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ABSTRACT OF THE DISSERTATION 

SYNTHESIS AND CHARACTERIZATION OF PHOTOCHROMIC INDOLYL 

SUBSTITUTED FULGIDES AND FULGIMIDES  

by 

Xi Chen 

Florida International University, 2010 

Miami, Florida 

Professor Watson J. Lees, Major Professor 

The fulgide and fulgimide family constitutes an important class of organic 

photochromic compounds. The ability of fulgides and fulgimides to interconvert between 

two key forms by irradiation of different wavelength of light has made them promising 

material in optical memory devices, optical switches and sensors, and specialty dyes and 

inks. Thermal stability and hydrolytic stability of fulgides and fulgimides are essential for 

their practical applications. A deuterated trifluoromethyl indolylfulgide was synthesized 

based on the synthetic pathway of the proteo trifluoromethyl indolylfulgide using 

commercially available deuterated starting materials. Deuteration of the isopropylidene 

group improved the thermal stability of the indolylfulgide by a factor of 7.  

Fulgimides are the most important fulgide derivatives. Fulgimides improve the 

hydrolytic stability of fulgides by replacing the succinic anhydride ring with a 

succinimide ring. A novel trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide was 

synthesized from trifluoromethyl indolylfulgide. The trifluoromethyl indolylfulgide was 

synthesized on a large scale in five steps with an overall yield of 18%. The indolylfulgide 

was then converted to indolylfulgimide by aminolysis follow by dehydration. The N-
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ethoxycarbonylmethyl indolylfulgimide showed enhanced hydrolytic stability and 

photochemical stability in 70/30 ethanol/water. 

Three novel aqueous soluble fulgimides, trifluoromethyl carboxylic acid 

indolylfulgimide, dicarboxylic acid indolylfulgimide, and H-carboxylic acid 

indolylfulgimide, were synthesized. In sodium phosphate buffer (pH 7.4) at 37 ºC, an 

unusual hydrolysis of the trifluoromethyl group of the closed form of the carboxylic acid 

indolylfulgimide resulted in the dicarboxylic acid indolylfulgimide which has an 

additional carboxylic acid group. The closed form of dicarboxylic acid indolylfulgimide 

was further decarboxylated to generate H-carboxylic acid indolylfulgimide which was not 

photochromic. The trifluoromethyl dicarboxylic acid indolylfulgimide is the most robust 

fulgimide yet reported in aqueous solution.   

A novel aqueous soluble methyl carboxylic acid indolylfulgimide was synthesized 

from methyl indolylfulgide. The methyl indolylfulgide was synthesized in five steps with 

an overall yield of 21%. The methyl carboxylic acid indolylfulgimide was synthesized by 

aminolysis follow by dehydration. The methyl carboxylic acid indolylfulgimide is 

expected to have improved thermal and photochemical stability in aqueous solutions 

relative to the trifluoromethyl analog.  
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CHAPTER 1 

BACKGROUND 

Photochromic compounds have become well known because of their successful 

commercial application in photochromic lenses which darken in sunlight (absorption of 

UV photons) and decolorized in diffuse light. The first commercial photochromic lenses 

contain inorganic photochromic salts (silver/copper halide) in glass lenses.1 Recently, 

organic photochromic compounds in plastic ophthalmic lenses have become more 

popular in the world market as they are lighter and more comfortable to wear.2,3 

The ability of photochromic compounds to change their absorption spectra with 

exposure to UV-vis light in a reversible manner is called photochromism.2 Photochromic 

compounds have many potential applications, such as media for high capacity optical 

information storage,4,5 optical molecular switches,6 biological sensors, and specialty inks 

and dyes.2,7 All these applications depend on the binary nature of photochromic 

compounds. 

The history of photochromic compounds involved the discovery of the phenomenon 

of photochromism, studies of the mechanism of the photoprocesses, determination of the 

structure, development of synthetic pathways, and investigation of the properties and 

potential applications. In the past several decades, many organic photochromic 

compounds were synthesized, and their photochromic properties were explored in great 

details.2,8 Some compounds had real applications and became commercially successful, 

while others are considered as promising material for various applications.2,7,8 

Herein, a brief history of photochromism and photochromic compounds will be 

introduced followed by the general definition and concepts of photochromism. The 
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properties and applications of some important families of organic photochromic 

compounds will be discussed briefly, including spiropyrans, spirooxazines, diarylethenes, 

quinones, and azobenzenes. Finally, a comprehensive introduction of fulgides and 

fulgimides will be presented. The photochromic properties, synthesis, and potential 

applications of fulgides and fulgimides will be described in detail. 

N O

Spiropyran

N O

N

Spirooxazine

S S

OO O

Diarylethene

O

O

OPh

Quinone

N

F3C

OO O

Fulgide

N

F3C

NO O

Fulgimide

N N

Azobenzene

 

1.1 Brief Historical Survey 

The phenomenon of photochromism was first observed by Fritzsche in 1867.9 He 

reported that the orange color of tetracene in solution was bleached in daylight and 

regenerated in the dark. Later in 1876, ter Meer discovered that the solid potassium salt 

of dinitroethane was red in daylight and yellow in the dark.10 In 1899, Marckwald used 

the term “phototropy” to describe this phenomenon and he believed it was a pure physical 
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phenomenon.11 However, the word “phototropy” is no longer used to describe this 

phenomenon and is now used to denote biological phenomena. 

Since 1940, the mechanistic, structural, and synthetic studies of photochromic 

compounds have substantially increased, particularly by Hirshberg and Fisher in 

Israel.12,13 In 1950, Hirshberg suggested the term “photochromism” which was derived 

from Greek words: phos (light) and chroma (color) and is still applied today.13 In the 

1960s, the development of the modern techniques such as IR, UV, X-ray, NMR, time-

resolved, and flash spectroscopy has significantly expanded research on photochromism.7 

The first photochromic glasses were commercialized during this period.1 However, the 

development of organic photochromic compounds was challenging because fast 

photodegradation (also known as fatigue) limited their potential applications.14 

In the 1980s, the synthesis of fatigue resistant organic photochromic compounds, 

such as spirooxazine and chromene derivatives, started a new era in the study of organic 

photochromism. The plastic photochromic ophthalmic lenses became commercially 

successful in world market, and many new organic photochromic compounds were 

synthesized and investigated for various applications.2,8 Numerous scientific articles and 

several books were published on photochromism.2,7,15 In addition, a large number of 

patents were issued. The International Symposium on Organic Photochromism has been 

organized since 1990 in France, and the most recent one is in Japan 2010. 

1.2 Definition and General Concepts of Photochromism 

“Photochromism is a reversible transformation of chemical species, induced in one  

or both directions by electromagnetic radiation, between two states having observable 

light absorptions in different regions.”2 
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Figure 1. Photochromic reactions and absorption spectra of photochromic compounds 

Figure 1 shows that A form is the most thermally stable of the two forms. In general, 

the longest wavelength absorption maxima of A form occurs at a shorter wavelength than 

that of B form. The forward reaction (A to B) occurs photochemically. The reverse 

reaction (B to A) occurs both thermally and photochemically (system 1) or only 

photochemically (system 2). In the case of system 1, the reverse reaction is thermally 

driven and can be photoinduced but the thermal reaction normally predominates, e.g. in 

spiropyrans and spirooxazines. For system 2, the B form is thermally stable and the 

reverse reaction is dominated by a photochemical reaction, e.g. see trifluoromethyl 

indolylfulgide 1 (Scheme 1). The most common organic photochromic systems involve 

unimolecular reactions (A to B). 
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Scheme 1. Photochromic reaction of trifluoromethyl indolylfulgide 1  

 

Most organic photochromic compounds have a colorless A and a colored B form. 

Therefore, the forward reaction (A to B) is a coloration reaction and the reverse reaction 

(B to A) is a decoloration or bleaching reaction. Many applications such as photochromic 

lenses, fluid flow visualization, and security inks and dyes utilize the color changes of the 

two species (A and B).1-3 For some compounds, physical and chemical properties such as 

conductivity, refractive index, and electrical moment also change during the 

photochromic reaction. Optical switches, optical information storage and optoelectronic 

systems are potential applications that utilize the physical and chemical property 

changes.4,5   

Several chemical processes are involved in photochromism, including pericyclic 

reactions, cis-trans isomerizations, intramolecular hydrogen transfer, intramolecular 

group transfers, dissociation processes and electron transfers.2 In the following sections, 

organic photochromic systems, such as spiropyrans, spirooxazines, diarylethenes, and 

fulgides, which undergo pericyclic reactions, will be introduced. Quinones, which 

undergo proton and group transfers and azobenzenes, which undergo the cis-trans 

isomerizations, will be discussed.  
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1.3 Important Families of Organic Photochromic Compounds 

1.3.1 Spiropyrans 

         Spiropyrans are the most extensively studied photochromic compounds because of 

their potential applications in optical memory devices, optical switches and senors.16,17 

The general structure of spiropyrans contains a second ring system attached to pyran in a 

spiro manner at the 2 position. The photochromism of spiropyrans occurs 

photochemically or thermally (system 1). The open merocyanine form exists as cis-

cis/trans-trans mixture which is at equilibrium. Most studies have focused on 

indolinospirodipyrans which are readily available and have many potential applications.2 

Initially, the practical applications of spiropyrans were concentrated on photochromic 

dyes and plastic ophthalmic sunglasses.2 However, the rapid photodegradation of 

indolinospirodipyrans significantly limited their applications. Recently, spiropyrans 

incorporated into polymers have become widespread and are considered as promising 

photochromic materials for optical information storage.16,17  

1.3.2 Spirooxazines 
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Photochromic spirooxazines have a similar structure to spiropyrans except that the 

pyran is replaced by an oxazine. The first photochromic indolinospironaphthoxazine ring 

system was reported by Ono and Osada18 and Arnold and Vollmer19 in 1970. However, 

the importance of the spirooxazine systems was unnoticed until the 1980s because of the 

focus on spiropyrans during that time.20,21 Hobley et al. reported that the 

indolinospironaphthoxazine exhibited excellent resistance towards photodegradation in 

1982.20 As a result of the g photochemical resistance, a significant increase in the number 

of publications and patents on spirooxazines was observed.2,22,23 

The most successful application of spirooxazines was in commercial plastic 

photochromic lenses. In 1982, American Optical introduced spirooxazines photochromic 

lenses called Photolite. Since then, many companies have commercialized plastic 

photochromic lenses containing various types of spirooxazines, and these lenses have 

become a part of everyday life.1,3 Other applications such as photochromic inks and dyes 

and cosmetic products also utilized spirooxazines.2 The synthesis of a large number of 

new spirooxazines has extended the possibility of using spirooxazines as a media for 

information storage, and as optical switches and sensors.22  

1.3.3 Diarylethenes with heteroaryl groups 

 

Diarylethenes with heteroaryl groups are photochromic compounds that have 

thermally stable closed forms, and both the coloration and the decoloration processes are 
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driven photochemically.2 Thermal irreversibility is an essential property for applications 

in optical memory devices. Hence, most studies have focused on increasing the thermal 

stability of the closed form of diarylethenes.24 Theoretical studies have indicated that the 

type of aryl group determines the thermally stability of diarylethene.25 A number of 

diarylethenes with varies types of aryl groups were synthesized and the theoretical 

prediction was confirmed.26,27 When the aryl group was furan or thiophene, the closed 

forms were thermally stable, and the decoloration reaction was thermally forbidden. On 

the other hand, diarylethenes exhibited thermally reversible reactions when the aryl group 

was phenyl or indole.2 The thermally irreversible diarylethenes also demonstrated great 

fatigue resistance. Most of the benzothiopene diarylethenes underwent more than 10,000 

photochromic cycles.2 The thermal irreversibility and fatigue resistant make diarylethenes 

promising material for applications in optical information storage. 

1.3.4 Photochromic quinones 

 

Photochromic quinones are a class of organic photochromic compounds which were 

discovered in 1971.2 During the past 40 years, various photochromic quinones have been 

synthesized, and their photochromic properties have been examined.28-31 Quinones differ 

from the photochromic compounds described above, as the reversible transformation 

between the two forms of quinones is caused by the photochemical migration of a 

functional group, usually hydrogen, aryl, or acyl.29 
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Many photochromic quinones demonstrate enhanced thermal stability and fatigue 

resistance, and have potential applications in optical information storage.30 Procedures of 

fabrication of polymeric and polymolecular films containing photochromic quinones 

have been developed.2 The polymer films exhibit the appropriate stability and fatigue 

resistance required for application as light-sensitive recording media.2 Future 

modifications of the structures of quinones will lead to enhanced properties make 

quinones suitable for practical applications.      

1.3.5 Azo compounds 

N N

N N

trans cis

h 1

h 2 or �

 

Azo compounds that undergo photochemical cis-trans isomerizations have been 

recognized and studied for many years.8,32 Among many azo compounds, azobenzenes 

have attracted the most interest. The reversible photoisomerization of azobenzenes 

involves a transformation between the more stable trans isomer and the less stable cis 

isomer.33-35 The reverse process occurs thermally as well as photochemically.36 The 

research on azobenzenes has provided many fundamental insights into photochemistry. 

The facile synthesis of relatively robust and chemically stable azo compounds has prompt 

many studies of azobenzenes for various applications.32,33,35  

Development of azobenzene-containing polymers (azopolymers) and liquid crystals 

(LC) has trigged extensive studies of photoresponsive polymers and crystals.33,37,38 Many 

azopolymers and liquid crystals were synthesized and investigated as potential materials 
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for optical information storage and as optical switches. Recently, the discovery of new 

properties of azopolymers and liquid crystals, such as optical bending of cross-linked LC 

azopolymers, have extended the research to optical surface patterns and diverse 

functional materials.32,33 

1.4 Fulgide and Fulgimide Family 

The fulgide and fulgimide family constitutes an important class of organic 

photochromic compounds. Stobbe first synthesized fulgides and discovered their 

photochromism in the early 20th century.39 Various fulgides and their derivatives have 

been synthesized, and fulgimides are the most important and practical derivatives. 

Fulgimides improve the hydrolytic stability of fulgides by replacing the succinic 

anhydride ring with a succinimide ring (Scheme 2).40,41 Additionally, the succinimide ring 

allows another substituent to be attached onto the fulgimide without a significant change 

of photochromic properties. 

Scheme 2. Photochromism of trifluoromethyl indolylfulgides and fulgimides 

 

The photochromism of fulgides and fulgimides involves three isomers (Scheme 2). 

In the case of trifluoromethyl indolylfulgide or indolylfulgimide, the open forms contain 
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both E and Z isomers, which can be interconverted by irradiation with UV-vis light. 

However, only one open form (Z-form in this case) is photochromic and can be converted 

to the closed form (C-form) upon illumination with UV-vis light. The reverse reaction 

occurs by irradiation of the C-form under visible light. However, not all fulgides and 

fulgimides undergo ring-closing reaction (open to closed form). Previous reports 

indicated that indolylfulgides and indolylfulgimides having a hydrogen at the bridging 

position instead of trifluoromethyl group undergo E/Z isomerization but do not produce 

the C-form under photochemical conditions.42-44     

Fulgides and fulgimides exhibit great photochromic properties, such as readily 

distinguishable absorption spectrum for each form, efficient photoreactions, and thermal 

and photochemical stabilities. The promising properties of fulgides and fulgimides make 

them suitable for applications in optical memory devices, optical switches and sensors, 

and specialty inks and dyes.15,45 Studies have been conducted to optimize the 

photochromic properties of fulgides and fulgimides for specific applications.46-48 

Optimization has resulted in more thermally and photochemically stable compounds such 

as fluorinated indolylfulgide 1, which was originally synthesized by Yokoyama and 

Takahashi.49-52 The most photochemically stable fulgide, a fluorinated indolylfulgide 

synthesized by Lees et al. undergoes 10,000 photochemical cycles (back and forth 

conversion between the two key forms) before degrading by 13% in toluene.52  

1.4.1 Fulgides 

Fulgides, derivatives of 1,3-butadiene-2,3-dicarboxylic acid anhydride, were first 

synthesized by Stobbe in 1905.39 For fulgides to undergo photochromic reactions, at least 

one of the R groups should be aromatic or contain one double bond. Although the 
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photochromism of fulgides was discovered in the early twentieth century, the chemical 

process and mechanism remained unclear until the 1960s.15 Becker et al. reported the 

photochromic mechanism of a phenyl-substituted fulgide in 1968.53 The reaction 

mechanism is a photochemical 6π electrocyclization of the hexatriene moiety. 

 

Until 1981, the closed form of fulgides was thermally unstable and the reverse 

reaction (ring-opening reaction) occurred thermally. Thermal reversibility complicated 

the fulgide system and limited its usefulness. In 1981, Heller et al. reported a thermally 

irreversible fulgide which had a 2,5-dimethyl-3-furyl moiety instead of a phenyl 

group.54,55 From 1981 onwards, research has focused on improving the properties of 

furylfulgides and developing new thermally stable fulgides.56-58 Fulgides with different 

aromatic substituents, such as thienylfulgide, pyrrylfulgide were synthesized and 

displayed improved photochromic properties.2 

  Indolylfulgides were synthesized and attracted particular research interest because 

of their promising photochromic properties, such as increased thermal stability, enhanced 
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fatigue resistance, and visible wavelength absorption.59,60 Subsequent studies reported 

several indolylfulgides with various substituents on the indole ring and bridging 

carbon.58,61-63 Recently, Yokoyama et al. reported a trifluoromethyl substituted 

indolylfulgide which demonstrated the most promising photochromic properties.49  The 

synthesis and photochromic properties of the trifluoromethyl indolylfulgide were 

thoroughly studied by Lees et al.60,64,65 Compared to the methyl indolylfulgide 2, the 

trifluoromethyl indolylfulgide has greater thermal stability, increased fatigue resistance, 

an enhanced quantum yield for the ring closing reaction, and an open form that absorbs in 

the visible region. 

 

1.4.2 Fulgimides  

Fulgimide, a succinimide derivative of fulgide, was first synthesized by Goldschmidt 

in 1957.66,67 However, the name “fulgimide” was introduced by Heller et al. in 1968.67 

Fulgimides replace the succinic anhydride ring of a fulgide with a succinimide ring.40,41 

The imide group allows another substituent to be attached onto the fulgimide without a 

significant change of photochromic properties. Furthermore, fulgimides have a higher 

hydrolytic stability compared to fulgides because of the imide group (Scheme 1). 
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Applications of fulgimides have been reported in several studies.  Porphyrin-

fulgimide dyads were synthesized to control the generation of a porphyrin excited state 

by Straight et al.68 A fulgimide was also used as an “on-off” fluorescence switch in live 

cells.6 In the case of attaching fulgimides to polymers, Rentzepis et al. synthesized a 

photochromic cross-linked copolymer which contains a 2-indolylfulgimide as a cross-

linker.69 However, there were no applications reported for this kind of polymer. 

 

Porphyrin-fulgimide dyad68 

 

Fulgimide cross-linked copolymer69 
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Hydrolytic stability of fulgides and fulgimides is an important property for their 

applications in optical memory devices and biological optical switches.6,15 In memory 

devices, materials are required to maintain stability and function in humid environments. 

Optical switches need to function in aqueous solvent systems in many biological 

applications.6,70 Previous studies demonstrated that fulgides were unstable in protic 

solvents because of the highly reactive succinic anhydride ring.41,71 On the other hand, 

fulgimides have an improved hydrolytic stability because of the succinimide ring. Several 

studies have reported the photochromic properties of fulgimides in protic 

solvents,6,40,41,70,71 The closed form of N-phenyl trifluoromethyl indolylfulgimide 

displayed three orders of magnitude greater stability in 70/30 ethanol/water relative to the 

parent fulgide 1 at 25 ºC.41 The stability of fulgimides in aqueous solution was also 

examined.6,70,72 In one particular study fulgimide derivatives were covalently attached to 

the lysine residues on concanavalin A, and the open form of the fulgimide was shown to 

be stable in aqueous solution for 48 h at 25 ºC.70 The study by Willner et al. also 

indicated that the fulgimide can cycle back and forth between the open and the closed 

forms at least twice.70 A recent study in live cells demonstrated that fulgimides can 

switch back and forth seven times in cellular membranes but not very well in water.6 

1.5 Synthesis 

1.5.1 Syntheses of fulgides 

In general, fulgides are synthesized by a Stobbe condensation of an aryl aldehyde or 

ketone with an substituted methylene succinate, followed by hydrolysis and dehydration 

of the dicarboxylic acid (Scheme 3).2 Synthesis of fulgides is usually low yielding.49,51 
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Difficulties in the synthesis have impeded the utilization of fulgides in all manner of 

applications.  

