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ABSTRACT OF THE DISSERTATION 

A HIGHLY EFFICIENT BIOMETRICS APPROACH FOR UNCONSTRAINED IRIS 

SEGMENTATION AND RECOGNTION 

by 

Yu Chen 

Florida International University, 2010 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

This dissertation develops an innovative approach towards less-constrained iris 

biometrics. Two major contributions are made in this research endeavor: (1) Designed an award-

winning segmentation algorithm in the less-constrained environment where image acquisition is 

made of subjects on the move and taken under visible lighting conditions, and (2) Developed a 

pioneering iris biometrics method coupling segmentation and recognition of the iris based on 

video of moving persons under different acquisitions scenarios.  

The first part of the dissertation introduces a robust and fast segmentation approach using 

still images contained in the UBIRIS (version 2) noisy iris database. The results show accuracy 

estimated at 98% when using 500 randomly selected images from the UBIRIS.v2 partial database, 

and estimated at 97% in a Noisy Iris Challenge Evaluation (NICE.I) in an international 

competition that involved 97 participants worldwide involving 35 countries, ranking this research 

group in sixth position. This accuracy is achieved with a processing speed nearing real time. 

The second part of this dissertation presents an innovative segmentation and recognition 

approach using video-based iris images. Following the segmentation stage which delineates the 

iris region through a novel segmentation strategy, some pioneering experiments on the 

recognition stage of the less-constrained video iris biometrics have been accomplished. In the 
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video-based and less-constrained iris recognition, the test or subject iris videos/images and the 

enrolled iris images are acquired with different acquisition systems. In the matching step, the 

verification/identification result was accomplished by comparing the similarity distance of 

encoded signature from test images with each of the signature dataset from the enrolled iris 

images. With the improvements gained, the results proved to be highly accurate under the 

unconstrained environment which is more challenging. This has led to a false acceptance rate 

(FAR) of 0% and a false rejection rate (FRR) of 17.64% for 85 tested users with 305 test images 

from the video, which shows great promise and high practical implications for iris biometrics 

research and system design. 
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1. Introduction 

This dissertation establishes a new segmentation method for iris recognition in 

biometrics applications. Both still images and the less constraining but more challenging 

video images are used in the experimental evaluation phase. While still images are 

obtained under all the necessary constraints on the user to obtain high resolution images, 

video images are less constraining on the users and are obtained while the user is on the 

move introducing as a consequence several noise sources that need to be addressed and 

overcome before the iris verification process is carried out. 

Biometrics as a discipline has experienced significant growth and carries with it 

significant practical implications in the realm of security and information access 

(Daugman 2004). Biometrics provides the most reliable means for personnel 

identification and verification, as it relies on intrinsic characteristics of individual that are 

either physiological or behavioral, either which are very difficult to fake or to temper, 

especially the physiological characteristics (Ross and Jain 2007). These last 

characteristics include DNA, fingerprints and iris recognition, which is the subject of this 

dissertation. 

To appreciate the significance of the problem at hand in this iris recognition 

research endeavor, Chapter II provides the background on iris recognition and describe 

the different image acquisition methods that have been used to this day, from the 

traditional approach to the more current “Iris on the Move” approach. It lays the 

background on the issues involved in the most appropriate but yet less constraining 

approach to image acquisition. This Chapter also provides a balance between image 
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resolution along with the inherent noise effects and the need to design a method that is 

accurate but is also computationally appealing. 

Chapter III provides the details on the more challenging methods that impose 

fewer constraints on the user.  These systems are based on the IOM or “Iris on the Move” 

(Matey, Naroditsky et al. 2006) concept where the image acquisition process is more 

subtle and convenient to the user. Systems that use Near Infrared (NIR) and visible 

wavelength approach for the same intent of acquiring video taken at a distance are 

described in this chapter,  The experimental set ups for these different systems are 

provided to gauge the different issues of noise, illumination, image capture that are 

needed to be addressed for carrying out effective iris recognition processes. Also, a 

thorough literature survey is provided on the different image segmentation methods and 

preprocessing techniques that have been reported in the past.  These are detailed as means 

to provide comparative results with the methods proposed in this dissertation. 

Chapters IV and V constitute the core of this research endeavor and are the main 

contributions of this dissertation. In Chapter IV, a new iris segmentation approach is 

introduced to deal with eye images acquired from NIR video frames. The most current 

and relevant database on faces, the Multiple Biometric Grand Challenge (MBGC) 

(Phillips 2009) database provided by National Institute of Standards and Technology 

(NIST) is used in the experimental evaluation phase.  All the algorithms that have 

designed towards the segmentation of the iris along with mathematical foundation that 

supports the different decision making steps are described. These include the processes 

that allowed for eye images extraction, pupil localization and center detection, defining 
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the eyelids as well as the outer boundary between iris and sclera, detecting the boundary 

for upper and lower eyelids, and the verification and correction of the outer iris boundary.  

Experimental results based on 149 video and up to 891 total extracted eye images are 

given. 

The issues of coupling computational efficiency with high accuracy in iris 

detection and extraction are detailed in Chapter V through a generalized segmentation 

method which assumes visible lighting conditions. For experimental evaluations that 

mimic real-world environments, the UBIRIS-II database of noisy eye images is used 

(Proenca and Alexandre 2005). These are images that are acquired in the less-constrained 

system allowing for image acquisition while subjects are on the move. The extraction 

results of the irises are remarkably accurate, exceeding 98%, and the approach considered 

was proven to be resilient to the presence of noise. The software developed under this 

approach placed this research group as the only ranked US team in the top ten of an 

international competition “Noisy Iris Challenge Evaluation (NICE.I)” that involved 97 

participants worldwide, ranking this research group in sixth position (Chen, Adjouadi et 

al. 2010). 

 With the segmentation results of the iris, Chapter VI provide an initial attempt at 

the most complex and ultimate process that of iris recognition, where an individual will 

be recognized through the segmented iris results.  In this chapter the first preprocessing 

step involves the use of the log polar plot to overcome size and orientation independence, 

so that the focus is placed rather on the intrinsic characteristics of the iris.  Initial results 

show that only 15 out of 85 individuals that were involved in our experiment where 
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falsely rejected, but more importantly none of them were falsely accepted. of the irises 

under were identified. This is rather impressive for a first round verification process 

given that the data used is from the NIST-MBGC database which contains realistic noisy 

images. For subjects on the move at this juncture, the results show an accuracy that led to 

a false acceptance rate (FAR) of 0% and a false rejection rate (FRR) of 17.64% for 85 

tested users with 305 test images from the video, which is remarkable considering that we 

are dealing the less-constrained environment.  
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2. Background and Overview of Iris Biometrics 

2.1. Introduction to the Uniqueness of Human Iris 

Iris is the colored organ inside the eye. Each human iris has a unique pattern 

which is known to remain stable throughout a person’s life (Daugman 2003). Since the 

iris is a protected organ inside the human eye (Wildes 1997; Daugman 2001), its intrinsic 

characteristics cannot be changes either accidentally or intentionally. Because of such 

reliable characteristics, iris recognition has become a highly dependable and quite 

accurate among well-known biometric methods such as face identification and fingerprint 

recognition, among others. 

 In the human eye, as illustrated in Figure 1, the iris is a thin diaphragm that lies 

behind the cornea and anterior chamber (Bowyer, Hollingsworth et al. 2008). The 

muscles of the iris expand and contract the aperture (also known as pupil) within the iris 

to adjust the amount of light which passes through the lens (Land 1999). 

Interestingly, the main structures of the iris begin to form in the third month of 

gestation, and are completed by the eighth month (Snell and Lemp 1998; Daugman 2004). 

The growth of iris pigment continues within the first postnatal years, but thereafter the 

iris remains the same through one’s life. Consequently, the structures of the iris are said 

to be unique to an individual and do remain stable with age. 

The overall structure of the iris can be considered to consist of two layers: the 

anterior layer and the posterior layer.  The anterior layer contains the stroma, iris 

sphincter muscle, iris dilator muscle, and anterior pigment myoepithelium. The iris 
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sphincter muscle and dilator muscle contract and expand to reduce or enlarge the pupil 

size, respectively. The posterior layer of the iris mainly contains the pigmented epithelial 

cells beneath the anterior layer (Kanski 2007). 

 

 

Figure 2.1:An anatomical view of the human eye 
 

2.2. The Background of Iris Biometrics 

The patterns of the iris are caused by many various features of the anterior layer: 

the arching ligaments, interlacing ridges, contraction furrows, corona, among others. 

These features are based on the structure of the anterior layer surface and also the tissues 

beneath the surface such as blood vessels, and stroma support.  The iris color which is 

usually referred to as the eye color is mainly determined by the anterior melanin pigment. 
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The pigment can absorb the short- wavelength light. Thus, if the iris is less pigmented 

which means that it has less density of the pigment, the iris appears as light colored (grey, 

blue, green), otherwise, the iris appears dark colored (brown, black) (Davson 1984; 

Kanski and Menon 2003).   

Although the basic structures of the irises are generally common, the pattern of 

each human iris is distinct. The genetic differences and the uniqueness of the 

circumstances of each person i.e. the condition in the embryo development give the fact 

that the detailed pattern of each human iris is unique. Through clinical observation, it has 

been claimed that even the patterns in the same person’s two eyes are different. 

Unlike identity verifications which are based on passwords, biometrics relies on 

intrinsic physical or behavioral characteristics of each person, which evidently do not 

require that they would be remembered and certainly cannot be stolen. With the rising 

demands for public safety and national security, biometrics has thus drawn significant 

attention in recent years. In view of this affirmation, it is an accepted fact, that among all 

potential biometric methods, iris recognition remain one the most viable and reliable 

biometric that maybe unrivaled when used for security reasons. 

2.3. Overview of Traditional Iris Biometrics  

Since the first automatic iris recognition system was proposed by J. G. Daugman 

in 1993 (Daugman 1993), a variety of commercial systems are developed to deal with the 

eye images and conduct identification or verification processes. Most of the established 

iris recognition systems rely on four main steps during the iris recognition process, which 
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are: iris information acquisition (still image/video), iris segmentation, iris pattern analysis, 

and iris pattern matching for eventual recognition. 

Most of the existing commercial systems adopt near-infrared (NIR) illuminations 

(with the wavelength between 700 and 900 nm) as a source of lighting. It is believed that 

with NIR illumination, the iris shows more detailed patterns as the iris tissues absorb the 

short-wavelength light and let the long-wavelength go through. During the iris acquisition 

step, the user (object) is usually still and looks at the camera, and the acquisition system 

access the focus of the iris and automatically adjust the camera to take the iris images or 

videos.   

The iris segmentation step isolates the iris region from the eye images. Some of 

the segmentation strategies consider the boundaries of the pupil and the iris to be circular 

in shape. The circles of pupil and outer iris (limbic) boundaries are detected in order to 

localize the iris which is the part within these two circles. In this step, noise reduction 

methods are used to attenuate to some degree the inherent noise effects, and 

preprocessing methods are used to deal with occlusions caused by eyelids, eyelashes, and 

reflections.      

In the iris pattern analysis step, various filters are used by most iris recognition 

systems to encode the texture of the iris. The decision of iris verification and 

identification is generated in the iris matching step.  In the matching step, the distances 

between codes generated for the irises are calculated, and a threshold of the distance is 

usually used to determine if any two codes belong to a same iris. For the application of 

verification, the system would provide a degree of similarity in subjects’ codes within a 

stored database. For the identification process, the system would identify the subject 
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based on whether the degree of similarity has crossed a set threshold that guarantees the 

highest degree of certainty in comparison to all the stored iris codes in the database. 

Among most of the established iris recognition systems, Daugman’s approach and 

Wildes’ approach remain the most important and most well-known. Nearly all other 

methods that have been proposed since were developed using the fundamentals steps 

outlined in the pioneering work of Daugman and Wildes. 

2.3.1. Daugman’s Approach 

The concept of the automatic iris biometrics system was first proposed in the 

patent by Flom and Safir in 1987(Flom and Safir 1987), but it lacked any actual 

implementation. Some of their proposed ideas resemble today’s established iris 

biometrics approaches, such as using the image acquisition system to acquire iris 

information, and using the pattern recognition algorithms to encode the iris image. 

The first practical automatic iris pattern encoding and recognition method was 

proposed by Daugman in 1993. Since then, the basic idea of Daugman’s original 

approach inspired many of the new research developments as well as commercial 

products (Daugman 2007; Bowyer, Hollingsworth et al. 2008). In his approach, the 

monochrome cameras with NIR illumination lighting sources are used in the iris 

acquisition step.  The total high-frequency power in the 2D Fourier spectrum of each 

captured image/frame is calculated to access the focus of the iris. The camera is adjusted 

to focus on the iris and a feed-back (voice or vision signal) is given to help the user 

position his/her head within the camera’s field of view. The pupil boundary and limbic 

boundary are treated as two non-concentric circles. Each circle is detected separately and 
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described by their center coordinates and radius. An integro-differential operator is used 

to search for the boundary circles. This particular integro-differential operator is defined 

as: 

  


00 ,,
00

2

),(
*)(
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yxr
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where I (x, y) is an intensity value of the image domain (x, y). This equation seeks the 

maximum value in the blurred partial derivative with respect to increasing radius r, along 

an arc denoted by ds of a circle with center coordinates (x0, y0) and radius r. The )(rG  

is a Gaussian smoothing function of a scale set by σ, and the symbol (*) refers to the 

convolution operation.  

