally available 

sensor data. After test runs, the suggested algorithm received validation in both synthetic 

and real-world road networks.  

Kattan and Abdulhai (2006) proposed an approach based on evolutionary 

algorithms (EA) to estimate dynamic O-D trip matrices. EA is potentially powerful as a 

global search and optimization tool. While the results of their study proved the use of EA 

to be better than the existing deterministic O-D matrix estimation method, the 

computational burden incurred by this approach remains to be problem. 

Nie and Zhang (2008) modeled the dynamic O-D estimation problem as a variational 

inequality (VI) in consideration of travelers’ response to congestion. By endogenetically 

determining the dynamic assignment matrix, the model avoids a bi-level solution 

structure. In their model, the path deviation for a time interval t is formulated by Equation 

2.34, as follows: 

2.2.1.2 VI based Estimation Models 

     (2.34) 

where P is a dynamic path-link incidence matrix; M is a dynamic path-O-D incidence 

matrix; u and q are, respectively, vectors for observed traffic volume and historical O-D 

demand; wx and wq are, respectively, confidence levels for u and q; and im represents the 

number of measurement time intervals. 
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At optimum, any user will experience a travel cost equivalent to the scaled 

dynamic deviation. The experienced travel cost would be always equal to or higher than 

the scaled dynamic deviation on any unused path. Mathematically, this implies the 

following: 

        (2.35) 

        (2.36) 

where, , , and  are, respectively, path flow, path travel cost, and path deviation 

for the kth path between O-D pair rs with departure interval t; and θ is a dispersion factor, 

which reflects the weight of travelers’ behavior. 

The above optimal conditions can be transformed into a variational inequality 

(VI), which finds  such that: 

      (2.37) 

where  and  are generated based on . A column generation algorithm is used to 

solve the VI model. 

As an approach to modeling a physical system, state-space models include a set of first-

order 

2.2.1.3 State-Space-based Estimation Models 

differential equations with input, output, and state variables. State-space models can 

act as a convenient way to model dynamic systems. 

State-space models have been used in modeling the dynamic relationship between 

O-D demands and observed link volumes in consecutive time intervals (Okutani, 1987; 

Ashok and Ben-Akiva, 1993, 2000, and 2002; and Antoniou et al., 2007). A typical state-

space dynamic O-D matrix estimation model consists of two parts, namely the transition 

function and the measurement function. 

http://en.wikipedia.org/wiki/Differential_equation�
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Transition functions model the auto-regressive relationship among the O-D 

demand at time interval h + 1 and those at previous time intervals, as Equation 2.38 

below shows: 

Xh+1 = ∑
−=

h

qhp

p
hf Xp + Wh       (2.38) 

where Xh+1 is the dynamic O-D demand origins during time interval h+1; p
hf  is the 

corresponding auto-regression coefficient matrices; p is the time interval before h+1; q is 

the number of lagged O-D demand affecting the O-D demand in time interval h+1; and 

Wh is a random error matrix. 

Measurement functions model the relationship between the O-D demand and the 

link volume, as shown in Equation 2.39:  

Yh = ∑
−=

h

rhp
p

p
h Xa +Vh        (2.39) 

where Yh is the link flow matrix at time interval h; p
ha  is a traffic assignment coefficient 

matrix; r is the maximum number of time intervals taken to travel between any O-D pairs 

in the network; and Vhis a random measurement error matrix term. 

Okutani (1987) applied a state-space model to estimate the dynamic O-D matrix 

for a small test network. In the model, O-D matrices were directly used as state variables. 

The results show that a larger traffic volumes data set leads to better estimation results.  

Ashok and Ben-Akiva (1993), however, thought that Okutani’s model only 

captured temporal interdependencies among O-D flows, but ignored structural 

information on O-D patterns. They used deviations of current O-D flows from the best 

historical estimated O-D flows as state variables in their study. Such model formulations 
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indirectly take into account all the available a priori structural information, thus making 

the transformed variables follow a normal distribution. A normal distribution of model 

variables is useful in allowing the available algorithms to effectively solve the state-space 

model. The proposed state-space models are shown as Equation 2.40 and Equation 2.41 

below: 
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∑
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h

H
hh

'
)( VXXayy       (2.41) 

where Xh+1 is the O-D vector for time interval h+1; H
h 1+X  is the best historical O-D vector 

estimation for time interval h+1 ; p
hf is a autoregressive coefficient matrix that reflects the 

effects of previous time interval demand deviations on the current time interval demand 

deviation; Wk is a vector of random errors; yh is the observed traffic count vector for time 

interval h; H
hy  is the historical observed traffic count vector for time interval h; p

ha  is an 

assignment matrix that reflects the contribution of demand vectors from previous time 

intervals to yh; and hV  is a vector of random measurement errors on traffic counts.  

Ashok and Ben-Akiva (2000) proposed an alternative method to model a state-

space structure by representing O-D demands as the product of origin trip and O-D split 

factors (the percentage of origin traffic demand to each destination), which supposedly 

enhances the predictive ability of the model because of the relative stability of O-D split 

factors. The authors combined the trip split factors into their estimation model to improve 

the model performance. The two transition equations and one measurement equation are 

shown as Equations 2.42, 2.43, and 2.44, respectively: 
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where th is the origin trip vector for time interval h; ψh is the trip split factor vector for 

time interval h; superscript H means that the vector is the best historical estimation; p
hΦ  is 

the transition matrix for origin trip vectors; p
hγ  is the transition matrix for O-D split 

factor vectors; yh is the observed link count vectors; p
ha is the matrix mapping the O-D 

demand to link volume; bp is the trip split factor matrix, which is transformed from vector 

ψ and has a unique mapping relationship with vector ψ; and Uh, Wh, and Vh are random 

error matrices.  

Ashok and Ben-Akiva (2002) incorporated the stochastic character of a dynamic 

O-D matrix estimation model by systematically modeling the dynamic O-D mapping 

matrix. The dynamic O-D mapping matrix was modeled in two ways. First, the 

randomness of mapping matrices was directly taken into account through a new 

measurement equation, shown in Equation 2.45 below: 

p
h

p
h

p
h uaa +=ˆ          (2.45) 

where p
hâ  is the assignment matrix calculated based on available travel times and route 

choice fraction, according to the method proposed by Cascetta et al. (1993), and p
hu is a 

random error vector that stands for the error of p
hâ  from an inaccurate measurement of 

travel times and route-choice fractions qp.  
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Instead of directly modeling the matrix, the mapping matrix is assumed to be only 

determined by O-D matrix Th and route-choice fraction qh, so the mapping matrix is 

indirectly modeled with Equations 2.46 and 2.47: 

hhh λTT +=ˆ          (2.46) 

hhh ψqq +=ˆ          (2.47)  

where hT̂  and hq̂  are, respectively, the measured values of hT  and hq , and hλ and hψ  

denote random error vectors. Equations 2.45, 2.46, and 2.47 can act as additional 

measurement equations to produce a better estimation for the state-space model in 

preceding Equations 2.40 and 2.41. 

Zhou and Mahmassani (2007) assert that the stationary assumption of the existing 

state-space mode can be violated when there are structural deviations between actual and 

regular O-D demands. In response, they developed a structural state-space, real-time O-D 

matrix estimation model. In their study, the real-time O-D demand is organized into 

regular demand patterns, structural deviations, and random fluctuations. The true demand, 

D(j,τ) , in the following study is modeled as a linear combination of the a priori estimation, 

the structural deviation, and random disturbance shown in Equation 2.48. A polynomial 

filter on the structural deviation is then modeled to absorb the deviation and to obtain a 

robust prediction, as shown below: 

),(),(),(),(
~

ττττ εµ jj
r
jj DD ++=        (2.48) 

where r
jD ),(

~
τ  denotes an a priori estimation demand matrix for O-D pair j during time 

interval τ ; μ(j,τ) represents a structural deviation term; and ε(j,τ) is a random disturbance 

term following a normal distribution with zero mean.  
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The structural deviation term at time τ + ζ is then represented by an mth order 

polynomial function, as shown in Equation 2.49: 

μ(j,τ+ζ)=b0+b1ζ+ b2ζ2+….+ bmζm      (2.49) 

where bp= !/)(
),( pp

j τµ  is based on Taylor’s expansion formulation. The transition equation 

manifests as Equation 2.50, below: 
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where the departure time interval τ = kl, and )(
),(

p
jw τ is a random error term. The 

measurement equation in this study is formulated as Equation 2.51: 
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          (2.51) 

where c(i,t) denotes the observed volume in link i during time interval t; LP(i,t),(j,τ+ζ) 

represents the link proportion factor (meaning the contribution of O-D demand affects a 

certain link volume); and vi,t. is a random error term. 

Antoniou et al. (2007) present a state-space model for an online calibration of 

dynamic O-D matrix and time-dependent parameters of DTA systems. The state variables 

in the study include the parameters that need calibration during time interval h, including 

O-D flows, speed–density relationship parameters, and segment capacities. Similar to the 

study conducted by Ashok and Ben-Akiva (1993), this study uses the deviations of 

unknown variables as state variables. The transition equation of this study is formulated 

as Equation 2.52:  
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where X stands for the state vector; subscript h + 1 or q denotes the time interval; 

subscript p signifies the order of the relationship; superscript H means that the vector 

comes from the historical measurement or estimation; fq
h+1 is the autoregressive factors 

matrix capturing the impact of the state vector Xq on the state vector Xh+1 during interval 

h+1; and ηh is a random error matrix. The direct measurement equation is modeled below 

as Equation 2.53: 

h
H
hh

H
h

a
h WXXXX +−=−        (2.53) 

where Xh
a is the a priori parameter vector for time interval h and Wh is a random error 

vector that is uncorrelated with ηh. An additional measurement equation can be 

formulated as the following: 

h
H
hh

H
hh S VMXMM +−=− )(       (2.54) 

where S denotes the DTA simulator; Vh is a random error vector that is uncorrelated with 

Wh and ηh ; Mh is the traffic measurement vector; and superscript H signifies that the 

vector comes from a historical measurement. Due to the non-linear term S(Xh) introduced 

in Equation 2.54 above, the author proposes the use of non-linear Kalman filtering 

algorithms to solve the state-space model.  

State-space models have the potential for online applications in O-D matrix 

estimation and prediction, and Kalman filtering algorithms are commonly used to solve 

state-space models. The limitations of state-space models in practical applications lie in 

two aspects: (1) calibrating the coefficients of state functions requires sufficient 

information from historic traffic demands, which are not easy to collect in the field; and 
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(2) solving a state-space model is difficult for a large road network because it is time-

consuming to compute the inverse of a large-scale matrix, as indicated by Bierlaire and 

Crittin (2004). Compared with state-space models, GLS models have the advantage of a 

lighter computational burden, as many solution algorithms can be used to exploit the 

sparsity of the large-scale matrix, and thus save computation time. 

In the real world, because there are insufficient traffic measurement data, the dynamic O-

D matrix estimation follows an under-determined process. More traffic information needs 

to be collected to relieve this problem. With the development of automatic vehicle 

identification (AVI) technology, AVI data, including point data (such as speed) and 

point-to-point traffic data (such as travel time and sample O-D demand), have become 

useful information sources in creating a better estimation of dynamic O-D matrices. 

The information extracted from AVI data is usually incorporated into dynamic O-

D matrix estimation models in two ways: as observed O-D demand data and as link 

choice proportions data. 

Van der Zijpp (1997) integrated AVI data as observed O-D demand information 

in a state-space dynamic O-D matrix estimation model. The result from a case study 

shows consistently lower estimation errors with the added AVI information. The 

proposed state-space model consists of Equation 2.55 as the transition equation, Equation 

2.56 as the measurement equation, and Equation 2.57 as an additional measurement 

equation based on AVI data: 

b(t+1)=b(t)+w(t)        (2.55) 

2.2.1.4 AVI Data-based Estimation Models 

y(t)=H(t)b(t)+v(t)        (2.56) 
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e(t)=G(t)b(t)+z(t)        (2.57) 

where t denotes time interval; b(t) is an O-D split factor vector indicating the percentage 

of origin trips that lead to certain destination; y(t) is an observed link volume vector; 

H(t)=τ q(t), where τ is a path link incidence vector reflecting if a path includes a certain 

link; q(t) is the number of vehicles entering the network; e(t) is an observed AVI vehicle 

vector that includes the number of vehicles recognized at site a during period t and at site 

b during period t1; G(t) = q(t)×p, where p stands for the contribution of the O-D demand 

to a certain AVI count, and can be estimated based on a nested selection; and w(t), v(t) 

and z(t) are uncorrelated random error matrices. 

Kwon and Varaiya (2005) incorporated AVI data as a sample O-D demand matrix 

for the estimation model and developed a moments-based estimator. The assumption in 

their study is that for a large number of real O-D demand N, by the Central Limit 

Theorem (CLT), collected AVI O-D demand M approximately follows a multivariate 

normal distribution, which can be expressed as:  

M~N(AN, ∑(M))        (2.58) 

where the matrix Ajk = pjk×ψ, pjk is the identification rate for vehicles with an AVI 

transponder from j to k; ψ is the probability that a vehicle is equipped with an AVI 

transponder; and Σ(·) specifies variance-covariance function. Based on the method of 

moments estimation, the final O-D demand vector is stated as: 

)(ˆ 1 MAN E−=          (2.59) 

where, E( ) stands for the expectation function. 
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Antoniou et al. (2004) extracted the O-D demand information from the AVI data 

by introducing a diagonal expansion factor matrix and combining this demand 

information into Ashok’s state-space model (1996) to estimate the dynamic O-D matrix. 