Scheme 3. General synthetic pathway of fulgides2 

 

A fluorinated indolylfulgide was first synthesized by Yokoyama in 1996.49 As shown 

in Scheme 4, 1,2-dimethyl-3-trifluoroacetylindole was prepared from trifluoroacetyl 

trifluoromethanesulfonate and 1,2-dimethylindole with a 42% yield. Stobbe condensation 

of the trifluoroacetylindole with dimethyl isopropylidene succinate followed by 

hydrolysis, dehydration, and purification yielded the trifluoromethyl indolylfulgide in 1% 

from 1,2-dimethylindole (Scheme 4). Although the fluorinated indolylfulgide displayed 

excellent photochromic properties, the low yielding synthesis significantly limited further 

research and applications. 

Scheme 4. Synthetic pathway of indolylfulgide by Yokoyama et al.49 
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An improved synthesis of indolylfulgides was developed by Lees et al. in 2001.60 

The new methodology increased the overall yield of trifluoromethyl indolylfulgide from 

1% to 29% (Scheme 5).60 Lee et al. obtained 1,2-dimethyl-3-trifluoroacetylindole in 96% 

yield by treating 1,2-dimethylindole with trifluoroacetic anhydride in 1,2-

dichloroethane.60 In the hydrolysis step, using NaH followed by addition of water in DMF, 

both cis and trans indolelactones form the dicarboxylic acid in 83% yield. Whereas in 

Yokoyama’s procedure, the cis indolelactone formed unwanted decomposition 

products.49,60 Lees et al. also demonstrated that the new method improved the yield of 

both fluorinated and nonfluorinated indolylfulgide derivatives. The improved procedure 

has broad applicability and afforded enough materials to thoroughly study the 

photochromic properties of several indolylfulgides.50,64,73
 

Scheme 5. Synthetic pathway of indolylfulgide by Lees et al.60 
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Kiji et al. developed another pathway to synthesize fulgides in a high yield using 

palladium catalyst (Scheme 6).74-77 A one step synthesis of fulgide was achieved by 
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reacting a substituted 1,4-butynediol with carbon monoxide in the presence of palladium 

catalyst. Furyl- and thienylfulgides were synthesized in approximately 50% yields by 

Kiji’s method.75 However, indolylfulgides were not synthesized efficiently by Kiji’s 

method because of the more electron rich indole ring. 

Scheme 6. Synthetic pathway of fulgides by Kiji et al.77 

 

1.5.2 Synthesis of fulgimides 

Generally, fulgimides are synthesized from the corresponding fulgides. As shown in 

Scheme 7, a succinamic acid intermediate is obtained by treating a fulgide with a primary 

amine, subsequent dehydration yields the corresponding fulgimide.2 In most cases, 

synthesis of fulgimides is low yielding.2 Studies have been conducted to improve the 

yield of fulgimides so that they can be thoroughly characterized. 

Scheme 7. Synthetic pathway of fulgimides2  

 

Scheme 8. Synthetic pathway of fulgimides by Rentzepis et al.78 
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Several studies have reported the synthesis of fulgimides in high yields.41,78 

Rentzepis et al. demonstrated that by reacting indolylfulgides with an amine in the 

presence of a Lewis acid, ZnCl2, and hexamethyldisilazane (HMDS), indolylfulgimides 

could be obtained in over 80% yield (Scheme 8).78 The Lewis acid and HMDS promoted 

synthesis of imides was first reported by Toru and utilized by Rentzepis et al. in 

fulgimide synthesis.78,79 Toru et al. indicated that the anhydride first reacts with amine to 

produce the amic acid intermediate, and the dehydration is promoted by the Lewis acid 

and HMDS to form the imide. The type of Lewis acid has a strong effect on the reaction. 

ZnCl2, ZnBr2, and ZnI2 gave high yields while AlCl3 resulted in very low yields and 

MgCl2 showed no reaction.79 

Scheme 9. Synthetic pathway of fulgimides by Lees et al.78 

 

Lees et al. synthesized a series of trifluoromethyl indolylfulgimides by treating the 

precursor fulgide with substituted anilines.41 Dehydration of the amide acid intermediates 

was performed with acetic anhydride in toluene to yield the corresponding fulgimides 

(Scheme 9).41  

Recently, microwave assisted synthesis of fulgimides was reported.80,81 Compared to 

traditional methods, using the microwave increased the yield of fulgimides up to 85% and 

the reaction time was reduced from 24 h to less than 40 min.81 Furthermore, less solvent 

was used which simplified the purification procedure. The methyl indolylfulgimides 
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synthesized by the microwave assisted method showed an improved average yield of 70% 

(Scheme 10). Therefore, microwave assisted synthesis should be an alternative for the 

synthesis of trifluoromethyl indolylfulgimides.  

Scheme 10. Synthetic pathway of fulgimides by Li et al.80 

 

1.6 Photochromic Properties 

Measurement of the photochromic properties is essential to determine the ideal 

photochromic compounds for various applications. Photochromic properties include UV-

vis absorption spectra, photostationary state, quantum yield, photochemical stability 

(fatigue resistance), and thermal stability. Generally, fulgides and fulgimides exhibit 

similar photochromic properties in solvents and polymer films. However, fulgimides 

demonstrate enhanced hydrolytic stability which is an important characteristic for 

applications in aqueous environments. 

1.6.1 UV-vis absorption spectra 

The definition of photochromism requires that all photochromic compounds have at 

least two different forms with different absorption spectra. In the case of fulgides and 

fulgimides, the closed (C) form has at least one absorption maximum in the visible region. 

The E- and Z-forms display similar absorption maxima which are at a shorter wavelength 

than that of the C-form (Figure 2). For example, the open form of trifluoromethyl 
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indolylfulgide 1 is irradiated with 427 nm light, a ring closing reaction occurs and the 

closed form is produced. The reverse ring opening reaction occurs by irradiating the 

closed form with 571 nm light.64 
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Figure 2. UV-vis absorption spectra of trifluoromethyl indolylfulgide 1 in toluene 

In practical applications, absorption in the visible region is preferred because UV 

light can be damaging to living organism and material. The heteroaromatic substituent of 

fulgides and fulgimides has a strong effect on the absorption spectra. As shown in Figure 

3, increasing the electron donating ability of the aromatic group shifts the absorption 

maximum of the closed form towards longer wavelength.61,82 However, the absorption 

maxima of the open forms are usually in the UV region.  

 

Figure 3. Absorption maxima of the closed forms of furanyl, thienyl and pyrryl fulgides 

in toluene82 

 

The substituent at the bridging position also affects the absorption spectra of fulgides. 
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Yokoyama et al. reported that replacing the methyl group with a trifluoromethyl group on 

the bridging position of indolylfulgides shifts the absorption maximum of the Z-form 42 

nm towards longer wavelength (Figure 4).15,49 A more recent study demonstrated that an 

indolylfulgide with a C3F7 group at the bridging position also exhibits a bathochromic 

shift of the Z-form at the absorption maximum. All previous results suggested that a more 

electron withdrawing group on the bridging position of indolylfulgides shifts the 

absorption spectra of the open form towards longer wavelength.64 The ability of both the 

open and closed forms of trifluoromethyl indolylfulgide to absorb in the visible region 

allows the use of inexpensive light source for photochromic reactions. 

 

Figure 4. Methyl, trifluoromethyl, heptafluoropropyl fulgides and their absorption 

maxima of the open forms49,64 

1.6.2 Photostationary state 

Photostationary state (PSS) is the steady state composition of a photochromic 

reaction upon irradiation at specific wavelength. Typically, a ratio or percentage of the 

chemical species is used to describe the photostationary state. The photostationary state 

of trifluoromethyl indolylfulgide 1 is determined at absorbance maximum of the open 

forms which produce highest percentage of C-form. At 435 nm, the photostationary state 

contains over 90% C-form. On the other hand, the ring opening reaction (C to Z) at 571 
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nm is quantitative because Z-form has no absorbance above 530 nm.64 

1.6.3 Quantum yield  

For photochromic compounds, the quantum yield is the number of molecules that 

undergo the photochromic reaction per photon absorbed. The quantum yield is an 

important property that demonstrates the photochromic efficiency of the reactions. 

Higher quantum yields ensure fast and effective photochromic reactions with low energy 

light sources. For applications as optical switches and sensors, high quantum yields are 

required to guarantee fast responds and high sensitivity. Previous studies indicated that 

quantum yield can depend upon the polarity of the solvent.83 Rentzepis et al. 

demonstrated that 2-indolylfulgide displayed higher quantum yield in non-polar solvent 

than polar solvent for both ring-opening and ring-closing reactions.83 

Several studies report the quantum yields of indolylfulgides having different 

substituents on the bridging position, indole ring, and anhydride ring.61,64,65,83 The 

trifluoromethyl indolylfulgide exhibits an enhanced quantum yield of the ring closing 

reaction by a factor of five relative to the methyl indolylfulgide (Figure 1-4).64 However, 

the ring opening reaction shows a modest decrease in the quantum yield for 

trifluoromethyl indolylfulgide relative to methyl indolylfulgide.64 The electron donating 

methoxy group on the indole ring further decreased the quantum yield of the ring opening 

reaction by stabilizing the closed form.65 Recently, an indolylfulgide with an 

adamantylidene group instead of an isopropylidene group was synthesized.65 The 

quantum yield of the ring opening reaction was significantly increased by 

adamantylidene substitution but the quantum yield of the ring closing reaction was 

dramatically decreased (Figure 5).65 Further investigation of the substituent effects on 
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quantum yield are required to design more efficient fulgides. 

 

Figure 5. Quantum yields of indolylfulgides with different substituent group61,64,65,83 

1.6.4 Thermal stability 

Scheme 11. Proposed thermolysis mechanism of the Z-form trifluoromethyl 

indolylfulgide 150 

 

Since the discovery of a thermally irreversible fulgide, the potential application of 

fulgides as media for rewritable optical memory devices has been investigated 

extensively.15,57 Current commercial data storage devices, such as computer hard drives, 
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DVDs, and magnetic tapes are expected to maintain viability to at least 50 °C for 

prolonged periods.50 Many fulgides and fulgimides have been synthesized with enhanced 

thermal stability, and the thermolysis mechanism has been studied.49,50 Trifluoromethyl 

indolylfulgide 1 demonstrates increased thermal stability in solvents and polymer 

films.49,64 The open (Z) and closed (C) forms of indolylfulgide 1 show no thermal 

decomposition at room temperature after one month in hexane, chloroform, acetonitrile, 

or poly(methyl methacrylate) (PMMA) films.84  

Further investigation in PMMA films at 80 °C indicates that the Z-form 

indolylfulgide 1 shows a relatively rapid degradation, loss of 25% of absorbance at 

absorbance maxima in 17.5 h. The C-form maintains thermal stability, only 6% decrease 

of the absorbance at absorbance maxima in 85 h.64 Therefore, the mechanism of Z-form 

trifluoromethyl indolylfulgide 1 degradation was elucidated, and the decomposition 

products were isolated (Scheme 11).50 The proposed thermolysis mechanism starts with 

the irreversible conversion of 1 to intermediate 3 via a 1,5-hydrogen shift from the 

isopropylidene group, followed by a formal 1,5-migration of the indolyl moiety ( 3 to 4) 

and a final 1,5-hydrogen shift (4 to 5).50 The mechanistic results indicated that the initial 

hydrogen migration from the isopropylindene group is the rate determining step of the 

thermal decomposition process.  

Thus, modification of the isopropylindene group to diminish the rate of the 1,5 

hydrogen shift should enhance the thermal stability. Fluorinated adamantylidene 

indolylfulgides were synthesized and they displayed enhanced thermal stability relative to 

the isopropylidene analogs.65 An NMR study of the thermal degradation of the Z-form of 

trifluoromethyl adamantylidene indolylfulgide displayed minor E/Z isomerization in 
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toluene at 80 °C after 168 h, and no new peaks indicative any thermal degradation 

products.65 A recent study replacing the isopropylidene group of a trifluoromethyl 

indolylfulgides with a cycloalkylidene group was reported.85 The thermal degradation 

product of trifluoromethyl cyclopentylidene indolylfulgide, an indolylethenylanhydride, 

maintained photochromic properties and displayed outstanding thermal and 

photochemical stability (Scheme 12).85  

Scheme 12. Thermolysis of trifluoromethyl cyclopentylidene indolylfulgide85 

 

The thermal stability of trifluoromethyl indolylfulgimides is similar to the 

corresponding fulgide. The Z-form of the fulgimides displayed greater thermal stability in 

PMMA films at 80 °C than the corresponding fulgide and are proposed to undergo a 

similar degradation pathway.41 The C-form of indolylfulgimides was found to be more 

stable than Z-form, which is the same as seen in the indolylfulgide analog.41 

1.6.5 Photochemical stability 

Photochemical stability, also known as fatigue resistance, is the percentage of the 

molecules remaining photochromic after a certain number of photochromic cycles.86 

Extensive studies have been conducted to enhanced the photochemical stability of 

photochromic compounds.2 The synthesis of photochemically stable spirooxazines led to 

their application in commercial plastic photochromic lenses.2 Developing more 

photochemically stable fulgides and fulgimides are essential for their practical 
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applications.   

Scheme 13. Proposed photochemical degradation pathway for methyl 

indolylfulgides49 

 

Indolylfulgides and indolylfulgimides undergo from less than a hundred to several 

thousand photochromic ring-opening/ring-closing cycles before significant 

degradation.51,61,64 Yokoyama proposed that the photochemical decomposition of methyl 

indolylfulgide was attributable to a 1,5-hydrogen migration (Scheme 13).49 The 

replacement of the methyl group with a trifluoromethyl group significantly enhanced the 

photochemical stability of indolylfulgides.49 The trifluoromethyl group cannot undergo 

1,5-hydrogen migration via the proposed pathway. Fluorinated indolylfulgimides 

displayed similar photochemical stability in aprotic solvent as their fulgide anolog.41,86 

However, no photochemical decomposition product of indolylfulgides or 

indolylfulgimides has been isolated and the photochemical decomposition pathway 

remains unclear. 

1.6.6 Hydrolytic stability 

Hydrolytic stability corresponds to the ability of photochromic compounds to resist 

solvolysis in protic environments or aqueous solutions. Hydrolytic stability is crucial for 

applications in biological systems and humid environments. Although, fulgides display 

promising photochromic properties, the succinic anhydride ring causes rapid solvolytic 
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degradation in protic solvents or aqueous media.59,71 On the other hand, fulgimides, the 

imide derivatives of fulgides, exhibit much higher resistance to hydrolysis and retain the 

promising photochromic properties. Matsushima et al. reported that a carboxylated 

arylfulgimide 6 shows good solubility and thermal stability in 50/50 water/ethanol at 

room temperature.71 The carboxylated arylfulgimide maintained photochromic activity in 

50/50 water/ethanol, while fulgides (if soluble) would have rapidly degraded.71 The 

hydrolytic stability of trifluoromethyl indolylfulgimides was examined by Lees et al. 

Both Z- and C-forms of trifluoromethyl N-phenyl indolylfulgimide 7 displayed greater 

stability in 70/30 ethanol/water than the parent indolylfulgide at room temperature.41  

 

Stability of fulgimides in aqueous solutions was also reported.6,70 A study of 

fulgimide derivatives attached to concanavalin A demonstrated that the open form of a 

fulgimide was stable in aqueous solution for 48 h at room temperature and could undergo 

at least two photochromic cycles.70 A recent study reported that fulgimides can switch 

back and forth seven times in cellular membranes inside living Potorous tridactylis cells.6 

However, limited number of photochromic cycles and low thermal stability of fulgimides 

in aqueous solutions limited further application in biological systems, such as biological 

optical switches and sensors. Therefore, it is necessary to synthesize fulgimides with 
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enhanced hydrolytic stability in protic solvents and aqueous solutions. 
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CHAPTER 2 

OBJECTIVES 

The overall aim of my research is to develop indolylfulgides and indolylfulgimides 

with improve properties.  

1) To improve the thermal stability of indolylfulgides 

Deuterated isopropylidene substituted trifluoromethyl indolylfulgide 8 is 

synthesized to improve thermal stability of the Z-form relative to the proteo 

isopropylidene substituted trifluoromethyl indolylfulgide 1.  

 

2) To improve the hydrolytic stability of indolylfulgimides 

Trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide 9 is synthesized to 

improve the thermal and photochemical stabilities in protic solvent.  

Trifluoromethyl carboxylic acid indolylfulgimide 10 is synthesized to improve 

thermal and photochemical properties in aqueous solution.  
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3) To improve the thermal stability by replacing that trifluoromethyl group a with 

methyl group 

Methyl carboxylic acid indolylfulgimide 11 is synthesized from methyl 

indolylfulgide 2 to improve thermal and photochemical properties in aqueous 

solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

CHAPTER 3 

IMPROVING THE STABILITY OF PHOTOCHROMIC FLUORINATED 

INDOLYLFULGIDES 

3.1 Abstract 

Fluorinated indolylfulgides, promising photochromic compounds, have been 

considered as potential material for applications in optical switches and memory. 

Previous mechanistic studies indicated that the thermal stability of trifluoromethyl 

indolylfulgides such as 1 was controlled by a 1,5-hydrogen shift from the isopropylidene 

group. Therefore, to take advantage of kinetic isotope effects, a deuterated 

trifluoromethyl indolylfulgide 8 was designed to enhance thermal stability. The synthetic 

pathway was developed on the basis of that of 1 using commercially available deuterated 

starting materials. The absorption spectra, thermal stabilities in toluene and poly (methyl 

methacrylate) (PMMA) films, and photochemical fatigue resistances in toluene of both 

indolylfulgides were measured. Deuteration of the isopropylidene group improved the 

thermal stability of the indolylfulgide by a factor of 7, which corresponded to the 

expected kinetic isotope effect for a 1,5-hydrogen shift.  

3.2 Introduction 

Fulgides, an important class of photochromic compounds, can interconvert between 

the open cyclizable form (Z-form) and the closed form (C-form) upon exposure to certain 

wavelengths of light (Scheme 14).2,7 Indolyl substituted fulgides have attracted attention 

because of their potential applications in optical devices, such as optical memory, sensors, 

and switches.2,15,51,61,62,83,87,88  
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Scheme 14. Photoreaction of fluorinated indolylfulgides 1 and 8 

 

Several properties are required for fulgides to be useful in optical devices, such as 

readily distinguishable absorption spectra for each form, thermal and photochemical 

stability, large quantum yields, and large molar absorption coefficients.15,57 Yokoyama 

and Takahashi synthesized a fluorinated indolylfulgide which possessed great thermal 

and photochemical properties, suitable for applications in optical devices.49 Fluorination 

at the bridging position exhibited several advantages, such as longer wavelength 

absorption maximum for the Z-form, improved photochemical stability in both toluene 

and PMMA films, enhanced coloration quantum yields in toluene, and higher thermal 

resistance of the C-form upon treatment at 80  ºC in PMMA films.49 However, the Z-form 

of the fluorinated substituted indolylfulgides rapidly decomposed in both toluene and 

PMMA upon prolonged exposure to elevated temperatures.50,64 The proposed thermolysis 

mechanism involved the irreversible conversion of 1Z to intermediate 3 via a 1,5-

hydrogen shift from the isopropylidene group, the rate determining step of the thermal 

decomposition process (Scheme 15).50  
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Scheme 15. Proposed thermolysis mechanism of fluorinated indolylfulgides 1 and 8 

 

Interestingly, a 1,5-hydrogen shift from the isopropylidene group may also be 

responsible for the photochemical degradation of fulgides. A mechanism for the 

photochemical degradation of non-fluorinated fulgides was proposed by Yokoyama et al., 

(Scheme 16).49 The first step involves a 1,5-hydrogen migration from the methyl group to 

the carbonyl group and yielded an enol product. The enol further tautomerizes to a non-

conjugated compound with concurrent loss of photochromic properties. 

Fluorinated fulgides cannot undergo such photochemical degradation as the methyl 

group is replaced by a trifluoromethyl group which has no hydrogens. However, a 

parallel mechanism may occur between the isopropylidene group and the second 

carbonyl group (Scheme 16). Therefore, diminishing the rate of the 1,5-hydrogen shifts 
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by modification of the isopropylidene group may enhance thermal stability and 

photochemical stability. Previous studies substituted the isopropylidene group with an 

adamantylidene group, however, the cycling time between the open and closed forms was 

too long to measure the photochemical stability and the thermal stability of closed form 

was poor.65  

Scheme 16. Potential photochemical degradation pathway for indolylfulgides  

 

 

Herein, I have synthesized and characterized a deuterated trifluoromethyl 

indolylfulgide 8 (Scheme 14), which was expected to have higher thermal stability in 

toluene and PMMA film. The rate determining step for thermal decomposition, a 1,5-

hydrogen shift, will be significantly decreased by the kinetic isotope effect (Scheme 17). 

Scheme 17. Thermal degradation pathway for indolylfulgide 8 
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3.3 Experimental Section 

3.3.1 General procedures and materials 

All commercially available materials were used without further purification. The 

NMR spectra were recorded on a  Brüker 400 MHz NMR spectrometer. The 1H and 13C 

NMR samples were internally referenced to TMS (0.00 ppm) or solvent (7.26 and 77.00 

ppm, respectively for CDCl3). The UV-vis spectra were recorded with a Cary 300 

Spectrophotometer. Flash chromatography was performed with 230-400 mesh silica gel.  

