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ABSTRACT OF THE DISSERTATION 

AN INCREMENTAL MULTILINEAR SYSTEM FOR HUMAN FACE LEARNING 

AND RECOGNITION  

by 

Jin Wang 

Florida International University, 2010 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

This dissertation establishes a novel system for human face learning and 

recognition based on incremental multilinear Principal Component Analysis (PCA). 

Most of the existing face recognition systems need training data during the learning 

process. The system as proposed in this dissertation utilizes an unsupervised or 

weakly supervised learning approach, in which the learning phase requires a minimal 

amount of training data. It also overcomes the inability of traditional systems to adapt 

to the testing phase as the decision process for the newly acquired images continues to 

rely on that same old training data set. Consequently when a new training set is to be 

used, the traditional approach will require that the entire eigensystem will have to be 

generated again.  However, as a means to speed up this computational process, the 

proposed method uses the eigensystem generated from the old training set together 

with the new images to generate more effectively the new eigensystem in a so-called 

incremental learning process.  
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In the empirical evaluation phase, there are two key factors that are essential in 

evaluating the performance of the proposed method: (1) recognition accuracy and (2) 

computational complexity. In order to establish the most suitable algorithm for this 

research, a comparative analysis of the best performing methods has been carried out 

first. The results of the comparative analysis advocated for the initial utilization of the 

multilinear PCA in our research. As for the consideration of the issue of 

computational complexity for the subspace update procedure, a novel incremental 

algorithm, which combines the traditional sequential Karhunen-Loeve (SKL) 

algorithm with the newly developed incremental modified fast PCA algorithm, was 

established. In order to utilize the multilinear PCA in the incremental process, a new 

unfolding method was developed to affix the newly added data at the end of the 

previous data. The results of the incremental process based on these two methods 

were obtained to bear out these new theoretical improvements. Some object tracking 

results using video images are also provided as another challenging task to prove the 

soundness of this incremental multilinear learning method. 
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CHAPTER I 
Introduction 

 

1.1  General Statement of the Problem Area 

This research establishes an optimization system for human face learning and 

recognition. Currently, the learning and recognition processes are usually applied as 

two separate modules in most applications. How to combine learning and recognition 

processes for human faces effectively is still an emergent application. 

This research uses incremental multilinear Principal Component Analysis 

(IMPCA) and  distance-based classification method for face recognition. For 

existing face recognition systems, most of them need a training set in the learning 

process. However, the system as proposed utilizes an unsupervised or weakly 

supervised learning process, in other words, requiring no training set or at best a small 

training set initially. Moreover, the traditional systems can only recognize the testing 

image but can not learn from the testing image in subsequent recognition task. If new 

data is required to be included into the system, the new training set has to be 

generated again. Learning from images is another added feature of the proposed 

system.  

1.2  Research Problem 

The objective of this study is to seek an effective and integrated system that will 

realize both the learning and recognition processes in one setting. Moreover, the 

algorithms and overall approach utilized for the two processes need to be validated 

across large data sets containing varied faces under different circumstances. These 
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algorithms if they are to be effective would have to yield higher recognition accuracy, 

faster subspace update speed and a quicker learning phase. Due to all these research 

aspects, the subspace update method is based on the incremental multilinear PCA and 

the distance-based classification method is determined to be the method to be used for 

the classification process. 

1.3  Significance of the Study  

In recent years, remarkable efforts have been extended into the face recognition 

problem, especially with the considerable accessibility to new technologies and the 

wide range of commercial applications that have become available.  

Common sense dictates that all automatic face recognition systems should 

include two key steps. The first step is face detection and feature extraction, which is 

necessary to locate the face position and obtain the face features in the image for 

further processing. The features obtained will then be fed into the second and more 

challenging step that of face recognition. The recognition process remains a 

challenging endeavor for researchers due to the myriad of faces that can be considered 

and the variability in the circumstances and ways under which the images of these 

faces are taken.  

Therefore, face recognition is considered the focal point of this research. The 

system as built defines how the learning and recognition phases are integrated into 

one system as higher recognition accuracy and faster processing time are sought. 

1.4  Structure of the Research  

In structuring this dissertation, a comparison of the conventional methodologies 
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used for face recognition is introduced in Chapter 2. An overview of the software and 

how it is used to process and analyze the face data sets is provided. The dataset 

utilized in this chapter is introduced briefly. This chapter also discusses the general 

application steps of different methods and their ensuing computational complexities.  

Chapter 3 presents the so-called modified fast principal component analysis, 

method with the purpose of applying it into the incremental subspace update 

algorithm. By comparing the similarity among the eigenvalue decomposition method, 

the fast principal component analysis and the modified fast principal component 

analysis, the advantages of the modified method is discussed and the reason why the 

modification is necessary to improve the performance of the algorithm is given.  

Chapter 4 looks into the incremental subspace algorithm based on the 

performance issues raised in chapters 2 and 3. The multilinear principal component 

analysis has been chosen due to its better recognition accuracy and fast processing 

time. In order to improve the processing speed, the modified fast principal component 

analysis and sequencial Karhunen-Loeve are then combined to complete the 

mathematical foundation of the incremental multilinear principal component analysis. 

This chapter discusses the results of incremental subspace update between fast 

principal component analysis and modified fast component analysis, and compares 

the processing time for incremental subspace update using different methods for 

different modes.  

Chapter 5 describes the human face learning and recognition system, where the 

proposed method, IMFPCA combined with SKL, is used as the incremental subspace 
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update. Moreover, an arbitrary threshold, as determined by the bimodal histogram 

concept, is utilized to judge wether the face in the test image has been encountered in 

the previous dataset or not. The results between the proposed method and the 

traditional subspace update method are discussed.   

Chapter 6 focuses on an object tracking application to prove the practical merits 

of combining IMFPCA with SKL algorithm. The tracking model is described in detail, 

and the tracking algorithm is tested on various image sequences with different 

characteristics.  

Finally, Chapter 7 provides a retrospective assessment on the merits of the 

proposed method as well as the human face learning and recognition system. 

Moreover,  future research directions are provided are provided as potnetial means to 

augment the real-world applications of the overall concept of incremental learning.  
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CHAPTER II 

Comparative Assessment on Conventional Methodologies 

2.1  Introduction 

This chapter provides an overall analysis on conventional methods that have 

been used for face recognition. It introduces the data subjects, and software tools used 

in this dissertation. A thorough analysis of conventional methods helps in determining 

which method is best suited for the incremental learning process in seeking a low 

computational burden and a high recognition rate. In the experimental phase, different 

data sets are used to validate the reliability in the results obtained. 

2.2  Related works 

The Principal Component Analysis (PCA) is a well-known technique for 

approximating a matrix through a lower dimensional subspace. This lower 

dimensional subspace is constructed by eigenvectors that correspond to the most 

significant eigenvalues. The Eigenface system as used for face recognition was 

initially developed by [Turk and Pentland, 1991]. Later, other PCA-based face 

recognition methods were introduced with the use of the independent component 

analysis (ICA) [Bartlett et al., 2002; Draper et al., 2003; Yuen and Lai, 2002] and the 

kernel principal component analysis (KPCA) [Kim et al., 2002; Schölkopf et al., 1998] 

applied in kernel Hilbert space. For these aforementioned methods, there is a need to 

reshape a series of q  1 2I I  input images into a matrix with a higher dimensional 

matrix of size 1 2I I q ; this type of matrices may overburden the computational 

requirements. To decrease the computational cost due to the high dimensionality, 
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[Yang et al., 2004] proposed the 2D PCA approach which reduced the computational 

complexity significantly. Moreover, [Yu and Bennamoun, 2006] extended the 2D 

PCA to the nD PCA for high dimensional applications. Consequently, the method 

proposed in this study involves the use of three-dimensional tensors ( 1 2I I q  ) 

which are applied to two dimensional matrices whose structure is guided by the type 

of unfolding used yielding the following different 2D matrices: 1 2I I q , 2 1I I q  

and 1 2q I I , integrating at the same time the concept of multi-linear singular value 

(SVD) decomposition [Luthauwer et al., 2000].   

2.3  Data and subjects 

The experiments were conducted using [AT&T, the Database of Faces] (ORL 

Database of Faces formerly) given its widespread usage in the literature. This 

database of faces, which is composed of face images taken in a laboratory setting 

between April 1992 and April 1994, was first used in a face recognition project with 

the Cambridge University Engineering Department.  

There are 40 subjects with 10 images per subject. For some subjects, the images 

were taken at different times, with different lighting conditions, different facial 

expressions (open/closed eyes, smiling/not smiling, etc.) and with different facial 

details and expressions. These images are grayscale images with 112x92 in resolution, 

and they were taken against a dark homogeneous background with the subjects in an 

upright, frontal position (with tolerance for some side movement). Figure 2.1 shows 

some sample images from the database as illustrative examples.  
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Figure 2.1 Sample images from the AT&T database of faces 

2.4  Processing environment  

All the programs were executed in Matlab on Windows Vista based PC, with the 

configuration of Intel Core 2 CPU T5200 1.60GHz and 2G RAM.  

MATLAB (http://www.mathworks.com/) has already been used to develop 

different tools for face recognition and some of them can be utilized directly. For 

example, the Matlab toolbox for pattern recognition [Duin et al., 2004] was developed 

by the pattern recognition group in Delft University of Technology. Another 

application toolbox called the INface toolbox for illumination invariant face 

recognition [Struc, 2010] was provided with the purpose of maintaining consistency 

in the way facial characteristics are perceived or recorded.  

2.5  Comparisons of different methods 

To value the established groundwork that has guided the progress of incremental 

learning leading to face recognition, four most useful techniques together with the 

newly developed multilinear PCA are compared in terms of recognition accuracy and 

computational complexity.  
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2.5.1 Conventional methods 

There are four conventional methods that have been quite used in this field of 

research with varying degrees of success. These include the PCA, ICA, kernel PCA 

and 2D PCA. Their detailed steps (once obtaining the projections of the training 

images) are as follows.  

2.5.1.1 Principal Component Analysis 

The principal component analysis (PCA) is a statistic technique that is widely 

used in the fields of pattern recognition, image compression, and decision making 

processes. It can express the data with the purpose of emphasizing either their 

similarities or their differences.  

The following constitute the main steps needed to perform the PCA. 

 Collect the data as q  images of size 1 2I I . 

 Establish the data matrix and resize it by setting each image as a 1 2I I  vector, 

then with the q  images set column-wise, generate a new matrix of size 1 2I I q . 

 Determine the centered matrix by computing the mean vector and subtracting it 

from each column vector. This process produces a data set with zero mean.  

