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Abstract

Arsenic is a global environmental contaminant that threatens tens of millions people world-wide 

via food and water. Understanding how arsenic is accumulated in crop seeds is of critical 

importance. To date, membrane transport proteins catalyzing arsenic uptake by roots and 

translocation through xylem to shoots have been characterized. However, no transporters 

responsible for loading arsenic from xylem into phloem and further unloading into plant seeds 

have been identified. In this study we demonstrate that expressing the gene for either Arabidopsis 
thaliana inositol transporter AtINT2 or AtINT4 in Saccharomyces cerevisiae leads to increased 

arsenic accumulation and elevated sensitivity to arsenite [As(III)], and Xenopus laevis oocytes 

expressing AtINT2 import As(III). When A. thaliana plants with disruptions in either AtINT2 or 

AtINT4 were supplemented with As(III) through roots, there was a substantial decrease in both the 
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arsenic content in the phloem extrude and in total arsenic accumulation in siliques and seeds. 

Similarly, when As(III) is fed through the leaves, there was a very large decrease in arsenic 

accumulation in siliques and seeds compared with wild-type plants. These results clearly 

demonstrate that inositol transporters are responsible for As(III) loading into phloem, the key step 

regulating arsenic accumulation in seeds.

Introduction

Arsenic is a Group-1 carcinogen
1
. This toxic metalloid is ubiquitous in soil and water due to 

weathering of minerals and to anthropogenic agricultural and industrial activities
2
. Arsenic 

in soil and water is taken up by plant roots and retained in edible tissues representing the 

major sources of dietary arsenic
3
. It is estimated that rice contributes up to 50% of the total 

dietary arsenic for West Bengal and Bangladesh populations and up to 60% for Chinese 

population
4–5

. Thus, reduction of arsenic in our food supply is essential for public health. A 

critical step in the accumulation of arsenic by plants is its transport across cellular 

membranes. Thus, the identification of the responsible genes and gene products can lead to 

new strategies to reduce the arsenic content of plants. The pathways of arsenic uptake by 

roots and translocation through the xylem to the shoots are known, but the key steps of 

loading arsenic from xylem into phloem and further unloading into seeds such as rice grains 

have not been understood until this study
6
.

Plants, including A. thaliana and Oryza sativa (rice), take up pentavalent inorganic arsenate 

[As(V)] into roots by phosphate transporters (e.g. PHT1;1 and PHT1;4 in A. thaliana
7
, and 

OsPTs in rice)
8–9

. Trivalent arsenite [As(III)], is taken up by cells of nearly every organism 

including plant root cells by aquaglyceroporins (AQPs)
10–13

. In rice the AQP channel Lsi1, 

which was first identified as a silicon influx transporter, also mediates As(III), MAs(V) and 

DMAs(V) uptake
12,14

. Once As(V) has been imported into the cytosol of root cells, it is 

rapidly reduced to As(III), part of which is sequestered in vacuole
15

, and another part is 

translocated to the shoots via the xylem
16

. In rice, movement of As(III) into the xylem is 

mediated by the efflux carrier Lsi2, which is a transporter for Si(IV) and organoarsenicals as 

well
12,14

. In the straw of Lsi2 mutants, arsenic accumulation was only 13 – 19% of the wild-

type (WT), and in Lsi2 grains 63% and 51% of the corresponding WT plant
12

. Lsi1 and Lsi2 
are expressed only in roots

17
 and determine the amount of arsenic loading into the xylem. 

However, xylem transport is directed mainly to the vegetative organs but not to the 

reproductive tissues such as grains
18

. This explains why Lsi2 mutations result in a greater 

reduction of arsenic accumulation in rice straw than in grains. Phloem transport has been 

considered central for arsenic translocation to the grains, and approximately 90% of the 

As(III) in rice grains were transported via the phloem
19–23

. In addition, although the Lsi2 
mutation significantly reduced arsenic accumulation in rice grains, it also led to reduced 

silicon transport, which results in poorer plant growth and yield
12

. Therefore, it is of 

considerable importance to elucidate the pathways of arsenic loading into the phloem and 

from there into the seeds in terms of human exposure to arsenic.