The upper and lower eyelids are modeled as two arcs, and the arcs are detected 

with this integro-differential operator.. The difference is the path of contour integration in 

the operator that is changed from circular to arcuate. 

Because the image sizes of the irises are different and the degrees of pupil 

dilations vary based on the illumination, a normalization method is used to transform the 

segmented iris image to a normalized polar space. In the normalized polar space, every 

pixel in the iris image is represented by an angle between 0 and 359 degrees and a radial 

coordinate between 0 and 1. 

A two-dimensional (2D) Gabor wavelet filter is then used to extract the textures 

from the normalized iris image.  The encoded texture is represented as a binary code and 

compared with stored iris codes to generate a final recognition decision. During the 

comparison, the Hamming distance is calculated to measure the difference between two 
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iris codes. A smaller distance indicates a better confidence of the similarity between the 

two iris codes. A threshold of the distance would be used to decide if the two iris codes 

belong to the same iris or not. 

It is reported that Daugman’s approach achieves excellent accuracy results on the 

basis of a threshold Hamming distance of 0.330 over 2.3 million comparisons between 

different irises. 

2.3.2. Wildes’ Approach 

The Wildes’ approach is also very prominent in the field of iris recognition. It 

uses different image acquisition and iris segmentation processes  which gives it some 

advantages over Daugman’s system in some aspects (Fancourt, Bogoni et al. 2005). 

In the acquisition system, a more complicated set-up, which includes the so-called 

“diffuse source and polarization in conjunction with a low light level camera” is used to 

eliminate the reflection spots (Wildes, Asmuth et al. 1996; Wildes 1997). In the iris 

segmentation step, the circular Hough transform is used to detect the pupil and limbic 

boundaries. The Hough transform is known to be tolerant to gaps in edge descriptions 

and is relatively unaffected by image noise. The well-known circular Hough transform is 

often defined as: 





n

j
ccjjcc ryxxxhryxH

1

),,,,(),,(     (2.2)   

where ),,,,( ryxxxh ccjj = 1 if the edge point ),(x j jy  is on the circle with center ),(xc cy , 

and radius r; otherwise, ),,,,( ryxxxh ccjj = 0. With such a circular transform, each edge 

point in the image space votes for each possible circle passing it in the parameter space. 
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The maximum value of ),,( ryxH cc indicates the target circle which has a center at 

),(xc cy  and a radius of r. 

In the iris pattern analysis step, a Laplacian of Gaussian (LOG) filter with 

multiple scales is used to analyze the iris texture, and the filtering results are compared 

without binarizing to a compact representation as is the case in the Daugman’s approach. 

Thus, more feature details may be extracted and compared when using the Wildes’ 

method.  

It is claimed that Wildes’ approach achieved 0 false accept rate and 0 false reject 

rate, based on a database of 600 iris images from 60 different persons.    
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3. Less-constrained Iris Biometrics 

3.1. Introduction  

 
One of the key problems of conventional iris recognition methods is that they are 

based on processing a single iris image at a time and require good image quality as an 

essential initial condition (Matey, Naroditsky et al. 2006; Proenca, Filipe et al. 2010). 

These requisites entail considerable constraints on users for taking such iris images. 

Under the current technological setups, and in order to take an adequate iris picture, the 

subject must be still, look directly at the camera and in a direction that satisfy strict 

illumination controls (Chen, Adjouadi et al. 2010). This process is obviously too 

constrained, time-consuming, and often inconveniences the subject. 

With the increasing demands in public safety and security and with the demands 

necessitated by classified information access and other security measures, good 

identification processes are becoming a requisite for seeking high accuracy but with a fast 

and reliable outcome (Zhou, Du et al. 2009; Matey, Broussard et al. 2010). Thus an 

effective iris recognition method is one that should initially overcome the rigid 

constraints imposed during iris image acquisition, and offer fast processing speed.   

In all of the four steps of iris recognition, the iris information acquisition step 

which captures the iris images or videos of the users (subjects) is by far the most 

restrictive. It is this initial and only step that needs complete users’ cooperation. Thus, the 

most distinguishing difference between traditional iris recognition and unconstrained iris 

recognition is in the set-up of the iris acquisition system to free the user from any undue 
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constraints. Thus, unconstrained iris biometric systems must be able to process iris 

images or video with somewhat low image quality.  

 Amongst most of the conventional iris recognition systems, iris acquisition is the 

most time-consuming step and is considerably inconvenient to users. To obtain the iris 

images with required ideal or demanding qualities for traditional iris recognition system, 

various rigid constraints are imposed on the subject’s stands, head alignments, 

movements, light illuminations, etc..  Most of the unconstrained iris recognition systems 

benefit from their innovative endeavors in the more convenient iris acquisition setups. 

Among those, the “Iris on the Move” (IOM) system and visible wavelength systems are 

the two most well-known and promising prototypes. 

Because of the innovative iris acquisition setups, the characteristics of the iris 

images captured by less-constrained iris recognition systems are different and more 

challenging to process, compared with those obtained from the more controlled 

conventional iris recognition systems. Most challenging are the severe noise effects that 

are inherent to these unconstrained iris recognition systems. Typical sources of noise 

include motion blur, defocus, eyelashes or eyelids obstruction, specular reflection, among 

others. Those noise effects could make it impossible for the system to normalize, encode 

and generate accurate matching results.  Thus, new alternate strategies and algorithms are 

proposed by the biometrics research community to compensate for those newly 

introduced difficulties and obtain acceptable recognition performances under 

unconstrained environments. The rest of this section gives an up-to-date overview of 

unconstrained iris recognition systems and related techniques associated with them.   
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3.2. The IOM approach 

The Iris on the Move (IOM) that was first introduced by (Matey, Naroditsky et al. 

2006) was based on Near Infrared (NIR) video taken at a distance, with its targets being 

moving subjects (Matey, Naroditsky et al. 2006). One of the significant merits of the 

IOM system is that it allows for iris identification or verification even when a subject is 

walking at a normal pace at a speed of up to1m/s.   

3.2.1. Experimental setup of the IOM system 

The scenario for  iris recognition under the IOM system is as illustrated in  Figure 

3.1. The prototype uses three high resolution video cameras towards a portal at a distance 

of about 3 meters. The NIR illumination sources are embedded within the portal. The 

NIR video is taken when the subject walks through the portal, and the subject could be 

wearing eyeglasses or contact lenses.  

 

Figure 3.1: Image Acquisition Setup of the IOM system 



 16

 
For iris verification or identification, the NIR videos of subjects’ faces are taken 

with a resolution of 2048 * 2048. The iris images acquired from these videos are different 

from those acquired through traditional acquisition methods. For most of the traditional 

methods, the total number of pixels across the iris is usually more than 200, but eye 

images from the videos only offer about 120 pixels across the iris part.  

The subject to be pictured should be at an ideal distance for the fixed focus video 

camera to take the desired frames of the subject’s face. Through their study, Matey et al. 

claim that those frames which are taken with a depth of field at about 12 cm yield the 

perfect focus distance which can be accepted for iris verification. While conducting iris 

verification with the IOM system, the video is taken at 15 frames per second and the 

subject’s walking pace is allowed to be approximately 1m/s. Consequently, there are no 

more than 2 frames that can be captured within that 12 cm depth of field. For subjects 

that are on-the-move, the iris images extracted from limited frames may suffer from 

various kinds of noisy effects caused by off angle, motion blur, occultation caused by 

eyelid or eyelashes, and unexpected light reflections. 

To appreciate the complexity of the problem, some examples of iris images 

obtained from the IOM system and from the traditional system are provided in Figure 3.2 

for comparative purposes. 
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            (a)                             (b)                           (c)                          (d) 

 

              (e)                             (f)                           (g)                          (h) 

Figure 3.2 : Eye images acquired from the IOM system and the traditional iris acquisition method. Eye 
images (a, b, c, d) are extracted from the IOM system, while eye images (c, d, e, f) are from the traditional 

acquisition system as provided by the CASIA database version 3 
 

3.2.2. Techniques based on the IOM system 

Matey et al. adequately proved the feasibility of the IOM system. Through their 

experiments, it is claimed that the overall recognition rate for 119 subjects is 78% and 

with some improvement on the acquisition process, the success rate could rise up to as 

high as 99%. They conclude that the IOM system “can capture iris images of recognition 

quality from subjects walking at a normal pace through a minimally confining portal”. 

The detailed segmentation approach for IOM system is proposed by Chen et al. 

(Chen, Wang et al. 2008). Their proposed approach starts from the eye image extraction 

which is based on the reflections on the eyes generated by the illumination system. An 

adaptive histogram method is used to detect the pupil. The searching of limbic boundary 

and eyelids benefits from the obtained pupil information. The outer boundary of the iris 
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was detected by a modified Hough circular transform. A new eyelids and eyelashes 

detection method was introduced in this approach to overcome the noise from such 

unconstrained images, which do affect the detection process. In their approach, the pixels 

which are on the edge between iris and eyelids or eyelashes will be detected first, and 

then the Hough transform would be performed. Their experimental results based on the 

MBGC database show the approach to yield a 93% segmentation accuracy rate. 

Lee et al. proposed an “object detector” algorithm based on the Viola-Johns 

method combined with a modification made by Lienhart-Maydt to detect the eye in the 

NIR video (Lee, Phillips et al. 2008). Then, an automatic segmentation algorithm based 

on the Wildes’ method is used to localize the iris. The feature extraction is conducted by 

a 1D Log-Gabor filter. The Hamming Distance (HD) measure is used in the matching 

stage. Their experimental results shows that an eye detection accuracy of 97.69% and of 

81.50% in the iris region segmentation process.  The matching rate is reported to be 

greater than 54%. 

An iris image evaluation method is proposed by Zhou and his colleagues to select 

the extracted NIR iris images with acceptable quality for recognition in the IOM system 

(Zhou, Du et al. 2009). Their image evaluation strategy includes: a so-called quality filter 

unit to delete the low-quality images after image extraction; a segmentation evaluation 

unit and a segmentation scores unit to evaluate the segmentation accuracy; and a score 

fusion unit to combine the quality and segmentation measurements to generate a 

confidence score in the recognition stage. The two-dimensional Gabor wavelet method 

and the 1-D-Log-Gabor wavelet method are used for the recognition stage. They claim 

that with the proposed image evaluation method, the genuine acceptance rate (GAR) 
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increases by 407.1% and 216.8%, respectively, in the left and right eyes, compared with 

the GAR obtained with traditional methods at the same false accepted rate of 410 . 

3.3. The visible wavelength approach 

One of most difficult and important issue for the design of a less-intrusive iris 

recognition system is the trade-off between the demanding irradiance and the 

illumination safety requirements for the eyes. Being able to capture iris images of the 

subjects with on-the-move and at-a-distance conditions, the acquisition system needs to 

achieve larger depth-of-field with considerable short exposure time. Thus, increased 

intensity of irradiance would be necessary for the optical system in the acquisition step. It 

is indicated that the use of visible wavelength illumination would be better and safer to 

achieve such a lighting requirement. Different with the NIR illuminations, the visible 

wavelength illumination makes people react instinctively, as a safety measure, with eye 

blinking, pupil contraction/dilation, and evasion, if the illumination happens to be intense. 

A Visible Wavelength (VW) prototype approach was proposed by Proença et al. in 

University of Beira Interior (Proenca 2010; Proenca, Filipe et al. 2010). And more 

research interests have currently been drawn to this idea.  

With the VW system the iris images can be also taken when the users are at a 

given distance. The system can also capture iris images when users are on the move and 

with different pose or head alignments. Furthermore, the system uses the visible light 

instead of the NIR illuminations in order to offer better safety for the users. 
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3.3.1. Experimental setup of the visible wavelength approach 

The experimental setup of the iris acquisition adopted in the visible wavelength 

approach is as illustrated in Figure 3.3. The commercially available camera (Canon EOS 

5D in the proposed prototype) is used as the iris image capture device. The acquisition 

system is designed to function in an environment without rigid illumination control. In 

their prototype, the setup of the imaging system works under both natural light source 

and visible artificial light source (Proenca, Filipe et al. 2010). 

 

  

Figure 3.3 :Setup of the image acquisition prototype, signs of A, B in the image denote the two cameras; 
C,D are the artificial and natural light sources; E is the moving subject. (Image provided courtesy of Dr. 

Hugo Proença) 
 

The system is claimed to be able to capture multiple iris images when the subject 

is walking at a slightly slower pace within a range of distances between four and eight 

meters (Proenca 2010). With such an imaging system, the proposed iris recognition 
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system can tolerate occasional effects of movements such as blinking, turning the head, 

and looking sideways.  