Indolylfulgide 1 was synthesized as described previously.60 

3.3.2 Synthesis of dimethyl octadeuteroisopropylidene succinate 12  

 

The tert-Butanol-OD (5 mL), dimethyl 2,2,3,3-tetradeuterosuccinate (5.0 g, 33.3 

mmol) and perdeuterated acetone (1.7 g, 26.6 mmol) were added to a mixture of 

potassium tert-butoxide (3.4 g, 30.1 mmol) in 50 mL of tert-butanol-OD under argon gas. 

The mixture was refluxed for 4 h, and the tert-butanol-OD was evaporated. Diethyl ether 

(25 mL) was added, and the reaction was quenched with 50 mL of NaOD in D2O (2 M). 

The aqueous solution was extracted with diethyl ether (3 × 50 mL) and then acidified 

with deuterated sulfuric acid (8.5 mL D2SO4 in 40 mL D2O). The aqueous layer was 

further extracted with CH2Cl2 (4 × 75 mL). The combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo. The resulting octadeuterated half-acid, half-

ester was esterified via 50 mL of acidified monodeuterated methanol. The reaction 
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mixture was stirred for 6 d under argon gas. The reaction mixture was then concentrated 

in vacuo and 50 mL of deuterated ice water was added. The ice water slurry was 

extracted with diethyl ether (4 × 20 mL). The organic layers were combined and 

extracted with deuterated sodium carbonate solution (3 × 20 mL). The organic layer was 

dried over MgSO4, filtered, and concentrated in vacuo to provide 1.95 g of product 12 (38% 

yield). This synthesis was performed by Ghislaine Guez in Dr. Lees’ group. 

3.3.3 Synthesis of hexadeuterated indolylfulgide 8  

       Dimethyl octadeuteroisopropylidene succinate 12 (0.95 g, 4.90 mmol) was added to 

a mixture of 1,2-dimethyl-3-trifluoroacetylindole (previously synthesized, 0.66 g, 2.74 

mmol) in 100 mL of toluene. The mixture was evaporated in vacuo to approximately 50 

mL. Lithium diisopropylamide (2.45 mL of a 2 M solution, 4.90 mmol) was added slowly 

at room temperature under argon gas. After 16 h, the mixture was acidified with aqueous 

acid (1.5 mL D2SO4 in 29 mL D2O) and then extracted with diethyl ether (3 × 30 mL). 

The combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

The resulting liquid was purified by silica gel chromatography (1:1 CH2Cl2/hexanes) and 

then recrystallized from ethanol to provide 0.39 g of the hexadeuterated indolelactone as 

a cis/trans mixture. To the hexadeuterated indolelactone (0.39 g, 0.97 mmol) dissolved in 

40 mL of DMF at 0 °C was added 1.5 mL of sodium deuteroxide (30% in D2O). The 
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solution was stirred and allowed to warm to room temperature overnight. Solvent was 

removed in vacuo and the residue partitioned between 20 mL H2O and 50 mL EtOAc. 

The aqueous layer was acidified with 5% H2SO4 solution to pH 1 and extracted with 

EtOAc (4 × 25 mL). The combined organic layers were dried over MgSO4, filtered, and 

concentrated in vacuo to provide a light yellow solid. The solid was then triturated with 

CHCl3 to provide 0.33 g of crude diacid (white solid). The diacid was suspended in a 

mixture of 7 mL toluene and 4 mL of acetic anhydride. The solid immediately dissolved 

and the solution turned dark orange. After stirring overnight, the solvent was removed in 

vacuo. Crystallization was accomplished using isopropanol/CH2Cl2 to provide 0.16 g of 

deuterated fulgide 8Z (16% yield from 1,2-dimethyl-3-trifluoroacetylindole). The 1H 

NMR spectrum matched that of the proteo compound with the exception that the 

resonances at 2.16 and 0.97 ppm were greatly diminished. The two methyl groups were 

approximately 85% perdeuterated. 

3.3.4 Preparation of thin films 

An initial solution was prepared by adding 2-4 mg of fulgide to a solution of 10% 

poly(methyl methacrylate) (PMMA-low molecular weight, average Mw ca. 120,000) in 5 

mL of CH2Cl2. The polymer solution (1.5 mL) was then deposited via pipet onto a 

circular 1 inch × 1/16 inch BK-7 glass slides (escoproducts) and allowed to spread over 

the surface of the slide. The sample was allowed to dry overnight inside a glass Petri dish 

at room temperature. The resulting films were utilized in the thermal stability studies. 

3.3.5 Spectra determination 

Concentrated, air-saturated stock solutions of the Z-form or E-form of the fulgides in 

toluene were prepared in duplicate or triplicate. From each stock solution, 5 samples 
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ranging in concentration from 0.20 to 0.05 mM were then prepared by dilution with 

toluene. A UV-vis spectrum was acquired for each sample. Extinction coefficients and 

λmax were determined. The C-forms were obtained by irradiating Z-form solutions with 

419 nm light in a Rayonet reactor followed by purification via silica gel chromatography 

(toluene). Stock solutions containing freshly purified C-form in toluene were diluted to 4 

or 5 different concentrations, and their UV-vis spectra were obtained. Each C-form 

solution was then quantitatively converted to Z-form with 570 nm light and the 

concentration of fulgide present was ascertained using the predetermined Z-form 

extinction coefficients. Extinction coefficients and λmax for the C-forms were then 

determined from the initial spectra. 

3.3.6 Photostationary state (PSS) measurements 

The photostationary state (PSS) was measured using NMR spectroscopy. An NMR 

tube containing Z-form fulgide in toluene-d8 was illuminated with 436 nm light until the 

photostationary state was reached. An NMR spectrum was then acquired and integrated, 

and the ratio of E:Z:C was determined. 

3.3.7 Photochemical stability 

Air-saturated solutions of the Z-form were prepared in toluene with an initial 

absorbance of 0.6 at the absorption maxima. Samples were irradiated to the 

photostationary state with light supplied from an Oriel 1000W Hg (Xe) lamp utilizing a 

water filter followed by a hot mirror (blocking UV and IR light) followed by a 435 nm 

narrow bandpass filter. After measuring the UV-vis spectrum of the photostationary state, 

PSS435 nm, a pure Z-form solution was irradiated to 90% of the PSS, and the reaction was 

timed. The 90% PSS mixture was then bleached with > 560 nm light using a separate 
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filter, and the time taking for bleaching was determined. Absorbance at the C-form λmax 

was < 0.01 upon bleaching.                                                                               

Once the duration of irradiation was established for both 90% PSS coloration and < 1% 

C-form bleaching reactions, the system was automated through the use of a filter switch. 

All solutions were capped and stirred. Control experiments were performed to correct for 

evaporation. After a designated number of irradiation cycles (coloration followed by 

decoloration), the samples were fully converted to PSS435 nm and their UV-vis spectra 

scanned. The photochemical fatigue was then determined by comparison with the initial 

PSS435 nm absorption spectrum. The cycling times were approximately 35 s (Z-C) and 25 s 

(C-Z) for fulgides 1 and 8. 

3.3.8 Thermal stability 

3.3.8.1 Polymer-based study 

Thin films containing the Z-form of the fulgides were wrapped in aluminum foil and 

placed in an oven maintained at 80 ºC. The films were removed, at prescribed intervals 

and their UV-vis spectra measured. 

To determine the stability of the C-form, the thin films containing the Z-form, were 

illuminated with blue light (435 nm bandpass filter) until the photostationary state had 

been obtained. The thin films were then wrapped in aluminum foil and placed in an oven 

maintained at 80 ºC. The films were removed, at prescribed intervals and their UV-vis 

spectra measured. 

3.3.8.2 Solution-based study 

A solution of the Z-forms of deuterated trifluoromethyl indolylfulgide 8 and 5-

methoxy-2-methylindole (internal standard) was prepared in toluene-d8. The solution was 
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transferred to an NMR tube. The tube was then sealed and submersed in a water bath 

maintained at 80 ºC. At prescribed times, the tube was removed and its contents analyzed 

by 1H NMR-spectroscopy. A control experiment in which approximately a 1:1 mixture of 

1 and 8 was degraded was also performed. All the photochemical and thermal 

measurements were performed by Dr. Islamova in Dr. Lees’ group. 

3.4 Results and Discussion 

3.4.1 Synthesis 

The preparation of deuterated trifluoromethyl indolylfulgide 8Z was achieved for the 

first time following a similar pathway to 1Z with deuterated chemicals and modified 

methods (Scheme 18).60 The synthesis consisted of a five-step sequence. The first step, a 

Stobbe condensation, involved the reaction of dimethyl 2,2,3,3-tetradeuterosuccinate with 

perdeuterated acetone to produce an octadeuterated half-acid, half-ester. A Fisher 

esterification of the half-acid, half ester in acidified monodeuterated methanol produced 

dimethyl octadeuteroisopropylidenesuccinate. Another Stobbe condensation was 

performed with dimethyl octadeuteroisopropylidenesuccinate and 1,2 dimethyl-3-

trifluoroacetylindole to generate hexadeuterated indolelactone as a cis/trans mixture. 

Previous synthetic studies with methyl indolylfulgides indicated that only trans-

indolelactone derivatives could be carried onto the final product.89 An improved synthesis 

of methyl and trifluoromethyl indolylfulgides by Lees et al. demonstrated that sodium 

hydride and potassium hydroxide in DMF allowed cis indolelactone derivatives to 

produce diacid.60 Furthermore, the method also increased the yield for both cis and trans 

isomers.60 Therefore, I treated the cis/trans hexadeuterated indolelactone with NaOD 

(NaD was not commercially available) in DMF. The resulting diacid was further 
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dehydrated with acetic anhydride to produce hexadeuterated indolylfulgide 8Z. The 1H 

NMR spectrum indicated that the resonances at 2.16 and 0.97 ppm were greatly 

diminished while all others resonances matched the spectrum of proteo 1Z. The 

perdeuteration ratio of the two methyl groups was approximately 85%. 

Scheme 18. Synthesis of deuterated indolylfulgide 8 

 

3.4.2 UV-vis absorption spectra 

The UV-vis absorption spectra of Z-form and C-form deuterated trifluoromethyl 

indolylfulgide 8 in toluene are shown in Figure 6. The wavelength of maximum 

absorbance and the corresponding extinction coefficients of fulgides 1 and 8 in toluene 

are presented in Table 1. The absorption maxima of fulgides 1 and 8 are in the visible 

region, which allows the use of inexpensive light sources for their interconversion. 

Deuteration of the isopropylidene group does not change the absorption maxima and 

extinction coefficients, as expected. 
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Figure 6. UV-vis absorption spectra of fulgides 1 and 8 in toluene 

Table 1. Extinction coefficients at λmax for fulgides 1 and 8 in toluene 

Fulgide 
λmax /nm (εmax/mol-1 L cm-1) PSS436 nm 

Z-form C-form C:Z:E 

1 427 (5800) 571 (7000) 95:3:2 

8 427 (5900) 571 (7000) 94:3:2 

 
3.4.3 Thermal stability 

Previous studies demonstrated that the thermal resistance of fulgides was an essential 

characteristic for their applications in optical devices.51,64,65,71,83 In my research, the 

thermal stability of fulgide 8 was measured in both toluene and PMMA film. In toluene, 

NMR spectroscopy was used to determine the thermal stability. As shown in Scheme 15, 

the first step of the thermolysis is a 1,5-hydrogen shift from the isopropylidene group of 

1Z to form intermediate 3, follows by a 1,5-indolyl migration and another 1,5-hydrogen 

shift to form the final thermal decomposition product 5.50 Figure 7 indicates that the 

concentration of deuterated fulgide 8Z decreased and the concentrations of thermolysis 

products increased with time at 80 ºC in toluene. The rate constants were obtained by 

fitting the NMR data using least-squares (Table 2). 
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Figure 7. Concentration profiles for thermolysis of 8Z at 80 ºC in toluene 

The rate constants indicated that deuteration improved the thermal stability of 8Z by 

a factor of 7 relative to 1Z (k1Z (8Z)→3), as a result of the large kinetic isotope effect of the 

1,5-hydrogen shift, the rate determining step for the thermal decomposition. The Z-form 

of fulgide 8 degraded at about 4%/day at 80 ºC in toluene.  

Table 2. Rate constants by fitting the NMR data using Euler’s method (aref 50) 

Rate constants (min-1) Fulgide 1a Fulgide 8 Ratio of rate constants

k1Z(8Z)→3 3.9×10-4 5.8×10-5 6.7 

k1Z(8Z)→1E(8E) 1.5×10-4 1.7×10-4 0.9 

k1E(8E)→1Z(8Z) 6×10-4 5.2×10-4 1.2 

k3→5E 8.7×10-4 1.9×10-4 4.6 

k3→5Z 1.7×10-4 3.9×10-5 4.3 
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Figure 8. UV-vis absorption spectra of 1Z and 8Z in PMMA at 80 ºC 

In PMMA, the increased thermal stability of the Z-form of 8 was also observed. 

Figure 8 showed UV-vis absorption spectra of fulgides 1Z and 8Z in PMMA with 

continuing treatment at 80 ºC. The absorbance spectrum of the Z-form of 1 reached a low 

point after only 4 h, but the Z-form of the deuterated analog 8 took 97 h before reaching a 

similar low point. The C-forms of 1 and 8 reverted back to the corresponding Z-forms at 

a rate of 0.3%/day over 23 days and 0.7%/day over 11 days, respectively at 80 °C. 

Therefore, the Z-forms of 1 and 8 limited the thermal stability, and the overall thermal 

stability of 8 was enhanced by increasing the thermal stability of 8Z.  

3.4.4 Photochemical stability 
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Figure 9. Photochemical decomposition of 1 and 8 in toluene: decreasing absorbance 

with repeated coloration and bleaching cycles: (1) triangles; (8) circles 
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Photochemical stability was measured in toluene. Fulgide 1 and 8 demonstrated 

similar behavior. They degrade at a rate of 0.008% per photochemical cycle indicating 

that deuteration of the isopropylidene group does not affect photochemical stability 

significantly (Figure 9, Table 3). 

Table 3. Photochemical fatigue resistance of fulgides 1 and 8 

Fulgide 
Photochemical decomposition 

Number of cycles A/A0 %/cycle 

1 4000 0.679 0.008 

8 3000 0.766 0.008 

 
3.5 Conclusion 

In summary, I have synthesized a novel photochromic fluorinated indolylfulgide 8 

with enhanced thermal stability. The new fulgide differs from the standard fluorinated 

indolylfulgide 1 in that the isopropylidene group was deuterated. The synthesis was 

successfully carried out in a similar manner as fulgide 1, but deuterated reagents and 

solvents were used. The thermal stability of the Z-form of deuterated indolylfulgide 8 in 

toluene was increased by a factor of 7, as predicted on the basis of kinetic isotope effects. 

Deuteration should be considered as a general strategy to enhance the thermal stability of 

all fulgides that degrade via a similar mechanism.  
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CHAPTER 4 

SYNTHESIS AND OPTICAL PROPERTIES OF A NOVEL 

TRIFLUOROMETHYL N-ETHOXYCARBONYLMETHYL 

INDOLYLFULGIMIDE 

4.1 Abstract 

A novel trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide 9 was synthesized 

using trifluoromethyl indolylfulgide 1 as a precursor. Indolylfulgide 1 was synthesized in 

a large scale in five steps with an overall yield of 18%. Fulgide 1 was then converted to 

fulgimide 9 by aminolysis follow by dehydration. The thermal and photochromic 

properties of trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide 9 were examined 

in a protic and aprotic environment. Both forms of fulgimide 9 showed high hydrolytic 

stability in 70/30 ethanol/water at 50 °C, degrading 1.3% per day for Z-form and 1.2% 

per day for C-form. In toluene at 80 °C, the C-form was very stable, degrading 0.5% per 

day, while the Z-form was less stable, degrading 20% per day. In addition, fulgimide 9 

exhibited enhanced photochemical stability.  

4.2 Introduction 

Photochromic compounds, such as fulgides and fulgimides, have been recognized as 

possible candidates for optical switches and optical memory media.15 Fulgides and 

fulgimides can undergo a photochromic reaction, a reversible transformation between two 

key forms with different absorption spectra induced by light in at least one direction 

(Scheme 19).2,7 The mechanism involves an electrocyclic ring closing and an 

electrocyclic ring opening, respectively. 
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Fluorinated indolylfulgides, first synthesized by Yokoyama et al, exhibit many 

advantageous properties, including well separated absorption spectra for each form, large 

molar absorption coefficients, thermal and photochemical stability, and large quantum 

yields.49 Therefore, studies were conducted to optimize the molecular structure of 

fluorinated indolylfulgides to achieve improved photochromic properties.50-52,62,64,65,83,85,87 

The most photochemically stable fulgide, a dicyclopropyl fluorinated indolylfulgide, was 

recently synthesized and characterized. The compound underwent 10,000 photochemical 

cycles before degrading by 13%.52 

Scheme 19. Photochemical reactions of trifluoromethyl indolylfulgides and 

indolylfulgimides 

 

For applications in optical memory devices, stability in protic environments is an 

important characteristic. Photochromic compounds used in optical devices are expected 

to maintain viability in humid environments. Previous research has demonstrated that 

fulgides are very reactive towards protic solvents such as, ethanol, methanol and water 

because of the succinic anhydride ring in their structure.71 Therefore, fulgides were 

converted to fulgimides which replace the succinic anhydride ring with a more stable 

succinimide ring (Scheme 19).56,90,91 Earlier studies showed that the solvolytic stability of 
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both the open and closed forms of fulgimides were improved by 200 to 1000 fold in 

70/30 ethanol/water relative to fulgides at 25 °C.41 The exothermicity of methanolysis of 

a typical fulgide was calculated to be less for the open form than for the closed form and 

fulgimides have a similar behavior.71 

       Although the properties of several fulgimides have been examined in protic solvents, 

a comprehensive study of their properties in protic solvents has not been 

conducted.6,41,70,71,92 For example, in aqueous solution, concanavalin A was modified 

with a fulgimide derivative which was randomly attached to lysine residues on the 

protein.70 The open form of the fulgimide was relatively stable in aqueous solution for 2 

days at 25 °C, and the fulgimide cycled back and forth between the open and closed 

forms at least twice.6 A more recent report in live cell indicated that fulgimide 13, 

substituted at the 2-position of the heteroaromatic ring, can cycle back and forth between 

the open and closed forms seven times in cellular membranes but not very well in 

aqueous solution. 

A more detailed characterization of the properties of N-phenyl furanylfulgimide 6 

substituted at the 3-position of the heteroaromatic ring in 50/50 ethanol/water was 

reported by Matsushima el al.71 Fulgimide 6 showed enhanced thermal stability, the 
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closed form lost about 12% of its absorbance at λmax after 10 days in 50/50 ethanol/water 

at room temperature and 17% in pure toluene at 50 °C. However, fulgimide 6 only 

underwent 10 photochemical cycles before degrading 15% and 19% in 50/50 

ethanol/water and toluene, respectively.71 Previously, eight N-phenyl fluorinated 

indolylfulgimides have different substituent on the N-phenyl ring were synthesized and 

characterized.41 These fulgimides lost between 0 and 45% of their absorbance at λmax 

after 14 days in 70/30 ethanol/water at room temperature, and the closed form was the 

least stable form of the two forms in all cases.41 The N-phenyl fluorinated 

indolylfulgimide 7 was the most thermally stable, the closed form lost 5% of its 

absorbance at λmax after 14 days. Furthermore, electron withdrawing ability of the 

substituents on the phenyl ring was positively correlated with the loss in absorbance at 

λmax for the closed form. Therefore, greater stability was expected by replacing the N-

phenyl group with a more electron donating group such as an N-alkyl group. 

Herein, a new trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide 9 was 

synthesized. The precursor, trifluoromethyl indolylfulgide 1, was prepared on a 10 gram 

scale with an optimized synthetic pathway. Fulgimide 9 was expected to have higher 

aqueous solubility than N-phenyl fulgimide 7 because of the hydrophilic 

ethoxycarbonylmethyl group. Furthermore, the ethoxycarbonylmethyl group should 

improve the thermal stability towards hydrolysis of the succinimide ring. The 

photochromic properties of 9, including UV-vis absorbance spectra, extinction coefficient, 

and fatigue resistance were measured in both 70/30 ethanol/water and toluene. The 

thermal stability of 9 in 70/30 ethanol/water, toluene, and poly (methyl methacrylate) 

(PMMA) was also examined. 
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4.3 Experimental Section 

4.3.1 General procedures and materials 

All commercially available materials were used without further purification. The 

NMR spectra were recorded on a  Brüker 400 MHz NMR spectrometer. The 1H and 13C 

NMR samples were internally referenced to TMS (0.00 ppm) or solvent (7.26 and 77.00 

ppm, respectively for CDCl3). The UV-vis spectra were recorded with a Cary 300 

Spectrophotometer. Flash chromatography was performed with 230-400 mesh silica gel. 

