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Original Research Article
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Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD
arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests
a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working
memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging
(fMRI). Participants diagnosed with ADHD in childhoodwho subsequently remitted or persisted in their diagno-
sis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working
memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory
performed worse than controls and ADHD participants with unimpaired working memory during an n-back
working memory task while being scanned. Both controls and ADHD participants with unimpaired working
memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual
gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly
between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation
in the same regions, whichwas significantly different than both control participants and ADHD participants with
unimpaired working memory. These findings support both a behavioral and neurobiological dissociation
between ADHD and working memory capacity.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the most
common neurodevelopmental disorders, affecting an estimated 11% of
children (Visser et al., 2014) and 5% of adults (Kessler et al., 2006). Pa-
tients with ADHDexhibit significant impairments on executive function
(EF) tasks,with the strongest impairments observed on tasksmeasuring
workingmemory, response inhibition, vigilance, and planning (Willcutt
et al., 2005). Subsequent studies, however, reported that up to half of in-
dividuals with ADHD have intact EF (Biederman et al., 2004, 2006; Nigg
et al., 2005). Furthermore,when executive dysfunctions are identified in
ADHDpatients they remain stable over long periods of time (Biederman
et al., 2007, 2008; Miller et al., 2012). The well-documented hetero-
geneity among ADHD patients in performance on measures of EF
(Biederman et al., 2004, 2006; Doyle et al., 2005; Fair et al., 2012;
Sonuga-Barke et al., 2010) suggests that ADHD and EF deficits, such as

working memory impairments, are behaviorally separable and thus
support the hypothesis that they may also be neurobiologically
dissociable.

Behavioral and neuroimaging studies of ADHD have examined
differences in a range of EF abilities, including working memory or the
ability to maintain and manipulate information over a short period of
time. Studies of verbal and visuo-spatial working memory have consis-
tently observed behavioral deficits in individuals diagnosedwith ADHD
(Burgess et al., 2010; Gau and Shang, 2010; Kofler et al., 2010; Rapport
et al., 2008; Rommelse et al., 2008; Toplak et al., 2005). Neuroimaging
studies of both visuo-spatial and verbal working memory have ob-
served brain activation differences (both increased and decreased acti-
vation) in frontal–parietal circuits in people diagnosed with ADHD
relative to typically developed controls (Bayerl et al., 2010; Chantiluke
et al., 2015; Cubillo et al., 2014; Fassbender et al., 2011; Ko et al.,
2013; Kobel et al., 2009; Li et al., 2014; Silk et al., 2005; Valera et al.,
2005, 2010; Vance et al., 2007).

Working memory is conceptualized as being multi-componential,
with domain-specific mechanisms for the short-term maintenance of
verbal and visuospatial information, and a central executivemechanism
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(Baddeley and Hitch, 1974). The verbal and visuospatial mainte-
nance mechanisms can be assessed, respectively, by digit or block
span measures. In contrast, working memory capacity measures
have been developed to assess the executive mechanism by requir-
ing both maintenance and manipulation of information (Conway
et al., 2003; Daneman and Carpenter, 1980; Engle and Kane, 2004).
Indeed, variation in working memory capacity has been strongly
associated with variation in many forms of higher-level cognition,
including reading comprehension, problem solving, and inhibitory
control (Conway et al., 2003; Daneman and Carpenter, 1980; Engle
and Kane, 2004).

Patients with ADHD are especially at risk for deficits in the executive
mechanism of workingmemory, and this has been demonstrated in the
n-back task. In this task, participants view a series of stimuli, such as let-
ters, and respond to a designated target. In the 0-Back condition, partic-
ipants respond to a constant target (such as “X”), but in 1-back, 2-back,
and 3-back conditions they respond to any letter thatmatches the letter
seen 1, 2, or 3 letters ago. Thus, the 0-back and 1-back conditions re-
quire maintenance of a single target in mind, whereas the 2-back
and 3-back conditions require constant updating and manipulation
of multiple items. Correspondingly, some studies have reported
that ADHD patients are unimpaired in the lower-load (0-back and
1-back) conditions, but impaired at the higher-load conditions that
stress working memory capacity and demand executive functions
(Cubillo et al., 2014; Kobel et al., 2009). Thus, the observed impair-
ments in working memory capacity in ADHD in prior studies are
likely reflective of central executive impairments rather than defi-
cits in the maintenance of domain specific information (Baddley,
1992, 2003).