 Obtain the scatter matrix of the centered matrix producing a matrix of 

size 1 2 1 2I I I I . 

 Calculate the eigenvectors and eigenvalues of the scatter matrix.  

 Select appropriate components to form a feature basis on the basis of the first k 

eigenvectors that are chosen.  

 Obtain the projection of the training samples. 
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2.5.1.2 Independent Component Analysis 

ICA and PCA are closely related in that the PCA can be considered as a special 

case of ICA. The purpose of ICA is to minimize the statistical dependence between 

the basis vectors. In the procedure for implementing ICA, additional steps are 

included beyond the required steps of the PCA which are initially used to reduce 

dimensionality prior to performing the ICA.  

The main steps of the ICA are as follows: 

 Follow the steps of the PCA to obtain the feature basis. 

 Compute the projections of the images into the feature basis. 

 Find the Whitening matrix to minimize the statistical dependence.  

 Obtain the ICA representation of the image. 

It should be noted that the vectors in feature basis of the ICA are neither 

orthogonal nor ranked in order.  

2.5.1.3 Kernel Principal Component Analysis 

Kernel PCA is the PCA applied to the data that is nonlinearly mapped into a 

higher dimensional feature space. The major steps in this case are: 

 Find the covariance matrix in kernel space. 

 Decompose the matrix. 

 Obtain the projection of the training samples in the kernel space. 

2.5.1.4 2D Principal Component Analysis 

The 2D PCA changes the PCA by keeping the shape of original images and 

performing the decomposition directly on the mean covariance matrix of the images 
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in order to find the feature basis. The steps of the 2D PCA are as follows: 

 Collect a set of data as q  images of size 1 2I I each. 

 Get the centered images and compute the mean matrix of the dataset, and subtract 

the mean matrix from each image in the dataset.  

 Calculate the mean scatter matrix.  

 Perform the eigen decomposition on the mean scatter matrix.  

 Select the components and generate the feature basis.  

 Obtain the projections of the training samples. 

The above are just the general description of the steps to find the projections of 

the training samples. The detailed steps with mathematical explanations will be 

discussed in due course as their computational complexity is considered.   

2.5.2 Multilinear Principal Component Analysis 

In this section, some basic multilinear algebra will be introduced first. Then, the 

steps of Multilinear PCA are discussed.  

2.5.2.1 Basic Multilinear Algebra  

A high-order tensor is denoted as 1 2 ... NI I I A , where 1,...,nI with n N  

represents the size of the nth dimension of the tensor. The mode-n product of a tensor 

A  by a matrix n nJ IU  , denoted by n UA is determined by the tensor 

entries
1 1 1 1,..., , , ,..., ...( )

n n n N N n n

n

n i i j i i i i j i
i

U u
 

 A A , where ni  denotes the mode-n ofA . 

The scalar product of two tensors 1 2 ..., NI I I  A B  is defined 

as
1 2 1 21 2

... ...,
N NN

i i i i i ii i i
    A B A B . And the Frobenius norm of a tensor 
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1 2 ... NI I I A  is defined as ,A A A . Any tensor therefore can be 

expressed as the product (1) ( 2 ) ( )

1 2 ... NA A A
NU U U   A G  where 1 2... NJ J J G  

is the core tensor defined as (1) ( 2 ) ( )

1 2 ... NA A A
NA U U U   G , with 

( ) ( ) ( ) ( )

( )
1 2( , ,..., )i i i i

A i

A A A A
kU u u u   being a unitary matrix. Mode-n unfolding yields a 

matrix 1 2 1 1.. ..
( )

n n n NI I I I I I
nA   . The different unfolding mechanisms for a 3rd-order 

tensor are illustrated in Figure 2.2. 

 
Figure 2.2 Unfolding mechanisms for a 3rd-order tensor 

2.5.2.2 Multilinear Principal Component Analysis 

In contrast to using the mean covariance matrix as in 2D PCA, images are 

retained as 2D matrices instead of 1D vector in the PCA as shown in Figure 2.3 (a), 

and the matrices are utilized to generate a 3D tensor as given in Figure 2.3 (b). Then 

the multilinear algorithm is conducted to find the feature basis for the tensor. 

Moreover, the dimension involved for feature basis is N-1 without considering the 

dimension of time. Specifically for our case, the face image is a 2D matrix; hence  
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Figure 2.3 Data generation for PCA and multilinear PCA 

features of two dimensions are obtained for the recognition process. 

The steps considered for multilinear PCA are as follows: 

 Collect a set of data as q  images with size 1 2I I each. 

 Generate the data tensor of size 1 2I I q  . 

 Compute the centered tensor along the time dimension q .  

 Unfold the centered tensor in mode-1 and mode-2, which gives two matrices with 

sizes 1 2I I q  and 2 1I I q , respectively.  
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 Find the feature basis for these two modes. 

 Compute the projections of the training image into these two modes. 

2.5.2.3 Classification method 

The so-called L-2 norm distance is used for recognition purposes. For all 

methods, the projection of the testing image is the same as the training image. 

However, due to the two dimensional and multilinear characteristics, an extra step for 

2D PCA and MPCA is required for storage and computational convenience. The 

projections are also rearranged into one vector.  

Suppose the projection of the testing image is ty  and the projection of the thp  

training image is py . Then the norm between projections of the two images is 

determined as ( ) t pd p y y  .  The index of minimum distance expressed by min(d) 

gives the recognition result in the training data for the given testing image. 

2.5.3 Computational complexity  

The computational complexities of the different methods and their different 

processing steps are assessed.  These do not include the time for image loading as 

such a task is performed for all methods. Suppose the matrix A with size 1 2I I q , B  

with image size 1 2I I  and a tensor A  with size 1 2I I q  , the following are the 

processing times required for the different methods. 

2.5.3.1 Principal Component Analysis 

 Centered matrix Â A A   requires 1 2I I  

  Finding the matrix of ˆ ˆTA A  requires 2
1 22q I I  
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  Eigen decomposition of ˆ ˆT TA A U U   requires 3( )O q  

  Computing eigenvectors ÂU  requires 2
1 22q I I  

  Projection of the training samples with the k largest eigenvectors in ÂU by 

ˆ ˆ(:, ) ( (:,1: )), 1,2,...,TA i AU k i q  requires 1 22qkI I  

Total： 2 3
1 2 1 2 1 24 2 ( )I I q I I qkI I O q    

2.5.3.2 Independent Component Analysis 

 Following the same steps as with the Principal Component analysis to get the 

eigenvectors ˆR AU  would require 2 3
1 2 1 24 ( )I I q I I O q  . 

 To get PCA representation of training images ˆ( (:, ))TX R k A which keep k  

eigenvectors corresponding to k  largest requires 1 22qkI I . 

 Centered X̂  requires 1 2I I k and get the ˆ ˆ TXX  needs 2 2
1 22kI I . 

 Finding the whitening matrix 
1

2ˆ ˆ2( )T
ZW XX


  requires 3( )O k . 

 Updating ˆ ˆ
ZX W X requires 2

1 22k I I . 

 Getting the generative model of data 1ˆ ˆ
ZX W X requires 2 3

1 22 ( )k I I O k . 

 Training the output W related to the iteration Iter , here let’s set the operation as 

0F . 

 Get the ICA represents of image 1( )ZF R WW  requires 3 32 3 ( )qk k O k  . 

Total:  
2 2 2

1 2 1 2 1 2 1 2 1 2

2 2 3 3 3
1 2 0

4 2 2

4 2 2 ( ) ( )

I I q I I qkI I I I k kI I

k I I qk k F O k O q

    

    
 

2.5.3.3 Kernel Principal Component Analysis 

 Finding 
FA  requires 2q  

 Computing T
F FA A  requires 2

0q K , where 0K  represents the kernel evaluation, 
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related to 1 2I I  and kernel type. 

 Computing 
F F

T T
A F F AA A   requires 34q . 

 Eigen decomposition of 
F F

T T T
A F F AA A Q Q     requires 3( )O q .  

 Expansion coefficients 
1

2(:,1: ) (1: ,1: )Q k k k


   (Note:  is a diagonal 

matrix, we thus ignore the operation of inverse and square root) require 22qk . 

 Projection of the training image ( ) , 1,2,...
F

T T T
F F A F FA i A A A i q     

( T
F FA A already obtained) requires 3 2

0( 2 2 2 )q K qk q q k   . 

Total: 2 2 3 2 2 4 3 3
0 04 2 2 2 2 ( )q q K q qk qK q k q q k O q         

2.5.3.4 2D Principal Component Analysis 

 Centered matrix 1_
ˆ , 1,2,...,i i qB B B i q    requires 1 2qI I . 

 Finding the covariance matrix for each centered image ˆ ˆT
i iB B requires 1 22qI I . 

 Obtaining mean covariance matrix ˆ ˆT
i iB B  requires 2

1qI . 

 Eigen decomposition of ˆ ˆT T
i iB B U U   needs 3

1( )O I . 

 Projection of the training samples ˆ (:,1: ), 1, 2,...,T
iB U k i q  requires 12qkI . 

Total: 2 2 3
1 2 1 2 1 1 12 2 ( )qI I qI I qI qkI O I     

2.5.3.5 Multilinear Principal Component Analysis 

 Centered tensor ˆ  A A A  requires 1 2qI I . 

 Unfolding to (1)A  with size 1 2I I q  and finding covariance matrix (1) (1)
TA A  

requires 2
1 22kI I . 

 Unfolding to (2)A  with size 2 1I I q  and finding covariance matrix (2) (2)
TA A  

requires 2
1 22kI I . 
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 Finding the Eigen decomposition of (1) (1)
TA A and (1) (1)

TA A requires 3
1( )O I  and 

3
2( )O I  respectively. 

 Projection of the training samples to two modes needs 
(1) ( 2)1 22 2A Aqk I qk I , 

where 
(1)Ak  and 

( 2)Ak are the numbers of the eigenvectors corresponding to 

largest eigenvalues.  

Total: 
(1) ( 2)

2 2 3 3
1 2 1 2 1 2 1 2 1 22 2 2 2 ( ) ( )A AqI I qI I qI I qk I qk I O I O I       

2.5.4 Experiment results 

Since PCA based methods are essentially dimensionality reduction methods, the 

reconstruction of the original images from fewer dimensions should be assessed for a 

performance evaluation using contemporary methods which include in this case PCA, 

2D PCA, and multilinear PCA. The KPCA method is not included in the 

reconstruction process since it was found to be computationally taxing. 

