
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-12-2010

Web Service for Knowledge Management
Information Tool (KMIT) Hotline module and its
Security
Harini Kondamudi
Florida International University, hkond001@fiu.edu

DOI: 10.25148/etd.FI10081206
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Kondamudi, Harini, "Web Service for Knowledge Management Information Tool (KMIT) Hotline module and its Security" (2010).
FIU Electronic Theses and Dissertations. 262.
https://digitalcommons.fiu.edu/etd/262

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fetd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/262?utm_source=digitalcommons.fiu.edu%2Fetd%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

WEB SERVICE FOR KNOWLEDGE MANAGEMENT INFORMATION TOOL

(KMIT) HOTLINE MODULE AND ITS SECURITY

A thesis submitted in partial fulfillment of the

 requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Harini Kondamudi

2010

To: Dean Amir Mirmiran choose the name of dean of your college/school
 College of Engineering and Computing choose the name of your college/school

This thesis, written by Harini Kondamudi, and entitled Web Service for Knowledge
Management Information Tool (KMIT) Hotline module and its Security, having been
approved in respect to style and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Leonel E Lagos

Peter J Clarke

Ming Zhao, Major Professor

Date of Defense: July 12, 2010

The thesis of Harini Kondamudi is approved.

choose the name of your college/schools dean Dean Amir Mirmiran

choose the name of your college/school College of Engineering and Computing

Interim Dean Kevin O’Shea
University Graduate School

Florida International University, 2010

ii

DEDICATION

I dedicate this dissertation to my dad Satya and my fiancé Dilip. Without their

patience, understanding, support, and most of all love, the completion of this work

would not have been possible.

iii

ACKNOWLEDGMENTS

I wish to thank the members of my committee, Dr. Ming Zhao, Dr. Leonel E Lagos

and Dr. Peter J Clarke for their help and support. I want to specially thank Mr.

Himanshu Upadhyay, my mentor at Applied Research Center (FIU – ARC) without

whose guidance my research is incomplete. His gentle but firm direction has been

most appreciated. My fellow graduate student and friend, Gowthami Thota was very

helpful in guiding me all through the thesis. My fellow graduate student and friend,

Ravi Prasanth Gudavalli was extremely patient to work with the formatting of my

document. My colleague Peggy Shoffner who reviewed the thesis and gave her

valuable comments. I immensely thank you all for your support.

iv

ABSTRACT OF THE THESIS

WEB SERVICE FOR KNOWLEDGE MANAGEMENT INFORMATION TOOL

(KMIT) HOTLINE MODULE AND ITS SECURITY

by

Harini Kondamudi

Florida International University, 2010

Miami, Florida

Professor Ming Zhao, Major Professor

This thesis presents the development of a Web Service for the Hotline module of the

Knowledge Management Information Tool (KMIT), a tool that is custom built for the

decontamination & decommissionin (D&D) community of the Department Of Energy

(DOE). The Hotline module allows interested users to post problems to specific areas

of interest in the field of D&D. Various clients working with DOE and KMIT want to

display the latest published problems of KMIT Hotline search in their own

applications on a regular basis. Considering one of the major benefits of Web

Services is the ease of integration of one piece of software with another, the Hotline

Service is successfully developed and can be plugged into client’s applications by

adding a reference to it. In such a distributed environment, messages can flow from

node to node, through firewalls, onto the internet and through various intermediaries.

This introduces a variety of message security threats. The research for this thesis

included a study of the various security risks and scenarios. Appropriate security

model is designed and is successfully implemented. Hotline Service can authenticate

the client and ensure confidentiality making the service secure to communicate with.

v

TABLE OF CONTENTS

CHAPTER PAGE

1.0 INTRODUCTION: ..1

2.0 BACKGROUND: ..6

2.1 Definitions: ..6
2.2 Evolution of Web Services ..7
2.3 Service oriented architecture..11
2.4 Web Services with asp.net ...14

3.0 WINDOWS COMMUNICATION FOUNDATION.......................................18

3.1 About WCF..18
3.2 Features of WCF..19
3.3 Security in WCF: ...24

4.0 MOTIVATION..32

5.0 WS- SECURITY PROTOCOL: ..35

5.1 WS-Security model:...35
5.2 WS – Security implementation in WCF ..38
5.3 Sending secure messages: ..40
5.4 Receiving secure messages:...41

6.0 HOTLINE SERVICE FOR KMIT...44

6.1 Basics of WCF: ..44
6.2 Development of the Hotline Service:...45

7.0 SECURITY MODEL FOR HOTLINE SERVICE..56

7.1 Create the certificate to act as the root certifying authority:............................58
7.2 Create a certificate revocation list file from the root certificate61
7.3 Install the root certificate on client and server machines.................................62
7.4 Install certificate revocation list file on client and server machines:...............66
7.5 Create and install the temporary certificate ...68
7.6 Give WCF process identity access to temporary certificate’s private key:71

8.0 HOSTING ON IIS ...75

9.0 CLIENTS TO CONSUME HOTLINESERVICE ...79

9.1 Create a test client:...79
9.2 Add a web reference to the client ..79
9.3 Test the client and WCF service ..80

vi

CHAPTER PAGE

10.0 FIDDLER:..82

10.1 Experimental result - 1:..83
10.2 Experimental result -2:...91
10.3 Experimental Result – 3:..94

11.0 CONCLUSION:...99

REFERENCES ..100

vii

LIST OF FIGURES

FIGURE PAGE

Figure 1: J2EE architecture [11] ... 15

Figure 2: ASP.NET Web Service architecture [11].. 16

Figure 3: View of WCF client and service [12].. 19

Figure 4: Application domain of process [14] .. 22

Figure 5: Transport layer security [25] ... 29

Figure 6: Figure for message security [25] ... 30

Figure 7: Steps to secure the messages on client [19] .. 41

Figure 8: Receiving secure messages [19].. 43

Figure 9: Interface for KMIT Hotline Service.. 46

Figure 10: Setting the name attribute to WSHttpEndpoint... 47

Figure 11: Setting the binding configuration .. 48

Figure 12: Setting the contract information to KMIT Hotline Service....................... 49

Figure 13: WCF configuration editor selects ServiceCredentials............................... 54

Figure 14: Location showing the creation of RootCATestKMIT............................... 60

Figure 15: Certificate RootCATestKmit... 60

Figure 16 : Location of RootCATestKMIT.pvk ... 62

Figure 17: Management console to add certificate ... 63

Figure 18: Add certificate to local computer .. 64

Figure 19: Importing wizard for certificate into trusted root certification folder 64

Figure 20: Import wizard .. 65

Figure 21: Import wizard completed... 66

Figure 22: Certificate revocation list .. 68

viii

ix

Figure 23: Service temporary certificate... 70

Figure 24: Downloading private key tool ... 72

Figure 25 : Temporary key for service ... 73

Figure 26: WCF configuration editor ... 76

Figure 27: Web.config file.. 77

Figure 28: Hotline service on IIS.. 77

Figure 29: WSDL for Hotline Service .. 78

Figure 30: Test client in service reference.. 80

Figure 31: Client application .. 81

Figure 32: Client application with credentials .. 84

Figure 33: Client application successfully displays results from KMIT 84

Figure 34: Service referenced with its certificate tempCert 85

Figure 35: Fiddler capture for statistics .. 86

Figure 36: Capture 2 showing binary security token .. 87

Figure 37: Binary security token for exchange... 88

Figure 38: Binary security token in header... 89

Figure 39: Binary security token inserted in header ... 90

Figure 40: Client application trying to access service with wrong password............. 92

Figure 41: Client displaying error message .. 92

Figure 42: Error showing authentication failure... 93

Figure 43: Client application with valid credentials ... 95

Figure 44: Service is given wrong reference of certificate ... 95

Figure 45: Fiddler throwing an error at message 15 where the certificate could not
decrypt the token with its private key ... 96

Figure 46: Client throwing an error saying that it is not authenticated. 97

1.0 INTRODUCTION:

Application integration is one of the most important issues that is currently

being faced by information systems. Application integration is the mechanism that

enables different software systems to share, and use information in a convenient way

[1]. The accomplishment of application integration can be made easier if every

business function written became available to another new application by simply

adding a reference to it, and if all these functions could be discovered and used at

runtime. However, organizations develop different application systems using different

technologies and this makes the process of communication between the applications

tedious. Also, many third party applications are not designed to communicate with

other applications and it requires a lot of time and effort to enable data integration

among these applications. XML Web Services are one solution for application

integration.

KMIT is a Knowledge Management Information Tool that is custom built for

the D&D community. This system is being developed by Florida International

University- Applied Research Center in collaboration with the Department of Energy

(DOE EM 20), the Energy Facility Contractors Group (EFCOG) and the ALARA

centers at the Hanford and Savannah River sites. The Hotline Module of KMIT

allows interested users to post questions/problems related to a specific area of interest

in the area of decontamination and decommissioning (D&D). Various clients working

with DOE and KMIT who want to display the latest published problems of KMIT

hotline search in their own applications on a regular basis. Considering one of the

1

major benefits of Web Services is the ease of integration of one piece of software

with another, we proposed the idea of developing a Web Service for the KMIT

Hotline module which can be plugged into other client’s applications. With their

greater amount of use and ease of integration, they are open to serious attacks. The

purpose of this study is to secure, the service which is always a top issue. Even

though there are various security mechanisms available, there is little knowledge on

which model to apply for a specific scenario. The challenge lies in testing the service

to know if it actually implements the specific security model. The proposed idea to

achieve this is to intercept the Simple Object Access Protocol (SOAP) messages

being transferred between the client and the service.

In this thesis, I present the various methods of security mechanisms available

to protect Web Services and the specific security model designed to secure KMIT

HOTLINE WEB SERVICE. The security model follows WS- SECURITY protocol.

The security concept generally addresses issues related to authentication, integrity

and confidentiality. The study here is particularly about authenticating the client

applications and allowing them to access the service. Study about integrity and

confidentiality are left for future work. This model is the outcome of the study of

various authentication standards. This is accomplished by studying the authentication

mechanisms available, and picking the right method to fit the Hotline Service security

requirements and the scenario. The security model follows the implementation of

‘message security’ specified by Microsoft Developer Network (MSDN) [20] using

Windows Communication Foundation WCF.

2

I worked in a team of four with my advisor, Prof. Ming Zhao; mentor, Mr.

Himanshu Upadhyay; and a graduate student, Gowthami Thota. My role in the team

is to research the various scenarios and security standards, develop the HOTLINE

WEBSERVICE, add the elements of authentication and test if the authentication

method of security was properly implemented. The HOTILINE WEB SERVICE

development is divided into three phases. The first phase is to build a platform

independent Application Program Interface (API) to expose the endpoints of the

service. The Hotline Service consists of one end point which opens the gateway for

communication to the clients. The second phase is to host the service on Internet

Information Service (IIS). For a service to be active, it must be hosted within a run-

time environment that creates it and controls its context and lifetime. The IIS hosting

option in WCF is integrated with ASP.NET and uses the features these technologies

offer, such as process recycling, idle shutdown, process health monitoring, and

message-based activation [2]. The third phase is to write client applications to test if

the service is running. WCF provides a versatile and interoperable platform for

exchanging secure messages based upon the existing security infrastructure and the

recognized security standards for SOAP messages.

The security model describes the WS-Security protocol and how WCF

integrates to use the protocol by using specific bindings. Also discussed are the

available authentication models for security and why I chose the specific security

model (message security with username token and certificate authentication) for

KMIT. Further sections describe how the bindings are configured, how the

3

certificates are created, signed and are used by the service and client for mutual

authentication.