A paradox, however, is that multiple neuroimaging studies
reporting activation differences in ADHD on working memory
tasks also reported an absence of significant behavioral differences
on the same tasks during the neuroimaging (Chantiluke et al.,
2015; Fassbender et al., 2011; Ko et al., 2013; Li et al., 2014; Valera
et al., 2005, 2010; Vance et al., 2007). One possible explanation for
the apparently paradoxical results concerning working memory
performance and brain activation across studies is that there is a
fundamental heterogeneity among ADHD patients that yields differ-
ent findings depending upon the proportion of patients with im-
paired or intact working memory represented in any given sample.
The observations that fully half of ADHD patients are unimpaired
on any particular measure of executive function (Biederman et al.,
2004, 2006; Nigg et al., 2005) raises the concern that such diversity
among ADHD patients can lead to misleading findings when the
diversity is not accounted for.

In the current study, we evaluated workingmemory capacity and its
related neurobiological substrates in well-characterized, longitudinally
followed adults diagnosedwith andwithout ADHDat initial baseline as-
sessment in childhood. Participantswhowere originally diagnosedwith
ADHD either persisted in their diagnosis or remitted from their diagno-
sis as adults. Thus, this cohort afforded thepossibility to evaluate the rel-
evance of the active diagnostic ADHD status in relationship with
impairments in working memory capacity and related neurobiological
mechanisms.

We recorded blood oxygen level dependent functional magnetic
resonance imaging (BOLD fMRI) data while participants performed
a verbal n-back working memory task that parametrically varied
working memory demands, which results in monotonic increases
of activation in prefrontal and parietal neocortical regions (Braver
et al., 1997). We characterized participants who had ADHD in child-
hood as either impaired or unimpaired relative to controls on an in-
dependent measure of spatial working memory. If ADHD and a core
executive function – working memory capacity – are dissociable, we
expected that behavioral and brain differences would only be ob-
served in the subset of patients who had reduced working memory
capacity.

2. Materials and methods

2.1. Participants

Participants (N= 54) from longitudinal family studies of boys (N=
29) and girls (N= 25) diagnosedwith and without ADHD in childhood
(6–17 years of age at baseline) (Biederman et al., 1992, 1996, 2012)
volunteered for this study. Participants who were adopted, diagnosed
with psychosis or autism, had an inadequate command of the English
language, a full scale IQ b 80, or any major sensorimotor disability
were excluded from the original ascertainment. All participants diag-
nosed with ADHD at the initial baseline assessment met DSM-III-R
criteria for ADHD in childhood. Functional and structural neuroimaging
was conducted approximately 16 years after the original baseline as-
sessment. Data from two ADHD participants were not included in the
analyses due to complications with the experimental paradigm at the
scanner. Two additional participants were excluded from analyses be-
cause 1 control participant met diagnostic criteria for ADHD at follow-
up and 1 ADHD participant had a poorly documented baseline diag-
nosis. The final participants included 17 controls never diagnosed with
ADHD, 12 ADHD participants who persisted in their ADHD diagnosis
into adulthood, and 21 ADHD participants who no longer met a
subthreshold diagnosis of ADHD in adulthood. Eight participants were
currently being treated with stimulant medications. All participants
refrained from taking ADHD medications 24 hours prior to scanning.
We obtained written informed consent from all participants following
complete description of the study according to the protocols approved
by the human research committees at Massachusetts General Hospital
and the Massachusetts Institute of Technology.

2.2. Assessment procedures

Diagnostic assessment at the time of the scan relied on the Struc-
tured Clinical Interview for DSM-IV (SCID) (First et al., 1997). To assess
childhood diagnoses, such as ADHD, we usedmodules from the DSM-IV
modified K-Kiddie Schedule for Affective Disorders and Schizophrenia-
Epidemiological Version (K-SADS-E) (Orvaschel, 1987).We determined
the current diagnostic status (e.g., persistent versus remitted) by the
number of symptoms of ADHDderived form the SCID. Patientswith per-
sistent ADHD met full or subthreshold criteria for DSM-IV ADHD. We
defined subthreshold ADHD as endorsing at least four ADHD symptoms
in either the inattentive or the impulsive/hyperactive criteria lists and
meeting all other diagnostic criteria such as age at onset. Both controls
and remitted ADHD did not meet subthreshold criteria in adulthood.

At the time of scanning, participants were administered the Spatial
Working Memory subtest of the Cambridge Neuropsychological Test
Assessment Battery (CANTAB) (Sahakian and Owen, 1992) and the
Color-Word Interference and Trail Making subtests from the Delis
Kaplan Executive Function System (D-KEFS) (Delis et al., 2001) to mea-
sure executive function performance and theWechsler Abbreviated Intel-
ligence Scale (WASI) (Wechsler, 1999) (scaled scoreswere analyzed) as a
measure of IQ. At the initial (childhood) baseline assessment, participants
were administered theWechsler Intelligence Scale for Children—Revised
(WISC-R) (Wechsler, 1974) subtests of digit span, coding, and arithmetic
which yield a Freedom from Distractibility Index. This Index is similar to
theWorkingMemory Index in later versions of theWISC, and thus consti-
tutes the measure most like the working memory measures of interest
employed in the current adult study.