3.3.2. Techniques based on the visible wavelength system 

Because images are taken with less-constrained conditions on illumination, 

subject’s movements, poses, and head alignments, the iris images captured with the 

Proença’s acquisition system generate much more realistic noise conditions, such as 

specular reflections, off-angle situation, including the wearing of glasses. Some example 

images are shown in Figure 4. Besides noise effects, the visible wavelength characteristic 

of iris images show substantial differences between the iris images captured by visible 

wavelength system and images obtained with traditional iris recognition systems.  

Because of such differences, conventional iris segmentation approaches have not yet been 

able to process visible wavelength iris images; and hence a lot of research efforts have 

been made with the focus on the iris segmentation stage towards more effective visible 

wavelength-based systems.  

 

 

 

Figure 3.4:Iris image examples captured by the Proença’s approach 
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A segmentation approach starting with a clustering based coarse iris localization 

method is proposed in (Tan, He et al. 2010). The performance of this approach greatly 

benefits from this novel initial processing step. The Specular reflection removals 

followed by a region growing strategy are conducted to cluster the iris image into coarse 

iris region and skin region. Then, with the considerations of semantic priors, the iris 

region is refined and non-iris regions including eyelashes, eyebrow, eye glasses, and hair, 

are also detected. Also, an enhanced integro-differential operator, just like in the 

Daugman’s approach, is used to detect the pupil and limbic boundaries.  The eyelid is 

detected by a 1-D horizontal rank filter, adopting an eyelid curvature model. In the final 

step, the eyelash occlusions are excluded, using parametric models based on the intensity 

statistics of different iris regions.  

In the approach proposed by Sankowski et al., the specular reflections are 

detected and filled in a YIQ color space (Sankowski, Grabowski et al. 2010). Then, again 

the conventional integro-differential operators are used to detect the pupil and limbic 

boundaries. Finally, parametric models based on the properties of the eye image are used 

to describe the upper and lower eyelids. 

A knowledge-based segmentation approach was later proposed by Almeida, an 

idea that was inspired by the paradigm of expert systems (de Almeida 2010). Thus, a set 

of rules are defined to drive the system as a ‘human expert’. Those rules are set based on 

the perceived natural properties of the human eye such as the following semantic priors: 

“the pupil should be a very dark small circle”, “the centers of the pupil and the iris should 

be close”, “region around the pupil should have a reasonable color of iris”, etc. The 
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approach consists of the following steps: image pre-processing; pupil and iris localization; 

and the combination of pupil, iris, and eyelids detection. 

The so-called AdaBoost algorithm was adopted in both of the segmentation 

approaches proposed by Li et al. and Jeong et al. to detect a coarse location of the eye 

(Jeong, Hwang et al. 2010; Li, Liu et al. 2010). In Li et al.’s approach, a novel limbic 

boundary identification strategy is proposed. It uses K-Means clustering based on the co-

occurrence histogram to localize the limbic boundary.  They use a new parabolic integro-

differential operator combined with a RANSAC (Random Sample Consensus)-like 

method to detect the upper eyelid boundary.  On the other hand, in Jeong et al.’s 

approach, they adopt the color information of the image for detecting the obstructions 

caused by the image ghosting effects. The identification of the corneal specular reflection 

is used to determine if there is an “open eye” appearing in the image. 

With the same intent, Chen et al. proposed an approach to achieve both accurate 

segmentation and fast processing speed (Chen, Adjouadi et al. 2010). The proposed 

approach relies on an effective search for the sclera area of the image. A threshold of 

saturation value of the HSI color model is obtained by calculating the biggest group 

derivative of the original color image histogram. A binary map is then generated to 

indicate the sclera area. The method determines a more refined target area in order to 

accelerate the circle searching for the outer iris boundary. The outer boundary of the iris 

was detected using a very fast and accurate modified circular Hough transform. The 

linear Hough transform is then used recursively to extract the edges of eyelids. A novel 

new method of verification and correction for the non-circular outer iris boundary is also 
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developed. It is claimed that their approach achieves accuracy higher than 97% with an 

execution speed of 0.83s per image, which is quite significant. 

Labati et al. applied an intro-differential technique to roughly localize the center 

and radius of the outer iris. The search region for pupil is significantly reduced by this 

estimation method (Labati and Scotti 2010). Polar-transformation is used to linearize the 

estimated region of iris and pupil boundaries.  Thus, two obtained image strips containing 

iris boundaries are processed to define the accurate location of the pupil and the outer iris 

boundary of the iris.  

The recognition process remains in the discussion stage among the biometrics 

community, due to the extreme challenges posed by illumination, capturing distance, and 

subject movement among others.  However, Proenca et al. proved the feasibility of the 

recognition process by applying Daugman’s traditional recognition strategy with 

manually segmented color iris images (Proença 2009; Proenca 2010). They selected 1000 

segmented good quality iris images obtained from visible wavelength system as 

templates. Then, they compared them with 10,000 non-iris or partial iris images and 

10,000 natural and synthetic texture images, generating a false match rate 

at 121003.1)33.0( sP , which can be considered to be negligible. They point out that 

the visible wavelength iris recognition system has potential to produce an extremely low 

false match rate, which is favorably in biometrics applications.  

3.4. Other Less-constrained iris recognition approaches 

Wheeler et al. present a minimal-user-intrusive iris recognition system (Wheeler, 

Perera et al. 2008). Their work is focused on the development of an automatic iris 
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acquisition system to the convenience of the users. The system uses a pair of fixed wide-

field-of-view (WFOV) surveillance cameras to detect the head position with stereo vision. 

A pan-tilt head is used to direct the NIR illuminators and the iris camera to focus on the 

subject. Thus, the system allows the user to stand in front of the camera and faces it for 

carrying out the iris verification process. A classic Daugman-style approach is used to 

perform the segmentation and recognition processes. They claim that, with the use of a 

normalized Hamming Distance of 0.3, their system achieves the verification false 

recognition rate of 610 , and the whole iris identification process can be completed in 

3.2s on an average.  

Furthermore, an iris image deblurring method is proposed by Huang et al. to 

improve the quality of the images with defocus or motion blur defects for less-

cooperative iris recognition systems (Huang, Ren et al. 2009). Since in the less-

constrained iris recognition scenarios, the user is usually allowed to walk or move, the 

movement or defocus degrades the image quality significantly. Thus, the intent in this 

study was to improve the recognition process by introducing a deblurring method. They 

apply a depth sensor in the iris acquisition system to obtain the 3D depth information. 

Their deblurring algorithm is based on the depth information and prior knowledge on the 

iris image. Although their segmentation and recognition algorithms are not fully detailed 

for a thorough assessment, they claim that the application of the deblurring method can 

reduce the mean of the authentic distribution by 12%. 
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4. A New Approach for Unconstrained Iris Segmentation 

under Visible Lighting Conditions 

4.1. Introduction 

A robust and fast segmentation approach towards less constrained iris recognition 

under visible lighting conditions is introduced in this chapter. The UBIRIS.v2 database 

(the second version of the UBIRIS noisy iris database) is used to examine the proposed 

approach. The iris images in the UBIRIS.v2 are captured from the unconstrained iris 

acquisition setup introduced by Hugo Proença and colleagues (Proenca, Filipe et al. 

2010). Such an inventive iris acquisition method with less constrained image taking 

conditions under visible lighting can impose minimal to no constraints on the iris 

verification and identification process as well as on the subject. Consequently, to provide 

acceptable accuracy measures, it is critical for such iris recognition system to be 

complemented by a robust iris segmentation approach to overcome various noise effects 

introduced through image capture under different unconstrained recording scenarios.  

The proposed algorithm consists of five implementation steps which include:  

(1)  localizing approximately the eye area of the noisy image captured at (normal) 

visible wavelength using the extracted sclera area;  

(2)  defining the outer iris boundary which is the boundary between iris and sclera;  

(3)  detecting the upper and lower eyelids;  

(4)  conducting the verification and correction for outer iris boundary detection; 
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(5)  detecting the pupil area and eyelashes and providing means for verification of the 

reliability of the segmentation results.  

The results demonstrate that the accuracy is estimated as being ≥ 98% when using 

500 randomly selected images from the UBIRIS.v2 partial database, and was estimated at 

≥ 97% by an independent group in a “Noisy Iris Challenge Evaluation (NICE.I)” in an 

international competition that involved 97 participants worldwide, ranking this research 

group in sixth position. This accuracy is achieved with a processing speed nearing real 

time. 

4.2. Background 

An effective iris recognition method is one that  overcomes the rigid constraints 

imposed during the iris image acquisition process (Proenca and Alexandre 2006), and 

still offers near real time processing (Bowyer, Hollingsworth et al. 2008).   

The UBIRIS.v2  partial dataset, which contains 500 static eye images with more 

realistic noisy effects as provided by the University of Beira Interior, was used to assess 

the merits of this method. The noisy iris images are all captured under the Visible 

Wavelength (VW) iris acquisition prototype proposed by Hugo Proença and his 

colleagues. The setup details of such iris acquisition system were provided in Chapter 3 

of this dissertation. It is indicated that the use of visible wavelength illumination would 

be safer and more economical to achieve unconstrained iris biometrics (Proenca and 

Alexandre 2010). With visible wavelength lighting sources, the iris acquisition equipment 

and the image taking process do not need to be adjusted for the NIR lighting. Thus, the 
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costs to use visible wavelength iris biometrics would be lower than using the NIR-based 

iris biometrics.  

Nonetheless, serious noise effects remain inherent to the visible wavelength iris 

recognition systems (Proenca 2010). Typical sources of noise include motion blur, 

defocus, eyelashes or eyelids obstruction, specular reflection, among others.  Traditional 

segmentation methods do not perform well under such conditions (Proenca and 

Alexandre 2010). Thus, a good segmentation approach which can extract useful iris 

information from noisy iris images would be a crucial first step. Consequently, the focus 

of this work is first placed on the development of a robust segmentation approach that 

can overcome such unpredictable noise effects in order to secure recognition outcomes 

with a high accuracy. This first research step is complemented with efforts to optimize 

the processing speed seeking near-real-time.  Later, the executable program of the 

proposed method was also submitted for independent testing through an international 

contest “Noisy Iris Challenge Evaluation (NICE.I)” .  The approach introduced here 

ranked us in  6th position out of 97 competitors worldwide, with due consideration to both 

accuracy  and near real-time processing.  

4.3. Approximate localization of the eye area 

There are five major stages contained in the proposed approach, as illustrated in 

the flowchart given in Figure 4.1.  
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Figure 4.1: Flowchart of the proposed approach 
 

The images from the UBIRIS.v2 database were taken with the subject on the 

move and at different distances (between 3 and 7 meters). Thus, the irises of the images 

may vary significantly in size and location. For the provided UBIRIS.v2 training dataset, 

the amount of pixels across the iris ranged from 75 to 190, and the iris may appear in any 

region within the close-up image. Therefore, as an initial step in the proposed approach, a 

method is used to approximately localize the eye part of the image, in order to obtain a 

smaller and more refined target area. This method, which is of considerable benefit in 

seeking accuracy and fast processing speed for segmentation purposes, consists of two 
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steps: (1) finding an approximate eye area based on sclera detection, and (2) determining 

an adaptive target to confine the search for the iris. 

4.3.1. Detecting the sclera area 

Unlike conventional iris images, which are mostly captured under NIR (near-

infrared) wavelengths with rigidly constrained environments, all the close-up images 

from the UBIRIS.v2 training dataset are full-color images taken under visible wavelength. 

For the UBIRIS.v2 dataset, the pupil area may not always appear darker than other parts, 

especially for images containing heavily pigmented (dark) irises or images with serious 

noise effects. Thus, the pupil on the image may no longer be the proper starting point to 

find the eye area. But through analyzing the full-color images, the sclera parts are 

commonly found to appear less saturated (white) than other parts of the images. 

Consequently, the sclera area is used instead for determining the target eye area. 

The HSI color model decouples the intensity component from the color-carrying 

information (hue and saturation), where the saturation value of the HSI model refers to 

the degree of how much the white was added to the color (Shapiro and Rosenfeld 1992; 

Gonzalez and Woods 2008). Thus, the saturation value of the HSI model is more tolerant 

to noise effects for detecting the sclera area. The saturation value can be computed from 

the RGB values using Eq. (1). 

                          )],,[min(
)(
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1 BGR

BGR
S


                                        (4.1) 

For the saturation value of the HSI model, when the pixel is white, 0S ; when 

the pixel is pure colored, 1S . Through our experimental analysis, the saturation values 
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of sclera areas provided a range for S between 0 and 0.21. The saturation value, which 

refers to sclera, would be calculated as a threshold, and all pixels below the threshold 

would be considered as pixels belonging to the sclera. That threshold is obtained by 

calculating the biggest group derivative within the range in a histogram of saturation 

values (between 0 and 0.21) corresponding to the image. With the threshold calculated 

from the original color image in Figure 4.2 (a), Figure 4.2 (b) illustrates an example of 

extracting the sclera pixels from all other pixels, except for the inherent noise points.  