2.5.4.1 Reconstruction comparison 

PCA: Given an image B  with size 1 2I I , the image is reshaped into a vector 

vB with size 1 2 1I I   after centering. The reconstruction vector is defined 

as ˆ ˆ( ) T
v vrecon B UU B . Then reshape ˆ( )v vrecon B B  back to size to constitute the 

reconstruction image needed, where vB  is the mean of all image vectors. 

 

2D PCA: With the same definitions given in the previous section on the PCA, 

the reconstructed image in this case can be obtained using the 

formula ˆ( ) Trecon B UU B B  . 
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Multilinear PCA: The reconstruction in this case is performed using: 

1 (1) 1 (1) 2 (2) 2 (2)
ˆ ˆ( ) [( ) ( ) ] / 2T Trecon B B U U B U U B       . 

 

To facilitate the comparison of the different reconstruction results using the 

aforementioned methods, Figure 2.4 provides the reconstruction images of a given 

subject with different number of eigenvectors retained. In this experiment, 360 images 

were considered to compute the feature basis.  

 
Figure 2.4 Original image and reconstructed images based on different methods and parameters. 
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From these results, it is apparent that the 2D PCA and the multilinear PCA are 

superior to the PCA. The PCA would thus need to retain more eigenvectors for the 

reconstruction of images in order to minimize the error. The 2D PCA and the 

multilinear PCA performed equally well, and needed a much smaller subset of the 

eigenvectors in contrast to the PCA for similar reconstruction results. However, it is 

emphasized that the reconstruction error of the multilinear PCA (0.0080) was less 

than that of the 2D PCA (0.0101). 

2.5.4.2 Face recognition 

The top recognition rates for different face recognition algorithms including ICA, 

PCA, KPCA (Gaussian and Polynomial kernel), 2D PCA and multilinear PCA for two 

sets of experimental data are given in Table 2.1. For the five-to-five dataset, five 

images were chosen randomly of one subject for feature bases and the remaining five 

images were used for testing. Recall that ten images were considered for each subject. 

For the other leave-one-out dataset, the first nine images were kept out of ten for 

feature bases extraction and the one left is used as the testing image.  

For the five-to-five dataset, both multilinear PCA and KPCA with Gaussian kernel 

achieve the highest recognition rate of 93.5%. In the other test, multilinear PCA is 

superior to all the other algorithms and its recognition rate reached 97.5%. In other 

words, only one image in the testing set was recognized incorrectly. 
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Table 2.1 Comparison of the top recognition rates (%) for different methods 

Method Five-to-Five Leave-one-out 

ICA 85.5% 92.5% 

PCA 91.0% 95% 

KPCA 

(Gaussian, sigma=256x16)
93.5% 92.5% 

KPCA 

(Polynomial, d=3) 
90.5% 95% 

2D PCA 92.5% 95% 

Multilinear PCA 93.5% 97.5% 

 

To complement this evaluation process, and as a complete retrospective, Table 

2.2 provides the different memory requirements for each method and indicates the 

operational complexity for each in terms of both the generalized formulas derived 

earlier and the associated run time. 

In Table 2.2, the average running time is obtained by averaging 100 trials of the 

training and projecting procedures (excluding data matrix generation and centering 

steps). For this test, the parameters are set to be the same as the aforementioned 

leave-one-out experiment.  
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Table 2.2 Memory requirement and operation complexity among methods 

Method Operation 
(Feature extraction & training 

samples projection ) 

Memory 
unit 

Average 
Running time 

in Matlab 
ICA 2 2 2

1 2 1 2 1 2 1 2 1 2

2 2 3 3 3
1 2 0

4 2 2

4 2 2 ( ) ( )

I I q I I qkI I I I k kI I

k I I qk k F O k O q

    

    

qk  

k q  

209.5469s 

PCA 2 3
1 2 1 2 1 24 2 ( )I I q I I qkI I O q    1 2I I k  

k q  

20.2825s 

KPCA 
(Gaussian) 

2 2 3 2
0 0

2 4 3 3

4 2

2 2 2 ( )

q q K q qk qK

q k q q k O q

    

  
 

 

qk q  

k q  

86.9237s 

KPCA 
(Poly) 

2 2 3 2
0 0

2 4 3 3

4 2

2 2 2 ( )

q q K q qk qK

q k q q k O q

    

  
 

qk q  

k q  

39.6125s 

2D PCA 2 2 3
1 2 1 2 1 1 12 2 ( )qI I qI I qI qkI O I     1I k  

k q  

6.0352s 

Multilinear 
PCA 

(1)

( 2)

2 2
1 2 1 2 1 2 1

3 3
2 1 2

2 2 2

2 ( ) ( )

A

A

qI I qI I qI I qk I

qk I O I O I

   

 
 (1) ( 2)1 2A AI k I k

(1) 1Ak I  

( 2) 2Ak I  

9.5341s 

 

Figure 2.5 shows the average run time for these methods. It can be initially 

observed that PCA, 2D PCA and multilinear PCA were comparatively faster than the 

other three algorithms. Moreover, 2D PCA and multilinear PCA were the two most 

computationally efficient methods more so than the PCA. Moreover, we can 

differentiate the two algorithms from the last column in Table 2.2, in that it shows that 
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the 2D PCA required only needs 6.0352s while the multilinear PCA required 9.5341s. 

As for the memory requirements to store the feature bases, it is difficult to distinguish 

from the third column of Table 2.2 which method would need less memory. But with 

the increase of q , the 2D PCA and the multilinear PCA would use less memory since 

they are independent of the parameter q . Moreover, in the experiments, the number 

of eigenvectors of the multilinear PCA was usually less than the number of 

eigenvectors for the 2D PCA when seeking high recognition rates. 

 
Figure 2.5 Processing time among contemporary methods 

The second column of Table 2.2 also shows that for the ICA, the iterative 

computational process was time consuming. Concerning the KPCA, the most 

processing time was needed in computing the kernel matrix. The Gaussian kernel on 

the other hand requires more processing time than the polynomial kernel. Moreover, 

in this application, the multilinear PCA had to compute one more mode than the 2D 

PCA and both the theoretical derivations and experiment results demonstrated that. 
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2.6  Retrospective  

In this chapter, several contemporary methods are contrasted in a thorough 

comparative evaluation in terms of both computational and memory requirements. 

The main accomplishment of this section is to show that the accuracy rate for face 

recognition has been optimized with little or no compromise on memory and 

computational requirements for multilinear PCA. Through real-world applications of 

face recognition using the AT&T database, this study has proven that the multilinear 

PCA is superior or equal to other methods in recognition accuracy. In terms of 

processing time, 2D PCA revealed to be the most computationally efficient method. 

But usually, smaller feature bases of the multilinear PCA can achieve the recognition 

accuracy of larger feature bases of the 2D PCA. 

To achieve the goal of this dissertation, incremental procedure of multilinear 

PCA can be utilized in accordance to the preliminary results from this section. 

Although 2D PCA was the most computationally efficient method, it is however 

based on the mean covariance matrix, which is not suitable for the important process 

of incremental learning. Furthermore, the multilinear PCA, which does not depend on 

the mean covariance matrix, has the potential to achieve computational efficiency for 

incremental learning applications. 
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CHAPTER III 

Modified Fast Principal Component Analysis 

3.1  Introduction  

Due to the randomly generated initial vector (which may converge to local 

minimum) in the fixed-point algorithm, the existing fast principal component analysis 

(fast PCA) has unstable performance in the order it generates eigenvectors. In this 

chapter, by modifying the fast PCA algorithm, the deficiency of fixed point algorithm 

is minimized. To evaluate the merit of the proposed modified algorithm, similarities 

between standard eigenvectors from eigenvalue decomposition (EVD), eigenvectors 

from fast PCA, and eigenvectors generated using the proposed modified algorithm are 

compared. The comparison indicates that the eigenvectors from the modified fast PCA 

has better similarity to the standard eigenvectors. In addition, the fast PCA and 

modified fast PCA are compared into the face recognition application to evaluate their 

performance.  

3.2  Related work 

Principal component analysis is used for approximating a set of vectors by a low 

dimension subspace that can still keep most of the information contained in all  the 

vectors. Consequently, a minimum mean square error is achieved between the original 

vectors and the reconstructed ones. This concept is also the core of the fast PCA 

[Sharma and Paliwal, 2007].  

As one of the most important standards for evaluating an algorithm, the 

computational complexity of the PCA has been studied through decades. In this field, 
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researchers have made great improvements, such as the Cyclic Jacobi’s method 

[Golub and Loan, 1996], its modification [Reddy and Herron, 2001] and power 

method [Schilling and Harris, 2000]. Moreover, the Fast PCA is a computationally 

fast technique for finding the leading eigenvectors. It is obvious that the fast PCA is 

computationally efficient (i.e. with data dimensionality 2000, Fast PCA needs 2.28s 

and EVD based PCA needs 153.26s. Another point worth addressing is the close 

similarity between eigenvectors from fast PCA and EVD based PCA.  

3.3  Data and subjects 

In this chapter, the AT&T database introduced earlier in chapter 2 is used 

throughout. 

3.4  Modified fast principal component analysis 

In this section, the fast PCA algorithm is first introduced and the necessity to 

enhance this given algorithm is analyzed. The modification that was introduced and 

the procedure of the algorithm are explained. Also, two experiments are implemented 

to verify that the modified method can indeed achieve higher similarity. 

3.4.1 Fast PCA 

The fast PCA is obtained by minimizing the mean square error between the 

original vectors and their reconstructed versions from a dimensionally-reduced 

principal component transform, while no or minimal concessions are made on 

accuracy.  

Suppose that 1mx   represents a vector with a mean [ ]E x  , the reduced 

dimensional feature vector is then denoted as 1hy  . With the reconstructed vector 
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of x  being 1ˆ mx  , the mean square error can be presented as:  

2ˆ[|| || ]MSE E x x                            (3.1) 

where   denotes the norm value and the function [ ]E   is defined as the expectation 

operation.  