2.3. Participant groups

ADHDparticipantswere separated into subgroups based onworking
memory performance on the independently obtained measure of spa-
tial workingmemory collected outside of the scanner. An ADHD patient
was categorized as unimpaired or impaired if the individual scored
above or below, respectively, 1.5 standard deviations of the mean
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control performance CANTAB Spatial WorkingMemory subtest. Similar
cut-offs for designating an individual impairment have been used in
prior studies of ADHD in children and adults (Biederman et al., 2004,
2006; Nigg et al., 2005). On this basis there were three groups: Control
group (N = 17), Unimpaired ADHD group (N = 16), and Impaired
ADHD group (N= 17).

2.4. N-back behavioral task during neuroimaging

Participants performed a 4-level parametric block design n-back
working memory task with 0-back, 1-back, 2-back, and 3-back blocks
during a single scanning run while in the scanner. Blocks lasted 32 s
and each memory load was repeated 4 times in pseudorandom order,
resulting in approximately 8.5 min of scanning. Each block began with
the presentation of an instruction screen for 2 s indicating the current
memory load. The instruction screen was followed by the presentation
of 15 2 s trials. Each trial consisted of the presentation of an upper
case letter in the middle of the screen for 1.5 s followed by a fixation
cross for 0.5 s. Participants responded to each stimulus by pressing
one of two buttons with a scanner-compatible response box using the
index finger to respond to target stimuli and the middle finger to non-
target stimuli. The target in the 0-back condition was the letter “X”. In
the 1-back, 2-back, and 3-back conditions, targets were any stimulus
identical to the stimulus presented one, two, or three trials before.

2.5. Statistical analyses

Neuropsychological variables and behavioral performance on the n-
back task were compared across groups using analysis of variance
(ANOVA) followed by post hoc Tukey–Kramer pairwise comparisons
to correct for multiple comparisons. To identify significant clusters in
all functional neuroimaging comparisons we used an uncorrected
height threshold of z N 2.57 (p b 0.005) combined with Familywise
Error (FWE) correction at the cluster level using FSL's cluster algorithm,
resulting in an overall corrected p b 0.05.We analyzed the linear effects
of load (0-back b 1-back b 2-back b 3-back)within each group and then
compared those effects directly between groups.

2.6. Scanning

Neuroimaging data were collected on a 3 Tesla Siemens Trio scanner
using a 32-channel head coil. Single-shot echoplanar imaging (EPI) data
were collected using a pulse sequence with a field of view of
64 × 64 mm, echo time (TE) of 30 ms, flip angle of 90°, repetition time
(TR) of 2000 ms resulting in a resolution of 3.0 mm isotropic voxels.
The first four volumes were discarded to allow for T1 equilibration.
Thirty-two AC–PC aligned slices were acquired during a single run
that lasted approximately 8.5 min. Whole brain T1-weighted
magnetization-prepared rapid gradient-echo (MP RAGE) structural
scans were acquired with a FOV of 256 × 256 mm, TE of 3.48 ms, flip
angle of 90°, and TR of 2530 ms, resulting in 1 mm isotropic voxels.

2.7. fMRI preprocessing and analyses

Preprocessing and data analyses were performed using the follow-
ing software packages: Nipype (Gorgolewski et al., 2011) and standard
preprocessing pipelines from BIPs, Nipy (Millman and Brett, 2007), FSL
v5.0 (Smith et al., 2004), Analysis of Functional NeuroImages (AFNI)
(Cox, 1996), FreeSurfer (Dale et al., 1999), Advanced Normalization
Tools (ANTS) (Avants et al., 2008), and artifact detection toolbox (ART
— as implemented in Nipype). We created cortical surfaces and subcor-
tical segmentations using FreeSurfer and verified their quality via visual
inspection. Simultaneous slice timing and motion correction were per-
formed using default parameters of the Nipy algorithm, aligning all vol-
umes to the first volume of the run using a rigid body affine
transformation (Roche, 2011). Intensity outliers in the functional time

series were interpolated using the 3dDespike algorithm from AFNI. We
applied a high pass temporal filter (1/128 Hz) and spatially filtered
functional data using the FSL SUSAN algorithmwith a 5mmFWHMker-
nel. Functional volumes that either had a global intensity that exceeded
3 standard deviations of themean intensity of the time series or greater
than 1 mm of composite frame-to-frame displacement were flagged as
outliers by ART to be regressed out of the first level design matrices as
separate regressors of no interest for each outlier time point consisting
of zeros and a one at the flagged time point. A mean functional image
was coregistered to the structural scans using FreeSurfer's bbregister
algorithm.