Depending on the growth conditions, S. cerevisiae takes up about 20% of total As(III) by the 

AQP Fps1p and about 80% by hexose transporters
24

. Mammalian GLUT1 also transports 
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As(III) and MAs(V) 
11,25

. Both the yeast hexose transporters and GLUT1 belong to the 

monosaccharide transporter-like (MST-like) superfamily. MST-like transporters mediate the 

uptake of a wide range of substrates, including pentoses, hexoses and inositols
26

. A. thaliana 
inositol transporters (INTs) represent a subgroup within the MST-like superfamily

27–28
. We, 

therefore, considered the possibility that As(III) might be a substrate of INTs. The INT 

family in A. thaliana includes three genes that encode AtINT1, AtINT2, AtINT4 and a 

pseudogene, AtINT3, that does not encode a functional protein
28

. While AtINT1 is a 

tonoplast protein
29

, AtINT2 and AtINT4 are plasma membrane H+-coupled transporters that 

mainly expressed in the companion cells of phloem and mediate inositol uptake into the 

phloem and deliver mesophyll-derived inositol to the reproductive tissues
28,30

. We 

hypothesize that AtINT2 and AtINT4 are involved in loading of arsenic into the phloem and 

are key transporters regulating arsenic accumulation in plant seeds. In this study, the arsenic 

transport properties of AtINT2 and AtINT4 were examined by expression in yeast, X. leavis 
oocytes and A. thaliana. Here we demonstrate that inositol transporters AtINT2 and AtINT4 

are also functional arsenic transporters and required for the long-distance transport of 

arsenite through the phloem and into A. thaliana seeds. We propose that inositol transporters 

in crop plants such as rice may be the key to the introduction of arsenic into the food supply 

of the majority of the world’s population.

Results

AtINT2 and AtINT4 catalyze arsenic uptake in yeast and X. laevis oocytes

AtINT2 and AtINT4 were expressed in S. cerevisiae strain D458-1B
28–31

. This strain carries 

mutations in the ITR1 gene, which encodes an AtINT ortholog, and in the INO1 gene. Cells 

of yeast strain D458-1B expressing either AtINT2 or AtINT4 were more sensitive to As(III) 

than those with vector only (Fig. 1a). To further confirm the arsenic sensitive phenotype, the 

AtINT2 and AtINT4 cDNAs were expressed in S. cerevisiae strain MG100, which has a 

disruption of the ACR3 gene that encodes an As(III) efflux transporter and is hypersensitive 

to As(III) 
32

. MG100 expressing either AtINT2 or AtINT4 became even more sensitive to 

As(III) (Fig. 1b). These results indicated that either AtINT2 or AtINT4 expression elevated 

yeast sensitivity to As(III).

Yeast strains D458-1B expressing AtINT2, AtINT4 or containing the empty vector were 

treated with 50, 100, 250 and 500 μM As(III) for 24 h, and accumulation of arsenic was 

measured. D458-1B expressing AtINT2 or AtINT4 accumulated more arsenic than those 

with the empty vector under the same As(III) treatment (p<0.001, Fig. 2a). In the 500-μM 

As(III) treatments, AtINT2 and AtINT4 expressing cells accumulated 2.2-fold and 2.5-fold, 

respectively, more arsenic than control. These results demonstrated that both AtINT2 and 

AtINT4 mediate the uptake of As(III). In this study, yeast strain D458-1B was used. This 

strain has a wild type ACR3 gene, which encodes the primary arsenite efflux transporter. In 

this case, ACR3 would act in opposition to AtINTs, therefore, arsenic accumulation in 

D458-1B cells (Fig. 2a) was considerably lower than those in an ACR3 deletion strain, such 

as the Δacr3 strain that was used to express Lsi
12

.

The transport properties of the AtINT2 for As(III) were further analyzed in X. laevis 
oocytes. Oocytes expressing AtINT2 exhibited significantly higher transport activity of 
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As(III), which was approximately 2-fold higher compared with the control (p<0.001, Fig. 

2b). These results clearly showed that As(III) is transported by AtINT2.