 

    
(a) Input eye image                 (b) Sclera extraction results 

Figure 4.2: Example of sclera detection in the presence of noise pixels 
 

4.3.2. Determining a target area for the eye 

The purpose of this step is to locate a target area with adaptive size in order to 

adjust for the different irises of the dataset. After the sclera detection step, it can be 

observed that some small spots of reflections and bright skin are scattered on the image 

as part of the sclera extraction step. Thus, more specific sclera areas need to be localized 

first, to overcome/eliminate the noise points. In opposition to the sclera part, all other 

spots extracted are generally smaller or slightly darker. The thresholded image, as in 
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Figure 4.2 (b), is converted to a grayscale image, and for every pixel with a gray level 

intensity greater than 0, its value will be replaced by the average intensity value of a 17 

by 17 block which is centered on that pixel. With this operation, the intensity of isolated 

and relatively smaller noise areas would be degraded significantly. For those pixels 

whose gray level intensities are greater than 0, the average intensity is calculated to be an 

adaptive threshold. With this threshold, a binary map which can clearly specify the sclera 

area can be generated. 

The resulting binary maps, as can be seen in Figure 4.3, can be classified into two 

categories: double sclera areas as shown in Figure 4.3 (a), and single sclera area as shown 

in Figure 4.3 (c). In binary maps with double sclera appearing, the iris would certainly be 

located between them, and the rectangular area can be determined by the extreme 

coordinates of upper, lower, left and right locations of the two sclera areas, with a small 

offset proportional to the distance between these extreme points in relation to the image 

boundaries, in order to ensure inclusion of all the iris. The target rectangle given in 

Figure 4.3 (b) shows the result for a given image. With a single sclera area, since it is 

unknown as to which side of the sclera the iris will be located, the nearest distances 

between the sclera area to the left and right boundaries of the image would be calculated, 

respectively. The rectangular area would be decided with respect to those distances. The 

longer the distance is, the more the rectangle would be extended towards the boundary in 

that direction. As shown in Figure 4.3 (d), the rectangle was mostly extended towards the 

right side, and as a result the iris part is within the rectangle, which correctly delineates 

the target area. 
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        (a)    Binary map of sclera           (b) Target area delineation        

     
                         (c) Binary maps of sclera           (d) Target area delineation 

Figure 4.3: Target selection for eye area based on double and single sclera areas 
 

4.4. Iris outer boundary detection with a fast circular Hough 

transform 

The outer boundary of the iris is defined as the boundary between iris and sclera. 

To detect the outer boundary of noisy iris images from the UBIRIS.v2 database, the 

circular Hough transform was applied with some modifications to achieve higher 

accuracy and faster speed. Recall that because the Hough transform is based on a voting 

scheme, it is quite tolerant to noise (Leavers 1992). 
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4.4.1. Detecting the outer boundary 

To improve the performance of the circular Hough transform, some modifications 

were made towards both reducing the computational complexity as well as reducing the 

impact of the inherent noise effects. 

To generate the edge map, instead of the traditional four-direction Sobel edge 

detection (Kanopoulos, Vasanthavada et al. 1988), we only conducted the edge detection 

horizontally (left to right and right to left), as can be seen in Figure 4.4 (c); these edge 

points can be compared with those in Figure 4.4 (b), which were generated using all four 

directions.  It is apparent from this comparison, which although, the number of edge 

points was much reduced; the delineation of the iris is still effective. 

              
    (a) Input image                                      (b) Edge map of 4 directions         

       
     (c) Edge map of 2 directions                   (d) Boundary detection result 

Figure 4.4: Example of outer boundary detection using the modified circular Hough transform 
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To improve the accuracy and processing speed, after generating the edge map 

similar to those in studies reported in (Adjouadi, Riley et al. 1995; Adjouadi, Candocia et 

al. 1996; Chen, Wang et al.), based on the information obtained from the previous step, 

the circular Hough transform would only be conducted using the edge points in the target 

rectangle.  Also, some precautions are considered. First, the upper and lower limits of the 

radius can be set with respect to the size of the rectangle. Thus, the upper limit of the 

radius is set as 2/1 of the rectangle’s length, and the lower limit is set as 4/1 of the 

rectangle’s width. Second, neither the center of the resulting circle center nor its 

boundary can possibly be located on the already defined sclera areas.  

4.4.2. A fast Circular Hough Transform 

Although the circular Hough transform is a powerful algorithm, it also carries 

with it a heavy computational load, and that refers to the three step iterations 

burden(Leavers 1992). With the circular Hough transform, each edge point ),( yx in the 

image space votes for ),,( rba in the parameter space for each possible circle passing it, 

where a, b are the coordinates of the circle center position, with r being the radius of the 

circle. Thus, the votes were cast in a three-direction accumulator for conducting the 

circular Hough transform. If 1O  is the computational complexity of calculating votes for 

a circle with  a determined center location and radius, the computational complexity of 

the circular Hough transform aO  is as given by Eq. (2): 

1minmaxminmaxminmax )()()( OrrbbaaOa                                  (4.2)           
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Here the step-length was applied to reduce the computational burden of the 

circular Hough transform, if aC , bC , rC are the step-length for parameters a , b , c  

respectively, then the computational complexity would be as given by Eq. (3):  

)()()()( 1minmaxminmaxminmax rbab CCCOrrbbaaO              (4.3) 

In the implementation of the proposed approach, the step lengths are set such 

that rba CCC  .  

Because of the three step-lengths, a large number of votes will not be counted. To 

overcome this problem, with a determined circle center and radius, instead of only 

searching for the edge points located on the circle, all points located on the circular ring 

surrounding that circle would be counted. For instance, as shown in Figure 4.5, instead of 

searching for edge points located on the solid circle 1, the search will also include all 

points within the dashed circles A and B; similarly, all points within dashed circle B and 

C would count as votes for the target searching circle given by solid circle 2. 

 

 
Figure 4.5: Example of searching feature points locating on the circular ring around the target circle 

Dashed Circle A 

Dashed Circle B 

Dashed Circle C 

Solid Circle 1 

Solid Circle 2 
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We also accelerate the search step of all the edge points located on the circular 

rings. We implemented the algorithm using dynamic programming (Sacco 1987; Robinett 

2005).  Initially, the distance between every pixel point on the image and the image 

center point would be calculated, all those distances would be stored in the table, and 

each distance would refer to a list of relative locations which have that certain distance 

from the center location of the image frame. When searching for the edge points on the 

circle, the neighboring distances would refer to a set of relative locations in the look-up 

table, and all edge points located on the corresponding locations in the image would be 

counted.  Because the look-up table was generated just after executing the proposed 

approach for a single image, and since the size of all input images is 400x300, there is no 

need to calculate distances while performing the Hough transform for each image, and 

the computational burden was consequently alleviated significantly. 

Finally, to obtain more consistent results, instead of just choosing the peak value 

of votes in the parameter space, a range of highest values (for this research, all the 

parameters have a value within 5% of the peek value votes) are used instead; by 

examining their neighboring parameters which are bypassed because of using step-length, 

more precise results can now be accomplished. 

To demonstrate the performance of the proposed method, the step-length is set to 

be between 1 and 5, and the processing time is examined based on all 500 eye images 

from the UBIRIS.v2 training database. The results are as shown in Figure 4.6, where the 

step-lengths for C1 through C5 are 1 through 5, respectively.  
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Figure 4.6: Average processing time for circular Hough transform using 500 images from UBIRIS.v2 
training database 

 

This modified circular Hough transform decreases the execution time of the 

proposed approach significantly. The average processing time using the circular Hough 

transform which applies a step-length of 1 is calculated as 6.77 s per image, and the error 

rate of such an approach is estimated at 0.0200215 in the E1 measure provided by the 

Committee of NICE.I. With the proposed modified circular Hough transform, the average 

execution time is decreased to 0.83s and the E1 error rate is0.0200823 now. With the 

proposed modified Hough transform, the execution time is significantly decreased by a 

factor of 8.2 times, while the accuracy is only degraded by 0.303%, which is considered 

negligible. Execution time and E1 error rates for both cases are examined by processing 

the provided 500 iris images from the UBIRIS.v2 database using a laptop computer with 
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1.86GHz CPU (Intel T1350 solo) and 2GB of RAM. The executable program we 

submitted to the NICE.I committee is the fast version, which used the modified circular 

Hough transform with a step-length of 5. 

 

4.5. Detecting the boundary for upper and lower eyelids 

In unconstrained iris acquisition scenarios, as the subject is not required to 

comply with a demanding level of cooperation, it is observed that eyelid occultation can 

occur.  The linear Hough transform can be applied to the edge map of the eye image to 

detect the eyelids. However, with this algorithm, the key problem for dealing with noisy 

eye images is that the obtained edge maps are usually non-ideal. As shown in Figure 4.7 

(a), most edge points appearing on the map are undesired, caused by eyelids, reflections 

inside the iris, and the texture of the iris patterns, among others. To overcome this 

problem, an improved strategy for eyelid detection is proposed. Because the slopes of the 

upper and lower eyelids are not steep in most cases, the proposed approach starts by 

applying edge detection in only the vertical direction. The generated edge map will have 

an emphasis on the desired eyelids edge points. Figure 4.7 (a) is one such example.  

The proposed approach has shown good performance for processing noisy iris 

images from the UBIRIS.v2 dataset. Figure 4.7 illustrates an example for eyelid 

boundary detection.  This is by all means perfect as can be seen from Figure 4.7 (d) 

where a tiny portion of the eyelid at the intersect of the Hough line for the lower eyelid 

and the circle containing the iris has been assigned to the delineated iris region. But these 

are tolerable mistakes for the iris recognition process. 
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(a)  Sobel edge detection         (b) Upper eyelid boundary          

    
 (c) Left eyelid boundary         (d) Eyelid boundary detection 

Figure 4.7: Example for detecting upper and lower eyelids 
 

To distinguish the points which are edges between iris and eyelids, a patch of area 

is selected to calculate the average gray intensity AI  of the iris, as shown in Figure 4.8. A 

square patch just below the pupil is chosen, since this area is experimentally determined 

to be the one most unlikely to be affected by reflections or overlap with eyelids. Because 

iris sizes vary significantly within the given UBIRIS.v2 dataset, the size of the patch is 

set to be adaptive in relation to the size of the iris. For this research we set the length of 

the square to be 10/outerR , with outerR being the radius of the outer iris boundary. The 

upper boundary of the patch is located 8/outerR below the pupil’s lower boundary. 
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Figure 4.8: Example of obtaining average gray intensity 
 

With the outer boundary circle obtained as in Figure 4.7 (d), rays are traced 

starting from the center of the circle and toward every point on the upper or lower arc of 

the circle (central angle  =120°). For each ray, if an edge point was found, M points 

beyond this point in the ray’s direction would be verified using the average gray scale AI  

to see if it is within a range of %10AI ; if N  of M points can be considered as points 

on the iris, the found edge point would be ignored in order to eliminate potential smaller 

reflection regions and iris regions with textural properties, and the search would go on 

until reaching the circle boundary. For this particular implementation, 6outerRM   

and 10outerRN  . The example given in Figure 4.7 (d) shows the verified edge points for 

the upper eyelid. After the verified edge map was generated, the linear Hough transform 

was then used. Since most of the undesired edge points were removed before this step, 

the results of the linear Hough transform are more accurate and tolerant to noise.  

For some cases, it could be more feasible to describe the eyelid with multiple 

lines. In the proposed approach however, after the first line was detected, the edge points 
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on that line were moved and so were all edge points located within 5 pixels above and 

below that same line. The linear Hough transform is then applied again, and if there are 

enough votes, another line would be determined, and so on. Then point removal and 

Hough transform would be applied again. This process would continue until the peak 

value of the linear Hough transform is below a threshold, which in this case was set 

as 4/outerR . Referring back to Figure 4.7, Figure 4.7 (b) shows the detected points which 

are on the edge of iris and upper eyelid, Figure 4.7 (c) shows the remaining points after 

the first linear Hough transform for the upper eyelid, and Figure 4.7 (d) shows the final 

results of boundary detection for upper and lower eyelids.  Two other results from the 

UBIRIS.v2 database are shown in Figure 4.9 as illustrative examples. 

         
Figure 4.9: Results of eyelid boundary detection using two different subjects 

 

4.6. Circle correction and non-circle boundary detection 

The error caused by defining the boundary as a circle is especially crucial for less 

constrained iris recognition, because of ubiquitous off-angle effects during non-

cooperative iris acquisition. For this reason, a strategy was developed to define the non-

circle boundary and correct the inaccurate result obtained from the circular Hough 

transform. 
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Figure 4.10 (a) is one example of outer boundary detection error caused by a non-

circular iris boundary. As can be seen, the outer boundary cannot be correctly detected. 

The proposed verification and correction method is based on three steps; (1) the circle 

center verification, (2) multiple circle (or arc) searching, and (3) multiple arcs and lines 

connection.  