First-level analyses were performed in FMRIB's Software Library
(www.fmriib.ox.ac.uk/fsl) according to a general linear model ap-
proach. Participant specific models included event and nuisance regres-
sors. Event regressors consisted of separate regressors for eachmemory
load block (0-back to 3-back) convolved with FSL's double gamma he-
modynamic response function with duration of 32 s. Nuisance regres-
sors included motion parameters (x, y, z translations; pitch, roll, yaw
rotations) and outlier regressors identified by ART. Additional covari-
ates at the group level were included to control for potential confound
variables including age, sex, and smoking status. Each participant's con-
trast effect size (copes) and variance files (varcopes) were normalized
to the study-specific template. Group-level analyses were performed
using amixed effects general linearmodel in the study specific template
space using FSL's flameo.

2.8. Study-specific template

To optimize normalization for subsequent group comparisons we
created a study-specific template using ANTS. We skull stripped the
structural scans from 20 participants (10 control and 10 ADHD). The
skull-stripped brains were then rigid-body (six degrees of freedom)
transformed to Montreal Neurological Institute (MNI) space. We used
this first pass to establish our template generation close to a commonly
used reference frame (MNI space) and to provide an initial common
registration during template construction tomitigate large spatial shifts
between participants. After the study-specific template had been creat-
ed each participant's original skull stripped brain was normalized to the
template using the non-linear symmetric diffeomorphic mapping im-
plemented by ANTS. The use of custom-made study specific templates
has been shown to improve registration over direct pairwise registra-
tion (Klein et al., 2010).

3. Results

3.1. Working memory abilities

By design, performance on the CANTAB spatial working memory
subtest differed among the groups (F(2,46) = 31.7, p b 0.0001). Post
hoc pairwise comparisons using the Tukey–Kramer method demon-
strated that both the Control and the Unimpaired ADHD groups had
scores that were significantly better than the Impaired ADHD group
(Control vs. Impaired ADHD groups: q = 8.60, p b 0.0001; Unimpaired
ADHD vs. Impaired ADHD groups: q = 8.09, p b 0.0001). The Control
and Unimpaired ADHD groups did not exhibit significantly different
scores (q = 1.61, p = 0.79) (Fig. 1A).

Similar group differences in theWISC-R Freedom fromDistractibility
Index were observed during original baseline assessment in childhood,
the measure most related to working memory at the time (F(2,47) =
3.9, p = 0.02). Tukey–Kramer post hoc pairwise comparisons showed
that both the Control and Unimpaired ADHD groups had better perfor-
mance than the Impaired ADHD group at baseline, but that the Control
and Unimpaired ADHD groups did not differ significantly (Control vs.
Impaired ADHD groups: q = 3.29; p = 0.04; Unimpaired ADHD vs. Im-
paired ADHD groups: q=3.31, p= 0.05; Control vs. Unimpaired ADHD
groups: q = 0.18, p = 0.99) (Fig. 1B).
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The Unimpaired ADHD group consisted of 9 remitted and 7 persis-
tent ADHD participants, while the Impaired ADHD group consisted of
12 remitted and 5 persistent ADHD participants. The current diagnostic
status was unrelated to the grouping based on the CANTAB spatial
working memory task scores following a chi-squared test for indepen-
dence (χ2(1) = 0.24, P = 0.62).

The Unimpaired and Impaired ADHD groups both differed signifi-
cantly from the Control group but did not differ from each other on
numbers of current ADHD symptoms or ADHD symptoms at baseline
(Table S1). The groups differed in their full-scale IQ scores (F(2,47) =
12.6, p b 0.001). Tukey–Kramer post hoc pairwise comparisons showed
that the Control group had higher full-scale IQ scores compared to the
Impaired ADHD group (q = 6.93, p b 0.0001), but not the Unimpaired
ADHD group (q = 3.07, p = 0.13). The Unimpaired ADHD group had
significantly higher full-scale IQ scores compared to the Impaired
ADHD group (q= 3.89, p = 0.01). The two ADHD groups were not sig-
nificantly different from each other or from the control group on execu-
tive tests of inhibition (D-KEFS color-word interference: F(2,47) = 1.6,
p N 0.05) or switching (D-KEFS trail making: F(2,47) = 0.75, p N 0.05)
(Table S1). Because of the IQ differences, we performed all following
neuroimaging analyses both with and without including IQ as a regres-
sor in the general linear model at the group level.