Galbraith performed all elemental analysis. Fulgimide 7 was synthesized as described 

previously.41 

4.3.2 Synthesis of dimethyl isopropylidene succinate 15 

 

Dimethyl succinate (233 mL, 1.77 mol) and acetone (131 mL, 1.77 mol) were 

dissolved in 200 mL of tert-butyl alcohol and slowly added to a solution of potassium 

tert-butoxide (201 g, 1.79 mol) in 2 L of tert-butyl alcohol. The solution was refluxed 

under argon gas for 2.5 h. The solution was then cooled down in an ice bath and 

concentrated in vacuo. The residue was quenched with 1.6 L of aqueous NaOH (2 M) and 

extracted with diethyl ether (3 × 1.5 L). The aqueous layer was acidified with 800 mL of 

aqueous HCl (6 M) and extracted with CH2Cl2 (4 × 1 L). The combined organic layers 

were dried over MgSO4, filtered, and concentrated in vacuo. The resulting orange liquid 

was dissolved in 2.6 L of methanol, and acetyl chloride (183 mL, 2.57 mol) was added 
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dropwise under argon gas. After stirring for 24 h, the solution was concentrated in vacuo. 

The residue was quenched with 1 L of saturated aqueous NaHCO3 and extracted with 

diethyl ether (3 × 1 L). The combined organic layers were dried over MgSO4, filtered, 

and concentrated in vacuo. The resulting orange liquid was distilled in vacuo to provide 

191.2 g (58%) dimethyl isopropylidene succinate 15 as a clear colorless oil. 

4.3.3 Synthesis of 1,2-dimethyl-3-trifluoroacetylindole 16 

 

To a stirred solution of trifluoroacetic anhydride (108 g, 0.95 mol) in 550 mL of  1,2-

dichloroethane at 0 °C, a solution of 1,2-dimethylindole (49 g, 0.34 mol) dissolved in 370 

mL of 1,2-dichloroethane was added dropwise. After 2 h at room temperature, the 

reaction mixture was concentrated in vacuo. The purple residue was quenched with 500 

mL of saturated aqueous NaHCO3 and extracted with CH2Cl2 (3 × 600 mL). The 

combined organic layers were dried over MgSO4, filtered, concentrated in vacuo, and to 

provide 81.3 g of 1,2-dimethyl-3-trifluoroacetylindole 16 (99%). 

4.3.4 Synthesis of trifluoromethyl isopropylidene indolelactone 17 
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Lithium diisopropylamide (300 mL of a 2 M solution, 0.6 mol) was added to a stirred 

solution of dimethyl isopropylidene succinate 15 (152.1 g, 0.82 mol) and 1,2-dimethyl-3-

trifluoroacetylindole 16 (81.3 g, 0.34 mol) in 2 L of toluene under argon gas. After 2 h, 

the reaction was quenched with 800 mL of 5% H2SO4 solution and extracted with EtOAc 

(4 × 1 L). The combined organic layers were dried over MgSO4, filtered and concentrated 

in vacuo. The residue was purified by silica gel chromatography (4:1 hexanes/EtOAc 

followed by 3:1 hexanes/EtOAc) and recrystallized from ethanol to provide 54.1 g (41%) 

of cis/trans isopropylidene indolelactone 17. The cis/trans mixture was used for the next 

step without further separation. 

4.3.5 Synthesis of diacid 18 

 

NaH (60% dispersion in oil, 12.0 g, 0.30 mol) was added cis/trans indolelactone 17 

(27.6 g, 0.07 mol) in 800 mL of DMF at 0 °C. Once the evolution of gas had ceased, 28.0 

mL of water was added. The mixture was warmed to room temperature and stirred 

overnight. The mixture was concentrated in vacuo and the residue was then dissolved in 

700 mL of water and extracted with 700 mL of EtOAc. The aqueous layer was acidified 

with 5% H2SO4 to pH 1 and extracted with EtOAc (4 × 700 mL). The combined organic 

layers were dried over MgSO4, filtered, and concentrated in vacuo. The light orange solid 

was triturated with CHCl3 to provide 18.0 g (61%) of the diacid 18 as a white solid. 
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4.3.6 Synthesis of trifluoromethyl indolylfulgide 1 

 

The resulting diacid 18 (18.0 g, 0.47 mol) was suspended in 200 mL of toluene. 

Acetic anhydride (187 mL, 1.98 mol) was added, and the reaction mixture was stirred for 

2 d under argon gas. The solution was then concentrated in vacuo. The residue was 

quenched with 800 mL of water and extracted with CH2Cl2 (3 × 500 mL). The combined 

organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

Recrystallization from CH2Cl2/isopropanol provided 12.7 g (74%) of trifluoromethyl 

indolylfulgide 1. 

4.3.7 Synthesis of trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide 9 

       N,N-Diisopropylethylamine (1.30 g, 10.1 mmol) was added slowly with stirring to a 

mixture of the HCl salt of glycine ethyl ester (0.37 g, 2.6 mmol), trifluoromethyl 

indolylfulgide 1 (0.46 g, 1.3 mmol), and 30 mL of acetonitrile at 0 °C. After stirring 
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overnight the solvent was removed in vacuo. The residue was added to 30 mL of HCl 

(0.5 M) and extracted with EtOAc (3 × 25 mL). The combined organic layers were dried 

over MgSO4, filtered, and concentrated in vacuo. Purification of the residue by silica gel 

chromatography (60:40:2 hexanes/EtOAc/AcOH) provided 0.46 g of the crude amide 

acid ester. The amide acid ester was added to 8 mL of acetyl chloride (8.8 g, 112 mmol), 

and the reaction mixture was refluxed under argon gas for 24 h. Then the solvent was 

removed in vacuo. The residue was added to 30 mL of H2O and extracted with EtOAc (3 

× 25 mL). The combined organic layers were dried over MgSO4, filtered, and 

concentrated in vacuo. Purification was performed via silica gel chromatography (10:1 

toluene/EtOAc) followed by recrystallization from methanol to provide 22 mg (4%) of 

the indolylfulgimide 9. Z-form: 1H NMR (CDCl3), 7.32-7.26 (m, 2H), 7.21 (td, J = 7.0, 

1.2 Hz, 1H), 7.13 (td, J = 7.5, 1.3 Hz, 1H), 4.42 (s, 2H), 4.24 (q, J = 7.1 Hz, 2H), 3.69 (s, 

3H), 2.23 (s, 3H), 2.13 (s, 3H), 1.60 (s, 1H), 1.29 (t, J = 7.1 Hz, 1H), 0.96 (s, 3H). 13C 

NMR (CDCl3), 166.3, 165.9, 163.6, 153.9, 136.5, 136.1, 131.8 (q, J = 35 Hz), 128.7, 

124.8, 121.8, 121.7 (q, J = 277 Hz), 121.3, 120.3, 119.0, 108.5, 106.9, 61.2, 38.4, 29.3, 

26.0, 21.7, 13.4, 11.2. Anal. Calcd for C23H23F3N2O4: C, 61.60, H, 5.17; N, 6.25. Found: 

C, 61.33; H, 5.34; N, 6.19. C-form: 1H NMR (CDCl3), 7.73 (d, J = 8.1 Hz, 1H), 7.35 (td, 

J = 7.8, 1.1 Hz, 1H), 6.78 (td, J = 7.7, 0.7 Hz, 1H), 6.63 (d, J = 8.3 Hz, 1H), 4.27-4.17 (m, 

2H), 4.26 (s, 2H), 2.92 (s, 3H), 1.79 (s, 3H), 1.35 (s, 3H), 1.28 (s, 3H), 1.25 (t, 3H). 

4.3.8 Preparation of thin films 

An initial solution was prepared by adding 2-4 mg of indolylfulgimide 9 to a solution 

of 10% poly(methyl methacrylate) (PMMA-low molecular weight, average Mw ca. 

120,000) in 5 mL of CH2Cl2. The polymer solution (1.5 mL) was then deposited via pipet 
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onto a circular 1 in × 1/16 in BK-7 glass slides (escoproducts) and allowed to spread over 

the surface of the slide. The sample was allowed to dry overnight inside a glass Petri dish 

at room temperature. The resulting films were utilized in the thermal stability studies. 

4.3.9 Spectral Determination 

Concentrated, air-saturated stock solutions of the Z-form of indolylfulgimide 9 in 

toluene were prepared. From each stock solution, 5 samples ranging in concentration 

from 0.20 to 0.05 mM were then prepared by dilution with toluene. Absorption 

coefficients and λmax were determined.  

The C-form was obtained by irradiating Z-form solutions with 405 nm light followed 

by purification via flash column chromatography (silica gel, toluene). Stock solutions 

containing freshly purified C-form in toluene were diluted to 4 or 5 different 

concentrations, and their UV-vis spectra obtained. Each C-form solution was then 

quantitatively converted to Z-form with yellow light (> 510 nm) and the concentration of 

fulgimide present was ascertained using the predetermined Z-form extinction coefficients. 

Absorption coefficients and λmax for the C-forms were then determined from the initial 

spectra.  

A similar methodology was used to determine these values in 70/30 ethanol/water. 

The C-form fulgimide used in 70/30 ethanol/water, however, was still prepared in toluene 

and purified chromatographically on silica gel using toluene. The scan rate was 600 

nm/min, the integration time was 0.1 s, and slit bandwidth was 2 nm. Each extinction 

coefficient was determined three times and the error from the Z-form was propagated to 

the error for the C-form. 
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4.3.10 Photostationary state (PSS) measurements 

PSS was measured using 1H NMR spectroscopy. An NMR tube containing the Z-

form of indolylfulgimide 9 in 70/30 ethanol-d6/D2O or in toluene-d8 was illuminated with 

light that had passed through a hot mirror (blocking UV and IR light) and a 405 nm 

bandpass filter until PSS was reached. An 1H NMR spectrum was then acquired and 

integrated, and the ratio of E:Z:C was determined. 

4.3.11 Photochemical stability 

Air-saturated solutions of the Z-form of indolylfulgimide 9 were prepared in toluene 

with an initial absorbance of approximately 0.6 at the absorption maxima. Samples were 

irradiated to the PSS with light supplied from an Oriel 1000 W Hg (Xe) lamp utilizing a 

water filter followed by a hot mirror followed by a 405 nm narrow bandpass filter. After 

measuring the UV-vis spectrum of the photostationary state, PSS405 nm, a pure Z-form 

solution was irradiated to 90% of the PSS, and the reaction was timed. The 90% PSS 

mixture was then decolorized with > 515 nm light using a separate filter, and again the 

reacting times was recorded. Absorbance at the C-form λmax was < 0.01 upon 

decoloration. Once the duration of irradiation was established for both the 90% PSS 

coloration and < 1% C-form decoloration reactions, the system was automated through 

the use of a filter switch. All solutions were capped and stirred. Control experiments were 

performed to correct for evaporation. After a designated number of irradiation cycles, the 

samples were fully converted to PSS405 nm, and their UV-vis spectra scanned. The 

photochemical fatigue was then determined by comparison with the initial PSS405 nm 

absorption spectrum. The procedure was then repeated in 70/30 ethanol/water for 9 and 7 

and in PMMA for 9. The cycling times for 9 were approximately 50 s (Z - C) and 20 s (C 
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- Z) in toluene, 90 s (Z - C) and 35 s (C - Z) in 70/30 ethanol/water, and 35 s (Z - C) and 

20 s (C - Z) in PMMA. The photochemical stability was measured three times in each 

solvent: toluene, ethanol/water, and PMMA.  

4.3.12 Thermal Stability 

4.3.12.1 Polymer-Based Study 

Thin films containing the Z-form of the indolylfulgimide 9 were wrapped in 

aluminum foil and placed in an oven maintained at 80 °C. The films were removed at 

predetermined intervals, and their UV-vis spectra measured. To determine the stability of 

the C-form, the thin films containing the Z-form were illuminated with blue light (405 nm 

bandpass filter) until the PSS had been obtained. The thin films were then wrapped in 

aluminum foil and placed in an oven maintained at 80 °C. The films were removed at 

predetermined intervals, and their UV-vis spectra measured. The experiment was 

repeated three times. 

4.3.12.2 Solution-Based Study 

The thermal stability of the Z- and C-forms of indolylfulgimide 9 in 70/30 

ethanol/water and in toluene was measured using UV-vis and 1H NMR spectroscopy. The 

Z-form solutions of fulgimide 9 were prepared in 70/30 ethanol/water and toluene, or 

their deuterated analogs and then transferred into several ampoules or NMR tubes, 

respectively. Ampoules and NMR tubes were sealed and submersed in water baths 

maintained at 50 °C (ethanol/water) or at 80 °C (toluene). At predetermined times, 

ampoules and NMR tubes were removed, and their contents analyzed by UV-vis and 1H 

NMR spectroscopy, respectively. To determine the stability of the C-form in these 

solvents, fresh Z-form solutions were illuminated with blue light (405 nm bandpass filter) 
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until the PSS was achieved. The thermal stability was then measured as described for the 

Z-form. A similar experiment was also performed with the Z-form of 7 in 70/30 

ethanol/water. For 1H NMR spectroscopy, the residual solvent peak was used as an 

internal standard, and signals corresponding to the individual species were integrated 

relative to the internal standard. All the photochemical and thermal measurements were 

performed by Dr. Islamova in Dr. Lees’ group. 

4.4 Results and Discussion 

4.4.1 Synthesis of trifluoromethyl indolylfulgide 1 and indolylfulgimide 9 

Trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide 9 was synthesized from 

the precursor indolylfulgide 1. Additionally, I synthesized a series of fulgimides using 

indolylfulgide 1 as the precursor. Therefore, developing a reliable and productive 

pathway for synthesis of fulgide 1 on a large scale (10 g) was required. A previous study 

demonstrated an improved synthetic route to trifluoromethyl indolylfulgide 1 on a 1 gram 

scale.60 The synthetic route involves five steps including two Stobbe condensations. 

Herein, the large scale synthesis of 1 was performed on the basis of the five step 

sequence with several modifications (Scheme 20). The first Stobbe condensation was 

performed between dimethyl succinate and acetone in potassium tert-butoxide/tert-

butanol. The resulting half acid-half ester 14 was then treated with acidified methanol to 

yield the dimethyl isopropylidene succinate 15. The 1,2-dimethyl-3-trifluoroacetylindole 

16 was prepared by reacting trifluoroacetic anhydride with 1,2-dimethylindole. 

Subsequently, the second Stobbe condensation combined the dimethyl isopropylidene 

succinate 15 and 1,2-dimethyl-3-trifluoroacetylindole 16. The resulting cis/trans 

indolelactones 17 was treated with sodium hydride in DMF at 0 °C for 1 h followed by 
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the addition of 2 equivalent of water. However, the reaction gave a very low yield (10%) 

and several impurities.  

Scheme 20. Synthesis of trifluoromethyl indolylfulgide 1 

 

Historically, the cis-indolelactone with a methyl group on the bridging position was 

not reactive.89 The method developed by Lees et al. using sodium hydride and DMF 

enhanced the reactivity for both methyl and fluorinated cis-indolelactones.60 The method 

also increased the yield for cis/trans indolelactones on a small scale. However, on a large 

scale (20 grams or more), the sodium hydride and DMF reaction gave a surprisingly low 

yield. Further investigation of the reaction mechanism indicated that the presence of 

water was very important to the reaction. Previously, on a small scale synthesis, the small 

amount of water in DMF would prompt the reaction and prevent the generation of 

impurities. Additionally, during storage, part of the sodium hydride reacted with water in 

air and became sodium hydroxide. However, when the reaction was run on a large scale, 

new sodium hydride and DMF were used, which contained much less water. Moreover, 
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according to the previous procedure, 2 equivalent of water was added after the reaction 

mixture was stirred for 1 h, but by this time a significant amount of impurities had 

already been generated. Hence, I modified the procedure by adding the 2 equivalent of 

water immediately after all the sodium hydride was suspended in DMF. Using the new 

procedure, the large scale reaction of cis/trans indolelactones worked well and yielded 

the diacid 18 in 61%. The trifluoromethyl indolylfulgide 1 (12.7 g, 74%) was afforded by 

treating the diacid with acetic anhydride in toluene. 

The synthesis of N-ethoxycarbonylmethyl indolylfulgimide 9 was carried out with 

the trifluoromethyl indolylfulgide 1 as the precursor (Scheme 21). The anhydride ring of 

1 was opened via addition of glycine ethyl ester. The resulting ethyl ester succinamic acid, 

one of the two possible regioisomers, was further treated with acetyl chloride to generate 

ethyl ester indolylfulgimide 9 in its open form. 

Scheme 21. Synthesis of trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide 9 

 

4.4.2 UV-vis absorption spectra 

The UV-vis absorbance spectra of both Z- and C-forms (also called the open and 

closed forms, respectively) of 9 were measured in 70/30 ethanol/water and in toluene 

(Figure 10). The 70/30 ratio of ethanol/water was selected to ensure enough solubility of 
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both forms and compare with previous results.41 Bathochromic shifts were observed for 

both forms as the solvent polarity increased. The absorbance maxima of the open and 

closed forms increased by 12 and 17 nm as the solvent changed from toluene to 70/30 

ethanol/water, respectively. Also, the extinction coefficients of both forms were slightly 

decreased in 70/30 ethanol/water (Table 4). 
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Figure 10. UV-vis absorption spectra of fulgimide 9 in 70/30 ethanol/water and toluene 

Table 4. Extinction coefficients at λmax for fulgimide 9 in 70/30 ethanol/water and 

toluene 

Medium 
λmax/nm (εmax/mol-1 L cm-1)a PSS405 nm 

Z-form C-form C:Z:E 

70/30 Ethanol/water 412 (5.4 ±0.2 × 103) 566 (5.8 ±0.2 × 103) 76:19:5 

Toluene 400 (5.8 ±0.2 × 103) 549 (6.6 ±0.2 × 103) 91:7:2 

a Error is the standard deviation for three measurements. 

4.4.3 Thermal stability 

To be used in optical switches and sensors, thermal stability of fulgimides is very 

important. In these applications, fulgimides are anticipated to stay in the open or closed 

forms in a variety of environments without interconversion or decomposition. Therefore, 
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the thermal stability of the open and closed forms of 9 was measured in 70/30 

ethanol/water, toluene, and thin films of poly (methyl methacrylate) (PMMA). In toluene 

and PMMA, 80 °C was used as the standard temperature for the thermal stability 

measurement. However, because of the lower boiling point of ethanol, thermal stability 

measurements were performed at 50 °C in ethanol/water solution.71 The thermal stability 

was followed by both 1H NMR spectroscopy and by UV-vis spectroscopy in 

ethanol/water and toluene, and followed by UV-vis spectroscopy in PMMA. 
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Figure 11. Thermal decomposition of Z- and C-forms of fulgimide 9 in 70/30 

ethanol/water at 50 °C (a, b) and in toluene at 80 °C (c, d). Arrows indicate the change in 

absorbance with time. (b) After 140 h spectra did not change. 

In 70/30 ethanol/water at 50 °C, Z-form and C-form degraded 22 ± 5% and 10 ± 1% 

respectively after 21 days (Figure 11a, 10b, Table 5). The Z-form of fulgimide 9 was 
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much more stable compared to the Z-form of N-phenyl fulgimide 7 which lost 52% of its 

absorbance after 21 days at 50 °C. Previous studies indicated that the C-forms of 

fulgimides and fulgides were hydrolytically less stable than the Z-forms at room 

temperature.41 

Table 5. Thermal decomposition for fulgimide 9 in 70/30 ethanol/water, toluene, and 

PMMA 

Medium 

UV-vis 1H NMR 

Z-form C-form Z-form C-form 

A/A0 %/day A/A0 %/day [9]/[9]0 %/day [9]/[9]0 %/day

Ethanol/water 

70/30 (50 °C)a 
0.78 1.1 0.90 0.5 0.74 1.3 0.74 1.2 

Toluene (80 °C)b 0.57 2.6 0.96 0.2 0.03 c 0.93 0.5 

PMMA (80 °C)d 0.62 3.8 e e - - - - 

a Absorbance at λmax relative to initial absorbance after 500 h; 
b Absorbance at λmax relative to initial absorbance after 400 h; 
c Z-form almost completely decomposed after 400 h, it decomposed 20% during the first  
  day; 

d Absorbance at λmax relative to initial absorbance after 240 h; 
e No decomposition observed after 240 h. 

The stability of both forms of fulgimide 9 was also followed by 1H NMR 

spectroscopy in sealed NMR tubes at 50 °C containing 70/30 ethanol-d6/D2O (Figure 12, 

Table 5). Both forms degraded 26 ± 3% after 21 days. The C-form of fulgimide 9 has a 

higher degradation rate by NMR measurement compared with UV-vis measurement. The 

presumable explanation is that some of the decomposition products from 9C also absorb 

at the absorbance maxima. Therefore, on the basis of NMR measurements, both the open 
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and closed forms of fulgimide 9 have similar stabilities and are surprisingly stable in 

70/30 ethanol/water.  