Two additional measurement equations were constructed and were integrated into a state-

space model to estimate the dynamic O-D matrix. The first measurement equation relates 

to AVI O-D demands and historical O-D demands, and is shown as: 

hhh
probe

h uXEY +=         (2.60) 

where Eh is a diagonal matrix and represents an expansion factor that accounts for the 

fact that probe vehicles constitute only a fraction of the total number of vehicles in the 

network; H
hh

probe
h

probe
h xExY −=  is the deviation of observed probe vehicle flow probe

hx  

from the best estimation of the available expansion matrix Eh and the historical demand; 

H
hhh xxX −=  is a vector of deviations of the O-D demand flows for time interval h; and 

uh is a vector of Gaussian, zero-mean, uncorrelated errors. 

The second additional measurement equation reflects the contribution of an AVI 

O-D demand flow to the sub-path flow, in terms of deviations, and is formulated as 

Equation 2.61, shown below: 

hhhh ηXGZ +=         (2.61) 

where ∑
−=

−=
h

php
p

p
hhh

'
xGzZ  is a vector of deviations on sub-path flows; H

hhh xxX −=  is a 

vector of deviations on O-D demand flows for time interval h; ηh is a vector of Gaussian, 

zero-mean, uncorrelated errors; and p
hG  is a matrix (nsubpath × nOD) that matches the sub-
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path flows observed in time interval h (as obtained by a combination of sequential AVI 

measurements of the same vehicle) to O-D flows that departed in time interval p.  

Zhou and Mahmassani (2006) integrated the link-to-link split factor from the AVI 

data into a least square dynamic O-D matrix estimation objective function, which avoids 

the effort of estimating the identification rates and market penetration of the AVI 

equipped vehicles. Their dynamic O-D matrix estimation model uses the following series 

of equations, as shown: 

]min[ 321 ZZZZ ++=        (2.62) 

subject to 

p̂ =assigning traffic demand based on a DTA simulator 
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where w1, w2, and w3 are the weighting factors on deviations of link counts, historical 

demand, and observed split fractions; l is the subscript for the link with traffic volume 

data measurement; i is the subscript for origin zone; j is the subscript for destination 

zones; τ is the subscript for departure time intervals; t is the subscript for observation time 

intervals; id is the superscript for AVI vehicles; c(l,t) is the number of observed vehicles 
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on link l during observation interval t; id
tlc ),(  is the corresponding term for additional AVI 

vehicles; ),,( tslc is the number of vehicles observed on link s traveling from link l during 

observation interval t; id
tslc ),,(  is the corresponding term for additional AVI vehicles; d(i,j,τ) 

is the traffic demand with destination zone j originating from zone i during departure 

interval τ ; p̂ (i,t) (i,j,τ) is link flow proportions that are the proportion of vehicles from 

origin i to destination j starting their trips during departure interval τ and contributing to 

the flow on link l during observation interval t; p̂ (l,s,t) (i,j,τ) is link-to-link-flow proportions 

that are the proportion of vehicles from origin i to destination j starting their trips during 

departure interval τ and contributing to the link-to-link flow from link l to link s in 

observation intervals t; g(i,j) is the static target demand for O-D pair (i,j); Llc, is the set of 

links with observed link count data; and LVi is the set of links with observed AVI data.  

2.2.2 Non-Assignment-based Estimation Models 

The models in this category estimate dynamic O-D matrices based on the traffic flow 

conservation equations of a road network. A typical freeway corridor is shown in Figure 

2.1, where detectors are installed at ramps and mainline links. The available information 

from detectors are time dependent on-ramp volume qi(k), off-ramp volume yj(k), and 

mainline volume Ul(k). 

 

 

Figure 2.1 A typical freeway corridor.  
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Let bij(k) represent the percentage of vehicles entering the network on-ramp i to 

off-ramp j during time interval k. bij(k) has its two natural constraints, as shown by 

Equations 2.66 and 2.67: 

0 ≤ bij(k) ≤ 1, 0 ≤ i < j ≤ N.       (2.66) 

∑
+=

=
N

ij
ij kb

1
1)( , i = 0, 1,…,N-1.       (2.67) 

Cremer and Keller (1981) developed a dynamic O-D matrix estimation model for 

a small network without considering vehicle O-D travel time. Their model is formulated 

as follows: 

∑
−

=

=
1

0
)()()(

j

i
iijj kqkbky         (2.68) 

subject to Equations 2.60 and 2.61 

The model is useful in estimating the dynamic O-D matrix for an isolated 

intersection or a simple network. However, when the O-D travel time is significantly 

longer on a network, the model fails to generate reasonable estimation results because 

there are time lags between input and output flow, which are ignored by the model. 

Bell (1991a) integrated a platoon dispersion factor (proposed by Roberson, 1969) 

into a dynamic O-D matrix estimation model for intersections. The assumption of the 

model is that there are geometrically distributed vehicle travel times in a road network. 

The assumption only holds true for short travel distance. Bell’s model is shown in 

Equation 2.69 below: 

)()()1()1()( kbkqkyky ij
T

jjjj αα +−−=      (2.69) 

subject to Equations 2.66 and 2.67 
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where αj is an additional smoothing parameter (0 ≤ αj ≤ 1) requiring estimation. A model 

of Equation 2.64 can better reflect the traffic flow dynamics for an isolated intersection or 

small freeway network.  

Bell (1991a) further extends the model to a larger freeway network by combining 

traffic travel time factors bijm into the estimation model without considering the 

distribution assumption on a vehicle’s travel time. bijm represents the proportion of trips 

from entrance i to destination j with m time intervals to travel. The model is shown in 

Equations 2.70, 2.71 and 2.72, as follows: 

∑∑
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j
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ijmij Njkbmkqky
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0
,...,2,1),()()(     (2.70) 

∑ ∑
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−==
N

ij

M

m
ijm Nikb

1 0
1,...,1,0,1)(       (2.71) 

0 ≤ bijm(k) ≤ 1, 0 ≤ i < j ≤ N., m=0, 1,…,M     (2.72) 

The above model offers a more realistic formulation, since the travel time for any 

O-D pair may be more than one time interval. However, the equations would involve too 

many unknown parameters bijm(k). 

Chang and Wu (1994) proposed a freeway O-D matrix estimation model by 

employing both mainline flow counts, Ul(k), and ramp flow measurements, qi(k) and yj(j), 

to construct a set of dynamic equations. To further capture the relationship between O-D 

flow proportions and traffic counts, they proposed a set of new variables, )(km
ijθ  and 

)(km
iljθ , to represent the fraction of )()( mkbmkq iji −−  trips that arrive at off-ramp j and 

mainline l during time interval k. The model formulations are shown as Equations 2.73, 

2.74, 2.75, and 2.76 below: 
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subject to:  

MmNjim
ij ,...,2,1,0,010 =≤<≤≤≤ θ      (2.75)
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and Equations 2.66 and 2.67 

The model of Chang and Wu introduces a large amount of unknown parameters 

bij(k) and )(km
ijθ . Thus, it would be difficult for the model to solve dynamic O-D matrix 

estimation problems for a large road network. 

In order to reduce the number of unknown variables in the model developed by 

Chang and Wu, Lin (2006) assumed that the travel time for vehicles from i to j departing 

in time interval k follows a normal distribution, tij~N[uij(k), σij(k)], so that it works with 

the travel time distribution factor ∫
⋅+

⋅

=
0

0

)1(

)()(
tm

tm
ij

m
ij dxxfkθ , where fij(x) stands for the PDF 

function of tij. 

Lin (2006) further assumes that travel times for vehicles from point i to mainline 

point l is tilj(k) and follows a normal distribution. She also assumes that the speed 

distribution for vehicles from i to j remains unchanged. Under these assumptions, travel 

time tij(k) is proportional to travel time tilj(k). Then the equation becomes tilk(k)~N(rtij, 
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rilkσ(k)), where rilj is the ratio of distance dil to distance dij. The travel time distribution 

factor becomes ∫
⋅+

⋅

=
0

0
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ji

m
ji dxxfk θ . 

Another improvement of Lin (2006) is that the model only needs to estimate the 

average bij(k) for consecutive time intervals, namely )(kbij , instead of estimating bij(k) 

for each small time interval. Finally, Lin’s model is given in Equations 2.77 and 2.78 

below: 
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subject to Equations 2.66, 2.67, 2.75 and 2.76 

where ∑
=

−
+

=
M

m
ijij mkb

M
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0
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1)( . 

With Lin’s improvements, the unknown variables are reduced to )(kbij  and 

)(kijσ . Non-assignment-based dynamic O-D matrix estimation methods require the road 

network be “closed,” meaning that all incoming and outgoing traffic must be known. 

Furthermore, when a network becomes too large, analytic equations will become 

complicated and difficult to solve. The additional traffic information, such as AVI data, is 

also hard to incorporate into the model. 
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2.3 Summary 

This chapter reviews the state-of-the-art, current dynamic O-D matrix estimation 

methods. Compared with the non-assignment-based model, the assignment-based model 

demonstrates preferable characters in a simpler modeling structure, in its applicability for 

large road networks, and in exploiting the available traffic measurement. The deficiency 

of the assignment-based model lies in two aspects: (1) a reliable initial O-D matrix is 

needed; (2) the estimation is poor in congested traffic conditions. These two problems 

can pose a challenge based on limited survey data. The stochastic dynamic O-D matrix 

estimation model (assignment-based) is a promising approach to a simpler modeling 

structure yielding better results, but the heavy computation burden can restrict the model 

when applied to a real road network. For assignment-based models, there is also a trend 

to integrate more available traffic data, such as AVI, into the dynamic O-D matrix 

estimation model to improve the estimation performance.   
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CHAPTER 3 

METHODOLOGY 

This chapter presents the methodology proposed in this dissertation. It has two main 

parts: (1) an initial O-D matrix estimation method, and (2) a dynamic O-D matrix 

estimation model that delivers a good performance under congested traffic conditions. 

Section 3.1 presents the methodology framework for this study, and then describes each 

component of the methodology framework in detail from Sections 3.2 to 3.4. 

3.1 Methodology Framework 

The methodology framework of this study is shown in Figure 3.1. The proposed 

methodology framework includes the following four models: 

1. Traffic flow model calibration (TFMC). A DTA simulator is used to dynamically 

load the traffic demand of a road network. In order to get an accurate simulation 

result, the traffic flow models of the DTA simulator need to be calibrated 

accurately based on available traffic measurement data. 

2. Initial O-D matrix estimation (IODE). The model is aimed to produce an accurate 

initial O-D matrix in order to improve the performance of dynamic O-D matrix 

estimations. 

3. Dynamic O-D matrix estimation (DODE). This model is designed to get an 

improved dynamic O-D matrix estimation under congested traffic conditions. 

4. Traffic flow model fine tuning (TFMFT). This model is used to further adjust the 

DTA supply-side parameters based on the resulting dynamic O-D matrix from the 

third model. This model is iterated with the dynamic O-D matrix estimation 

model until a convergent result is derived. Since there is no explicit relationship 
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between the DTA supply-side parameters and the traffic measurement data, only a 

heuristic method such as a stochastic optimization algorithm can be used to fine-

tune the parameters. When the road network includes a large number of O-D pairs, 

the stochastic optimization will take too long a time to find a good solution. Thus, 

it is inefficient to use this model when the road network is large. 

 
Figure 3.1 The methodology framework of the study. 
 

The four components of the methodology framework are described separately in 

the following three sections. 

3.2 DTA Traffic Flow Model Calibration (TFMC) Model 

DYNASMART-P is used to perform dynamic traffic assignment (DTA). In order to 

better replicate real traffic situations, the traffic flow models in DYNASMART-P need to 

be calibrated carefully based on available traffic measurement data.  
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The modified Greenshields models are used as the traffic flow model in 

DYNASMART-P. Two types of the modified Greenshields models are used. Type 1 is a 

dual-regime model for freeway links, as shown in Figure 3.2 (Mahmassani et al., 2005), 

and Type 2 is a single-regime model for arterial links, as shown in Figure 3.3 

(Mahmassani et al., 2005). The Type 1 traffic flow model is formulated as follows, by 

Equations 3.1 and 3.2: 

Vi = Uf     0 ≤ Ki ≤ Kb    (3.1) 

Vi − V0 = (Vf − V0)
α












−

j
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K
K

1   Kb≤ Ki ≤ Kj    (3.2) 

The Type 2 traffic flow model is formulated as Equation 3.3 below: 

Vi − V0 = (Vf − V0)
α












−

j

i

K
K

1        (3.3) 

where for road segment i, Vi
 is the mean vehicle speed (mi/h); Uf is the vehicle free speed 

(mi/h); V0 is the minimum speed (mi/h); Kj is the traffic density (veh/mi/ln); Kb is the 

regime’s break point density (veh/mi/ln); Kj is the jam density (veh/mi/ln); and α is the 

power term used to capture the sensitivity of speed to density. 
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Figure 3.2 Type 1 traffic flow model (Source: Mahmassani et al., 2005).  
 

 
Figure 3.3 Type 2 traffic flow model (Source: Mahmassani et al., 2005).  
 

The two-regime model is used for the freeway links where traffic speed is 

relatively insensitive to traffic volume in uncongested traffic conditions. The single-

regime model is applied to arterial links because arterials have intersections, and the 

travel speed on arterials is more sensitive to increases in traffic. The parameters of the 

traffic flow model can be calibrated by using a linear regression technique based on 
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available traffic measurement data, as illustrated in Figure 3.4, for the Type 2 traffic flow 

model calibration. The calibration of the Type 1 traffic flow model is similar to that of 

the Type 2 model. 

 
Figure 3.4 Calibration of Type 2 traffic flow model.  