3.2. N-back working memory performance during neuroimaging

Accuracy of performance on the n-back declined as a function of
working memory load (main effect of load: F(3,141) = 47.3, p b

0.0001) and differed among groups (main effect of group: F(2,47) =
6.2, p= 0.003). The group differences occurred in themore demanding
2-back and 3-back conditions relative to the less demanding 0-back and
1-back conditions (group × load interaction: F(6,141) = 2.9, p =
0.008). Tukey–Kramer post hoc pairwise comparisons showed the Im-
paired ADHD group performed worse than the Control group (2-back:
q = 4.36, p = 0.005; 3-back: q = 3.96, p = 0.01) and the Unimpaired
ADHD group (2-back: q = 4.69, p = 0.006; 3-back: q = 4.08, p =
0.02) in the 2-back and 3-back conditions, but did not differ in the 0-
back and 1-back conditions (all q b 1.9, all p N 0.42). The Control andUn-
impaired ADHD groups did not differ significantly in performance from
one another at any memory load (all q b 0.81, all p N 0.85) (Fig. 1C).

Performance in the more demanding verbal 2-back and 3-back condi-
tions from the scanning sessionwas highly correlatedwith performance
on the spatial working memory measure (r N 0.50, p b 0.0003).

3.3. N-back working memory neuroimaging activations

3.3.1. Within group — linear comparisons
A linear contrast across increasing memory load (0-back b 1-back b

2-back b 3-back) showed significantly increasing activation in bilateral
dorsolateral prefrontal cortex, intraparietal sulci, anterior insula, pre-
supplementary motor area, and cerebellum in all three groups (Fig. 2)
(Table S2).

3.3.2. Between group — linear comparisons
The Control group exhibited significantly greater linear increases in

activation across memory loads than the Impaired ADHD group in the
left inferior frontal junction, precuneus, supracalcarine cortex, lingual
gyrus, and cerebellum (Fig. 3A). The Unimpaired ADHD group also
exhibited significantly greater linear increases in activation across
memory loads than the Impaired ADHD group in the right dorsal lateral
prefrontal cortex extending medially into the right pre-supplementary
motor area, cingulate gyrus, left inferior frontal junction, left caudate,
thalamus, left lingual gyrus, and cerebellum (Fig. 3B) (Table S2). There
was no significant difference between the Control group and Unim-
paired ADHD group when they were compared directly (Fig. 3C). No
group differences in decreasing activation with increasing memory
load survived corrections for multiple comparisons. Similar differences
among the groups were observed when IQ was added as a covariate to
the general linear model (Fig. S1) and when participants who were
currently taking stimulant medications were removed (Fig. S2).

In order to better characterize the significant linear differences
between groups, we extracted the contrast parameter estimates for
each working memory load from the left inferior frontal junction
identified clusters that differed significantly between the Control and
Impaired ADHD groups and between the Unimpaired and Impaired
ADHD groups (there were no significant differences between the Con-
trol andUnimpaired ADHD groups) (Fig. 4). Both the Control andUnim-
paired ADHD groups exhibited progressively increasing activation with
increasing working memory load (0-back to 3-back). The Impaired

Fig. 1. (A) Participants diagnosed with ADHD in childhood (triangles) were characterized as similar or dissimilar to controls (open diamonds) by their scores on the CANTAB spatial working
memory task scoring either above (unimpaired working memory; grey triangles) or below (impaired working memory; black triangles) 1.5 standard deviations of the mean of the control
performance (horizontal dashed line). (B) The Impaired ADHD group (black bar) performed worse relative to the Control (white bar) and Unimpaired ADHD (grey bar) groups, who were
not statistically different from each other on the WISC-R Freedom from Distractibility factor obtained at baseline assessment approximately 16 years ago. (C) All three groups had similar
behavioral performance in the 0- and 1-back conditions. The Impaired ADHD group (black bars) performed worse relative to Control (white bars) and Unimpaired ADHD (grey bars) groups,
who were not statistically different from each other, in the 2- and 3-back conditions. *** P b 0.0001; ** P b 0.01. Error bars represent ± standard error of the mean.
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ADHD group showed little growth of activation across loads in the same
region, although activation for the 0-back condition was almost identi-
cal across groups.