In toluene at 80 °C, UV-vis measurement showed that 9Z decomposed 43 ± 2% and 

9C decomposed 4 ± 1% after 17 days (Figure 11c, 10d, Table 4). According to 1H NMR 

measurement 9Z decomposed 97 ± 1% and 9C decomposed 7 ± 2% in deuterated toluene 

at 80 °C after 17 days (Figure 12, Table 4). To sum up, the Z-form of fulgimide 9 was less 

stable than the C-form in toluene at 80 °C and fulgimide 9 has a similar thermal stability 

as the corresponding fulgide 1.52  
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Figure 12. Thermal decomposition of Z- (circles) and C-forms (squares) of fulgimide 9 

as a function of time as measured by UV-vis spectroscopy (closed symbols) and NMR 

spectroscopy (open symbols) in 70/30 ethanol/water at 50 °C (a) and in toluene at 80 °C 

(b) 

In PMMA at 80 °C, UV-vis measurement showed that 9Z decomposed 38 ± 2% 

while 9C showed no decomposition after 10 days (Figure 13, Table 4). The absorbance 

spectra for 9Z at 80 °C indicated similar changes in PMMA and toluene. Nevertheless, 

the decomposition rate in PMMA appeared to be slower than that in toluene to some 

extent.  
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Figure 13. Thermal decomposition of Z-form of fulgimide 9 in PMMA at 80 °C. Arrows 

indicate the change in absorbance with time. 

4.4.4 Photochemical Stability 

0

0.2

0.4

0.6

0.8

1

0 300 600 900 1200

A
/A

0

Cycles  

Figure 14. Photochemical decomposition of fulgimide 9 in 70/30 ethanol/water (squares) 

and in toluene (circles). Decrease in absorbance with repeated coloration and 

decoloration cycles 

The ability of fulgides to repeatedly interconvert between the open and closed forms 

is vital for their applications as optical switches. Switches required fulgides to 

photochemically switch back and forth between two forms hundreds of times without 

significant degradation.  In 70/30 ethanol/water, fulgimide 9 underwent 360 ± 20 
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photochemical cycles before degrading 20% while the fulgimide 7 only underwent 170 

photochemical cycles. In toluene, fulgimide 9 underwent 1000 ± 100 (Figure 14). 

4.5 Conclusion 

In summary, trifluoromethyl indolylfulgide 1 was successfully synthesized on a large 

scale for the first time. The synthetic route was optimized and provided indolylfulgide 1 

with an overall yield of 18%. A new trifluoromethyl N-ethoxycarbonylmethyl 

indolylfulgimide 9 was synthesized from 1 as a precursor. The UV-vis absorbance 

spectra, extinction coefficient, and photochemical stability of 9 were characterized in 

70/30 ethanol/water and toluene. Moreover, the thermal stability of the open and closed 

forms of 9 was measured in 70/30 ethanol/water, toluene, and PMMA. Fulgimide 9 was 

found to be stable in 70/30 ethanol/water at 50  °C after 21 days. On the basis of the UV-

vis and 1H NMR data, 9Z degraded 22% and 26% and 9C degraded 10% and 26% 

respectively, much more stable than the Z-form of 7 which degraded 52% (UV-vis 

measurement). In toluene and PMMA, fulgimide 9 displayed a reasonable stability and 

the C-form was the most stable form. The photochemical stability of 9 appeared to be 

solvent dependent to some extent. In 70/30 ethanol/water, fulgimide 9 underwent 360 

photochemical cycles while the N-phenyl indolylfulgimide 7 underwent 170 cycles 

before degrading by 20%. In toluene, fulgimide 9 was more stable and underwent 1000 

photochemical cycles before degrading by 20%. In conclusion, the results demonstrated 

that fulgimide 9 was thermally and photochemically stable in both protic and aprotic 

solvents and could be consider as a potential material for optical switches. 
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CHAPTER 5 

SYNTHESIS AND OPTICAL PROPERTIES OF AQUEOUS SOLUBLE 

INDOLYLFULGIMIDES 

5.1 Abstract 

Three novel aqueous soluble fulgimides, trifluoromethyl carboxylic acid 

indolylfulgimide 10, dicarboxylic acid indolylfulgimide 19, and H-carboxylic acid 

indolylfulgimide 20, were synthesized (Scheme 22). Both 10 and 19 can switch back and 

forth between open and closed forms upon illumination with specific wavelengths of light, 

while 20 can only switch from the closed form to the open form. In sodium phosphate 

buffer (pH 7.4) at 37 ºC, an unusual hydrolysis of the trifluoromethyl group of the closed 

form of 10 resulted in 19 which has an additional carboxylic acid group. The closed form 

of 19 was further decarboxylated to generate 20 which was not photochromic.  

Scheme 22. Photochemical reaction of indolylfulgimide 10, 19, 20 

 

In buffer, the open form of 10 degraded 20% after 10 days while the closed form of 

10 was converted to 19 rapidliuy. In buffer, both forms of 19 degraded less than 20% 

after 21 days at 37 ºC, and 19 underwent 670 photochemical cycles before degrading by 
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20%. The dicarboxylic acid indolylfulgimide 19 is the most robust fulgimide yet reported 

in aqueous solution.   

5.2 Introduction 

Photochromic compounds have potential applications in high capacity optical 

information storage devices, optical molecular switches, and biological sensors.6,15,64 All 

these applications depend on the binary nature of photochromic compounds. The 

interconversion between two key forms upon exposure to specific wavelengths of light is 

known as photochromism (Scheme 23).  

Scheme 23. Photoreactions of fulgides and fulgimides 

N

X

O

O

R

N

R

XO O

N

R

X
O

O

UV/Vis

UV/Vis

UV/Vis

Vis

Open forms Closed form

E Z C

Fulgide
Fulgimides

1. R = CF3, X = O
7. R = CF3, X =
9. R = CF3, X =
10. R = CF3, X =
19. R = COOH, X =

N COOH
N COOH

N COOEt
N C6H6

CH2
CH2

CH2  

Fulgides and fulgimides, promising photochromic compounds, have been considered 

as potential optical memory materials because of the readily distinguishable absorption 

spectrum for each key form, efficient photoreactions, and thermal and photochemical 

stabilities.15,45 Studies have been conducted to optimize the photochromic properties of 

fulgides for specific applications.46-48 Optimization has resulted in more thermally and 

photochemically stable compounds such as fluorinated indolylfulgide 1, which was 
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originally synthesized by Yokoyama and Takahashi.50-52 The most photochemically 

stable fulgide, a fluorinated indolylfulgide synthesized by Lees et al., undergoes 10,000 

photochemical cycles (back and forth conversion between the two key forms) before 

degrading by 13% in toluene.52 Optimization in almost all cases has been performed in 

aprotic solvents. However, the properties of fulgides or fulgimides in aqueous solutions 

have not been thoroughly examined.   

Stability in protic environments is an important property of photochromic 

compounds for their application in optical memory devices and biological optical 

switches.6,15 Materials used for memory devices are required to maintain stability and 

function in humid environments. In many biological applications, optical switches need 

to function in aqueous solvent systems.6,70 Previous studies demonstrated that fulgides 

were unstable in protic solvents because of the highly reactive succinic anhydride ring in 

their structure.41,71 Fulgimides, the most important fulgide derivatives, were synthesized 

to improve stability by replacing the succinic anhydride ring with a succinimide ring.40,41 

The closed form of N-phenyl fulgimide 7 displayed three orders of magnitude greater 

stability in 70/30 ethanol/water relative to the parent fulgide 1 at 25 ºC (Scheme 23).41 

One of the recent studies indicated that the open form of ethyl ester fulgimide 9 lost 22% 

of its absorbance at the absorbance maxima while 7 lost 52% after 21 days in 70/30 

ethanol/water at 50 ºC.40 Furthermore, ethyl ester fulgimide 9 underwent 360 

photochemical cycles in 70/30 ethanol/water before degrading by 20% while 7 underwent 

170 cycles.40 The photochemical stability of fulgides in ethanol/water was not reported 

because of their rapid decomposition. Although several studies have determined the 

photochemical properties of fulgimides in protic solvents,6,40,41,70,71 only a few of these 
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studies have reported the properties of fulgimides in aqueous solution.6,70,72  In one 

particular study fulgimide derivatives were covalently attached to the lysine residues on 

concanavalin A, where the open form of the fulgimide was shown to be stable in aqueous 

solution for 48 h at 25 ºC.70 This report also indicated that the fulgimide can cycle back 

and forth between the open and the closed forms at least twice. A recent study in living 

cells demonstrated that fulgimides can switch back and forth seven times in cellular 

membranes but not very well in water.6 Therefore, a more systematic study of the 

photochemical and thermal properties of fulgimides in aqueous solution would accelerate 

their applications as biological optical switches and sensors. 

Herein, I have synthesized and characterized two new photochromic 

indolylfulgimides, 10 and 19 (Scheme 23). Fulgimide 10 was prepared from fluorinated 

indolylfulgide 1. An unusual hydrolysis of 10 in sodium phosphate buffer resulted in 

fulgimide 19, while further decarboxylation of 19 yielded a non-photochromic fulgimide 

20. Fulgimides 10 and 19 were water soluble at physiological pH because of the 

hydrophilicity of the carboxylate anion. The absorption spectra, and thermal and 

photochemical stabilities for 10 and 19 have also been analyzed. 

5.3 Experimental Section 

5.3.1 General procedures and materials  

All commercially available materials were used without further purification. The 

NMR spectra were recorded on a Brüker 400 MHz NMR spectrometer. The 1H and 13C 

NMR spectra were internally referenced to TMS (0.00 ppm) or solvent (7.26 and 77.00 

ppm for CDCl3; 3.31 and 49.00 ppm for CD3OD; 4.79 ppm for D2O). The UV-vis spectra 

were recorded with a Cary 300 Spectrophotometer. Flash chromatography was performed 
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with 230-400 mesh silica gel. Galbraith performed all elemental analysis. Fulgide 1Z was 

synthesized as described in chapter 4.  

5.3.2 Synthesis of trifluoromethyl carboxylic acid indolylfulgimide 10 

 

The N,N-Diisopropylethylamine (2.7 g, 20.8 mmol) was added slowly with stirring to 

a mixture of the HCl salt of glycine methyl ester (1.28 g, 10 mmol) and trifluoromethyl 

indolylfulgide 1Z (1.84 g, 5.2 mmol) in 100 mL of acetonitrile at 0 ºC. After stirring 

overnight, the solvent was removed in vacuo. The residue was added to 100 mL of HCl 

(0.5 M) and extracted with EtOAc (3 × 100 mL). The combined organic layers were dried 

over MgSO4, filtered, and concentrated in vacuo. Purification of the residue by silica gel 

chromatography (60:40:2 hexanes/EtOAc/AcOH) provided 1.94 g of the crude amide 

acid ester (orange solid). Sodium hydroxide (1.1 g, 26.5 mmol) was added to the crude 

amide acid ester in 250 mL of methanol, and the reaction mixture was stirred for 2 h at 
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room temperature. The solvent was then removed in vacuo. The residue was added to 100 

mL of Na2CO3 (0.19 M) and extracted with EtOAc (2 × 75 mL). The aqueous solution 

was acidified with 8.0 mL of concd HCl and extracted with EtOAc (3 × 75 mL). The 

combined organic layers were dried over MgSO4 and filtered. The solvent was 

concentrated in vacuo to provide 1.75 g of the crude amide acid. Acetyl chloride (6.1 g, 

78 mmol) was added to the crude amide acid in 100 mL of CH2Cl2 at reflux, and the 

reaction mixture was refluxed under Ar for 48 h. The solution was cooled down to room 

temperature and stirred for 7 days under Ar. The solvent was then removed in vacuo. The 

residue was added to 100 mL of H2O and extracted with EtOAc (3 × 75 mL). The 

combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

The residue was purified by silica gel chromatography (70:30:2 hexanes/EtOAc/AcOH) 

and recrystallized from methanol to provide 0.73 g (35% from 1Z) of the carboxylic acid 

indolylfulgimide 10. Z-form: 1H NMR (CD3OD, 400 MHz) δ 7.39 (d, J = 8.1 Hz, 1H), 

7.24 (d, J = 8.0 Hz, 1H), 7.19 (td, J = 7.4, 1.1 Hz, 1H), 7.09 (td, J = 7.5, 0.9 Hz, 1H), 4.36 

(s, 2H), 3.73 (s, 3H), 2.26 (s, 3H), 2.11 (s, 3H), 0.96 (s, 3H). 13C NMR (CD3OD, 100 

MHz) δ 169.4, 167.9, 165.7, 156.1, 139.1, 138.5, 133.8, 130.5 (q, J = 36 Hz), 126.8, 

124.0 (q, J = 272 Hz), 123.8, 122.9, 121.7, 120.2, 110.5, 108.3, 39.7, 30.2, 26.8, 22.3, 

12.0. Anal. Calcd for C21H19F3N2O4: C, 60.00; H, 4.56; N, 6.66. Found: C, 60.28; H, 4.89; 

N, 6.39. C-form: 1H NMR (CD3OD, 400 MHz) δ 7.67 (d, J = 8.3 Hz, 1H), 7.38 (td, J = 

7.8, 1.1 Hz, 1H), 6.77 (t, J = 7.9 Hz, 2H), 4.24 (d, J = 17.7 Hz, 1H), 4.20 (d,  J = 17.7 Hz, 

1H),  2.96 (s, 3H), 1.81 (s, 3H), 1.37 (s, 3H), 1.23 (s, 3H). 13C NMR (CD3OD, 100 MHz) 

δ 171.2, 170.0, 167.1, 161.7, 161.6, 141.4, 137.1, 136.3, 129.1 (q, J = 7 Hz), 124.2 (q, J = 
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272 Hz), 120.5, 119.9, 110.9, 106.8 (q, J = 37 Hz), 77.3, 40.2, 39.6, 33.0, 19.9, 19.6, 

14.8. HRMS (ESI+) calcd for C21H19F3N2O4 (M + Na)+ 443.1195, obsd 443.1195. 

5.3.3 Synthesis of dicarboxylic acid indolylfulgimide 19  

 

Carboxylic acid indolylfulgimide 10Z (0.19 g, 0.45 mmol) in 250 mL of toluene was 

irradiated with 405 nm light to obtain the photostationary state. Purification of the 

resulting 10C was performed via silica gel chromatography (70:30:2 

hexanes/EtOAc/AcOH) followed by recrystallization from CH2Cl2/hexanes to provide 

0.14 g (74%) of 10C. Fulgimide 10C (0.10 g, 0.24 mmol) in 50 mL of 50 mM sodium 

phosphate buffer (pH 7.4) was incubated at 37 ºC for 12 h. The solution was then 

acidified with dilute HCl (1 M) to pH 5 and extracted with EtOAc (3 × 25 mL). The 

combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

Purification was performed via recrystallization from CH2Cl2/toluene to provide 40 mg 

(42%) of the dicarboxylic acid indolylfulgimide 19. C-form: 1H NMR (CD3OD, 400 

MHz) δ 7.72 (d, J = 8.3 Hz, 1H), 7.30 (td, J = 8.1, 1.2 Hz, 1H), 6.67 - 6.71 (m, 2H), 4.22 

(d, J = 17.3 Hz, 1H), 4.17 (d, J = 17.8 Hz, 1H), 2.98 (s, 3H), 1.81 (s, 3H), 1.40 (s, 3H), 

1.20 (s, 3H); 13C NMR (CD3OD, 100 MHz) δ 171.3, 170.5, 169.9, 168.2, 159.7, 156.6, 

137.8, 137.6, 135.4, 126.8, 122.1, 119.5, 110.9, 110.2, 74.3, 41.4, 39.3, 32.1, 20.4, 19.2, 
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15.8. Anal. Calcd for C21H20N2O6: C, 63.63; H, 5.09; N, 7.07. Found: C, 63.63; H, 5.34; 

N, 6.89. Z-form: 1H NMR (CD3OD, 400 MHz) δ 7.46 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.3 

Hz, 1H), 7.20 (t, J = 7.5, 1H), 7.07 (t, J = 7.7, 1H), 4.34 (s, 2H), 3.74 (s, 3H), 2.29 (s, 3H), 

2.26 (s, 3H), 1.07 (s, 3H); 13C NMR (CD3OD, 100 MHz) δ 172.6, 170.7, 169.0, 168.1, 

154.1, 140.2, 138.5, 136.8, 126.8, 123.6, 123.4, 123.2, 121.6, 120.3, 110.6, 110.1, 39.7, 

30.2, 26.6, 22.6, 12.0. HRMS (ESI+) calcd for C20H20N2O6 (M + Na)+ 419.1246, 

obsd419.1233. 

5.3.4 Synthesis of H-carboxylic acid indolylfulgimide 20 

 

Fulgimide 10C (0.142 g, 0.32 mmol) in 250 mL of 50 mM sodium phosphate buffer 

(pH 7.4) was incubated at 37 ºC for 12 h.  The solution was then acidified with concd 

HCl to pH 1 and extracted with EtOAc (3 × 75 mL). The combined organic layers were 

left overnight, dried over MgSO4, filtered, and concentrated in vacuo. Purification was 

performed via recrystallization from CH2Cl2/hexanes to provide 76 mg (64%) of the 

carboxylic acid indolylfulgimide 20. C-form: 1H NMR (D2O, 400 MHz) δ 7.58 (d, J = 7.6 

Hz, 1H), 7.34 (td, J = 7.7, 1.2 Hz, 1H), 6.79 (td, J = 7.5, 0.8 Hz, 1H), 6.74 (d, J = 8.3, 

1H), 6.52 (s, 1H), 4.00 (s, 2H), 3.93 (s, 3H), 1.74 (s, 3H), 1.33 (s, 3H), 1.14 (s, 3H); 13C 

NMR (CDCl3, 100 MHz) δ 173.0, 170.0, 168.5, 157.8, 157.4, 138.9, 135.2, 133.4, 123.5, 
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123.4, 118.8, 109.1, 100.3, 72.8, 41.3, 38.6, 31.9, 20.2, 19.3, 16.1. HRMS (ESI+) calcd 

for C20H20N2O4 (M + Na)+ 375.1321, obsd 375.1323. E-form: 1H NMR (D2O, 400 MHz) 

δ 7.87 (s, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.30 (td, J = 7.4, 1.0 Hz, 

1H), 7.17 (td, J = 7.6, 1.0 Hz, 1H), 4.17 (s, 2H), 3.75 (s, 3H), 2.45 (s, 3H), 2.31 (s, 3H), 

1.19 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 172.2, 169.6, 168.2, 152.1, 141.2, 136.9, 

127.5, 126.4, 123.4, 122.1, 121.3, 121.0, 120.1, 110.4, 109.4, 38.9, 30.2, 26.7, 22.2, 11.6. 

HRMS (ESI+) calcd for C20H20N2O4 (M + Na)+ 375.1321, obsd 375.1305. 

5.3.5 Spectral determination 

Concentrated, air-saturated stock solutions of 10Z in toluene and 50 mM sodium 

phosphate buffer (pH 7.4) were prepared in duplicate or triplicate. From each stock 

solution, five samples ranging in concentration from 0.25 to 0.05 mM were then prepared 

by dilution with toluene or buffer. A UV-vis spectrum was then acquired for each sample. 

Extinction coefficients and λmax were determined. According to 1H NMR data, Z/E-

isomerization in D2O with sodium phosphate buffer at room temperature in 1 h was 

insignificant (1 - 2%). No isomerization was observed in toluene. 

A concentrated, air-saturated stock solution of 10C (see synthesis) in toluene was 

diluted to four or five different concentrations, and their UV-vis spectra obtained. Each 

10C solution was then quantitatively converted to 10Z solution by illumination with 515 

nm light, and the concentration of fulgimide present was ascertained using the 

predetermined extinction coefficient of 10Z. Since the original concentration of 10C will 

be equivalent to the final concentration of 10Z, the original concentration of 10C was 

determined. The extinction coefficient and λmax for 10C were then determined from the 

initial spectra. 
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The extinction coefficient and λmax for 19C in 50 mM sodium phosphate buffer (pH  

7.4) were determined in the same manner as for 10Z. To obtain these values for 19Z, four 

or five diluted 19C solutions in buffer were then quantitatively converted to 19Z 

solutions by irradiation with 515 nm light. The UV-vis spectra of freshly prepared 19Z 

solutions were measured, and the extinction coefficient was obtained using the previously 

determined extinction coefficient of 19C. Typical error was 3%. 

5.3.6 Photostationary state (PSS) measurements 

A solution of 10Z in toluene-d8 was illuminated with 405 nm light, and the Z/E/C- 

ratio was monitored via 1H NMR spectroscopy until PSS405nm was achieved. To measure 

the PSS405nm of 19 in D2O with 50 mM sodium phosphate buffer (pD 7.4), a solution of 

19C, which was initially obtained from 10C, was converted to 19Z using 515 nm light. 