In sections 10.1 and 10.2, I describe the Fiddler, a debugging proxy, to verify

if security is implemented properly to the service. Fiddler is worth studying as it acts

as a Web debugging proxy which intercepts the SOAP messages and logs

all HTTP(S) Hyper Text Transfer Protocol – Secured [HTTP(S)] traffic between the

computer and the internet. Fiddler allows the inspection of all HTTP(S) traffic, the

setting of breakpoints, and “fiddling" with incoming or outgoing data. Fiddler

includes a powerful event-based scripting subsystem, and can be extended using any

.NET language. Appropriate screenshots display how the fiddler intercepted the

messages and how the authentication is verified. The results are also displayed

verifying the usage of bit-256 encryption algorithm, the encrypted cipher text, binary

token for exchange and the nonce values. Finally, I draw conclusions that the specific

security model follows the standards of WS- SECURITY protocol, and validates

them through the results displayed by fiddler.

The next chapter provides the background material, the history behind the

evolution of web services and some important definitions used throughout the

document. Chapter 3 describes the latest technology, Windows Communication

Foundation, the advanced features of WCF and how the security can be implemented

easily using the WCF framework. Chapter 4 discusses our motivation to the idea for

development of Web Services, and chapter 5 describes the WS-Security protocol in

detail, while chapter 6 describes why the developed services should be secured, and

discusses various implementation techniques. Chapter 6 describes the first phase of

4

5

implementation of the Hotline Web Service using WCF, right from describing the

basics of WCF. Chapter 7 elaborates on Security model implemented for the Hotline

Service and describes how the message security with username authentication is

implemented using the digital certificates. Various sections of this chapter detail the

procedure of adding and installing certificates to verify the incoming messages.

Chapter 8 describes the second phase of development, i.e. to host the Hotline Service

on IIS. Chapter 9 the third phase, explains the creation of a client to know if the

service is responding to client requests. Chapter 10 explains the Fiddler tool.

Appropriate results are documented which verify the security model implemented.

Experimental results are shown in sections 10.1 and 10.2 which explain that security

is successfully implemented. I then discuss the potential future work for Hotline Web

Service, and give concluding remarks followed by a list of references.

2.0 BACKGROUND:

This chapter introduces some of the important definitions related to this

research, as well as the terminology that will be used throughout the Thesis. Also

discussed is the foundation to the study, Web Services, and why there is a need to

develop a Web Service for Hotline module of KMIT, and specific details about the

KMIT and Hotline module. More details are presented about the mechanisms

available for communication before Web Services were developed. Even though later

sections discuss the security in detail, a brief overview of it this presented.

2.1 Definitions:

Web Service A Web Service is a software component that is described via Web

Service Description Language (WSDL) and is capable of being

accessed via standard network protocols such as but not limited to

SOAP over HTTP [3]

XML Extensible Markup Language, abbreviated describes a class of data

objects called XML documents and partially describes the behavior

of computer programs which process them. XML is an application

profile or restricted form of SGML, the Standard Generalized

Markup Language

[ISO 8879] [3]

SOAP SOAP, originally defined as Simple Object Access Protocol, is a

lightweight protocol intended for exchanging structured information

in a decentralized, distributed environment [4]

6

UDDI The Universal Description, Discovery, and Integration (UDDI)

specification defines a SOAP-based Web service for locating Web

services and programmable resources on a network [5]

WSDL WSDL is an XML format for describing network services as a set of

endpoints operating on messages containing either document-

oriented or procedure-oriented information.[6]

IIS Internet Information Server. This is a Microsoft application that

allows the creation of web-based applications that interact with

COM server objects. Web pages that interact with COM server

objects are called ASP pages [7]

KMIT Knowledge Management Information Tool [8]

SOA Service Oriented Architecture

2.2 Evolution of Web Services

Object Oriented (OO) programming joined the mainstream in the early 80’s.

Many saw it as the solution to the software crisis that resulted from the increasing

complexity and size of the software being built. Most projects were late and over

budget, and the end result was often unreliable. The promise of object orientation was

that by structuring the code into objects that map to other objects in the solution

domain, one would get code that was reusable and easily maintained. OO

programming has improved software quality, but software projects are still often over

budget and late. The 1990’s saw the birth of component technology. Visual Basic is

now ten years old, but it was revolutionary in many ways. It allows developers to

7

build windows applications by dragging controls on to the form. In 1995, people

talked about component technology and how it would make it possible to build

applications by assembling components. Component re-use has turned out to be

commercially very successful, but third party business components, have not lived up

to its promise. Alongside, the internet has clearly had a major impact on society and

our industry in particular.

In many ways, Web Services seemed to be an extension of component model

to the internet, as essentially a Web Service is an application logic that can be used

over the internet. Many of the promises of Web Services are the same as component

technology, and they will allow us to assemble applications from pre-built application

logic available somewhere on the internet. Similarly, Web Services will solve many

problems we encounter when trying to build re-usable application logic and building

applications that span the internet. In this chapter we will look at the “why”, “what”

and “how” of Web Services.

2.2.1 Why we need Web Services?

Web Services are interesting from several perspectives. From a technological

perspective, Web Services try to solve some problems faced when using tightly-

coupled technologies such as CORBA and DCOM. These are problems such as

getting through firewalls, the complexities of the protocols, and integrating

heterogeneous platforms. They are also interesting from an organizational or

economic perspective, as they open up doors for new ways of doing business and

dealing with organizational issues. Let us look at some reasons why we need services

8

 Web Services are loosely coupled with clients. A client makes a request to a

service. The service returns the result and the connection is closed. There is no

permanent connection, and none of the complexities.

 The Web Service may extend its interface, add new methods and parameters

without affecting the clients, as long as it still services the old methods and

clients.

 Web Services are stateless. They do not hold on to a state on behalf of the

client. This makes scalability easier.

 The foundation of Web Services- SOAP – Simple Object Access Protocol is

very easy to implement compared to DCOM and CORBA

 For serialization, DCOM and CORBA are based on complex formats. The

serialization of Web Services is based on XML and XML schema

specification. XML is simple, extensible and readable.

 Where DCOM and CORBA use IDL to describe interface, Web Services use

WSDL to describe its interface which is more flexible.

2.2.2 What are Web Services?

The term Web Service opens doors for confusion during early stages. Is a

hosted solution provided through the internet a Web Service? Then, what about

software that is downloaded from the internet when needed? Is that a Web Service

too?

9

The following defines a Web Service “A web service is an application logic

that is accessible to a program via standard web protocols in a platform –

independent way.”

If we break up the definition,

 Application Logic: A Web Service exposes some application logic or code.

This code can do anything a program can do, look up databases or doing

calculations etc.

 Accessible to program: Where most websites today are accessed by humans,

Web Services are accessed by computer programs.

 Standard Web Protocols: The whole concept of Web Services is based on a

set of standards as HTTP, XML, SOAP, WSDL, and UDDI.

 Platform Independent: Web Services can be implemented on any platform.

The standard protocols are not proprietary to any vendor, and are supported by

all major vendors.

2.2.3 How to implement Web Services with ASP.NET

After talking about why and what they are, this chapter discusses how Web

Services are implemented.

Web Services are based on SOAP, and SOAP is independent of how the

services are implemented. There are many ways to implement services. All vendor

developer tools are or will be providing tools to develop services. IBM has Web

Services toolkit, Apache SOAP protocol has a tool kit and many more. Even when

10

committed to Microsoft, there are several ways to implement SOAP based Web

Services, including:

 Hand coding the service and formatting the SOAP and XML by hand. This is

a very tedious option.

 Use SOAP toolkit, downloadable from http://msdn.microsoft.com

 Use ATL server. ATL is a part of Visual studio.net

 Use .NET remoting which allows classes inherting from a base class called

MarshalByRefObject to be exposed as Web Services using SOAP.

 Use ASP.NET

From the research and my opinion the .NET framework is the superior

platform for building, deploying and consuming Web Services. Other platforms and

tools have Web Services bolted on top of them. The .NET framework is built from

the ground to support XML and Web Services.

2.3 Service oriented architecture

It would be easy to conclude that the move to Service orientation really

commenced with Web Services about three years ago. However, Web Services were

merely a step along a much longer road. What's important to recognize is that Web

Services are part of the wider picture that is SOA. Web Services provide us with

certain architectural characteristics and benefits, specifically, platform independence,

loose coupling, self description, and discovery and they can enable a formal

separation between the provider and consumer because of the formality of the

interface.

11

Service is the important concept. Web Services are the set of protocols by

which Services can be published, discovered and used in a technology neutral,

standard form [9]. It seems probable that eventually most software capabilities will

be delivered and consumed as services. Over time, the level of abstraction at which

functionality is specified, published and or consumed has gradually become higher

and higher. Technology has progressed from modules, to objects, to components, and

now to services. A distributed system consists of diverse, discrete software agents

that must work together to perform some tasks. Furthermore, the agents in a

distributed system do not operate in the same processing environment, so they must

communicate by hardware/software protocol stacks over a network. This means that

communications with a distributed system are intrinsically less fast and reliable than

those using direct code invocation and shared memory. [10]. Many organizations

currently offer service which implements a general purpose API and can provide

basic create, read, update and delete (CRUD) access to the database through web

service. While we see that there is nothing wrong with this kind of implementation, it

is also essential that users understand the underlying model and comply with the

business rules of the organization. The WSDL tells nothing about the business or

entities. This could be an example of Web Services without SOA. SOA is not just an

architecture of services seen from a technology perspective, but the policies,

practices, and frameworks by which we ensure the right services are provided and

consumed [9] .So, we need a frame work that can allow us to develop a good service

that can provide:

12

 Interface related principles - technology neutrality, standardization and

consumability.

 Design principles - these are more about achieving quality services, meeting

real business needs, and making services easy to use, inherently adaptable,

and easy to manage.

Here, the point to be noted is that, not all services should implement these

qualities, however, by understanding the architecture, it can be noted that for a service

like the KMIT Hotline which is to be used by multiple clients, the specification needs

to be generalized, service should be abstract from implementation, and the developers

of client applications should be unaware of the underlying model. The information

provided to the client should be precise and the service should be offered at the

required level of granularity.

There are certain things that are taken into consideration while designing a

Web Service for KMIT which follows service oriented architecture

 The current user requirements - the key driving force for using Web Services

is to ensure seamless end-to-end business processes. Thus, the development of a

Hotline Service should follow the property of designing the service to

accommodate the future needs of consumers

 For the consumers, the process must be organized in such a way that only the

interface matters. They should have no dependence on how the service is being

implemented. All they need to know is the location of the Hotline Service, what

it does, and how it can be used. Because interface is the only thing for the

consumer to interact with, considerable flexibility can be achieved.

13

 Similarly, the provider of the Hotline Service may have a different set of

concerns, but the designer needs to develop and deliver a service that the

consumer can use in any application. This shows that the focus of attention should

be given to the interface – the description and contract.

2.4 Web Services with asp.net

Though there are several ways available to develop Web Services, the two

major technologies that rule the business world applications are J2EE and .NET. This

section compares the Web Service implementation the two major technologies J2EE

and .NET, and the reason of choosing .NET over J2EE for KMIT. The comparison is

done relating to the features present in each platform, the tools and the resources

offered by the two and compatibility with the rest.

2.4.1 In J2EE

J2EE is a set of specifications created by the java community process (JCP). It

is used for developing enterprise level applications. As a framework for the

development of multitier enterprise applications, it makes the job of a developer easy,

by providing “containers” [11].

Containers help the developers to concentrate on business logic by providing

complex level functionality. Several libraries are added to J2EE specification to

support Web Services [11].

14

Figure 1: J2EE architecture [11]

 Java API for XML based RPC (JAX-RPC) is the API that enables developers

to develop and deploy Web Services [11].

 Java API for XML registeries, (JAXR) provides a uniform and standard API

to access different kind of XML registeries [11].

J2EE is the leader in the development of enterprise applications. The attractive

choices of this platform are as follows.

Platform Independence: Java technology works independently of any platform or an

operating system. The development platform is designed for Windows, Mac, and

Solaris and to the flavors of UNIX like HP-UNIX [11].