4. Discussion

Deficits in working memory capacity, a core executive function,
were dissociated from ADHD both behaviorally and neurobiologically.
Behaviorally, CANTAB spatialworkingmemory capacity andn-back ver-
balworkingmemory capacitywere unrelated to current ADHDdiagnos-
tic status. Neurobiologically, ADHD patients with unimpaired working
memory exhibited the same increases of activation, as a function of
verbal working-memory load, as did control participants in prefrontal,
precuneus, lingual, and cerebellar regions (there were no significant
differences between these groups). In contrast, ADHD patients with
impaired working memory exhibited significantly reduced activa-
tions in most of these regions relative to both the control and unim-
paired ADHD groups. The sparing or compromise of working
memory in adulthood was strongly foreshadowed by sparing or
compromise of related abilities measured about 16 years before-
hand in childhood. These findings further support the dissociation
between dysfunction in a core executive function, working memory
capacity, and ADHD.

4.1. Behavioral dissociations between working memory and ADHD

Spatial and verbal working memory tasks were used to group and
evaluate the neurobiology of working memory capacity impairments,
respectively. Working memory for spatial and verbal information are
thought to be independent systems utilizing distinct neural substrates
(Smith and Jonides, 1998; Thomason et al., 2009), but both spatial and
verbal working memory are often impaired in ADHD (Alderson et al.,
2013; Martinussen and Tannock, 2006; Rapport et al., 2008). Perhaps
more relevant for ADHD is not the spatial or verbal nature of the stimuli,
but rather the amount of goal-relevant information to be both main-
tained and manipulated. Simple short-term maintenance of a small
amount of information (e.g., digit span) is thought to depend on
modality-specific neural networks reflecting both dorsal/ventral and
hemispheric specialization (Smith and Jonides, 1998; Wager and
Smith, 2003; however see Nystrom et al., 2000). In contrast, mainte-
nance and manipulation of a larger amount of information is thought
to reflect central executive capability (Baddley, 1992), an operation
with a potentially common neural substrate (D'Esposito et al., 1995;
Nystrom et al., 2000).

In the present study, the critical factor in whether an ADHD patient
was impaired or unimpaired was not the verbal or spatial nature of
the material, but rather the executive processes invoked by working
memory conditions that required maintenance and manipulation of

Fig. 2. Increases in BOLD fMRI activation with linear changes in working memory load (3-back N 2-back N 1-back N 0-back). All three groups exhibited linear increases in activation with
increasingworkingmemory loads in bilateral dorsolateral prefrontal, intraparietal, insula, precuneus, and pre-supplementary cortices. Uncorrectedheight threshold of P b 0.005 (zN 2.57),
whole-brain cluster corrected for multiple comparisons, corrected P b 0.05.

Fig. 3. (A) The Control group exhibited significantly greater linear increases in activation across working memory loads than the Impaired ADHD group in left inferior frontal junction,
precuneus, supracalcarine cortex, lingual gyrus, and cerebellum. (B) The Unimpaired ADHD group exhibited significantly greater linear increases in activation across working memory
loads than the ImpairedADHD group in the cingulate gyrus, left inferior frontal junction, left caudate, thalamus, left lingual gyrus, and cerebellum. (C) Therewere no significant differences
in activation between the Control and Unimpaired ADHD groups. Uncorrected height threshold of p b 0.005 (z N 2.57), whole-brain cluster corrected for multiple comparisons, corrected
p b 0.05.
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larger amounts of information. In the 0-back and 1-back n-back condi-
tions in which a small amount of information had to be maintained in
working memory, there were no accuracy differences among any of
the groups. In the 2-back and 3-back conditions of the n-back task and
in the CANTAB spatial task, in which large amounts of information had
to be maintained in working memory, the Impaired ADHD group per-
formed less well than the Unimpaired ADHD and Control groups, who
did not differ from one another.

The significant correlation between performance on the CANTAB
spatial working memory task and the high loads (2- and 3-back) but
not low loads (0- and 1-back) on the n-back verbal working memory
paradigms suggests that domain general (i.e., central executive) rather
than domain specific (i.e., spatial or verbal storage) working memory
processes were affected in the Impaired ADHD group. Further, upon
reanalysis of data obtained during the original childhood ascertainment,
the unimpaired and impaired ADHD adults showed the same pattern of
intact or impaired scores on themost comparablemeasure in childhood,
the WISC-R Freedom from Distractibility Index. These findings are con-
sistent with studies of considerably larger groups of ADHD patients
whose executive deficits tended to persist longitudinally (Biederman
et al., 2007, 2008; Miller et al., 2012).

The dissociation between working memory and ADHD was also
apparent in the relation between adult diagnostic status (e.g., remitted
vs. persistent) and working memory ability. Spared or compromised
working memory ability occurred regardless of current ADHD diagnos-
tic status, with deficits appearing equally often in persistent or remitted
ADHD groups. In this context, it is noteworthy that the adult diagnostic
status of ADHD patients was considerably more variable, relative to
childhood diagnosis, than was the working memory capacity of these
patients, which tended to remain longitudinally fixed.