Linear regression analysis is a tool to calibrate the above two types of traffic flow 

models (Mahmassani et al., 2005). This involves transforming the modified 

Greenshields’ model into a linear form and taking the natural logarithm on both sides. 

For example, the curve part of the Type 1 model can be transformed into Equation 3.4 

below: 
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Based on the fact that the curve passes the point (Uf, Kb), the above equation can 
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Uf  is the free-flow speed of freeway segments, which can be easily deduced from 

the density-speed scatter plot of a segment. V0 and Kj can be predefined based on 

common experience. Kb varies for different road segments and can be determined based 

on the scatter plot of speed and density. Equation 3.5 can then be converted into a simple 

form of Equation 3.6: 

Y = αX + β         (3.6) 

The parameters in the above equations can be calibrated using the ordinary least square 

(OLS) method.  

3.3 Initial O-D Matrix Estimation (IODE) Model 

An important part of this study involves estimating an accurate initial O-D matrix to 

improve the performance of proposed dynamic O-D matrix estimations. The procedure 

for an initial O-D matrix estimation includes the following steps: 

1. Prepare an initial static O-D matrix based on the gravity models, 

2. Estimate the static O-D matrix by using a maximum likelihood (ML) estimation 

model, and 

3. Estimate the initial dynamic O-D matrix using a GLS programming method. 

The above procedures are described separately in Sections 3.3.1, 3.3.2, and 3.3.3. 

3.3.1 Initial O-D Matrix Preparation 

Gravity models are used to prepare the initial O-D matrix for a study area based on socio-

economic data. Currently, gravity models are the most widely used trip distribution 

models because they respond better to changes in the network and cost as compared to 
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growth factor models, and have less computational burden than intervening opportunity 

models. For these reasons, gravity models are widely used for trip distribution in 

transportation planning. An initial O-D matrix can be obtained with the aid of a 

transportation planning model that implements gravity models during the trip distribution 

step.  

The first rigorous use of a gravity model is by Casey (1955), who suggested using 

this approach to estimate shopping trips and catchment areas between towns. Since then, 

the gravity models have been gradually improved. A typical gravity model has the format 

of Equation 3.7: 

Tij=αOiDjf(cij)         (3.7) 

where Tij is the element of trip demand from origin zone i to destination zone j; α is a 

proportion factor; Oi  is the total production of trips in zone i; Dj is the total attraction 

trips in zone j; and f(cij) is the deterrence function that represents the disincentive to travel 

as travel cost cij increases. Currently, the popular versions for this function are as follows: 

f(cij)=exp(-α cij)   exponential function 

f(cij)= (cij)-n    power function 

f(cij)= (cij)-n exp(-α cij)   combined function 

In some urban planning models, time-of-day (TOD) factor methods have been 

developed to convert a daily O-D demand matrix into a peak-period O-D matrix to better 

replicate the actual traffic conditions in specific periods, such as morning or afternoon 

peak-hours. For example, the Southeast Regional Planning Model (SERPM) includes 

TOD modeling to better replicate the variations in travel behavior, traffic congestion, 

traffic operations, and transit operations throughout the day. With the aid of a gravity 
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model in some transportation planning model software packages, a relatively accurate 

initial O-D matrix, such as a peak-period O-D matrix, can be obtained.  

3.3.2 Static Initial O-D Matrix Estimation (SIODE) 

After a peak-period O-D matrix (about three to four hours) is estimated based on gravity 

models, the remaining work is to factorize the peak-period matrix into sequential small-

time interval O-D matrices and to estimate each of those small-time interval O-D 

matrices according to the observed traffic volume data. The factorizing factors can be 

simply determined based on the distribution pattern of observed traffic volume. The 

factorized O-D matrix then can be estimated based on some static estimation methods 

such as maximum likelihood (ML), generalized least square (GLS), and Bayesian 

inference (BI) models.  

In this dissertation, a ML model is used to calibrate the factorized O-D matrices 

because it is embedded in the CUBE traffic planning software currently in use. The ML 

O-D estimation model proposed by Spiess (1986) estimates an O-D matrix by using an 

observed sample O-D matrix, observed link traffic volumes on screenlines and the total 

productions and attractions of zones. The assumption of the estimation model is an 

independent Poisson distribution of O-D trips, observed link traffic volumes, and 

production and attraction trips. The ML O-D matrix estimation model is formulated as 

Equation 3.8 below: 
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subject to: 
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Rijk = assignment (Tij) based on the static assignment method 

where M is the value of an objective function; k, i, and j are, respectively, subscripts 

representing the kth screen line, the ith origin zone, and the jth destination zone; λQ, λO, 

λD, and λN are, respectively, confidence factors associated with observed traffic data 

volume Qk, origins trip Oi, destination trips Dj, and initial O-D trips Nij; Vk, Gi, Aj, and Tij 

are, respectively, estimated traffic data volume Vk,, origin trips Gi, destination trips Aj, 

and O-D trips Tij; and Rijk is the proportion of trips in O-D matrix cell (i, j) using 

screenline k. Rijk usually needs to be obtained through a static assignment method. 

Before performing the ML O-D matrix estimation, two data sets need to be 

prepared in advance. The first one is observed traffic volumes from roadside detectors. 

The second one is the sub-period O-D matrix corresponding to each observation time 

interval. The assumption is that during peak-periods, most travelers have similar traffic 

behavior (i.e., go to work or go home). Thus, the percentage of traffic volume in a certain 

time interval over that volume of the peak-period can be used to factorize the peak-period 

O-D matrix and generate the initial matrices for each time interval. Then, the ML model 

is used to independently calibrate the initial O-D matrices. In this dissertation, the process 

of static initial O-D matrix estimation is illustrated in Figure 3.5. 
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Figure 3.5 Procedure for static initial O-D matrix estimation.  
 

The flowchart in Figure 3.5 can be summarized in the following steps: 

1. Factorize the peak hours of the O-D matrix into sub-period O-D matrices; 

2. Perform a static user equilibrium traffic assignment to determine the Rijk,, which 

is used as the input for the ML model; and 

3. Employ the ML model to perform the O-D matrix estimation for each sub-

period based on the observed traffic volumes in the corresponding time period. 

If a convergent result is derived, stop; otherwise, repeat Step 2. 

3.3.3 Dynamic Initial O-D Matrix Estimation (DIODE) 

The SIODE method in the previous section relies on a static assignment, also known as a 

static route choice. When the estimated O-D matrix is loaded onto the road network by a 
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dynamic traffic assignment simulator, there are still large deviations between the 

assignment and observed traffic measurements (usually link traffic volumes). The 

deviations include not only random errors but also systematic errors. Typically the 

deviation distribution can be assumed as Figure 3.6, where the x-axis represents the time 

interval, and the y-axis stands for the deviation between assignment and observed traffic 

volumes. Based on the figure, the deviation envelope is far away from the x-axis, so there 

are systematic deviations in the estimation result. It is necessary to reduce the systematic 

deviations. 

 
Figure 3.6 The systematic link volume deviation. 

The adopted strategy is to reduce the systematic deviations of link volume, while 

keeping information of the initial input O-D matrix in terms of relative relationship to O-

D demand values. This can be accomplished by the following two sub-models: 

1. Sub-model 1: This model attempts to reduce the systematic deviations of link 

volume for the entire period by estimating a single scaling factor for the whole 

time period. The resulting traffic volume deviation distribution is illustrated in 

Figure 3.7. Since the relative relationship of the O-D demand values remains 
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unchanged, there is not much change on the shape of the resulting deviation 

envelop either.  

2. Sub-model 2: This model is designed to obtain an optimal vector of scaling 

factors to scale the resulting multiple O-D matrices of each time period from Sub-

model 1. Sub-model 2 tries to reduce the systematic deviation for each time 

period. The link volume deviation distribution after the estimation is illustrated in 

Figure 3.8. 

 
Figure 3.7 The distribution of volume deviation after estimation of Sub-model 1. 

 
Figure 3.8 The distribution of volume deviation after estimation of Sub-model 2.  

Both Sub-models 1 and 2 can be formulated with the mathematical optimization 

model given as Equation 3.9, below: 
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λd  ≥ 0 

λ1 = λ2 =···.= λd (for Sub-model 1 only) 

Low-level: 

tk
djiA ,

,, = assigning Xi,j,d by a DTA simulator 

where i, j, d, k, and t are, respectively, subscripts or superscripts for the origin zone, 

destination zone, departure time interval, link with traffic volume measurement, and 

observation time interval; Xi,j,d is an element of the simulated dynamic O-D matrix; tk
djiA ,

,,

is the link proportion matrix that is proportionate of dynamic O-D matrix Xi,j,d passing 

link k in observation time interval t; O
tkV ,  represents the observed traffic volume of link k 

at time interval t; λd is the factor to be optimized; and Pk,t is an adaptive conversion factor 

for the volume of link k during time interval t. 

Pk,t = 1 if Sk,t > C
tkS , ,and O

tkS ,  > C
tkS , and Pk,t = O

tkS , / Sk,t if Sk,t ≤ C
tkS ,  or O

tkS ,   ≤ C
tkS ,   

where Sk,t , O
tkS ,  and C

tkS , are the respectively simulated, observed, and critical traffic speed 

of link k at time interval t. The critical traffic speed C
tkS ,  is the link traffic speed that 

corresponds to the maximum flow rate of link k, which is illustrated in Figure 3.9 for the 

Type 2 traffic flow model. The critical speed C
tkS , can be determined for the Type 2 traffic 

flow model in a similar way. According to the figure, if the traffic speed on link k is 

greater than the critical speed C
tkS , , then the traffic condition on link k is uncongested, 

meaning that an increase of traffic demand in link k will cause the traffic volume to 

increase as well. If either the observed or simulated traffic speed on link k is less than the 
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critical speed, then the traffic condition on link k is congested, and the traffic volume in 

link k will decrease with the increasing traffic demand.  

 
Figure 3.9 Critical speed. 

During dynamic O-D estimation, there are two types of traffic congestion: (1) the 

observed traffic condition is congested, represented by O
tkS ,  < C

tkS , ; and (2) the simulated 

traffic condition is congested from the inaccurate initial O-D matrix, indicated by Sk,t < 

C
tkS , . Under these two congested traffic conditions, the adaptive conversion factor Pk,t of 

the proposed models can automatically convert the link traffic volume into the link traffic 

density, as seen in Equation 3.9, based on the fundamental traffic flow equation. The 

existing estimation models cannot produce a satisfying result under congested traffic 

conditions due to the proportional assignment assumption mentioned before. In the 

proposed model, before estimation, the link traffic condition is evaluated based on Sk,t, 

O
tkS , and C

tkS , . If the traffic condition in link k is uncongested both for simulated and 

observed traffic conditions, then Pk,t = 1, which means that the traffic volume and traffic 

demand on the link represent a positive relationship, and that the proportional assignment 
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assumption works. Otherwise, Pk,t = tk
O

tk SS ,, / , which means that the proportional 

relationship is revised by Pk,t. By substituting Pk,t = tk
O

tk SS ,, /  into the first term of the 

objective function and applying the fundamental traffic flow equation V = S×D, Equation 

3.10 can be deduced: 
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  (3.10) 

where O
tkD ,  and tkD ,  are observed and estimated traffic densities for link k during time 

interval t. 

The link volume is transformed into a density measurement in the proposed model 

with the aid of Pk,t. The relationship between density and traffic demand is positive and 

monotonic, thus the converted objective function in Equation 3.10 works for congested 

traffic conditions. By optimizing the λi factor through Equation 3.9, a better initial 

dynamic O-D matrix can be obtained.  

The solution algorithm for the DIODE model can be illustrated as the following 

flowchart Figure 3.10. The detailed procedure to perform DIODE is presented as follows: 

1. Based on the initial O-D matrix and road network, the DTA simulator is used to 

perform a DTA simulation. 

2. From the simulation result, the link proportional matrix A is extracted.  
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3. The adaptive conversion vector P is updated based on the comparison between the 

simulated speed and the critical speed, and between the observed speed and the 

critical speed. 

4. The objective function is constructed based on the available data set, and can be 

solved by a nonlinear mathematical programming method. 

5. If the estimated O-D matrix can decrease the objective function value, then go to 

Step 1 to perform another round of estimation; otherwise, the estimation is 

terminated. 

 
Figure 3.10 The procedure to perform DIODE. 
 

3.4 Dynamic O-D Matrix Estimation (DODE) 

The proposed dynamic O-D matrix estimation (DODE) model is an extension of the bi-

level dynamic O-D demand estimation model proposed by Zhou et al. (2004). 
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Specifically, the upper-level is a constrained ordinary least squares (OLS) model that 

aims to estimate dynamic O-D demands based on observed traffic volumes and link 

choice proportion matrices. A link choice proportion matrix is generated from the 

dynamic traffic network loading model in the lower-level. The DODE model is shown as 

Equation 3.11 below: 

Upper-level: 
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subject to, 

Xi,j,d ≥0; 

Pk,t = 1 if Sk,t > C
tkS ,  and O

tkS ,  > C
tkS , and Pk,t = O

tkS , / Sk,t if Sk,t ≤ C
tkS ,  or O

tkS ,   ≤ C
tkS , ; 

g(Xi,j,d-1, Xi,j,d-2,…, Xi,j,d-q)=β0 + β1 Xi,j,d-1 + β2 Xi,j,d-2,…+ βq Xi,j,d-q 

Low-level: 

tk
djiA ,

,, = assigning Xi,j,d based on a DTA simulator 

where i, j, d, k, and t are, respectively, subscripts or superscripts for the origin zone, 

destination zone, departure time interval, link with traffic volume measurement, and 

observation time interval; Xi,j,d and O
djiX ,,  are the elements of the estimated dynamic O-D 

matrix and that of the initial O-D matrix, respectively; tk
djiA ,

,,  is the link proportion matrix, 

which is the proportion of dynamic O-D matrix Xi,j,d that passes link k during observation 

time interval t; 
O
tkV ,  is the observed traffic volume on link k during time interval t; Pk,t is 
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an adaptive conversion factor for the volume on link k during time interval, and Pk,t = 1 if 

Sk,t > C
tkS ,  and O

tkS ,  > C
tkS , and Pk,t = O

tkS , / Sk,t if Sk,t ≤ C
tkS ,  or O

tkS ,   ≤ C
tkS , ; Sk,t, O

tkS , , and C
tkS , are, 

respectively, the simulated, observed, and critical traffic speeds of link k during time 

interval t; the constant w is an adaptive weighting factor that automatically changes the 

weight on the demand adjustment term; and g() stands for the auto regression relationship 

between Xi,j,d-1, Xi,j,d-2, …, Xi,j,d-q ; and coefficient βi needs to be calibrated based on 

historical demand data. The critical traffic speed C
tkS ,  is the link traffic speed 

corresponding to the maximum flow rate for link k, which is illustrated in Figure 3.9. 

