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ABSTRACT OF THE DISSERTATION 

MATERIAL SYNTHESIS AND CHARACTERIZATION  

ON LOW-DIMENSIONAL COBALTATES 

by 

Hao Sha 

Florida International University, 2010 

Miami, Florida 

Professor Jiandi Zhang, Major Professor 

In this thesis, results of the investigation of a new low-dimensional cobaltates Ba2-

xSrxCoO4 are presented. The synthesis of both polycrystalline and single crystalline 

compounds using the methods of conventional solid state chemical reaction and floating-

zone optical furnace is first introduced. Besides making polycrystalline powders, we 

successfully, for the first time, synthesized large single crystals of Ba2CoO4. Single 

crystals were also obtained for Sr doped Ba2-xSrxCoO4. Powder and single crystal x-ray 

diffraction results indicate that pure Ba2CoO4 has a monoclinic structure at room 

temperature. With Sr doping, the lattice structure changes to orthorhombic when x ≥ 0.5 

and to tetragonal when x = 2.0. In addition, Ba2CoO4 and Sr2CoO4, have completely 

different basic building blocks in the structure. One is CoO4 tetrahedron and the later is 

CoO6 octahedron, respectively. 

Electronic and magnetic properties were characterized and discussed. The magnetic 

susceptibility, specific heat and thermal conductivity show that Ba2CoO4 has an 

antiferromagnetic (AF) ground state with an AF ordering temperature TN = 25 K. 
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However, the magnitude of the Néel temperature TN is significantly lower than the Curie-

Weiss temperature (|θ| ∼ 110 K), suggesting either reduced-dimensional magnetic 

interactions and/or the existence of magnetic frustration. The AF interaction persists in 

all the samples with different doping concentrations. The Néel temperature doesn’t vary 

much in the monoclinic structure regime but decreases when the system enters 

orthorhombic. 

Magnetically, Ba2CoO4 has an AF insulating ground state while Sr2CoO4 has a 

ferromagnetic (FM) metallic ground state. Neutron powder refinement results indicate a 

magnetic structure with the spin mostly aligned along the a-axis. The result from a μ-

spin rotation/relaxation (μ+SR) experiment agrees with our refinement. It confirms the 

AF order in the ab-plane. We also studied the spin dynamics and its anisotropy in the 

AF phase. The results from inelastic neutron scattering show that spin waves have a 

clear dispersion along a-axis but not along c-axis, indicating spin anisotropy. 

This work finds the strong spin-lattice coupling in this novel complex material. The 

interplay between the two degrees of freedom results an interesting phase diagram. 

Further research is needed when large single crystal samples are available. 
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INTRODUCTION 
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1.1    Brief Overview 

The past several years have seen extensive experimental and theoretical activities in 

correlated electron systems. Transition metal oxides (TMOs) play a pivotal role in the 

search for understanding because of the exotic properties they exhibit. The optimal 

functionalities present immense opportunities and formidable challenges in condensed 

matter physics and materials science [1]. Materials in which electrons are strongly 

correlated exhibit many complex and collective phenomena, including high-temperature 

superconductivity (HTSC), metal-insulator transition (MIT), colossal magnetoresistance 

(CMR), and quantum phase transition (QPT) [1–14]. The signature of these materials is 

the multitude of competing ground states that can be turned or manipulated by chemical 

doping, structural manipulations, strain induction, or the application of external 

stimulus, such as pressure, electric or magnetic fields, etc. The interest of these materials 

stems from the richness of their novel properties, the complexity of underlying physics 

and the promise of technological applications. 

Understanding of the various types of exotic behaviors exhibited by correlated 

electron systems has dramatically challenged our views of solids. Generally, a 

correlated electron material is one in which the potential energy is comparable to the 

kinetic energy. This leads to spectacular properties that result from the multitude of 

competing ground states - the equilibrium between phases is very subtle and small 

perturbations can induce large responses. It is believed that the physics behind these 

phenomena is a complex interplay between charge, lattice, orbital, and spin degrees of 

freedom, which creates electronic-to-magnetic, or magnetic-to-structural coupled phase 

transitions. Experiments have revealed unexpected spatial inhomogeneities and 



  

3 

 

multiscale modulations of charge, spin, orbital, and polarization in many complex 

transition-metal oxides such as cuprates, manganites, and ruthenates. Understanding 

these materials requires probing not only both local and long-range ordering but also low-

level excitations and quasiparticles such as phonons, polarons, magnons, as well as their 

interactions. 

Strongly correlated electron systems indeed have proved to be rather difficult to 

understand. For example, so far no one has been able to put forward a complete theory of 

high-temperature superconductivity. Indeed, many phenomena associated with strong 

electron correlations have proved difficult to explain, in large part a result of the fact 

that there are often several competing degrees of freedom in many of the technologically 

important classes of materials. The competition between different interactions can lead 

to quite complex phase diagrams, and any successful theory must be able to explain the 

physical properties of the system in all of these phases. 

Faced with such a complicated set of problems, physicists have sought to find model 

systems in which one kind of interaction dominates over the others. By gathering 

experimental data on such systems, and devising theoretical models to explain their 

behavior, it is hoped that the understanding of more complicated materials can be 

improved iteratively. 

In this chapter, I will consider some of the emergent phenomena that are observed 

in complex materials, such as superconductivity, colossal magnetoresistance and 

quantum phase transition. The motivation of this thesis and some prototype oxide 

compounds, which motivated me to work on the Ba2-xSrxCoO4 system, will be 

introduced thereafter. 
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1.2     Collective Interactions in Complex Materials 

1.2.1    Superconductivity 

Superconductivity below 4 K was first observed experimentally in mercury in 1911 by 

Kamerlingh Onnes [15].  There are a number of physical properties that are necessary 

conditions for a material to be a superconductor, and which distinguish such a material 

from a perfect conductor. The most obvious property of a superconductor is that below a 

critical temperature, TC, the material has zero electrical resistance. This does not, 

however, distinguish it from a perfect conductor. A superconductor additionally exhibits 

the Meissner effect, whereby magnetic flux is completely excluded from the material’s 

interior1

Put simply, in BCS theory electrons become bound together by exchanging virtual 

phonons and forming ‘Cooper-pairs’, decreasing their energy by doing so. These 

Cooper pairs are Bosons and therefore the Pauli Exclusion Principle does not apply, so if 

 and it becomes a perfect diamagnet, provided that any applied magnetic field is 

not above the material’s critical field, HC. 

BCS Superconductivity 

Following the Onnes’ initial discovery of superconductivity in mercury many more 

materials were found to superconduct, though it was not until 1957 that a theoretical 

understanding of the phenomenon was achieved, when Bardeen, Cooper, and Schrieffer 

[16–18] proposed what has come to be known as BCS theory. 

                                                            
1  In fact magnetic flux does penetrate a short distance into the interior of a 
superconductor, although the flux decays exponentially with the distance from the 
surface.  This finite penetration of flux can be phenomenologically explained using the 
London equations, which are themselves derived from Maxwell’s equations. Note that 
the London equations do not encompass any microscopic information about the 
superconducting state. 



  

5 

 

one pair of electrons can save energy by becoming bound together, the other electrons are 

likely to do the same. Since Cooper pairs are Bosons there is no restriction on the number 

that exists in any particular quantum state. The binding energy (reduction in energy of 

the electron pair) is greatest if electrons with equal but opposite momentum become 

bound together. 

Consider adding two electrons, with momenta k1 and k2 respectively, to a metal at 

zero temperature. If electron 1 emits a phonon with wavevector q then 

, and , and by conservation of momentum . 

Now the phonon has energy , and in adition, because of the Pauli 

exclusion principle,  and . The number of available states into which 

the electrons can be scattered is a maximum for , i.e. . 

There are several physical properties exhibited by BCS superconductors that 

together can be used to identify them. There is an energy gap associated with the 

Cooper pairs, the energy saved by pair formation compared to the unpaired state, which 

can be probed using infra-red absorption. The peak in energy of the absorption will 

correspond to the energy gap.  The BCS theory predicts that the gap at zero temperature 

, corresponding to the energy required to break up a Cooper pair, is related to TC by 

[19] 

 

Furthermore, BCS theory also predicts the so-called ‘isotope effect’, in which the 

critical temperature is found to depend on the isotope mass of the superconducting 

material. The fact that phonon modes are affected by isotope mass, and virtual phonon 
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exchange is responsible for the superconductivity, makes it relatively straightforward to 

understand qualitatively why this is so. 

 

Cuprate Superconductors 

In 1986 Bednorz and Müller [20] made one of the most important discoveries in 

modern condensed matter physics when they found that La2CuO4 becomes 

superconducting when a certain amount of Ba2+ is substituted for La3+. The 

unprecedentedly high critical temperature of the superconductivity was the most 

remarkable feature. This breakthrough quickly led to the discovery of other ‘high-TC’ 

cuprate superconductors such as YBa2Cu3O6+x [8]. The superconductivity in these 

cuprate compounds was found to be inconsistent with the well established BCS theory, 

which correctly explained the properties of the non-cuprate superconductors known at 

that point in time [21]. For example the critical temperatures of the cuprates were much 

higher than those generally compatible with BCS theory. Also the energy gaps observed 

in the cuprates suggested a moderate strength phonon interaction within the BCS 

framework, which was inconsistent with the very strong interaction needed to explain 

the high values of TC. A new theoretical approach was therefore required to explain the 

physics of the cuprate superconductors, and in order for this to be formulated a large 

body of experimental data was needed. 

Putting together the evidence from a large number of experiments allowed the phase 

diagrams relating the critical temperature to doping to be mapped out for many 

superconductors, and it has become clear that they display many similarities. Figure 1.1 

shows a generic phase diagram for a hole-doped superconductor. 
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Considering the phase diagram with increasing doping, starting with the undoped 

case, a number of different phenomena occur. At the lowest doping the material is a 

Mott insulator and the spins order antiferromagnetically [22].  As x is increased the 

Néel temperature decreases, eventually reaching zero. If x is increased beyond this 

critical point the material enters either what is known as the spin-glass phase, or the 

pseudogap phase, at lower and higher temperatures respectively. The pseudogap phase is 

one in which certain physical properties show behavior indicative of the existence of an 

energy gap. It seems that electrons are not totally forbidden from crossing the gap, 

however, and the symmetry of the gap has been shown to be that of d-wave electrons [23].  

Further increases in the doping eventually lead to the superconducting phase2

 

. Within 

                                                            
2 For doping lower than this lower critical level the material is said to be ‘underdoped’. 
Likewise for doping higher than the upper critical level the material is said to be 
‘overdoped’. 

 

Figure 1.1 The generic phase diagram of a cuprate 
superconductor, showing the critical temperature Tc vs hole 
doping x [23]. 
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this phase the critical temperature gradually increases with increasing x, until a 

maximum is reached whereupon TC gradually reduces. A dip in TC is also observed at 

, however it is too narrow to be shown in Fig. 1.1. 

Eventually the doping x is increased enough that the superconducting transition 

temperature goes to zero. For higher doping than this critical level the material goes into 

the so-called Fermi liquid state. At low energies and temperatures we can consider a Fermi 

liquid state to consist of quasi-particles which separately contain the spin, charge and 

momentum of the fermions3

                                                            
3 i.e., one set of quasi-particles contain the spin, another set the charge, and another set 
the mo- mentum of the fermions 

, and are weakly interacting. A final phase exists at higher 

temperatures for a wide range of doping, the so-called non-Fermi liquid phase. In this 

phase the physics of a Fermi liquid appear to break down and the properties of the system 

cannot be explained either by independent electrons, or quasiparticles. The precise nature 

of the non-Fermi liquid phase is not yet understood.  

 

1.2.2    The Colossal Magnetoresistance (CMR) Effect 

Introduction to Charge and Orbital Ordering 

Charge Ordering Layered compounds isostructural to some cuprate 

superconductors, such as La2-xAxMO4, with A = Sr, Ca, Ba . . . (hole dopants), and M = Ni, 

Co . . . [24, 25] have been found to exhibit charge order, i.e., the localization of the doped 

holes into periodic structures in the MO2 planes. The spins of the M ions situated 

between the localized charges also tend to become ordered in periodic structures at the 

same time. 
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The details of the charge order structures depend somewhat on M, but there are 

many features common to all of the materials. Two models commonly used to describe 

the charge order are the checkerboard model and the stripe model. In the former, a good 

example of which is found in La1.5Sr0.5NiO4, the charge forms into the checkerboard-like 

structure as shown in Fig. 1.2 with alternate sites containing a hole, giving a periodicity 

of two lattice units. In La5/3Sr1/3NiO4 the periodicity is three lattice units, and the charge 

structure is arranged into quasi-1D rivers (stripes) that run diagonally [26]. The 

presence of charge order can be detected directly using scanning tunneling microscopy 

(STM) [27], or indirectly using neutrons or x-rays to probe periodic structural distortions 

caused by Coulomb inter actions between the ordered charge and the ions in the lattice 

[28].  

 

Figure 1.2 Schematic of a charge checkerboard for a half-doped 
La2-xAxMO4 material, with circles representing ions on a square 
lattice and the shading representing localized charge. 
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Orbital Ordering As has been mentioned above, the electron wavefunctions in 

solids tend not to be spherically symmetric and their orientation can therefore be affected 

by the symmetry of the local crystalline environment. In some materials, then, the 

energy can be lowered by the orbitals arranging themselves into a periodic structure - 

termed orbital ordering. 

 

An example of a material in which orbital ordering occurs is La0.5Sr1.5MnO4, which 

is, as with the charge ordered compounds discussed in section 1.2.2, isostructural to some 

cuprate superconductors [29]. In this material the  orbitals of the eg electrons on 

the Mn3+ sites form into zigzag chains in the ab-plane, shown schematically in Fig. 1.3. 

In general, the orientation of electron orbitals in a material has a strong effect on the 

 

Figure 1.3 Schematic view of orbital order in 
La0.5Sr1.5MnO4. 
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magnetic properties because they affect the strength of the inter-atomic exchange. These 

effects are described by the Goodenough-Kanamori-Anderson (GKA) rules [30].  

Discovery of CMR Effect 

Experimental work on manganites dramatically accelerated during the 1990s. This was 

caused by  the observation of large magnetoresistance (MR) effects in these compounds.  

This property was noticed in the early studies (see Volger [31]), as already discussed, 

but its true magnitude was not appreciated, nor were its potential technological uses. The 

early relevant studies in this context include work on Nd0.5Pb0.5MnO3 by Kusters et al. 

[32] (see Fig. 1.4). 

 

In that publication, a plot of resistivity vs. temperature at several magnetic fields 

revealed the large MR effect of these compounds. Work by von Helmolt et al. [33] on 

La2/3Ba1/3MnOx also revealed a large MR effect, this time at room temperature, using thin 

 

Figure 1.4 Resistivity of Nd0.5Pb0.5MnO3 as a function of 
temperature and magnetic field. Inset illustrates the behavior of 
the magnetoresistance at two temperatures, above and below the 
ordering temperatures. 
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films. The value of the MR was found to be larger than in ‘giant’ MR devices, which are 

artifially created arrangements of magnetic materials with large magnetoresistance. 

Similar conclusions were reached by Chahara et al. [34] using thin films of La1-xCaxMnO3 

at x = 0.25. Ju et al. [35] also observed large MR thin films of La1-xSrxMnO3 near room 

temperature. 

The explanation of CMR effect 

After the early studies of manganites described above, Tokura et al. [36–38] proposed 

that the charge-ordering (CO) states observed by Jirák et al. [39] were very important for 

the explanation of the CMR effect. They presented results indicating an abrupt collapse 

of the CO state into a ferromagnetic (FM) state under the influence of a magnetic field. 