Myo-inositol inhibits As(III) uptake by AtINT2 and AtINT4

Yeast strains D458-1B expressing AtINT2 or AtINT4 were treated with 250 μM As(III) and 

various concentrations of myo-inositol for 24 h. The concentrations of arsenic in yeast cells 

expressing AtINT2 or AtINT4 decreased correlating with the increase of myo-inositol in the 

growth medium (r2 = 0.99, p<0.001, Fig. 3). In contrast to that, arsenic concentrations in 

yeast cells containing the empty vector did not decrease significantly with increasing myo-

inositol concentrations (Fig. 3). In D458-1B strain, the AtINT ortholog (ITR1 gene) is 

mutated
28,30

, so D458-1B transformed with vector could not accumulate arsenic through 

INT pathway, thus the accumulation of arsenic was not affected by myo-inositol in the 

growth medium. However, in D458-1B cells expressing AtINT2 or AtINT4, As(III) uptake 

was facilitated by AtINT2 or AtINT4, which also transport myo-inositol. Therefore, 

substrate competition inhibited arsenic accumulation in D458-1B expressing AtINT2 or 

AtINT4.

Kinetic parameters of AtINT2 and AtINT4

The Michaelis-Menten kinetics for As(III) uptake were investigated by treating yeast strains 

D458-1B expressing AtINT2 or AtINT4 with 2 μg mL−1 myo-inositol and various 

concentrations of As(III) for 30 min (Fig. 4). Kinetic constants were calculated using a 

SigmaPlot transformation. For AtINT2, the Km for As(III) uptake was 219 μM As(III), and 

Vmax was 10 μg g−1 yeast DW min−1 (r = 0.999, p < 0.0001). For AtINT4, the Km for 

As(III) uptake was 174 μM As(III), and Vmax was 8.2 μg g−1yeast DW min−1 (r = 0.995, p = 

0.0012). The Km values for myo-inositol of AtINT2 and AtINT4 were 0.7–1.0 mM and 240 

μM, respectively
28,30

. Compared to the physiological substrate myo-inositol, the Km values 

for As(III) of both AtINT2 and AtINT4 were much lower, indicating that AtINT2 and 

AtINT4 have higher affinity to As(III) than to inositol.

AtINT2 and AtINT4 contribute to arsenic loading into phloem

To examine functions of AtINT proteins in uptake and distribution of arsenic in A. thaliana, 

plants with T-DNA insertions in the genomic sequence of either AtINT2 or AtINT4 were 

obtained from the Arabidopsis Biological Resource Center (ABRC) at Ohio State 

University. Homozygous disruptions were confirmed by PCR-based genotyping. Atint2-1 
(Salk_1264_A07) and Atint2-2 (Salk_065862 C) were found to be homozygous lines, each 

with a T-DNA insertion in the second intron of AtINT2 (Fig. S1a, b). Atint4-1 
(Salk_082659. 41. 45.X) and Atint4-2 (WiscDsLox293-296invI7) were also shown to be 

homozygous lines, each with a T-DNA insertion in the second exon of AtINT4 (Fig. S2a, b). 

No AtINT2 or AtINT4 mRNA was detected in the respective mutants, indicating that these 

T-DNA insertion mutants are null alleles (Figs. S1c and S2c). Atint2 or Atint4 knockout 

mutants do not show alterations compared to wild type plants during their life cycle
28,30

. 

Usually, plants do not rely on inositol transport because they biosynthesize myo-inositol 

from glucose-6-phosphate
33

.
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To compare arsenic exuding from phloem, A. thaliana WT and mutant plants were grown in 

hydroponic MGRL solution
34

, at the flowering stage, As(III) was added to the nutrient 

solution to final concentration of 50 μM, and the plants were treated with As(III) for one 

week. Phloem exudates were collected and arsenic content in the exudates was analyzed. 

Figure 5a shows that arsenic exuding from phloem of Atint2 or Atint4 mutants was 

significantly lower than that from WT plants, decreased about 27–35%. These results are 

consistent with our hypothesis that AtINT2 and AtINT4 are involved in arsenic loading into 

phloem.