The objective function in Equation 3.11 contains three terms: the deviation 

between the observed and simulated link volumes, the deviation between target and 

estimated traffic demand transition patterns, and the deviation between target and 

estimated traffic demands. The functions of the three terms are listed as follows: 

1. The link traffic volume deviation term is used to match the estimated link volume 

to an observed one by adjusting the entries of a dynamic O-D matrix based on the 

link choice proportion matrix tk
djiA ,

,, . In order to improve the estimation 

performance under congested traffic conditions, a conversion factor Pk,t is 

integrated into this term, which has been explained in Equation 3.10.  

2. The traffic demand transition term is used to preserve the known temporal 

distribution pattern of the initial input O-D matrix. The traffic demand transition 

deviation term has not been used widely in previous GLS-based dynamic O-D 

estimation models. Balakrishna et al., (2007) show that the traffic demand 
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transition deviation term can improve the performance of dynamic O-D matrix 

estimation models. 

3. The traffic demand deviation term is the third term employed to restrict the 

magnitude of the adjustment on traffic demand in an attempt to avoid over-

adjustment of the O-D demand.  

There are three weighting factors assigned to these three deviation terms in the 

objective function. Those factors are (1-w), w, and w which represent the relative 

importance of the three deviation terms; the more important the term, the larger the 

weighting factor. For the purposes of simplification, the model for Equation 3.11 uses an 

equal weight factor w on the transition deviation term and demand deviation terms. In 

reality, the weight of the two terms can be determined based on practical experience. In 

the proposed model, an adaptive w is used to restrict the adjustment on O-D demand in 

the case of a poor estimation result. The reason for using an adaptive w will be presented 

later. Compared with existing dynamic O-D matrix estimation models, the proposed 

model has three advantages in combining adaptive conversion factor Pk,t , adaptive 

weighting factor w, and the transition term.  

The first advantage is when traffic congestion occurs on link k, Pk,t can 

automatically convert the link traffic volume deviation into the link traffic density 

deviation in the objective function of Equation 3.11. Thus, it can produce better results 

than existing models with the proportional assignment assumption.  

The second advantage is that adaptive weighting factor w is employed in this 

study to better restrict the magnitude of O-D adjustments in each round of iteration. In the 

existing GLS-based dynamic O-D matrix estimation models, the weighting factor w is 
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fixed. It reflects the relative confidence level of the deviation terms of the objective 

function and can be estimated through the GLS method (Cascetta, 1984). Zhou et al. 

(2004) suggested incorporating the planner’s knowledge and experience in the weighting 

factor during estimation and proposed an interactive method to determine the best 

compromise between weight factors for the dynamic O-D matrix estimation problem. 

There are two reasons for adopting the adaptive weighting factor w in this study: 

1. At the beginning of estimation, a large weight should be assigned to the traffic 

measurement deviation term in the objective function because a high confidence 

should be imputed to the traffic data collected from the real world. With the 

increase of the estimation iteration, when better estimation results are derived, 

more weight should be assigned to the demand deviation term and the transition 

deviation term of the objective function because there is higher confidence in the 

estimated O-D demand.  

2. The upper-level estimation model adjusts the O-D demand based on the constant 

link proportion tk
djiA ,

,, . Since link proportion tk
djiA ,

,,  is naturally related to  traveler’s 

route choice behaviors, an O-D demand adjustment can affect the traveler’s route 

choice and thus change link proportions tk
djiA ,

,, . There is circular dependency 

between O-D demand and link proportion tk
djiA ,

,, ; therefore, by adjusting the O-D 

demand with a fixed link proportion tk
djiA ,

,, , the upper-level model may run the risk 

of divergence, meaning that too much O-D matrix adjustment can cause a drastic 

change in the link proportion and result in an increased objective value for the 

next round of iteration. The adaptive weighting factor w, however, can restrict the 
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magnitude of an adjustment to the O-D demand. If a divergence problem arises in 

an iteration, w is automatically increased to reduce the magnitude of O-D demand 

adjustment for the next iteration. The adaptive weighting factor w can enhance the 

efficiency of the dynamic O-D matrix estimation and reduce unnecessary 

iterations. It is worthwhile to mention that O
djiX ,,  in Equation 3.11, as the element 

of the target O-D matrix, should be updated for every iteration with a better 

estimated Xi,j,d. 

The third advantage is that the proposed estimation model can combine the 

historical or known temporal distribution information of O-D demand into the estimation 

by using the transition term. Balakrishna et al. (2007) show that the traffic demands 

transition deviation term can improve the performance of dynamic O-D matrix estimation 

models. The solution algorithm for the DODE model is illustrated using the flowchart in 

Figure 3.11.  
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Figure 3.11 The procedure to perform DODE. 

 
The detailed procedure to perform DODE is presented as follows: 

1. w is initialized as a certain value and its step is predefined as α, for example. 

Based on the initial O-D matrix and road network, the DTA simulator is used to 

perform a DTA simulation. 

2. From the simulation result, the link proportional matrix A is extracted.  

3. The adaptive conversion vector P is updated based on the comparison between the 

simulated speed and the critical speed, and between the observed speed and the 

critical speed. 

4. The objective function is constructed based on the available data set, and can be 

solved by a nonlinear mathematical programming method. 
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5. If the estimated O-D matrix decreases the objective function value then go to Step 

1 to perform another round of estimation; if the estimated O-D matrix increases 

the objective function value, w = w + α, then go to Step 4 to solve the objective 

function again with the updated w; and if the w reaches the predefined threshold 

or the predefined maximum iteration number has been reached, then the 

estimation is terminated. 

In the above mentioned algorithms, for the DIODE and DODE model, the 

General Algebraic Modeling System (GAMS) software package (Murtagh and Saunders, 

1987) is used to solve the nonlinear programming problems of Equations 3.10 and 3.11. 

GAMS is easy to use and powerful in solving large scale linear/nonlinear programming 

problems.  

The originality of the DIODE and DODE model is in that these two models can 

automatically convert the deviation of traffic volume into the deviation of converted 

traffic density in the objective function, in congested link traffic conditions. Compared 

with the model of Zhou et al. (2005), the models do not completely replace the traffic 

volume deviation with traffic density deviation. This is because, in real word, traffic 

density data are not directly available and need to be converted from traffic occupancy 

data. The conversion may introduce some uncertain errors into the final converted traffic 

density because the conversion function assumes that the vehicles are evenly distributed 

on a road link, and the conversion function also needs some unavailable data such as 

average vehicle length. In order to reduce the errors in traffic measurement data, the 

proposed DIODE and DODE models do not use converted traffic density deviation unless 

necessary (under congested traffic conditions). In addition, by converting the traffic 
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volume deviation into traffic density deviation, the traffic speed data are implicitly 

incorporated into the estimation model, which means more traffic information can be 

combined into the estimation models, thus contributing to the improvement of estimation 

performance. 

3.5 Traffic Flow Model Fine-Tuning (TFMFT) Model 

Because there may be some errors in the collected traffic data, the traffic flow model 

calibration (TFMC) cannot guarantee good traffic flow models. In order to reduce the 

deviation between the assigned traffic measurement and observed traffic measurement, 

traffic flow models need to be fine-tuned.  

The developed traffic flow model fine-tuning (TFMFT) model has a bi-level 

structure. Specifically, the upper-level is a constrained, OLS model that can minimize the 

combined deviation between observed and simulated traffic measurements. A DTA 

simulator is used to produce simulated traffic measurements at the lower-level. The 

upper-level model can be presented as Equation 3.13 below: 
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subject to, 

Θ∈θ  

where M2 is the objective function value; θ is the parameter set of the traffic flow models; 

Θ is the domain of parameter values; Vk,t  and Sk,t are outputs of the DTA simulator; w1 is 

a weighting factor which represents the relative importance of the two deviation terms in 

the objective function; and w1 can be determined with the practical experience. 
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In the model shown in Equation 3.13, the objective function has two terms. One 

represents traffic volume deviation and the other signifies traffic speed deviation. An 

adaptive weighting factor w1 is introduced to balance the weighting of the two deviation 

function terms and to increase the chance that these two terms will decrease 

simultaneously. 

This study uses a stochastic algorithm to calibrate the parameters of traffic flow 

models because there is no explicit relationship between traffic measurements and the 

parameters of traffic flow models. 

Simultaneous perturbation stochastic approximation (SPSA) (Spall, 1998) can 

solve the above model by estimating the gradient vector using only two objective 

function evaluations. The objective function evaluation in this study attempts to perform 

a DTA simulation with the updated traffic flow models. The minimization process of 

SPSA can be described in Equations 3.14 and 3.15: 

θi+1 = θi - ai ĝ(θi)        (3.14) 

where θi is the parameter vector in iteration i; ĝ(θi) is an estimation of the gradient 

vector; and ai is a gain factor. The gradient vector can be calculated using the following 

equation: 
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where z() is the objective function; ci is a decreasing sequence of small, positive 

numbers;, ∆i is a k-dimensional perturbation vector consisting of component-wise 
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perturbations represented by ∆ik,; and Diag[·] transforms the input elements into a 

diagonal matrix.  

Since the simultaneous calibration of traffic models is time-consuming for vectors 

of a large dimension, this study adopts a successive strategy to calibrate the traffic flow 

models one-by-one, instead of calibrating them all together as in the study by Balakrishna 

et al. (2007). The successive calibration steps are as follows: 

1. The link with maximum speed deviation is selected, and the parameters of the 

corresponding traffic flow model are calibrated using the proposed method. 

2. When the objective value does not decrease within a certain consecutive number 

of iterations, go to Step 1 to find the next traffic flow model to be calibrated. 

3. If the maximum iteration number is reached, terminate the procedure. 

The successive strategy imitates the intuitive manner in which this calibration 

problem would be handled manually. The successive strategy can effectively cut down 

the dimension of the vector of unknown variables for the stochastic algorithm, thus 

reducing the number of iterations significantly.  

3.6 Summary 

In this chapter, a complete methodology framework is proposed to solve the stated 

problems. Compared with existing dynamic O-D estimation models, the proposed 

methodology framework has two advantages over the existing dynamic O-D estimation 

models: (1) it can produce a high confidence level for the initial O-D matrix, which has 

the potential to significantly improve the accuracy of dynamic O-D estimation and reduce 

the associated computation time; (2) the framework can automatically convert traffic 

volume deviation to traffic density deviation in the objective function, under the 
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congested traffic conditions, to avoid the side impact from the proportional assignment 

assumption of the existing dynamic O-D estimation models. In addition, by converting 

the traffic volume data into traffic density data, the traffic speed data can be implicitly 

incorporated into the estimation model, which means more traffic information can be 

incorporated into the estimation model overall, thus contributing to the improvement of 

estimation performance.  

The methodology framework is composed of four parts, namely the traffic flow 

model calibration (TFMC) model, the initial O-D estimation (IODE) model, the dynamic 

O-D estimation (DODE) model, and the traffic flow model fine-tuning (TFMFT) model. 

The TFMC model aims to calibrate the supply-side parameters of the DTA model in order 

to ensure that the speed-density relationship in the DTA simulator mirrors real situations. 

TFMC uses a linear regression to calibrate the supply-side parameters. 

The IODE model aims to provide an accurate input O-D matrix for the DODE 

model to estimate results. The IODE is comprised of two parts: the static initial O-D 

matrix estimation (SIODE) model and the dynamic initial O-D matrix estimation 

(DIODE) model. The first part attempts to perform a static O-D matrix estimation based 

on a maximum likelihood (ML) estimation method. The second part further calibrates the 

resulting O-D matrix from the first part based on a GLS estimation model.  

The DODE model performs an enhanced dynamic O-D matrix estimation, 

especially in congested traffic conditions. Unlike the poor performance of existing 

estimation models using the problematic proportional assignment under congested traffic 

conditions, the DODE model can automatically detect the link with congested traffic 

conditions. Furthermore, the DODE method can go on to incorporate the speed data into 
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the model to revise the link proportion matrix in the estimation. Based on the theoretic 

analysis, this model can improve dynamic O-D matrix estimations. 