The competition between CO and FM is indeed a key component of the current theories 

of manganites aiming to explain the CMR phenomenon. It is clear from the experiments 

and the theory that the CO-FM transition should be first-order unless disordering effects 

smear it into a rapid but continuous transition. The huge CMR effect in some compounds 

at very low temperatures appears to be caused by the CO-FM first-order transition 

induced by magnetic fields. This physics is not contained at all in the early theoretical 

studies of manganites in the 1950s and 1960s, which were based on the so-called double-

exchange effects and one-orbital models. Only in the late 1990s and early 2000s has the 

CO-FM competition been identified as the key ingredient of the CMR phenomenon. 

1.2.3    Quantum Phase Transition 

Another complex oxide, the single-layered Ca2-xSrxRuO4, is a quasi two-dimensional 

perovskite system, showing a rich array of interesting ground states [40, 41]. As shown 

in Fig. 1.5 [42], isovalent cation substitution of the smaller Ca2+ by the bigger Sr2+ ions 
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induces both structural distortion and an unusual variation of electronic and magnetic 

properties. 

 

As is common in perovskites when the A-site cations with different ionic radii are 

substituted, Ca replacement for Sr gradually modulates the rotational and tilt distortion 

of the RuO6 octahedra, starting with a tetragonal I4/mmm structure for Sr2RuO4, to an 

I41/acd structure for Ca1.5Sr0.5RuO4, and ending with an orthorhombic S-Pbca structure 

for Sr2RuO4 [43]. This in turn leads to an evolution of the ground state, from an 

unconventional ‘p-wave’ superconducting state in Sr2RuO4 with possible spin-triplet 

 

Figure 1.5 Phase diagram with structural evolution of Ca2-xSrxRuO4. TO, TP, and Tmax are 
the orthorhombic structural transition temperature and the peak temperature of χ(T),  
and peak temperature of M(T) curve with zero-field cooling, respectively. Both rotational 
(φ) and tilt (θ) distortion of RuO6 octahedron are shown. 
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pairing [44], to a quantum critical point at x = xc ~ 0.5 and to an antiferromagnetic Mott-

insulating phase when x < 0.2 [40, 41]. All of these exciting phenomena strongly 

suggest an intriguing interplay between spin, lattice, and orbital degrees of freedom as 

well as the effect of reduced dimensionality [45]. 

1.3    Motivation of this Thesis 

 

The fascinating complex and collective phenomena introduced in the previous sections, 

which have been revealed in TMO compounds, present us profound and formidable 

challenges in condensed matter physics [1, 3].  Particularly, many exotic properties are 

intimately linked to the complexity of ‘nature-designed’ layered structures and 

associated with reduced dimensionality. This can be illustrated by considering the 

 

Figure 1.6 Schematic illustration of the perovskite structure of RP series: An+1MnO3n+1. 
The A cation ions are the dark spheres, and the M-O octahedra are the MO6 complexes. 
The structural properties of the n = 1 and n = 2 phases are clearly low dimensional and 
are expected to lead to highly anisotropic physical properties. 
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Ruddlesden-Popper (RP) series, i.e., An+1MnO3n+1, as shown in Fig. 1.6. [46] A is 

normally a trivalent or divalent cation ion and M a transition metal ion. The structure 

is made up of n consecutive perovskite layers (AMO3 ) alternating with rock salt layers 

so that their formula can be represented by (AO)(AMO3)n, where n represents the 

number of connected layers of vertex sharing MO6 octahedra. Partial substitution of 

the A ions with other ions with different ionic size normally varies the bandwidth, 

while substitution with ions of different chemical valence, which creates multiple 

valences in the M ion sites, causes carrier doping thus changing the band filling. 

Many TMOs are characterized by physical complexity resulting from the coexistence 

and competition between different kinds of order involving charge, orbital, lattice, and 

spin degrees of freedom. The relationship between these degrees of freedom is often 

synergistic and non-linear, thus creating many intriguing collective behaviors that rarely 

occur in simple materials like pure metals or semiconductors. The complexity of TMOs 

is directly responsible for their tunability. The balance between competing phases is very 

subtle and small changes in the composition can produce large changes in the physical 

properties. 

In the past few decades, the cobaltates have attracted tremendous interests because 

of their complex phase diagram and intriguing magnetic and electronic properties.  A 

wide variety of experimental results and theoretical investigations on these TMOs have 

convincingly demonstrated the intrinsic inhomogeneous electronic states. 

Much work has been done on 3d TMOs because of the highly correlated electron 

related collective phenomena, such as high-temperature superconductivity in cuprates and 

colossal magnetoresistance in manganites. Although the Co element is two columns away 
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from either Mn or Cu in the periodic table, cobalt-based oxides are known to exhibit 

unique physical properties, originating from the rich electronic configurations and spin 

states. For instance, the rhombonhedrally distorted perovskite LaCoO3 has a 3d6 

electron configuration of Co3+ and because of the comparable crystal-field splitting and 

Hund’s coupling energy, it undergoes a temperature-dependent spin-state transition between 

the high-spin (S = 2; ) and low-spin (S = 0; ) states [47-51]. Layered perovskite 

La2-xSrxCoO4 (0.4 ≤ x ≤ 1.0) shows drastic changes of the magnetic and electric 

properties, which suggest a high-spin state to intermediate-spin state transition of the 

Co3+ ions [52]. Most recently, possible stripe phases have been observed by neutron 

scattering in La2-xSrxCoO4 with x > 0.3 that exhibit incommensurate spin orderings [53, 

54]. In the recent discovered superconductor, NaxCoO2 • yH2O (x ~ 0.35, y ∼ 1.3), Co 

ions were revealed lying on the two-dimensional triangular CoO2 sheets. This 

compound has been confirmed as a magnetically frustrated system with low 

dimensionality [55]. In addition, La2-xBaxCuO4, which was the first high-TC 

superconductor [20], has the similar chemical formula to Ba2-xSrxCoO4. With simple ion 

substitutions, single-layered ruthenates, Ca2-xSrxRuO4, provide a wide variety of novel 

phases because of the position of the Fermi level in multiple bands resulting from the 

hybridization of oxygen 2p and ruthenium 4d levels [10, 40, 41]. 

In the following several subsections, I will go through a few prototype compounds 

that motivated me doing this thesis work.  

1.3.1    La2-xBaxCuO4 

La2-xBaxCuO4 (hereafter referred to as LBCO) was the first high-TC cuprate 

superconductor to be discovered [20], and very little time elapsed after this initial 
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discovery before the main features of the phase diagram as a function of doping were 

known. These follow the generic features described in section 1.2.1. Of particular interest 

is the very strong suppression of superconductivity near to x = 1/8. This suppression of 

TC has been seen in all cuprates, however in certain materials, of which LBCO is one 

example, TC decreases almost to zero. This contrasts with, for example, La2-xSrxCuO4, 

where the suppression of TC is only a few percent [56, 57]. 

The crystal structure of LBCO is different from most cuprates, because on cooling to 

low temperatures (T ≤  50 K) it changes from orthorhombic to tetragonal [58], whereas 

most other cuprates tend to remain in an orthorhombic structural phase. Measurements 

of the resistivity [59] parallel to the CuO2 planes show that in the normal state there is a 

sharp increase in resistivity on cooling to about 50 K and then a further more gradual 

increase in resistivity with decreasing temperature, indicating that the mobile charge 

carriers become more localized below 50 K. Such measurements do not, however, 

provide any information about the spatial distribution of these kinds of localized carriers 

(holes). 

It would be natural to investigate whether the difference in the low temperature 

structure of LBCO compared to other cuprates is relevant to the strong suppression of 

superconductivity and the concomitant localization of the charge carriers. The most 

obvious way to do this would be to perform x-ray diffraction and neutron scattering 

measurements in order to probe the order parameters in the tetragonal state. 

Unfortunately the necessary large single crystals of LBCO have proved somewhat 

difficult to grow, and it has only been in recent years that such measurements have been 

possible. 
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Faced with this difficulty other materials were sought which displayed similar 

characteristics, and it was noticed quite quickly that substitution of a certain amount of 

Nd for La2-xSrxCuO4 stabilized a tetragonal phase at low temperatures [6]. It was found 

that the material La2-x-yNdySrxCuO4 (LNSCO) with y = 0.4 and x = 1/8 had many 

similarities with x = 1/8 LBCO, with the advantage that the crystals were easier to grow. 

1.3.2    LaCoO3 

 

LaCoO3 is a semiconductor that has been of interest for many years because of its 

peculiar magnetic properties.  The ground state, measured at low temperatures, is non-

magnetic. However, as the material is warmed, the magnetic susceptibility steadily 

increases, reaching a maximum at about 100 K. As the temperature is increased further, 

 

Figure 1.7 The magnetic susceptibility of LaCoO3 as a function of temperature [47]. 
Van-Vleck and impurity contributions to the susceptibility have been subtracted from 
these data. 
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the susceptibility gradually decreases following a Curie law type behavior. The behavior 

of the susceptibility then deviates from this above about 400 K, becoming slightly larger 

than expected from the Curie law alone. The magnetic susceptibility, as measured by 

English et al. [47, 60, 61] is shown in Fig. 1.7. 

This behavior is somewhat surprising, because the Co3+ ions have the 3d6 

configuration, for which Hund’s rules predict a ground state with S = 2. It is therefore 

clear that this is a material in which the competition between the intra-atomic exchange 

and the crystal field determines the magnetic properties. The general principles to explain 

the unusual magnetism observed in LaCoO3 are broadly agreed upon the Co3+ ions which 

have a ground state with S = 0, and there is an energy gap between this state and excited 

states that have S = 0. As the material is warmed the magnetic excited state(s) are 

thermally populated, so that increasing temperature leads to an increased number of 

magnetic ions. However there is a trade-off between the increase in susceptibility that 

results from this thermal population, and the thermally induced fluctuations of the ions 

in the magnetic state that act to reduce the susceptibility according to the Curie-

Weiss law. It is this trade-off that results in the susceptibility rising to a maximum 

before decreasing again on warming. 

The crystalline environment of the Co3+ ions is very close to being octahedral. An 

octahedral crystal field would split the 3d orbitals into t2g and eg states, with the former 

at a lower energy [62]. In the non-magnetic state the Co3+ is in the t6 configuration, 

whereas in the magnetic state one or more electrons are excited into the eg states. 

The delicate balance of the various interactions in LaCoO3 means that the nature of 

the magnetic excited state is not immediately obvious. A simple view is that there exists 
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competition between the crystal field and the L-S coupling (parameterized by Hund’s 

rules), which would mean that the excited state has S = 2. Indeed this view prevailed for 

many years after the physical properties of LaCoO3 were first measured. For example 

Raccah and Goodenough [63] were able to model successfully the behavior with 

temperature of the conductivity, magnetic susceptibility and structural parameters 

assuming a high-spin (HS, S = 2) model. 

More recently, inelastic neutron scattering, which excited electrons directly from the 

low-spin (LS, S = 0), confirmed the existence of a HS or intermediate-spin (IS, S = 1) 

first excited state. Evidence for such a transition, from the LS to IS state at T = 8 K, was 

presented by Kobayashi et al. [64], who used unpolarized neutrons and therefore had to 

perform quite complicated corrections to their data in order to subtract the non-magnetic 

scattering from the signal. The energy gap between the LS and IS state determined by 

this method was found to give rise to a broad peak centered around 20 meV at the 

ferromagnetic wavevector QFM = (1, 0, 0) in pseudo-cubic notation. Recently, however, 

measurements using polarized neutrons [65] have failed to confirm these results, indeed 

finding no magnetic signal at either ferromagnetic or antiferromagnetic wavevectors at 

low temperature. This has cast doubt on the background subtraction procedure used by 

Kobayashi et al., and it seems that a direct transition from the ground state is not 

observable, which would suggest either that the first excited state is high-spin, or that the 

LS-IS transition matrix element is too small to make the transition observable. 

1.3.3    La1-xSrxCoO3 

The materials with the general formula La1-xSrxCoO3 (LSCoO) are an interesting 

group of materials to study because they display many of the characteristics typical of 
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the colossal magnetoresistance (CMR) perovskites [66, 67], and also share some 

similarities with giant magnetoresistance (GMR) heterostructures [68]. The latter 

materials are artificial structures in which ferromagnetic metallic sections are placed in a 

matrix of non-magnetic material, and have been extremely important for the 

development of efficient hard disk drives.  Similar so-called ‘phase separation’ of 

ferromagnetic and non-magnetic media, occurring naturally rather than being engineered, 

has been observed in CMR materials. An example of such het- erogeneity would be the 

formation of ‘islands’ of magnetically ordered ions surrounded by a region of the 

material that is non-magnetic. The most studied CMR perovskites to date have the 

general formula La1-xAxMnO3, where A is a hole dopant such as Sr2+, Ca2+, Ba2+, etc. 

The CMR effect is observed to be greatest near the critical temperature for the onset of 

bulk magnetic order [66]. 

Bulk measurements of the magnetic and transport properties of LSCoO show 

dramatic changes with doping [69, 70].  Susceptibility measurements, shown in Fig. 1.8, 

show that the x = 0 material is non-magnetic, but as doping is increased the size of the 

moment increases rapidly, with a transition into a true ferromagnetic state at x = 0.18. The 

Curie temperature at x = 0.18 is 150 K, and TC increases with further increase in doping. 

These measurements have been interpreted as arising from the growth of ferromagnetic 

clusters, the number and size of which increase as doping is increased, until percolation 

to a bulk ferromagnetic state occurs at x = 0.18. 

The behavior of the resistivity with temperature, shown in Fig. 1.9, is also found to 

vary as a function of doping [69, 70]. At x = 0 the material is a semiconductor, but the 

resistivity steadily decreases as holes are doped into the material. These 
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resistivity steadily decreases as holes are doped into the material. These measurements 

show that as the material tends towards ferromagnetism it also becomes increasingly 

metallic, i.e., the magnetism resides on itinerant rather than localized electrons. This 

aspect of LSCoO bears many similarities to the behavior of the CMR manganites. 

Measurements of the magnetoresistance of LSCoO as a function of doping [71] show 

that for higher doping, when the material is in a ferromagnetic metallic phase, the 

magnetoresistance is just a few percent.  However when the doping reaches the critical 

level of x = 0.18 the MR becomes around 30%, and as the doping is decreased further 

the MR increases such that for x = 0.09 the resistivity drops by as much as 90% at low 

temperatures. 

 

Figure 1.8 Magnetic susceptibility of La1-xSrxCoO3 as a function of temperature and 
doping x. 
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In the region of doping 0 < x < 0.18, the material displays behavior which is in some 

respects like that of a spin glass. In a true spin glass, dilute spins in a solid are randomly 

distributed. However, there exist interactions between spins that act to freeze them into a 

metastable state with short range magnetic order [62]. 

1.3.4    Ba2-xSrxCoO4 in this Thesis 

Much less studied are the cobaltates with Co in a tetrahedral environment. In 

polycrystalline Ba2CoO4, it has been reported that the Co ions are in tetrahedral sites 

[72–74], but its single crystal preparation and physical properties are essentially 

unknown. On the other hand, Matsuno et al. and Wang et al. have reported that 

Sr2CoO4 is a ferromagnetic (FM) metal in forms of thin films [75] and bulk 

polycrystalline powder [76, 77], where Co is in octahedral environment. The abrupt 

 

           Figure 1.9 Resistivity of La1-xSrxCoO3 as a function of temperature and doping x. 
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change in crystal structure stimulates us to systematically investigate the structural and 

possible magnetic transitions, as well as their correlations in this isovalent doping 

system. 

1.4    Scope of this Thesis 

The present Ph.D thesis is organized as follows: in Chapter 2 experimental 

techniques, including sample synthesis methods, physical property characterization 

techniques, the theory of neutron production and scattering, and lattice and magnetic 

structure refinements by using neutron scattering, are presented. 