Arsenic accumulation and distribution was compared in different organs of WT and mutant 

plants. To this end, plants were grown in hydroponic MGRL solution containing 5 μM 

As(III). After plant maturation, arsenic concentrations in different organs were determined. 

Arsenic was accumulated primarily in roots, with the concentration being approximately 12-

fold higher than in shoots. The order of arsenic distribution was roots>shoots>empty 

siliques>seeds (Fig. 5b). The concentrations of arsenic in roots of mutants and WT were 

similar, while the concentrations in shoots, empty siliques and seeds were significantly lower 

in the mutants than in the corresponding organs of WT plants. Strikingly, AtINT2 or AtINT4 
disruption resulted in a 45–64% reduction in arsenic accumulation in seeds (Fig. 5b). These 

results clearly demonstrate that AtINT2 and AtINT4 are necessary for arsenic accumulation 

in siliques and seeds of Arabidopsis. A similar situation has been described for the phloem-

localized iron [Fe(II)]- and manganese [Mn(II)]-nicotianamine complex transporter OsYSL2 

from rice. RNAi plants with a suppressed expression of OsYSL2 exhibit a reduced Fe level 

within the shoots and seeds
35

, comparable to our results for INT mutants and arsenite 

translocation.

To further demonstrate that AtINT2 and AtINT4 are involved in arsenic loading into 

phloem, leaf feeding experiments were conducted. One week prior to harvesting the seeds, 

rosette leaves were brushed daily with a solution containing 50μM As(III) and 0.1% Tween. 

The amounts of arsenic in shoots and seeds of Atint2 or Atint4 mutants decreased about 52–

72% in seeds and 34–59% in shoots compared with WT plants, (Fig. 5c). These results are 

consistent with our hypothesis that AtINT2 and AtINT4 are involved in arsenic loading into 

phloem.

To demonstrate whether AtINT2 or AtINT4 mutation affects xylem arsenic loading, xylem 

sap was collected from plants treated with 5 μM As(III), and the arsenic concentration in 

xylem sap was determined. The results showed that arsenic concentration in xylem sap 

collected from mutant plants were similar to that from WT plants, except that in Atint2-1 
there was significantly higher than in WT (Fig. 5d). These results indicate that neither 

AtINT2 nor AtINT4 mutation affects xylem arsenic loading.

Discussion

It is becoming increasingly clearer that plant aquaglyceroporins of the NIP subgroup such as 

the rice AQP Lsi1 catalyze the uptake of As(III) into roots
12–13

, and that the rice ArsB 

family member Lsi2 is responsible for the movement of As(III) from roots to shoots through 

the xylem
12

. The final piece of the puzzle is how arsenic is loaded from the shoots into the 
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seeds of plants
6
. In this study, we show that the A. thaliana inositol transporters AtINT2 and 

AtINT4 catalyze As(III) loading into phloem and are necessary for arsenic accumulation in 

the seeds of this model plant. We speculate that knowledge of the pathway of arsenic 

accumulation in Arabidopsis seeds will shed light on the corresponding mechanism in rice, 

the main source of dietary arsenic for the majority of the world’s population. Understanding 

the loading mechanism of As(III) into rice grains, fruits or seeds of other crops is critical for 

enhancing food safety.

As(III) is the predominant arsenic species found in seeds, especially in rice grains 
3,36

. A 

survey of arsenic speciation in Chinese rice showed that in market rice, 50–60% arsenic was 

present as As(III), and in rice collected from farmers’ fields in mining areas, 60–70% was 

As(III) 
35

. Approximately 90% of As(III) in rice grains is delivered via the phloem
19–23

. 

However, prior to the present study, little has been known about the mechanisms of arsenic 

loading and unloading during phloem transport
6
. Generally, solutes load into and unload 

from phloem through either the apoplastic or symplastic pathway. Apoplastic loading is 

driven thermodynamically via the proton motive force and conducted by plasma membrane 

transporters
37

. Symplastic loading is passive and conducted through plasmodesmata between 

adjacent cells
38–39

. In A. thaliana, AtINT2 and AtINT4 are located in the plasma membrane. 