Multi- vendor Support: J2EE compatibility test suite is provided by Sun

Microsystems which ensures for compatibility among applications vendors which

help to ensure portability for applications and components written in J2EE [11].

15

2.4.2 In .NET:

.NET is a Microsoft product that that is tied closely to the windows operating

system. Microsoft describes it as the software that connects information, people,

systems and devices.

Figure 2 shows the .NET development platform which is similar to J2EE for

multi tier applications.

Figure 2: ASP.NET Web Service architecture [11]

Being the successor of the oldest Microsoft technologies such as DCOM and

COM, several new features have been added to support Microsoft components.

Language independence: In terms of development language there is a vast choice to

choose among programming languages like C#, VB.NET, Jscript.NET, C++ all which

are part of .NET [11].

Integrated Web Services Support: The built in support for developing and

deploying Web Services, make them appear just like any other objects. There is no

visible difference for the programmer after creating a reference. Hence, the

developing, publishing and discovery of the Web Services made simple, is one of the

greatest advantage with .NET.

16

17

Previously Web Services with ASP.NET were language independent but

could be used with windows machines only. However, with the recent development

of Windows Communication foundation, the barrier is broken for cross platform

communication. Applications built on other technologies, such as Java EE application

servers, and applications running on Windows machines or on machines running

other operating systems, such as Sun Solaris, IBM z/OS, or Linux can be

communicated [11]

The KMIT is already developed in the .NET framework - and VB.NET

language. So it’s a good idea to continue with the tool that gets along with the

existing framework. As described above, the KMIT Hotline Service which is

developed in C# encounters no problem with the existing infrastructure considering

the beauty of .NET to support multiple languages. With WCF added to the KMIT

Hotline Service it also solves the problem for interoperability. More details about the

integration of WCF to ASP.NET are described in the later sections.

3.0 WINDOWS COMMUNICATION FOUNDATION

3.1 About WCF

WCF is the unified programming model used to build service oriented

applications. Web Services which are now universally accepted as a change to

software development have standard protocols for application to application

communication. Few of the services provided by Web Services apart from simple

application integration include security, reliability, and transaction co-ordination.

The benefits of the changes provided by the Web Services should be reflected in the

tools and technologies used to develop them. Windows Communication Foundation

(WCF) is designed to offer a manageable approach to distributed computing, broad

interoperability, and direct support for service orientation [12].

WCF has well designed service model which enables the programmers to not

only develop expertise ASP.NET applications but also helps the developers having

familiar experience with .NET remoting, and enterprise services. The service model

features a straightforward mapping of Web Services concepts to those of the .NET

Framework common language runtime (CLR), including flexible and extensible

mapping of messages to service implementations in languages such as Visual C# or

Visual Basic [12]. Serialization facilities developed in WCF enable loose coupling

and versioning, and provide integration with existing .NET distributed technologies

such as message Queuing (MSMQ), ASP.NET Web Services and Web Service

Enhancements (WSE). WCF is implemented primarily as a set of classes on top of the

18

.NET Framework CLR. Because it extends their familiar environment, WCF enables

developers who create object-oriented applications using the .NET Framework today

to also build service-oriented applications in a familiar way.

Figure 3: View of WCF client and service [12]

The above figure shows the client and the service communicating using

SOAP, the native WCF message representation. Even though it shows that both of the

applications are built using WCF, it is not required as compulsory.

3.2 Features of WCF

Many features have been added into WCF which makes the job of the

developer of the services easier. Serialization and Hosting of services are noteworthy

and these features are used in the development of Hotline Web Services. Detailed

description is summarized below.

3.2.1 Serialization:

WCF has been built up around the tenets of service orientation. It supports

several serialization mechanisms that make it easy to bring existing types forward and

provides a simple, interoperable foundation for future service-oriented applications.

While we can build XML directly, there is also an advantage to leverage the concepts

of serialization mechanisms that can automate moving of objects between .NET

framework and XML sets [13].

19

Generally there are two procedures that can be used for implementation of

web services. One is to embrace XML and program directly to the messages, which

offers high degree of flexibility, and the second is to predefine the mapping between

XML and .NET and then rely on automated serialization mechanisms. This simplifies

the developer experience by hiding various XML details. Both of them are supported

with equal depth in WCF [13].

WCF represents all the messages using the message class found in ‘System.

ServiceModel. Channels’. The message class models a SOAP message. The SOAP

message is commonly packaged as SOAP envelope, which has a header and a body

section, using either ‘System.Xml’ classes or type-based serialization [13].

We can explicitly choose the method we want to use at message level. Using

service contracts in terms of serializable types is the most common way of using

serialization in WCF. An Example: 1 [13] can be shown below.

[ServiceContract]

public interface IEchoService

{

 [OperationContract]

 Person EchoPerson(Person person);

}

Example: 1

The .NET type definition will serve as service contract, by adding

[servicecontract] to the .NET interface. Annotating the method signature with

[OperationContract] indicates that the method is included in the service contract. At

run time, windows communication foundation automatically maps the method

20

signature to a pair of messages behind the scenes, each containing a “Person” in the

SOAP body. It then uses a serializer to map the “Person” object into the message.

(For complete control over what goes where in the SOAP envelope,

[MessageContract] is used in types in the signature [13].

3.2.2 Hosting:

When the development relies on SOA architecture, then the service has to be

robust. WCF offers a variety of hosting options which can help services robustness.

The availability requirements of the service, managing and deployment of services,

support to the older versions of services are to be taken into account before hosting.

Windows communication foundation doesn't come with its own host, but instead

comes with a class called ‘ServiceHost’ that allows hosting WCF services in its own

application. The application need not have to consider any of the network transport

specifics to be able to make sure that your services are reachable. It's a matter of

configuring the services' endpoints either programmatically or declaratively, and

calling the ‘Open’ method of ‘ServiceHost’. All of the generic functionality

regarding bindings, channels, dispatchers, and listeners are integrated

into ‘ServiceHostBase’ and ‘ServiceHost’. This means that the responsibility of the

application that you use to host your service, the application where ‘ServiceHost’ is

running, is significantly less than you would expect up front [14].

A WCF application requires a hosting windows process. Multiple .NET

applications can be hosted in a single windows process. An application domain is the

means for the .NET CLR to isolate the managed code from Windows. The CLR

21

automatically creates one default application domain in each worker process where it

is initialized in a process. The default application domain is not unloaded until the

process in which it runs shuts down. The CLR controls the shutdown of the default

application domain. In most hosts, no code is running inside the default application

domain. Instead, hosts create a new application domain so the application domain can

be closed independently of the process. In a lot of applications, it is desirable that the

client-side code and server-side code execute in different application domains. Often,

these desires stem from reasons such as security and isolation.

Figure 4: Application domain of process [14]

Figure 4 shows that every process has at least one application domain, and each

application domain can host zero or more WCF ‘ServiceHost’ instances. WCF

requires at least an application domain hosted inside a Windows process [14]

The various techniques available in WCF to host a service are

 Self Hosting a Service: self hosting is the easiest and flexible way

to host a service. Two requirements are to be met to self host a service. WCF

22

 Hosting in Windows Services: A windows service is the process

managed by the operating system. Windows comes with the service control

manager, which controls the services installed on the operating system.

Windows uses services to support operating system features such as

networking, USB, remote access, message queuing, and so on. It is to be noted

that windows service is not same as web service [14].

 Hosting using IIS: Hosting a WCF Service in IIS, needs a new

physical file with the .svc extension. The file associates a service with its

implementation and is the means for IIS to create ‘ServiceHost’. IIS takes

over the interaction between the service and ‘ServiceHost’. No initiation is

required to start the ‘ServiceHost’. The first line of the .svc file contains a

directive enclosed in the ASP.NET ‘<% Page %>’ directive that tells the

hosting environment to which service this file points. The most common

scenario is to define endpoints in a configuration file. In IIS, the endpoints are

defined in the ‘Web.config’ file. In IIS, web configuration files can be nested

in sites, applications, and virtual directories. WCF takes all the configuration

files into account and merges services and their endpoints together. This

means that nested ‘Web.config’ files are additive to each other, where the last

file read in the bottom of the hierarchy takes precedence over files higher in

the hierarchy [14].

23

3.3 Security in WCF:

WCF is a distributed programming platform based on SOAP messages. Using

WCF, you can create applications that function as both services and service clients,

creating and processing messages from an unlimited number of other services and

clients. In such a distributed application, messages can flow from node to node,

through firewalls, onto the Internet, and through numerous SOAP intermediaries.

This introduces a variety of message security threats. WCF uses concepts that are

familiar to build secure, distributed applications with existing technologies such as

HTTPS, Windows integrated security, or user names and passwords to authenticate

users. WCF not only integrates with existing security infrastructures, but also extends

distributed security beyond ‘Windows only’ domains by using secure SOAP

messages. Consider WCF an implementation of existing security mechanisms with

the major advantage of using SOAP as the protocol in addition to existing protocols.

For example, credentials that identifies a client or a service, such as user name and

password or X.509 certificates, have interoperable XML-based SOAP profiles. Using

these profiles, messages are exchanged securely by taking advantage of open

specifications like XML digital signatures and XML encryption.

3.3.1 Common security threats:

The following examples illustrate some common threats that WCF security

can help mitigate when exchanging messages between entities:

 Observation of network traffic to obtain sensitive information. For

example, in an online-banking scenario, a client requests the transfer of funds

24

 Rogue entities acting as services without awareness of the client. In this

scenario, a malicious user (the rogue) acts as an online service and intercepts

messages from the client to obtain sensitive information. Then the rogue uses

the stolen data to transfer funds from the compromised account. This attack is

also known a phishing attack [15].

 Alteration of messages to obtain a different result than the caller intended. For

example, altering the account number to which a deposit is made allows the

funds to go to a rogue account [15].

 Hacker replays in which a nuisance hacker replays the same purchase order.

For example, an online bookstore receives hundreds of orders and sends the

books to a customer who has not ordered those [15].

 Inability of a service to authenticate a client. In this case, the service cannot

assure that the appropriate person performed the transaction [15].

3.3.2 Integration of WCF with existing authentication models

Most important aspect of a security model is to provide proper authentication

between the entities of communication. Digital signatures or credentials are the

common forms of authentication among the communicating peers. But with the

improvement in distributed computing scenarios, various authentication mechanisms

have emerged. Thus, in the world of Web Services, where the same service might be

25

exposed to internal customers as well as to external partners or Internet customers, it

is important that the infrastructure provide for integration with these existing

security authentication models. In this section we describe the various authentication

methods that can be used with WCF.

 Anonymous caller: When using this option, the WCF service

does not authenticate the callers. This may not be the recommended option

from a security perspective [15].

 Username with client credential: When using this option, the

caller provides a username and password to the service. The service can

authenticate against windows credentials, or a membership provider such as

the ‘Microsoft SQL Server membership provider’, or use a custom validator to

validate against the custom store. This option is recommended only when

windows authentication is not possible. The service is authenticated by using a

service certificate [15].

 Certificate client credential: When using this option, the caller

presents an X.509 client certificate. The WCF service looks up the certificate

information on the host side and validates it (peer trust), or trusts the issuer of

the client certificate (chain trust). This option should be used when windows

authentication is not possible, or in the case of B2B scenarios. The service is

authenticated by using a service certificate [15].

 Windows. When using this option, the WCF service uses

Kerberos authentication when in a domain, or NTLM authentication when

deployed in a workgroup environment. This option uses the windows token

26

For the KMIT Hotline Service, each client application is provided with a user name

and password pair which are stored and validated against the database using SQL

server membership provider. Hence, the second authentication model described above

is used for developing Hotline Web Service, where the service uses an X.509

certificate to authenticate itself. The implementation is described in detail in later

chapters.