In Chapter 3, we briefly comment on the preparation conditions for the studied 

polycrystalline and single crystalline samples, which were synthesized at the Correlated 

Electron Materials Group at Oak Ridge National Laboratory (ORNL). We present the 

successful results of our own attempts to grow single crystals of Ba2-xSrxCoO4. 

Furthermore, the basic ideas of neutron scattering techniques and the experimental setup 

of the utilized neutron diffractometers are presented. 

In Chapter 4 our experimental results on the evolution of the structural properties 

with Sr substitution in Ba2-xSrxCoO4 as observed by high-resolution x-ray diffraction are 

presented and discussed in detail. 

In Chapter 5 the electronic and magnetic properties of Ba2-xSrxCoO4 are also 

discussed with the help of SQUID and the high-resolution neutron powder diffraction at 

NIST. 

In Chapter 6 the magnetic structure and excitations of Ba2CoO4 are presented and 

discussed. Finally, the phase diagram of Ba2-xSrxCoO4 is summarized and an outlook to 

future research issues is given in Chapter 7. 
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This chapter gives a basic introduction to the experimental methods that were used 

for the measurements presented in the rest of this thesis. Section 2.1 presents the 

fundamentals of sample synthesis methods including conventional solid state chemical 

reactions and the floating-zone method. Section 2.2 gives some background to the 

overview of the physical property characterization techniques, such as the SQUID 

magnetometer and the Quantum Design PPMS heat capacity measurement system.  

Section 2.3 outlines some details specific to the theory of neutron production and 

scattering, as well as descriptions of neutron spectrometers. Finally section 2.4 provides 

the basics of lattice and magnetic structure refinements by using neutron scattering. 

2.1    Synthesis Methods 

2.1.1    Solid-State Chemical Reaction 

Since the specimen of my research is a kind of oxide, the very first step of preparing 

samples is the conventional solid-state chemical reaction. This method is also known as a 

dry media reaction or solventless reaction, which is a chemical reaction system in the 

absence of a solvent [78]. 

The drive for the development of solid-state reactions in chemistry is 

• Economics (save money on solvents). 

• Ease of purification (not required to remove a solvent post-synthesis). 

• High reaction rate (due to the high concentration of reactants). 

• Environmentally friendly (solvent is not required).  

Drawbacks to overcome: 

• Difficulty in mixing reactants into a homogeneous system. 

• High viscosity in reactant system. 
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2.1.2    Floating-zone Single Crystal Growth 

Floating-zone (FZ) technique is widely used for obtaining high quality single crystals, 

especially oxides. The FZ process, which is also called zone melting or zone refining, is 

a group of similar methods of purifying crystals, in which a narrow region of a crystal 

is molten, and this molten zone is moved along the crystal (in practice, the crystal is 

pulled through the heater). The molten region melts impure solid at its forward edge and 

leaves a wake of purer material solidified behind it as it moves through the ingot. The 

impurities concentrate in the melt, and are moved to one end of the ingot. This technique 

was developed by William Gardner Pfann in the Bell Labs as a method to prepare high 

purity materials for manufacturing transistors. Its early use was on germanium for this 

purpose, but it can be extended to virtually any solute-solvent system having an 

appreciable concentration difference between solid and liquid phases at equilibrium. 

The basic idea in FZ crystal growth is to move a liquid zone through the material. 

If properly seeded, a single crystal may result, as shown in Figure 2.1. The principle of 

this method is that since the segregation coefficient k (the ratio of an impurity in the 

solid phase to that in the liquid phase) is usually less than one. Therefore, at the 

solid/liquid boundary, the impurity atoms will diffuse to the liquid region. Thus, by 

passing a crystal boule through a thin section of furnace very slowly, such that only a 

small region of the boule is molten at any time, the impurities will be segregated at the end 

of the crystal. Because of the lack of impurities in the leftover regions which solidify, the 

boule can grow as a perfect single crystal if a seed crystal is placed at the base to initiate 

a chosen direction of crystal growth. When high purity is required, such as in 

semiconductor industry, the impure end of the boule is cut off, and the refining is repeated. 
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The problem of FZ crystal growth is also clear, however, if one looks at Fig. 2.1: 

How do we keep the liquid Si from just collapsing?  If it would only be held in place by 

surface tension, the maximum diameter of crystals possible in this way would be about 20 

mm - not very useful. There are, fortunately, other stabilizing mechanisms, and drawing 

the liquid zone through a ‘hole’ - as indicated - also helps. Still, for large diameter crystals 

the difficulties grow rapidly and FZ crystal growth is rarely (if at all) used for diameters 

larger than 150 mm. 

 

               Figure 2.1 Illustration of floating-zone single crystal growth technique. 
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2.2    Physical Property Measurement Techniques 

2.2.1    Magnetization Measurements Using a SQUID 

The magnetization measurements presented in this thesis were all taken using a 

Quantum Design MPMS XL magnetometer. This magnetometer works using a 

superconducting quantum interference device (SQUID) coil [79]. The sample 

environment is a Helium flow cryostat, which can be cooled to a base temperature of 

1.6 K. A magnetic field is applied in the vertical direction by a superconducting magnet, 

which has a practical range of about ± 5 T. All of the measurements are computer 

controlled using software that was designed specifically for this magnetometer by 

Quantum Design Inc. 

For a measurement of the magnetic susceptibility the sample is typically mounted 

inside a plastic straw with a diameter of ∼ 5 mm, the diamagnetic moment of which is 

very small. The sample can be secured inside this straw in a variety of ways. The two 

that were most often used for the work presented here were, 1) to place the sample inside 

a plastic capsule, packed tight with cotton wool and sealed with kapton tape, itself inserted 

into the plastic straw; 2) to wedge the sample between two folded over straws inserted 

into the plastic straw. The method chosen depended on the particular geometry of the 

sample and the crystallographic direction in which the field needed to be applied. The 

principle of operation of the apparatus is shown schematically in Fig. 2.2. The plastic 

straw containing the sample is translated vertically between three superconducting coils, 

in which a current proportional to the sample magnetization is induced. These coils lead 

to two coupled inductors, which then leads to another pair of inductors, between which a 

SQUID is placed. Thus small changes in the sample magnetization are measured as small 
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current changes, which are converted into small changes in magnetic field near the SQUID. 

2.2.2    Heat Capacity Measurements Using a PPMS 

The heat capacity measurements presented in this thesis were all performed using a 

Quantum Design Physical Properties Measurement System (PPMS) [80]. The PPMS 

can measure a variety of physical properties (resistivity, AC susceptibility, etc.), however, 

the heat capacity option is the only one that was utilized for the work presented in this 

thesis. 

A schematic of the sample mount, known as the puck, is shown in Fig. 2.3. The 

platform is connected to the support frame of the puck, which acts as a heat sink, by 

thin wires, which also serve as electrical contacts for the heater and resistance 

thermometer. A good thermal contact between the bottom surface of the sample and the 

 

Figure 2.2 The pickup coils of the SQUID magnetometer. 



  

31 

 

platform is ensured by using Apiezon grease. The whole apparatus is controlled by 

computer, using Bespoke software. 

 

In order to make a measurement the heater supplies a fixed amount of power P(t) for 

a length of time t, and is then turned off. The temperature of the 

sample/platform/grease assembly rises as the heat is applied, whereas the thermal bath 

remains at constant temperature, and then cools through radiation and conduction 

through the wires when the heater is turned off. The software monitors the temperature 

throughout this, and the heat transfer is modeled by the differential equation 

 

where Ctotal is the heat capacity of the sample and platform together, KW is the thermal 

conductivity of the wires, and Tb is the fixed temperature of the thermal bath. By 

solving this differential equation the heat capacity is calculated from the exponential 

decay constant of the sample temperature. In order to find the heat capacity of the 

 

Figure 2.3 Side view of the sample mount for heat capacity measurements using the PPMS. 
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sample, the heat capacity of the puck and platform must be subtracted, so the behavior 

of this quantity vs. temperature is calibrated before the experiment takes place. 

If the thermal contact between the platform and sample is not very good a more 

complicated model is used which accounts for the behavior of the two separately, 

 

 

where Kg is the thermal conductivity of the grease, and the temperature of the sample 

and platform is given by Ts and Tp respectively. 

2.3    Neutron Scattering 

The neutron scattering technique is one of the most invaluable and versatile 

microscopic probes in the study of condensed matter. This is because of several unique 

fundamental properties of neutrons. First, the relatively large mass of a neutron 

( g) allows thermal neutrons of energy range 5 to 100 meV to have a 

wavelength of 1 to 3 Å, which is comparable to interatomic distance in solids. The energy 

of thermal neutrons is of the same order as of the fundamental excitations in solids. Also, 

because a neutron carries no charge, it can penetrate deeply into the bulk and come 

close to the nuclei. Moreover, it has a magnetic moment. This means that neutrons 

interact with the unpaired electrons in magnetic ions. This property is perfect for the 

investigation of magnetic structure. Elastic scattering from this interaction gives 

information on the arrangement of electron spins and the density distribution of unpaired 

electrons. Inelastic magnetic scattering gives the energy and wave vector dependencies of 

magnetic excitations. 
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2.3.1    Neutron Sources 

There are two methods currently employed to generate neutrons for use in scattering 

experiments, each with its pros and cons. The first method is nuclear fission, occurring 

in a traditional nuclear reactor with uranium as the fuel. 

 

A reactor at a neutron scattering facility would be designed to produce an excess of 

neutrons beyond that required maintaining the chain reaction, and it is these excess 

neutrons that are used for scattering. Before reaching the scattering instruments the 

neutrons pass through a moderator that modifies their energy spectrum. The precise choice 

of moderator material and temperature determines the resulting spectrum. After this the 

neutrons pass through wave guides to the instruments. In order to avoid ‘fast’ (i.e., high 

energy) neutrons irradiating the sample the waveguides are actually oriented tangentially 

to the reactor core. Neutrons which undergo several scattering processes in the 

moderator tend to be more likely to enter such waveguides than unscattered fast neutrons, 

which are radiated radially from the reactor core. The main advantage of a reactor source 

is that it produces a high flux of neutrons at a steady rate. 

The other method of generating neutrons for scattering is with a spallation source. 

Accelerated protons strike a heavy metal target, and the impact of the proton beam 

triggers a nuclear reaction. The spallation process is the excitation and neutron emission 

of the target until it achieves a stable nuclear state. The spectrum of the neutrons is, as with 

a reactor source, modified by moderators. Such a source typically produces a much lower 

flux of neutrons than a reactor. However, if the proton beam is pulsed, the so-called 

‘time-of-flight’ instruments can be used rather inefficiently at a reactor source. 
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2.3.2    Neutron Scattering Instruments 

There are many types of neutron scattering instruments.  For inelastic scattering the 

two main types of instrument used are the time-of-flight (ToF) chopper spectrometer 

and the triple-axis spectrometer (TAS). The former are used at pulsed spallation neutron 

sources, as well as at continuous spallation or reactor sources, whereas the latter are 

most often used at reactor sources. For the research presented in this thesis all of the 

neutron scattering measurements were performed on triple-axis spectrometers, so only 

the details of these will be presented.  

Triple-axis Spectrometer 

 

The individual components of a TAS are as follows. The monochromator, typically 

made from pyrolytic graphite (PG), silicon or Heusler crystals, turns a polychromatic 

 

Figure 2.4 A schematic of a conventional triple-axis spectrometer. 
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beam of neutrons into a monochromatic one by Bragg reflection (usually the 002 reflection 

for PG). Only neutrons of a given wavelength (energy) fulfill the Bragg condition. 

Collimators can be used to ensure that the beam does not diverge too much, and they 

typically take the form of parallel plates which are coated with a neutron-absorbing 

material such as boron or gadolinium. Despite this the width of the neutron beam is 

likely to be larger than the width of the sample, so in order to improve the signal-to-

noise ratio diaphragms are placed before and after the sample. Diaphragms are also placed 

in front of the analyzer and detector in order to allow full illumination whilst reducing 

spurious scatter entering the detector, thus further improving the signal-to-noise ratio. 

The sample may be mounted in a standard cryostat, in a dilution refrigerator, or in a 

cryomagnet depending on the sample environment needed. The analyzer crystals work in 

much the same way as the monochromator, e.g. one might use the (002) reflection from 

PG, or the (111) reflection from Si, depending on the choice of final neutron wavevector 

kf. 

More often than not the spectrometer is set up to use a fixed final wavevector kf, 

meaning that in order to do inelastic scattering measurements it is only the magnitude 

of the incident wavevector that is varied. There are several reasons why this setup is 

chosen. One is that it offers a larger dynamic range that is available with fixed incident 

wavevector, in that a greater energy range and wavevector transfer is accessible within the 

geometric constraints of the spectrometer. The incident beam monitor efficiency is 

inversely proportional to ki (discussed later), so the neutron count rate normalized to the 

number of monitor counts is directly proportional to the response function S(Q, ω) 

(defined in section 2.3.3). Moreover, by fixing the final wavevector it allows the use of a 
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filter, the purpose of which is to remove so-called ‘λ/2,  λ/3’… noise, i.e., neutrons 

whose energy is such that their wavelength is an integer fraction of the desired 

wavelength so they also fulfill the Bragg condition at the analyzer. This noise would 

result in spurious detector counts if filters were not used. The filters may be made from a 

variety of materials, dependent on the desired scattered wavevector. Typical choices 

might be cooled Beryllium for ki < 1.55 Å-1 or pyrolytic graphite for ki = 2.66 Å-1 or 4.1 

Å-1. These final wavevectors are chosen because they are values where the transmission is 

close to unity, but the transmission of the second, third and higher harmonics is close to 

zero. 

For all of the work presented in this thesis, thermal energy neutrons (Eincident < 50 

meV) were used, for which the filters one uses are based on Bragg scattering. For any 

given material there is a maximum wavelength (minimum energy) for which Bragg 

scattering can occur, which is given by twice the smallest lattice constant. For 

wavelengths shorter (energies higher) than this there is a steep decrease in the 

transmission. For example in a cooled Be filter4 this change in transmission is rather 

sharp and occurs at about 5.2 meV. In a PG filter, one can choose a neutron wavelength 

where the transmission of the beam is very high, and in addition the λ/2 and λ/3 neutrons 

are at wavelengths that are strongly Bragg scattered by the PG crystal5

                                                            
4 The Be is cooled so that the population of phonons is very small, which means that the 
probability of phonon creation is very small, so neutrons with energies higher than 5.2 
meV are less likely to lose energy through phonon scattering processes and pass through 
the filter. 

5 Note that the PG crystal has to be correctly oriented with respect to the beam scattered 
by the sample for this to work. 

, and hence have a 

very low probability of transmission through the filter. 
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One of the main advantages of neutrons is that they interact rather weakly with matter, 

and that their interaction with magnetic moments is not immeasurably weak. This does, 

however, present a problem when it comes to detecting scattered neutrons. Neutrons are 

not charged so they cannot be detected using radiation detectors which rely on direct 

ionization. Instead the neutrons need to cause some other atom to emit charged particles 

which will ionize material in the detector and therefore be electronically detectable. The 

standard way of doing this is to use a chamber filled with 3He gas, which then undergoes 

the following reaction: 

                                     (2.3.2) 

so that the charged decay products ionize the gas and give rise to a signal pro- 

portional to 0.77 MeV, which can be distinguished from signals at different energies 

arising from gamma rays entering the detector, for example. The 3He nucleus eventually 

decays to form another 3H nucleus and an electron, so the supply of helium in the 

detector does not need to be replenished. 

It is important to know the flux of neutrons incident on the sample, especially given 

that this will vary depending on the value of the incident energy. The incident flux is 

measured using a monitor, which is simply a rather incident neutron detector. The 

monitor’s efficiency is inversely proportional to the incident neutron wavevector, ki, so 

that when detector counts are normalized to the monitor count rate and the final 

wavevector, kf, is fixed, no correction for the kf / ki  term in equation 2.3.37 is required. 