Organ and tissue specificity of AtINT2 and AtINT4 expression showed that both AtINT2 
and AtINT4 are strongly expressed in the vasculature, primarily in the companion cells of 

phloem, though there are also little expression in root tissue
28,30

. Functional analyses further 

demonstrated that AtINT2 and AtINT4 are H+-coupled symporters that are responsible for 

loading of inositol into the phloem to supply the developing seeds. In the present study we 

demonstrate that AtINT2 and AtINT4 also transport As(III) (Figs. 1, 2). Myo-inositol in the 

growth medium inhibited the uptake of As(III) by AtINT2 and AtINT4 (Figs. 3). The 

disruption of AtINT2 or AtINT4 significantly decreased arsenic concentration in phloem 

exudates (Fig. 5a), and subsequently significantly decreased arsenic concentration in shoots, 

siliques and seeds (Figs. 5b, c). Most importantly, arsenic accumulation in siliques and seeds 

decreased by half (Fig. 5c), but the ratios of each arsenic species in plants tissues were 

similar between the mutants and WT (Fig. S4). Additionally, when plants were feed with 

arsenite through leaves, arsenic accumulation in shoots and siliques of mutants was 

significantly lower than those of WT (Fig. 5b). In contrast to that, arsenic concentrations in 

the xylem sap did not vary between WT and mutant plants (Fig. 5d). These results clearly 

demonstrate that inositol transporters AtINT2 and AtINT4 are responsible for arsenite 

loading into phloem, and essential for arsenite accumulation in A. thaliana seeds.

We conclude that AtINT2 and AtINT4 are responsible for the loading of arsenic from the 

apoplast into the phloem (Fig. S5). Our results are consistent with the tissue- and cell-

specificity of expression
28,30

. Nevertheless, single mutation of AtINT2 or AtINT4 did not 

totally suppress translocation of arsenic into seeds (Fig. 5). This could be contributed by 

AtINT4 in Atint2 or AtINT2 in Atint4, or other transporters may be also involved in arsenic 

loading to phloem. AtINT2 and AtINT4 are not expressed in young sink leaves
28,30

, so it 

was anticipated that neither AtINT2 nor AtINT4 mutations would affect arsenic 

accumulation in seedlings treated with As(III) (Fig. S3). Once entry into the companion cells 

of the phloem, arsenic passively diffuses through the plasmodesmata into the sieve elements 

and is finally released into the sink cells of seeds (Fig. S5). As is the case for nutrients, 
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unloading of arsenic from the phloem into the sink cells of plant seeds is likely to be 

mediated by specific transport proteins
40

, and identification of these transporters should be a 

priority of future research.

In summary, we demonstrate here that inositol transporters AtINT2 and AtINT4 

adventitiously catalyze loading of As(III) into the phloem, a possible pivotal step of arsenic 

translocation to the seeds of higher plants. To our knowledge, this is the first identification of 

transporters responsible for arsenic loading into phloem. If these findings prove to be 

applicable to rice, then inositol transporters may be candidates for future genetic 

modification to reduce the arsenic content in rice grain. If so, this discovery will enable 

development of new cultivars that accumulate lower amounts of arsenic in their grain 

without affecting yield production, a major advance toward mitigation of health risks posed 

by arsenic in rice.

Materials and Methods

Yeast constructs and arsenite sensitivity analysis

AtINT2 and AtINT4 were cloned into the yeast/E. coli shuttle vectors NEV-N-Leu
30 

(AtINT2) or NEV-E-Leu
41

 (AtINT4), respectively; the constructs and the empty vectors 

were used to transform S. cerevisiae strain D458-1B (Schneider et al., 2006; 2007)
28,30

. In 

this study, AtINT2 and AtINT4 constructed plasmids were also transformed into S. 
cerevisiae strain MG100 (acr3Δ) (U.S. patent US 20050260739 A1). Arsenite sensitivity 

phenotypic studies were performed as reported
42

, the cell growth was determined by light 

absorbance at 600 nm.