3.3.3 Standards and Interoperability:

Distributed computing/communications platforms need to interoperate with

the technologies different vendors offer. With large and different deployments,

maintain homogeneity and interoperable security could be an issue. In order to

maintain interoperability security among distributed systems, companies active in

Web Service industry, have made some standards. Regarding Security, few notable

standards like WS-Security: SOAP Message Security (accepted by the OASIS

standards body and formerly known as WS-Security), [18] WS-Trust [21], WS-

SecureConversation [22], and WS-SecurityPolicy are proposed [23].

WCF supports a wide variety of interoperability scenarios.

The ‘BasicHttpBinding’ class is targeted at the basic security profile and

the ‘WSHttpBinding’ class is targeted at the latest security standards, such as WS-

Security 1.1 and WS-SecureConversation. By adhering to these standards, WCF

27

security can interoperate and integrate with Web Services that are hosted on operating

systems and platforms other than Microsoft windows.

3.3.4 WCF security functional areas:

WCF security functional areas are divided into three main aspects relating to

transfer security, access control and auditing. This section describes in detail about

the transfer security, that which is more relevant and implemented in the development

of Hotline Web Service. The whole of transfer security talks about three main

important aspects of message transfer namely, authentication, integrity and

confidentiality. Authentication is the ability to verify a claimed identity. Integrity

checks if the message is being tampered or not, and confidentiality is the ability to

allow only the recipient to read the message that’s transferred. The two main modes

in which the transfer security is implemented is transport and message security.

 Transport security: Transport layer security represents an

approach where the underlying operating system or application servers are

used to handle security features. For data confidentiality, Secure Sockets

Layer (SSL) is a common transport layer approach that is used to provide

encryption. Figure 4 below shows the security [24].

28

Figure 5: Transport layer security [25]

TLS uses a transport-level protocol, such as HTTPS, to achieve transfer

security. Transport mode has the advantage of being widely adopted, available on

many platforms, and less computationally complex. If a message needs to go through

multiple points to reach its destination, each intermediate point must forward the

message over a new SSL connection. In this model, the original message from the

client is not cryptographically protected on each intermediary because it traverses

intermediate servers and additional computationally expensive cryptographic

operations are performed for every new SSL connection that is established [24]. This

is the disadvantage of TLS i.e. securing messages only from point-to-point.

 Message layer security: Message layer security represents an

approach where all the information related to security is encapsulated in the

SOAP message. There are many advantages of using message layer security to

transport layer security. Some of them are

1. Increased flexibility. Parts of the message, instead of the entire

message, can be signed or encrypted. This means that intermediaries

can view the parts of the message that are intended for them. An

29

2. Support for auditing. Intermediaries can add their own headers to

the message and sign them for the purpose of audit logging [24].

3. Support for multiple protocols. Applications can send secured

messages over many different protocols such as Simple Mail Transfer

Protocol (SMTP), File Transfer Protocol (FTP), and Transmission

Control Protocol (TCP) without having to rely on the protocol for

security [24].

Figure 6: Figure for message security [25]

Even though message level security has many advantages to transport layer

security, it has to be considered only when message is being routed through

intermediaries before it reaches the destination. This is because the performance of

message layer security is less when compared to TLS. The specifications and future

needs for the project are to be considered while choosing the specific mode of

30

31

security implementation. KMIT Hotline Web Service displays information from

Hotline Service to its client applications. Even though the route does not consist of

intermediaries, the Web Service is designed keeping in view the future needs of the

clients where there are more chances to route the messages through intermediaries.

The method of implementation of message security to KMIT Hotline is discussed in

detail in further chapters.

4.0 MOTIVATION

 Evolutions are a way of life in the computer industry. Only 20 years ago, the

world was still in the mainframe era. Few people had access or used computers, and

when they did, it was only through the nearest computer center. Three innovations

changed all that: the PC, the GUI, and the Internet. Since then, standards such as

HTML and HTTP have exponentially increased people's use of the Internet. This base

protocol for viewing content on the web grew web usage to what we are familiar with

today. The Web became a key activity in the daily lives of businesses, employees,

and consumers. Many of us envision an online world where constellations of PCs,

servers, smart devices, and Internet-based services can collaborate seamlessly.

Businesses will be able to share data, integrate their processes, and join forces to offer

customized, comprehensive solutions to their customers. The information you or

your business need will be available wherever you are, and whatever computing

device, platform, or application you are using.

Today's standalone applications and Web sites create islands of functionality

and data, which has to be navigated manually between web sites, devices, and

applications, logging in each time, and rarely being able to carry data with! Tasks that

ought to be simple, such as arranging a meeting with colleagues from partner

companies and automatically updating every attendee's calendar, are a nightmare in

the best case, and impossible in the common case. This inefficiency is a major source

for productivity loss. As a result of the changes in how businesses and consumers use

the web, the industry is converging on a new computing model that enables a

32

standard way of building applications and processes to connect and exchange

information over the web. This new Internet-based integration methodology, called

"XML Web Services," enables applications, machines, and business processes to

work together in a revolutionary way. The widespread support around XML assures

that businesses will cooperate in the Internet-based economy with this XML Web

Services model.

At the heart of the solution is XML (extensible Markup Language). XML is

an open industry standard managed by the World Wide Web Consortium. It enables

developers to describe data being exchanged between PCs, smart

devices, applications, and web sites. Since the data is separate from the format and

style definitions, it can be easily organized, programmed, edited, and exchanged

between any web sites, applications, and devices. Just as the web revolutionized how

users talk to applications, XML transforms how applications talk to each other. [Some

arguments taken from Bill Gates, in his leaflet to Developers & IT Professionals from

June 14, 2001, covers the motivation for Web services, and the XML's role in this

technology]

KMIT is a knowledge management information tool that is custom built for

the D&D community. This system is being developed by Florida International

University- Applied Research Center in collaboration with Department of Energy

(DOE EM 20), EFCOG and ALARA centers at Hanford and Savannah River. The

Hotline Module of KMIT allows interested users to post questions/problems related

to specific area of interest in the area of Decontamination and Decommissioning

(D&D). The question/problem will be routed to a preselected subject matter specialist

33

34

(SMS) who, based on his/her experience, will provide a technical solution to the

posted question/problem. The provided answer will be posted on a web portal after

content coordinator (CC) review. Various clients working with DOE and KMIT want

to display the latest published problems of KMIT Hotline search in their own

applications on a regular basis. Considering one of the major benefits of Web

Services is the ease of integration of one piece of software with another, we proposed

the idea of developing Web Service for KMIT Hotline module which can be plugged

into other client’s applications. This ease of integration will enable tighter business

relationships and more efficient business processes. An integral part of the XML Web

Services programming model, is the ease of integration with external data sources. No

longer does KMIT client applications need to copy and maintain external data

sources. Applications can request and get information in real time, and transform into

a particular format. This will allow the client applications to deliver individualized

software and services, while the maintenance burden is reduced. Hotline Web Service

will be an integrated experience that excels in its simplicity. It gives users the ability

to act on information any time, any place, and from any smart device. Businesses will

love KMIT Web Service because it will force them to streamline their processes. An

XML Web Service is a simple, reliable way to blend existing systems with new

applications and services.

5.0 WS- SECURITY PROTOCOL:

5.1 WS-Security model:

This security protocol describes enhancements to SOAP messaging to provide

message authentication integrity and confidentiality. The specified mechanisms can

be used to accommodate a wide variety of security models and encryption

technologies. This protocol also provides a general-purpose mechanism for

associating security tokens with message content. No specific type of security token

is required, the specification is designed to be extensible (i.e. support multiple

security token formats).

This OASIS specification is the result of significant new work by the WSS Technical

Committee and supersedes the input submissions, Web Service Security (WS-

Security) Version 1.0 [16] and Web Services Security Addendum Version 1.0 [17]

This protocol specification proposes a standard set of SOAP extensions that can be

used when building secure Web Services to implement message content integrity and

confidentiality. This specification refers to this set of extensions and modules as the

“Web Services Security: SOAP Message Security” or “WSS: SOAP Message

Security”. This specification is flexible and is designed to be used as the basis for

securing Web Services within a wide variety of security models including PKI,

Kerberos, and SSL. Specifically, this specification provides support for multiple

security token formats, multiple trust domains, multiple signature formats, and

multiple encryption technologies. The token formats and semantics for using these are

35

defined in the associated profile documents. This specification provides three main

mechanisms: ability to send security tokens as part of a message, message integrity,

and message confidentiality. These mechanisms by themselves do not provide a

complete security solution for Web Services. Instead, this specification is a building

block that can be used in conjunction with other Web Service extensions and higher-

level application-specific protocols to accommodate a wide variety of security models

and security technologies. These mechanisms can be used independently (e.g., to pass

a security token) or in a tightly coupled manner (e.g., signing and encrypting a

message or part of a message and providing a security token or token path associated

with the keys used for signing and encryption). [18]

The foundation of the Message security mode is the WS-

Security specification. The WS-Security specification defines a framework that

allows security to be applied to SOAP messages. It specifies a message security

model using security tokens combined with digital signatures and encryption to

protect and authenticate SOAP messages. Some important terminology is

mentioned below,

 A security token asserts claims and can be used to assert the binding between

authentication secrets or keys and security identities [19].

 A claim is a declaration made by an entity about an entity (for example, a

name, identity, group, key, group, or privilege). The entity that makes the

claim is referred to as a claim issuer; the entity about which the claim is made

is referred to as a claim subject [19].

36

 A claim issuer can vouch for or endorse the claims in a security token by

using its key to sign or encrypt the security token. This enables authentication

of the claims in the security token [18].

 Message signatures are used to verify message origin and integrity. Message

signatures are also used by message producers to demonstrate knowledge of

the key, typically from a third party, used to confirm the claims in a security

token and thus to bind their identity (and any other claims represented by the

security token) to the messages they create [18]

 Confidentiality is the property that data is not made available to unauthorized

individuals, entities, or processes [18].

 A digital signature is a value computed with a cryptographic algorithm and

bound to data in such a way that intended recipients of the data can use the

digital signature to verify that the data has not been altered and/or has

originated from the signer of the message, providing message integrity and

authentication. The digital signature can be computed and verified with

symmetric key algorithms, where the same key is used for signing and

verifying, or with asymmetric key algorithms, where different keys are used

for signing and verifying (a private and public key pair are used) [18].

 End-to-end message level security is established when a message that

traverses multiple applications (one or more SOAP intermediaries) within and

between business entities, e.g. companies, divisions and business units, is

secure over its full route through and between those business entities [18].

37

 Trust is the characteristic that one entity is willing to rely upon a second entity

to execute a set of actions and/or to make set of assertions about a set of

subjects and/or scopes [18].

WS-Security defines several types of security tokens and gives an extensible

model that allows additional security token types to be defined independently. Every

token type definition contains a XML serialization of the token. This allows adding

the token representation directly to the message [19]

The following are some of the security token types defined in WS-Security:

 Username Token.

 X.509 Certificate Token.

 Kerberos Token.

 SAML Token.

In .NET Framework 3.0, a client message can contain only one token of any given

type, but can contain tokens of different types. In .NET Framework 3.5, client

messages can contain multiple tokens of a given type, as well as tokens of different

types.

5.2 WS – Security implementation in WCF

Because WS-Security lays a foundation for message security, the WCF

implementation of WS-Security is a cornerstone of the whole Message security mode.

To extend the Message security mode functionality, it is necessary to understand how

the WS-Security implementation works.

The WS-Security implementation in WCF handles the following:

38

 Serialization of security tokens to and from SOAP messages.

 Authentication of security tokens.

 Application and verification of message signatures.

 Encryption and decryption of SOAP messages.

WCF extensibility points allow customization of the first two items. It is

possible to change the serialization of existing security tokens or the way WCF

security authenticates those tokens. It is also possible to introduce completely new

security token types to the WCF security, including the serialization and

authentication functionality. The following topics in this section show how the WS-

Security implementation extensibility points can be used to customize the security

tokens functionality.