There are two main types of neutron monitors. The most common ones work on the 

same principle as the 3H detector, but with a much lower gas pressure, which 

dramatically reduces the efficiency. Another kind of monitor is based on 2 35U-doped 
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sol-gel thin films.  A small number of 23 5U nuclei undergo fission when neutrons pass 

through the film, and the charged decay products are detected using scintillation detectors. 

 

Polarized Neutron Scattering Instrument Components 

A variation on the basic TAS is the polarized neutron TAS, which works on the 

same principles as the basic TAS but has a few modifications. The basic idea behind these 

is to produce an incident beam of neutrons whose spins all point in the same direction. 

This reduces the flux incident on the sample, however by analyzing the change in 

polarization state of the neutrons after scattering it is possible to measure scattering which 

is solely magnetic in origin. 

The first modification is to include a polarizing monochromator. An example of 

such a monochromator would be an array of large single crystals of Heusler 

(Cu2MnAl) alloy, arranged so that neutrons scatter off the (111) Bragg planes. The 

analyzer would be made from the same material and works the same way. A magnetic 

field is applied parallel to the surface of the monochromator/analyzer and the spins in 

the crystal align parallel to this. Because Heusler is a centrosymmetric crystal (i.e., the 

values for both the nuclear and magnetic structure factors are real) and the nuclear and 

magnetic structure factors are similar in value, the two kinds of scattering can either 

constructively or destructively interfere, depending on the orientation of the applied field, 

resulting in very good (but not perfect) polarization. The precise details of this will be 

discussed later. 

The next modification is the presence of guide fields around the neutron beam 

between the monochromator and the sample, and the sample and the analyzer. These are 
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basically shielded pipes inside which there is a uniform field of a few mT which serves 

to maintain the polarization state of the neutron beam.  If the guide field was not there 

then electromagnetic noise would, over the course of the neutrons’ path, destroy the 

polarization state. 

The final modification is the insertion of ‘flippers’ upstream, or more usually 

downstream, of the sample. A flipper is a device which flips the neutron spin state from 

one eigenvalue to another, i.e., from spin up to spin down. The flippers often used in a 

thermal neutron TAS are radio-frequency (RF) coil flippers. In an RF flipper a constant 

magnitude radio frequency magnetic field is applied parallel to the neutron beam while a 

static field applied perpendicular to the neutron beam varies in magnitude along the 

beam. For all neutron energies there will be some point in the flipper such that their 

Larmor frequency is equal to the radio frequency of the coil, thus resonance will occur 

and there will be a transition between the Zeeman split up and down states, i.e., a spin 

flip. 

A spin-flip magnetic scattering event would work as follows: the monochromator 

polarizes the beam so that the spins are up, then the spins are flipped in the sample by 

interaction with a spin-1/2 magnetic moment/excitation (parallel to the neutron spin) so 

that the neutrons are now spin down. The flipper then changes the spin state of the 

scattered beam so that the magnetically scattered neutrons are spin up again. The analyzer 

is then set to Bragg-reflect only spin up, so almost all of the non-magnetically scattered 

neutrons are not reflected into the detector, while the scattering from magnetic 

moments/excitations makes up the vast majority of the neutrons to be arriving at the 

detector. 
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2.3.3    Neutron Scattering Cross Sections 

The derivation of the following results can be found in more detail in, for example, the 

book by Squires [81]. 

When neutrons are scattered, the number of scattered neutrons that enter a given 

solid angle at a known energy and momentum is measured.  The laws of momentum 

and energy conservation that govern all scattering and diffraction experiments are: 

 

                                     (2.3.4) 

 

In these equations, the wave vector magnitude k = 2π/λ, where λ is the wave- length of 

the neutron beam, mn is the mass of neutron, and the momentum transferred to the crystal 

is ħQ. The subscripts i and f refer to the beam incident on the sample and the diffracted 

(final) beam. 

Figure 2.5 shows a Ewald circle in two dimensions. In this diagram, ki is the 

direction of the incident beam relative to the crystal and kf is the direction of the 

diffracted beam. If a circle with radius k passes through two points on the circle, one of 

which is the origin of reciprocal space, the condition for Bragg scattering from the 

crystal is satisfied. We then have: 

 

where G is a reciprocal-lattice vector. By Bragg’s law λ = 2dsinθ, we know 
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In a diffraction experiment, the magnitude of Q is controlled by adjusting the angle 

2θ between kf and ki . The orientation of Q within the reciprocal lattice is set by rotating 

the sample. Thus, any point in reciprocal space can be measured by an appropriate choice 

of ki, 2θ and the orientation φ of the sample relative to ki. 

For inelastic neutron scattering, | ki | ≠ | kf | since a difference is needed for neutrons to 

gain or lose energy from the sample. For a single crystal sample, energies depend on the 

relative momentum defined within a Brillouin zone. It is therefore convenient to 

reference the momentum transfer to the nearest reciprocal lattice vector, i.e., 

 

During the experiment energy transfer is varied while Q is held constant. In neutron 

scattering, we measure the number of neutron scattered per second into a given solid 

 

Figure 2.5 Two dimensional representation of reciprocal space showing the Ewald 
circle and the vector representation for elastic and inelastic scattering. 
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angle dωf, in the direction of the wave vector ki with a final energy between Ef and Ef + 

dEf. This is given by the partial differential cross section, d2σ / dωf  dEf. It is expressed 

as a sum of coherent and incoherent parts. The coherent scattering depends on the 

correlation between the positions of the same nucleus at different times, and on the 

correlation between the positions of different nuclei at different times. It therefore gives 

interference effects and contains information about the cooperative effects among 

different atoms, such as elastic Bragg scattering or inelastic scattering by phonons or 

magnons.  While the incoherent scattering depends only on the correlation between the 

positions of the same nucleus at different times and does not give interference effects. It 

is proportional to the time correlation of an atom with itself and provides information 

about individual particle motion. 

The partial differential cross section due to magnetic interaction Vm for unpolarized 

neutrons is given by 

 

The interaction between the neutron and an unpaired electron is written as 

 

In this equation μn is the magnetic dipole moment of the neutron and B(r) is the 

magnetic field due to the magnetic dipole moment of an unpaired electron. The 

magnetic field due to the magnetic dipole moment of an electron is 

 

where μe is the magnetic dipole moment of an electron. By using these expressions, the 

partial differential cross section of localized spins can be expressed as 
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where 

 

and α, β = x, y, z, and f2(Q) is the magnetic form factor, which is the Fourier transform 

of the spin density. 

The scattering function Sαβ(Q, ω) is defined as 

 

Where  is the time-dependent spin-spin correlation function describing how 

the α component at position 0 correlates with the β component of another spin at position 

r after time t. 

Since the scattering function is the Fourier transform in space and time of the spin-

spin correlation function, the evolution of the system of spins in space and time can be 

directly measured in a neutron scattering. In a magnetically ordered system, the 

differential cross section for coherent elastic scattering can be written as 

 

where NM, VM and GM are the volume of the magnetic unit cell, the number of such cells 

in the sample, and the reciprocal lattice vector of the magnetic unit cell, respectively. The 

term FM(GM) is the magnetic structure factor and it is defined a 
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where fj and Mj are the magnetic form factor and the thermal-averaged magnetic 

moment of j -th ion, respectively.  The sum in the above equation is over all sites within 

the magnetic unit cell.  The integrated intensity of a magnetic Bragg peak for 

unpolarized neutrons is given by 

 

where C is a constant depending on the incident neutron flux, sample volume, and 

counting time, and θ is the scattering angle. Therefore, the magnetic spin structure can be 

determined from the elastic magnetic peak intensity measurement. 

There are two main types of neutron sources:  reactor and spallation neutron sources. 

For this doctoral research, the cobaltates have been studied with reactor-based triple axis 

spectrometers, while the phonon or maganon excitations have been studied with either TAS 

or spallation-based time-of-flight spectrometers. 

As shown in Fig. 2.6(a), the three axes correspond to the axes of rotation of the 

monochromator, the sample and the analyzer. The monochromator defines the direction 

and magnitude of the momentum of the incident beam and the analyzer performs a similar 

function for the scattered or final beam. In an elastic scattering event, the neutron is 

deflected but loses or gains no energy. In an inelastic event, neutron loses or gain energy 

during the interaction. In both cases, the neutron is scattered through the 2θ angle. 

For time-of-flight spectrometer, a single incoming energy is selected, and the final 

energy and momentum transfer is analyzed by time-of-flight and detector angle φ. The 

neutrons arrive at the sample in monochromatic pulses of known energy. After scattering 

from the sample they are detected in fixed arrays of detectors as a function of their total 
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time-of-flight. With the knowledge of the sample detector distances and the incident beam 

energy, the final energy can be calculated. For all energies the final wave vector will lay 

along the same direction, however, the magnitude will decrease with the velocity of the 

incident energy neutrons.  The scattering triangle is thus altered in time. 

 

Figure 2.6 (a) The schematic of the fundamental components of a triple axis spectrometer.  
(b) Schematic for the time ordered processed in a time-of- flight spectrometer.  (c) The 
scattering triangle shows that neutron is scattered through angle 2θ. The elastic 
neutron scattering event occurs when neutrons do not gain or lose momentum. 
Otherwise, it is elastic neutron scattering. (d) With time-of-flight spectrometer, energy 
spectrum over a wide range of wave vector can be measured simultaneously. 
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The main disadvantage of triple axis spectrometer is that it can only examine one 

position at a time in the (Q, E) space. Time-of-flight spectrometers are capable of 

collecting energy spectra for a wide range of wave vectors simultaneously, as shown in 

Fig. 2.6(d). 

Nuclear Elastic Scattering 

The coherent nuclear elastic scattering cross section is given by 

 

whene N is the number of unit cells in the crystal, V0 is the volume of the unit cell and FN 

is the nuclear structure factor. 

 

where the sum runs over all atoms j, r j  is the position of the j t h  atom,  is the nuclear 

scattering length of the j t h  atom and W j  is the Debye-Waller factor for the j t h  atom, which 

takes account of the fluctuations of the atom due to finite temperature. Note that the cross 

section stated in Eq. 2.3.18 is that for coherent nuclear scattering. There is also an 

incoherent cross section which gives rise to an isotropic background scatter, which must 

be subtracted from any data before analysis is performed. 

The Debye-Waller factor is included in Eq. 2.3.19 because the atoms are not frozen 

to their lattice sites, but rather they undergo a certain amount of thermal motion about an 

equilibrium position. As temperature increases this thermal motion also increases, and the 

result is that the intensity of the Bragg peaks decreases, this decrease being parameterised 

by the Debye-Waller factor. For a Bravais crystal the Debye-Waller factor is defined as 
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where  is the thermal displacement of atom j from its equilibrium position. 

 

Magnetic Elastic Scattering 

Let us now consider the scattering of neutrons by magnetic interactions. Neutrons 

have a magnetic moment given by 

 

where  is the nuclear magneton, γ is the gyromagnetic ratio (≈1.91) and σ is the Pauli 

spin operator with values ±1. The magnetic interaction potential operator  

between neutrons and the local magnetic field B(r) in a material (e.g., due to an unpaired 

electron) is given by 

 

The cross section must contain terms which are functions of wavevector Q rather 

than spatial coordinate r, so the Fourier transform of this, , is used. The local 

magnetic field can be related to the local magnetization, so that 

 

Now , where A is the magnetic vector potential, given by 

 

where  is a unit vector in the direction of r, the distance from the magnetic moment  

which gives rise to the magnetic field and in this case is the result of a single unpaired 

electron. Now 
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arises as a consequence of vector algebra6

                                                            
6 See appendix B of the book by Squires [81]. 

 so we can rewrite Eq. 2.3.23 as 

 

where is the component of the electron’s magnetic moment (because of spin 

and orbital contributions) perpendicular to the scattering wavevector, such that 

 

where  is a unit vector pointing in the direction of the scattering wavevector Q. 

We must now consider the implications of the fact that the neutrons magnetically 

scattered by electrons will not necessarily consist of a spherical wave, so to formulate 

scattering cross sections that assume that the incident and scattered beams are plane-

waves a correction factor must be applied. We make the dipole approximation so that 

rather than using the complicated form for the magnetization in  in Eq. 2.3.26 we  

are able to use the dipole moment of the scattering electrons μ. For a 3d ion the total 

angular momentum J is often not a good quantum number because the orbital angular 

momentum L is quenched. Under such circumstances the magnetization can be written 

as 

 

where S is the spin quantum number, and f (Q) is the magnetic form factor. If we denote 

the normalized spin density by S, then the form factor is defined, for the spin-only case, 

as the Fourier transform of S, i.e., 
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The derivation of the explicit form of the form factor f (Q) is rather complicated and is 

omitted here for brevity. For a full derivation see the work of Freeman [82]. 

In fact f (Q) can be approximated analytically using Bessel functions, which can 

themselves be approximated in terms of sums of exponentials with suitable coefficients. 

These coefficients have been found by experiment. If we define s as 

 

where  is the Bragg angle at the sample, and λ is the wavelength of the incident 

neutrons, then the analytic approximations for the expectation values of the Bessel 

functions are 

 

 

As an illustration the coefficients for Cu2+ are given in table 2.1 

 

n A a B b C c D 

0 0.0232 34.969 0.4023 11.564 0.5882 3.843 -0.0137 

2 1.5189 10.478 1.1512 3.813 0.2981 1.389 0.0017 

4 -0.3914 14.740 0.1257 3.384 0.2548 1.255 0.0103 

 
Table 2.1 The Bessel function coefficients for the Cu2+ form factor. 

 
 

Finally, we end up with an expression for the magnetic form factor for a pure 

( ) orbital7

                                                            
7 See reference [83] for a derivation of this. 

: 
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where β is the angle between the scattering wavevector and the axis perpendicular to the 

 orbital plane. Note that for a spherical charge density (i.e. L = 0, so spin-only) 

this simplifies considerably to 

 

For magnetic elastic scattering: 

 

where N is the number of magnetic unit cells, Vmag is the volume of the magnetic unit cell, 

γ is the gyromagnetic ratio,  is the classical electron radius and the 

sum over α and β is a sum over all combinations of two Cartesian axes (i.e. xx, xy, 

xz, …). is a unit vector parallel to the α component of the scattering wavevector, and 

is the Kronecker delta.  is the α component of the magnetic unit cell structure 

factor. It is given by 

 

where the sum runs over all atoms,  is the α component of the magnetic moment of 

the jth atom, and  is the α component of the magnetic form factor of the jth atom, 

respectively. 
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Magnetic Inelastic Scattering 

Let us consider now the case of an inelastic scattering process, i.e., one in which the 

neutron gains or losses energy during the scattering process. The cross section for 

magnetic inelastic scattering, in the dipole approximation for the case of spin-only 

scattering, is given by 

 

where  is the response function which is given by 

 

and the  are the space and time Fourier transforms of the time dependent spin-spin 

correlation functions, given by 

 

where  is the β-component of the spin at site j at time t, and  denotes an average 

over the initial states of the system. This expression can be considerably simplified if we 

consider a system where the excitations are out of the ground state only8

where the where the sum is over all eigenstates  of the final state of the system with 

.  The ground 

state has wavefunction  and energy E0, and the spin-spin correlation function is given 

by 

 

                                                            
8  Strictly speaking this means a system at zero temperature, however for non-zero 
temperatures the simplification described is still a good approximation provided that the 
excited state lies at an energy greater than kBT above the ground state. 
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energy .  is the Fourier transform of the α-component of the spin  is the Fourier 

transform of the spin . 