PSS was then achieved by irradiation of 19Z with 405 nm light. Z/E/C- ratio was 

monitored by 1H NMR spectroscopy. 

5.3.7 Thermal/Hydrolytic stability 

The thermal/hydrolytic stability of the Z- and C-forms of fulgimides 10 and 19 was 

measured using UV-vis and 1H NMR spectroscopy. Solutions of 10Z were prepared in 

toluene or 50 mM sodium phosphate buffer (pH 7.4) and transferred into several 

ampoules. The NMR samples of 10Z were prepared in toluene-d8 or D2O with 50 mM 

sodium phosphate buffer (pD 7.4). The UV-vis and 1H NMR spectra of these initial 

samples were then acquired. Ampoules and NMR tubes were sealed and incubated in 

water baths which were maintained at 80 °C (toluene) or at 37 °C (buffer). At 

predetermined times, ampoules and NMR tubes were removed, and their contents were 

analyzed by UV-vis and 1H NMR spectroscopy, respectively. The UV-vis and 1H NMR 
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spectra were then compared to the initial spectra. The thermal stability of 10C in toluene 

was measured using a PSS405 nm solution, and evaluated as described for 10Z. In the case 

of 10C in buffer, the UV-vis spectra of 10C and its decomposition product were almost 

identical, thus UV-vis spectroscopy was not used to follow the decomposition of 10C; 

only the 1H NMR experiment was performed. Several pure 10C solutions were prepared 

in D2O with buffer (pD 7.4) and transferred into several ampoules which were then 

placed in a water bath maintained at 37 °C. At prescribed times, solutions were 

transferred into NMR tubes, and their spectra were taken immediately. 

To determine the stability of 19C and 19Z in buffer, pure 19C solutions were used 

while 19Z solutions were prepared by irradiation of a 19C solution with 515 nm light. 

These 19C and 19Z solutions were then analyzed in the same manner as 10Z. In addition, 

decomposition of 19C in D2O with buffer (pD 7.4) was also followed by UV-vis 

spectroscopy. Typical error was 5 × 10 -5 h-1 with the exception of 10Z in toluene which 

was 0.003 h-1. 

For 1H NMR spectroscopy, the residual toluene resonance (toluene) or added DMSO 

resonance (buffer) were utilized as internal standards, and signals corresponding to the 

individual species were integrated relative to the internal standards. To confirm the 

solvent isotope effect of 19C in buffer, two experiments in D2O and H2O buffer solutions 

were performed simultaneously and followed by UV-vis spectroscopy. 

5.3.8 Photochemical stability 

Air-saturated solutions of 10Z in toluene and in toluene in the presence of an excess 

of tributylamine (27 mM) or acetic acid (27 mM) were prepared with initial absorbencies 

of 0.6 - 0.8 at the absorption maxima. Samples were irradiated to PSS405 nm with 405 nm 
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light, and the absorbencies at λmax were measured. Then, in three cases (toluene, 

toluene/tributylamine, toluene/acetic acid), fresh 10Z solutions were irradiated to 90% of 

PSS405 nm. The time taken to achieve 90% of the absorbance at PSS405 nm was then 

recorded (coloration reaction Z to C). The 90% PSS mixture was then irradiated with 515 

nm light using a separate filter. The time taken for the absorbance at λmax of the C-form to 

reach < 1% was recorded (decoloration reaction C to Z). Once the duration of irradiation 

was established for both the 90% PSS405 nm coloration and < 1% C-form decoloration 

reactions, the system was automated through the use of a filter switch. All solutions were 

capped and stirred. After a designated number of irradiation cycles (coloration followed 

by decoloration), the samples were fully converted to PSS405 nm, and their UV-vis spectra 

scanned. The photochemical stability was then determined by comparison with the initial 

PSS405 nm (PSS at zero irradiation cycles) absorption spectra. 

To measure the photochemical stability of 19 in 50 mM sodium phosphate buffer 

(pH 7.4) the freshly obtained 19C solutions were quantitatively converted to 19Z 

solutions by irradiating with 515 nm light. The same procedure as described for 10 was 

then applied. A control experiment to investigate the thermal decomposition of 19Z at 

room temperature after 120 h was also performed. After 120 h, besides Z to E 

isomerization, the thermal decomposition was determined by 1H NMR to be 1%. Z to E 

isomerization will not affect the photochemical decomposition results as these two forms 

are interconverted photochemically under aqueous conditions. Typical error was 20%. 

All the photochemical and thermal measurements were performed by Dr. Islamova in Dr. 

Lees’ group. 

 



80 
 

5.4 Results and Discussion 

5.4.1 Synthesis 

Scheme 24. Synthesis of indolylfulgimide 10 

 

Trifluoromethyl indolylfulgide 160 was used as the starting material for the synthesis 

of carboxylic acid indolylfulgimide 10 (Scheme 24). The anhydride ring of 1 was opened 

via addition of glycine methyl ester. The resulting methyl ester succinamic acid, one of 

the two possible regioisomers,93 was saponified to generate the corresponding carboxylic 

acid succinamic acid. Subsequent dehydration of the succinamic acid intermediate with 

acetyl chloride yielded carboxylic acid indolylfulgimide 10Z. Fulgimide 10C was 

obtained by irradiating 10Z with 405 nm light (Scheme 24). 
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Figure 15. 1H and 19F NMR spectra of 10C in 50 mM D2O sodium phosphate buffer, pD 

7.4, at 37 °C after (a) 0 h, (b) 6 h, (c) following extraction and purification 

During thermal stability measurements of 10C in 50 mM sodium phosphate buffer 

(pH 7.4) at 37 °C, an unexpected reaction was observed. The reaction was followed by 1H 

and 19F NMR spectroscopy. The NMR data indicated an unusually high reactivity for 

10C. Previously reported C-forms of fluorinated indolylfulgimides have proven to be 

very stable under various conditions.40,41 In the case of 10C, before incubation at 37 °C, 

only one resonance at -58 ppm in the 19F NMR spectrum corresponding to the fluorines 

of the trifluoromethyl group was observed (Figure 15a). After 6 h at 37 °C, the resonance 

at -58 ppm disappeared, and a new fluorine signal appeared at -122 ppm, which is 

consistent with the chemical shift of the fluoride anion. The 1H NMR spectrum showed a 

downfield shift of all hydrogen and methyl resonances (Figure 15b). In order to provide 

further support for the structure of the resulting product, 13C NMR spectroscopy was 

performed. The quartet for the carbon of the trifluoromethyl group of 10C at 122 ppm 
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disappeared, and a new singlet at 170 ppm appeared suggesting a carboxylic acid group. 

Furthermore, the resulting product still maintained photochromic properties and was 

stable in buffer at 37 °C for several days. Therefore, the most plausible mechanism was 

the hydrolysis of the trifluoromethyl group to form a carboxylic acid group.94-96 The 

reaction yielded the photochromic dicarboxylic acid indolylfulgimide 19C (Scheme 25). 

Scheme 25. Mechanism for the hydrolysis of 10C 

 

Interestingly, when I initially attempted to isolate 19C by EtOAc extraction from an 

acidified aqueous solution, the organic layer did not contain 19C (Figure 15c). Instead, an 

extra hydrogen resonance appeared at 6.41 ppm in the 1H NMR spectrum, and the 13C 

NMR spectrum showed only 20 carbon resonances in comparison with the 21 carbon 

resonances for 10C and 19C, indicating another compound had been formed during the 
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acidic extraction. The missing carbon resonance occurred in the carboxylic acid region. 

The lack of any 19F NMR resonance suggested that the fluoride anion was removed in the 

aqueous layer during extraction. Therefore, I propose that the carboxylic acid group 

generated from the hydrolysis of the trifluoromethyl group can be decarboxylated to form 

compound 20C (Scheme 26).97,98 

Photochromic studies demonstrated that 20C can be converted to 20E (E-form 

because of IUPAC priority rules), but the reverse reaction was not observed (Scheme 26). 

Previously reported indolylfulgides substituted at the 3-position on the indole and having 

hydrogen at the bridging position were initially obtained in their E-form and also could 

not be converted to the C-form.42,43,99 For the first time, I obtained the C-form of such a 

fulgimide with a hydrogen at the bridging position. No further investigation of the optical 

properties of 20 was conducted as it was not photochromic. 

Scheme 26. Decarboxylation of 19C and photochemical reaction of 20 

 
Syntheses of the dicarboxylic acid indolylfulgimide 19 and the carboxylic acid 

indolylfulgimide 20 were then carried out as described above. The reaction of 10C to 

19C occurred quantitatively and rapidly in buffer (pH 7.4) at 37 °C. Fulgimide 19C was 

relatively stable in acidic aqueous solution, but CO2 was lost during prolonged extraction 

with EtOAc.  
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5.4.2 UV-vis absorption spectra 

The UV-vis absorption spectra of 10Z and 10C were measured in toluene. The 

spectra of 10Z, 19Z, and 19C were obtained in 50 mM sodium phosphate buffer (pH 7.4) 

(Figure 16). No UV-vis measurements for 10C in buffer and 19 in toluene were 

performed because of the instability of 10C in buffer (see above) and the poor solubility 

of 19 in toluene. The wavelengths of maximum absorbance and the extinction 

coefficients are shown in Table 1. Fulgimide 10Z showed a small bathochromic shift (4 

nm) as the solvent was switched from toluene to buffer. In comparison with 10Z, 19Z in 

buffer demonstrated a 16 nm hypsochromic shift at its absorbance maxima. 
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Figure 16. UV-vis absorption spectra of (a) 10Z and 10C in toluene and 10Z in 50 mM 

sodium phosphate buffer (pH 7.4); (b) 19Z and 19C in 50 mM sodium phosphate buffer 

(pH 7.4) 
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Table 6. Extinction coefficients at λmax for 10 in toluene and 50 mM sodium 

phosphate buffer (pH 7.4) and for 19 in 50 mM sodium phosphate buffer (pH 7.4) 

                   λmax  (nm) (εmax (mol-1 L cm-1) ) 

Compd Medium Z-form C-form PSS405 nm
a (C:Z:E)

10 Toluene 401 (5.7 × 103) 549 (6.6 × 103) 90:7:3 

10 Buffer 405 (5.6 × 103) Unstableb Unstableb 

19 Buffer 389 (9.6 × 103) 588 (5.6 × 103) 87:6:6 

aPhotostationary state (PSS): C/Z/E-ratio reached by prolonged exposure to 405 
 nm light; evaluated by 1H NMR spectroscopy. 
bHydrolysis of 10C to 19C was completed in 3 h. 

5.4.3 Thermal stability  

Thermal stability is one of the most important characteristics of fulgides and 

fulgimides for their applications in optical memory devices or optical switches.49,52,71 

Previously, the thermal stability of fulgides and fulgimides was examined in toluene at 

80 °C.40,41,64 Therefore, the thermal stability of 10Z and 10C was determined under these 

conditions. The stability of 10 and 19 at 37 °C in sodium phosphate buffer (pH 7.4) was 

also examined as this mimics physiological conditions of humans to some extent. The 

thermal decomposition of 10 and 19 was followed by both 1H NMR and UV-vis 

spectroscopy. The results are presented in Table 7. 

In pure toluene at 80 °C, the decomposition of 10Z was fit to a single exponential 

decay (Figure 17a). The decomposition rate constants were 0.023 and 0.010 h-1 by UV-

vis and 1H NMR spectroscopy, respectively (Table 7). These values are similar to those 

observed for the parent fulgide 1Z (0.023 h-1) and ethyl ester fulgimide 9Z (0.009 h-

1).40,64 The UV-vis spectra also showed a similar pattern, an initial drop in absorbance 
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followed by a red shift and subsequent increase in absorbance.40,50,64 Previous studies 

demonstrated that the thermal decomposition pathway for the Z-form of fluorinated 

indolylfulgides in toluene involves either a reversible Z-to-E-isomerization or the 

conversion of the Z-form to an intermediate via a 1,5-hydrogen shift from the 

isopropylidene group.50,52 The intermediate then subsequently rearranges to form a 

mixture of two isomers. On the basis of similar spectral kinetics, I postulate that 

fulgimide 10Z undergoes the same degradation pathway as fulgide 1Z. Therefore, the 

offset observed in the UV-vis data in Figure 17a is because of the absorbance of the 

decomposition products at the λmax of 10Z.50,52 In the case of fulgimide 10C in toluene at 

80 °C, a double exponential fit was applied since a relatively rapid decomposition of 3% 

was observed followed by a slow decomposition (Figure 17a). Fulgimide 10C showed 

much higher stability than 10Z in toluene, consistent with previously reported fulgides 

and fulgimides.40,41,51  

Table 7. Thermal decomposition rate constants (h-1) for 10 in toluene, and 10 and 19 

in 50 mM sodium phosphate buffer (pH 7.4) 

 Rate constants (h-1) 

  UV-visa 1H NMR 

Compd Medium Z-form C-form Z-form C-form 

10 Toluene 0.023 0.3 × 10-4 0.010 0.5 × 10-4 

10 Buffer 12 × 10-4 b 7 × 10-4 0.7 

19 Buffer 0.9 × 10-4 2.8 × 10-4 2.4 × 10-4 0.6 × 10-4 

aDecomposition was followed at λmax. 
bUV-vis spectra of 10C and 19C are very similar. 
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Figure 17. Thermal decomposition of Z-(closed symbols) and C-forms (open symbols) of 

10 and 19 as a function of time as measured by UV-vis (circles) and 1H NMR 

spectroscopy (squares): (a) 10 in toluene at 80 °C, (b) 10 in 50 mM sodium phosphate 

buffer (pH 7.4) at 37 °C and (c) 19 in 50 mM sodium phosphate buffer (pH 7.4) at 37 °C  

In 50 mM sodium phosphate buffer (pH 7.4) at 37 °C, single and double exponential 

fits were applied to the C- and Z-forms, respectively. Compound 10Z and 19Z showed a 

relatively rapid decline in concentration, which corresponded to Z-to-E-isomerization, 

followed by a slower decline which corresponds to decomposition (Figures 17b, 17c). 

According to 1H NMR data, 19Z decomposed three times slower than 10Z in buffer. 

Fulgimide 10C is unstable and completely converted to 19C in buffer after 3-6 h at 37 °C. 

Compound 19C showed great thermal durability and very little decomposition was 

observed after prolonged time in buffer at 37 °C. To account for the difference between 

the UV-vis and NMR data for 19C in buffer, the decomposition of 19C by UV-vis 



88 
 

spectroscopy in both D2O and H2O buffers were measured and determined a solvent 

isotope effect of 3-4. 

5.4.4 Photochemical stability 

The repeatability of the photochemical opening and closing of fulgimides 10 and 19 

was measured in toluene and 50 mM sodium phosphate buffer (pH 7.4), respectively. 

Photochemical stability is required for many applications.49 In toluene, the most stable 

fulgide reported to date can be switched back and forth over 10,000 times before 

degrading by 13%52 although for most fulgides the number is less.51,64 In the case of 

fluorinated indolylfulgimides, a previous study indicated that they can be cycled back and 

forth between 700 and 3,000 times in toluene before degrading by 20%.40,41 
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Figure 18. (a) Photochemical decomposition of 10 (closed symbols) in pure toluene 

(circles) and in toluene in the presence of tributylamine (squares) and 19 (open symbols; 

triangles) in 50 mM sodium phosphate buffer (pH 7.4). (b) PSS spectra of 19 in 50 mM 

sodium phosphate buffer (pH 7.4) after the indicated number of cycles 

In protic solvent systems, such as methanol, ethanol/water, or water, fulgides are too 

unstable and/or insoluble to measure their photochemical stability.7 On the other hand, 

fulgimides previously examined in protic solvents only cycled back and forth a limited 

number of times.6,41,71 A recent study in our group reported that the ethyl ester 
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indolylfulgimide 9 can be cycled back and forth 360 times before degrading by 20% in 

70/30 ethanol/water.40 Several reports about applications of fulgimides in aqueous 

biological systems have demonstrated that fulgimides can be cycled back and forth 

several times.6,70 

The photochemical stability of fulgimide 10 was initially measured in pure toluene 

where it degraded by 20% after being cycle back and forth 21 times (Figure 18a), much 

less stable than its ethyl ester analog 9.40 I speculate that the rapid photochemical 

decomposition was affected by the carboxylic acid group and that the addition of base 

would increase the stability. In the presence of tributylamine (27 mM) in toluene, 10 

cycled back and forth 55 times before degrading by 20% (Figure 18a). The cycling times 

were approximately 35 s (Z- to C-form) and 20 s (C- to Z-form) in both cases, suggesting 

that the addition of tributylamine slowed down the photochemical decomposition but not 

the photochemical reaction. Addition of acetic acid (27 mM) did not affect 

photochemical stability. The photochemical stability of 10 was not measured in buffer 

because of the instability of 10C. Fulgimide 19 cycled back and forth 670 times before 

degrading by 20% in buffer (Figure 18) with cycling times of 80 s (Z- to C-form) and 600 

s (C- to Z-form). The increased photochemical stability of 19 makes it promising for 

applications in aqueous solution. 

5.5 Conclusion 

In summary, I have synthesized three novel aqueous soluble indolylfulgimides, 10, 

19, and 20. Hydrolysis of the trifluoromethyl group of 10C was observed in a fluorinated 

indolylfulgimide for the first time. Hydrolysis of 10C resulted in 19C which was further 

decarboxylated to 20C upon extraction. 20C lacked any photochromic properties. The 
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absorbance maxima of 10Z varied only slightly between toluene and buffer. A notable 

blue shift in the absorbance maxima of 19Z compared to 10Z was observed in buffer 

because of the additional carboxylic acid group on the bridging carbon. Fulgimide 19 

displayed great thermal and photochemical stabilities in sodium phosphate buffer (pH 

7.4). 19Z and 19C degraded less than 20% after 500 h at 37 °C, and 19 underwent 670 

photochemical cycles before degrading by 20%. Fulgimide 19 is the most robust 

fulgimide yet reported in aqueous solution.  
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CHAPTER 6 

SYNTHESIS OF METHYL CARBOXYLIC ACID INDOLYLFULGIMIDE 

6.1 Abstract 

A novel aqueous soluble methyl carboxylic acid indolylfulgimide 11 was synthesized 

from methyl indolylfulgide 2. The indolylfulgide 2 was prepared in five steps with an 

overall yield of 21%. The indolylfulgimide 11 was synthesized by treating fulgide 2 with 

glycine methyl ester, and dehydration of the resulting amide acid. The methyl carboxylic 

acid indolylfulgimide 11 was expected to have improved thermal and photochemical 

stabilities in aqueous solutions relative to the trifluoromethyl analog 10. Previous study 

indicated that the trifluoromethyl analog 10 underwent a rapid hydrolysis in sodium 

phosphate buffer (pH 7.4) at 37°C. Therefore, replacing the trifluoromethyl group with 

methyl group should prohibit the hydrolysis and subsequently improve the stability in 

aqueous solutions. 

6.2 Introduction 

The fulgide and fulgimide family is an important class of organic photochromic 

compounds. The ability of fulgides and fulgimides to interconvert between two key forms 

by irradiation with different wavelength has made them promising material for use in 

optical memory devices, optical switches, and sensors (Scheme 1).15 Among fulgide 

derivatives, fulgimides are the most important and practical because another substituent 

can be attached onto the succinimide ring without a significant change of photochromic 

properties.15 Although fulgides display promising photochromic properties, the succinic 

anhydride ring causes rapid solvolytic degradation in protic solvents or aqueous 

media.59,71 Fulgimides improve the hydrolytic stability of fulgides by replacing the 
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succinic anhydride ring with a succinimide ring and retain the promising photochromic 

properties. Hydrolytic stability is crucial for applications in biological systems and humid 

environments. 

Scheme 27. Hydrolysis and subsequent decarboxylation of fulgimide 10 

 

In my previous study, the stability of fulgimides in aqueous solutions was reported.44 

The stability of a trifluoromethyl carboxylic acid indolylfulgimide 10 was characterized 

in sodium phosphate buffer (pH 7.4). The C-form displayed rapid decomposition in 

phosphate buffer at 37 °C (Scheme 27). The thermal decomposition product was isolated 

and indicated that the trifluoromethyl group of the C-form was hydrolyzed to a 

carboxylic acid group. The resulting dicarboxylic acid indolylfulgimide 19 showed great 

thermal and photochemical stabilities in sodium phosphate buffer (pH 7.4) and is the 

most robust fulgimide yet reported in aqueous solution.44 However, the carboxylic acid 

group on the bridging position of fulgimide 19 can further decarboxylate. The resulting 

H-carboxylic acid indolylfulgimide 20 did not display photochromic properties (Scheme 

27). 

Herein, the hydrolytic unstable trifluoromethyl group was replaced with a methyl 

group at the bridging position. The methyl analog 11 should not undergo hydrolysis in 
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phosphate buffer at pH 7.4 (Scheme 28). The methyl fulgimide 11 is expected to have 

improved thermal and photochemical stabilities relative to the trifluoromethyl fulgimide 

10 in aqueous solutions. Currently, the photochromic properties of the methyl fulgimide 

are under investigation by Dr. Islamova. 