In the PCA transform, the reduced eigenbasis is supposed to be m hU  , and 

then the reduced dimensional vector can be computed as ( )Ty U x   , with zero 

empirical mean. With the reduced dimensional vector y , the reconstructed x̂  of x  

can be computed as  

ˆ ( )Tx Uy UU x                          (3.2) 

Therefore, equation 3.1 can be rewritten as follows: 

2[|| ( )( ) || ]TMSE E I UU x                      (3.3)             

The scalar function 2|| ( )( ) ||TI UU x   , which determines the norm of a vector, 

can thus be simplified as follows: 

2
( )( ) (( )( )) ( )( )

( ) ( ) ( )( )

( ) ( )( )( )

( ) ( 2 )( )

T T T T

T T T T

T T T

T T T T

I UU x I UU x I UU x

x I UU I UU x

x I UU I UU x

x I UU UU UU x

  

 

 

 

      

    

    

    

        (3.4) 

Since the eigenvectors are orthonormal, the following relation applies: 

T T T TUU UU UIU UU                     (3.5) 

This further simplifies equation 3.4 to the following squared norm: 

2
( )( ) ( ) ( )( )T T TI UU x x I UU x                   (3.6) 

Then the derivative of MSE can be determined as in [Golub and Reinsch, 1970] 

to yield the following: 
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[( ) ( )( )] 2 [( )( ) ]T T TE x I UU x E x x U
U

   
      


       (3.7) 

The fixed-point algorithm [Hyvärinen and Oja, 1997] and Gram-Schmidt 

orthonormalization process [Golub and Loan, 1996] can then be used to estimate the 

leading eigenvectors.  

3.4.2 Modified fast PCA  

The eigenbasis m hU   of a matrix m nD   should evidently satisfy the 

standard relation U DU  , where  represents the corresponding eigenvalues. The 

eigenbasis 1 2[ , ,..., ]hU e e e  should be composed of eigenvectors with the largest 

eigenvalues, and should be ordered as e1, e2, …, eh column-wise in accordance to their 

respective eigenvalues such that 1 2 ... h     . Under usual circumstances, 

eigenvectors are computed in a descending order of their corresponding eigenvalues by 

the fast PCA. Unfortunately, the algorithm tends to be numerically unstable if the initial 

vector is generated randomly [Bakir et al., 2007; Berinde, 2007]. Due to this instability, 

the eigenvectors are not set in descending order. The intuitive approach is to repeat the 

iteration with various initial vectors. In this case, the additional step is to check if the 

new eigenvalue is smaller than the previous one. If so, proceed computing the next 

eigenvector; otherwise go back to the previous step, and recalculate that eigenvalue and 

respective eigenvector using a different initial vector. The pseudo-code implementation 

of the modified fast PCA (MFPCA) is provided as follows.   

Algorithm procedure: 

a. Set 1ind . 

b. Initialize eigenvector 
indU  randomly with size 1m . 
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c. Update 
indind CovUU ' . 

d. Implement the Gram-Schmidt 

process
ind

ind

i
Uindind UprojUU

i
'

1

1

'' 




  where  u
uu

vu
vproju ,

,
  and vu,  

denotes the inner product of vectors u  and v . 

e. Find the norm of indU '  then normalize indU '  by 

indind UU '' / . 

f. Compare the indU '  with the 1
'

indU  , if 

indU ' > 1
'

indU  and ind > 1, set ind = ind-1 and go to step b, else 

go to step a.  

g. If  )1'( ind
T

ind UUabs , where  is the tolerance error 

given, is not satisfied, go to step c with indind UU ' . 

h. Set indind UU '  and 1 indind and go to step b      

until kind  . 

The processing step f as shown in bold indicates the modification that was 

introduced in the MFPCA. The next section gives the experimental results for the 

proposed modified method.  

3.5  Experimental results 

To test the modified method, images in the AT&T database are normalized into 

different dimensions 30×30, 40×40 and 50×50, respectively. Then, all images are 

reshaped into a vector, and matrices are generated. After centering the matrix and 

finding the covariance matrix, covariance matrices of dimensions 900×900, 
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1600×1600 and 2500×2500 are obtained. The comparative results, in terms of both 

accuracy in estimating the eigenvectors and computational requirements between the 

Eigenvalue Decomposition (EVD), FPCA and MFPCA, are given. 

The first is to compare the similarity between eigenvectors from the 

aforementioned methods and those eigenvectors from the EVD-based PCA. Moreover, 

since the fixed-point method relies on random initial values which means the results 

will not be the same for different trials, the experiments are conducted in a statistical 

way, and the results are given as mean values of several trials.  

The similarity between vectors is reflected through the dot product, and the 

closer to 1 is this dot product, the better is the similarity between the two vectors. In 

all the tests, the number of eigenvectors selected is randomly chosen to be the twelve 

top eigenvectors with the largest eigenvalues. 

Figure 3.1 through 3.3 show that MFPCA provides better similarity than the fast 

PCA under different parameter settings. However, the defect of the fast PCA, which 

can be seen in the eight eigenvector index for all tests, cannot be overcome by the 

modified PCA. Although the eigenvalues are in descending order, the local minimum 

still shows up and gives a low similarity to EVD eigenvector. However, since the 

obtained eigenvector satisfied the iterative requirement, the eigenvectors after the 

eighth one still can have a good similarity with the EVD eigenvectors. Moreover, 

under the same error tolerance, with the increase of the dimension, the accuracy 

increases, too. 
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(c) 

Figure 3.1 Similarity comparisons among eigenvectors from FPCA, MFPCA and EVD methods. 

FPCA&EVD shows the similarity between eigenvectors from fast PCA and from EVD method, and 

MFPCA&EVD shows the similarity between eigenvectors from MFPCA and from EVD method. (a) 

AT&T dataset, 30x30, =10e-3; (b) AT&T dataset, 30x30, =10e-4; and (c) 30x30,  =10e-5. 
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(c) 

Figure 3.2 Similarity comparisons among eigenvectors from FPCA, MFPCA and EVD methods. 

FPCA&EVD shows the similarity between eigenvectors from fast PCA and from EVD method, and 

MFPCA&EVD shows the similarity between eigenvectors from MFPCA and from EVD method. (a) 

40x40,  =10e-3; (b) 40x40,  =10e-4; (c) 40x40,  =10e-5. 
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Figure 3.3 Similarity comparisons among eigenvectors from FPCA, MFPCA and EVD methods. 

FPCA&EVD shows the similarity between eigenvectors from FPCA and from EVD method, and 

MFPCA&EVD shows the similarity between eigenvectors from MFPCA and from EVD method. (a) 

50x50,  =10e-3; (b) 50x50,  =10e-4; (c) 50x50,  =10e-5.  
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Table 3.1 Processing time comparison among EVD, FPCA and MFPCA under 

different conditions (mean of 100 trials) 

Image size 30×30 40×40 50×50 

EVD 6.4860s 39.6555s 165.1443s 

FPCA ( 310  ) 0.6221s 1.8825s 4.9189s 

MFPCA ( 310  ) 0.7758s 2.4675s 6.5651s 

FPCA ( 410  ) 1.1759s 3.4587s 7.6038s 

MFPCA ( 410  ) 1.2575s 3.6353s 7.9852s 

FPCA ( 510  ) 1.8219s 5.2412s 13.0582s 

MFPCA ( 510  ) 1.7588 s 5.2497s 13.2501s 

 

As can be seen in Table 3.1, FPCA and MFPCA have comparable processing 

times, both of which are significantly faster than EVD. The entry in Table 3.1, with 

the image size of 30x30 and error tolerance of 510  , is the only case where the 

MFPCA is faster than FPCA. The reason that less iterations were required to achieve 

the error tolerance requirement is a purely coincidental case based on the 100 random 

trials considered. 
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Figure 3.4 Processing time comparison between FPCA and MFPCA. 

The second set of experiments involved applying these methods for face 

recognition to assess the different recognition accuracies. The number of eigenvectors 

kept is determined by the best recognition accuracy that the standard eigenvectors can 

achieve. For the first set of data, we randomly chose five images of one subject as 

feature bases and use the rest of images for testing. For the other set of data, we kept 

the first nine images out of ten for feature bases extraction and the one left was used 

as the testing image.  

The results for this experiment are shown in Table 3.2. The results of both of 

these methods are based on mean values of 100 trials. The value between parenthesis 

(*) indicates the number of eigenvectors kept for face recognition and the two 

numbers shown in brackets [*, *] means the range of the recognition accuracy in 

terms of minimum and maximum values over 100 trials. 

In Table 3.2, for the Leave-one-out dataset, nine is the number of minimum 

eigenvectors that gave the best accuracy using the standard PCA, and it is therefore 

chosen as the number of eigenvectors kept for both fast PCA and modified fast PCA. 
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Table 3.2 Comparison of recognition rates (%) for different methods 

Method Five-to-Five Leave-one-out 

Standard PCA 89%(53) 95%(9) 

Fast PCA 

(error=10e-5) 

88.7%(53) 

[88%, 89%] 

94.7%(9) 

[90%, 95%] 

Modified fast PCA 

(error=10e-5) 

88.7%(53) 

[88%, 89%] 

95%(9) 

[95%, 95%] 

Fast PCA 

(error=10e-4) 

88.56%(53) 

[88%, 89%] 

93.90%(9) 

[90%, 95%] 

Modified fast PCA 

(error=10e-4) 

88.60%(53) 

[88%, 89%] 

94.88%(9) 

[92.5%, 95%] 

Fast PCA 

(error=10e-3) 

88.61%(53) 

[87.5%, 90%] 

93.33%(9) 

[85%, 95%] 

Modified fast PCA 

(error=10e-3) 

88.52%(53) 

[87.5%, 90%] 

93.90%(9) 

[90%, 97.5%] 

 

The results indicate that the modified method has overall a better recognition rate 

than fast PCA. But the results obtained from the Five-to-Five dataset, with fifty-three 

eigenvectors needed for the best accuracy using the standard PCA, reveal that no one 

single method outperformed the other, in view of the varied results that were obtained 

with different error tolerance rate. Note that when the error tolerance is set to be 

510  , the two methods have the same recognition accuracy. However, when 



  35 
 

setting the error tolerance to 410  , the modified fast PCA now has a better 

performance than the fast PCA (88.56% for fast PCA and 88.60% for modified fast 

PCA). And if the error tolerance increases to 310  , the fast PCA outperforms 

instead the modified fast PCA (88.61% for fast PCA and 88.52% for modified fast 

PCA). Obviously with such small variability in the results, we can hardly acquire a 

trend in terms of error tolerance and accuracy in the results. In fact, the results show 

that the fixed-point-based fast PCA is only useful for finding a few leading 

eigenvectors. As an iterative method, the eigenvectors of fixed-point-based fast PCA 

are calculated based on the previous ones, which means the more eigenvectors 

obtained, the bigger is the error accumulated.  
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CHAPTER IV 

Incremental Multilinear Principal Component Analysis 

4.1  Introduction 

This chapter establishes the mathematical foundation for a fast incremental 

multilinear method which combines the traditional sequential Karhunen-Loeve (SKL) 

algorithm with the newly developed incremental modified fast PCA algorithm 

(IMFPCA). In accordance with the characteristics of the data structure, the proposed 

algorithm achieves both computational efficiency and high accuracy for incremental 

subspace updating. Moreover, the theoretical foundation is analyzed in detail as to the 

competing aspects of IMFPCA and SKL with respect to the different data unfolding 

schemes. Besides the general experiments designed to test the performance of the 

proposed algorithm, an incremental face recognition system was developed as a 

real-world application for the proposed algorithm. 