For As(III) uptake assay, yeast strains D458-1B expressing AtINT2, AtINT4 or with empty 

vector were grown in 5 ml liquid SD-Leu medium supplemented with 2 μg mL−1 myo-

inositol until mid-exponential phase. The cells in the cultures were harvested by centrifuge 

and re-suspended in 50 ml of fresh SD-Leu medium containing 2 μg mL−1 myo-inositol and 

different concentrations of As (50, 100, 250 and 500 μM). After 24 h incubation (30°C, 170 

rpm), yeast cells were harvested for arsenic concentration determination. For substrate 

competition, mid-exponential phase yeast cells were treated with 250 μM As(III) and 

different concentrations of myo-inositol (0, 2, 4 and 8 μg mL−1) for 24 h incubation (30°C, 

170 rpm). For kinetic Assays, mid-exponential phase yeast cells were treated with 2 μg 

mL-1 myo-inositol and various concentrations of As(III) (50, 100, 250 and 500 μM). After 

30 min incubation (30°C, 170 rpm), yeast cells were harvested for arsenic concentration 

determination.

Expression of AtINTs in X. laevis oocytes and arsenite uptake

AtINT2 were cloned into plasmid pL-5 in the BglII/KpnI. The primer sequences for 

constructions of different genes are as follows: forward primer 5′-

GCAGATCTATGGAGGGAGGAATAATAC-3′ (BglII site underlined) and reverse primer 

5′-GCGGTACCTCATGCACTCTGGTTTTG-3′ (KpnI site underlined). The plasmids were 

linearized by NotI digestion, and the capped cRNA of NaPi-IIb1 was transcribed in vitro 
using an mMessage mMachine T7 ultra kit (Ambion Co., Austin, TX, USA). Stage V-VI X. 
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laevis oocytes were isolated and treated with 0.2% collagenase A (Roche, Indianapolis, IN, 

USA) for 2 h. Defoliated oocytes were injected with 25 ng (25 nL volume) of cRNA. 

Oocytes were then incubated in ND96 complete buffer (96-mM NaCl, 2-mM KCl, 1-mM 

MgCl2, 1.8-mM CaCl2, 5-mM Hepes, pH5.5, supplemented with 1 mg/ml Gentamicin) for 3 

d at 16°C 
43

.

Accumulation of arsenicals in oocytes was assayed by incubation of the oocytes with 1mM 

As(III) dissolved in ND96 buffer (pH 7.4) at room temperature for 30 min. After incubation, 

the oocytes were washed, dissolved in 70% nitric acid at 70°C for 2 h, and then arsenic 

concentration was analyzed.

Plant treatments

To assay arsenic in phloem exudates, uniform homozygote and WT seedlings (10 d) were 

transferred from plates to hydroponic pots containing 5 L of MGRL nutrient solution. At 

flowering stage, As(III) was added to the nutrient solution to a final concentration of 50-μM. 

On the 3rd day of As(III) treatment, nutrient solution was renewed with As(III), and, after 

one hour, rosette leaves were harvested and weighed. Phloem exudates were rapidly 

collected by an EDTA-facilitated method
44

. After 8 h of collection, phloem exudates 

solutions were passed through a filter of 0.22 μm, and stored at −4 °C until arsenic 

concentration determination.

To analyze total arsenic in mature A. thaliana tissues, from flowering stage to harvest, 

As(III) was added to the nutrient solution to a final concentration of 5 μM. After harvesting, 

plants were separated into roots, shoots, empty siliques and seeds. Samples were washed, 

dried for arsenic determination.

To conduct leaf feeding experiments, one week before seed harvesting, both sides of rosette 

leaves were brushed with a solution containing 50 μM As(III) and 0.1% Tween using a 

painting brush
45

. Each plant was brushed with a 2 ml solution daily. After harvesting, the 

plants were separated into shoots (including upper stem and leaves that had not been 

brushed) and siliques (including seeds). Samples were washed, dried for arsenic 

determination.