Principle of Detailed Balance 

The principle of detailed balance relates the response function for neutron energy loss 

and neutron energy gain processes with equal and opposite wavevectors. It accounts for 

the fact that at any given temperature there will be a fraction fewer excitations 

already extant for neutrons to scatter from, compared to the number of excitations that can 

be created by the neutron. Mathematically this is given by 

 

 

Fluctuation Dissipation Theorem 

The fluctuation dissipation theorem relates the imaginary part of the dynamic 

susceptibility  to the response function . Mathematically this 

relationship is given by 

 

where  is the Bose population factor 

 

Also note the sum rule that relates the imaginary part of the dynamic susceptibility to 

the bulk susceptibility: 
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2.4    Structure Determination 

2.4.1    Introduction 

The analysis of crystal structures and magnetic ordering is usually based on diffraction 

phenomena caused by the interaction of matter with X-rays, neutrons, or electrons.  Even 

though electron microscopy can achieve atomic resolution, more detailed information 

on the 3-dimensional atomic arrangement of crystals with its symmetry and chemical 

bonding, as well as 3-dimensional magnetic structures and spin densities, requires 

diffraction methods. The basic theory of diffraction is the same for all types of radiation. 

Complementary information is achieved due to the different character of X-rays, neutrons 

and electrons, and hence their different interactions with matter and further practical 

aspects. 

Considering only X-rays and thermal neutrons, one finds that their wavelengths are 

similar (0.5Å < λ < 2.4Å). While the electromagnetic X-ray radiation yields the total 

electron density distribution, the nuclear scattering of neutrons probes the density of 

distribution of the nuclei and the magnetic neutron scattering determines the spin density 

of unpaired electrons. In the following sections, we will introduce briefly X-ray and 

neutron diffraction which are required to solve structural problems. X-ray diffraction using 

conventional laboratory equipment and/or synchrotron installations is the most 

important method for structure analysis. Even though the huge intensity of modern 

synchrotron sources allows in principle the study of magnetic X-ray scattering, the 

investigation of magnetic structures is still one of the most important applications of 

neutron diffraction. 
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2.4.2    X-ray/Neutron Powder Diffraction 

X-ray/neutron powder diffraction is a non-destructive technique widely applied for 

the characterization of crystalline materials [84]. This method has been traditionally used 

for phase identification, quantitative analysis and the determination of structure 

imperfections. Important advances in structural studies of materials ranging from high 

temperature superconductors and high pressure research have relied heavily on the 

powder diffraction technique [84]. More detailed information on recent developments can 

be obtained from references [85–90]. In this section we took the liberty to drop out the 

term X-ray as we completely concentrated on the techniques that are applicable to 

instruments using X-rays. Neutron powder diffraction follows the same principle as X-

ray diffraction. 

 

Overview 

Some solids can be prepared only as micro crystalline powders and hence their 

structure cannot be determined using single crystal diffraction techniques. Also the 

structures of some materials which are in the form of hydrocarbons and resins cannot be 

determined by single crystal diffraction methods. In such cases we can determine the 

structure of the material using powder diffraction data. The ability to determine crystal 

structures using powder diffraction promises to open up many avenues in structural 

sciences. Powder diffractometry projects the three-dimensional lattice into a one-

dimensional lattice. We can determine the orientation, unit cell dimensions, stress/strain, 

crystal structure, etc., from the information obtained in the powder diffraction pattern.  
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The steps involved in this process are [84] 

• Unit cell determination. 

• Decomposition of powder pattern into integrated intensities. 

• Assignment of space group from systematic absences. 

• Forming an approximate solution using direct or traditional techniques. 

• Refinement of the structure, typically by the Rietveld method. 

However the determination of structures using powder diffraction data is much more 

difficult than from single crystal data. This problem arises as a result of the collapse of 

the three dimensional crystallographic information into a single dimensional one of which 

is the powder diffraction pattern. This ambiguity creates problems in the determination 

of the unit cell. However with the improvements in the instrument and algorithmic 

developments it is now possible to solve different structures from powder diffraction 

data alone. Now powder diffraction has become the promising technology in the 

characterization of crystalline materials. [91] 

Bragg’s Condition 

Consider a beam of wavelength λ striking a line of atoms spaced at equal distances.  

The radiated beam that is in the form of spherical wavefronts will be of maximum 

intensity when the path difference between the incident and the reflected beam is equal 

to an integer number of wavelengths [84]. Taking a picture where each atom is giving 

off a spherical wave front, the directions of scattering thus constitute a series of cones. 

If we take a 2-D net, in which there is another line of atoms independent from the first 

line of atoms, another series of cones is generated. Thus a 2-D net produces two families 

of intersecting cones. Thus a constructive interference in seen only in some specific well 



  

56 

 

defined directions in space. Also when the axes of the cones are non-linear, the 

intersections of the cones give a series of lines. 

Extending this idea to three dimensions, strong constructive interference will occur 

only for some specific conditions of interference and specific directions. But it is difficult 

to picture this in three dimensions. However, Bragg proposed that the condition for 

constructive interference is equivalent to that of a simple plane, which can be described 

by the Miller indices. Now the plane is (hkl) and the spacings between the planes are 

considered but not the spacings between the atoms or lattice points as was considered 

previously. 

 

A 3-D scattering of x-rays can be seen in Fig. 2.7. Consider a crystal lattice whose 

interplanar spacing is d. Also the incident radiation strikes the planes (hkl) at an angle θ 

as shown in Fig. 2.8. The condition for constructive interference is now: 

 

Figure 2.7 The general case for the intersection of diffraction cones coaxial with three 
noncoplanar rows. 
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where λ is the incident wavelength, n = 0, 1, 2, 3, … 

From the Eq. 2.4.1, we can see that sinθ is a measure of 1/d. We can choose the 

incident angle by rotating the crystal relative to the beam and the wavelength is fixed. 

Thus we obtain the interplanar spacing d, as shown in Fig. 2.8. We can now conclude 

that any set of planes in a crystal will reflect an x-ray beam if the set of planes is at right 

angle ( ) to the incident beam. But there arises another question whether the 

planes will reflect the beam strongly or not. The intensity of the reflected beam is 

proportional to the product of the intensity of the incident beam and the concentration of 

electrons in the reflecting plane. Thus if we know the unit cell dimensions and the atomic 

number of each of the atoms, we can calculate the concentration of electrons and hence 

the intensity of the reflected beam. 

 

Now considering the reverse situation, if we know the size of the unit cell and the 

intensities of the reflections we can calculate the positions of atoms and also the 

relative number of electrons per atom. It is obvious that all compounds with different 

 

Figure 2.8 Geometrical illustration of the Bragg’s law. 
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formulae or unit cells have different collections of d-spacings and different intensities of 

reflections. The observed patterns of spacings and intensities can thus be used to identify 

an unknown compound in a specific crystalline phase. 

 

Powder Diffraction 

If monochromatic X-ray radiation is taken instead of white light and the crystal is 

placed in front of the beam, there will be only one reflected beam for one particular angle 

of incidence. If the crystal is now rotated around the incident ray direction without 

changing the incident angle, the reflected beam will describe a cone with the crystal at 

 

 

Figure 2.9 The origin of the powder diffraction cone as the result of the infinite number 
of the completely randomly oriented identical reciprocal lattice vectors. 
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the apex of the cone as shown in Fig. 2.9. When there are hundreds of crystals, there are 

many reflected beams and when the crystals are rotated about their axes of incident x-ray 

beam, a series of cones are formed as shown in Fig. 2.10. If a powdered sample is placed 

in the path of x-rays there will be a continuous series of point reflections lying along 

the arc of the cone [84]. This is the basis of powder method that is used in X-ray 

crystallography to determine the unknown samples. For every set of crystal planes, one 

or more crystals will satisfy Bragg’s condition. 

Methods of Powder Diffraction Pattern      The main methods of studying powders 

have led to the investigation of the atomic arrangements. The methods employed are the 

Debye Scherrer method and Diffractometry. 

 

Figure 2.10 The schematic of the powder diffraction cones produced by a poly- 
crystalline sample. 
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Debye Scherrer Camera    One of the simplest ways of determining unit cell 

parameters is the Debye Scherrer method. To understand the principles involved, consider 

a particular (hkl) reflection. One or more particles will be oriented so that their (hkl) 

planes obey Bragg reflection condition. Figure 2.9 shows one plane in the set. 

If the plane is now rotated such that the angle of incidence is kept constant, the 

reflected beam travels over the surface of the cone with the axis coinciding with the 

transmitted beam. Though this rotation does not occur in powder method, the combined 

effects of some reflections from the (hkl) planes make the correct Bragg angle with the 

incident beam and thus have the form of a cone of diffracted radiation. Thus the (hkl) 

reflection from a powder produces many cones. 

In the Debye Scherrer method, a narrow strip of film is curved in a short cylinder with 

the specimen placed on the axis and the incident beam is directed at right angles to the 

axis. The cones of diffracted radiation intersect the cylindrical strip in lines and when 

the strip is laid straight the resulting pattern is as shown in the Fig. 2.10. Each pattern is 

made up of small spots each from one particle and the spots are so close to each other 

that they appear as a continuous line. These lines are generally curved and when

, they form a straight line. From the measured position of a given diffraction line, θ 

can be determined and if we know the wavelength λ we can calculate the d-spacings of 

the lattice planes. 

If the shape and size of the unit cell are known, the position of all the possible 

diffraction lines can be predicted. The Debye Scherrer method is widely used especially 

in metallurgy. 
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The Powder Diffractometer    Modern X-ray techniques give a series of peaks instead 

of diffraction intensities as in Debye Scherrer method. In this method a detector is used 

instead of film. A convergent incident ray is used to give good peak resolution.  The 

powder is filled in the hole of a sample holder. The set up requires that if reflection is 

obtained when the beam is incident at an angle θ with the lattice plane, the reflected beam 

is recorded at an angle of 2θ in what is referred to as θ − 2θ scan. A θ − 2θ scan is shown 

in Fig. 2.11. The peak positions and the intensities are readily obtained. The powder 

diffractometer uses an x-ray detector like a proportional or scintillation counter to measure 

the positions of the diffracted beams. Diffractometry is a widely used method because it 

measures the intensities directly. A typical powder diffraction pattern is as follows for 

synthetic maghemites with different zinc isomorphic substitution samples in Fig. 2.12. 

 

Figure 2.11 Schematic diagram of an X-ray powder diffractometers. 
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The positions of the peaks are directly related to the dimensions of the unit cell.  

The intensities are related to the contents of the unit cell. The d-spacings are 

determined because they are independent of the wavelength of the light used. Normally 

relative intensities are used in order to normalize the intensities. The normalization of 

intensities is done by taking a reference for the strongest peak and other intensities are 

scaled accordingly. 

The x-ray powder diffraction pattern of a mixture containing two or more compounds 

is the weighted sum of the individual patterns. Although a powder diffraction pattern is 

used as a finger print for identifying a material, other important information is obtained 

in it, which is shown in Table 2.2. 

 

Figure 2.12 An example of powder diffraction patterns of synthetic maghemites with 
different zinc isomorphic substitution levels. 
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Feature Information obtained 

Peak positions (2θ values) Unit cell dimensions and symmetry 

Non-indexable lines Presence of a crystalline impurity 

Width of peaks Particle size/strain 

Peak intensities Unit cell contents (basis vectors) and thermal vibrations 

Peak shpes (other than 

widths) 
Stacking faults, layer defects 

 
Table 2.2 Information obtained from a powder diffraction pattern. 

 

Structure Determination of Powder Diffraction Patterns 

Crystal structures, which cannot be determined by single crystal approaches because 

of inappropriate size and quality, can be easily determined using powder diffraction 

method. Such a structure determination can be divided into three stages: 

1. Unit cell determination 

2. Structure solution 

3. Structure refinement 

Unit cell determination      The size and shape of the unit cell is determined from the 

positions of the lines. This is called indexing the pattern. Consider that the sample is 

known to have cubic structure, but that we do not know which cubic structure it has. 

After exposure of the sample to x-ray beam in the Debye Scherrer method, the strip is 

removed and the positions are measured as follows: 

The distance along the film from a diffraction line to the center of the hole for the 

transmitted direct beam is measured. This is taken as S1 and shown in Fig. 2.13. 
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When , there is back reflection and S2 is measured. This is the distance from 

the beam entry point. Now we know that S1 corresponds to an angle 2θ. Also the 

distance between the holes, W, is obtained when . Using this information we 

find that 

 

 

Bragg’s law states that . The interplanar spacing is given by 

 

where a is the lattice parameter. This gives 

 

Now from the arcs obtained in the powder method and the diffraction method we 

have the values of S1, θ and . If we take all the diffraction lines into 

 

Figure 2.13 An illustration of Debye Scherrer method. 
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consideration, then the values of should form a pattern related to the values of 

(hkl). Multiplying the values of by a constant gives nearly an integer value for 

each of the  values. This can be interpreted from the table 2.3 in which the 

measurements are taken for a sample. 

 

S1 ( mm) θ    hkl   

38 19.0 0.11 3.0 3 111 4.05 

45 22.5 0.15 4.1 4 200 4.02 

66 33.0 0.30 8.2 8 220 4.02 

78 39.0 0.40 10.9 11 311 4.04 

83 41.5 0.45 12.3 12 222 4.02 

97 49.5 0.58 15.8 16 400 4.04 

113 56.5 0.70 19.1 19 331 4.03 

118 59.0 0.73 19.9 20 420 4.04 

139 69.5 0.88 24.0 24 422 4.01 

168 84.0 0.99 27.0 27 511 4.03 
 

Table 2.3 Step by step calculations for the lattice parameter. 

 

Now the integer values of  are equated with the integer values of hkl and 

are obtained. This is shown in the Table 2.4. 

Sometimes for some structures, some of the arcs may be missing as in the case of 

body-centered (BCC) and face-centered (FCC) structures. Then it becomes easy to 

identify the structure. The value of the lattice parameter can also be calculated from the 

2θ positions of the hkl lines and may be refined for systematic errors. 
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 hkl 
1 100 
2 110 
3 111 
4 200 
5 210 
6 211 
8 220 
9 221 
10 310 
11 311 
12 222 
13 320 
14 321 

16 400 
 

Table 2.4 Values of  calculated from possible hkl planes in any structure. 
 

Structure Solution      In structure solution an initial approximate structure is obtained  

from experimental data without having any prior knowledge of the arrangement of the 

atoms  and molecules. This is a very important phase in the determination of structure. 

There are two techniques for structure solution: [84] 

• Traditional approach 

• Direct space approach 

In the traditional approach, the intensities are taken from the powder pattern and they 

are used in the calculation that is used for single crystal diffraction data. But this may 

not be a reliable approach as there are many overlapping peaks and hence the intensity 

values obtained are not exact. This problem can be overcome by using improved 
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techniques for extracting intensities or new strategies in which the pattern is obtained 

without extracting intensities. The experimental pattern generates trial structures. This 

comparison is done using an appropriate R-factor. Most of the direct space approaches 

use the weighted R- factor which is Rwp. This is given by [84] 

 

where  is the intensity of the ith data point in the experimental powder pattern. 

 is the intensity of the ith data point in the calculated powder diffraction profile. 

Wi is the weighting factor for the ith data point. Rwp thus considers the intensities point by 

point instead of the integrated intensities. This reduces the peak overlap and uses the 

powder diffraction data as measured. 

The basis of Direct Space Strategy is to find a hyper surface R(Γ) to find the global 

minimum. Here Γ represents the set of variables that define the surface. These variables 

define the position, orientation and the intra molecular geometry of each molecule. The 

position is defined by {x, y, z}, orientation by {θ, φ, ψ} and the intra molecular geometry 

is represented by the set of variables {τ1, τ2, τ3, … , τn}. The intensities, peak positions 

and the peak shapes can be determined prior to the structure solution method by using a 

fitting procedure. There are many techniques for determining the lowest value on the R(Γ) 

surface. They are: 

• Monte Carlo Method 

This method can be explained in a series of steps: 

1. Starting from structure τj, another structure τj+1 is obtained by making 

small random displacements to each of the structural variables {x, y, z, 
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θ, φ, ψ, τ1, τ2, τ3, … , τn}. The weighted R-factor is used to assess the 

experimental data and the calculated pattern. 