4.2  Related works 

The so-called appearance-based techniques, such as the Principal Component 

Analysis (PCA) and the Linear Discriminant Analysis (LDA), have been extensively 

used in the literature with a wide range of applications in fields such as computer vision, 

pattern classification, signal and image processing, among others. However, their 

computational complexity and their batch mode computational frameworks still impose 

practical constraints in applications that demand concurrently faster execution speed 

and higher accuracy in the results. A variation on the singular value decomposition 
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(R-SVD) [Golub and Reinsch, 1970] provides a faster approach for obtaining a specific 

subspace of a given data structure. Based on R-SVD, [Levy and Lindenbaum, 2000] 

developed the sequential Karhunen-Loeve (SKL) algorithm, which is characterized by 

a faster execution speed and higher suitability for dealing with image sequences. Many 

other applications were consequently reported utilizing the SKL algorithm. For 

instance, [Ross et al., 2007] proposed a visual tracking system based on an incremental 

subspace method with sample mean update. Also, [Zhao et al., 2006] developed a novel 

incremental PCA with specific application to face recognition. Moreover, [Chin and 

Suter, 2007] developed the incremental subspace method for kernel PCA, and applied it 

to offline and online face recognition as well as visual tracking. In [Hoegaertsa et al., 

2007], the authors proposed a method which is similar to the research concept in [Zhao 

et al., 2006], but extended it into the kernel space and included both updating and 

down-dating procedure for tracking purposes. Another kind of fast principal 

component extraction method called Principal Component Orthogonal Projection 

Approximation and Subspace Tracking (PC-OPAST) was introduced by [Bartelmaos 

and Abed-Meraim, 2008] to be applied for incremental learning as well. The 

PC-OPAST method alleviates the computational burden for estimating the principal 

eigenvectors of the covariance matrix using Givens rotations for tri-diagonalization.  

With the use of tensors in multilinear algebra being firmly established, great 

efforts have been devoted to their potential use for dimensionality reduction. In [Wang 

and Ahuja, 2008], the alternative least squares method was used to find a desired tensor 

with minimum cost. This method is applied on the multidimensional data directly. A 
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new framework of multilinear PCA for dimensionality reduction and feature extraction 

was provided in [Lu et al., 2008] with an application to gait recognition. The iterative 

local optimization procedure was applied to find projection matrices. Moreover, there 

are some studies on the incremental learning of tensors. A visual tracking system 

proposed by [Li et al., 2007] was based on an incremental tensor subspace learning 

method, and the subspace update deployed the SKL algorithm. In [Sun et al, 2008], 

multilinear analysis and wavelets were combined for the analysis of time-evolving data. 

Alternating minimization was adopted for unfolding modes without including time 

dimension as a compression step, and then discrete wavelet transform was adopted on 

the results of the compression step. Moreover, in [Ozawa et al., 2008], the subspace 

update is based on the characteristic of chunk data input. Unlike most articles for 

incremental learning which keep a static number of eigenvectors, the approach in [Hall 

et al., 2002] was based on the reconstruction error, in which the number of eigenvectors 

used can change with each incremental update.  

In all of these studies, the challenge remains in finding the appropriate balance 

between computational efficiency and high accuracy in estimating the eigenvectors. To 

come to terms with this challenge, this study proposes a modified fast PCA algorithm 

embedding an incremental multilinear method. Based on the characteristics of 

multilinear method, a new incremental subspace update method is described. Practical 

implementations of this new incremental procedure on different kinds of targets in 

image sequences are chosen to prove the validity of the incremental multilinear PCA    
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4.3  Data and subjects 

For experimental evaluation purposes, two databases will be utilized in this 

chapter. One is the AT&T database, which has been used already in Chapter III, and 

the other is [the MNIST database of handwritten digits]. 

The MNIST database of handwritten digits has a total number of 70,000 examples. 

The digits have been size-normalized and centered in a fixed-size image of 28x28.  

Due to its large size, it allows for more iterations to be tested. Moreover, the image size 

of MNIST database is found to be more computationally suitable, since the dimension 

of the covariance matrix for mode-3 in the AT&T database (112x92) were considered 

unjustifiably large for the same tests that were considered. The figure below shows 

some sample images from the MNIST database.   

 

Figure 4.1 Sample images of digits from MNIST database. 

4.4  Incremental algorithms for tensor objects 

The conventional method used for incremental PCA is the SKL algorithm. In fact, 

most articles referenced earlier make use of the SKL algorithm mainly for its 

computational efficiency. For most image-as-vector systems, SKL is indeed very 

efficient. However, if the so-called “image-as-vector” systems are re-arranged as tensor 

objects with different data structures after different modes of unfolding, sometimes the 

covariance matrix itself provides new means for seeking additional computational 
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benefits. In our study, the modified fast PCA and SKL algorithms are utilized for 

different unfolding modes in order to achieve better computational efficiency. The 

following sections introduce basic multilinear algebra, propose the new unfolding 

method, explain the incremental procedure and evaluate the computational complexity 

as it pertains to the incremental algorithm. 

4.4.1 Unfolding methods 

Traditional unfolding methods are called backward cyclic and forward cyclic. 

How to implement incremental learning based on the traditional unfolding method was 

addressed in detail in [Lathauwer et al., 2000]. In order to achieve incremental learning, 

an extra step of matrix computation is required. However, a new unfolding method is 

utilized in this study. Taking the backward cyclic unfolding for example, the elements 

in ( )nA  can be defined as 
1 2( ) ( ) ...( )

Nn index i i iA A , where 

1 2 2 1 2

1 2 1 2 1 2 1

1 1 1

,
1 1 1 1 1

[ ( 1)( )( ) ( 1)( )]
N N n n n

n p p p p p
p n p p p p p p

index i i I I i I
  

       

                (4.1) 

with 
2pI  being the length of the dimension 2p .   

The elements obtained by the new unfolding method are defined with a different 

index,  

2 1 1 2 1

2 1 2 2 1 2

1 1 1 1 1

,
1 1 1

[ ( 1)( )( ) ( 1)( )]
n n

n p p p p p
p N p p p n p n p p

index i i I I i I
 

       

              (4.2) 

Figure 4.2 shows the difference graphically between the new proposed 

unfolding method and the backward cyclic method of mode-1 unfolding for a 

3rd-order tensor. Figure 4.3 illustrates the different unfolding procedures for mode-2 



  41 
 

for both the forward cyclic unfolding method and the new unfolding method. 

 
Figure 4.2 Unfolding procedures for mode-1. 

 
Figure 4.3 Unfolding procedures for mode-2. 

The new method keeps the newly added data at the end of the matrix, which can be 

directly used in the incremental algorithm, instead of requiring additional matrix 

computations. The problem in the structuring of the unfolding between mode-1 and 
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mode-2, as seen in Figure 4.2 and Figure 4.3, respectively is now resolved by the 

proposed algorithm where the structuring of the unfolding is unified in that the new 

data is placed at the end of the matrix for both mode-1 and mode-2.  

Therefore, if A  is the old tensor and B  is the new tensor, their unfolding can be 

expressed as ( ) ( ) ( )[ , ]n n nC A B  for 1,..., 1n N   and 
( )

( )

( )

[ ]
N

N

N

A
C

B
  for the last mode 

(n=N). Due to the multilinear property, the transpose of the data is utilized for the last 

mode. 

4.4.2 Incremental Procedure 

Both incremental processes of the SKL and MFPCA algorithms include mean 

update and total number of samples update, and these updates are defined as follows:  

Mean update is given by  

( ) / ( )N N N NI I I I  C A A B B A BM M M                    (4.3) 

where  AM  and BM  represent the mean tensors for A andB , NIA and NIB  

define the number of tensors in the old and new tensor sequences, respectively. The 

number of samples thus becomes 

                     N N NI I I C A B                             (4.4) 

Moreover, when new samples are taken into account, the mean value changes, 

affecting as a consequence the old centered data in the sequence. Such a change should 

be taken into consideration. Mean value update was first provided in [Levy and 

Lindenbaum, 2000], and was then extended in [Ross et al., 2007], which not only 

provided explanation for mean update, but also included the concept of “forgetting 
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factor”. The so-called forgetting factor gives more weight to recent data over old data. 

In this study, these aforementioned concepts are extended to a tensor object. To 

facilitate the understanding of the mathematical foundation of the two incremental 

procedures, the mean update is described in the Proposition and the forgetting factor is 

defined in the Corollary below. 

Proposition: Let AM  be the mean tensor ofA , with Â  being tensor 

A after centering. Let 
( )

ˆ ( )
nA

U i  and
( )

ˆ ( )
nA

i , 
( )

ˆ1,...,
nA

i k  be the largest 

( )
ˆ

nA
k eigenvectors and eigenvalues of old unfolding data ( )

ˆ
nA , respectively. A 

new tensor sequence is denoted asB , withB̂ being tensorB after centering. 

Suppose further that BM is the mean tensor ofB . Then for the incremental 

modified fast PCA (IMFPCA) algorithm, the mode-n covariance matrix for the 

whole sequence with mean update can be expressed as: 

      

ˆ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ
1

ˆ ˆ( ) ( ) ( )

( )( )

A n

n n
n n n n

n n n n

k

T T

C A A A
i

A B
TN N

A B
N N

i U i U i B B

I I
M M M M

I I

 


  

 




A B A B             (4.5) 

           As for the SKL algorithm, the mode-n unfolding of B̂  with mean 

update is generated by 

      ( ) ( ) ( ) ( )
ˆ[ , ( )]n n

N N
n n

N N

I I
B B M M

I I
 




A B
A B

A B              (4.6) 

      and the matrix R is generated as  

       
( )

( ) ( )

( ) ( )
( ) ( )

ˆ ˆ

ˆ ˆ

( )
[ ]

0 ( )

n
n n

n n
n n

T

A A

T

A A

diag U B
R

E B U U B








  
           (4.7) 

      where ( ) ( )
( ) ( )

ˆ ˆ( )n n
n n

T

A A
E orth B U U B    with the orth function being used to 
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orthonormalize the column-wise vectors in the resulting matrix. 