Authentication: Security tokens are desterilized from the incoming message and

authenticated. The authentication process results in a set of authorization-policy

objects. Each object represents a part of the security token's data. That data is used

during the authorization stage [19].

Identity: WCF creates an implementation of the ‘IIdentity’ interface to represent the

caller to the existing infrastructure (created by the .NET Framework security model).

This ‘IIdentity’ instance represents either the Windows identity of the caller if the

security token is mapped to a Windows account, or a Primary Identity that contains

the caller name. Those identities are also accessible using

the ‘ServiceSecurityContext’. It is possible to customize the way identities are created

in WCF. The custom membership provider works only if user name/password

authentication is used to authenticate the caller. The ‘MembershipProvider’ validates

39

the user name/password pair. If the pair is valid, WCF creates a Primary Identity that

represents the authenticated caller after ‘MembershipProvider’ validation [19].

5.3 Sending secure messages:

The following steps describe how a message is secured on the client when

using the message security mode. The illustration shows which components are

involved and the relationships between them.

 The client application runs and generates a message.

 In the Token Provisioning stage, the client credentials (username/password in

Hotline Service scenario) are attached.

 These credentials are used to create the security token.

 In the Token Authentication stage, the tokens are verified.

 Finally, the security tokens are serialized and sent [19].

40

Figure 7: Steps to secure the messages on client [19]

5.4 Receiving secure messages:

The following illustration shows the processes that occur when a secure

message is extracted from the wire and verified on the receiving side:

 The security tokens are deserialized and processed in the token authentication

stage. ASP.NET membership provider can be used to supply user names and

passwords generated from the client at this point [19].

 After authentication, the authorization policies are extracted. (optional) [19].

 In the Authorization Policies Evaluation stage, the authorization policies are

evaluated and claims can be added to an Evaluation Context. External

authorization policies are also used at this point. This step, as well as the

41

 In the Service Authorization stage, the correct authorizations are given based

on claims added by the authorization policies. This step is done by methods of

the ‘ServiceAuthorizationManager’ [19].

 WCF generates a ‘PrincipalPermission’ using the credentials at this point. If

required, an ASP.NET role provider can be used at this point[19]

 The application code runs.

42

Figure 8: Receiving secure messages [19]

43

6.0 HOTLINE SERVICE FOR KMIT

This chapter delves into the implementation details of the HOTLINE

WEBSERVICE for KMIT. Introduction about WCF basics is provided, which are

later used while writing the service. The Hotline Service for KMIT is implemented in

three steps. One is development of the service, which talks about what are service and

data contracts, the endpoints and binding information. The second step is hosting of

the service. This step picks one of the hosting mechanisms discussed in chapter 3.2.2

and explains the process of hosting the Hotline Service. The third step talks about

how a client application can consume the service and integrate it into its own

application that can be used for further communication. As discussed in 3.1 WCF is

the .NET 3.0 way of communicating between objects across machines. It is based on

WSDL. WCF service requires a couple of things to be done right before it starts

working successfully. Let’s look at the basics which are kept as straight as possible.

6.1 Basics of WCF:

The basics of WCF are popularly known as ABC’s of WCF. Where ‘A’ stands

for address, ‘B’ for binding, and ‘C’ for contract information of the service.

 Address is where you communicate. This is not the same as the location to

deploy the service, but the URL that will be used internally to map your

requests and responses.

 Binding is how to communicate with service. There are several default ones

like ‘BasicHttp’, ‘TCP’, ‘NamedPipes’, ‘MSMQ’ and several others. This is

the protocol that the server and client understands while communicating.

44

 Contract is what to communicate. It defines the functionality provided by the

service to its clients. This contract information is of two types. Service

contract and Data contract.

 Service Contract is the API the service consumer invokes on the service. It's

the method signature that will go into the WSDL. Data Contracts is the data

that would travel from the service consumer and the service. It's the data

structure. This can be found in the schema of the service.

Now is the moment to define what basically a service is. A service is a

construct that exposes one or more endpoints, each of which exposes one or more

service operations. An endpoint is the operation that gets exposed which contain

the ABC’s defined.

6.2 Development of the Hotline Service:

6.2.1 Designing a service contract for the Hotline Service

Services are groups of operations. To create a Hotline Service contract it must

model operations and specify their grouping. In Windows Communication

Foundation (WCF) applications, define the operations by creating a method and

marking it with the ‘OperationContractAttribute’ attribute. Then, create a service

contract; group together the operations, either by declaring them within an interface

marked with the ‘ServiceContractAttribute’ attribute, or by defining them in a class

marked with the same attribute.

45

The following steps define creating a service:

 In Visual Studio on the File menu, click New Project.

 In the Templates section, select WCF Service. Make sure that the Location is

set and specify the virtual directory to be created in the Path

(C:\Documents and settings\harini\My Documents\Visual Studio

2008\Projects\KMITHotlineService\KMITHotlineService\)

 The interface is shown in figure

9.

Figure 9: Interface for KMIT Hotline Service

The service contract exposes the interface of the Hotline Service and

operation contract describes the operations the service exposes. Here, the Hotline

Service exposes one operation ‘GetSearchResultsForSMS()’ which returns the top 5

problems of the Hotline module. The return value of the operation is a Dataset.

‘IHotlineService’ is the interface which exposes the ABC information required for the

client application. WCF environment provides with a ‘web.config’ file that is

automatically created when a service is defined. Changes made to the ‘web.config’

file reflect changes to the service. The changes can be done by manually adding the

46

code to the file or by editing the information through ‘web.config’ interface. This

reduces the burden of writing the code. The following describe the series of steps to

configure ABC’s for Hotline service endpoint.

In the Solution Explorer, right-click the ‘Web.config’ of the WCF service, and

choose the Edit WCF Configuration option. If you do not see the Edit WCF

Configuration option, click the Tools menu and select WCF Service Configuration

Editor. Close the WCF Service Configuration Editor tool that appears. The option

should now appear on the ‘web.config’ context menu. In the Configuration Editor, in

the Configuration section, expand Service and then expand Endpoints.

 Select the first node [Empty Name]. Set the name attribute

to wsHttpEndpoint. By default, the name field will be empty because it is an

optional attribute.

Figure 10: Setting the name attribute to WSHttpEndpoint

47

 Click the Identity tab and then delete the Dns attribute value.

 In the Configuration Editor, select the Bindings folder.

 In the Bindings section, choose New Binding Configuration.

 In the Create a New Binding dialog box, select wsHttpBinding.

 Click OK.

Figure 11: Setting the binding configuration

 Set the Name of the binding configuration to some logical and recognizable

name; for example, wsHttpEndpointBinding.

 Click the Security tab.

 Make sure that the Mode attribute is set to Message, which is the default

setting. This is one of the parts of adding security to the service. Total security

for Hotline Service is discussed in detail in later chapters)

48

 Set the MessageClientCredentialType to the Username option by selecting

this option from the drop-down list. (As taken from chapter 3 to use username

authentication for Hotline Service)

 In the Configuration section, select the wsHttpEndpoint node.

 Set the BindingConfiguration attribute to wsHttpEndpointBinding by

selecting this option from the drop-down list.

 Set the Contract information to KMIT ‘HotlineService.IHotlineService’

Figure 12: Setting the contract information to KMIT Hotline Service

The ‘web.config’ file would look like this

</binding>
 </wsHttpBinding>
 </bindings>
 <services>

49

 <service behaviorConfiguration="ServiceBehavior"
name="KMITHotlineService.HotlineService">
 <endpoint address="" binding="wsHttpBinding"
bindingConfiguration="wsHttpendpointBinding"
 name="wsHttpEndpoint"
contract="KMITHotlineService.IHotlineService">
 <identity>

 <dns value="localhost" />

<endpoint address="mex" binding="mexHttpBinding"

contract="IMetadataExchange" />

 </service>
 </services>

6.2.2 Creating user for SQL Server Membership Provider

The SQL Server membership provider stores user information in a SQL

Server database. You can create your SQL Server user store manually by using

Aspnet_regsql.exe from the command line.From a Microsoft Visual Studio® 2008

command prompt, run the following command:

 Aspnet_regsql –S .\SQLExpress –E –A –m

In this command:

 -S specifies the server, which is (.\SQLExpress) in this example.

 -E specifies to use Windows authentication to connect to SQL Server.

 -A m specifies to add only the membership feature. For simple authentication

against a SQL Server user store, only the membership feature is required.

50

6.2.3 Grant Access Permissions to WCF Process identity

The Hotline WCF service process identity requires access to the ‘aspnetdb’

database. If you host the WCF service in Internet Information Services (IIS) 6.0 on

Microsoft Windows Server 2003, the NT AUTHORITY\Network Service account is

used by default to run the WCF service.

To grant database access

 Create a SQL Server login for NT AUTHORITY\Network Service.

 Grant the login access to the ‘aspnetdb’ database by creating a database user.

 Add the user to the aspnet_Membership_FullAccess database role.

Steps are performed by using the SQL Server Enterprise Manager, or the following

script is run in SQL Query Analyzer

‐ Create a SQL Server login for the Network Service account
sp_grantlogin 'ASPNET'

‐‐ Grant the login access to the membership database
USE aspnetdb
GO
sp_grantdbaccess 'ASPNET'

‐‐ Add user to database role
USE aspnetdb
GO
sp_addrolemember 'aspnet_Membership_FullAccess',

But, the Hotline service is running on Microsoft Windows XP, create a SQL Server

login for the ASPNET identity instead of the NT Authority\Network Service identity,

as the IIS process runs under the ASPNET account in Windows XP.

51

6.2.4 Configure Membership Provider for Username Authentication

In this step, you configure the SQL Server membership provider to use username

authentication.

 In the ‘web.config’ file, replace the existing

single <connectionStrings/> element with the following to point to your

membership database:

<connectionStrings>
 <add name="KMITConn"
connectionString="Server=.\sqlexpress; Database=DOEKM; User
Id=doekmadmin; password= doekmadmin@Miami;"
providerName="System.Data.SqlClient"/>
 </connectionStrings>

Where name ‘KMITConn’ represents the name of the connection used to connect to

the database, ‘ConnectionString’ describes that the server being used is ‘sqlexpress’

and the database used is ‘DOEKM’ , which has ‘SQLserver’ authentication

containing username and password credentials.

 Add a <membership> element inside the <system.web> element as shown

in the following example. Note that the use of the <clear/> element prevents

the default provider from being loaded and never used.

<membership defaultProvider="MySqlMembershipProvider">
<providers>
<clear/>
<add name="MySqlMembershipProvider"
connectionStringName="KMITConn"
applicationName="KMITHotlineService"
type="System.Web.Security.SqlMembershipProvider"/>
</providers>
</membership>

52

The code snippet mentions that the default provider used for KMIT Hotline Service is

SQL ‘MembershipProvider’ and the connection string is ‘KMITConn’ as mentioned

in the previous section. This specifies that the membership provider is being used for

KMITHotlineService.

 Save the ‘web.config’ file, to ensure that the changes do not get lost during

the following steps.

 In the configuration editor, expand the Advanced node, and then expand the

Service Behaviors folder.

 Select the default behavior that was created with name ServiceBehavior.

 In the Behavior: ServiceBehavior section, click Add.

 In the Adding Behavior Element Extension Sections dialog box,

select serviceCredentials and then click Add.

 In the Configuration section, under Service Behaviors, select

the serviceCredentials option.

53

Figure 13: WCF configuration editor selects ServiceCredentials

 Set the UsernamePasswordValidationMode attribute

to MembershipProvider by choosing this option from the drop-down list.

 Set the MembershipProviderName attribute

to MySqlMembershipProvider.

 In the configuration editor dialog box, on the File menu, select Save.