2. The trial structure is then accepted or rejected according to the 

difference Z = Rwp(Γj trial) - Rwp(Γj). if Z = 0, the trial structure is 

accepted with probability e-Z/S and rejected with the probability 1 - e-Z/S, 

where S is a scaling factor. If the trial structure is accepted Γj+1 is 

taken the same as Γj trial. If it is rejected then structure Γj+1 is taken 

as the same as Γj. 

This procedure is repeated to generate a large number of structures and the 

structure that has the lowest value of Rwp is considered the starting structure for 

structure refinement. 

In the Monte Carlo method the value of S is either a fixed value or changes 

manually. But in the case of Simulation technique the value of S is decreased 

systematically according to an annealing schedule. This is the essential 

difference between the Monte Carlo method and the Simulation Annealing 

technique. 

• Genetic Alogrithm 

This technique involves simultaneous investigation of the different regions on 

R(Γ) hyper surface. In this method an initial population of structures P0 is 

evolved. This population of structures is then evolved into another population 

with the same number of structures by the operations: mating, mutation and 

natural selection. Thus a given generation Pj is evolved into a new 

generation Pj+1. 
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In mating procedure a given number of pairs of structures are selected from 

the given population. For each pair of parents, offsprings are generated. 

Consider an example of two structures as parents described by {xa, ya, za, θa, 

φa, ψa} and {xb, yb, zb, θb, φb, ψb}. The two offsprings can be generated as {xa, 

ya, za, θb, φb, ψb} and {xb, yb, zb, θa, φa, ψa}. Thus the mating procedure does 

not create any new values of genetic variables but only distributes the 

variables of the parent structures. 

In mutation, new values of variables are generated. This is done by taking a 

set of structures and making random changes to the parts of the genetic code 

to generate new mutant structures. This can be done either by taking new 

random values (static mutation) or making random displacements to the 

existing values (dynamic mutation). 

In natural selection procedure only the best structures (i.e. closest value of 

Rwp) are passed on from one generation to another. When the population has 

evolved that contains the better structures, the one with the lowest values is 

again taken from these set of structures and taken to be the starting one for 

refinement. 

• Simulated Annealing 

Structure Refinement      The structure refinement is a method to get the exact structure 

from the data obtained in the structure solution method. Thus, if the structure solution is a 

good approximation to the original structure, a good quality structure may be obtained 

by Structure Refinement. Structure refinement is generally carried out by the Rietveld 

method. 
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Rietveld method is considered the best method to obtain an exact structure even if there 

are peak overlaps [92]. It is nothing but the least squares method to obtain the most 

feasible solution. The procedure used in practice is to minimize the chi-square function, 

as shown in the Eq. 2.4.7 [92] 

 

where Wi is the inverse of the variance associated to the observation "i" . 

The weighted sum of squared difference between  and  is minimized. 

This equation looks very similar to Eq. 2.4.6, solved in the Monte-Carlo method. The 

difference in both these lies in considering the data points. In the Monte Carlo method all 

readable peak points are considered and a solution is obtained using this data. But the 

data obtained from low values of 2θ have a high probability that it could be erroneous. In 

proceeding to the Rietveld method, these assumed erroneous data are safely removed and 

only a set of primary data are used to proceed further. 

We have to adopt iterative techniques for this, as the problem to be solved is non-

linear. If there is a feasible solution, it can be assured that it would be the actual 

solution. The initial approximate solution is dependent upon the nature of distribution of 

the counts. The mean of the distribution set is taken as the initial solution of the least 

square method. 

In the above explained structure estimation techniques we did not include the 

complex math involved as we just wanted to lay out how the structure is determined. 

In fact, in actual Industry, the above problem is solved by various available software tools 

like FULLPROF, SHELX, GSAS, XRS-82, DLS-76 etc. 
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Applications 

X-ray powder diffraction has opened up new avenues in the studies of structures. It has a 

number of applications. 

• Qualitative analysis: From the pattern, the d-spacings are recorded and the 

relative intensities of the 10 strongest lines are measured and are compared with 

the patterns of the known compounds. This comparison is done with the help of 

a powder diffraction file that contains the patterns of some standard compounds 

divided into subdivisions-Minerals, Inorganic, Organic. 

• Quantitative analysis: For a two-component mixture the relative concentration of 

each of the components can be obtained by measuring the relative intensities of 

the strong non overlapping lines each belonging to the two components. 

• Structure of alloys: An alloy is a mixture of two or more elements. If the 

composition is uniform it produces a typical powder diffraction pattern. If one of 

the components precipitates, it produces separate lines on the powder pattern 

corresponding to the component. 

• Stress determination in metals: If there is a stress in a metal, then the angle of the 

diffraction cone changes because of a change in the d-spacing. By measuring 

the changes in the cone angle, accurate measurements of stress can be made. In 

addition, stress invariably broadens diffraction peaks unless it is absolutely 

uniform on an atomic scale. 

• Determination of particle size: As the size of the crystallite decreases, the 

angular spread of the reflection increases. The half height width can be used a 

measure of the mean particle size of the sample. 
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• Identification and raw material evaluation: For some complex materials, it is 

difficult to analyze the pattern. But since similar materials exhibit similar patterns, 

we can for example determine the structure of different clays as a cement 

material by comparing with acceptable clay and thus relate structure to properties. 

Limitations 

• Single crystal methods depend upon mathematical algorithms and accurate peak 

intensities to solve structures.  Such accuracy is sometimes difficult to obtain. 

• The individual peak intensities are difficult to obtain because in powder diffraction, 

a 3-D pattern is reduced to a 1-D pattern and analysis is done. This leads to both 

accidental and exact peak overlap. 

• The symmetry of crystals cannot be obtained accurately in powder diffraction 

pattern. 

• Preferred orientation can lead to inaccurate peak intensities. But both rotating the 

sample about its normal and rocking it about each data point can overcome this. 

2.4.3    Single-crystal X-ray Diffraction 

Overview: What is Single-crystal X-ray Diffraction 

Single-crystal X-ray Diffraction is a non-destructive analytical technique that 

provides detailed information about the internal lattice of crystalline substances, 

including unit cell dimensions, bond-lengths, bond-angles, and details of site-ordering. 

Directly related is single-crystal refinement, where the data generated from the X-ray 

analysis is interpreted and refined to obtain the crystal structure. 

Fundamental Principles of Single-crystal X-ray Diffraction 

Max von Laue, in 1912, discovered that crystalline substances act as three-
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dimensional diffraction gratings for X-ray wavelengths similar to the spacing of planes in a 

crystal lattice. X-ray diffraction is now a common technique for the study of crystal 

structures and atomic spacing. X-ray diffraction is based on constructive interference of 

monochromatic X-rays on a crystalline sample. These X-rays are generated by a cathode 

ray tube, filtered to produce monochromatic radiation, collimated to concentrate, and 

directed toward the sample. The interaction of the incident rays with the sample 

produces constructive interference (and a diffracted ray) when conditions satisfy 

Bragg’s Law (see Eq. 2.4.1). This law relates the wavelength of electromagnetic 

radiation to the diffraction angle and the lattice spacing in a crystalline sample. These 

diffracted X-rays are then detected, processed and counted. By changing the geometry of 

the incident rays, the orientation of the centered crystal and the detector, all possible 

diffraction directions of the lattice should be attained. 

All diffraction methods are based on generation of X-rays in an X-ray tube. These 

X-rays are directed at the sample, and the diffracted rays are collected. A key 

component of all diffraction is the angle between the incident and diffracted rays. 

Powder and single-crystal diffraction vary in instrumentation beyond this. 

Interpretation of data      Typical mineral structures contain several thousand unique 

reflections whose spatial arrangement is referred to as a diffraction pattern. Indices (hkl) 

may be assigned to each reflection, indicating its position within the diffraction pattern.  

This pattern has a reciprocal Fourier transform relationship to the crystalline lattice and 

the unit cell in real space. This step is referred to as the solution of the crystal structure. 

After the structure is solved, it is further refined using least-squares techniques. This 

procedure is described fully on the single-crystal structure refinement (SREF) page. 
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Single-crystal X-ray Diffraction Instrumentation -  How Does It Work? 

X-ray diffractometers consist of three basic elements, an X-ray tube, a sample holder, 

and an X-ray detector. X-rays are generated in a cathode ray tube by heating a filament to 

produce electrons, accelerating the electrons toward a target by applying a voltage, and 

the impact of the electrons with the target material. When electrons have sufficient energy 

to dislodge inner shell electrons of the target material, characteristic X-ray spectra are 

produced. These spectra consist of several components, the most common being Kα and 

Kβ. Kα consists, in part, of Kα1 and Kα2. Kα1 has a slightly shorter wavelength and twice 

the intensity as Kα2. The specific wavelengths are characteristic of the target material.  

Filtering, by foils or crystal monochrometers is required to produce monochromatic X-

rays needed for diffraction. Kα1 and Kα2 are sufficiently close in wavelength such that a 

weighted average of the two is used. Molybdenum is the most common target material 

for single-crystal diffraction, with Mo Kα radiation = 0.7107Å. These X-rays are 

collimated and directed onto the sample. When the geometry of the incident X-rays 

impinging the sample satisfies the Bragg Equation, constructive interference occurs. A 

detector records and processes this X-ray signal and converts the signal to a count rate 

which is then output to a device such as a printer or computer monitor. X-rays may 

also be produced using a synchrotron, which emits a beam with more intensity. 

Single-crystal diffractometers use either 3- or 4-circle goniometers, see Fig. 2.14. These 

circles refer to the four angles (2θ, χ, φ, and Ω) that define the relationship between the 

crystal lattice, the incident ray and detector. Samples are mounted on thin glass fibers that 

are attached to brass pins and mounted onto goniometer heads. Adjustment of the X, Y 

and Z orthogonal directions allows centering of the crystal within the X-ray beam. 



  

75 

 

 

X-rays leave the collimator and are directed at the crystal. Rays are either transmitted 

through the crystal, reflected off the surface, or diffracted by the crystal lattice. A beam 

stop is located directly opposite the collimator to block transmitted rays and prevent burn-

out of the detector. Reflected rays are not picked up by the detector due to the angles 

involved. Diffracted rays at the correct orientation for the configuration are then 

collected by the detector. 

Modern single-crystal diffractometers use CCD (charge-coupled device) technology 

to transform the X-ray photons into an electrical signal which are then sent to a computer 

for processing. 

Applications 

Single-crystal X-ray diffraction is most commonly used for precise determination of 

a unit cell, including cell dimensions and positions of atoms within the lattice. Bond-

lengths and angles are directly related to the atomic positions.  The crystal structure of a 

 

Figure 2.14 Schematic of 4-circle diffractometer; the angles between the incident ray, the 
detector and the sample. Image courtesy of the International Union of Crystallography. 
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mineral is a characteristic property that is the basis for understanding many of the 

properties of each mineral. Specific applications of single-crystal diffraction include: 

• New mineral identification, crystal solution and refinement. 

• Determination of unit cell, bond-lengths, bond-angles and site-ordering. 

• Characterization of cation-anion coordination. 

• Variations in crystal lattice with chemistry. 

• With specialized chambers, structures of high pressure and/or temperature phases 

can be determined. 

• Determination of crystal-chemical vs. environmental control on mineral chemistry. 

• Powder patterns can also be derived from single-crystals by use of specialized 

cameras (Gandolfi). 

Strengths and Limitations of Single-crystal X-ray Diffraction 

Strengths 

• No separate standards required. 

• Non-destructive. 

• Detailed crystal structure, including unit cell dimensions, bond-lengths, bond- 

angles and site-ordering information. 

• Determination of crystal-chemical controls on mineral chemistry. 

• With specialized chambers, structures of high pressure and/or temperature phases 

can be determined. 

• Powder patterns can also be derived from single-crystals by use of specialized 

cameras (Gandolfi). 
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Limitations 

• Must have a single, robust (stable) sample, generally between 50-250 microns in 

size. 

• Optically clear sample. 

• Twinned samples can be handled with difficulty. 

• Data collection generally requires between 24 and 72 hours. 
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CHAPTER 3 

SYNTHESIS OF Ba2-xSrxCoO4 
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3.1    Preparation of Polycrystalline Ba2-xSrxCoO4 

Polycrystalline Ba2CoO4 was first studied nearly 40 years ago by Mattausch [72] and 

Co ions were reported to be in tetrahedral sites. But its physical properties are 

essentially unknown. In order to systematically investigate this novel 214- structure 

compound, we have to start with polycrystalline samples again, not only the pure Ba2CoO4, 

but the series of Ba2-xSrxCoO4. 

Polycrystalline samples were prepared at Correlated Electron Materials Group 

(CEMG) at Oak Ridge National Laboratory (ORNL) as shown in Fig. 3.1. 

 

The starting materials for making Ba2-xSrxCoO4 were BaCO3, SrCO3 and Co3O4 

commercially produced by Alfa Aesar, based on the chemical reaction formula, Eq. 

3.1.1. The purities of the samples were 99.997%, 99.994% and 99.9985%, respectively. 

In order to make the desired compound, stoichiometric powders were manually mixed and 

ground thoroughly using mortar with pestle as shown in Fig. 3.2. The time for this 

procedure was about 30 min. The powder was further ground using a ball mill (see Fig. 

 

Figure 3.1 The place where polycrystalline sample of Ba2-xSrxCoO4 was made. 
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3.3) for about 45 min to be sure of fine grain size (<10 μm). Conventional furnace (see 

Fig. 3.4) was then used for pre-heating the powder in air which had been put into a 

crucible. The temperature can be pre-set with this programmable furnace and the 

temperature of the powder was set to gradually rise from room temperature to 1050 ◦C 

within 2 h and kept at this temperature for 72 h. Then the powder was taken out of the 

furnace and quenched to room temperature again. 

 

 

 

 

Figure 3.3 Planetary ball mill used for grinding materials into a fine powder. 

 

Figure 3.2 Stoichiometric powder mixture. 
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3.2    Preparation of Single Crystalline Ba2-xSrxCoO4 

As mentioned in Sec. 3.1, a conventional furnace has been used for pre-heating 

polycrystalline samples of Ba2-xSrxCoO4. Such a conventional furnace is also 

applicable for making single crystalline samples before the final step in which a 

floating-zone optical furnace will be accessed. But additional steps should be added in 

the procedure. 

After the powder was carefully mixed and grinded, it was then squeezed into a 

balloon with the help of a glass funnel. This "sausage"-like powder rod was 12 cm long 

and 0.8 cm in diameter. One end of the balloon was tied tightly (see Fig. 3.5). 

 

 

Figure 3.5 Powder in a balloon. 

 

Figure 3.4 The conventional furnace for pre-heating powders. 
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The balloon was later pressed with the use of a hydraulic pressure machine (see Fig. 3.6) 

in order to make the rod solidified. Then the balloon was cut and removed and carefully 

transferred to a crucible. The same pre-heating process as described in Sec. 3.1 in the 

conventional furnace was done for 3 days. The rods after their pre-heated treatment are 

shown in Fig. 3.7. 

 

 

Figure 3.7 Polycrystalline rods before and after pre-heating. 

 

Figure 3.6 Hydraulic pressure machine. 
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Finally, the floating-zone optical furnace was involved in synthesizing the single crystal. 

We used an NEC SC-M15HD image furnace for the growth, which is shown in Fig. 3.8. 

Two rods, one served as a feeding rod and the other served as a seeding rod, 

 

 

Figure 3.9 Aligned rods in the optical furnace. 

 

Figure 3.8 NEC SC-M15HD optical furnace. 