Corollary: For the same definitions provided in the aforementioned 

Proposition with the inclusion of the forgetting factor f , the covariance matrix 

can now be generated for the IMFPCA algorithm as follows: 

( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
ˆ ˆ ˆ ˆ

1

2

ˆ ˆ ˆ ˆ2

ˆ ˆ( ) ( ) ( )

( )
( )( )

( )

A n

n n
n n n n

n nn n

k

T T

C A A A
i

TN N N N
B BA A

N N

f i U i U i B B

I I f I I
M M M M

I I

 


  


 




A B B A

A B

     (4.8) 

As for the SKL algorithm, the mode-n unfolding of B̂  with mean update is 

generated by 

 

( ) ( )
( ) ( )

2

2

( )ˆ[ , ( )]
( )

n n
n n

N N N N

N N

I I f I I
B B M M

I I


 




A B B A
A B

A B            (4.9) 

       

while matrix R is generated as 

 

( )
( ) ( )

( ) ( )
( ) ( )

ˆ ˆ( )
[ ]

0 ( )

n
n n

n n
n n

T

A A

T
A A

fdiag U B
R

E B U U B




  



  
            (4.10) 

Note that the proposition is a special case of the corollary, which considers the 

forgetting factor as 1. The proof for the proposition and corollary is provided in 

section 4.4.4. The proposition described earlier applies to steps 1 through 3 for the 

IMFPCA algorithm described in Table 4.1 and to only step 6 for the SKL algorithm 

described in Table 4.2. Tables 4.1 and 4.2 are the pseudo code for the steps considered 
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for the two incremental algorithms SKL and IMFPCA. 

In order to achieve better efficiency overall, the IMFPCA and SKL algorithms are 

applied in accordance to their computational requirements, which means that for 

mode-1 up to mode-(N-1), IMFPCA is applied; while for the specific mode-N, the SKL 

algorithm is used instead. Details on these computational requirements are explored 

next. 

 

Table 4.1 Pseudocode for IMFPCA 
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Table 4.2 Pseudocode for SKL algorithm 

 

4.4.3 Computational Complexity 

4.4.3.1 Computational Complexity of MFPCA 

In the iterative procedure of the pseudocode of the MFPCA algorithm given in 

Table 1, the major processing steps and their respective computational requirements are 

as shown in Table 4.3.  In these operations, i takes on the values from 1 to k. Therefore, 

with the given relation 

2 2 2 21 2 3 ... ( 1)(2 1) / 6k k k k                        (4.11)  
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The order of complexity in the number of operations can thus be approximated for 

all L iterations as 2 3( ) ( )n nO I L O I k L . 

4.4.3.2 Computational Complexity of IMFPCA 

The major processing steps with their respective computational complexities are 

given in Table 4.4. These results followed the same reasoning used for finding the order 

of complexity in the number of operations for the MFPCA.  

4.4.3.3 Computational Complexity of SKL 

The major processing steps of SKL with their computational complexities are as 

shown in Table 4.5. 

Table 4.3 Computational complexity of the MFPCA method for a single iteration 

Processing steps for the ith eigenvector for MFPCA Computational Complexity 

Calculate ( ) ( )U i U i   2( )nO I  

Gram-Schmidt process 2( )nO I i  

Calculate the norm ( )i  of ( )U i  2( )nO I  

 

Table 4.4 Computational Complexity of the IMFPCA Method 

Major processing steps in IMFPCA Computational Complexity 

Approximate covariance matrix for ( )nA  
( )

2( )
nn AO I k  

Covariance matrix for ( )nB  1 2 1( ... )n N NO I I I I I
B  

Covariance matrix for ( )nC  1 2 1( ... )n NO I I I I   

Computational steps in MFPCA 
( )

2 3( ) ( )
nn n CO I L O I k L  
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Table 4.5 Computational Complexity for SKL 

Major steps in SKL Computational Complexity 

Calculate 
( ) ( )

ˆ
n

T
nAD U B  

( ) 1 2 1( ... )
n N NAO k I I I I

B  

Projection of new data 
( )( )

ˆ
nn AE B U D   

( ) 1 2 1( ... )
n N NAO k I I I I

B  

Calculate the orthogonal basis by 

QR decomposition ( )E qr E . 
1 2 1( ... )n N NO I I I I I

B  

Suppose 1 2 1 1min( , ... ... )n n n NS I I I I I I  , 

Calculate ( ) TSVD R UVQ    

( )

3
1 2 1( ... ) (( ) )

nn N N AO I I I I I O k S  B  

From Tables 4.4 and 4.5, we can observe that the total number of operations for the 

IMFPCA method can be approximated by
( )

2
1 2( ( )) ( ... )

nn n N NAO I k L O I I I I I  B , while the 

total number of operations for SKL can be approximated by 

( ) ( )

3
1 2(( ) ) (( ) ... )

n n n N NA AO k S O k I I I I I   B . Since the number 
( )nAk is usually less than 15, 

and L is empirically observed to be less than 10, the two computational complexities 

can be simplified into 2
1 2( ) ( ... )n n N NO I O I I I I I B  and 3

1 2( ) ( ... )n N NO S O I I I I I B . 

Therefore, for mode-1 up to mode-(N-1), it is obvious that IMFPCA outperforms SKL 

(in this case, nS I ).  

It is important to note that for the last mode (n=N), the dimensional parameters 

need to be changed to estimate the computational complexity. Suppose the parameters 

for the dimensions are 1 2 1, ,..., ,old old old old
N NI I I I , then the new parameters that are used 

for evaluating the computational complexity are defined as 1 2 1...new old old old
N NI I I I  , 

1 2 2, ,..., 1new new new
NI I I   , and 1

new old
N NI I  . The proof for this required change is provided in 

section 4.4.4.3. The computational complexity for the IMFPCA is thus far more 
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simplified than that of the SKL algorithm (in this case, 1 2 1 1... ...n n NS I I I I I  ).  

For incremental learning, these theoretical results support the use of IMFPCA for 

mode-1 up to mode-(N-1) and the use of SKL solely for mode-N. Following these 

theoretical findings, empirical results are provided in the next section to verify the 

effectiveness of IMFPCA for face recognition as a real-world application. 

4.4.4 Proofs for Proposition, Corollary and the Required Change 

4.4.4.1 Proof of the proposition 

This proof is to show the theoretical derivation of the equation (4.5) for IMFPCA 

and equation (4.6) for SKL.  

The mean tensor for a tensor sequence 1 2 ... NI I I 
A

A  is defined as 

1

1
( )

N

N

I

N
iN

i
I 

 AM A  where 1 2 1...( ) NI I I
Ni  A  and 1 2 1... NI I I  AM . 

Similarly, for the new tensor sequence 1 2... NI I I 
B

B , the mean computed in the same 

fashion as for A  is 1 2 1... NI I I  BM .  

The centered tensor sequences are given by ˆ ( ) ( )N Ni i  AA A M  and 

ˆ( ) ( )N Ni i  BB B M , where 1,..., /N N Ni I I A B . If a new tensor sequence C  is 

generated as [ , ]C A B then 1 ... ( )N NI I I  
A B

C .  

Suppose further that the parameters provided are eigenvectors
ˆ( )

( )
ˆ

n A n

n

I k

A
U


 , 

eigenvalues
ˆ( )

( )

1

ˆ
A n

n

k

A



 for the mode-n unfolding matrix ( )

ˆ
nA , mean tensor AM  for 

tensor A and the new tensor sequence B with mean BM . Let CM be the mean 

tensor ofC , and ( )iX be one tensor object in the tensor sequence, where X can 

beA , B or C . We can then compute the covariance matrix for mode-n unfolding 
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matrix 
( )

ˆ
n

C  as follows: 
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Since the relation among AM , BM  and CM  is given by 

1
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A BM M M                  (4.13) 

this formula can be simplified to yield 
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Therefore, for the IMFPCA algorithm, the mode-n covariance matrix for the 

sequence with mean update is thus given by 
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which completes the proof.  

For the SKL algorithm as a second part of the Proposition, we have 
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   (4.16) 

     And recall that this equation can also be expressed as 
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ˆ ˆ ( ) ( )
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T
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B B                              (4.17)  

Therefore, the mode-n unfolding of B  with mean update is generated simply by 

using ( )nB  as derived below  
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4.4.4.2 Proof of the corollary  

This proof is to show the theoretical derivation of equation (4.8) for IMFPCA 

and equations (4.9) and (4.10) for SKL. 

From proof of Proposition, the forgetting factor f  is added, yielding 
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So for IMFPCA, 
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And for SKL algorithm, the matrix R is thus generated as 
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where ( ) ( ) ( )
( ) ( )

ˆ ˆ
ˆ ˆ( )n n n
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4.4.4.3 Need for the change in the dimensional parameters 

Using the same definitions provided in the Proposition, for the last mode 

unfolding, we have 1 1...
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4.5 Experimental results 

Several experiments were designed to assess the merit of the modified fast PCA 

(MFPCA) with its efficient incremental procedure. The key aspects of the algorithm 

investigated include:  

1)  Accuracy obtained from the incremental learning procedure, contrasting the 

results of both IMFPCA and SKL methods, and 

2) Processing time required for the incremental subspace update under different 

unfolding modes between IMFPCA and SKL.  

4.5.1 Accuracy and computational requirements for incremental procedure  

There are two sets of experiments conducted in this section: (1) ascertaining 

similarity between the first four eigenvectors from SKL and IMFPCA, which is 

obtained by dot product; and (2) determining subspace distance among SKL, IMFPCA 
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and batch mode PCA. The forgetting factor is set to be one in this test. The parameters 

for the dataset are set as follows: (a) PCA: 4k  , (b) SKL: 8k  ,  (c) IMFPCA: 

8k   and (d) MFPCA: 8k  . Only the first four eigenvectors are used in the test, the 

remaining four eigenvectors for the incremental algorithms are used to minimize the 

error. The batch number for AT&T is 10 and for MNIST is 30. A different error 

tolerance of 710   is chosen to ensure that the incremental algorithm used will 

provide more accurate results. 