                    
    (a)  Results of the 1st Hough transform     (b)   Grid region overlay    

          
(c) Original and detected new center locations    (d)    Selected 

target region 

              
(e) Hough circle (in black) of target area                  (f) Final iris detection results 

Figure 4.10: Defining the noncircular iris boundary- the intersection of the two circles with the detected 
eyelids lines is the accrual iris 
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There is a need to find the correct center of the iris to verify the original circle 

center found from the first Hough circle transform. Shown in Figure 4.10 (b) is a square 

grid with an adaptive size inside the outer iris boundary. The center of the grid which 

yields the lowest average gray intensity would be selected as the correct outer iris 

boundary center. For the purpose of this research, if the Euclidean difference between the 

original center and the newly detected one is greater than 4/outerR , the original outer 

boundary would be assumed as inaccurate. Then a target area would be selected for 

conducting Hough circular transform again. Based on the experimental study, the desired 

iris boundary is usually inside the Hough circle. The reason for this is that the edge points 

outside the iris usually vote for larger circles and for an off-angle iris which is usually 

smaller than its actual size. Thus, the target area whose center is at ),( tt yx as shown in 

Figure 4.11 was expected to be the region between the real iris center ),( rr yx and the arc 

on the opposite side of the original circle. 

 

Figure 4.11: Relations between the real iris center, original circle center and center for target rectangle 
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In reference to Figure 4.11, the center of the target rectangle is ),( tt yx , and the 

original circle center is ),( cc yx , here we have: 

                    ct yy  , and )( crct xxxx     or    rct xxx  2          (4.4) 

Another Hough transform is conducted on the edge points inside the target 

rectangle. Because the goal is to detect a circle which is usually partially located on the 

target region, different weights are set to the votes generated inside and outside of the 

target region to obtain better results. In our experiments, we set the weight of the vote as 

1 for the outside region and as 7 for the inside region.  

Since the Hough transform is based on voting, to avoid uncertain results, an 

adaptive voting count threshold is set such that if the highest voting count is below this 

threshold, the circle will not be generated. This threshold is set as %35 MT , where M is 

the total count of edge points in the target rectangle. If the peak value MN  , the circle 

will not be considered. The black circle shown earlier in Figure 4.10 (e) is one outcome 

example of this step.  

The intersection of two circles can be used to describe the noncircular iris. The 

upper and lower eyelids lines are also used here to remove unexpected eyelids and 

eyelashes. Thus, as can be seen from Figure 4.10 (f), the final result of the detected 

boundary consists of multiple arcs and lines, and would be more accurate for describing 

noncircular iris boundaries. Other examples provided for comparative purposes are 

shown in Figure 4.12. 
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     (a) Circle correction: case 1               (b) Circle correction: case 2     

    
(c) Delineating iris boundary          (d) Delineating iris boundary 

Figure 4.12: Result examples of proposed circle verification and correction strategy for delineating non-
circular iris boundaries 

 

Inaccuracies introduced by the circular Hough transform can thus be resolved 

with the proposed method. As shown in Figure 4.12, the larger circles shown in (a) and (b) 

are inaccurate circular Hough transform results, and the smaller circles in both cases are 

the newly detected ones through the proposed method. As can be seen, the intersections 

are much more accurate. Figure 4.12(c) and Figure 4.12(d) are two other examples with 

different iris sizes and different eye gazes. The left circle shown in Figure 4.12(c) and the 

right circle shown in Figure 4.12 (d) are the original Hough transform results, which, as 

can be seen, are slightly off from the expected result. 
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4.7. Pupil, eyelash detection and results reliability verification 

Because the eye images from the UBIRIS.v2 dataset were captured under visible 

wavelength, one of the major differences with those images taken under NIR wavelength 

is that the intensity contrast of iris and pupil can be very low, especially for heavily 

pigmented (dark) irises, such as in Figure 4.13.(a). Thus, pupil removal is left for this step 

to be performed; with only iris and pupil, the contrast enhancement method would yield 

better performance (Verdenet, Cardot et al. 1981).  

         
(a) Iris image with pupil       (b) Contrast enhancement                                                                

         
(c) Result of edge detection    (d) Pupil removal result 

Figure 4.13: Process for pupil detection and removal 
 

As shown in Figure 4.13, image (a) is the outcome from the previous step (outer 

iris and upper and lower eyelid boundary delineation). We used an empirical intensity 

threshold of 150 to detect the reflections, and expanded every reflection point by a 3*3 
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mask to ensure its total removal. Then, histogram equalization was applied to get the 

high-contrast image, as shown in Figure 4.13 (b). Sobel edge detection was used to get 

the edge map (c), and then the circular Hough transform determined the pupil boundary. 

Caution is taken such that the pupil center should be located within the small white circle 

shown in Figure 4.13 (b) with a radius of 10/outerR , and its center can be considered as 

the outer iris center. The radius of the pupil boundary is set to be from 20/3 outerR  as a 

lower limit and to 20/11 outerR as the upper limit. Figure 4.13 (d) shows the result for this 

particular example. To detect the eyelashes, we set an adaptive empirical threshold to 

be AI45.0 , where AI  is the obtained average iris color as described in Section 4.4. The 

eyelash removal would be performed within the top 3/outerR part of iris. After the pupil 

and eyelash removal, the result of the segmentation approach would be generated.  

To ensure that the falsely segmented results would not pass to the next step of iris 

recognition, a reliability verification procedure was applied to minimize false positives. 

For the UBIRIS.v2 dataset, if the segmented iris is too big ( 120outerR ), too small 

( 20outerR ), too bright ( 90AI ), or if the average intensity of the pupil is brighter than 

the average iris intensity, the segmented result would be rejected.   
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4.8. Result and evaluation 

Some of the good results are shown in Figure 4.14. The green and red parts on the 

iris area are the non-matched errors as determined by the NICE.I committee through an 

unbiased evaluation.  

  

Figure 4.14: Examples yielding good results 
 

As shown in Figure 4.14, almost all the function modules of the proposed 

approach worked very well. Some errors occurred on the outer iris boundary, because a 

single circle is used to define the boundary, but those errors are found to be relatively 

small. Through the same unbiased evaluation, some of the worst results were caused by 

sclera detection errors, as shown in Figure 4.15(a). For this image, the sclera area was 

found to be the bright part of the upper eyelid; thus, the target rectangle was falsely set to 

be out of the iris region. Figure 4.15 (b) shows that with an incorrect searching target area, 

unpredictable results would be obtained from the circular Hough transform; the black 

circle on the top-right of the image is the outcome of iris boundary detection which was 

conducted in the non-iris region. In the results given in Figure 4.15 (c), the green area 

refers to false positive errors, and the red area refers to false negative errors. 
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(a) Eye area selection                    (b) iris boundary detection              (c) error        

   
(d) Eye area selection                    (e) iris boundary detection             (f) error 

Figure 4.15: Examples yielding faulty or undesired results 
 

As for the example given in Figure 4.15 (d), because the white wall behind the 

subject is detected to be sclera, the target rectangle was set to be too large for the actual 

iris region, and the upper limit radius of the target circle was set to be too large (recall 

that the upper limit of the radius is set to be half of the rectangle length in the proposed 

approach). As shown in Figure 4.15 (e), in that search area, a very large circle can get 

more votes than the actual boundary circle. Thus, as shown in Figure 4.15 (f), incorrect 

results are obtained, with the red (false negative) being small because the incorrect result 

region incidentally covers the real iris area. 

The UBIRIS.v2 dataset includes rotated iris images, and some of which with 

angles that are more than 30 degrees (relative to the horizontal). Through our experiments 

on the provided training dataset, it has been noticed that the rotation effects may impact 

the step of locating the target iris area which is introduced in Section 4.2.2, although 
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those impacts are mostly overcome. There are 17 images with the rotations greater than 

30 degrees relative to horizontal, and only two cases lead to inaccurate iris outer 

boundary detection results.  

As the target rectangle area is set to be a horizontal rectangle, for those rotated iris 

images, the determined target rectangle may cover a partial iris area instead of the whole 

iris area. Because the voting-based circular Hough transform would be used to search for 

the outer iris boundary, a partial circle within the target area can still determine the outer 

boundary. Furthermore, the target rectangle area is extended with respect to the location 

and size of the sclera area; and for most of the rotated iris images, an adequate portion of 

the iris would still be covered, providing desirable outer boundary detection results even 

under these extreme conditions. 

As shown in Figure 4.16 (b), although the target rectangle does not cover the 

whole iris boundary, the rectangle is extended downwards to cover more of the boundary 

edge points.  The white circle drawn on Figure 4.16 (c) shows the accurate result of the 

outer boundary detection. An inaccurate outer boundary detection caused by rotation 

effect is also given in Figure 4.16 (d) and (f). As can be seen in Figure 4.16 (e), since the 

detected sclera area is located just below the middle of the image, the target is slightly 

extended upwards.  The target rectangle covers relatively a small portion of the iris area; 

with other noise effects on the edge map such as eyelashes and eyelids. The inaccurate 

outer boundary detection that resulted, as reflected by the white circle drawn on Figure 

4.16 (f), is due to inaccurate positioning of the rectangle. 
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(a) Binary map                    (b) Target area on edge map  (c) Accurate result                     

   
(d) Binary map        (e) Target area on edge map        (f) Inaccurate result 

Figure 4.16:  Examples of detecting the outer iris boundary of rotated iris images 
 

In retrospect, through the unbiased evaluation from NICE.I committee, the results 

of the proposed approach yielded error measures of E1=0.029 and E2=0.163 (where 

False Positive rate=0.018 and False Negative rate=0.307). E1 and E2 are defined in detail 

in the NICE.I Evaluation webpage (http://nice1.di.ubi.pt/evaluation.htm).  

Just as important, the processing speed of our approach is fast. For the 500 images 

from the UBIRIS.v2 training dataset, the average processing time is 0.83s per image. 

This result is obtained using a laptop computer with 1.86GHz CPU (Intel T1350 solo) 

and 2GB of RAM. The proposed approach was implemented using C++ programming 

language. 
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5. A Robust Segmentation Approach to Iris Recognition Based 

on NIR Video 

5.1. Introduction 

To overcome the constraints imposed on users in the process of taking iris images 

as indicated in Chapter III, significant efforts have been devoted to the design of different 

image acquisition setups that can accommodate subjects on the move. As an 

unconstrained iris recognition approach, video based iris recognition is designed to 

provide convenience and time efficiency to the subjects during what becomes a latent 

image acquisition process(Matey, Broussard et al. 2010). These videos of moving 

subjects at a distance do however introduce unexpected noise effects which can impact 

the accuracy of the iris recognition process (Hollingsworth, Peters et al. 2009).  

To begin addressing this type of less-constrained image acquisition process, this 

chapter presents a new approach at delineating the iris region through a novel 

segmentation approach as an essential step for the eventual video based iris 

recognition(Chen, Wang et al. 2008). The proposed approach consists of two steps. The 

first step is video frame selection which is to obtain qualified frames from NIR video. 

The subjects’ eye images were extracted based on the featured reflection spots generated 

by the specified video camera. The second step is iris segmentation which is intended to 

isolate the iris region from the eye image. Since iris images obtained from NIR video 

may suffer from different kinds of noise effects, a new strategy is proposed for iris 

segmentation to include noisy eye images. As a consequence, the proposed iris 
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segmentation strategy would not only separate the iris part from the sclera and pupil, but 

is also able to identify the extraneous overlapping parts caused by eyelids, eyelashes, and 

reflection spots. 

5.2. Background and Motivation 

This main idea at this juncture is to develop a robust segmentation approach 

towards video based iris recognition that can deal with various noise efforts caused by 

video taking at a distance and of moving subjects. 

J.R. Matey, O. Naroditsky and other colleagues introduced an iris recognition 

system called Iris on the Move (IOM) (Matey, Naroditsky et al. 2006), which was based 

on Near Infrared (NIR) video taken at a distance as it targets moving subjects. The 

system is claimed to be able to perform iris recognition on subjects walking at a normal 

pace estimated at 1m/s.  

For conducting the iris verification or identification, the NIR videos of subjects’ 

faces were taken with a resolution of 2048 x 2048. The iris images acquired from the 

videos are different from images taken using traditional acquisition methods. With the 

traditional methods, the pixels across iris are usually more than 200 (Daugman 2001; Ma, 

Tan et al. 2003), but eye images from the videos only offer about 120 pixels across the 

iris part, which can only exacerbate an already complex problem.  As can be seen in 

Figure 5.1, the eye images in Figure 5.1.c and Figure 5.1.d are form the CASIA database 

(Phillips, Bowyer et al. 2007), which  are acquired from still iris acquisition system , and 

can offer about 240 pixels across the iris region. On the other hand, Figure 5.1.a and 
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Figure 5.1.b are eye images extracted from the IOM videos, with only about 120 pixels 

across that can be counted across the iris region. 

 

          
(a)                                                                                     (b) 

           
(c) (d) 

Figure 5.1: Eye images acquired from IOM system and traditional iris acquisition method: (a), (b) eye 
images extracted from the IOM system; (c), (d) eye images from CASIA database  (version 3) using the 

traditional method. 
 

Because the video of subjects were taken at some distance, J.R. Matey et al. have 

shown that frames taken of a moving subject walking through a view field which is about 

12 cm in depth yield the perfect focus distance which can later on be used for iris 

verification (Matey, Naroditsky et al. 2006). While conducting iris verification with the 

IOM system, with the video yielding 15 frames/s and with the assumption that the subject 

is moving at a speed of 1m/s, there are no more than 2 frames that can be captured within 
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that 12 cm depth of field. Consequently, for subjects on the move, iris images extracted 

from such limited frames may suffer from various kinds of noisy effects caused by off 

angle, motion blur, occultation caused eyelid or eyelashes, and unexpected reflections. 