  

84 

 

 

were attached to the upper and lower shaft, respectively. Then they were aligned and 

sealed in a quartz tube (see Fig. 3.9). An oxygen atmosphere was maintained flowing 

during the growth of single crystals. The flow speed was set to 2.0 liter/min and the 

pressure in the quartz tube was kept at 1.0 MPa in order to have an oxidation environment 

according to the Eq. 3.1.1. It is worth noting that the oxygen pressure has to be increased 

as the Sr doping level increases. The electrical power was then gradually increased for the 

two heating Halogen lamps and the molten zone was formed as the temperature increased. 

The whole growth process can be monitored by a CCD camera and an external TV monitor 

(see Fig. 3.10). As an example, when growing Ba2CoO4, the current of the lamps were set 

to 10.21 A, the voltage was 52.37 V and the power was 534.69 W. The growth speed, e.g., 

the moving speed of the seed rod, was 3.0 mm/h. The rotating speed of the rods was set 

to 20 rpm. It is worth noting that the two rods had to be spinning in opposite direction to 

make the molten zone more homogeneous. 

 

Figure 3.10 Molten zone monitored on a TV screen. 
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Figure 3.11 shows the single crystals Ba2CoO4 and Ba1.5Sr0.5CoO4 with lengths of 6 

cm and 4 cm, respectively and with a diameter of 0.5 cm. The color is dark purple. As 

noted previously [73], the compound had to be handled carefully, because it decomposes 

slowly by reacting with CO2 and/or moisture when exposed in air for a couple of days.  

Therefore we have to keep the reactants in a vacuum. The growth was a trial and error 

process and sometimes the molten zone was not very stable. Thus the outcome was not 

always well-looked and actually not a single crystal as we expected (see Fig. 3.12). 

 

 

 

Figure 3.12 Failed "crystals" after floating-zone growth. 

 

Figure 3.11 Single crystals Ba2CoO4 and Ba1.5Sr0.5CoO4. 
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3.3    Preparation of Polycrystalline Sr2CoO4 

We emphasize the particular synthesis of polycrystalline Sr2CoO4 samples because it 

requires a high pressure and high temperature technique and we could not successfully 

grow single crystals in the optical furnace. Wang et al. [77] prepared polycrystalline 

samples of Sr2-yYyCoO4 (y = 0, 0.1, 0.3, 0.5, 0.67, 0.83, 1) with the help of 6 GPa in a 

high pressure apparatus, which is not applicable in our Floating-zone optical furnace. 

Approximately 0.2 g of the mixture of SrO2, Co, and Y2O3 fine and pure powders was 

placed in a gold capsule and compressed. Then they were heated at 1000°C - 1350°C for 

1-3 hours and quenched to room temperature followed by a release of pressure. 

Indeed, by increasing the concentration of Sr (x) in Ba2-xSrxCoO4, higher pressure 

should be applied during the polycrystalline or single crystal growth. The phases in 

each doping concentration sample were identified using powder and single crystal X-ray 

diffractometers. With our current optical furnace, we could only achieve single crystals 

with the Sr doping concentration up to x = 0.7. The lattice structures and electronic or 

magnetic properties of Ba2-xSrxCoO4 will be discussed in the following chapters. 
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CHAPTER 4 

LATTICE STRUCTURE OF Ba2-xSrxCoO4 
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4.1    Introduction 

The structure of Ba2CoO4 was originally determined to be orthorhombic from X-

ray refinement on flux-grown single crystals [72]. Later, refinement results obtained 

from polycrystalline samples indicated that the stoichiometric Ba2CoO4 crystallizes in a 

monoclinic structure [74, 93]. According to Negas and Roth [93], the orthorhombic phase 

may be stabilized at room temperature when synthesized with excess BaCO3. However, 

we have found that single crystals grown by using rods with 10% extra BaCO3 were 

indistinguishable from those grown using the stoichiometric composition. Therefore, 

stoichiometric single crystals will be used for the discussion in this chapter.  

Fundamentals of single crystal structure refinement will be introduced first. 

4.1.1    Motivations 

Despite the experimental and theoretical studies, there remains much controversy 

surrounding the lattice structure of Ba2CoO4 and especially, the structures of Ba2-xSrxCoO4 

as the function of doping x are still unknown. The knowledge of systematic evolution of 

Ba2-xSrxCoO4 will be crucial to the understanding of the physical properties, as well as 

structural and magnetic correlations. Until now it has been possible to use conventional 

chemical reactions and floating-zone single crystal growth methods to obtain powder and 

single crystals of Ba2-xSrxCoO4. This offers the possibility of probing the lattice structure 

of this system. 

4.2    Single Crystal Structure Refinement (SREF) 

The electron density map generated by solution of the phase problem can be seen as a 

basic structure map. However, the assignment of atoms to different intensity centers is 

the key to understand the structure. The step of atom assignment is referred to as 
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solving the crystal structure. The procedure can be mystifying to the beginner, but is 

reasonably straightforward. There are two basic procedures for structure solutions, 

which will be discussed below. 

• Known Mineral 

If the sample is a known mineral species, a template of a solved structure of 

that species may be used for initial atom assignment. This speeds solution, as 

the major sites can be assigned quickly. Once these have been assigned, the 

solution can be further manipulated to extract a better agreement between 

observed (F(obs)) and calculated (F(calc)) data. Typical steps include 

changing the site occupancy, splitting the site occupancy between two elements, 

allowing the sites to become anisotropic, and locating hydrogen. As hydrogen 

is the lightest element, it can be difficult to locate in minerals with significant 

"heavy" element content. Small changes are made at each step and then run 

through least-squares cycles, which recalculate the structure using Fourier 

transformations. Practiced refiners tend to follow the same steps each time. 

• Unknown Mineral 

More challenging is when the mineral is unknown or a new species. Here, a 

template may not be able to be used and elements must instead be assigned 

based on the geometry of the intensity centers and the chemistry of the 

material. This procedure can be much more difficult, as it is often through 

"trial and error" that the correct assignment is found. Once it has, the structure 

will be further refined as described above. 
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• Results 

The results of the structure refinement yield a list of atom X-Y-Z assignments 

in the unit cell, shape of the anisotropic intensity center for each atom 

(thermal parameters), and the distance of the nearest atomic neighbors.  

Additionally, the angle between nearest neighbors is also given. The quality 

of a solution is assessed by the values of R1, wR2, and GooF. 

 R1, often called the R-value, is the agreement between the calculated 

and observed models. Ideal solutions would have R-values of 0, however, 

due to random errors, this is never achieved. R-values (listed as percent) of 

less than 5% are considered good solutions; high quality samples will 

often result in R-values lower than 2.5%. 

 wR2 is similar to R1, but refers to squared F-values. These results in wR2 

always having a higher value than R1. 

 The final value, GooF, refers to the "goodness of fit" of the solution. In 

addition to the difference in F values, the GooF also takes into account 

the number of observed reflections and the parameters used. At the end of 

refinement, the GooF should approach 1. 

• Software 

Structure refinement is greatly aided by software packages. Probably the 

most widely used package of software is the SHELXTL program suite. The 

different programs in this suite, including XPREP, XP and SHELXL, allow for 

the initial solution of the phase problem, imaging of the crystal and 

refinement of the structure. 
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4.3    Experimental Description 

A selected crystal of Ba2CoO4 with dimensions of 0.30 × 0.23 × 0.21 mm3 was 

mounted on a nylon CryoLoop. The crystal was aligned on a Bruker SMART APEX CCD 

X-ray diffractometer (see Fig. 4.1) with a digital camera, operated at 50 KV and 30 mA. 

Intensity measurements were performed using graphite monochromated fine focus Mo 

Kα radiation (λ = 0.7107 Å) from a sealed X-ray tube with a monocapillary collimator. 

A full sphere of reflections was collected by a combination of three sets of exposure 

frames. Each set had a different φ angle for the crystal and each exposure covered a 

range of 0.3◦ in ω. A total of 1800 frames were collected with an exposure time of 15 s per 

frame.  

 

4.4    Lattice Structure Refinement Results 

4.4.1    Refinement Software 

Determination of integrated intensities and a global cell refinement were performed 

with the Bruker SAINT (v. 6.02) software package [94] using a narrow-frame integration 

alogorithm. Using XPREP [95], an analytical face-indexed absorption correction was 

 

Figure 4.1 Bruker SMART APEX CCD diffractometer. 
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applied to the unmerged sets of data. Subsequently, a semiempirical absorption 

correction was applied using SADABS [96], part of SHELXTL package. The program 

suite SHELXTL (v. 5.1) was used for space group determination (XPREP), structural 

solution (XS), and least-squares refinement (XL) [95]. All of the crystals of Ba2CoO4 that 

were examined were found to be twinned along the crystallographic c axis. GEMINI was 

used to separate the twinned components [97]. The final refinement included anisotropic 

displacement parameters for all atoms and a secondary extinction parameter. 

4.4.2    Lattice Structure of Ba2CoO4 and Ba1.5Sr0.5CoO4 

An accurate crystal structure is crucial for discussing the magnetic interactions in 

solid state compounds. Although the crystal structure of this monoclinic form of 

Ba2CoO4 has been previously reported [74, 93], the refinement was based on powder x-

ray data, which often have errors of ± 0.1 Å in metal-oxygen bond lengths because it is 

difficult to locate oxygen in a heavy-atom background. Furthermore, the published 

atomic parameters are internally inconsistent with the reported Co- O bond distances [74]. 

The refined crystallographic cell constants of Ba2CoO4 and Sr doped Ba2CoO4 

(Ba1.5Sr0.5CoO4) from our data set are given in Tables 4.1 for comparison. The atomic 

positions of each compound are reported in Table 4.2 and Table 4.3, respectively, while the 

relevant bond distances are shown in Table 4.4 and Table 4.5. 

The building blocks of Ba2CoO4 are isolated CoO4 tetrahedra (see Fig. 4.2 and Fig. 

4.3). Since the Ba atoms have a closed shell and are not expected to significantly 

contribute to the electronic and magnetic behavior of this compound, we will not 

discuss their role in the structure. There is only one crystallographic site for Co atoms in 

Ba2CoO4. As a result, all of the CoO4 tetrahedra have identical Co-O bond lengths and 
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angles. There is very little variation in the four Co-O bond lengths (1.79 ± 0.02 Å), 

although the O-Co-O angles (105° - 113°) deviate somewhat from the ideal tetrahedral 

value (109.5°). All of the CoO4 tetrahedral have one face lying flat in the ac plane and 

the opposing vertex pointing along the ±b direction. As may be seen in Fig. 4.2 and Fig. 

4.3, each Co atom has six nearest Co neighbors, three above in a triangle in the +b 

direction and three below in a triangle in the −b direction, with each neighboring Co at a 

different distance of 4.76 - 5.45 Å. Taken alone, the Co atoms within the structure form an 

interpenetrating network of trigonal prisms. Each layer of Co atoms in the ac plane has 

pseudotrigonal symmetry, with very regular Co-Co distances of 5.92 - 6.07 Å. 

 

 

 

 

Figure 4.2 The Unit Cell of Ba2CoO4. 



  

94 

 

 

 
 
 

 

 
Figure 4.3 Top: crystal structure of Ba2CoO4. Bottom: nearest-neighbor network of CoO4 
tetrahedra. Left panel shows distances to the upper plane of neighbors. Right panel 
shows distances to the lower plane of neighbors. The upper tetrahedron of each vertical 
pair of tetrahedra (purple) is the same in both panels. 
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Chemical formula Ba2CoO4 Ba1.5Sr0.5CoO4 
Formula weight (g/mol) 397.611 CoO4 

Structure monoclinic orthorhombic 
Space group P21 /n (no. 14) Pnma (no. 62) 

a (Å) 5.9176(13) 5.9027(10) 
b (Å) 7.6192(16) 7.5334(12) 
c (Å) 10.3970(22) 10.2368(16) 
α (°) 90 90 
β (°) 91.734(4) 90 

γ  (°) 90 90 

Volume (Å3) 468.56(18) 455.20(13) 

Th. Density (g/cm3) 5.636 5.439 
R1 0.0422 0.0187 

wR2 0.1193 0.0822 
 

Table 4.1 Crystallographic parameters of Ba2CoO4 and Ba1.5Sr0.5CoO4 at room 
temperature. 



  

 

 
 
 
 
 
  
 

Atom x y z U11 U22 U33 U12 U13 U23 
Ba1 0.75661 0.85095 0.08169 0.01483 0.00288 0.01121 -0.00035 -0.00016 -0.00061 
Ba2 0.23865 0.49246 0.19004 0.01426 0.00226 0.00599 -0.00033 -0.00073 0.00014 
Co 0.74698 0.27584 0.08027 0.01187 0.00052 0.00633 0.00001 -0.00032 0.00006 
O1 0.76891 0.50820 0.07991 0.02631 0.00332 0.01554 -0.00040 -0.00041 -0.00007 
O2 0.51234 0.20483 0.16954 0.01377 0.01555 0.02541 0.00121 0.00661 0.01284 
O3 0.00211 0.17530 0.14193 0.01376 0.00800 0.02017 -0.00252 -0.00181 0.00346 
O4 0.70673 0.18445 0.92018 0.02208 0.00465 0.01248 0.00307 0.00071 -0.00113 

 
Table 4.2 Atomic coordinates and anisotropic displacement parameters (Å2) of Ba2CoO4. 
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Atom Occ x y z U11 U22 U33 U12 U13 U23 
Ba1/Sr1(4c) 0.55(1) 0.75661 0.85095 0.08169 0.01483 0.00288 0.01121 -0.00035 -0.00016 -0.00061 
Ba2/Sr2(4c) 0.97(1) 0.3495(1) 0.25 0.5830(1) 0.009(1) 0.019(1) 0.023(1) 0 0 0 
Co (4c) 1.0 0.7775(1) 0.25 0.5817(1) 0.008(1) 0.011(1) 0.015(1) 0 -0.001(1) 0 
O1 (4c) 1.0 0.0108(8) 0.25 0.5737(6) 0.006(3) 0.094(4) 0.037(3) 0 -0.006(2) 0 
O2 (8d) 1.0 0.6966(6) 0.0047(4) 0.6620(3) 0.039(2) 0.015(2) 0.051(2) 0.001(1) 0.016(1) 0.011(1) 
O3 (4c) 1.0 0.3214(6) 0.75 0.5799(3) 0.016(3) 0.057(3) 0.021(2) 0 -0.006(1) 0 

 
Table 4.3 Atomic coordinates and anisotropic displacement parameters (Å2) of Ba1.5Sr0.5CoO4. 
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Table 4.4 Interatomic distances (Å) and angles (°) of Ba2CoO4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 4.5 Interatomic distances (Å) and angles (°) of Ba2CoO4. 

Bond Distances (Å) Bond Angle (°) 
Co-O1 1.759(6) O1-Co-O2 111.41(18) 

2 × Co-O2 1.773(3) O2-Co-O2 109.5(2) 
Co-O3 1.814(4) O1-Co-O3 111.6(3) 

  O2-Co-O3 106.34(17) 

Co-Co distances (nearest neighbors 
and next nearest neighbor) (Å) 

Co-Co (NN) 2 × 4.768(1) 2 × 5.105(1) 2 × 5.384(1) 
Co-Co (NNN) 2 × 5.902(1) 2 × 5.923(1)  

 

 

 

Bond Distances (Å) Bond Angle (°) 
Co-O1 1.775 O1-Co-O2 111.28 
Co-O2 1.778 O2-Co-O3 111.46 
Co-O3 1.794 O1-Co-O4 112.87 
Co-O4 1.813 O2-Co-O3 110.22 

  O2-Co-O4 106.23 
  O3-Co-O4 104.47 

Shortest Co-Co distances (Å) 
Co-Co 4.765 Co-Co 5.916 
Co-Co 4.871 Co-Co 5.916 
Co-Co 5.193 Co-Co 5.918 
Co-Co 5.193 Co-Co 5.918 
Co-Co 5.357 Co-Co 6.072 
Co-Co 5.452 Co-Co 6.072 



  

99 

 

The effect of Sr doping on the crystal structure of Ba2CoO4 has been also studied by 

means of X-ray single crystal diffraction. Our measurements indicate that for Sr 

concentrations up to x = 0.4, the structure remains monoclinic with the P21/n space 

group. The unit cell shrinks in all three dimensions as shown in Fig. 4.4, however, no 

significant change was found in the monoclinic angle β, which remains close to 91.3°. 