Since mode-2 is similar to mode-1, only mode-1 results were shown for simplicity 

sake. From the similarity results in Figure 4.4, it is obvious that IMFPCA performs 

better than IFPCA, and with smoother curves or transitions. Some similarities of the 

FPCA algorithm, as described in section 3.5, drop to a low value where a local 

minimum happens; however, it satisfied the criteria of minimizing the mean square 

error, which can still allow for the eigenvectors estimated after the local minimum to 

achieve a higher similarity. Moreover, although the final similarity values are close 

among the different algorithms, the IMFPCA is the more consistent in estimating the 

eigenvectors over many trials, as can be clearly seen in Figure 4.4. This outcome is 

significant and will yield better accuracy in real-world applications, such as 

incremental face recognition provided in this study. It is also essential to carry out 

experiments involving the use of IMFPCA with different error tolerance settings, as 

evidenced in the results provided below.  
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(d) 
Figure 4.4 Similarity between eigenvectors from SKL and IMPCA and from SKL and IMFPCA 

using the MNIST database with mode-1 unfolding and mode-3 unfolding, respectively. The similarities 

of the top four eigenvectors are compared. The x-axis is used for the number of updates, and the y-axis is 

used for the similarity measure. For better visualization, different scales were adopted for different tests; 

however, the same test with different algorithms is visualized with the same scale. 

The error accumulated along the incremental procedure brings up the discrepancy 

between the incremental results and the true results (from batch methods). This defect 
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is unavoidable for incremental procedures. A distance measure based on the principal 

angles in [Knyazev and Argentati, 2002] between subspaces was used here to examine 

the nature of this discrepancy. The distance is expressed by 2
0 1

1

( , )
k

i
i

d U U 


  where 

0U and 1U  are k-dimensional subspaces and 1... k  are the principal angles between 

them. Given [0, ]
2i

  , the distance satisfies [0, ]
2

k
d


 . If the two subspaces are 

identical, then 0d  . It can be seen that in Figure 4.5 the subspace distance converges 

to the true result gradually.  

In Figure 4.5, the SKL algorithm is proven to perform better in this case than 

IMFPCA in all tests. With error tolerance of 610   for both mode-1 and mode-3, 

IMFPCA had the distance increased after ten iterations, which means the error 

tolerance cannot be adopted. However, if the error tolerance is set at a lower scale, such 

as 710   and 810  , then the distance can be considered as a stable discrepancy 

from the true result (which is the result from eigen decomposition based on the whole 

dataset). The lower error tolerance leads to better convergence. It is worth noticing that 

the subspace distance for mode-1 is smaller than mode-3 (take error tolerance 710  , 

for example, where the final subspace distance for mode-1 was 0.0991 and for mode-3 

was 0.2888), which does not conform to the conclusion made from the experiment 

described in section 3.5, “under same error tolerance, with the increase of the 

dimension, the accuracy increases too.” The reason is that in the incremental procedure, 

the dimension for mode-1 is 28, while the dimension for mode-3 is 784, and both of 

them used the first eight eigenvectors. Obviously, for the larger dimension mode, the 
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error was higher. From this test, it can be concluded that both SKL and IMFPCA 

methods can provide acceptable discrepancy distance in the incremental procedure with 

proper parameter settings. 
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(b) 

Figure 4.5 Subspace distance examination on MNIST database. (a) Mode 1: SKL, IMFPCA with 
610  , IMFPCA with 710   and IMFPCA with 810  . (b) Mode 3: SKL, IMFPCA 

with 610  , IMFPCA with 710   and IMFPCA with 810  . And the curve is the average results 

from 100 trials.  
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4.5.2 Processing time requirements for the incremental procedure  

The processing times of SKL and IMFPCA for the incremental procedure are 

compared next. It can be observed that for mode-1 unfolding, IMFPCA outperforms 

SKL; while for mode-3 unfolding, it is the SKL algorithm that outperforms IMFPCA.  

Table 4.6 Incremental Learning Processing Time for Different Modes of Unfolding 

Total processing time for incremental 

procedure 

Figure # 

IMFPCA SKL 

4.5(a), 610   0.3340s 

4.5(a), 710   0.3927s 

4.5(a), 810   0.4607s 

 

11.1481s 

4.5(b), 610   14.1518s 

4.5(b), 710   18.3362s 

4.5(b), 810   23.7908s 

 

0.4938s 

In Table 4.6, it shows that for mode-1, IMFPCA performs faster while for mode-3, 

the SKL is faster regardless of the error tolerance. These results validate the discussion 

on the computational complexity as provided in section 3.3 and it highlights the merit 

of the proposed algorithm. 
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CHAPTER V 

Human face learning and recognition 

5.1  Introduction 

This chapter describes the process required for human face learning and 

recognition. The multilinear principal component analysis has already been proved in 

chapter two to have better accuracy than other conventional methods. The incremental 

algorithm based on multilinear principal component analysis provided in chapter four is 

utilized with the purpose of spending less time and still yield high accuracy.   

5.2  Related works 

Traditional face recognition methods rely on training set to obtain the classifier 

that will be used for the testing images. The mechanism for determining if the subject in 

one testing image is not in the training set exits; however, as more images from the 

subject are tested, there is no way for the system to recognize the subject. To resolve 

this problem, [Castrillón-Santana et al., 2007] provide a system of learning to recognize 

faces based on the incremental principal component analysis. Moreover, [Raducanu 

and Vitrià, 2007] also explored a system for a cognitive vision process using face 

recognition as a case study based on the non-parametric discriminant analysis. With the 

inspiration of their initial work, a system based on the incremental multilinear principal 

component analysis is described in this chapter.  

5.3 Data and subjects 

The face image dataset used in this set of experiments was collected from the face 

recognition database of University of Essex, the Georgia Tech face database, and the 
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AT&T database of faces.  

The face recognition database of University of Essex has 395 subjects, with 20 

images per subject. It contains images of people of various racial origins. Since most of 

them were first year undergraduate students, the majority of subjects are between 18 to 

20 years old. Some of the pictures were taken with different background, different 

lighting condition and extreme variation of expressions. Some of the subjects have the 

pictures with or without glasses and with or without beards.  

The Georgia Tech Face database contains images of 50 individuals. For each 

subject, there are 15 images captured between 06/01/99 and 11/15/99, with the 

resolution of 640x480. Most of the images present frontal faces with different 

illumination conditions, facial expression, and appearance.  

For the experiments considered in this chapter, we have used 40 subjects from 

AT&T database, 150 subjects from the face recognition database of University of Essex 

(randomly chosen) and 50 subjects from the Georgia Tech Face database. And for each 

subject, if they have more than 10 images, only 10 images are chosen randomly to 

compose the dataset to be utilized in the experiments. Therefore, there are 240 subjects 

in total with 10 images each in the dataset. Since the three databases have different 

resolution, the pre-process step is necessary. All the images are preprocessed to include 

only the face and normalized into 168x118. Figure 5.1 provides sample images after 

pre-processing as illustrative examples. 
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Figure 5.1 Sample images from the dataset used for the incremental face recognition experiment 

 

5.4  Method 

Different from the traditional face recognition system with a certain training set, 

the training set of the online face recognition increases as more faces are introduced. As 

one application of the proposed algorithm, a simple system is designed with an 

arbitrary threshold and without the verification step. To make the system more robust, 

adaptive thresholding and verification are usually suggested. The system for 

incremental face recognition is described through a flowchart in Figure 5.2. 

The L-2 norm distance mentioned before is used in the recognition process. In the 

test, a threshold is given to evaluate if this image is already in the accumulated data. 

The index from the distance method gives the preliminary recognition result in the 

accumulated data for the testing image. Then it is assumed that when the distance is less 

than the threshold, the face is associated to a person in the accumulated data. Otherwise, 

this person will be considered as a new subject who is not yet included in the 
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accumulated images. Since there are too many combinations among 1k , 2k  and 3k , in 

our case, we just select 1 2k  , 2 3k  and 3 15k   randomly among those many other 

combinations that can be selected. And the batch number is set at 100. This batch 

number is used to indicate that after every 100 images, the eigenvectors can be updated 

incrementally (a different number could also be used, keeping in mind that the larger 

this number is the less iterations there would be and the less meaningful would be the 

comparison between the two methods).  

Assuming that the first 200 images are used as the basis for the incremental 

learning with their identification, the threshold is chosen based on the following steps:  

1. compute the eigenvectors of the first 100 images, 

2. perform the recognition process on the other 100 images using their previous 

images as the training pool, 

3.  record the distance of the 100 images from the recognition process, and 

determine the threshold that will be used for deciding whether the new image is 

in the previous image data. 
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Figure 5.2 Flow chart for the incremental face recognition procedure 

 

Since we have two classes, the optimal approach to select a threshold in bimodal 

histogram as illustrated in Figure 5.3 is one that maximizes the intra-class variance.  
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Figure 5.3 Bimodal histogram example. 

Considering the bimodal histogram example in Figure 5.3, we have  

1
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where   is considered as the index of the threshold and D  the threshold that 

separates the two classes, IP  is the probability density of distances smaller than the 

threshold D  and IIP  is the probability density of distances bigger than the threshold 

D , and ND  is the number of the distances in the recognition process.  

The mean of the distances of all the images is  

1

ND

i i
i

D P



                       

 (5.3) 

And the mean distance of correctly recognized images and the mean distance of 

the wrongly recognized images are defined respectively by  

1

1
I i i

iI

D P
P






                             (5.4) 
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 (5.5) 

The threshold D  is optimal when the interclass variance given by 

2 2( ) ( ) ( )I I II IIV D P P                        (5.6) 

is maximized. 

In this example, the parameters chosen are also 1 2k  , 2 3k  and 3 15k   to 

obtain the histogram shown in Figure 5.4 which was needed to find D .  

With the conditions set above, the threshold is determined as 72.26 10 . And the 

incremental accuracy is determined by cN

N
, where cN  is the number of images that 

are recognized correctly and N  is the accumulated number of images that were used 

for incremental recognition.  
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Figure 5.4 Histogram to determine the threshold 

5.5  Results 

From the recognition accuracy results given in Figure 5.5, the two methods 

provide identical performance in terms of recognition rate. However, when comparing 
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the processing time, the proposed subspace update method has faster processing speed 

of 85.3325s than the SKL-based IMPCA of 285.9654s.  