For determination of the concentration of arsenic in the xylem sap of WT and mutants, soil-

grown A. thaliana plants at flowering stage were used. Treatment with 5 μM As(III) was 

performed for three days before xylem sap collection. Xylem sap collection was performed 

as described
46

 except that plants were not irrigated with NaCl. Xylem sap of two plants was 

pooled for each sample. Collected samples were stabilized by adding phosphoric acid to a 

final concentration of 10 mM, passed through a 0.22 μm filter and stored at +4 °C until 

determination of arsenic concentration.

Total arsenic analysis

For total arsenic analysis, yeast and plant subsamples were weighed and digested with 2.5 

ml of concentrated nitric acid in a microwave oven (CEM Mars 5, CEM Corp, Matthews, 

NC). Arsenic concentrations were determined by ICP-MS (Agilent Technologies 7500, 

USA).
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Statistical analysis

Experiments using X. laevis oocytes adopt n=4–6, and experiments in yeast and plant tissues 

adopted n=4. Mean and standard errors were derived using SigmaPlot. Statistical differences 

were assessed by the Student pair-wise t test. Data were presented as mean ± SD. All p 
values < 0.05 were regarded as statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. AtINT2 and AtINT4 expression elevated S. cerevisiae sensitivity to arsenite
Growth curve of yeast strains D458-1B (a) and MG100 (b) expressing AtINT2 or AtINT4 
and containing empty vector. Overnight grown cells were diluted 100-fold with liquid SD 

medium containing the indicated concentrations of As(III). After overnight incubation at 

30 °C, cell growth was determined by light absorbance at 600 nm. Averages and standard 

errors are shown; n = 4.
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Figure 2. Arsenite transportation with expression of AtINT2 and AtINT4 in yeast and oocytes
a: Arsenic concentration in yeast cells D458-1B after grown at 30°C for 24 h in liquid 

minimal medium supplemented with 2 μg mL−1 myo-inositol and different concentrations of 

As(III).

b: Oocytes from X. laevis were incubated in ND96 complete buffer supplemented with 1 

mM of sodium As(III) at room temperature for 30 min. Oocytes injected with water were 

used as controls.

Asterisk indicates significance at P<0.05, and double asterisk indicates significance at 

P<0.01 compared to controls. Averages and standard errors are shown; n = 4.

Duan et al. Page 13

Nat Plants. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Arsenite uptake inhibition by Myo-inositol
Arsenic concentration in yeast cells D458-1B expressing AtINT2 or AtINT4 and containing 

empty vector after grown at 30 °C for 24 h in liquid minimal medium supplemented with 

250 μM As(III) and the indicated concentration of myo-inositol. Double asterisk indicates 

significance at P<0.01 compared to cells with vector only. Averages and standard errors are 

shown; n = 4.
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Figure 4. Kinetic properties of AtINT2 and AtINT4 for As(III)
Cultures of yeast strain D458-1B expressing either AtINT2 or AtINT4 were incubated in 

liquid minimal medium supplemented with 2 μg mL−1 myo-inositol and the indicated 

concentration of As(III) for 30 min. Kinetic data were fitted using a least-squares analysis 

with SigmaPlot 12.0. Averages and standard errors are shown; n = 4.
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Figure 5. Arsenic concentration in phloem exudates, xylem sap and plant tissues
a: Plants were grown in hydroponic solution, after 3 d treatment with 50-μM As(III), rosette 

leaves were harvested and phloem exudates were rapidly collected by an EDTA-facilitated 

method.

b: Plants were grown in hydroponic solution, one week before harvesting, rosette leaves 

were brushed with a solution containing 50 μM As(III) and 0.1% Tween using a painting 

brush. Each plant was brushed with a 2 ml solution daily. After harvesting, the plants were 

separated into shoots (including upper stem and leaves that had not been brushed) and 

siliques (including seeds).

c: Plants were grown in hydroponic solution, from flowering stage to harvest, As(III) was 

added to the nutrient solution to a final concentration of 5 μM. After harvesting, plants were 

separated into roots, shoots, empty siliques and seeds.

d: Plants were grown in soil, after 3 d treatment with 5-μM As(III), xylem sap was collected.

* indicates significance at P<0.05, and ** indicates significance at P<0.01 compared to WT. 

Data are shown as average ± SE; n = 4.
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