The TFMFT model further adjusts the parameters in the traffic flow models of the 

DTA simulator in order to match the simulated speed to the observed speed. However, 

there may be outlier data from the detectors; as such, the TFMC model cannot produce 

the best-fitted traffic flow models, and thus the TFMFT model is used. The successive 

SPSA algorithm is used to perform the TFMFT. When the size of the road network 

becomes large, it will take too long a time for the successive SPSA algorithm to perform 

a TFMFT. Thus, TFMFT is not a recommended method for this situation.  
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CHAPTER 4 

A SYNTHETIC CASE STUDY 

In this chapter, only the proposed dynamic O-D matrix estimation (DODE) model is 

applied to a hypothetical road network. The performance of the proposed dynamic O-D 

matrix estimation model is compared with that of a typical estimation model (Zhou et al., 

2003), shown in Equation 2.24. Zhou’s model is a classic bi-level dynamic O-D 

estimation model with a GLS optimization in the upper-level and with dynamic traffic 

assignment in the lower-level. Because Zhou’s model has a structure and input similar to 

the proposed dynamic O-D estimation model, Zhou’s model is chosen as the benchmark 

for comparison with the proposed model in order to clearly analyze the effect of each 

term in the proposed dynamic O-D estimation model. Section 4.1 introduces the 

configuration of the road network and traffic data; Section 4.2 implements the proposed 

DODE model; and Section 4.3 compares the performance of the proposed model with 

that of Zhou’s model.  

4.1 Road Network Configuration 

The case study is performed on a hypothetical freeway network and shown in Figure 4.1. 

The total number of O-D pairs is 1×1 (only 1→2). A detector is coded in the lower branch 

of the road network, and it collects traffic volume and speed data for each simulation time 

interval of 15 minutes. There are 8 simulation time intervals in total.  
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Figure 4.1 A hypothetical freeway road network.  
 
Two assumptions are made in this case study: 

1. An assumed traffic flow model is used for the hypothetical freeway network’s 

links. The employed traffic flow model is illustrated in Figure 4.2. 

2.  The real and initial O-D demands from Zone 1 to Zone 2, for each time interval, 

are shown in Table 4.1. The initial O-D matrix estimation model proposed in 

Chapter 3 on methodology is not used. In order to show the capability of a DODE 

model under initial congested conditions, the initial O-D matrix is set much 

higher than what the road network can support. For the purpose of simplicity, the 

elements of the O-D matrix, for all time intervals, are assumed to be equal. 

1 2 

Detector 
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Figure 4.2 Assumed traffic flow model.  
 
Table 4.1 Real and initial O-D demand. 
Time Intl. 1 2 3 4 5 6 7 8 
Real 600 600 600 600 600 600 600 600 
Initial 850 850 850 850 850 850 850 850 
Difference 41.7% 41.7% 41.7% 41.7% 41.7% 41.7% 41.7% 41.7% 

With the hypothetical road network and the assumed O-D matrix and traffic flow 

model, the DTA simulator is used to dynamically load the available O-D matrix onto the 

road network. After simulation, the traffic measurement data from the detector was 

extracted, as demonstrated by Figures 4.3 and 4.4. 

Figure 4.3 shows the simulated traffic speed when the real demand and initial 

demand are loaded onto the road network. Based on Figure 4.3, the initial O-D matrix 

causes heavy traffic congestion on the link with a detector, and the speed on the link 

decreases rapidly after the first time interval. Figure 4.4 shows the simulated traffic 

volume, which reflects the same congested traffic situation indicated in Figure 4.3. 
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Figure 4.3 Real and initial simulated traffic speed from the detector. 
 

 
Figure 4.4 Real and initial simulated traffic volume from the detector. 

Detailed information on simulation speed and volume is given in Table 4.2 and 

Table 4.3 below. 

Table 4.2 Real and initial traffic speed 
Time Intl. 1 2 3 4 5 6 7 8 
Real 38.5 38.65 39.96 40.03 39.73 39.36 39.72 39.91 
Initial 39.95 28.05 24.62 3.23 1 1 1 1 
Difference 4% -27% -38% -92% -97% -97% -97% -97% 
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Table 4.3 Real and initial traffic volume 
Time Intl. 1 2 3 4 5 6 7 8 
Real 319 304 305 303 303 302 308 319 
Initial 339 399 71 81 99 27 33 0 
Difference 6% 31% -77% -73% -67% -91% -89% -100% 
 
4.2 Dynamic O-D Matrix Estimation (DODE)  

In this case study, only the dynamic O-D matrix estimation (DODE) model is used to 

perform the estimation. This investigation will test the three terms integral to estimation 

model; namely the adaptive weighting factor, the adaptive conversion factor, and the 

transition term, respectively. 

Firstly, the proposed DODE model is employed to perform the estimation. The 

performance of the model is illustrated in Figure 4.5. 

 
Figure 4.5 Performance of the proposed dynamic O-D matrix estimation model.  
 

According to Figure 4.5, the model demonstrates a strong capability in dynamic 

O-D matrix estimation. After 8 iterations, the objective function value drops from 4.345 

to 0.008 and reaches the minimum solution point.  
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It is worth mentioning that there is a plateau in the first 5 iterations of Figure 4.5, 

which means that the objective function value does not decrease in these iterations. 

Figure 4.6 shows a comparison among real demand, initial demand, and the estimated 

demand after the first iteration. According to the figure, at the beginning, the model tends 

to overact to the congested traffic condition, and the estimated O-D demand is much less 

than the initial and real O-D demand. Under this circumstance, the weighting factor w in 

Equation 3.11 is increased automatically, which means more weight is needed to be 

assigned to the demand term of the objective function in order to reduce the adjustment 

magnitude of the dynamic O-D demand in the next iteration. The adjustment of the 

weighting factor will not terminate until the objective function value decreases after the 

fifth iteration, as illustrated in Figure 4.5.  

 
Figure 4.6 The comparison among real demand, initial demand and the estimated 
demand after the first iteration.  
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Table 4.4 compares the real traffic demand to the estimated traffic demand. Based 

on the table, there is a small difference between the real and estimated dynamic O-D 

demand, and the maximum relative error is below 3%.  

Table 4.4 Real and estimated O-D demand. 
Time Intl. 1 2 3 4 5 6 7 8 
Real 600 600 600 600 600 600 600 600 
Estimated 601 601 596 599 602 598 604 616 
Difference 0.17% 0.17% -0.67% -0.17% 0.33% -0.33% 0.67% 2.67% 

Table 4.5 shows the comparison between real speed and assignment speed based 

on the estimated traffic demand. The comparison is illustrated in Figure 4.7. According to 

the table and the figure, one can see that the simulated traffic speed data, based on the 

estimated O-D matrix, are close to those based on the real O-D matrix. The maximum 

relative error between them is below 4%. 

Table 4.5 Real and estimated traffic speed. 
Time Intl. 1 2 3 4 5 6 7 8 
Real 38.5 38.65 39.96 40.03 39.73 39.36 39.72 39.91 
Estimated 37.13 37.92 40.13 39.65 39.63 39.64 39.71 39.78 
Difference -3.56% -1.89% 0.43% -0.95% -0.25% 0.71% -0.03% -0.33% 
 

 
Figure 4.7 The comparison between real speed and estimated speed. 
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Table 4.6 shows the comparison between real volume and assignment volume 

based on the estimated traffic demand. The comparison is illustrated in Figure 4.8. 

According to the table and figure, one can see that traffic volume data, based on the 

estimated O-D matrix, are close to those based on the real O-D matrix. The maximum 

relative error between them is below 4%. 

Table 4.6 Real and estimated traffic volume 
Time Intl. 1 2 3 4 5 6 7 8 
Real 319 304 305 303 303 302 308 319 
Estimated 326 297 305 306 301 308 302 308 
Difference 2.19% -2.30% 0.00% 0.99% -0.66% 1.99% -1.95% -3.45% 
 

 
Figure 4.8 The comparison between real volume and estimated volume.  
 

In order to demonstrate the benefits of the three terms in the proposed DODE, 

namely the adaptive weighting factor, the adaptive conversion factor, and the transition 

term, the estimation is performed using a before-and-after strategy. With this strategy, the 

performance of the model is tested for scenarios with and without the proposed terms.  

Figure 4.9 shows the results of the before-and-after strategy. In the legend, 

“Proposed” stands for the estimation performance based on the proposed model. ”WOW” 
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represents the estimation performance based on the proposed model without the adaptive 

weighting factor term. “WOC” denotes the estimation performance based on the 

proposed model without the adaptive conversion factor term, and “WOT” represents the 

estimation performance based on the proposed model without the transition term. 

According to the figure, the performance of the estimation model is lower when 

excluding any of the three terms. The adaptive weighting factor seems to have the 

greatest contribution to the accuracy of the estimation result because without this 

adaptive factor, the objective function value does not decrease. 

 
Figure 4.9 The comparison among the model performance before-and-after the 
proposed terms are employed. 
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WOT_ERR (the relative error between the real O-D demand and the demand estimated 

by the model without the transition factor term), and WOT_ERR (the relative error 

between the real O-D demand and the demand estimated by the model without the 

adaptive weighting factor term). Based on the table, one can see that the estimation 

results become poor without any of the proposed terms.  

Table 4.7 The comparison of the estimation results before-and-after the proposed 
terms are used. 
Time Intl. 1 2 3 4 5 6 7 8 
Real 600 600 600 600 600 600 600 600 
Proposed 601 601 596 599 602 598 604 616 
WOC 827 1862 1452 1234 1115 1047 1011 996 
WOT 543 703 0 0 745 554 617 713 
WOW 850 850 850 850 850 850 850 850 
PROP_ERR 0.17% 0.17% -0.67% -0.17% 0.33% -0.33% 0.67% 2.67% 
WOC_ERR 38% 210% 142% 106% 86% 75% 69% 66% 
WOT_ERR -10% 17% -100% -100% 24% -8% 3% 19% 
WOW_ERR 42% 42% 42% 42% 42% 42% 42% 42% 

In order to demonstrate the advantages of the proposed model over the Zhou’s 

model (without the proposed three terms), their performances are compared in Figure 

4.10. According to the figure, Zhou’s model does not even cause a decrease in the 

objective function. Table 4.8 shows the comparison between the estimation demands 

based on both the proposed and Zhou’s estimation models, and also indicates the inability 

of Zhou’s estimation model to deal with congested traffic conditions. 
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Figure 4.10 Comparison of performance between the proposed DODE model and the 
Zhou’s model. 

Table 4.8 compares the estimation results from the proposed DODE model with 

the results from Zhou’s estimation model. In the table, PRO_ERR and TRD_ERR 

represent the relative errors of the proposed model and Zhou’s model, respectively. 

According to the table, one can see that, for Zhou’s model, the smallest estimation error 

is 12% and the largest error is 400%. The main reason for this weakness in Zhou’s model 

is that it holds the assumption of erroneous proportional assignment, and it cannot 

incorporate the useful observed speed data. 

Table 4.8 The comparison of the estimation result based on the proposed DODE and 
Zhou’s estimation model. 
Time Intl. 1 2 3 4 5 6 7 8 
Real 600 600 600 600 600 600 600 600 
Proposed 601 601 596 599 602 598 604 616 
Zhou’s 674 3000 851 845 849 855 850 852 
PRO_ERR 0.17% 0.17% -0.67% -0.17% 0.33% -0.33% 0.67% 2.67% 
TRD_ERR 12% 400% 42% 41% 42% 43% 42% 42% 
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4.3 Summary 

In this chapter, the proposed dynamic O-D matrix estimation (DODE) model is 

implemented in a hypothetical road network. Using a before-and after-strategy, the three 

terms in the proposed model were proven effective. Finally, performance comparisons 

show that the proposed model demonstrates several advantages over Zhou’s model.  

It is worth mentioning that the better performance of the proposed model lies in 

three ideal conditions: (1) the links’ traffic flow models are calibrated accurately; (2) the 

historical traffic demand pattern is known in advance; and (3) detectors installed on the 

road link can catch traffic information from all O-D pairs. In reality, these conditions are 

not easy to meet. Nevertheless, the proposed estimation model shows an overall robust 

performance, as will be demonstrated by the case studies in the following two chapters.  
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CHAPTER 5 

A CASE STUDY IN I-95 

This chapter aims to demonstrate the feasibility and strength of the proposed 

methodology for a midsized road network. In this chapter, Section 5.1 discusses 

preparing the road network. Traffic flow models are calibrated in Section 5.2. Initial O-D 

matrix is estimated in Sections 5.3 and 5.4. Dynamic O-D matrix is estimated in Section 

5.5. Traffic flow models are fine-tuned in Section 5.6. Finally, the dynamic O-D matrix is 

re-estimated based on the fine-tuned traffic flow model in Section 5.7. 

5.1 Road Network Configuration 

The study road network is a section of northbound interstate highway I-95 in Miami-

Dade County, Florida. The road segment under study is between NW 62 Street and NW 

183 Street. The CUBE is used to extract the study road network and initial traffic demand 

matrix from the Southeast Florida Regional Planning Model (SERPM 6.5). The extracted 

road network (Figure 5.1) comprises 68 links and 21 zones. In Figure 5.1, the links with 

shallow color indicate that detectors are installed. In the boxes of the figure are the zone 

numbers. The study time horizon is the afternoon peak-period (three hours) on a typical 

work day. The basic time interval for the dynamic O-D matrix is set at 15 minutes, since 

that duration is considered adequate for a traveler to traverse a given section of the road 

network. The number of the basic time intervals is 3×60/15 = 12 for the dynamic O-D 

matrix. Initially, the number of unknown O-D demand variables is 21×21×12.  

Traffic detectors were installed by the Florida Department of Transportation 

(FDOT) District 6. Traffic data including traffic volume traffic speed and traffic 

occupancy are collected by these detectors every 20 seconds. In the study road network, 
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there are a total of 18 detectors, and 10 of them are installed on the main stream of I-95. 

The other eight detectors are installed in the at-ramp of I-95, and they only collect traffic 

volume data. The collected traffic measurement data are aggregated into 15-minute 

intervals. 