Some examples of noisy iris image obtained from IOM system are shown in Figure 5.2. 

 

   
                                  (a)                                      (b) 

              
(c) (d) 

Figure 5.2: Noisy eye images acquired from MBGC database: (a), (b) eye images with eyelids occultation; 
(c), (d) eye images with motion blurs 

 

Thus, a good segmentation approach which can extract most useful iris 

information from the video would be crucial for the performance of video-based iris 

recognition systems.   

For the work presented in this chapter, MBGC database provided by National 

Institute of Standards and Technology (NIST) is used for experimental evaluation. Also, 
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the NIR-face-video sequences used from the database are those that were captured by the 

IOM system supplied by Sarnoff.   

5.3. Eye Images Extraction and Pupil Localization 

5.3.1. Eye images extraction from video frames 

    The NIR videos of MBGC database have a resolution of 2048x2048. All the 

videos that were captured towards were of the subjects’ upper bodies while they were 

walking towards the video camera system. And the eyes of subjects may appear at 

different locations in the acquired video frames.  Thus a necessary first step would be to 

isolate these eye areas in the video. 

    Because of the specified NIR illumination system of IOM system, there are 4 

pairs of reflection spots that appear at the corneal of each eye. These reflection spots are 

located in 2 parallel lines which are known to have a horizontal interval of 35 to 50 pixels 

between them in the frames that are acquired at the aforementioned preset distance. 

Our method to separate the eye images from the video frames is based on this 

particular configuration of the reflection spots. Since the subject is most likely to be 

walking when the video is taken, it was determined that the 8 reflection spots which 

usually appear in one eye, do not necessarily appear for both eyes simultaneously. An 

intensity threshold of 180 is used to extract these spots, and for every detected spot, if 

there is another spot that can be found within a certain horizontal distance, a pair of 

reflection spots is declared to have been identified. If there is a second pair of spots that 

can be found at several pixels below the detected pair, that area would be declared the 
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eye part of the subject within a given frame. Figure 5.3 shows an example of extracting 

eye images from a frame. Eye images for subject’s right and left eyes were extracted with 

a size of 400x300 pixels.  

 

Figure 5.3: One frame of video and right and left eye images extracted from the frame. (a)  frame of 
subject’s NIR video with face appearing, (b),(c) right and left eye images extracted from the frame 

 

 A measure of caution is considered in view of the fact that parts and objects of the 

subject, such as skin, teeth, jewelry, and glasses among others may generate similar 

reflection spots that may confuse the recognition process. To reduce the computational 

burden and system errors, a verification step was taken after the reflection spots were 

found. For a pair of spots, the interval between them is either iris or pupil. In MBGC 

database, iris usually has gray level intensity between 80 and 120, and pupil has intensity 

between 20 and 45. We used this specification to verify that the extracted image is indeed 

that of the eye.  Although some “none-eye” images may still be extracted and verified, 

the pattern feature of these images would not affect the performance of the iris 

recognition system. 
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5.3.2. Pupil localization and center detection 

The iris part can be defined by two circular boundaries (Ma, Tan et al. 2004). 

They are the pupil boundary which is the inner boundary between the pupil and the iris, 

and the iris boundary which is the outer boundary between the iris and the sclera.  These 

two circles are considered to be concentric for some traditional iris segmentation 

methods, although it has been generally accepted that those two circles usually do not 

share the same center. For conventional methods that rely on high image quality, the error 

generated by treating the two boundaries as concentric circles is relatively small. For the 

iris images obtained from NIR videos with lower image quality the two circular 

boundaries are assumed to be nonconcentric. 

The step for defining the pupil boundary and center would follow after the eye 

images are extracted. We have found that, for a portion of the eye images, the shapes of 

the pupil boundaries were impacted by the reflection spots, such as in the example shown 

in Figure 5. 4. (a).  

The pupil parts of the eye images extracted from the NIR videos are somewhat 

darker than other parts of the images. Furthermore, the pixels of the pupil part usually 

have similar gray level intensities. Thus, adaptive histogram method was used to find the 

threshold for the pupil of each eye image. After studying the eye images, the average 

gray level intensity of pupil part for each eye image is found to be between 30 and 75. 
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(a)                                                                (d) 

   
(b)                                                               (e) 

    
(c)                                                          (f) 

Figure 5.4: Adaptive histogram methods for defining the pupil. (a)  eye image extracted from the video 
frame; (b) histogram analysis for image gray level intensities; (c) the extracted pupil part after transforming 

(a) to binary map; (d), (e), (f) demonstrate another case with the same organized order 
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Thus, we have 
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where KI  is the gray level intensity, kG is the group intensity for every M  

neighboring gray levels of the intensity histogram (here, M =10),  jD is the derivative 

between two group intensities with an interval of M . From (3) we obtain TD  which is 

the maximum value of group intensity derivative and with the same value of T, the 

threshold can be obtained.   

After transforming the eye image to a binary map, all the pixels that have gray 

level intensities greater than the set threshold TI   are assigned a value of 255, and all the 

remaining pixels are set to 0. Figure 5.4 (c), (f) show two examples of the obtained binary 

maps. The left limit (start)  LX and right limit (end) rX  of the pupil which refer to the 

black parts as in Figure 5.4 (d),(f)  can be found in horizontal direction; and the top limit 

TY and bottom limits BY of the pupil can be found in the vertical direction. The center of 

the pupil can thus be defined as )2/)(,2/)(( BTRL YYXX  , and the radius of the pupil 

can be formulated as ))(),(( TBLR YYXXMax  . 

With this method, some errors may occur, which are caused generally by the 

heavy dark eyelashes , especially for those subjects who use cosmetic on their eyelashes. 

It is thus appropriate to investigate the area surrounded by the reflection spots.     
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5.4. Defining Outer Boundary and Eyelids  

5.4.1. Defining outer boundary 

The outer boundary is defined as the boundary between iris and sclera. To 

delineate the outer boundary, the first step is to perform edge detection to get the edge 

map of the eye image. The second step is to apply the circular Hough transform.  

The circular Hough transform is a voting based computational algorithm. For a 

2D image, three parameters (x, y, r) can define a circle, (x, y) is the coordinates of the 

center of the circle, and r is the radius of the circle.  During the circular Hough transform, 

every point on the edge map would vote for a group of circles, the circle which gets the 

most votes would be the desired one. Although the circular Hough transform is a 

powerful algorithm, it also carries with it a heavy computational burden, and still the 

results may be impacted by the inherent noise effects. To improve the performances of 

the circular Hough transform, we have made some modifications towards both reducing 

the computational complexity as well as the noise effects. 

With the generated  edge map, instead of the traditional four directions Sobel edge 

detection, we modified the Sobel algorithm to only conduct the edge detection in the 

horizontal direction. Figure 5.5 illustrates the difference in the results of the two 

approaches. Figure 5.5.c shows the edge map generated by only performing the edge 

detection in the horizontal direction, in contrast to with Figure 5.5.b which is generated 

by edge detection in all 4 directions, the edge points have been significantly reduced, and 

the impacts from the upper and lower eyelid edges are likewise reduced.  
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(a)                                                (b)                                             (c) 

  
Figure 5.5: Sobel edge detection for four directions vs. the Sobel edge detection for horizontal direction: (a) 
original eye image; (b) resulting edge map using all four directions; (c) resulting edge map using only the 

horizontal direction. 
 
After generating the edge map, based on the information we obtained from the 

previous steps, we also set some constraints for both the desired circle center and radius. 

First, the circle of pupil has been defined. Although the inner and outer boundaries are 

usually non-concentric, but it would be safe to assume that the outer center is located in 

the inner circle for most cases. And we also set lower limit of the radius of the outer 

boundary to be half of the interval distance between two lines of reflection spots, and the 

higher limit of the radius to be 5 times that of the radius for the pupil circle. 

With these modifications, we have obtained the desired performance in search of 

circular shapes. Even in the presence of serious noise effects, the results obtained were 

still accurate. Figure 5.6 d. shows the results of the modified Hough transform applied to 

a blurred eye image, with constraints as indicated by Figure 5. 6 b and Figure 5.6 c,   

    
(a)                                                                (b) 
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(c)                                                              (d) 

Figure 5.6: Example of modified Hough circular transform: (a) original eye image; (b) edge map, the center 
of outer boundary was constrained to be located in the inner circle; (c) edge map, where the edge points of 

the outer boundary were constrained to be located in the ring area between the two circles; (d) resulting 
outcome of the modified Hough circular transform. 

 

5.4.2. Detecting the Boundaries for the Upper and Lower Eyelids 

With the video-based iris recognition process, considerable eyelids occultation 

often occurs.  It is therefore important to detect such boundaries and to determine the 

extent of their occultation.  

To detect the eyelids, the Hough line transform is used on the edge map of the eye 

image. However, with this type of algorithm, the key problem for dealing with noisy eye 

images is that the obtained edge maps are usually non-ideal. We have found that this 

problem was especially serious for the extracted eye images from videos. As shown in 

Figure 5.7. a,  most edge points appearing on the map are undesired which are caused by 

the eyelids, reflection inside the iris and the texture of the iris patterns. To resolve this 

issue, an improved approach for detecting the eyelids is proposed in order to overcome 

the occultation of the eyelids.  

Because the slops of the upper and lower eyelids are flat for most the length of the 

eyelid, our approach starts by conducting the edge detection only in the vertical direction. 
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The generated edge map would thus highlight the desired edges of the eyelids. Figure 

5.7.a is one such example. Figure 5.7.b shows the reflection area we obtained by 

expanding every found reflection point to a 5x5 mask.  Thus, the detected reflection map 

can remove most of the edge points caused by reflections. Figure 5.7.c is the edge map 

after removal of the reflection.  

 
(a)                              (b) 

 
(c)                              (d) 

 
(e)                               (f) 

Figure 5.7: Example of the proposed method for detecting upper and lower eyelids: (a) edge map found 
with only the vertical direction operator; (b) detected reflection area; (c) edge map after removing 

undesired edge points; (d) detected points which are on the edge of iris and upper eyelid; (e) detected points 
which are on the edge of iris and lower eyelid; (f) resulting outcome of the iris detection through eyelids 

detection. 



 66

 
To distinguish the points which were only on the edges between iris and eyelids, 

we first pick a patch of area to calculate the average gray intensity of the iris.  As can be 

seen from Figure 5.8, we choose the area just below the pupil, since this area is most 

unlikely to be affected by the reflections or overlap with the eyelids. As such, the size of 

the patch is chosen to be 15x15 in size, and the upper boundary of the patch is 

10/R below the pupil’s lower boundary, where R is the radius of outer boundary. 

 

Figure 5.8: Example of obtaining average gray intensity 
 

With the information of outer boundary circle, we made rays which start from the 

center of the circle and toward every point on the upper or lower arc of the circle (central 

angle   =120). In Figure 5.9.c, for each ray, if a edge point was found, M  points beyond 

this point in the ray’s direction would be verified by AI , if N  of  points can be considered 

as points on iris, the found edge point would be ignored, and searching would go on until 

reach the circle boundary. In this work, we set 8M  and 5N .  For the example 

shown earlier in Figure 5.7, part (d) shows the verified edge points for the upper eyelid, 

and (e)  the edge points for the lower eyelid. 
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After the verified edge map was generated, the Hough line transform is then used. 

Since most of the undesired edge points would be removed before this step, the results of 

the Hough line transform appears to be more accurate and more tolerant of noise. 

 

For some cases, it would be more accurate to describe the eyelid with two lines. 

In our approach, after the first line was detected, we remove the edge points on that line, 

then, conduct Hough transform again, if there are enough votes, another line would be 

determined. An example of these cases was shown in Figure 5.9. 

 

 
(a)                                            (b) 

  
(c)                                            (d) 

Figure 5.9: Example for detecting eyelid with more than one line: (a)  original edge map; (b)  verified edge 
map before first Hough line transform; (c) edge map before the second Hough line transform towards upper 

eyelid; (d) final results of the iris extraction process 
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5.5. Verification and Correction of Outer Iris Boundary 

Although outer iris boundary was assumed to be circular for most of the previous 

research studies on iris segmentation, it has been pointed out that human iris boundaries 

are usually noncircular . For same cases, describing the iris boundaries as circles could 

yield inaccurate segmentation results and impact the verification performance eventually. 

This problem is especially crucial for video based iris recognition such as with the IOM 

system, because of the recurring off angle effects during video capturing and also because 

of the relatively small size of the iris image obtained from the frames. To overcome this 

problem, a new method is proposed. 

This new method is based on three steps: (1) circle center correction, (2) multiple 

circle (or Arc) searching, (3) multiple arcs and lines connection.   

Although Hough circular transform is very powerful among circle searching 

algorithms, some noise effects such as off angle, too many edge points outside of the iris 

caused by the eyelashes or skin, and the noncircular shape of outer iris boundary, all can 

lead to inaccurate results of the transform. Figure 5.10.a is one such example, where the 

black circle is the result of the traditional first Hough transform. The outer boundary can 

not be correctly described. 