Scheme 28. Proposed stability of fulgimide 11 in phosphate buffer at pH 7.4  

 

6.3 Experimental Section 

6.3.1 General procedures and materials 

All commercially available materials were used without further purification. The 

NMR spectra were recorded on a Brüker 400 MHz NMR spectrometer. The 1H and 13C 

NMR samples were internally referenced to TMS (0.00 ppm) or solvent (7.26 and 77.00 

ppm, respectively for chloroform). Flash chromatography was performed with 230-400 

mesh silica gel. 

6.3.2 Synthesis of 3-acetyl-1,2-dimethylindole 21 
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The 1,2-dimethylindole (5 g, 34.5 mmol) was dissolved in 98 mL of acetic anhydride 

(106 g, 1.04 mol) at room temperature and reflux for 12 h under argon gas. The reaction 

mixture was concentrated in vacuo to yield a brown oil. The brown residue was further 

purified via silica gel chromatography (3:1 hexanes/EtOAc). Recrystallization from 

isopropanol provided 4.1 g (64%) of 3-acetyl-1,2-dimethylindole 21. 

6.3.3 Synthesis of cis/trans indole lactones 22 

 

Dimethyl isopropylidenesuccinate 15 (previously synthesized, 41.0 g, 0.19 mol) was 

dissolved in 200 mL of dry THF and cooled to -78 °C under argon gas. Lithium 

diisopropylamide (LDA) was added dropwise via an addition funnel to the solution and 

allowed to react for 30 min at -78 °C under argon gas. To a solution of 3-acetyl-1,2-

dimethylindole 21 (7.0 g, 38 mmol) in 200 mL of THF at 0 °C, the lithium 

diisopropylamide/dimethyl isopropylidenesuccinate/THF solution was added dropwise 

via cannula under argon gas. The mixture was warmed to room temperature and stirred 

for 2 d. The solvent was then concentrated in vacuo. The residue was quenched with 500 

mL of water, acidified with 5% H2SO4 solution to pH 1, and extracted with diethyl ether 

(3 × 200 mL). The combined organic layers were washed with brine (2 × 100 mL), dried 

over MgSO4, filtered, and concentrated in vacuo. Purification was performed via silica 

gel chromatography (1:2 hexanes/ether) and provided 4.63 g (42%) of a cis/trans mixture 

of indolelactones 22 in a 1:2 ratio. The cis/trans mixture was further separated via silica 
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gel chromatography (4:1 hexanes/EtOAc) and recrystallized from ethanol. trans-

Indolelactone: 1H NMR (CDCl3, 400 MHz) δ 7.81 (s, 1H), 7.27-7.29 (m, 1H), 7.20 (td, J 

= 7.0, 1.1 Hz, 1H), 7.15 (td, J = 7.4, 1.5 Hz, 1H), 4.47 (s, 1H), 3.85 (s, 3H), 3.63 (s, 3H), 

2.56 (s, 3H), 2.25 (s, 3H), 1.80 (s, 3H), 1.70 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 

171.3, 168.8, 154.0, 136.8, 132.9, 124.8, 121.1, 120.7, 119.7, 118.9, 114.7, 109.0, 82.8, 

56.7, 52.2, 29.2, 25.3, 24.3, 20.3, 11.5. cis-Indolelactone as a mixture of atropisomers, 

approximately 2:1 ratio: 1H NMR (CDCl3, 400 MHz) δ 8.14 (d, J = 7.8 Hz, 0.3H), 7.52 (d, 

J = 7.8 Hz, 0.7H), 7.17-7.23 (m, 1H), 7.13 (t, J = 7.8 Hz, 1H), 7.06 (t, J = 7.1 Hz, 1H), 

4.27 (s, 0.7H), 4.11 (s, 0.3H), 3.63 (s, 3H), 3.01 (s, 2H), 2.87 (s, 1H), 2.58 (s, 2H), 2.43 (s, 

1H), 2.37 (s, 3H), 1.96 (s, 3H), 1.88 (s, 2H), 1.78 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ 

170.5, 170.4, 168.3, 168.0, 154.0, 153.2, 136.8, 136.2, 134.0, 131.2, 125.9, 124.5, 122.3, 

120.9, 120.7, 120.6, 120.5, 119.7, 119.4, 118.9, 111.5, 109.8, 108.8, 108.1, 84.2, 83.4, 

58.6, 57.7, 51.4, 51.2, 30.1, 30.0, 29.4, 29.3, 24.3, 20.4, 20.3, 12.7, 11.8. 

6.3.4 Synthesis of methyl indolylfulgide 2 

 

Sodium hydride (60% dispersion in oil, 0.17 g, 0.70 mmol) was added to cis/trans 

indolelactones 22 (1.0 g, 2.90 mmol) in 100 mL of N,N-dimethylformamide at 0 °C. The 

mixture was warmed to room temperature and stirred for 1 h. The reaction mixture was 

recooled to 0 °C, and 1.05 mL of H2O was added. Hydrogen gas evolved, and the 
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reaction was stirred overnight. The mixture was concentrated in vacuo and the resulting 

white solid was then dissolved in 100 mL of water and extracted with diethyl ether (3 × 

100 mL). The aqueous layer was acidified with concentrated HCl to pH 2 and extracted 

with diethyl ether (3 × 100 mL). The combined organic layers were dried over MgSO4, 

filtered, and concentrated in vacuo. The resulting crude diacid was suspended in 15 mL of 

Tol. Acetic anhydride (15 mL, 0.16 mol) was added, and the reaction mixture was 

refluxed for 2 h under argon gas. The solution was then concentrated in vacuo. The 

residue was quenched in 100 mL of water and extracted with CH2Cl2 (3 × 30 mL). The 

combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. 

Purification was performed via silica gel chromatography with CH2Cl2. Recrystallization 

from CH2Cl2/isopropanol provided 0.23 g (49%) of methyl indolylfulgide 2. E-form: 1H 

NMR (CDCl3, 400 MHz) δ 7.40 (d, J = 7.9 Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H), 7.24-7.26 

(m, 1H), 7.15 (td, J = 7.3, 1.1 Hz, 1H), 3.69 (s, 3H), 2.81 (s, 3H), 2.20 (s, 3H), 1.55 (s, 

3H), 0.94 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 164.1, 163.8, 153.1, 149.5, 137.1, 

135.2, 125.0, 122.1, 121.6, 120.8, 119.6, 119.1, 116.7, 109.2, 29.9, 26.2, 24.7, 23.7, 12.2. 

6.3.5 Synthesis of amide acid ester 23 

 

N,N-Diisopropylethylamine (0.64 g, 4.97 mmol) was added dropwise to a mixture of 
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the HCl salt of glycine methyl ester (0.23 g, 25.8 mmol) and methyl indolylfulgide 2 

(0.22 g, 0.71 mmol) in 50 mL of acetonitrile at room temperature. The reaction mixture 

was allowed to stir overnight and then concentrated in vacuo. The residue was quenched 

with 50 mL of water and extracted with EtOAc (3 × 35 mL). The aqueous layer was 

acidified with 0.5 M HCl to pH 1 and extracted with EtOAc (3 × 35 mL). The combined 

organic layers were dried over MgSO4, filtered, and concentrated in vacuo. Trituration 

with CHCl3 provided 0.11 g (39%) of the amide acid ester 23. 1H NMR (CD3OD, 400 

MHz) δ 7.34 (d, J = 7.9 Hz, 1H), 7.24 (d, J = 8.1 Hz, 1H), 7.06 (td, J = 7.5, 1.0 Hz, 1H), 

6.95 (td, J = 7.5, 0.7 Hz, 1H), 4.09 (d, J = 17.5 Hz, 1H), 4.01 (d, J = 17.6 Hz, 1H), 3.75 

(s, 3H), 3.63 (s, 3H), 2.33 (s, 3H), 2.16 (s, 3H), 1.87 (s, 3H), 1.85 (s, 3H); 13C NMR 

(CD3OD, 100 MHz) δ 172.9, 171.9, 171.1, 149.1, 143.1, 138.5, 135.4, 133.8, 128.4, 

127.5, 121.7, 120.1, 120.1, 114.9, 109.8, 52.6, 42.2, 29.7, 24.3, 22.5, 22.3, 11.4. 

6.3.6 Synthesis of amide diacid 24 
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Sodium hydroxide (0.1 g, 2.64 mmol) was added to the amide acid ester 23 (0.11 g, 

0.28 mmol) in 100 mL of methanol and stirred at room temperature overnight. The 

solution was concentrated in vacuo. The resulting white precipitate was quenched with 25 

mL of Na2CO3 (0.19 M) and extracted with EtOAc (2 × 25 mL). The aqueous layer was 
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acidified with concentrated HCl to pH 1 and extracted with EtOAc (3 × 25 mL). The 

combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. A 

trituration was performed using chloroform to yield 0.09 g (85%) of amide diacid 24. 1H 

NMR (CD3OD, 400 MHz) δ 7.34 (d, J = 7.8 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.06 (td, J 

= 7.6, 1.0 Hz, 1H), 6.95 (td, J = 7.4, 1.0 Hz, 1H), 4.06 (d, J = 17.6 Hz, 1H), 4.00 (d, J = 

17.8 Hz, 1H), 3.62 (s, 3H), 2.33 (s, 3H), 2.15 (s, 3H), 1.86 (s, 3H), 1.84 (s, 3H); 13C NMR 

(CD3OD, 100 MHz) δ 173.0, 172.8, 171.1, 149.0, 142.9, 138.5, 135.3, 133.9, 128.4, 

127.5, 121.7, 120.1, 120.0, 114.8, 109.8, 42.2, 29.7, 24.2, 22.5, 22.3, 11.4.  

6.3.7 Synthesis of methyl carboxylic acid indolylfulgimide 11 
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Acetic anhydride (15 mL) was added to the amide diacid 24 (0.07 g, 0.18 mmol) in 

15 mL of toluene at 0 °C. The reaction mixture was allowed to stir at 0 °C for 2 h and 

then warmed to room temperature. The reaction mixture was dissolved in 25 mL of 

EtOAc and extracted with saturated NaHCO3 (3 × 20 mL) and H2O (2 × 20 mL). The 

organic layer was dried over MgSO4, filtered, and concentrated in vacuo. The residue was 

purified by silica gel chromatography (70:30:1 EtOAc\hexanes\AcOH) and provided 40 

mg (60%) of E-form methyl carboxylic acid indolylfulgimide. Compound 11E was 
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illuminated with 365 nm light in toluene and purified by silica gel chromatography 

(70:30:0.5 EtOAc\hexanes\AcOH). Recrystallization from CH2Cl2/hexanes provided 21 

mg (31%) of C-form methyl carboxylic acid indolylfulgimide 11. C-form: 1H NMR 

(CDCl3, 400 MHz) δ 7.57 (d, J = 7.6 Hz, 1H), 7.22 (td, J = 7.6, 1.0 Hz, 1H), 6.73 (td, J = 

7.4, 1.1 Hz, 1H), 6.54 (d, J = 8.1 Hz, 1H), 4.28 (s, 2H), 2.89 (s, 3H), 2.41 (s, 3H), 1.76 (s, 

3H), 1.28 (s, 3H), 1.18 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 171.5, 169.3, 168.7, 157.3, 

150.7, 138.6, 136.3, 131.7, 126.0, 124.5, 118.0, 115.0, 108.1, 72.5, 40.0, 38.1, 31.8, 19.9, 

19.0, 15.5, 13.7. E-form: 1H NMR (CDCl3, 400 MHz) δ 7.44 (d, J = 7.7 Hz, 1H), 7.28 (d, 

J = 5.1 Hz, 1H), 7.21 (td, J = 7.0, 1.0 Hz, 1H), 7.13 (td, J = 7.4, 1.0 Hz, 1H), 4.48 (d, J = 

17.2 Hz, 1H), 4.43 (d, J = 17.3 Hz, 1H), 3.67 (s, 3H), 2.80 (s, 3H), 2.18 (s, 3H), 2.15 (s, 

3H), 0.93 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 168.2, 167.9, 149.0, 145.2, 137.1, 

134.4, 125.5, 123.6, 122.5, 121.6, 120.4, 119.7, 117.1, 109.0, 38.3, 29.8, 26.3, 22.9, 22.2, 

12.0. 

6.4 Results and Discussion 

6.4.1 Synthesis of methyl indolylfulgide 2 

Methyl carboxylic acid indolylfulgimide 11 was synthesized from the precursor 

indolylfulgide 2. A previous study demonstrated an improved synthetic route to 

trifluoromethyl indolylfulgide 1 which involved five steps.60. Herein, the five step 

sequence with several modifications was followed to synthesize methyl indolylfulgide 2 

(Scheme 29). The 1,2-Dimethyl-3-acetylindole 21 was prepared by refluxing 1,2-

dimethylindole in acetic anhydride. A Stobbe condensation combined the dimethyl 

isopropylidenesuccinate 15 and 1,2-dimethyl-3-acetylindole 21. The resulting cis/trans 

indolelactone 22 was treated with sodium hydroxide in DMF and yielded the dicarboxylic 
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acid. The methyl indolylfulgide 2 was afforded in 21% overall yield from 1,2-Dimethyl-

3-acetylindole 21 by treating the dicarboxylic acid with acetic anhydride in toluene. 

Scheme 29. Synthesis of methyl indolylfulgide 2 
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6.4.2 Synthesis of methyl carboxylic acid indolylfulgimide 11 

Methyl indolylfulgide 2 was used as the starting material for the synthesis of 

carboxylic acid indolylfulgimide 11 (Scheme 30). The anhydride ring of 2 was opened 

via addition of glycine methyl ester. The resulting methyl ester succinamic acid, one of 

two possible regioisomers,93 was saponified to generate the corresponding carboxylic 

acid succinamic acid. Subsequent dehydration of the succinamic acid intermediate with 

acetyl chloride yielded carboxylic acid indolylfulgimide 11E. Fulgimide 11C was 

obtained by irradiating 11E with 365 nm light and 31% yield from fulgide 2 (Scheme 30). 

 

Scheme 30. Synthesis of methyl carboxylic indolylfulgimide 11 
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6.5 Conclusion 

Methyl carboxylic acid indolylfulgimide 11 was successfully synthesized from 

methyl indolylfulgide 2. Methyl indolylfulgide 2 was prepared in a similar manner as 

trifluoromethyl indolylfulgide 1. Optimization of the synthesis provided indolylfulgide 2 

with an overall yield of 21%. Preliminary results obtained by Dr. Islamova suggest that 

the both E- and C-forms of fulgimide 11 were thermally stable. The NMR measurement 

indicated that minor decomposition of both 11E and 11C was observed after 14 days in 

sodium phosphate buffer (pH 7.4) at 37 °C.  

 

 

CHAPTER 7 
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CONCLUSIONS AND FUTURE RESEARCH 

 The overall goal of the project was to develop thermally and photochemically stable 

photochromic compounds suitable for application in aqueous environments. I have 

successfully synthesized several indolylfulgides and indolylfulgimides with enhanced 

thermal and photochemical stabilities. Compounds were prepared with novel synthetic 

pathways with optimized conditions and procedures. Characterization of the compounds 

was performed by NMR spectroscopy and elemental analysis or high resolution mass 

spectrometry. 
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A novel photochromic deuterated trifluoromethyl indolylfulgide 8 was synthesized 

and displayed enhanced thermal stability. The isopropylidene group of the new fulgide 

was perdeuterated. The deuterated fulgide 8 was successfully prepared in a similar 

manner as proteo fulgide 1, except deuterated reagents and solvents were used. The Z-
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form of deuterated indolylfulgide 8 displayed enhanced thermal stability in toluene, 7 

fold, as expected on the basis of kinetic isotope effects. Deuteration should be considered 

as a general strategy to enhance the thermal stability of all fulgides that degrade via a 

similar mechanism.  

Indolylfulgide 1 and 2 were prepared as synthetic precursors for indolylfulgimides. A 

reliable and productive pathway for the synthesis of trifluoromethyl indolylfulgide 1 on a 

large scale was successfully developed for the first time. The synthetic route was an 

optimized five step sequence, including a Stobbe condensation followed by hydrolysis, 

second Stobbe condensation, elimination, and dehydration. The synthesis provided 20 

grams of the trifluoromethyl indolylfulgide 1 with an overall yield of 18%. The synthesis 

of methyl indolylfulgide 2 was performed in a similar manner as the trifluoromethyl 

indolylfulgide 1. Optimization of the second Stobbe condensation and elimination 

provided 5 grams of the methyl indolylfulgide 2 in an overall yield of 21%. 

A new trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide 9 was synthesized 

from trifluoromethyl indolylfulgide 1 by aminolysis. The UV-vis and 1H NMR data 

indicated that fulgimide 9Z degraded 22% and 26% and 9C degraded 10% and 26% 

respectively in 70/30 ethanol/water at 50  °C after 21 days. In 70/30 ethanol/water, 

fulgimide 9 underwent 360 photochemical cycles before degrading by 20%. In 

conclusion, fulgimide 9 which I prepared was thermally and photochemically stable in 

protic solvents. 

Three novel aqueous soluble indolylfulgimides 10, 19, and 20 were synthesized from 

trifluoromethyl indolylfulgide 1. Fulgmides 10, 19, 20 were synthesized and chemically 

characterized for the first time. The purification of aqueous soluble fulgimides was 
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always considered challenging because of the carboxylic acid group. The appropriate 

recrystallization solvent systems allow obtaining the target fulgimides in high purity. 

Hydrolysis of the trifluoromethyl group of 10C was observed in a fluorinated 

indolylfulgimide for the first time. Hydrolysis of 10C resulted in 19C which contained 

another carboxylic acid group at the bridging position. Fulgimide 19C was found to 

undergo further decarboxylation upon prolong acidic extraction to form 20C. Compound 

20C has a single hydrogen at the bridging position and lacks any photochromic properties. 

A notable blue shift in the absorbance maxima of 19Z compared to 10Z was observed in 

buffer because of the additional carboxylic acid group at the bridging carbon. Fulgimide 

19 displayed great thermal and photochemical stabilities in sodium phosphate buffer (pH 

7.4). Compound 19Z and 19C degraded less than 20% after 500 h at 37 °C, and 19 

underwent 670 photochemical cycles before degrading by 20%. Fulgimide 19 is the most 

robust fulgimide yet reported in aqueous solution. 

A methyl carboxylic acid indolylfulgimide 11 was successfully synthesized from 

methyl indolylfulgide 2. The synthetic pathway of aqueous soluble fulgimides from 

methyl indolylfulgide was reported for the first time. The difficulty of ring closure was 

resolved by treating the diacid intermediate 24 with neat acetic anhydride at 0 °C without 

any solvent presented. The crystal form of 11C was obtained by recrystallization from 

CH2Cl2/Hexanes. Replacement of the trifluoromethyl group with the methyl group at the 

bridging position was expected to improve the thermal stability of fulgimide in aqueous 

solutions. Preliminary results obtained by Dr. Islamova suggest that the both E- and C-

forms of fulgimide 11 were thermally stable. The NMR measurements indicated that 

minor decomposition of both 11E and 11C was observed after 14 days in sodium 
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phosphate buffer (pH 7.4) at 37 °C.  

Future research will involve the applications of the aqueous soluble 

indolylfulgimides in biological systems. The carboxylic acid group allows for fulgimides 

to be covalently attached to proteins. The two photochromic states of fulgimides are 

expected to have a significant effect on the binding constant of substrate to proteins. 

Therefore, photoswitchable protein-substrate binding is induced by the photochromic 

reactions of fulgimides. The photoregulated protein-substrate binding provides new 

therapeutic systems controlled by external light. 

 
 

Additionally, fulgimides have the potential to be incorporated into polymers. Singly- 

and doubly-substituted indolylfulgimides and their copolymers will be synthesized. The 

fulgimide-copolymers will be used for enzyme immobilization. The polymers will switch 

between the flexible form and the rigid form as the fulgimide is switched between the 

open and closed form, respectively. The enzyme will be immobilized in a rigid form 

polymer. Immobilization in the rigid form polymer will affect the conformation of the 

enzyme or substrate accessibility to the active site. Thus, the enzyme is not functional and 

in the “off” state. In the “on” state, enzyme is released from the flexible form polymer. 