 

 
Figure 5.1 Road network structure and detector locations. 
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5.2 Traffic Flow Model Calibration 

Based on the proposed linear regression algorithm, traffic flow models can be easily 

calibrated. There are 10 links in the network with detectors collecting both traffic speed 

and traffic occupancy data. Traffic occupancy data can be roughly converted into density 

data based on Equation 5.1, given the average length of vehicles and detectors.  

dv LL
OD

+
×

=
280,5

        (5.1) 

where O is the occupancy, D is the traffic density data (veh/mi/ln), Lv is the average 

length of vehicles (in feet), and Ld is the length of the detector (in feet). 

With the available traffic data, the corresponding 10 traffic flow models can be 

calibrated as shown in Table 5.1. In the table, parameters α , Uf , Kj , and Kb are selected 

for later fine-tuning and their range of values, obtained from the scatter plot, are also 

provided as the values included in brackets. Vf is dependent on other variables based on 

the traffic flow model. According to the speed and density plot, there is not much 

information on Kj, thus the values of Kj and Vf are fixed .  

Table 5.1 Results of traffic flow model calibration. 
model # α Uf V0 Vf Kj Kb R2 

1 5.30 [1.2,10] 60 [55,60] 12 [8,15] 109 200 25 [10,35] 0.70 
2 5.63 [1.2,10] 59 [54,64] 12 [8,15] 112 200 25 [15,35] 0.60 
3 3.38 [1.2,10] 55 [50,60] 12 [8,15] 80 200 25 [15,35] 0.70 
4 4.14 [1.2,10] 66 [61,71] 12 [8,15] 106 200 25 [15,35] 0.73 
5 4.47 [1.2,10] 60 [55,65] 12 [8,15] 99 200 25 [15,35] 0.58 
6 4.15 [1.2,10] 63 [58,68] 12 [8,15] 101 200 25 [15,35] 0.58 
7 4.25 [1.2,10] 59 [54,64] 12 [8,15] 95 200 25 [15,35] 0.57 
8 3.96 [1.2,10] 60 [55,65] 12 [8,15] 93 200 25 [15,35] 0.51 
9 4.63 [1.2,10] 63 [58,68] 12 [8,15] 107 200 25 [15,35] 0.52 
10 3.00 [1.2,10] 56 [51,61] 12 [8,15] 78 200 25 [15,35] 0.76 
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Figure 5.2 shows the calibration result for a typical traffic flow model, which depicts the 

general density-speed relationship for a road link. 

 
Figure 5.2 A typical traffic flow model calibration.  

There are a total of 32 mainstream links in the study network. The 10 traffic flow models 

are simply assigned to these links in accordance with the distance between these links and 

the detectors. For ramps, because speed and occupancy data are unavailable, the default 

traffic flow model functions in the DYNASMART-P are used for them, which will not be 

adjusted in the traffic flow model fine-tuning (TFMFT) step. 

5.3 Static Initial O-D Matrix Estimation (SIODE) 

An O-D matrix can be extracted from the SERPM model for an afternoon peak-period of 

three hours. It is then factorized into 15-minute, sub-period O-D matrices based on the 

traffic volume distribution pattern. These factorized O-D matrices are subsequently 

calibrated based on the 15-minute observed traffic volume data by using the proposed 

initial O-D matrix estimation (SIODE) model. 
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The SIODE model can be implemented by CUBE ANALYST (Citilabs 2004). 

CUBE ANALYST is a module of the CUBE developed specifically for estimating trip 

matrices based on the maximum likelihood model. CUBE ANALYST enables the user to 

exploit a wide variety of data to estimate the O-D matrix. The flow chart of SIODE 

implemented by CUBE ANALYST is presented in Figure 5.3. 

 
Figure 5.3 Flowchart of static initial O-D matrix estimation (SIODE). 

The estimation result is evaluated based on the comparison between the static 

assignment traffic volumes with the O-D matrix before-and-after SIODE. RMSPE (root 

mean square percent error) is chosen to evaluate the estimation results, as shown:  
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where S
nY  is the assignment item for n time intervals and o

nY is the observed item for n 

time intervals. In this case study, n = 12.  

The final results are shown in Table 5.2. Based on the last two columns of the 

table, it can be seen that after SIODE, there is a significant improvement in RMSPE 

between observed traffic volume and assigned traffic volume for screenlines. The average 

of the RMSPE for volume has been reduced from 0.32 to 0.07.  

Table 5.2 Comparison between static assignment traffic volumes before-and-after 
SIODE. 

Screen 
line 

Avg. 
observed 

volume per 
15 minutes 

Avg. assignment volume per 
15 minutes RMSPE for volume 

Before SIODE  After SIODE  Before 
SIODE  

After 
SIODE 

1 1,148 867 1,193 0.24 0.04 
2 798 577 866 0.28 0.09 
3 1,376 899 1,234 0.35 0.10 
4 2,202 1,532 2,128 0.30 0.04 
5 2,133 1,457 1,989 0.32 0.07 
6 2,129 1,626 2,129 0.24 0.01 
7 1,869 1,683 2,068 0.10 0.11 
8 2,039 1,580 1,999 0.23 0.02 
9 2,066 1,640 1,991 0.21 0.04 
10 2,081 1,676 2,041 0.20 0.02 
11 174 63 158 0.64 0.09 
12 59 81 63 0.41 0.08 
13 180 66 157 0.63 0.13 
14 98 118 98 0.24 0.02 
15 138 100 126 0.27 0.08 
16 192 88 181 0.54 0.06 
17 188 101 170 0.46 0.10 
18 181 201 195 0.14 0.08 

Avg 1,058 798 1,044 0.32 0.07 

Figure 5.4 illustrates the comparison of RMSPE for volumes before-and-after 

SIODE. According to the figure, it can be seen that the RMSPE for volume has been 

reduced at almost every detector after SIODE. 
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Figure 5.4 Comparison of assignment volume RMSPE before and after SIODE  

5.4 Dynamic Initial O-D Matrix Estimation (DIODE) 

The DIODE model is used to improve the result of SIODE with the aid of dynamic traffic 

assignment. The two sub-models in DIODE are employed, and their performance is 

illustrated by Figures 5.5 and 5.6, respectively. Sub-model 1 reaches convergence after 

one iteration, and the objective function value drops from 1.395 to 1.372. The Sub-model 

2 reaches convergence after two iterations, and the objective function value drops from 

1.372 to 1.331. Although Equation 3.11 is used to estimate the dynamic O-D matrix, due 

to the effect of the adaptive weighting factor, the adaptive conversion factor, and the 

transition term, the value of Equation 3.11 cannot reflect the real deviation between the 

simulated and observed traffic volumes. In those two Figures, the objective function 

value is calculated based on the sum square of relative errors (SSRE) of observed 

volumes and simulated volumes, which are defined as SSRE = ∑k, t [(Vk ,t - Vk
O

,t)/ Vk
O

,t]2. 
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DIODE does not significantly reduce the objective function in this case study. 

This is because the network size is small and there is not much difference between the 

static and dynamic route choices that SIODE has already given a good initial O-D matrix 

estimation. When a road network becomes large, DIODE can significantly improve the 

initial estimation result of the SIODE, which will be shown in the next chapter. It should 

be mentioned that the DIODE models have advantages in saving computation time, for 

they involve only a few variables. In this case study, Sub-model 1 has one variable, and 

the Sub-model 2contains 12 variables. With the aid of the DIODE models, the estimation 

results are further improved, which is shown in Figure 5.7.  

 
Figure 5.5 Performance of DIODE model 1. 
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Figure 5.6 Performance of DIODE model 2. 

 

Figure 5.7 Comparison of RMSPE for assignment volume before-and-after DIODE. 

In Figure 5.7, the solid line represents the RMSPE between the observed volume 

and the dynamic assignment volume based on the O-D demand estimated by the SIODE 

model. The dashed line stands for the RMSPE between the observed volume and the 

dynamic assignment volume based on the O-D demand estimated by the DIODE. The 

detailed traffic volume deviation before-and-after DIODE is illustrated in Table 5.3. 
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Based on the table, the average RMSPE for volume has been reduced from 0.73 to 0.71 

after DIODE.  

Table 5.3 Comparison of traffic volume RMSPE before-and-after DIODE. 

Screen 
line  

Avg. 
observed 
volume per 
15 minutes 

Avg. assignment volume per 
15 minutes RMSPE for volume 

Before 
DIODE  

After 
DIODE  

Before 
DIODE  

After 
DIODE 

1 1,148 1199 1208 0.052 0.058 
2 798 871 877 0.103 0.108 
3 1,376 1241 1250 0.099 0.092 
4 2,202 2142 2159 0.043 0.042 
5 2,133 2001 2016 0.065 0.060 
6 2,129 2140 2157 0.022 0.033 
7 1,869 2075 2091 0.111 0.120 
8 2,039 2000 2017 0.024 0.021 
9 2,066 1987 2003 0.041 0.034 
10 2,081 2042 2060 0.021 0.017 
11 174 159 160 0.088 0.080 
12 59 63 63 0.139 0.131 
13 180 158 160 0.121 0.115 
14 98 101 102 0.061 0.063 
15 138 127 128 0.079 0.075 
16 192 181 182 0.067 0.057 
17 188 172 173 0.091 0.083 
18 181 195 197 0.085 0.092 

Avg. 1,058 1,047 1,056 0.073 0.071 

5.5 Dynamic O-D Matrix Estimation (DODE) 

With the estimated initial O-D matrix as demand side input and the calibrated traffic flow 

models as supply side input, the proposed dynamic O-D matrix estimation (DODE) 

model is used to perform the dynamic O-D matrix estimation. Nonlinear integer 

programming is used to solve the upper-level problem, and DYNASMART-P is used to 

solve the dynamic traffic loading problem in the lower-level. It takes four iterations for 

the DODE model to reach a convergent solution, as illustrated in Figure 5.8. The 

objective function value is reduced from 1.33 to 0.025.  
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Figure 5.8 Performance of the DODE model. 

Tables 5.4 and 5.5 provide a comparison of traffic volume and speed, 

respectively, after assigning the estimated dynamic O-D matrix onto the road network. 

According to Table 5.4, it can be seen that after the derived DODE simulated volumes 

are close to the observed volumes, the average RMSPE for volume is reduced from 0.07 

to 0.01. The comparison in Table 5.4 is illustrated in Figure 5.9. However, there are still 

large deviations in the RMSPE for speed after the DODE, according to Table 5.5. In 

order to reduce such differences, the traffic flow model fine-tuning (TFMFT) is 

performed, as is presented in the next section. 
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Figure 5.9 Comparison of RMSPE for assignment volume before and after DODE. 
 
Table 5.4 Comparison of assignment traffic volume before-and-after DODE. 

Screen 
Line 

Avg. Observed 
Volume per 15 
Minutes 

Avg. Simulated volume per 
15 Minutes RMSPE for Volume 

Before DODE  After DODE  Before DODE  After DODE 
1 1,148 1,208 1,161 0.058 0.009 
2 798 877 794 0.108 0.013 
3 1,376 1,250 1,373 0.092 0.008 
4 2,202 2,159 2,186 0.042 0.005 
5 2,133 2,016 2,035 0.060 0.018 
6 2,129 2,157 2,103 0.033 0.012 
7 1,869 2,091 1,972 0.120 0.027 
8 2,039 2,017 2,027 0.021 0.002 
9 2,066 2,003 2,049 0.034 0.001 
10 2,081 2,060 2,102 0.017 0.002 
11 174 160 174 0.080 0.007 
12 59 63 59 0.131 0.008 
13 180 160 180 0.115 0.005 
14 98 102 98 0.063 0.008 
15 138 128 137 0.075 0.005 
16 192 182 193 0.057 0.005 
17 188 173 188 0.083 0.004 
18 181 197 181 0.092 0 

Avg. 1,058 1,056 1,056 0.07 0.01 
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Table 5.5 Comparison of traffic speed before and after DODE. 

Screen 
Line 

Avg. 
Observed 
Speed per 
15 Minutes 

Avg. Simulated Speed per 15 
Minutes RMSPE for Speed 

Before DODE  After DODE  Before DODE  After DODE 

1 45 49 50 0.169 0.181 
2 55 58 58 0.068 0.068 
3 45 53 51 0.212 0.181 
4 43 59 55 0.549 0.522 
5 48 62 61 0.416 0.406 
6 51 60 60 0.199 0.194 
7 42 59 58 0.412 0.403 
8 48 62 62 0.310 0.304 
9 44 59 58 0.350 0.331 
10 53 66 65 0.256 0.239 

Avg. 47 59 58 0.294 0.283 

For the purpose of comparison, Zhou’s dynamic O-D matrix estimation model is 

used to perform the estimation in this case study. The initial O-D matrix is extracted from 

the SERPM model and factorized into multi-period O-D matrices by the volume 

proportional factor. The traffic flow models are used from Table 5.1. The performance of 

Zhou’s estimation model is shown in Figure 5.10. According to the figure, the objective 

function value drops from 28.06 to 0.25 after 50 iterations. In the proposed methodology 

framework, with negligible computation time spent in SIODE, it takes three iterations for 

the DIODE model to reduce the objective function value from 28.06 to 1.33. Finally, it 

takes four iterations for the DODE to reach the final objective function value of 0.025. 

The total number of iterations for the proposed methodology framework is seven, and the 

final objective function value is 0.025. The comparison of the traffic volume and speed 

between the proposed model and Zhou’s model is presented in Table 5.6. One can see 

from the table that after Zhou’s model estimation, the average RMSPE for volume is 

0.023 and for speed 0.285. After DODE, the average RMSPE for volume is 0.010 and for 
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speed 0.283. The conclusion is that the proposed methodology framework performs 

better than Zhou’s model in this case study. 