4.2. Neural dissociations between working memory and ADHD

In control participants and unimpaired ADHD patients, greater
workingmemory demands invoked greater activations in brain regions
previously associated with working memory, including dorsolateral
prefrontal cortex, inferior frontal junction, parietal cortex, basal ganglia,
and cerebellum (Braver et al., 1997). The fact that control and

unimpaired ADHD patients exhibited similar patterns of activation
(i.e., did not differ from one another significantly) at every load indicates
that both groups invoked the same neural systems to support working
memory. In contrast, working-memory impaired ADHD patients exhibit-
ed significantly less of a relation between working-memory load and ac-
tivation in the prototypical working memory circuitry.

There was a strong load-dependent coupling between behavioral
deficits and activation deficits in the impaired ADHD patients. The
Impaired ADHD group performed as well as the Control and
Unimpaired ADHD groups at the lesser loads (0- and 1-back), and
exhibited lesser activation differences compared to the Control and
Unimpaired ADHD groups at those lesser loads. The Impaired
ADHD group performed significantly worse than the other groups
at the greater loads (2- and 3-back), and exhibited significantly
reduced left DLPFC activation than the other two groups at those
greater loads. Thus, both behavioral and brain deficits were specific
to the greater loads that invoked more executive demands than the
lesser loads. Similar patterns of lesser activation and performance
on the n-back task have been reported in schizophrenia (Jansma
et al., 2004) and in older relative to younger healthy adults (Mattay
et al., 2006). What is distinctive about the present findings is the
clear-cut distinction within ADHD between a half of patients whose
activation and performance is fully intact and another half of
patients whose activation and performance is impaired.

The present findings alignwith prior fMRI studies of n-backworking
memory that have observed altered (both increased and decreased)
frontal–parietal activations in ADHD patients relative to controls
(Chantiluke et al., 2015; Cubillo et al., 2014; Fassbender et al., 2011;
Ko et al., 2013; Kobel et al., 2009; Li et al., 2014; Silk et al., 2005;
Valera et al., 2005, 2010; Vance et al., 2007). Many of the prior studies
observed activation differences in the absence of significantly impaired
working memory performance in the ADHD patients (Chantiluke et al.,
2015; Fassbender et al., 2011; Ko et al., 2013; Li et al., 2014; Silk et al.,
2005; Valera et al., 2005, 2010; Vance et al., 2007). The absence of a
working memory deficit in the ADHD patients in these imaging studies
is in direct contradictionwithmany studies reporting impairedworking
memory in ADHD (Burgess et al., 2010; Gau and Shang, 2010; Kofler
et al., 2010; Rapport et al., 2008; Rommelse et al., 2008; Toplak et al.,

Fig. 4. To characterize the significant group differences in linear activations, contrast parameter estimates for each working memory load were extracted from the left inferior frontal
junction identified from both the Control N Impaired ADHD group difference (A) and the Unimpaired ADHD N Impaired ADHD group difference (B). Both the Control (dark blue) and
UnimpairedADHD(light blue) groups exhibited increasing activation acrossworkingmemory loads,whichwas absent in the ImpairedADHDgroup (red). Error bars represent± standard
error of the mean.
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2005). Further, it is difficult to interpret the importance of a difference
in brain function if there is no consequence in behavior.

Although some of the apparent contradictions among these neuro-
imaging studies of working memory in ADHDmay relate to howwork-
ing memory was operationalized and measured, the present study
suggests that a critical factor is fundamental heterogeneity in executive
function among ADHD patients (Biederman et al., 2004, 2006; Doyle
et al., 2005; Fair et al., 2012; Nigg et al., 2005; Sonuga-Barke et al.,
2010). Prior neuroimaging studies have considered ADHD patients as
a single group and did not differentiate between ADHD patients with
versus without working memory deficits. Thus, one possibility for the
discrepancy between intact behavioral task performance and impaired
functional brain activations may be that prior imaging studies of
ADHD have mixed together, in various proportions, patients with
impaired andpatientswith unimpairedworkingmemory. Suchheteroge-
neity in performance may have obscured behavioral deficits occurring in
some, but not other, ADHD patients. The present findings therefore may
reconcile the apparent contradiction between themany studies reporting
impaired working memory ability in ADHDwith the neuroimaging stud-
ies reporting intact working memory ability in ADHD.