Therefore, the fulgimide-copolymer is able to turn enzyme “off” and “on” with light. 
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APPENDICES 

Profile of Indolylfulgides and Indolylfulgimides 

Compound Property E Form Z Form C Form 

 

λmax (nm) 395 419 514 
εmax (l/mol*cm) 13400 16000 14100 
Quantum yield 0.12EC 0.21EZ/0.11ZE 0.018CE 

Thermal Stable at room temp over 1 month 
Photo Loss 10% after 100 cycles 

J. Photochem. Photobiol., A, 2001. 146(1-2): p. 83-93. (in Acetonitrile) 

 

λmax (nm) 390 381 550 
εmax (l/mol*cm) 7080 6608 11012 
Quantum yield 0.21EC  0.061CE 

Thermal Stable at room temp over 1 month 
Photo Loss 20% after 100 cycles 

J. Photochem. Photobiol., A, 2001. 146(1-2): p. 83-93. (in Acetonitrile) 

 

λmax (nm) 394  550 
εmax (l/mol*cm) 3800  9800 
Quantum yield 0.28EC  0.053CE 

Thermal Stable at room temp over 1 month 
Photo Loss 80% after 100 cycles 

J. Photochem. Photobiol., A, 2001. 146(1-2): p. 83-93. (in Acetonitrile) 
λmax (nm) 406 419 531 

εmax (l/mol*cm) 18100 20300 14900 
Quantum yield 0.093EC 0.35EZ/0.28ZE 7*10-5

CE

Thermal Stable at room temp over 1 month 
Photo Loss 9% after 100 cycles in MMA 

J. Photochem. Photobiol., A, 1999. 125(1-3): p. 79-84. (in Acetonitrile) 
λmax (nm) 399  523 

εmax (l/mol*cm) 16800  15900 
Quantum yield 0.11EC  1*10-3

CE

Thermal Stable at room temp over 1 month 
Photo Loss 9% after 100 cycles in MMA 

J. Photochem. Photobiol., A, 1999. 125(1-3): p. 79-84. (in Acetonitrile) 
λmax (nm) 386 405 510 

εmax (l/mol*cm) 15400 15300 14400 
Quantum yield 0.12EC 0.28EZ/0.18ZE 0.040CE 

Thermal Stable at room temp over 1 month 
Photo Loss 10% after 100 cycles 

J. Photochem. Photobiol., A, 1999. 125(1-3): p. 79-84. (in Acetonitrile) 
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Compound Property E Form Z Form C Form 

N

O

O

O
H

F

λmax (nm) 386  513 
εmax (l/mol*cm) 14700  14100 
Quantum yield 0.13EC  0.022CE 

Thermal Stable at room temp over 1 month 
Photo Loss 5% after 100 cycles 

J. Photochem. Photobiol., A, 1999. 125(1-3): p. 79-84. (in Acetonitrile) 
λmax (nm) 472  602 

εmax (l/mol*cm) 17700  9160 
Quantum yield 0.027EC  0CE 

Thermal    
Photo    

J. Mater. Chem., 2003. 13(2): p. 286-290. (in Acetonitrile) 
λmax (nm)    

εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo    

J. Mater. Chem., 2003. 13(2): p. 286-290. (in Acetonitrile) 

N

O

O

CN

CN

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo    

J. Mater. Chem., 2003. 13(2): p. 286-290. (in Acetonitrile) 

 

λmax (nm) 394  500 
εmax (l/mol*cm) 13800  13800 
Quantum yield 0.12EC  0.20CE 

Thermal    

Photo    

Macromolecules, 2002. 35(25): p. 9377-9382. (in EtOAC) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    

Photo    

Macromolecules, 2002. 35(25): p. 9377-9382. (in EtOAC) 
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Compound Property E Form Z Form C Form 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    

Photo    

Macromolecules, 2002. 35(25): p. 9377-9382. (in EtOAC) 

 

λmax (nm) 382  513 
εmax (l/mol*cm) 16300  10900 
Quantum yield 0.12EC  0.10CE 

Thermal    

Photo    

Macromolecules, 2002. 35(25): p. 9377-9382. (in EtOAC) 
λmax (nm) 383  520 

εmax (l/mol*cm) 14100  10600 
Quantum yield 0.13EC Acetonitrile 0.076CE 

Thermal    
Photo    

J. Mater. Chem., 2000. 10(11): p. 2477-2482. (in Tol) 
λmax (nm) 378  517 

εmax (l/mol*cm) 13800  10200 
Quantum yield 0.14EC Acetonitrile 0.11CE 

Thermal    
Photo    

J. Mater. Chem., 2000. 10(11): p. 2477-2482. (in Tol) 
λmax (nm) 380  519 

εmax (l/mol*cm) 14000  10500 
Quantum yield 0.14EC Acetonitrile 0.11CE 

Thermal    
Photo    

J. Mater. Chem., 2000. 10(11): p. 2477-2482. (in Tol) 

 

λmax (nm) 390  526 
εmax (l/mol*cm) 15500  10800 
Quantum yield 0.14EC Acetonitrile 0.068CE 

Thermal    

Photo    

J. Mater. Chem., 2000. 10(11): p. 2477-2482. (in Tol) 
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Compound Property E Form Z Form C Form 
λmax (nm) 394  529 

εmax (l/mol*cm) 14000  10400 
Quantum yield 0.15EC Acetonitrile 0.048CE 

Thermal    
Photo    

J. Mater. Chem., 2000. 10(11): p. 2477-2482. (in Tol) 
λmax (nm) 369  552 

εmax (l/mol*cm) 7990  9140 
Quantum yield 0.33EC Acetonitrile 0.062CE 

Thermal    
Photo    

J. Mater. Chem., 2000. 10(11): p. 2477-2482. (in Tol) 

N

N

O

O

λmax (nm) 388  524 
εmax (l/mol*cm) 15100  11100 
Quantum yield 0.13EC Acetonitrile 0.083CE 

Thermal    
Photo    

J. Mater. Chem., 2000. 10(11): p. 2477-2482. (in Tol) 

N

N

O

O

O
OH

λmax (nm) 401  517 
εmax (l/mol*cm) 0.17EC  0.24CE 
Quantum yield    

Thermal    
Photo    

J. Photochem. Photobiol., B, 2004. 75(1-2): p. 51-56. (in Tol) 

 

λmax (nm) 387  600 
εmax (l/mol*cm) 8750  7090 
Quantum yield 0.028EC  0.011CE 

Thermal    
Photo    

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 

 

λmax (nm) 393  625 
εmax (l/mol*cm) 9530  7060 
Quantum yield 0.024EC  0.013CE 

Thermal    
Photo    

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 

 

λmax (nm) 404  673 
εmax (l/mol*cm) 8040  6200 
Quantum yield 0.015EC  4*10-5

CE 
Thermal    

Photo    
Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 
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Compound Property E Form Z Form C Form 

 

λmax (nm) 400  505 
εmax (l/mol*cm)    
Quantum yield    

Thermal    

Photo    

Optical Materials. 2007 30: p. 652–656. (in PMMA) 

 

λmax (nm) 340 351 479 
εmax (l/mol*cm) 4980 5970 7120 
Quantum yield 0.19EC 0.11EZ/0.01ZE 0.27CE 

Thermal    
Photo    

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 

 

λmax (nm) 338  459 
εmax (l/mol*cm) 2350  4770 
Quantum yield 0.34EC  0.25CE 

Thermal    
Photo    

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 

 

λmax (nm) 397  594 
εmax (l/mol*cm) 7790  10300 
Quantum yield   0.38CE 

Thermal    
Photo  

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 

 

λmax (nm) 396  639 
εmax (l/mol*cm) 8820  11700 
Quantum yield   0.010CE 

Thermal    
Photo  

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo  

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo  

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 
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Compound Property E Form Z Form C Form 
λmax (nm)    

εmax (l/mol*cm)    
Quantum yield 0.17EC   

Thermal    

Photo    

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 
λmax (nm)    

εmax (l/mol*cm)    
Quantum yield 0.18EC   

Thermal  

Photo Loss 30% after 300 cycles 

Chem. Rev., 2000. 100(5): p. 1717-1739. (in Tol) 

 

λmax (nm)  427 571 
εmax (l/mol*cm)  5900 7000 
Quantum yield    

Thermal 80°C Z loss 4%/d, C 0.7%/d 
Photo 0.008 % per cycle 

J. Photochem. Photobiol., A, 2008. 195(2-3): p. 228-234. (in Tol) 
λmax (nm) 449 444 580 

εmax (l/mol*cm) 5400 5500 7200 
Quantum yield    

Thermal 80°C PMMA Z 0.6%/d, C 50%/h 

Photo 0.0013 % per cycle, Most stable 

J. Photochem. Photobiol., A, 2008. 195(2-3): p. 228-234. (in Tol) 

 

λmax (nm) 385 397 584 
εmax (l/mol*cm) 6810 14300 7080 
Quantum yield 0.045EC 0.04EZ/0.07ZE 0.16CE 

Thermal  
Photo 0.057 % per cycle 

J. Photochem. Photobiol., A, 2001. 144(2-3): p. 83-91. (in Tol) 

 

λmax (nm) 441 427 571 
εmax (l/mol*cm) 5600 5300 6400 
Quantum yield 0.01ZE 0.20ZC 0.043CZ 

Thermal 80°C A/A0 0.75 (17.5h)   0.90 (85h) 
Photo 0.007 % per cycle 

J. Photochem. Photobiol., A, 2001. 144(2-3): p. 83-91. (in Tol) 
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Compound Property E Form Z Form C Form 

 

λmax (nm) 441 432 580 
εmax (l/mol*cm) 4400 4400 7100 
Quantum yield 0.003ZE 0.15ZC 0.034CZ 

Thermal 80°C A/A0  0.56 (85h)   0.94 (85h) 
Photo 0.030 % per cycle 

J. Photochem. Photobiol., A, 2001. 144(2-3): p. 83-91. (in Tol) 

 

λmax (nm) 444 434 582 
εmax (l/mol*cm) 4300 3800 6300 
Quantum yield 0.002ZE 0.18ZC 0.042CZ 

Thermal 80°C A/A0    0.55(85h)   0.98 (85h) 
Photo 0.011 % per cycle 

J. Photochem. Photobiol., A, 2001. 144(2-3): p. 83-91. (in Tol) 
λmax (nm) 433 449 616 

εmax (l/mol*cm) 7200 6100 7200 
Quantum yield  0.169ZC 0.012CZ 

Thermal    
Photo    

J. Photochem. Photobiol., A, 2002. 147(1): p. 39-44. (in Tol) 
λmax (nm) 450 435 615 

εmax (l/mol*cm) 7900 5200 6000 
Quantum yield  0.030ZC 0.166CZ 

Thermal 80°C Z A/A0 0.72 (72h) in PMMA

Photo (not 
reported) 

Thermal stability C of in PMMA 
Loss 73% after 24h at 80°C 

J. Photochem. Photobiol., A, 2002. 147(1): p. 39-44. (in Tol) 
λmax (nm) 442 426 571 

εmax (l/mol*cm) 7500 4800 5400 
Quantum yield  0.051ZC 0.325CZ 

Thermal 80°C Z A/A0 0.87 (72h) in PMMA

Photo(not 
reported) 

Thermal stability of C in PMMA 
Loss 100% after 24h at 80°C 

J. Photochem. Photobiol., A, 2002. 147(1): p. 39-44. (in Tol) 
λmax (nm) 445 431 588 

εmax (l/mol*cm) 5600 4000 5500 
Quantum yield  0.034ZC 0.326CZ 

Thermal 80°C Z A/A0 0.92 (72h) in PMMA

Photo(not 
reported) 

Thermal stability of C in PMMA 
Loss 100% after 24h at 80°C 

J. Photochem. Photobiol., A, 2002. 147(1): p. 39-44. (in Tol) 
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Compound Property E Form Z Form C Form 
λmax (nm) 450 433 589 

εmax (l/mol*cm) 5500 3900 5400 
Quantum yield  0.040ZC 0.319CZ 

Thermal 80°C Z A/A0 0.73 (72h) in PMMA 

Photo(not 
reported) 

Thermal stability of C in PMMA 
Loss 100% after 24h at 80°C 

J. Photochem. Photobiol., A, 2002. 147(1): p. 39-44. (in Tol) 
λmax (nm) 444 431 570 

εmax (l/mol*cm) 5400 5600 5500 
Quantum yield  0.017ZC 0.032CZ 

Thermal 80°C A/A0 0.29(168h)  0.86(168h) 

Photo 0.018 % per cycle 

Chem. Commun., 2003(8): p. 992-993.(in Tol) 
λmax (nm) 457 438 615 

εmax (l/mol*cm) 6600 5100 5200 
Quantum yield  0.014ZC 0.012CZ 

Thermal 80°C A/A0 0.28(168h)  0.92(168h) 

Photo 0.030 % per cycle 

Chem. Commun., 2003(8): p. 992-993.(in Tol) 
λmax (nm) 443 428 572 

εmax (l/mol*cm) 6600 4500 5100 
Quantum yield  0.08ZC 0.087CZ 

Thermal 80°C A/A0 0.27(168h)  0.49(168h) 

Photo 0.023 % per cycle 

Chem. Commun., 2003(8): p. 992-993.(in Tol) 
λmax (nm) 451 433 617 

εmax (l/mol*cm) 7200 4700 5200 
Quantum yield  0.06ZC 0.036CZ 

Thermal 80°C A/A0 0.27(168h)  0.13(168h) 

Photo 0.006 % per cycle 

Chem. Commun., 2003(8): p. 992-993.(in Tol) 
λmax (nm)  485 No C form 

εmax (l/mol*cm)  2000  
Quantum yield    

Thermal 80°C A/A0 Z 1.00 (168h) 

Photo  

Chem. Commun., 2003(8): p. 992-993.(in Tol) 
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Compound Property E Form Z Form C Form 
λmax (nm)  495 545 

εmax (l/mol*cm)  2400 5800 
Quantum yield  0.016ZC 0.044CZ 

Thermal 80°C A/A0 1.00(168h)  0.98 (168h) 
Photo 0.00 % per cycle after 600 cycles 

Chem. Commun., 2003(8): p. 992-993.(in Tol) 
λmax (nm)  460 516 

εmax (l/mol*cm)  1200 6300 
Quantum yield  0.071ZC 0.037CZ 

Thermal 80°C A/A0 1.00(168h)  0.98 (168h) 
Photo 0.00 % per cycle after 500 cycles 

Chem. Commun., 2003(8): p. 992-993.(in Tol) 

N

O

O

OCF3

OMe
λmax (nm)  464 535 

εmax (l/mol*cm)  1100 6300 
Quantum yield  0.063ZC 0.018CZ 

Thermal 80°C A/A0 1.00(168h)  0.94 (168h) 
Photo 0.00 % per cycle after 600 cycles 

Chem. Commun., 2003(8): p. 992-993.(in Tol) 
λmax (nm) 395 399 545 

εmax (l/mol*cm) 5700 5500 6500 
Quantum yield  0.28ZC 0.069CZ 

Thermal 80°C A/A0 0.92(550h)   0.97(550h) 
Photo 0.028 % per cycle 

J. Org. Chem., 2003. 68(2): p. 319-326. (Property in Tol, Thermal in PMMA) 
λmax (nm) 419 404 554 

εmax (l/mol*cm) 6000 5800 6900 
Quantum yield  0.29ZC 0.070CZ 

Thermal 80°C A/A0 0.94(550h)  1.00(550h) 
Photo Loss 20% after 2250 cycles 

J. Org. Chem., 2003. 68(2): p. 319-326. (Property in Tol, Thermal in PMMA) 
λmax (nm) 422 406 557 

εmax (l/mol*cm) 6100 6400 7400 
Quantum yield  0.22ZC 0.060CZ 

Thermal 80°C A/A0 0.90(550h)  0.89(550h) 
Photo 0.014 % per cycle 

J. Org. Chem., 2003. 68(2): p. 319-326. (Property in Tol, Thermal in PMMA) 

 

λmax (nm) 432 412 565 
εmax (l/mol*cm) 5600 6500 7300 
Quantum yield  0.23ZC 0.057CZ 

Thermal 80°C A/A0 0.88(550h)  0.98(550h) 

Photo 0.013 % per cycle 

J. Org. Chem., 2003. 68(2): p. 319-326. (Property in Tol, Thermal in PMMA) 
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Compound Property E Form Z Form C Form 

N

N

O

O

CF3 F

F

F

F

F

 

λmax (nm) 437 418 573 
εmax (l/mol*cm) 4300 5500 6500 
Quantum yield  0.28ZC 0.046CZ 

Thermal 80°C A/A0  0.87(550h)  0.90(550h) 

Photo 0.031 % per cycle 

J. Org. Chem., 2003. 68(2): p. 319-326. (Property in Tol, Thermal in PMMA) 
λmax (nm) 438 422 580 

εmax (l/mol*cm) 6000 5800 6800 
Quantum yield  0.27ZC 0.044CZ 

Thermal 80°C A/A0 0.86(550h)  0.90(550h) 
Photo 0.006 % per cycle 

J. Org. Chem., 2003. 68(2): p. 319-326. (Property in Tol, Thermal in PMMA) 
λmax (nm) 430 417 573 

εmax (l/mol*cm) 5700 6600 7700 
Quantum yield  0.23ZC 0.045CZ 

Thermal 80°C A/A0  0.89(550h)  0.98(550h) 
Photo 0.025% per cycle 

J. Org. Chem., 2003. 68(2): p. 319-326. (Property in Tol, Thermal in PMMA) 
λmax (nm) 449 432 582 

εmax (l/mol*cm) 6400 6100 7700 
Quantum yield  0.25ZC 0.039CZ 

Thermal 80°C A/A0 0.87(550h)  0.93(550h) 
Photo 0.011 % per cycle 

J. Org. Chem., 2003. 68(2): p. 319-326. (Property in Tol, Thermal in PMMA) 
λmax (nm)  412 566 

εmax (l/mol*cm)  5400 5800 
Quantum yield    

Thermal 50°C A/A0 0.74(500h)  0.74(500h) 
Photo Loss 20% after 360 cycles 

J. Photochem. Photobiol., A, 2008. 199(1): p. 85-91. (in 70/30 Ethanol/water) 
λmax (nm)  405 unstable 

εmax (l/mol*cm)  5600  
Quantum yield    

Thermal 37°C Rate  (h-1) Z 0.0007 C 0.7 
Photo Loss 20% after 55 cycles in Tol 

J. Org. Chem., 2009. 74(17): p. 6777-6783. (in 50 mM phosphate buffer pH 7.4 ) 

 

λmax (nm)  389 599 
εmax (l/mol*cm)  9600 5600 
Quantum yield    

Thermal 37°C Rate (h-1) Z 0.0002 C 0.00006 
Photo Loss 20% after 670 cycles in PB 

J. Org. Chem., 2009. 74(17): p. 6777-6783. (in 50 mM phosphate buffer pH 7.4) 
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Compound Property E Form Z Form C Form 
λmax (nm)    

εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo Not photochromic 

J. Org. Chem., 2009. 74(17): p. 6777-6783. (in 50 mM phosphate buffer pH 7.4) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo  

Synthetic Communication, 2010. 40: p. 157–166. 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo  

Synthetic Communication, 2010. 40: p. 157–166. 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo  

Synthetic Communication, 2010. 40: p. 157–166. 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo  

Synthetic Communication, 2010. 40: p. 157–166. 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    

Photo  

Synthetic Communication, 2010. 40: p. 157–166. 

 

λmax (nm) 378  536 
εmax (l/mol*cm) 7420  4926 
Quantum yield 0.14EC 0.07EZ/0.15ZE 0.09CE 

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 
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Compound Property E Form Z Form C Form 

 

λmax (nm) 374  526 
εmax (l/mol*cm) 3685  5259 
Quantum yield    

Thermal    
Photo    

Doctoral dissertation Vorgelegt Von, Steffen Dietrich, Aus Bad Ems, 2006 (in C6H6) 

 

λmax (nm)  383 575 
εmax (l/mol*cm)  8224 7595 
Quantum yield    

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 

 

λmax (nm) 385  584 
εmax (l/mol*cm)   7307 
Quantum yield 0.045EC 0.04EZ/0.07ZE 0.16CE 

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 
λmax (nm) 368  518 

εmax (l/mol*cm) 2658  3625 
Quantum yield    

Thermal    
Photo 1% yield   

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 
λmax (nm)    

εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo 1% yield   

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 

 

λmax (nm) 451  551 
εmax (l/mol*cm)   7211 
Quantum yield    

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 

 

λmax (nm)   581 
εmax (l/mol*cm)   7361 
Quantum yield    

Thermal    

Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 
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Compound Property E Form Z Form C Form 

 

λmax (nm)   562 
εmax (l/mol*cm)   3265 
Quantum yield    

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 

 

λmax (nm)   563 
εmax (l/mol*cm)   4323 
Quantum yield    

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 

 

λmax (nm)   565 
εmax (l/mol*cm)   4826 
Quantum yield    

Thermal    
Photo    

Doctoral dissertation, Steffen Dietrich, Technischen Universitat Berlin, 2006 (in C6H6) 
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Compound Property E Form Z Form C Form 

 

λmax (nm) 362  543 
εmax (l/mol*cm) 4700  5650 
Quantum yield    

Thermal    
Photo    

J. Photochem. Photobiol., A, 2004. 166: p. 9-18. (Property measure in Tol) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo    

J. Photochem. Photobiol., A, 2004. 166: p. 9-18. (Property measure in Tol) 

 

λmax (nm)    
εmax (l/mol*cm)    
Quantum yield    

Thermal    
Photo Not Photochromic 

Chin. J. Chem. 1991, 9: p. 258-260. 
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