 In visual studio, verify your configuration. The configuration should look as

follows

<behaviors
<serviceBehaviors>
<behavior name="ServiceBehavior">
<serviceMetadata httpGetEnabled="true"/>
<serviceDebug includeExceptionDetailInFaults="false"/>
<userNameAuthentication
serNamePasswordValidationMode="MembershipProvider"
membershipProviderName="MySqlMembershipProvider"/>
</serviceCredentials>
</behavior>

54

55

These steps describe the development of Hotline Service and adding a user to the

SQL database and configuring the membership provoder to validate the client

credentials against the database, using username and pawwsord authentication.

7.0 SECURITY MODEL FOR HOTLINE SERVICE

The Hotline Service developed should also be configured with message

security, so that the client credentials that are being transferred to the service are

authenticated against the database. Adding message security will ensure that the

credentials are encrypted and signed before they are being transmitted over as a

SOAP message. Security tokens assert claims and signatures provide a mechanism

for proving the sender's knowledge of the key. As well, the signature can be used to

‘bind’ or ‘associate’ the signature with the claims in the security token (assuming the

token is trusted). Note that such a binding is limited to those elements covered by the

signature.

A claim can be either endorsed or unendorsed by a trusted authority. A set of

endorsed claims is usually represented as a signed security token that is digitally

signed or encrypted by the authority. An X.509 certificate, claiming the binding

between one's identity and public key, is an example of a signed security token. An

endorsed claim can also be represented as a reference to an authority so that the

receiver can ‘pull’ the claim from the referenced authority.

For this a temporary service certificate is created and installed in the local

store. This certificate will be used to encrypt the message, protecting the username

and password as well as any other sensitive data.

The security model for Hotline serivce has the following steps. These steps

follows the implementation specified in [26]

 Step 1: Create a certificate to act as the root certificate authority

56

 Step 2: Create a certificate revocation list file from the root certificate

 Step 3: Install the root CA on the server and client machines

 Step 4: Install the certificate revocation list file on the server and client

machines

 Step 5: Create and install the temporary service certificate

 Step 6: Give the WCF process identity access to the temporary certificate’s

private key

When developing a WCF service that uses X.509 certificates to provide

message security, it is necessary to work with temporary certificates. This is because

production certificates are expensive and may not be readily available. There are two

options for specifying trust on a certificate

 Peer trust validates the certificate directly.

 Chain trust validates the certificate against the issuer of a certificate known

as a root authority.

 The Hotline Service implements the chain trust option because it is the most

commonly used approach in Business-to-Business (B2B) scenarios, and it is

the default validation for WCF when using message security.

 To use chain trust validation during development time, I created a self-signed

root certificate authority (CA) and installd it in the trusted root certification

authority location in the local machine where the Hotline Service is

developed. The certificate used by WCF is signed by the root self-signed

certificate and installed in the personal store of the machine. To ensure that

57

 ‘makecert.exe’ is the tool used to create a private key file and a certificate to

act as the root CA . The CRL file is then created from the private key that will

act as the revocation list file for the root CA. Next, the root certificate and the

CRL file are installed. Finally, create and install the temporary certificate

from the root certificate, using the private key to sign and generate the key.

7.1 Create the certificate to act as the root certifying authority:

In this step, use the makecert tool to create a root CA that will be used to sign

the certificate. This certificate will be self signed and will only have the public key

that will be used to do the trust chain validation when encrypting and signing

messages. The self-signed certificate will act as a root certificate itself, instead of

pointing to a root authority in a chain of trust.

 Open a visual studio command prompt and browse to the location where to

save the certificate files.

 Run the following command to create the root CA:

 makecert ‐n "CN=RootCATestKMIT” ‐r ‐sv RootCATestKMIT.pvk
RootCATestKMIT.cer

In this command:

 -n specifies the subject name for the root CA. The convention is to prefix the

subject name with "CN = " for "Common Name".

 -r specifies that the certificate will be self-signed. This means that certificates

created with this switch will act as a root certificate.

58

 -sv specifies the file that will contain the private key of the certificate. The file

is always created, if it does not exist. This will allow creating certificates

using the private key file for signing and key generation.

 RootCATestKMIT.cer specifies the name of the file containing the public

key of the certificate. The RootCATestKMIT.cer file will not have the private

key. This is the certificate that will be installed in the store for trust chain

validation on the client and server machines.

 In the Create Private Key Password dialog box, enter a password, confirm

the password, and then click OK. Optionally, we can click None without

entering the password, but this is not recommended for security reasons.

 In the Enter Private Key Password dialog box, enter the password again and

then click OK.

This is the password needed to access the private key file

RootCATestKMIT.pvk in order to generate the file RootCATestKMIT.cer containing

the public key.This step creates a certificate named RootCATestKMIT.cer and a

private key file named RootCATestKMIT.pvk.We can browse to the location to

confirm if the root certificate is created.

59

Figure 14: Location showing the creation of RootCATestKMIT

Figure 15: Certificate RootCATestKmit

60

Figures 14 and 15 display the location where the KMIT root certificate has been

created and the display of the certificate respectively.

7.2 Create a certificate revocation list file from the root certificate

In this step, a CRL file is created that will be imported into the correct

certificate stores of the client and service machines. This CRL is created for the

temporary root certificate. The CRL is necessary because WCF clients check for the

CRL when validating certificates .

 Open a visual studio command prompt and browse to the location where to

save the CRL file for the root certificate.

 Run the following command to create the CRL file:

 makecert ‐crl ‐n "CN=RootCATestKMIT" ‐r ‐sv RootCATestKMIT.pvk
RootCATestKMIT.crl

In this command:

 -crl specifies to generate the CRL file for the root certificate.

 -n specifies the subject name for the CRL. The convention is to prefix the

subject name with "CN = " for "Common Name". It the same name as the root

CA.

 -r specifies that the CRL file will be self-signed. This means that CRL files

created with this switch will act as revocation list files for the root CA.

 -sv specifies the file that will contain the private key for CRL file generation.

There is no need to create this file because it already exists. This will allow

creation of CRL files using the private key file for signing.

 RootCATestKMIT.crl is the CRL file created with the command

61

Figure 16 : Location of RootCATestKMIT.pvk

 The RootCATestKMIT cannot be read as it contains the private key, and

service has the only authority to open the .pvk file.

 Figure 16 displays the location of the RootCATestKMIT.pvk file in the local

machine.

7.3 Install the root certificate on client and server machines

This step explains how to install the certificate in the Trusted Root

Certification Authorities location on both the server and client machines. Since while

development of the Hotline Service the client and service are on same machine, it’s

enough to install once. All certificates that are signed with this certificate will be

trusted by the client machine.

 Copy the RootCATestKMIT.cer file to the client and server machines.

62

 Click Start and then click Run.

 In the command line, type MMC and then click OK.

 In the Microsoft Management Console, on the File menu, click Add/Remove

Snap-in.

 In the Add Remove Snap-in dialog box, click Add.

 In the Add Standalone Snap-in dialog box, select Certificates and then

click Add.

Figure 17: Management console to add certificate

 In the Certificates snap-in dialog box, select the Computer account radio

button because the certificate needs to be made available to all users, and then

click Next.

 In the Select Computer dialog box, it is left to default option, the Local

computer: (the computer this console is running on) is selected and then

click Finish.

63

 In the Add Standalone Snap-in dialog box, click Close.

Figure 18: Add certificate to local computer

 In the Add/Remove Snap-in dialog box, click OK.

 In the left pane, expand the Certificates (Local Computer) node, and then

expand the trusted root certification Authorities folder.

 Under Trusted Root Certification Authorities, right-click

the Certificates subfolder, select All Tasks, and then click Import.

Figure 19: Importing wizard for certificate into trusted root certification folder

64

 On the Certificate Import Wizard welcome screen, click Next.

 On the File to Import screen, click Browse.

 Browse to the location of the signed Root Certificate Authority

RootCATestKMIT.cer file copied in Step 1, select the file, and then

click Open.

Figure 20: Import wizard

 On the File to Import screen, click Next.

 On the Certificate Store screen, accept the default choice and then

click Next.

 On the Completing the Certificate Import Wizard screen, click Finish.

65

Figure 21: Import wizard completed

The signed root CA certificate is now installed in the trusted root certification

authorities’ store. You can expand the Certificates subfolder under trusted root

certification authorities to see the ‘RootCATestKMIT’ certificate installed properly.

7.4 Install certificate revocation list file on client and server

machines:

In this step, install the CRL from the file in the trusted root certification

authorities’ location on both the server and client machines. The CRL is checked

during the certificate validation process.

 Copy the ‘RootCATestKMIT.crl’ file to the client and server machines.

 Click Start and then click Run.

 In the command line, type MMC and then click OK.

 In the Microsoft Management Console, on the File menu, click Add/Remove

Snap-in.

 In the Add Remove Snap-in dialog box, click Add.

66

 In the Add Standalone Snap-in dialog box, select Certificates and then

click Add.

 In the Certificates snap-in dialog box, select the Computer account radio

button because the certificate needs to be made available to all users, and then

click Next.

 In the Select Computer dialog box, leave the default Local computer: (the

computer this console is running on) selected and then click Finish.

 In the Add Standalone Snap-in dialog box, click Close.

 In the Add/Remove Snap-in dialog box, click OK.

 In the left pane, expand the Certificates (Local Computer) node, and then

expand the Trusted Root Certification Authorities folder.

 Under Trusted Root Certification Authorities, right-click

the Certificates subfolder, select All Tasks, and then click Import.

 On the Certificate Import Wizard welcome screen, click Next.

 On the File to Import screen, click Browse.

 In Files of Type, select Certificate Revocation List.

 Browse to the location of the ‘signed Root Certificate Authority’

RootCATestKMIT1.crl file copied in Step 1, select the file, and then

click Open.

 On the File to Import screen, click Next.

 On the Certificate Store screen, accept the default choice and then

click Next.

 On the Completing the Certificate Import Wizard screen, click Finish.

67

 Figure 22: Certificate revocation list

The screenshots are similar to those done for installing root certificate on

client and server machines. The CRL for the root CA certificate is now installed in

the ‘trusted root certification authorities’ store. To view the CRL, click the trusted

root certification authorities folder then press F5. A subfolder named certificate

revocation list will be displayed. Expand this folder and you will see the

‘RootCATest CRL’ installed properly.

7.5 Create and install the temporary certificate

This step, describes the creation and installation of the temporary certificate

on the server machine from the signed root CA created in the previous step.

 Open a visual studio command prompt and browse to the location where you

have the ‘root CA’ certificate and private key file.

68

 Run following command for creating a certificate signed by the ‘root CA’

certificate:

 makecert ‐sk HotlineService ‐iv RootCATestKMIT.pvk ‐n "CN=tempCert"
‐ic RootCATestKMIT.cer ‐sr localmachine ‐ss my ‐sky exchange ‐pe

In this command:

 -sk specifies the key container name for the certificate. This needs to be

unique for each certificate you create. Here ‘HotlineService’ is the name of

the key container.

 iv specifies the private key file from which the temporary certificate will be

created. You need to specify the root certificate private key file name that was

created in the previous step and make sure that it is available in the current

directory. This will be used for signing the certificate and for key generation.

 -n specifies the key subject name for the temporary certificate. The

convention is to prefix the subject name with ‘CN = Common Name’.

 -ic specifies the file containing the root CA certificate file generated in the

previous step.

 -sr specifies the store location where the certificate will be installed. The

default location is Currentuser, but since the certificate needs to be available

to all users, we should use the localmachine option.

 -ss specifies the store name for the certificate. My is the personal store

location of the certificate.

69

 -sky specifies the key type, which could be either signature or exchange.

Using exchange makes the certificate capable of signing and encrypting the

message.