 
Figure 5.10 Performance of Zhou’s dynamic O-D matrix estimation model. 
 
Table 5.6 Comparison of traffic volume and speed based on DODE and Zhou’s 
model. 

Screen 
line  

RMSPE for volume RMSPE for speed 
After Zhou’s 
model estimation After DODE  After Zhou’s 

model estimation After DODE 

1 0.016 0.009 0.198 0.181 
2 0.031 0.013 0.066 0.068 
3 0.013 0.008 0.182 0.181 
4 0.045 0.005 0.533 0.522 
5 0.068 0.018 0.414 0.406 
6 0.016 0.012 0.192 0.194 
7 0.100 0.027 0.401 0.403 
8 0.016 0.002 0.299 0.304 
9 0.021 0.001 0.336 0.331 
10 0.010 0.002 0.231 0.239 
11 0.002 0.007 X X 
12 0.039 0.008 X X 
13 0.005 0.005 X X 
14 0.008 0.008 X X 
15 0.010 0.005 X X 
16 0.007 0.005 X X 
17 0.006 0.004 X X 
18 0.004 0 X X 

Avg. 0.023 0.010 0.285 0.283 
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5.6 Traffic Flow Model Fine Tuning (TFMFT) 

The purpose of this section is to successively adjust the parameters in each traffic flow 

model to reduce speed deviation without increasing volume deviation. As mentioned in 

Section 3.5, the successive SPSA algorithm is used to calibrate each of the traffic models. 

Before using the algorithm, coefficients in the algorithm need to be predefined.  

Spall (1998) recommended that, for the coefficients in gain sequences ai = a/(A + 

i + 1)α and ci = c/(i + 1)γ in the SPSA algorithm, the coefficients α and γ should be around 

0.602 and 0.101. He also suggested that the basic ±1 Bernoulli distribution be used to 

describe the components of perturbation vectors. In this case study, through trial and 

error, the other parameters of the SPSA algorithm are set to a = 50, c = 5, and A = 100. 

The maximum number of iterations for the SPSA is set to 400. For the calibration of each 

traffic flow model, the SPSA algorithm is switched to the next candidate traffic flow 

model if, (1) no better result is found in 30 consecutive iterations, or (2) the objective 

function value has reached the predefined level.  

The performance of the successive SPSA algorithm for traffic flow model 

calibration is illustrated in Figure 5.11. Based on the figure, after about 300 iterations, a 

satisfying solution is found. After calibrating traffic flow models using the successive 

SPSA algorithm, there is improvement in the RMSPE for speed. The RMSPE for speed 

has been reduced from 0.28 to 0.17, while the RMSPE for volume did not change 

significantly. The results are provided in Table 5.7, where “X” means no data are 

available because the detectors at the corresponding screenlines did not collect traffic 

speed data.  
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Figure 5.11 Performance of the successive SPSA algorithm for TFMFT. 
 

Table 5.7 Traffic volume and speed comparison after TFMFT.  

Screen 
Line 

Avg. Volume per 15 Minutes  
RMSPE 

for 
Volume 

Avg. Speed per 15 Minutes RMSPE 
for 

Speed Observed  After TFMFT  Observed  After TFMFT  

1 1,148 1,164 0.02 45 49 0.16 
2 798 795 0.02 55 58 0.07 
3 1,376 1,375 0.01 45 50 0.16 
4 2,202 2,193 0.03 43 39 0.26 
5 2,133 2,039 0.05 48 47 0.24 
6 2,129 2,108 0.02 51 58 0.17 
7 1,869 1,972 0.06 42 46 0.12 
8 2,039 2,028 0.01 48 55 0.18 
9 2,066 2,049 0.01 44 51 0.18 
10 2,081 2,102 0.01 53 62 0.18 
11 174 174 0.00 X X X 
12 59 59 0.01 X X X 
13 180 180 0.00 X X X 
14 98 98 0.00 X X X 
15 138 137 0.00 X X X 
16 192 193 0.01 X X X 
17 188 188 0.00 X X X 
18 181 181 0.00 X X X 

Avg. 1,058 1,058 0.01 47.4 51.5 0.17 
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5.7 Iterations between DODE and TFMFT 

Based on the proposed methodology, DODE and TFMFT are iterated to obtain 

the best solution. For this case study, only two iterations are needed to reach a stable 

solution. The final calibrated traffic flow models are presented in Table 5.8. Table 5.9 

presents the comparison between the observed volume and speed and the assignment 

volume and speed, where ODTFM represents the combination between the dynamic O-D 

matrix estimation and traffic flow model fine-tuning. It can be seen that the average 

RMSPE for volume is 0.01. The average RMSPE for speed is 0.130.  

Table 5.8 Results of traffic flow model calibration. 
model # α Uf V0 Vf Kj Kb 

1 1.38 47.78 8.80 50.70 200 10.19 
2 2.49 55.71 10.35 71.34 200 22.42 
3 1.46 50.17 10.99 56.08 200 18.35 
4 1.22 56.38 9.12 61.53 200 16.27 
5 2.85 53.66 12.51 64.73 200 16.04 
6 2.23 56.29 11.43 64.81 200 15.00 
7 3.46 51.11 9.59 63.97 200 15.00 
8 1.64 53.36 10.01 60.04 200 16.74 
9 1.82 53.34 9.82 59.97 200 15.00 

10 1.34 50.05 9.51 56.28 200 20.24 
 

The reason a higher RMSPE for speed is obtained, compared to that for volume, 

may be attributed to three reasons: (1) erroneous assignment of the traffic flow model to 

the closed links, since more traffic data need to be collected to calibrate the traffic flow 

model in other links; (2) low-performance of the stochastic algorithm; and/or (3) the 

mesoscopic simulation model embedded in the DTA simulator cannot simulate changes 

of speed due to some traffic conditions, such as traffic weaving before and after an 

interchange. Further study is needed to address these problems. 
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Table 5.9 Final assignment traffic volume and traffic speed comparison. 
Screen 
Line 

Avg. Volume per 15 Minutes RMSPE Avg. Speed per 15 Minutes RMSPE 
Observed  After ODTFM  Volume Observed  After ODTFM Speed 

1 1,148 1,158 0.02 45 46 0.12 
2 798 796 0.01 55 58 0.07 
3 1,376 1,375 0.01 45 46 0.11 
4 2,202 2,190 0.03 43 40 0.26 
5 2,133 2,040 0.05 48 45 0.21 
6 2,129 2,098 0.02 51 52 0.09 
7 1,869 1,963 0.05 42 46 0.11 
8 2,039 2,034 0.01 48 50 0.07 
9 2,066 2,051 0.01 44 46 0.11 

10 2,081 2,101 0.01 53 57 0.11 
11 174 174 0.00 X X X 
12 59 59 0.01 X X X 
13 180 180 0.00 X X X 
14 98 98 0.00 X X X 
15 138 137 0.00 X X X 
16 192 193 0.01 X X X 
17 188 188 0.00 X X X 
18 181 181 0.00 X X X 

Avg. 1,058 1,056 0.01 47.4 48.6 0.13 

Figure 5.12 plots the observed volume against the assignment volume based on 

the calibrated traffic flow model and estimated dynamic O-D matrix. In the figure, the fit 

line is a red color, indicating the closeness between observed volume and assignment 

volume. Based on the equation of the fit line, it can be seen that the link volume 

generated by the estimated O-D matrix is close to the observed volume. Figure 5.13 

illustrates the comparison between the observed speed and the final assignment speed 

based on the estimated O-D matrix. According to the figure, it can be seen that the fitness 

between them is not satisfying, which is indicated in Table 5.9.  
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Figure 5.12 Observed volume versus final assignment volume.  

 
Figure 5.13 Observed speed versus final assignment speed.  
 

5.8 Summary 

This chapter presents a case study for a dynamic O-D matrix estimation on a segment of 

I-95. The traffic flow model calibration (TFMC) model employs linear regression to 

calibrate the parameters of traffic flow models in the DTA model. The calibration is 

reasonable and the average R square is around 0.70. The initial O-D estimation (IODE) 
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model can produce a good initial input and reduce the computational time for the 

dynamic O-D estimation (DODE) model. It can also reduce the objective function value 

from 28.05 to 1.33 in about four iterations. 

With the estimated initial O-D matrix, the dynamic O-D estimation (DODE) 

model can obtain the improved result in four iterations, and the objective function value 

drops from 1.33 to 0.025. By comparison, it takes 50 iterations for Zhou’s dynamic O-D 

matrix estimation model to reach the final objective function value of 0.250. Therefore, 

the proposed models demonstrate a better performance than Zhou’s model  in this case 

study. 

The traffic flow model fine-tuning model (TFMFT) uses the successive SPSA 

algorithm to fine-tune the traffic flow model of the DTA simulator. Instead of calibrating 

the traffic flow models simultaneously, this study uses a successive strategy to calibrate 

them one-by-one. This strategy can reduce the dimensions of the unknown variables 

significantly, thus improving the performance of the original SPSA algorithm. The 

RMSPE for speed drops from 0.280 to 0.120. When the estimated dynamic O-D matrix is 

loaded onto the calibrated road network, the average RMSPE for volume is 0.010, and 

the RMSPE for speed is 0.130.  
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CHAPTER 6 

A CASE STUDY OF JACKSONVILLE 

This case study is designed to demonstrate the performance of the proposed methodology 

framework for a large-scale network. The case study is performed on the road network 

for Jacksonville, Florida. The road network and initial O-D demand are extracted from 

the integrated Florida statewide model (FLSWM). The basic time interval for the 

dynamic O-D matrix is set at 15 minutes. The number of basic time intervals is eight for 

the dynamic O-D matrix, with the study conducted from 18:00 to 20:00 on a typical work 

day. In this chapter, the road network and initial O-D matrix are prepared in Section 6.1, 

traffic flow models are calibrated in Section 6.2, the initial O-D matrix is estimated in 

Section 6.3, and the dynamic O-D matrix is estimated in Section 6.4.  

6.1 Subarea Road Network and Initial Traffic Demand Preparation 

CUBE is used to extract the subarea network and initial period O-D matrix from 

FLSWM. The extracted subarea network is presented in Figure 6.1. The subarea network 

includes interstate highway I-10, I-95, and I-295 and some arterials. There are a total of 

1,238 links and 143 zones in the subarea network. Based on the traffic volume 

distribution factors, the extracted period O-D matrix is then factorized into a series of 

sub-period O-D matrices for the input of initial O-D estimation in Section 6.3.  
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Figure 6.1 Subarea road network in Jacksonville, FL. 
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6.2 Traffic Data Preparation and Traffic Flow Model Calibration 

There are a total of 35 detectors selected to provide traffic measurement data for the 

dynamic O-D matrix estimation. The detectors are listed in Table 6.1, with the locations 

of these detectors specified in Figure 6.2. Traffic data including speed, volume, and 

occupancy are collected from these detectors within a time interval of 15 minutes.  

Table 6.1 Detector and road link.  

Num. Detector 
Link Node 

Num. Detector 
Link Node 

A B A B 
1 220022 118541 118542 19 200052 118741 119989 
2 220122 118488 119962 20 200042 122802 119994 
3 220142 120536 118544 21 210312 120057 122036 
4 220202 118483 118478 22 210362 119140 120060 
5 220362 118547 118475 23 210442 121604 121925 
6 220432 118549 118550 24 210632 119151 119152 
7 220562 118465 119950 25 210692 119154 119155 
8 220602 118551 118552 26 210711 121013 120788 
9 220631 122230 120971 27 210511 119133 119136 

10 220551 121413 120520 28 210371 119119 119120 
11 220491 118435 118436 29 210211 119122 119123 
12 220382 120512 120513 30 210171 119147 121602 
13 220311 118440 120514 31 210041 121457 118668 
14 220131 118442 118443 32 200091 118674 118676 
15 220071 118491 118494 33 200141 118706 118677 
16 220011 120970 118445 34 200201 118680 118681 
17 200132 118750 118705 35 200242 121466 118718 
18 200082 118751 118752        
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Figure 6.2 The location of detectors in the subarea road network. 

According to the availability of traffic data, a total of ten traffic flow models are 

calibrated based on the proposed linear regression algorithm, as presented in Table 6.2. 
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Table 6.2 Traffic flow model parameters. 
Model Uf Kb Vf V0 Kj α R2 

1 52 28 112 6 200 5.59 0.70 
2 65 22 106 6 200 4.59 0.88 
3 62 33 133 6 200 4.48 0.85 
4 65 18 99 6 200 4.12 0.83 
5 69 20 126 6 200 6.11 0.64 
6 69 27 130 6 200 4.71 0.75 
7 64 23 110 6 200 4.75 0.83 
8 70 25 103 6 200 3.05 0.79 
9 68 27 170 6 200 6.74 0.91 
10 60 23 90 6 200 3.60 0.85 

6.3 Initial O-D Matrix Estimation (IODE) 

The initial O-D matrix estimation includes two parts: the static initial O-D matrix 

estimation and the dynamic O-D estimation. The static initial O-D matrix estimation 

(SIODE) is performed with the aid of the CUBE ANALYST program. CUBE 

ANALYST requires road network, traffic count, initial O-D matrix, and so forth as 

inputs. The initial estimation methodology flow chart is presented in Figure 5.3. 

The extracted subarea O-D matrix is a daily O-D matrix, which needs to be 

factorized into a sequence of 15 minutes based on O-D matrices to be used as input for 

CUBE ANALYST. The daily O-D matrix is factorized based on the ratio of observed 

traffic volume in a certain time interval to the total observed traffic volume. 

The initial O-D matrices are estimated based on the SIODE model. Like the 

previous case study in Chapter 5, RMSPE for volume is used to evaluate SIODE result. 