The first step of our proposed method follows after conducting Hough Circular 

Transform for detecting the outer boundary. In this step, we need to find the correct 

center of iris to verify the original circle center found from the first Hough circle 

transform. If the difference is greater than an adaptive threshold, we consider that the 

outer iris circle needs to be corrected. For this study, we set the adaptive threshold to 

be / 6R , where R is the radius for outer iris circle. We adopted the pupil centers which 
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were found before (this step described in section 5.3.2) as the correct iris center. Figure 

5.10.b indicates those two centers.  

   
(a)                                   (b) 

   
(c)                                  (d) 

   
                                                       (e)                                    (f)    

Figure 5.10: Example for defining the noncircular iris boundary. (a) The black circle is the result of the 1st 
Hough transform; (b) shows the center of pupil and center of original iris center; (c) the square shows the 

target region which was defined by two centers (d) the white circle is the result Hough circle of target 
area;(e) shows the intersection of two circles with the detected lines for upper and lower eyelids; (f) is the 

result after the noncircular correction 
 

Then a target area would be selected for conducting Hough circular transform 

again. Based on the study of inaccurate results of Hough transform, the desired iris 
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boundary is usually inside the Hough circle. The reason of that is the edge points outside 

the iris usually vote for a larger circle and off angle iris usually smaller than its actual 

size. Thus, the target area was expected to be the region between the real iris center and 

the arc on the opposite side of original circle. The method introduced in section 4.6 is 

adopted to search for the targeted area (rectangle) for conducting the Hough transform. 

In this study, we set the width of the rectangle to be 5/4R , and the height to 

be R2 . Another Hough transform will be performed on the edge points inside the target 

rectangle. Since the Hough transform is based on voting, to avoid uncertain outcomes, we 

set an adaptive voting count threshold such that if the highest voting count is below this 

threshold, the circle will not be generated. The white circle shown in Figure 5.10.d is an 

example of the results obtained because of this step.  

The intersection of two circles could be used to describe the noncircular iris. The 

upper and lower eyelids lines would be used here to remove unexpected eyelids and 

eyelashes. Thus, as Figure 5.10 (e) and (f) shown, the final result of the detected 

boundary consists of multiple arcs and lines, and would be more accurate for describing 

noncircular iris boundaries. Three other examples that have been generated using this 

method are as shown in Figure 5.12. 

    Comparing with other iris segmentation methods such as active contour , with 

respect to describing noncircular iris boundaries, our method is more tolerant to noise 

effects. Because we still use Hough circular transform to detect circles (arcs), even when 

the edge points were partially missing or incorrect, the Hough transform results remained 

the same.   
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(a)                                      (b) 

   
(c)                                     (d) 

 
(e)                                      (f) 

      
Figure 5.11 : Three other examples, (a), (b) show one example which 2 arcs and 3 lines were used together 
to describe the boundary; (c), (d) show Hough transform can be corrected through this process, the larger 

circle was the original one obtained from the first Hough transform; (e),(f) show how this method deal with 
the eye image which is out of video frame, for adjusting the eye image to our segmentation system, we fill 

the out range part of image with the same pixels of last line or column. 

5.6. Experimental Results 

Experimental evaluation of this method involved the use of NIR-face-video data 

from Multiple Biometric Grand Challenge (MBGC) database- version 1. All the NIR 

videos were captured by acquisition equipments provided by Sarnoff with the IOM 

system which is similar to the one introduced in . There are 149 videos in the NIR-face-
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video portion of MBGC-version 1. Each video captured one person’s face video when the 

person walked through the portal. The resolution of the video is 2048x2048, and the 

frame rate is 15frames/s. There is no specific location for the positioning of the face 

during video capturing, thus the eyes may appear in any part of the video frames. Each 

video consisted of about 20 frames, among these frames, as indicated before, there are 

about 1 or 2 frames that could have been captured within the desired capture volume . For 

the rest of the frames, images of the eye tend to suffer from the effects of defocus and 

blurring with different degrees, and there are several other frames that do not contain the 

eye portion.   With the eye image extraction used in our approach, the image size is 

400*300 for each eye. The pixels across the iris are about 120 for average, and for the 

pupil, the pixels range from 12 to 80, which is still considered significant. 

 

    
(a)                                              (b)                                        (c) 

 

 
 

(d) 
 
 

Figure 5.12: An example of successful segmentation: (a) eye image extracted from the video; (b) detected 
iris boundary; (c) result of the segmented iris; (d) polar transform. 
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(a)                                 (b) 

   
(c)                                (d) 

   
(e)                                  (f) 

Figure 5.13: Error examples of segmentation results due to other effects: (a) caused by jewelry; (b) caused 
by heavy eyelids occultation; (c) caused by unexpected reflection; (d) caused by the eye is out of the video 
frame range;(e) caused by  eyeglasses;(f) caused by unexpected reflection; (d) caused by the eye is out of 

the video frame range;(e) caused by  eyeglasses;(f) caused by blurred edge between eyelid and iris 
 
Also, we have obtained some inaccurate results, as shown in Figure 5.14. Because 

of taking iris video in the less constrained environment, some unexpected situations 

seldom happen, but most of those cases can be avoided if some mild adjustments were 

applied to subjects during the verification process. 
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Since this study is focused on segmentation, and because the size of NIR-face-

video data is relatively small, we conducted the experiment all the eye images extracted 

from 149 video, and assessed the segmentation results in terms of accuracy as shown in 

Table.1.  

Table 5-1: Experiment results based on different levels of eye image extraction constrains. 
 

Test 
result 

Total 
extracted 

eye images 

Average eye 
images for 

each subject 

Total 
errors 

Accuracy 

Test 1 657 4.4 38 94.216% 

Test 2 891 5.9 57 93.603% 

 
With the system designed using C++, the average eye image extraction time for 

one frame of video is about 0.02s, and the average processing time for one iris image is 

about 0.71s. The total extracted eye images vary the different extraction conditions 

initially imposed. With less strict conditions we obtained more eye images from the 

videos. As more eye images are extracted, the more defocus or blurred images would be 

enrolled to the verification system, which would hinder the iris verification process. As 

Table.1 revealed, the accuracy just slightly drops as more images were obtained, which 

indicate that our approach remains nonetheless tolerant to noise.   
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6. Iris Recognition Experiments on Video Images 

6.1. Introduction 

This chapter reports on the results obtained through experiments that have been 

conducted on the less-constrained video based iris recognition process. Some key 

modifications have been made to improve the recognition accuracy rate in terms of both 

the false acceptance rate (FAR) and the false rejection rate (FRR).  

 In the less-constrained video-based iris recognition process, the test or subject iris 

videos/images and the enrolled iris images are acquired with different acquisition systems. 

To accelerate the verification or identification process and hence improve the 

convenience of the users, the test iris images are taken with NIR video while the subjects 

are on the move (Phillips 2009; Zhou, Du et al. 2009). The enrolled iris images are taken 

with the conventional acquisition system to ensure the quality of the iris images. In the 

matching step, the verification/identification result is given by comparing the similarity 

distance of encoded signature from test images with each of the signature dataset from 

the enrolled iris images.  

The process of the less-constrained iris recognition is demonstrated in Figure 6.1. 

In these experiments, the subject videos are from the NIR-face-video dataset of Multiple 

Biometric Grand Challenge (MBGC) database (version 1) provided by the National 

Institute of Standards and Technology (NIST), the enrolled iris images are from the NIR-

iris-still dataset of the MBGC database (version 1). The subject videos are taken with a 

prototype of the Sarnoff Iris on-the-Move (IOM) system which is introduced in Chapter 
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III. The enrolled iris images are taken with the LG IrisAccess 2200 which is one of the 

commercial iris recognition systems based on the conventional acquisition system.  

 
 

Figure 6.1: Process of less-constrained iris recognition based on video 
 

The test iris images are extracted and segmented with the segmentation approach 

that was used on the less-constrained video-based iris recognition process as detailed in 

chapter III. Then the enrolled iris images are segmented with an implementation that was 

based on the ICE baseline of Biometric Experimentation Environment (BEE)(X. Liu 

2005). Some modifications have been made to improve the segmentation accuracy. The 
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ICE baseline of BEE is a conventional Daugman-like iris recognition approach 

implemented by the University of Notre Dame similar to the original approach 

implemented by Libor Masek (Masek, 2003).  

The amount of test iris images and enrolled iris images are listed in Table 6.1. The 

test iris images are acquired from 149 NIR videos with the less-constrained segmentation 

approach.  The enrolled iris images are a sub-set of the NIR-iris-still dataset.  

Table 6-1: Amount of the test iris images and enrolled iris images 
 

Image 
group 

Left  Right Total 

Test Iris 
Images 

139 172 311 

Enrolled 
Iris Images 

109 109 218 

 

To ensure the compatibility in matching the two sets of iris images, each iris 

image needs be transferred from a circular ring in Cartesian coordinates to a rectangle in 

polar coordinates for normalization (Daugman 2001). The images segmented with non-

circular correction method are excluded as those segmentation results can not be 

normalized as a circular ring.  For the test image collection, multiple iris images can be 

extracted and segmented from each subject eye, and for the enrolled iris image collection, 

the NIR-iris-still dataset also provides multiple still images with different optical focus 

for each subject eye. Because this study focuses on the recognition process, some of the 

extracted iris images yielding degraded image qualities are excluded, maintaining only 

those images with better quality extracted from the same subject/eye. A single NIR still 
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image with good quality for each subject eye is enough to perform this recognition 

process. 

 

6.2. Optimization in Normalization and Encoding 

The resolutions of the enrolled iris images and test iris images can be different 

due to the different acquisition methods, optical focus, and distances between subjects 

and camera. The dilation of the pupil can also change the iris region significantly. Each 

segmented iris image needs to be normalized to the same dimension before encoding it to 

a signature code. In this study, the segmented iris image with a shape of circular ring in 

Cartesian coordinates is transferred to the shape of a rectangle in the polar coordinates 

with the rubber-sheet algorithm proposed by Daugman (Daugman 2004). 

The polar plot which yields a signature of the object is as illustrated in Figure 6.2, 

where Equations 6.1, through 6.3 apply. Point O in Figure 6.2 defines the pupil center, r 

is a value on the unit interval, and    is an angle in the interval [0,2 ]. Thus, each point 

on the iris )),(),,((  ryrxI in the Cartesian coordinates can be defined as ),( rI  in the 

polar coordinates, regardless of the difference in the image resolution and pupil dilation. 

In Equations 6.2 and 6.3, ( )(px , )(py ) and ( )(ix , )(iy ) are the two points along   

located on the inner iris boundary and the outer iris boundary, respectively. Both 

concentric and non-concentric iris shapes can be converted using polar plots.   

),()),(),,((  rIryrxI                       (6.1) 

)()()1(),(  ip rxxrrx                        (6.2) 

)()()1(),(  ip ryyrry                       (6.3) 
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Figure 6.2: Illustration of normalization step with the rubber-sheet algorithm 

 

Two examples of polar plots are shown in Figure 6.3. Figure 6.3.(a) is a test iris 

image extracted from the NIR-face-video; (c) is the result image of (a) after 

normalization, where the white part (set =1, in the image) is the detected noise region for 

eyelid, eyelash, specular reflection; (e) serves as a mask template of (c) to indicate the 

location of the noise, where regions with noise are set to be 1, and the noise free regions 

are set to be 0.  The Figure 6.3 (b) is an enrolled image; (d) is the result image of (b) after 

normalization; (f) serves as a mask template of (d). 

   
(a)                                                           (b) 

  
(c)                                                           (d) 

  
(e)                                                            (f) 

Figure 6.3: Normalization examples for test iris image and enrolled iris image 
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In the conventional iris recognition, image enhancement is rarely performed after 

the normalization process. As the image quality is good enough to contain enough feature 

details of the iris, and image enhancement may in fact negatively impact the recognition 

results.  However, for the conventional iris recognition, the image qualities of the test 

image are usually low due to lighting and off-focus effects. We have made some 

modification to the traditional recognition steps by performing histogram equalization on 

the result image of the normalization step, as given by equation 6.4.    

),(),(' jiI
TT

tt
jiI

lh

lh 



     (6.4) 

Where ),( jiI is the gray intensity of the pixel (i,j), ht and lt are the highest and 

lowest intensity value of the input image. hT is the highest intensity value in the result 

image and lT is the lowest intensity, in this study we set hT =1 and lT =0. To eliminate the 

noise effects, we use the average values of 1% of pixels with the highest intensity value 

for ht , and  lt is the average value of 1% of pixels with the lowest intensity value.  

Figure 6.4 illustrates two cases of the histogram equalization process. Figure 6.4 

(a) is a normalization result test image without performing the histogram equalization; (b) 

is the corresponding result after the enhancement obtained through the histogram 

equalization process.  Figure 6.4 (c), (d) are normalization result of an enrolled image 

before and after performing histogram equalization, respectively. For both of these cases, 

the images after the transformation show clearer certain feature details not visible in the 

original images, especially for the case of the test image. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.4: Iris images before and after contrast enhancement 
 
  

In the encoding part, a 1-D log-Gabor wavelet filter is used to encode the 

normalized iris images. As shown in Figure 6.5, the process starts by performing a 1D 

FFT on each row of the normalized iris image.  The result of FFT transform is then 

multiplied with a 1D Log-Gabor filter as given by Equation 6.5.  
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Figure 6.5: Encode process 
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In equation 6.5 the value defines the bandwidth of the filter, and 0f refers to the 

center frequency of the filter. An inverse FFT transform would then be performed on the 

result of Log-Gabor filter. As afinal step, a phase-quadrant demodulation method 

(Daugman 2004), as illustrated in Figure 6.6, is used to encode the iris to a set of binary 

codes. Each input to the demodulation method  imagerealH ,  contains the real part and the 

imaginary part. The phase of the  imagerealH ,  is thus quantized to a pair of codes. 

       





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else

realsign
S
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Each of the input complex number can be encoded to a pair of code (S1, S2), with 

the four sets of the values as (1, 1), (1, 0), (0, 0), (0, 1). Thus the final result of the encode 

process would be a binary code with a double width of the normalized iris image. In this 

study, we set the dimension of the normalized iris image as 40x360, and the final 

encoded signature would be a binary signature with a size 40x720. 

 
Figure 6.6: Phase-Quadrant Demodulation method 
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6.3. Experiments and Analysis 

The Hamming Distance is used in this case to match the similarity distance 

between two encoded signatures. The Hamming Distance can be obtained using 

Equations 6.7, and 6.8. 
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where jT denotes the jth bit of the encoded binary iris signature for the test image, 

jE denotes the number jth bit of the encoded binary iris signature for the enrolled image. 

N is the total number of bits on the iris signature, jTn  refers to the jth bit of the mask 

template, which indicates the locations of all the noise regions. We have 0jTn when the 

jth bit of the signature is not on the noise region, otherwise, 1jTn . 

The lower the Hamming distance is, the more similar the two iris images are. 

Although two images taken with an identical eye may not exactly be the same, they 

usually yield the lowest Hamming distance. A threshold can be used to make the decision 

if two irises are identical. In our study, the test iris images are extracted from the NIR-

face videos. After the video extraction, segmentation and quality evaluation, 305 images 

are used as the test dataset. Those test images belong to 146 individual eyes, and 85 

persons. There are 218 iris images which were collected with high image qualities which 

are used as the enrolled images. Those 218 iris images belong to 211 individual eyes and 

107 persons.    
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Table 6-2: Statistics of the test iris images and enrolled iris images. Note that for some individuals only one 

eye image is provided 
 

Image 
group 

Total 
Individual 

eyes 
detected 

Individual 
persons 

Test Iris 
Images 

305 146 85 

Enrolled 
Iris Images 

218 211 107 

 
The comparison is between each of the test iris image with each of the enrolled 

iris images.  The total amount of comparison trials is 66,490, which is including 66,192 

inter-class comparisons and 298 intra-class comparisons. Intra-class is defined as two iris 

images whith one being the test image from the NIR video, and the other the high quality 

still image belonging the identical eye, and the intra-class refers to those pairs of images 

belonging to different eyes. Figure 6.7 shows the distributions of the Hamming distances 

generated by the inter-class pairs and the intra-class pairs in amounts and percentages. 

 
(a) 
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(b) 

 
(c) 

Figure 6.7: Distributions of Hamming Distance for inter- and intra-class comparisons 
 

As can be seen from Figure 6.7, the range of the Hamming distance in the intra 

class, which is from 0.3 to 0.48, is larger than the distance range for inter class, which is 

from 0.42 to 0.49. The reason is that the image quality for the test images vary, if the 

quality is low enough, even when comparing with the enrolled image acquired from the 

same eye, the similarity between them would be just like comparing a pair of images 
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from the inter class process. Figure 6.7 (c) illustrates the Hamming distance distribution 

in percentage for both of the groups. It does also show as would have been expected an 

overlap between the two distributions, but it does clearly portray a bimodal distribution. 

The recognition rate on the basis of FRR and FAR with respect to the 

corresponding Hamming distance is shown in Figure 6.8. The FRR and FAR are as 

defined by Equations 6.9 and 6.10, respectively.   

 
Figure 6.8: False Rejected Rate (FRR) and False Accepted Rate (FAR) vs. Hamming Distance 

 

grantedbeshouldtrialsTotal

trialsqualifiedrejectedfalselyofamountThe
FRR                     (6.9) 

rejectedbeshouldtrialsTotal

triesimposteracceptedfalselyofamountThe
FAR         (6.10) 

 The improvement in recognition rate of the optimization step can be verified by 

the relative operating characteristic (ROC) curves shown in Figure 6.9. The best 

performance is given by the process which relied on histogram equalization on both test 
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and enrolled classes, which refers to the red curve. It yields lower FAR with a certain 

FRR rate than other two curves. 

 
 

Figure 6.9: ROC curves for three cases as the one with histogram transform on the test and enrolled images, 
the one with the histogram transform on the test images only and the one without this histogram 

enhancement 
 

As can be seen in Table 6.3, when the threshold of for the Hamming distance is 

0.414, the FAR is 0, which means none of the 66,192 trials from inter class is accepted, 

with a tradeoff of an FRR rate at 41.61%. When the threshold is set to be 0.418, the FAR 

is 3.0215e-005, with a better FRR at 37.92%. 

Because multiple iris images for the same eye can be extracted from different 

video frames for each person. If we treat a group of iris images as one subject, which 

means the lowest Hamming distance of such a group is registered to that eye, at the 

Hamming distance threshold of 0.418, the FRR for the eye would be 18.85%, and the 

FAR is 0. 
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Table 6-3: FRR and FAR with corresponding Hamming distance 

 

             Hamming 
Distance 

FRR FAR 

0.414 0.4161 0 

0.415 0.4128 1.5108e-005 

0.416 0.4060 1.5108e-005 

0.417 0.3960 3.0215e-005 

0.418 0.3792 3.0215e-005 

 

In the identification process, all the test images extracted from left and right eyes 

of one person can be seen as one group of images, and the lowest Hamming distance of 

that group would be registered to that person. Thus, at the Hamming distance threshold of 

0.418, the FRR for the person would be 17.64%, and the FAR is 0.  These are viewed as 

quite accurate given the most important measure is that of the FAR, and that such results 

are based on the less constraining environment where subjects are on the move. 
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7. Conclusion and Discussion 

This dissertation introduced an innovative approach towards less-constrained iris 

biometrics. Two major contributions are covered, one is an award-winning segmentation 

approach towards the less-constrained iris biometrics taken under visible lighting 

conditions, and the other is a pioneering research towards segmentation and recognition 

approaches of less-constrained iris biometrics based on the video of moving persons 

under different acquisitions scenarios.  

This research endeavor achieved high performance on eye images from the 

UBIRIS.v2 database, which contained very realistic noise effects. The accuracy of the 

proposed approach was evaluated as part of the NICE.I contest, ranking the method with 

the sixth lowest error rate among 97 participants worldwide. This accuracy is augmented 

in merit by the fact that the processing speed of the proposed approach is near real-time, 

requiring only 0.83s to perform all the required steps for a final iris segmentation.  

Furthermore, the proposed approach relied on an effective search for the sclera 

area of the image. A threshold of saturation value (the HSI model) was obtained by 

calculating the biggest group derivative of the histogram of the original color image. 

Then, to remove the remaining undesired reflections or bright skin, the value of every 

non-black pixel was replaced by the average intensity value of a 17x17 block around it. A 

binary map was then generated to extract the sclera area. This process allowed for a 

narrower target area with respect to the size and the location on the image of the sclera in 

order to accelerate the circle search process for the outer iris boundary detection.  
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The outer boundary of the iris was detected using a modified fast Hough circular 

transform. The modifications considered were specifically established to alleviate the 

computational burden of the original Hough transform while still seeking a highly 

accurate segmentation outcome. The same step-length is used for the three iterations of 

the Hough circular transform, yielding a significantly faster processing speed. The use of 

this step-length is complemented with an optimization method designed to yield an even 

higher accuracy in the results.  

To overcome various noise effects, a new approach was devised to identify the 

edge points located on the boundary between eyelid and iris. The identification is based 

on verifying whether each edge point actually belong to the eyelid and not to the iris 

region. A linear Hough transform is used recursively in this case to extract the edges of 

eyelids.  

A new method for verification and correction for the outer iris boundary was also 

devised. The new strategy consisted of (1) verifying and correcting the center position of 

the outer iris boundary, (2) localizing the target region, (3) performing Hough circular 

transform with different weights in and out of the target region, and (4) verifying the 

reliability of the results in terms of the number of edge points which actually belong to 

the boundary of the iris. As a result, multiple arcs and lines were used to delineate a non-

circular iris boundary, and correct the initial inaccurate results of the circular Hough 

transform.  

For the final step, in order to generate a more accurate pupil boundary in the edge 

map, histogram equalization was used to enhance the contrast between the iris and pupil. 
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Consequently, the extracted pupil area is removed from further consideration, allowing 

for an iris recognition process to focus solely on the delineated iris area.  

The video based iris acquisition system as described would release the rigid 

constraints of the iris verification process so that the iris recognition can be not only 

accurate but also more reliable and faster.  But the iris images obtained from the new 

acquisition system are usually much lower in resolution than those obtained from the 

traditional system. And the conventional segmentation methods can not deal with those 

images very well. This approach was designed towards dealing with various noise effects 

and the smaller iris size provided by the video acquisition system. However, it is worthy 

to mention that the proposed approach not only worked well for the NIR face video, it 

also produced a good  performance in color eye images which were taken in the less 

constrained environment where persons are on the move. 

The approach as considered starts from the eye image extraction which is based 

on the reflections on the eyes generated by the illumination system. And then an adaptive 

histogram method is used to detect the pupil. The pupil boundary was described by a 

circle as means to help detect the iris outer boundary, eyelids, and eyelashes. The outer 

boundary of the iris was detected using the Hough circular transform, some modification 

was then made on the Hough transform to ease the computational burden and improve 

accuracy in the detection results. A new eyelids and eyelashes detection method was 

developed in support of this method in order to overcome the effects of many undesired 

noise points which hinder the detection process. With our method, the pixels which are 

on the edge between iris and eyelids or eyelashes will be detected first, and then the 

Hough line transform is consequently applied.  
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Because of off angle, eyelids occultation, small size iris, non-circular iris outer 

boundaries that would appear more often for the eye images acquired from the less 

constrained environment, a new method for verification and correction for outer iris 

boundary was proposed to deal with these unpredictable situations. As such, the method 

is based on the iris center correction and on performing circle searching algorithm to a 

select region. Multiple arcs and lines can be used to describe an iris boundary, thus non-

circular iris boundary would be described correctly. 

Following the segmentation stage, some pioneering experiments on the 

recognition stage of the less-constrained video iris biometrics have been done. In the 

video based less-constrained iris recognition, the test or subject iris videos/images and the 

enrolled iris images are acquired with different acquisition systems. To accelerate the 

verification or identification process, the test iris images are taken with NIR video while 

the customers are on the move. The enrolled iris images are on the other hand taken with 

the conventional acquisition system to ensure the quality of the iris images. In the 

matching step, the verification/identification result was accomplished by comparing the 

similarity distance of encoded signature from test images with each of the signature 

dataset from the enrolled iris images. With the improvements gained, a recognition rate 

of FAR at 0 and FRR at 17.64% for 85 tested users is achieved. 

For most the intra-class trials which generate the high Hamming distance which 

eventually lead to a false rejected cases is due mainly to the low quality of the test images. 

If these low quality images are excluded by an automated quality evaluation process, the 

FRR would be surely improved. Secondly, for a considerable portion of false accepted 

cases, the quality of the test image is too low to show enough iris features, meanwhile, 
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for a small percent of people, their iris features are relatively less than most of others, 

which leads to the false acceptance. For this point, the method such as analysis of energy 

of high spatial frequencies can be conducted to the segmented iris region to lower the 

false acceptance rate. 

    Another possible way to improve the results on video based iris recognition is 

to use different weight to the similarity measures. As can be seen, many of the test 

images suffer from the occlusion of eye lids and eyelashes, especially for the upper iris 

region, which refers to the first half of the normalized rectangle iris image. Although, the 

eye lid detection is performed, it is still difficult to exclude all of the occlusions, 

especially for the eyelash parts. With a weighted similarity measures, the upper iris 

would be given by a smaller weight than the lower part of the iris, it would likely 

improve the matching results.     

Through our study, the NIR face video does have the capability to record enough 

iris information for recognition, but there are also some issues that remain to be 

addressed within the acquisition system. One of most important is that some of the 

subjects that walk through the portal miss the NIR flash. In other words, when the flash is 

on, the subjects are either in front or behind the best focus distance, thus the eye image is 

not bright enough to retrieve. This issue could be resolved by calculating the speed of the 

subject and adjust for the best time to turn on the NIR flash.   

 In retrospect, in light of the encouraging results obtained even with the 

challenging dynamic environments where subjects are on the move, the new methods for 

segmentation and iris recognition as proposed show great potential and high practical 

implications for iris biometrics research and system design. 
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