 -pe specifies that the private key is generated in the certificate and installed

with it in the certificate store. When we double-click the certificate, on the

General tab, it displays a message at the bottom stating, “You have a private

key that corresponds to this certificate”. This is a requirement for message

security. If the certificate does not have the corresponding private key, it

cannot be used for message security.

Figure 23: Service temporary certificate

 In the Enter Private Key Password dialog box, enter the password for the

root CA private key file specified in Step 2, and then click OK.

70

7.6 Give WCF process identity access to temporary certificate’s

private key:

In this step, you give the process identity of the WCF service access

permissions to the certificate’s private key. The Hotline Service is hosted in Internet

Information Services (IIS), the identity typically is "ASPNET"; in a production

scenario, or if your service is hosted in a windows service, it could be a custom

domain service account.

 Open a visual studio command prompt.

 Run the following command:

 FindPrivateKey.exe My LocalMachine ‐n "CN=tempCert"

In this command:

 My is the store name where the temporary certificate is installed

 LocalMachine is the store location for the certificate.

 –n "CN=tempCert" is the common name for the temporary certificate.

 If ‘FindPrivateKey’ is not on your machine, download the WCF samples,

including the FindPrivateKey

http://www.microsoft.com/downloads/details.aspx?FamilyId=2611A6FF-

FD2D-4F5B-A672-C002F1C09CCD&displaylang=en

71

Figure 24: Downloading private key tool

 ‘FindPrivateKey’ returns the location of the private key for the certificate as

C:\Documents and Settings\All

users\ApplicationData\Microsoft\Crypto\RSA\MachineKeys\9cb42596a80376

b68a69f1ff169bd226_e117b178-9b4b-4f5d-a7c3-e039cc793450

 Run the following command to assign access permissions to the process

identity of the WCF service.

cacls.exe "C:\Documents and Settings\All Users\Application

Data\Microsoft\Crypto\RSA\Machinekeys\9cb42596a80376b68a69f1ff169bd2

26_e117b178‐9b4b‐4f5d‐a7c3‐e039cc793450" /E /G "ASPNET":R

In this command:

 /E edits the access control list (ACL) of the private key instead or replacing it.

The ACL should never be replaced but should only add the necessary

permission to the process identity.

72

 /G grants the permission to the process identity.

 : R gives read-only permissions to "ASPNET".

 Run the following command to verify the permissions on the private key. This

will display all the identities and the permissions that have access to the

private key

 acls.exe "C:\Documents and Settings\All Users\Application
Data\Microsoft\Crypto\RSA\Machinekeys\9cb42596a80376b68a69f1ff169bd2
26_e117b178‐9b4b‐4f5d‐a7c3‐e039cc793450

We should see the following in the output from this command: ASPNET: R

Figure 25 : Temporary key for service

73

74

It should be noted that temporary certificates should only be used for

development and testing purposes. For real-world production environments, use a

certificate provided by a CA such as Microsoft Windows Server® 2003 Certificate

Services or a third party. This describes the ws-message security model

implementation in WCF for Hotline Service as following the WS-Security protocol

detailed in chapter-5

8.0 HOSTING ON IIS

Chapter- 3 discusses the various mechanisms to be used for hosting services in

WCF. The unified programming model of WCF is based on a strictly layered model

to break the web-oriented paradigm and disconnect the service model and channel

layer from the supported transports. This model allows WCF to support several

different hosts of which IIS is the most important. Sites are bound to a particular

scheme, network address, and port combination. IIS not only supports HTTP but also,

depending on the version, FTP, NNTP, and SMTP. It can run multiple applications

under the same site and under the same scheme, network, and port combination. A

typical URI for an application is http://localhost/MyApplication. A virtual directory

is simply a folder that is mapped to the network space of the site, which could be

somewhere else on the file system. This way, developers can keep the actual content

or code of an application separate from the other applications that are part of the same

site.

The steps to host the Hotline Service on IIS are:

 Open visual studio solution explorer and open a new website in the same

solution explorer and point the file location to

http://localhost/HotlineService

 This project consist a HotlineService.svc file which needs to be configured to

map to Hotline Service. Open HotlineService.svc file and change the code to

75

ServiceHost Language="C#" Debug="true"

Service="KMITHotlineService.HotlineService"

 Configure the website with some endpoints. Open edit WCF configuration

and re configure the endpoints to use IHOTLINESERVICE endpoint. Set the

address, binding and contract information that enables the client to point to

IHotlineService. Save the configuration file and exut out of the tool.

Figure 26: WCF configuration editor

 The code from the web.config file looks similar to this.

76

Figure 27: Web.config file

 When we right click the HotlineService.svc file and browse, it loads the

Hotline Service at address

‘http://localhost/HotlineService/HotlineService.svc’. This address specifies

that the service is hosted on IIS.

Figure 28: Hotline service on IIS

 Click the ‘service.util’ to expose the WSDL of the service.

77

Figure 29: WSDL for Hotline Service

78

9.0 CLIENTS TO CONSUME HOTLINESERVICE

9.1 Create a test client:

In this step, you create a windows forms application to test the WCF service.

 Right-click your solution, click Add, and then click New Project.

 In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.

 In the Name field, type HotlineClient_test and then click OK.

 This opens a ‘forms’ project in the same solution explorer which acts as a

client to the Hotline Service

9.2 Add a web reference to the client

In this step, we add a reference to the Hotline Service.

 Right-click HotlineClient_test project and select Add Web Reference.

 In the Add Web Reference dialog box, set the URL to your WCF service

(e.g., http://localhost/WCFTestService/Service.svc) and then click Go.

 In the Web reference name field, change ServiceReference1

to HotlineClient_Test_Reference

 Click Add Reference.

79

In the Client project, a reference to WCFTestService should now appear beneath

Service References.

Figure 30: Test client in service reference

9.3 Test the client and WCF service

In this step, to access the WCF service, pass the user credentials, and make

sure that the username authentication works.

 In your Client project, drag a button control onto the form, and name it as

GetSearchResults

 Double-click the button control to show the underlying code.

80

 Create an instance of the proxy, pass the credentials of the user and then call

the operation of your WCF service. The code should look as follows

 Right-click the client project and select set as ‘startup project'.

 Run the client application by pressing F5 or CTRL+F5.

Figure 31: Client application

Figure 31 shows a client application (ORNL) which is integrated with the

Hotline Service and has a login control, which allows clients to login to access the

service information.

81

10.0 FIDDLER:

Fiddler is a web debugging proxy which logs all HTTP(S) traffic between the

computer and the internet. Fiddler allows inspecting all HTTP (S) traffic, setting

breakpoints, and “fiddling" with incoming or outgoing data. Fiddler includes a

powerful event-based scripting subsystem, and can be extended using any .NET

language. Fiddler is a freeware and can debug traffic from virtually any application,

including Internet Explorer, Mozilla Firefox, Opera, and others. Fiddler is a

transparent proxy that automatically adds itself to the WININET chain so that it can

see every request being made. It logs those requests and the responses to allow the

application to see what is working and what isn't working.

Currently, as the Hotline Service was developed, and hosted, a client is

created to access the Hotline Service. In order to verify if everything is going

properly, we use Fiddler and intercept the traffic from the client to the Hotline

Service. We try to get data from the fiddler and see if the service is correctly enabled

with ws-message security. We can also inspect the binary security token that is used

for communication between client and service, the way it is encrypted, algorithms

used for encryption and the cipher text generated. However, we cannot decipher the

cipher text, as the private key is only available with the service and service is the only

application which is able to decrypt the user credentials, and allow them to access the

information.

82

As the client authenticates the server using the ‘username/password’

credential, we first try to fiddle the data by giving the right credentials assigned to the

client application. Then we try to give the wrong password and again try to fiddle the

data to note the changes. Similar kind of testing is done with the service

authentication. The user is first provided with correct certificate, and then the

certificate is changed to show how message security is working with Hotline Service.

10.1 Experimental result - 1:

This is a best case scenario in which the client gives genuine credentials to access the

service. Every client application has a specific username, password pair to access the

service, which is stored in the database at the service end.

Client Credentials: username: user_hanford ; password : pw_hanford

Client: Oak Ridge National Laboratory application

Service Certificate: tempCert signed by RootCA

 Expected output: On entering the username and password and clicking the button

‘GetSearchResults’, the client application should talk to the Web Service and display

the top five problems of KMIT in ORNL application. When the client hits the service,

the service should validate the client credentials against the entries in the database,

and grant access only if it’s a genuine application. Fiddler tracks all this information

and displays which is shown as a screenshot.

83

Figure 32: Client application with credentials

Figure 33: Client application successfully displays results from KMIT

84

Background process/ Discussion: On button click, the client application should

generate a binary security token from the credentials for communication. The security

token is encoded using an encryption algorithm. The public key generated from the

service certificate is used for encryption. The service gets started and starts listening

for a request. When the request hits the service, it picks the encrypted data, uses its

own private key pair to decrypt the information, and checks the information against

the value in the database. If that is validated the client is allowed to access the service.

Figure 34: Service referenced with its certificate tempCert

The following snapshots show what happens when a fiddler is active and

intercepts the traffic

85

Figure 35: Fiddler capture for statistics

The figure 32 displays the client application in which the credentials are

passed in the login control. Figure 33 displays that the client application has

successfully performed the handshake with the service and displayed the top five

problems of KMIT in its own application. This explains the integration of a piece of

software with another, which runs on different frameworks. Figure 34 shows the

service referenced with its certificate tempCert signed by RootCA. Figure 35 shows

the interface of fiddler, which displays the statistics generated when the client has

started hitting the server. It shows the series of operations invoked beginning from the

client generating request to the last action of client done with response. The overall

statistics show that the communication between the client and the service is

successful and the client is ok with the response that is given from the service.

Furthur screenshots explain more about the details.

86

Figure 36: Capture 2 showing binary security token

Figure 36 shows the SOAP envelope, the header and the body of the message.

The header section explains that the ‘Action’ is invoked from client which follows

(“/RST/ISSUE” specification) in order to issue a token for communication, and each

action is assigned a message number. The body of the message explains that when the

client enters its username/ password, the WS-Security requests for a ‘security token’

for the credentials provided by the client. This token is used for further

communication with the service. The ‘token type’ specifies the type of token

requested and ‘request type’ specifies that the request is generated in order to

establish the trust for the client request to the service. Last line ‘Binary exchange’

describes the binary security token that is generated from the client credentials that is

used for communication with the service (“FghBAEEAAA….found in the last line” is

the encrypted token generated for binary exchange).

87

Figure 37: Binary security token for exchange

The figure 35 shows that the token (“FgMEA..”) generated from the previous

figure is accepted to be used for Binary exchange. This can be seen from the

‘Request security token response’ section. (The token can be found from the last line

of the fiddler display.) It can also be observed that this is same token generated in the

figure 35. This explains that the token issued by WS-Security specification is

accepted for further communication with the service.

88

Figure 38: Binary security token in header

Figure 38 shows that the ‘binary security token’ generated, is being sent in the

message header to the service for further communication. But for security remains the

security token should be encrypted. The first line shows that a Derived ‘key token’

will be generated from the previous token reference. The reference list explains the

data reference taken from the previous figures. ‘EncryptedData’ explains the details

about the encryption algorithm being used and the specific security token for which

the encrypted data is to be generated. ‘CipherData’ explains the cipher text that is

generated after communication. The body section contains summary of the

information generated from the header, and contains references to the WS-Security

protocol to verify that the tokens generated from communication are following the

WS-Security standard.

89

Figure 39: Binary security token inserted in header

Figure 39 shows the last message number: 5 generated from the service.

‘Security’ tag which contains references to all the information, the algorithms, the

cipher data generated from fig.38. All these references found under the Security tag

explains that the above details generated from client are accepted by the service, and

are used to verify the security specifications of the client request. The highlighted

security tag also includes ‘ws-securit’y which explains that the communication is

being secured under the specific protocol standards, and is protected from attacks.