The relation between variation in working memory (measured by
maintenance spans) and variation in brain function in adult ADHD has
been examined previously (Burgess et al., 2010). Activation differences
in left DLPFC between control andADHDgroups performing an inhibito-
ry control taskwere partially accounted for by the span scores treated as
continuous values across the patients. Broadly, these findings are
consistentwith the present study in relating variation inworkingmem-
ory ability to variation in DLPFC activation among ADHD patients. In the
present study, variation in working memory capacity completely
accounted for variation in DLPFC and other activations. Future studies
considering both executive (working memory capacity) and mainte-
nance (span) measures of working memory in a single ADHD group
can examine whether group differences in behavior or brain function
are better understood in relation to categorical versus continuous anal-
yses of working memory ability in ADHD.

The present findings are also consistent with the emerging consen-
sus that executive deficits, such as impairments in working memory,
do not constitute a core syndromic feature of ADHD (Biederman et al.,
2004, 2006; Castellanos et al., 2006; Nigg et al., 2005). Rather, heteroge-
neity across individuals with ADHD on performance of executive tasks
may reflect nesting within the normal variability of the population
(Fair et al., 2012). Further, patients with an ADHD diagnosis may vary
in specific associated deficits, with independent sparing or compromise
of not only EF, but also reward processing and sustained attention
(Castellanos et al., 2006; Doyle et al., 2005; Sonuga-Barke et al., 2010).
By this view, patients with ADHD have considerable heterogeneity in
regard to specific deficits in working memory, sustained attention, or
reward processing.

4.3. Limitations

The complexity of treatment is a notable limitation that is common
in psychiatric research. However, there are several facts all favoring
the idea that medication history had little or no influence on the main
finding of the distinction between impaired and intact ADHD groups.
First, all ADHD participants, whether unimpaired or impaired in work-
ing memory, had a history of taking stimulant medications. Second, all
participants who were currently taking medications did not take their
medications 24 hours prior to scanning. Third, the impaired and unim-
paired groups of ADHD patients had similar proportions of patients cur-
rently taking stimulant medications. Fourth, and most importantly,
when participants who were taking ADHD medication were removed
from the analyses, similar group differences remained despite the loss
of power, suggesting that any differences derived from current medica-
tion status had minimal contributions to the group differences.

The Impaired ADHD group had lower IQ scores than both the Unim-
paired ADHD group and the Control group, who were not significantly
different from each other. These are expected findings because, on aver-
age, IQ scores are lower in ADHD (Kuntsi et al., 2004; Rapport et al.,
1999) and also IQ generally correlates strongly with working memory
capacity (Ackerman et al., 2005; Colom et al., 2004; Kane et al., 2005).
It is typically not recommended to match groups on IQ when IQ differ-
ences are inherent to a clinical group because such matching results in
non-representative groups (Dennis et al., 2009). Prior studies have
also found that group differences in EF performance, including working
memory, were not related to group differences in IQ (Rommelse et al.,
2008; Toplak et al., 2005).Most importantly, the samemajor differences
in activation between groups were found when individual IQ scores
were added as a regressor at the group level.

5. Conclusions

The present study provides a mechanistic dissociation between
ADHD and a major kind of executive dysfunction, such that the status
of working memory capacity was dissociable from current clinical
ADHD status. Nevertheless, the frequent co-occurrence of ADHD and
executive dysfunction does have important implications. For example,
ADHD patients with executive dysfunctions suffer from greater occupa-
tional and academic underachievement than those with unimpaired
executive functions (Biederman et al., 2004, 2006). The observed het-
erogeneity and higher prevalence of executive deficits in ADHD may
be the result of partially overlapping etiological genetic pathways. Poly-
morphisms in both D4 receptor (DRD4) and D2 receptor (DRD2) genes
have been linked to ADHD (Kirley et al., 2002; LaHoste et al., 1996) and
variation in response inhibition (Congdon et al., 2008) and working
memory (Zhang et al., 2007) in typically developing individuals.

The present finding demonstrates that ADHD and workingmemory,
a core executive function, are dissociable at both behavioral and neural
levels of analysis. The two groups of ADHD patients were well matched
clinically: they did not differ on the number of ADHD symptoms at the
time of the imaging study, the number of ADHD symptoms at uniform
childhood characterization, or in the persistence of their diagnosis at
the time of imaging. Working memory capacity and its underlying
neural circuitry, however, was fully intact in oneADHDgroup and clear-
ly impaired in the other ADHD group. Prior studies with larger cohorts
have shown that ADHD and executive functions are dissociable
(Biederman et al., 2004, 2006; Nigg et al., 2005), and the present
study shows for the first time a brain basis for this dissociation in
working memory.
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