Table 5.1 below provides evidence that the selection of the values of 1k , 2k and 

3k  can be randomly made and the results will always show that the proposed IMFPCA 

method is faster for the same accuracy than SKL-based method. It should be noted that 

the proposed method focuses on improving the computational efficiency for the 

incremental multilinear PCA. There are already many algorithms provided that can 

improve the recognition accuracy such as LDA, ICA and other PCA related algorithms 

[Chang and Hsu, 2009; Lin et al., 2009]. For those cases, when the incremental 

multilinear process is necessary, the proposed method can also be adopted to reduce the 

computational complexity without loss of accuracy.   
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Figure 5.5 Incremental face recognition accuracy. 
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Table 5.1 Processing time and accuracy with different parameter settings. And for 

the processing time and accuracy, [* / *] means [Proposed / SKL].  

  k3=10 k3=20 

Processing time 86.3s / 286.0s 86.6s / 288.7s k1=2,k2=2 

Accuracy 88.1% / 88.1% 89.2% / 89.2% 

Processing time 84.8s / 289.5s 87.5s / 291.3s k1=2,k2=4 

Accuracy 89.7% / 89.7% 90.1% / 90.1% 

Processing time 86.2s / 289.6s 88.2s / 294.5s k1=4,k2=2 

Accuracy 89.3% / 89.3% 89.8% / 89.8% 

Processing time 87.2s / 298.4s 87.0s / 292.0s k1=4,k2=4 

Accuracy 90.2% / 90.2% 90.6% / 90.6% 
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CHAPTER VI 

Object tracking application 

6.1  Introduction 

As a challenging problem that it is, object tracking [Yilmaz et al., 2006] has been 

studied over years as face recognition [Zhao et al., 2003]. A lot of progress has been 

made since, however, critical problems such as object motion abruption, object 

appearance change and non-rigid object structures are still a cause for serious concern 

as they severely degrade the process of tracking. This chapter is to assess the 

performance of the method that was used for face recognition as it is now applied for 

object tracking even under the presence of noise and other unforeseen situations. 

6.2  Data and subjects 

[David indoor sequence] is provided by David Ross for researchers to test their 

algorithms. The sequence has a very clear object, David’s face, with appearance 

change and background changes. One video in the [CAVIAR Test Case Scenarios] is 

utilized, which was taken by the surveillance camera. The subject in that sequence is 

small and the background is unchanged. The last sequence is a section of a tennis 

game, which has changed background and subject with vast scale movement.  

6.3  Method  

The proposed method introduced in chapter four is utilized here for the 

incremental update of the subspace. Besides the subspace update, another two 

important issues that should be concerned are the motion estimation and the 

likelihood determination. In this section, the motion estimation and the likelihood 
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computation are introduced, and then the pseudocode of the tracking algorithm that 

address these issues is given. 

6.3.1 Motion estimation  

In our case, a Markov model with hidden state variables is used, in which the 

target motion between two successive frames is evaluated by the affine motion 

parameters. Suppose ( , , , , , )t t t t t t tZ x y s    describes the affine motion parameters 

of a target at time t , where tx  denotes the x  translation, ty  denotes the y  

translation, t  denotes the rotation angle, ts  denotes the scale, t denotes the 

aspect ratio, and t  denotes the skew direction at time t . Given a set of observed 

images 1 2{ , ,..., }t tG G GG , the tZ  can be estimated through Bayes’ theorem as 

1 1 1 1( | ) ( | ) ( | ) ( | )t t t t t t t t tp Z p G Z p Z Z p Z dZ    G G         (6.1) 

where ( | )t tp G Z  denotes the likelihood function, and 1( | )t tp Z Z   denotes the 

dynamic model.  

Based on its definition, tZ  is modeled with all parameters being independent 

through Gaussian distribution estimation, which gives the relation as 

1 1,( | ) ( ; )t t t tp Z Z Z Z  N                       (6.2) 

where  denotes a diagonal covariance matrix whose diagonal elements are 2
x , 

2
y , 2

 , 2
s , 2

  and 2
 .  

6.3.2 Likelihood determination 

The likelihood determination is related to the tensor algebra, which has already 

been introduced in chapter four. Therefore, only brief explanations are given.  

Given a tensor 1 2 3I I I A , a test image 1 2 1I I T , a mean image 



  70 
 

1 2 1I I M  the mode-i eigenbasis ( )

( )

i A i

i

I k

AU


  ( 1,2i  ) and the mode-3 

eigenbasis 1 2 (3)

(3)

AI I k

AU


 of A , the likelihood can be determined by the sum of the 

reconstruction error norms of the three modes as: 

( ) ( )

(3) (3)

22

( ) ( ) ( ) ( )
1 1

(3) (3) (3) (3)

( ) ( )

( ) ( )

i i

T
i i i i j A A

i j

T
A A

RE J M J M U U

J M J M U U

 

     

  

 
              (6.3) 

The smaller is RE  the larger is the likelihood determination.  

The likelihood function can thus be estimated as: 

( | ) exp( )t tp G Z RE                         (6.4)  

6.3.3 Tracking algorithm 

The tracking algorithm can be summarized using the following steps. 

(1) Locate the target object in the first frame, either manually or automatically. 

(2) Initialize the eigenbasis, the mean and number of observations.   

(3) Go to the next frame and find potential windows of subjects and do the 

interpolation to reconstruct the windows with the specific size setting   

through the motion estimation. 

(4) Compute the likelihood for each reconstructed window.  

(5) Store the parameters for the most likely window.  

(6) Update the subspace if the condition satisfies the requirement, otherwise 

go to next step. 

(7) If this frame is not the last one, go to step 3. Otherwise, stop.  

There are tradeoffs among subspace update frequency, number of particles and 
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the processing speed. Those parameters should be chosen according to the 

characteristic of the object in the sequence.  

6.4  Results  

For a grayscale video sequence with 3I  frames and of image size 1 2I I , a 

tensor 1 2 3I I IA   is established. The parameter settings for different videos are given 

in Table 6.1. k  is the number of eigenvectors retained for mode-1 and mode-2. 

Sometimes 1,2k is bigger than 
(1)Ak and 

( 2)Ak  to compensate the discrepancy in the 

subspace update, but only 
(1)Ak and 

( 2)Ak are used for likelihood determination, while 

for mode-3, they are 3k  and 
(3)Ak . And ε is the error tolerance introduced in MFPCA 

algorithm. The region size defines the size of normalized tracking results. Different 

tracking tests with unique reasons to verify the effectiveness of the proposed 

algorithm are considered.  

The first data sequence was a person walking in an indoor environment with face 

expression variation, pose change, illumination variation and the background change, 

and the face served as the tracking object. Obviously, the algorithm works fine to 

track the object through the video as shown in Figure 6.1.  

The second data sequence was the same as the first one except that the Gaussian 

random noise with variance 0.05 was added. The purpose of this test is to determine if 

the proposed method is robust to noise disturbance, so the corresponding parameters 

are set to be the same as the first sequence, except for the size of the normalized 

region. And the result in Figure 6.2 shows that the proposed method is robust for 

noise prone situations.  
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The third one is a smaller object tracking. It can be observed in Figure 6.3 that 

the proposed method can track the object in the sequence. It should be mentioned that 

since the background of this sequence is unchanged, tracking algorithm special for 

still background can provide better results. The fourth sequence recorded a tennis 

player during a match who has a larger scale for movement, and the tennis player is 

the target. The tracking results in Figure 6.4 prove again the robustness of the 

proposed method. 

Table 6.1 Tracking parameter settings  

sequences 
 David 
(462 frames)

Noise David 
(462 frames) 

Walk 
(135 frames) 

Tennis 
(1175 frames)

1,2k  2 3 2 2 

(1)Ak  2 2 2 2 

( 2)Ak  2 2 2 2 

3k  5 5 5 10 

(3)Ak  5 5 4 5 

  810  810  810  810  

Region Size 12 12  20 20  12 12  12 12  

Number of samples 300 300 300 500 
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Figure 6.1 Tracking results of normal data sequence.  
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Figure 6.2 Tracking results of data sequence with noise.  
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Figure 6.3 Tracking results of small target.  
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Figure 6.4 Tracking results of object with vast scale movement. 
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CHAPTER VII 

Conclusions and future work 

This dissertation established a novel system for human face learning and 

recognition based on incremental multilinear learning process based on the theoretical 

foundation of the Principal Component Analysis (PCA) and its leading eigenvectors.  

As a consequence, a modified fast PCA method is introduced for estimating the 

leading eigenvectors with better accuracy than the fast PCA. This accomplishment is 

made while retaining the computational efficient of the fast PCA algorithm. The 

results show that the eigenvectors from the modified fast PCA has better similarity 

than the eigenvectors from fast PCA when compared to the Eigenvalue 

Decomposition-based PCA method as a benchmark. The second experiment provided 

in this study also confirms that if only few leading eigenvectors are required, the 

modified fast PCA does provide better accuracy than the fast PCA. This second 

experiment also shows that if a large number of eigenvectors is required, the results of 

both methods deteriorate slightly. It is also important to note with regards to the 

results provided in the first experiment, the assumption that by increasing the number 

of leading eigenvectors the results will improve is not always true in practice. This 

was demonstrated by comparing two testing methods on face recognition in that the 

number of eigenvectors that yielded the best accuracy with standard PCA would not 

necessarily lead to best accuracy when using either the fast PCA or the modified fast 

PCA when this number of eigenvectors is large. It is therefore recommended that the 

modified fast PCA be used with few leading eigenvectors, with the certainty that at 
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least the accuracy obtained with these leading eigenvectors when using the standard 

PCA will be maintained.  

The modified PCA was then tested in conjunction with the incremental process. 

First, the similarity measure is used to compare fast PCA and modified PCA in the 

incremental process, with the results indicating that the modified PCA has smoother 

curves than fast PCA, which means that the modified PCA is more stable. Second, the 

subspace distance for modified PCA in different modes of the incremental process is 

tested to prove that the proposed algorithm can estimate the leading eigenvectors with 

similar accuracy than SKL, while spending less time. These results are found to support 

the fact that the proposed method can be used for the incremental face recognition 

without compromising on accuracy and yet having a faster subspace update.   

The overall strategy of the method also showed the ability to integrate the human 

face learning and the recognition process. The incremental multilinear method can thus 

be utilized to continuously update the subspace representation with the availability of 

new images. Moreover, with the comparison between the SKL and the proposed 

approach in chapter four, the proposed method is proven to be superior to SKL in the 

processing time of the subspace update process without any compromise on accuracy. 

The subspace updates method in this work is thus focused more on computational 

efficiency. In order to improve the accuracy of the system, methods with better 

recognition accuracy can be utilized, such as incremental multilinear linear 

discriminant analysis and incremental multilinear independent analysis. Both of them 

can use the concept provided in the proposed approach to have less computational 
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complexity. For the sake of system robustness, an adaptive threshold and verification 

step were also suggested.  

With the theoretical modifications firmly established in terms of their 

computational and accuracy merits, this dissertation also presented implementations 

of the proposed incremental learning method in challenging real world applications 

beyond face recognition.  These included object tracking under different practical 

scenarios and under the presence of noise and other unforeseen situations inherent to 

real-world situations.  Among the main issues that were addressed are change in 

appearance, change in background, and large scale movement.  The results obtained 

under these challenges proved the practical merit and theoretical soundness of the 

proposed method in terms of both high accuracy and faster processing speed. 
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