90

Result : From the above discussion we observe that Oakridge which is one of

the client application for KMIT , has successfully integrated the hotline service, and

could get the results published on KMIT, into its own application.

10.2 Experimental result -2:

This is a fault test case to check how the Hotline Service security model does

not authenticate a client application with a wrong username and password.

Credentials: username: user; password: pw

Service Certificate: tempCert signed by RootCA

Client: Oak Ridge National Laboratories application

Expected Output: A wrong username and password pair are not authenticated by the

Service. Hence, it throws an error asking the application to try again with valid

credentials.

91

Figure 40: Client application trying to access service with wrong password

Figure 40 displays the client application trying to access the service with

invalid credentials.

Figure 41: Client displaying error message

Figure 41 displays the client application throwing an error on entering the

username and wrong password, which explains that the service could not validate the

client credentials.

92

Figure 42: Error showing authentication failure

Background process/ Discussion: Figure 42 explains that an error has occurred at

request number 15 and the fiddler has stopped generating further requests. It can be

understood from fiddler information that the binary security token has been generated

from request numbers 13 and 14 in order to communicate with the service, but has

failed to get validated from the service end by the error displayed from the service.

The raw displays it the binary security token that was sent as part of the message

which was not validated and so the service has not responded to the client request to

sending the required information.

Result: Test has been passed and the expected output is displayed.

93

10.3 Experimental Result – 3:

This is a fault test case that is performed from the service end. The service is

given reference to the certificate which is not genuine and which does not contain the

corresponding private key pair for the public key generated by Root CA. This fails the

authentication model and throws an error. The data is not displayed on the client

application.

 Client Credentials: username: user_hanford ; password : pw_hanford

Service Certificate: test (created for test purposes not signed by RootCA)

Client: Forms application

 Expected output: According to the hypothesis, on entering the username and

password and clicking the button ‘GetSearchResults’, the client should talk to the

Web Service and display the top five problems of KMIT in its own application. But

as the service is referenced with wrong certificate, it is expected not to validate the

credentials from the client. Hence, an error should be thrown.

94

Figure 43: Client application with valid credentials

Figure 44: Service is given wrong reference of certificate

Figure 43 is the screenshot of the client application passing valid credentials

in order to access the data from the service. In order to explain the interoperability

where the client can be any application, we are using a windows forms application to

access service. The password textbox is made visible in order to show that the same

95

password is being used to generate the result. Figure 44 displays the screenshot where

the service is given reference to a wrong certificate other than ‘tempCert’ signed by

root CA.

Background process/Discussion: When the service is referenced with a certificate

not signed by RootCA, it can be observed that fiddler generates an error message

which explains that the authentication mechanism failed to validate the client

credentials.

Figure 45: Fiddler throwing an error at message 15 where the certificate could not decrypt the token with
its private key

The fiddler generates a series of messages and the actual communication starts

at message 13, where the local host is generated (client application). Message 13 and

14 allow for token generation and the encrypted form of token being sent to the

service for further validation. But the error message is generated at message 15,

where the service could not decrypt the encoded format of the token as the private

96

key generated for that certificate is not being signed by RootCA, nor is the valid key

pair for the public key.

This verifies that the service when referenced with a wrong certificate could

not decrypt the client credentials and so, this proves the server side credential should

also be referenced with its proper credential (certificate) in order to enable mutual

authentication.

Figure 46: Client throwing an error saying that it is not authenticated.

Result: The service throws an exception when it is referenced with a wrong

certificate. Hence security is maintained and test is passed.

97

98

11.0 CONCLUSION:

The Hotline Web service development and security address the “secure

authentication mechanism” that satisfies the most important aspect of the security of

the Hotline project. The study describes how the biggest problem- ‘security’ of

information exchanged through a Web Service is addressed. Results explained that

WS-Security is the best security protocol for message security, while WCF is the best

technology to help make web services secure. From the experiments it was shown

that by creating a Web Service for the hotline module, features of KMIT could be

integrated with its client application (ORNL) even though both of the applications are

built using different technologies. Research about the various threat scenarios,

security protocols, encryption standards and authentication models helped to design

and develop a proper security model required to authenticate the client application for

the hotline module of the knowledge management scenario.

FIDDLER is a remarkable de bugging tool which helped to debug the Hotline

Web Service security implementation. The Hotline Service is de bugged using one

best case and two fault test cases and the results are documented. The results show

how good the fiddler can intercept the information exchanged, to provide the result.

All the test cases are passed, proving the authentication of client applications

accessing the Web Service. This study has paved a way for additional research about

the other security features confidentiality and integrity which is recommended for

future work to help develop the Hotline Service as a complete secured Web Service.

99

REFERENCES

[1] Rehman Mamoodi, Web Services background and Implementation, 18 August
2005
http://www.codeproject.com/KB/webservices/WebServices.aspx

[2] Hosting Services, MSDN Microsoft library,
http://msdn.microsoft.com/en-us/library/ms730158.aspx

[3] Jeffery C Broberg, Glossary for the OASIS Web Service interactive applications,
http://www.oasis-open.org/committees/wsia/glossary/wsia-draft-glossary-03.htm

[4] Understanding SOAP, MSDN Microsoft library
http://msdn.microsoft.com/en-us/library/ms995800.aspx

[5] UDDI, MSDN Microsoft library
http://msdn.microsoft.com/en-us/library/aa286530.aspx

[6] Erik Cristensen, Frnasicso Curbera, Greg Meredith, Sanjeeva Weerawarana, Web
Services Description Language (WSDL) 1.1, 2001,
http://www.w3.org/TR/wsdl

[7] Dan Simon, The COM / DCOM Glossary, 1991 – 2001.
http://www.innovatia.com/software/papers/com.htm

[8] Knowledge Management Information Tool- KMIT – www.dndkm.org

[9] David Sprott and Lawrence Wilkes, Understanding Service Oriented Architecture,
MSDN Microsoft Library, January 2004.
http://msdn.microsoft.com/en-us/library/aa480021.aspx

[10] S. C. Kendall, J. Waldo, A. Wollrath, G. Wyant, A Note on Distributed
Computing, November 1994,
http://research.sun.com/techrep/1994/abstract-29.html

[11] Sandeep Kachru, Edward F. Gehringer, The Relative Advantages of Teaching
Web Services in J2EE vs. .NET,
http://research.csc.ncsu.edu/efg/oo/papers/J2EE_.NET.pdf

[12] What is Windows Communication Foundation? , MSDN Microsoft library,
http://msdn.microsoft.com/en-us/library/ms731082 (v=VS.90).aspx

[13] Aaron Skonnard, Serialization in Windows Communication Foundation, August
2006, http://msdn.microsoft.com/en-us/magazine/cc163569.aspx

100

[14] Chris Peiris and Dennis Mulder , Hosting and Consuming Web Services– MSDN
Microsoft, March 2007 - Revised May 2007,
http://msdn.microsoft.com/en-us/library/bb332338.aspx

[15]Security Overview, MSDN Microsoft library
http://msdn.microsoft.com/en-us/library/ms735093(v=VS.90).aspx

[16] Bob Atkinson, Giovanni Della-Libera, Satoshi Hada, Maryann Hondo, Phillip
Hallam-Baker, Chris Kaler (Editor), Johannes Klein, Brian LaMacchia, Paul Leach,
John Manferdelli, Hiroshi Maruyama, Anthony Nadalin, Nataraj Nagaratnam,
Hemma Prafullchandra, John Shewchuk, Dan Simon, Web Services Security (WS-
Security) version 1.0, April 5,2002.
http://schemas.xmlsoap.org/specs/ws-security/ws-security.htm

[17] Giovanni Della, Phillip Hallam- Baker, Maryann Hondo, Chris Kaler (Editor),
Hiroshi Maruyama, Anthony Nadalin, Nataraj Nagaratnam, Hemma Prafullchandra,
John Shewchuk, Kent Tamura, Hervey Wilson, Web Services Security Addendum,
version 1.0, August 18, 2002.
http://xml.coverpages.org/WS-Security-Addendum200208.pdf

[18] Web Services Security: SOAP Message Security 1.1 (WS-Security 2004)
OASIS Standard Specification, 1 February 2006,
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

[19] Security Architecture – MSDN Microsoft
http://msdn.microsoft.com/en-us/library/ms788756.aspx

[20] Use Username Authentication with the SQL Server Membership Provider and
Message Security in WCF from Windows Forms – MSDN Microsoft
http://msdn.microsoft.com/en-us/library/cc949082.aspx

[21] OASIS Web Service Secure Exchange TC, OASIS WS-Trust 1.3 Oasis Standard,
19 March, 2007,
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

[22] OASIS Web Services Secure Exchange TC, OASIS WS-Secure Conversation
1.3 Oasis Standard, 1 March 2007,
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-
secureconversation-1.3-os.html

[23] OASIS Web Services Secure Exchange TC, WS-Security Policy 1.2 Oasis
Standard, 1 July, 2007,
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-
spec-os.html

101

102

[24] Microsoft Corporation, Implementing Transport and Message Layer Security-
MSDN Microsoft, December 2005,
http://msdn.microsoft.com/en-us/library/ff647370.aspx

[25] Message and Transport Security – MSDN Microsoft
http://msdn.microsoft.com/en-us/library/ff648863.aspx

[26] Create and Install Temporary Certificates in WCF for Message Security During
Development, - MSDN Microsoft
http://msdn.microsoft.com/en-us/library/cc949011.aspx

	Florida International University
	FIU Digital Commons
	7-12-2010

	Web Service for Knowledge Management Information Tool (KMIT) Hotline module and its Security
	Harini Kondamudi
	Recommended Citation

	1.0 INTRODUCTION:
	2.0 BACKGROUND:
	2.1 Definitions:
	2.2 Evolution of Web Services
	2.2.1 Why we need Web Services?
	2.2.2 What are Web Services?
	2.2.3 How to implement Web Services with ASP.NET

	2.3 Service oriented architecture
	2.4 Web Services with asp.net
	2.4.1 In J2EE
	2.4.2 In .NET:

	3.0 WINDOWS COMMUNICATION FOUNDATION
	3.1 About WCF
	3.2 Features of WCF
	3.2.1 Serialization:
	3.2.2 Hosting:

	3.3 Security in WCF:
	3.3.1 Common security threats:
	3.3.2 Integration of WCF with existing authentication models
	3.3.3 Standards and Interoperability:
	3.3.4 WCF security functional areas:

	4.0 MOTIVATION
	5.0 WS- SECURITY PROTOCOL:
	5.1 WS-Security model:
	5.2 WS – Security implementation in WCF
	5.3 Sending secure messages:
	5.4 Receiving secure messages:

	6.0 HOTLINE SERVICE FOR KMIT
	6.1 Basics of WCF:
	6.2 Development of the Hotline Service:
	6.2.1 Designing a service contract for the Hotline Service
	6.2.2 Creating user for SQL Server Membership Provider
	6.2.3 Grant Access Permissions to WCF Process identity
	6.2.4 Configure Membership Provider for Username Authentication

	7.0 SECURITY MODEL FOR HOTLINE SERVICE
	7.1 Create the certificate to act as the root certifying authority:
	7.2 Create a certificate revocation list file from the root certificate
	7.3 Install the root certificate on client and server machines
	7.4 Install certificate revocation list file on client and server machines:
	7.5 Create and install the temporary certificate
	7.6 Give WCF process identity access to temporary certificate’s private key:

	8.0 HOSTING ON IIS
	9.0 CLIENTS TO CONSUME HOTLINESERVICE
	9.1 Create a test client:
	9.2 Add a web reference to the client
	9.3 Test the client and WCF service

	10.0 FIDDLER:
	10.1 Experimental result - 1:
	10.2 Experimental result -2:
	10.3 Experimental Result – 3:

	11.0 CONCLUSION:

