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Figure 2. Linear relationship between ecosystem respiration (ER) and year at peak season 

for temperature control plots (T-CTL), and warmed plots (open top chambers, OTC) in 

Dry and Wet sites at Atqasuk and Barrow. 
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Figure 3. Ratios of gross primary productivity (GPP) to ecosystem respiration (ER) for 

temperature control plots (T-CTL), and warmed plots (open top chambers, OTC) in Dry 

and Wet sites at Atqasuk and Barrow.  Dashed line (1:1) represents the CO2 balance line 

at which net ecosystem exchange is zero.  GPP/ER ratios less than one represent CO2 

sources. 
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Figure 4.  Light compensation point (LCP) for the warmed plots (open top chambers, 

OTC) and temperature control plots (T-CTL) in the Dry and Wet site at Atqasuk and 

Barrow.  LCP was calculated using Eq. 2.  Bars represent air temperature and error bars 

the standard error of the mean.   
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Figure 5.  Apparent quantum yield () for the warmed (open top chambers, OTC) and 

temperature control plots (T-CTL) in the Dry and Wet site at Atqasuk and Barrow.  was 

calculated using Eq. 2.  describes the moles of CO2 fixed by moles of light absorbed.  
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5. Conclusions  

Our work shows that snow-free ecosystem carbon balance is highly sensitive to 

short-term changes in water table and warming.  However, over longer time periods, 

hydrological and temperature changed soil biophysical properties, nutrient cycles, and 

other ecosystem structural and functional components that down regulated GPP and ER 

especially in wet areas.  We have shown that following short-term warming and alteration 

of water table depth, vascular productivity can compensate for increased respiratory 

losses.  Yet, the shift from a carbon sink to source in some arctic ecosystems will depend 

on: 1) the ability of the primary producers to offset the expected increase in microbial 

activity and, 2) the availability of labile soil organic carbon as a result of permafrost 

degradation.  Even though methane flux increased with water table within years, similar 

rates between years regardless of the very distinct weather conditions underscores the 

need for greater understanding of the mechanisms favoring methane production under dry 

conditions.  

Additionally, our study revealed that coastal locations can respond differently 

than inland locations to warming and that topography importantly affects the magnitude 

of ecosystems response to warming.  Also, the relatively quick nutrient reallocation (into 

standing dead biomass) in some sites, suggests that arctic ecosystems can readily respond 

to warming, but nutrient reallocation and nutrients locked up in new organic matter can 

down-regulate GPP and ER.  Processes such as decomposition rates, change in species 

composition, herbivore, standing dead biomass quality need to be accounted for to further 

understand the long-term responses of arctic ecosystems to warming. 
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We determined that water table interacts differently with GPP, NEE and ER, and 

that: 1) low water tables increased GPP but also ER, negatively affecting NEE because 

the response of ER was larger than that of GPP, 2) high water tables reduced GPP and 

ER, but the effect on the ER was larger, therefore increasing the seasonal uptake, and 3) 

microtopography had a significant effect on ER, but not on GPP.  However, the 

difference in strength of the correlations between water table and GPP among the 

different microsites suggests that microtopography position affects the response of GPP 

to water table, especially in the wet sedge areas. 

For the combined effect of water table manipulation and temperature, we 

determined that: 1) drying increased ER and GPP, and decreased methane and thaw, 2) 

drying in combination with warming magnified the impact of drying on GPP and ER, but 

contrary to what we expected under dry conditions, warming continued to increase 

methane efflux and thaw depth, 3) flooding decreased both GPP and ER, and increased 

methane efflux and thaw depth, 4) flooding and warming also reduced GPP and ER, and 

increased methane efflux and thaw depth.  Drying alone reduced seasonal NEE, but 

warming stimulated a bimodal response to water table fluctuation with highest uptake 

under drained and flooded conditions.  

For the response of the long-term effects of warming on CO2 exchange, we 

conclude that: 1) even though we found a significant correlation between ER and 

temperature, the data do not show evidence of a decrease in the sink capacity of the 

temperature control plots of the study sites; 2) warming decreased the sink potential of 

the dry sites, especially at Barrow; 3) although we observed an increase of the standing 

dead biomass at the Wet sites, we did not observe an increase in the ER, and on average 



 141

the wet sites were CO2 sinks; 4) warming had an stronger effect on the coastal site of 

Barrow than the inland site of Atqasuk, with a particularly strong effect on the dry site.  

The prohibitive cost of large hydrological manipulations limited our study to a 

single lake, restricting our ability to scale up our results to the whole Coastal Plain.  

Additionally, the high cost of maintaining long-term manipulations such as the ITEX 

experiment represents an important constraint in the understanding of the effects of 

temperature and water table changes on some ecosystem processes.  One big challenge is 

to understand not only how the ecosystem function and structure respond to long-term 

changes in water availability and warming, but also how changes in these parameters can 

affect the biophysical properties of the ecosystems.  Another challenge would be to build 

up the capacity to scale up ecosystem processes to the landscape at different time scales 

to better quantify key physiological processes, such as productivity, and the potential 

effects of changes in biophysical parameters can have on it. 
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6. Significance  

Arctic soils store close to 14% of the global soil carbon and are susceptible to 

changes in water availability and increased temperature.  Recent estimates have 

determined that the Arctic holds close to 1672 Gt of carbon, including the deep 

permafrost deposits.  Therefore, the expected increase in temperature is very likely to 

accelerate changes in the hydrologic and thermal regimes, potentially promoting 

permafrost degradation.  In the past, most experiments have been mostly focused on 

warming, and not on the combined effects of warming and water table manipulation on 

the carbon cycle.  This study is one of the first studies to incorporate large-scale 

hydrological manipulation with warming.  Additionally, the number of long-term 

assessments of the ecosystem response to warming is low.  Although, there is still 

uncertainty not only about hidden thresholds in the effects of temperature and soil 

moisture on the ecosystem function and structure, but also in the magnitude of the 

ecosystem responses to changes in these variables at the landscape level.  My work has 

increased the understanding of the short-term effects of water and temperature 

manipulations on the ecosystem CO2 and CH4 exchange and the long-term effects of 

warming on the CO2 flux components. 
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