In Figure 6.3, the solid line represents the RMSPE between observed volume and static 

assignment volume based on the initial demand for the 35 detectors, and the dashed line 

stands for the RMSPE between observed volume and static assignment volume based on 

the estimated demand for the 35 detectors. The average RMSPE is reduced from 0.369 to 
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0.111 as the result of SIODE. The figure demonstrates that the SIODE estimation 

improves the accuracy of the initial O-D matrix. 

 

 
Figure 6.3 Comparison between assignment volume before-and-after SIODE. 

SIODE depends on static assignment methods. The estimated O-D matrix needs 

to be further tuned based on dynamic traffic assignment methods. The DIODE model is 

used to further tune the estimated O-D matrix. The two proposed sub models in DIODE 

are used, and their performances are illustrated in Figures 6.4 and 6.5. Sub-model 1 

reaches convergence after three iterations, and the objective function value drops from 

400 to 48. Sub model 2 reaches convergence after six iterations, and the objective 

function value drops from 48 to 45. The DIODE model also proves advantageous in 

saving computation time, since it contains only a few variables. In this case study, Sub-

model 1 has one variable, and Sub-model 2 has eight variables.  
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Figure 6.4 Performance of DIODE Sub-model 1. 
 

 
Figure 6.5 Performance of DIODE Sub-model 2. 
 

With the aid of the DIODE model, the estimation result is improved, as is 

illustrated in Figure 6.6. In the figure, the solid line represents the RMSPE for volume 

before DIODE. The dashed line stands for the RMSPE of volume after DIODE. The 

average RMSPE for volume is reduced from 1.044 to 0.362. It should be mentioned that 
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the RMSPE for volume before DIODE in Figure 6.6 is different from that in Figure 6.3, 

because the assignment traffic volume is obtained from the static assignment in Figure 

6.3 and from the dynamic assignment in Figure 6.6.  

 
Figure 6.6 Comparison between assignment volume before-and-after DIODE. 

6.4 Dynamic O-D Matrix Estimation (DODE) 

After the initial O-D matrix estimation, the proposed dynamic O-D matrix estimation 

(DODE) model is used to estimate the dynamic O-D demand. Since there are more 

unknown variables (dynamic O-D pairs, 147×147×12) than those of available constraint 

traffic information (available traffic measurement 35×8×2), extra constraints are needed 

for the DODE model.  

In this case study, additional capacity constraints are used. The assumption is that 

a traffic analysis zone (TAZ) will not produce or attract more trips than those of the road 

network connected with the TAZ can afford within the whole study periods. This idea 

can be illustrated in Figure 6.7, where A and H represent two different TAZs, AB and 

GH are the links directly connected with the TAZs, and BC, BD, EC, and EG are 
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connected with link AB and link GH. In the DTA simulator DYNASMART, usually a 

very large capacity is assigned to link AB and GH, also called the generation link, so that 

the capacity bottlenecks often occur in link BD and BC for TAZ A, and in link EG and 

FG for TAZ H. Thus, the production constraint for TAZ A is the traffic production of 

TAZ A ≤ capacity of link BC plus capacity of link BD. In the same way, the attraction 

constraint for TAZ H is attraction of TAZ H ≤ capacity of link EG plus capacity of link 

FG.  

 

 

 

                         (a)                                                                               (b) 
Figure 6.7 Capacity constrain.  

 
Before using this capacity constraint, users need to make sure that there is no 

significant difference between the simulation and real road network in the connectors 

between TAZs and major roads; otherwise, the constraint may not reflect the real traffic 

conditions. In this study, with the proposed capacity constraints, the DODE model 

reaches a convergent solution point after 10 iterations, as illustrated in Figure 6.8, and the 

objective function value drops from 45.213 to 0.714. Figure 6.9 shows a comparison of 

RMSPE for volume before-and-after DODE. Based on the figure, the RMSPE of volume 

is reduced significantly. The average RMSPE for volume drops from 0.362 to 0.045 

through the DODE. 
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Figure 6.8 Performance of dynamic O-D matrix estimation (DODE).  
 

 
Figure 6.9 Comparison between assignment volume before-and-after DODE. 

Figure 6.10 compares the observed volumes and assignment volumes before 

DODE and Figure 6.11, after DODE. By comparing Figure 6.10 with Figure 6.11, one 

can conclude that the estimation result is reasonable, and that the real traffic count can be 

reflected by assigning the estimated dynamic O-D matrix to the network.  
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Figure 6.10 Assignment volumes versus observed volumes before SIODE. 

 

 
Figure 6.11 Assignment volumes versus observed volumes after DODE. 

Figure 6.12 shows a comparison of RMSPE for speed before-and-after applying 

the proposed models. Although there is much improvement on the RMSPE for speed, 

which has been reduced from 0.410 to 0.110, more work is needed since the RMSPE for 

the speed of some detectors is still large (around 0.5 after using the proposed models).  
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Figure 6.12 Comparison between assignment speed before-and-after applying the 
proposed methodology framework. 

In this case study, the proposed traffic flow model fine-tuning (TFMFT) model is 

not used since the stochastic optimization algorithm (sequential SPSA) requires 

simulation hundreds of times to reach a satisfying result. The large size of the network in 

this case study causes a much longer computation time. Thus, it is unrealistic to use the 

TFMFT model to calibrate the parameters of the traffic flow model.  

Finally, Zhou’s dynamic O-D matrix estimation model is used to perform the 

estimation for this case study. For the purpose of comparison, the initial O-D matrix is 

directly extracted from the SERPM model and factorized by the volume proportional 

factor. The traffic flow models are presented in Table 6.1. The performance of Zhou’s 

estimation model is illustrated in Figure 6.13. 
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Figure 6.13 Performance of Zhou’s dynamic O-D matrix estimation model. 

According to Figure 6.13, after 10 initial iterations, the objective function value 

drops from 450.213 to 10.491. In subsequent iterations, however, the objective function 

value stays the same. With the estimated O-D matrix from Zhou’s estimation model 

loading onto the road network, the average RMSPE for volume is 0.168 and 0.179 for 

average speed RMSPE. Comparatively, in the proposed estimation framework, with the 

negligible computation time spent by the SIODE, it takes six iterations for the DIODE to 

reach a stable solution, as indicated by Figures 6.4 and 6.5. Furthermore, it takes 10 

iterations for the DODE to reach a stable solution, as indicated by Figure 6.8. The total 

iteration number for the proposed methodology framework is 16. Its estimation results 

have the average volume RMSPE of 0.045 and speed RMSPE of 0.110. Based on the 

above comparison, it can be concluded that the proposed methodology has a better 

performance than Zhou’s model.  
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6.5 Summary 

In this chapter, the proposed methodology framework is applied to the regional road 

network in Jacksonville, FL. Before the application of the proposed models, there are two 

modifications to the methodology: (1) the capacity constraint is enforced to relieve the 

under-specification problem, and (2) the TFMFT model is not used due to the heavy 

computation burden. Through estimation, the objective function value drops from 

403.145 to 0.7 in 16 iterations. The average RMSPE for the assignment volumes is 

around 0.045 after the estimation. For the purpose of comparison, Zhou’s dynamic O-D 

matrix estimation model is also used to perform the estimation. The result shows that the 

objective function value drops from 450.213 to 10.491 in 10 iterations and will not 

decrease further. The average RMSPE for volume is 0.168 after the estimation by Zhou’s 

model. Based on the data, it can be concluded that the proposed estimation framework 

shows an improved performance when compared with Zhou’s estimation model. 

Although the average RMSPE for speed was reduced significantly after the dynamic O-D 

matrix estimation, it is still high. Future efforts should be aim at reducing the RMSPE for 

speed.  

  



 

115 

CHAPTER 7 

RESEARCH SUMMARY 

This study develops a dynamic O-D matrix estimation framework, which has better 

performance than existing models, especially under congested traffic conditions. This 

chapter provides conclusions about the performance of each model in the proposed 

framework, based on the case studies, and restates the original contribution of the 

proposed framework. 

7.1 Conclusions 

Compared with existing dynamic O-D estimation models, the proposed methodology 

framework has two advantages: (1) it can produce an initial O-D matrix with a high-

confidence level, which has the potential to significantly improve the accuracy of 

dynamic O-D estimation, and reduce the associated computation time; (2) the framework 

can automatically convert traffic volume deviation to traffic density deviation in the 

objective function, under the congested traffic condition, to avoid the side impact from 

the proportional assignment assumption of the existing dynamic O-D estimation models. 

In addition, by converting traffic volume data into traffic density data, traffic speed data 

are implicitly incorporated into the estimation model, which means more traffic 

information can be incorporated into the estimation model, thus contributing to the 

improvement in estimation performance.  

The proposed methodology framework includes four models: the traffic flow 

model calibration (TFMC) model, the initial O-D matrix estimation (IODE) model, the 

dynamic O-D matrix estimation (DODE) model, and the traffic flow model fine-tuning 

(TFMFT) model.  
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The IODE model aims to provide an accurate initial O-D matrix for the proposed 

DODE model. The advantages of the IODE are, (1) it can reduce the systematic deviation 

of the link traffic measurement while maintaining the information of the input O-D 

matrix in terms of relative relationship of O-D demand value; (2) it can relieve the 

problematic proportional assignment assumption by automatically converting the traffic 

volume deviation into traffic density deviation in the objective function, under congested 

traffic conditions; and (3) it can be solved without a heavy computational burden in that 

less variables are involved.  

The DODE model has three advantages over the existing estimation model. First, 

similar to the IODE model, the DODE model can relieve the problematic proportional 

assignment assumption by automatically converting the traffic volume deviation into 

traffic density deviation in the objective function, under congested traffic conditions. 

Second, it can adaptively update the weighting factor to restrict the magnitude of O-D 

demand adjustment to avoid the divergent problem. Finally, the DODE model can 

incorporate the temporal pattern of the historic O-D matrix into the estimation model to 

further improve estimation. 

Three case studies were performed to test the proposed method. In the first case 

study, a hypothetical network is used to test the DODE model under congested, initial 

traffic conditions. The DODE model demonstrates much better performance than that of 

Zhou’s model, reaching a good estimation result within eight iterations, while Zhou’s 

estimation model could not obtain a convergent result at all. 

In the second case study, the road network is a segment of I-95 in Miami-Dade 

County, FL. There are a total of 21 zones in the network. It takes seven iterations with the 
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proposed method to reach a convergent objective function value of 0.025, while it takes 

about 50 iterations with Zhou’s estimation model to reach an objective function value of 

0.250. After the estimation from the proposed models, the average RMSPE for volume is 

0.010, and the average RMSPE for speed is 0.283. In comparison, when Zhou’s model is 

used, the final average RMSPE for volume is 0.023, and the average RMSPE for speed is 

0.285. The case study demonstrates that the proposed method has better performance than 

Zhou’s model. In addition, the TFMFT model can reduce the average RMSPE for speed 

from 0.283 to 0.130. 

In the third case study, the road network is the regional road network in 

Jacksonville, FL. There are a total of 149 TAZs in the network. It takes 16 iterations for 

the proposed method to reach the objective function value of 0.70, compared to the 10 

iterations for Zhou’s estimation model to reach the final value of 10.71. Using the 

proposed method, the final average RMSPE for volume is 0.045, and the average RMSPE 

for speed is 0.110. When Zhou’s estimation model is used, the final average RMSPE for 

volume is 0.168, and the final average RMSPE for speed is 0.179. The case study shows 

that the proposed method is more efficient than Zhou’s model. The advantages of the 

proposed methodology framework in all three case studies demonstrate the feasibility of 

its application to a large network with an efficient estimation. 

7.2 Limitations and Future Work 

There are several limitations in the proposed method, which need to be addressed in 

future studies. Firstly, the IODE and DODE models cannot perform O-D matrix 

estimation on O-D pairs with a zero initial demand value. The existing O-D matrix 

estimation (dynamic or static) model has the same problem. The reason for this difficulty 
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is that the estimation is based on the link proportion matrix P, and P is generated based 

on the assignment results from the initial O-D demand matrix. If an O-D pair in the initial 

O-D matrix has zero demand value, then there is no corresponding contribution factor in 

P from this O-D pair to link volume. Consequently, the estimation model will not adjust 

the demand of the O-D pair. For this reason, the proposed framework fails to guarantee a 

good estimation for the skewed initial O-D demand matrix with multiple zero (missing) 

demand value. In the future, efforts should be focused on how to combine more 

information, such as a survey of travelers’ behaviors, into the link proportion matrix P, so 

that the proposed framework has a robust performance given conditions of inaccurate or 

missing values in the initial O-D matrix. 

Secondly, the IODE and DODE models yield poor estimation results when the 

detectors are located downstream of the simulated traffic bottlenecks. In this situation, the 

information collected from the detectors fails to indicate the congested situation of the 

road network because the traffic downstream of the bottlenecks remains uncongested. 

The estimation models may blindly increase traffic demand to raise the traffic volume in 

the downstream, which may only weaken the estimation. In the future, the impact of the 

location and number of detectors needs to be studied to determine the minimum traffic 

measurement information required to obtain good estimation. 

Thirdly, the TFMFT model is inapplicable of dealing with a large road network 

due to the heavy computational burden. It is a topic for future studies to devise an 

efficient algorithm to solve this problem. 

Finally, because of the under-specification problem, it is problematic to believe 

that a strong O-D matrix estimate is achieved only based on the matching criteria 
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between the assignment traffic measurement data from DTA simulators and the observed 

traffic measurement data from the same limited detectors. In the future, efforts should be 

focused on how to effectively combine more traffic measurement data, such as AVI data, 

into the estimation model to increase accuracy of the estimation results. 
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