The refinements of fractional occupancies of the Ba/Sr atoms show that there is a strong 

tendency for Sr atoms to occupy only one of the two unequivalent Ba positions, namely 

Ba1.  It is worth noting that in the parent compound, Ba2CoO4, the two distinct Ba sites 

have the same local symmetry but their oxygen bond distribution is quite different (e.g. 

Ba1: 2.66 - 2.97 Å and Ba2: 2.61 - 3.18 Å). 

 

 

Figure 4.4 The evolution of the lattice parameters as a function of doping level (x) in 
Ba2-xSrxCoO4 (0 ≤ x ≤ 0.7). The circle and square symbols denote the monoclinic and 
orthorhombic phases, respectively. 
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Upon increasing the Sr doping level to 0.5, the crystal structure becomes 

orthorhombic (see Table 4.1). The volume of the unit cell continues to decrease as the 

system is pushed from monoclinic to orthorhombic. Figure 4.4 displays the dependence 

of the lattice parameters with the Sr concentration. For x ≥ 0.5, the space group has been 

assigned as Pnma (no. 62) based on the inspection of systematic absences. The crystal 

structure was solved by direct methods using SIR2004 program [98] and the refinements 

were carried out using SHELXTL software [99]. 

 

As a prototype, we illustrate the unit cell structure and interpenetrating trigonal 

prisms of Co ions network of Ba1.5Sr0.5CoO4 in Fig. 4.5. The refinement results show that, 

similar to the monoclinic phase, the structure consists of CoO4 tetrahedra linked by Ba 

or Sr ions. The four Co-O bond distances in Ba1.5Sr0.5CoO4 have very little variation 

(1.78 ± 0.03 Å), while the O-Co-O angles (106.3° - 111.6°) slightly deviate from the ideal 

tetrahedral value (109.5°). The Co ions occupy a single crystallographic site on the 

 

Figure 4.5 (a) The crystal structure of Ba1.5Sr0.5CoO4 with Co ions in a tetrahedral 
coordination. (b) Magnetic network consisting of interpenetrating trigonal prisms of Co 
ions (S = 5/2). 
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Wyckoff position 4c. Each Co atom is surrounded by six nearest neighbors (NN) located 

outside the ac plane, to form interpenetrating network of trigonal prisms, as depicted in 

Fig. 4.5(b). In the ac plane, each Co ion is screened by six additional next nearest 

neighbors (NNN) ions. As visible in Table 4.3, the Sr ions continue to preferentially 

occupy only one of the two available Ba sites. 

4.5    Lattice Structure of Pure Sr2CoO4 

In the chemical formula point of view, Sr2CoO4 is isovalent to Ba2CoO4. However, 

their structure and magnetic properties significantly differ from each other, although 

both Co ions stay in the highest oxidation state. Two forms of Sr2CoO4 have been 

reported recently. Matsuno et al. [75, 100] synthesized a single-crystalline film of Sr2CoO4 

with K2NiF4-type tetragonal structure with square-lattice CoO2 sheets. Polycrystalline 

samples were prepared by Wang et al. at 6 GPa in a high pressure apparatus and heated 

to 1000 - 1500°C. Structure refinement reveals that Ba2CoO4 crystallize in layered 2D 

tetragonal structure with a = b = 3.75 Å, and c = = 12.33 Å [76, 77].  In this section, 

we will only show the lattice structure of polycrystalline compound from Wang’s group. 

4.5.1    Motivation from the study on La1-xSrxCoO3 

The Sr doped system of La1-xSrxCoO3 has been extensively studied and it is well 

known that the hole doping affects the spin state of Co3+ in a similar way to temperature 

[101]. Upon the Sr doping, the system changes from non-magnetic insulator to to 

ferromagnetic metal.  For the x = 0.5 phase, Goodenough proposed an intermediate-

spin model with  localized electrons and σ* itinerant electrons at a density of 0.5 per 

Co atom [102]. Later, his group proposed a revised model and a detailed temperature-

composition (x) phase diagram of the system [101]. The hole doped system may become 
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further complicated because Co4+ ions can also exist in several spin-state configurations 

like Co3+ [103-105]. 

It is well known that the dimensionality of a system is a key factor governing its 

electronic structure, and thus, two-dimensional (2D) layered cobalt oxides are quite 

interesting to compare with the three-dimensional (3D) perovskites. Thus far, various 

studies have been carried out on K2NiF4-type cobalt oxides [53, 106-112], although the 

number of reports is relatively small compared with the 3D perovskite system. A K2NiF4-

type oxide consists of CoO2 planes separated by rock-salt-type planes, and its 2D nature 

reduces the bandwidth of eg electrons as compared to the 3D network. This seems a key 

difference between the two systems. Moritomo et al. investigated the K2NiF4-type 

system of La2-xSrxCoO4 with a mixed valence of Co2+ and Co3+ and found steep decreases 

in the effective magnetic moment, Weiss temperature, and electrical resistivity with x 

increasing beyond ∼ 0.7 [53]. In accordance with these results, they proposed a spin state 

transition of the Co3+ ion from HS to IS. However, Wang et al. have reported that the IS 

state never becomes the ground state of LaSrCoO4 according to their theoretical studies 

using the unrestricted Hartree-Fock approximation and the real-space recursion method 

[111, 112]. 

4.5.2    Structure Refinement Results 

Figure 4.7 shows the results of Rietveld refinement of the XRD pattern of Sr2CoO4 

measured at room temperature. The pattern could be indexed when based on a 

tetragonal unit cell similar to that of Sr2TiO4 [113]. Close examination of the diffraction 

profile revealed the presence of a small amount of SrO2 in this sample, which was 

included in the refinement as a second phase. The initial structural model for the 
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refinement was taken from that of Sr2TiO4 [46]. The refined structure of Sr2TiO4 was 

found to be of the K2NiF4-type with space group I4/mmm. A schematic representation of 

the structure of Sr2CoO4 is shown in Fig. 4.6. The weight percentage of the impurity 

phase of SrO2 in the sample was refined to be 1.2(1) %. As can be seen from Fig. 4.7, 

the calculated pattern is in excellent agreement with the observed one. 

 

 

Figure 4.6 Crystal structure of Sr2CoO4. 
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4.6    Conclusions 

In conclusion, the structures of Ba2-xSrxCoO4 have been investigated using X-ray 

powder and single crystal diffraction at room temperature. Though based on our 

experimental experiences, not every doping level of Ba2-xSrxCoO4 could be reached, and 

the doping x was able to be pushed as far as x = 0.7, we illustrated the typical 

example refinement results of pure Ba2CoO4, Ba1.5Sr0.5CoO4 and Sr2CoO4. We can 

clearly see the structure evolution, which started from monoclinic, to orthorhombic and 

ended at tetragonal structure. 

The nature of the somewhat abrupt structure change from monoclinic to tetrag- onal of 

the two ending compound Ba2CoO4 and Sr2CoO4, though the substitution of Sr in place of 

 

Figure 4.7 The observed (crosses), calculated (solid line), and difference diffraction 
(bottom solid line) profiles at 300 K for Sr2CoO4. The top peak markers relate to 
Sr2CoO4 while the lower peak markers pertain to the impurity SrO2. All the indexed peaks 
belong to the Sr2CoO4 phase. 
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Ba only causes the ion size difference, is still unclear. It is hoped that these will 

stimulate further theoretical work that may solve this riddle. 

There are several doping levels of this system (x > 0.7) that could not be 

synthesized. The experiments could be extended further with higher oxygen pressure 

conventional and optical furnaces. 
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CHAPTER 5 

ELECTRONIC AND MAGNETIC PROPERTIES OF Ba2-xSrxCoO4 
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5.1    Introduction and Motivation 

Prior to this thesis, the only reported physical property of Ba2CoO4 was magnetic 

susceptibility χ obtained from polycrystalline [73]. Candela et al. [73] found that χ 

follows a Curie-Weiss law, with no indication of magnetic ordering. 

Since we have, for the first time, successfully synthesized a single crystal of 

Ba2CoO4, the measurement of the single crystals become applicable. We measured the 

magnetic susceptibility of Ba2CoO4. Other physical properties, such as specific heat, 

electrical resistivity and thermal conductivity, will also be shown. Then the doping 

dependence to the magnetic susceptibility of Ba2-xSrxCoO4 will be given. 

5.2    Physical Properties of Ba2CoO4 

5.2.1    Magnetic Susceptibility 

We measured the magnetic susceptibility of Ba2CoO4 single crystals using a commercial 

superconducting quantum interference device (SQUID) magnetometer from Quantum 

Design. Because of the geometric limitations imposed by the crystals, the magnetic 

susceptibility measurement was carried out by applying a magnetic field H either parallel 

( ) or perpendicular ( ) to the a axis. There are no structural reasons to 

expect greatly divergent behaviors in the b and c directions. Shown in Fig. 5.1 is χ 

versus T between 2 and 350 K measured by applying H = 0.1 T parallel (unfilled circles) 

and perpendicular (filled circles) to the a axis. In either direction, the susceptibility 

measured in both zero-field and field cooling shows no hysteresis. In addition to the 

Curie-Weiss-like behavior at high temperatures, both χ( ) and χ( ) decrease 

with decreasing temperature after reaching a maximum at TN = 25 K. While they are 

almost identical above TN, a large anisotropy develops below TN as 
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clearly seen in the inset. The change in χ below TN is almost exactly what is expected 

from a mean-field calculation for an antiferromagnetic system with the spins along the a 

axis [19]. In this case, the Curie-Weiss temperature θ should be negative if χ( ) and 

χ( ) are described using 

 

Here χ0 is a constant describing temperature-independent paramagnetism, NA is 

Avogadro’s  number, kB is the Boltzmann constant, μB is the Bohr magneton, S is the 

total spin, and g = 2 assuming that the orbital angular momentum is quenched [114]. 

 

Figure 5.1 Temperature dependence of the magnetic susceptibility χ obtained by applying 
H = 0.1 T either parallel (unfilled circles) or perpendicular (filled circles) to the a 
direction. The solid lines are the fit of experimental data between 150 and 350 K to Eq. 
5.2.1. The magnetic susceptibility reaches a maximum at TN = 25 K as shown in the 
inset. 
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Our fits to the magnetic susceptibility curves for the range 150 ≤ T  ≤ 350 K (solid lines 

in Fig. 5.1) give χ0 = -2.3 × 10-4 cm3/mol, S = 2.56, and θ = -109 K from χ( ), and 

χ0 = -7.7 × 10-4 cm3/mol, S = 2.60, and θ = -112 K from χ( ). The high spin value 

confirms that Ba2CoO4 has the stoichiometric Co4+ (d5) ion at a tetrahedral site, where the 

small crystal-field splitting results in degenerate d orbitals thus giving a total spin of S = 

5/2. The negative θ value confirms antiferromagnetic spin interactions along both the a 

and b - c directions. It is worth noting that this value of θ is significantly larger than TN, 

suggesting either a reduced-dimensional magnetic interaction [115] and/or the existence 

of magnetic frustration [116]. 

From a structural point of view, it is not obvious that there exists geometric frustration. 

On the other hand, we note that  when T → 0 K (see Fig. 5.1), that suggests 

that a small portion of spins are not aligned in an ideal AFM configuration. This could 

be the result of spin canting and/or defects in the single crystal. With a direct 

determination of the magnetic structure by neutron powder diffraction, it should be clear 

whether the spins are canted or not, although the magnetization varies linearly with H 

up to at least 7 T at temperatures below TN (not shown). We will discuss the magnetic 

structure later in Chapter 6. However, the defect scenario is supported by the specific 

heat and transport data presented later. In an AFM system, a defect can lead to a single 

frustrated bond [116]. Associated with this configuration, there are multiple equal-energy 

configurations that grow with the number of defects [116]. To gain insight into the nature 

of the magnetic transition, we further measured the specific heat, electrical, resistivity, 

and thermal conductivity of Ba2CoO4 using a physical property measurement system 

(PPMS) from Quantum Design. 
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5.2.2    Specific Heat 

 

Shown in Fig. 5.2(a) is the temperature dependence of the specific heat Cp between 

0.4 K and 400 K. Note that it reveals a sharp peak at TN. The term Cp, measured by both 

cooling and warming, reveals no hysteresis, so the phase transition is likely of second order. 

Remarkably, there is little change under the application of a 14 T magnetic field as 

demonstrated in Fig. 5.2(b). This indicates that the transition at TN is unlikely the result of 

spin-density-wave formation, but is consistent with long-range AFM ordering. In this 

 

Figure 5.2 (a) Temperature dependence of the specific heat Cp between 0.4 and 400 K. 
Note that there is a specific heat jump at TN that has little field dependence as emphasized 
in (b). The broken line represents the polynomial fit of specific heat data away from the 
transition regime (see the text).  Shown in (c) are the low-temperature specific heat data 
plotted as Cp/T  versus T2 . The solid line is the fit of data to Eq. 5.2.2. The temperature 
dependence of the magnetic specific heat  near TN is plotted in (d) in a 
semilogarithmic scale. The solid lines are the fit of experimental data to Eq. 5.2.3. 
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case, the magnetic entropy removed upon ordering is expected to be SM = Rln(2S + 1) = 

14.9 J/mol K, where R = 8.314 J/mol K. To estimate the entropy change associated with 

the magnetic phase transition at TN, the electronic and phonon background has to be 

subtracted. At low temperatures ( , the Debye temperature), the specific heat from 

itinerant electrons and acoustic phonons can be described by Cp = γT + N(12/5)π4θ-3T3, 

where γ is the Sommerfeld coefficient and N = 7 for Ba2CoO4. The T term describes the 

electronic contribution and the T3 term arises from the phonon contribution. Shown in 

Fig. 5.2(c) is our specific heat data below ∼ 5 K plotted as Cp/T vs T2. Note that Cp/T 

varies nonlinearly with T2 and reveals an upturn at very low temperatures. This indicates 

that, in addition to the above-mentioned terms, the specific heat consists of magnetic 

contributions from spin waves and the nuclear Schottky effect [117], i.e., 

 

The third term describes the spin-wave contribution with ΔM being a magnon gap and 

CM a constant. The fourth term describes the nuclear Schottky effect with α being a 

constant proportional to the number of two-level systems and Δsch the energy 

separation between the two levels. The solid curve shown in Fig. 5.2(c) is the fit of 

experimental data between 0.4 and 5 K to Eq. 5.2.2.  This yields γ = 11.4 mJ/mol K2, 

θD = 176.5 K, CM = 11.8 mJ/mol K4, ΔM = 7.2 K, α = 58.0 mJ K/mol, and Δsch = 0.01 K. 

The successful fitting of low-temperature specific heat data to Eq. 5.2.2 usually suggests 

that the phonon contribution can be described by the Debye model. Surprisingly, there is 

a great discrepancy between our data and the model calculation at high temperatures, 

when using the θD value given above. This implies that either the phonon specific heat 
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of Ba2CoO4 does not simply increase in a Debye-model-like fashion or the θD value 

obtained from the above fitting procedure is not very reliable due to the large number of 

fitting parameters. If we use the room-temperature anisotropic displacement parameters 

given in Table 4.2, θD ~ 327 K is obtained [118]. It seems inappropriate to treat θD as a 

temperature-independent constant when using the Debye expression to describe the 

phonon specific heat of Ba2CoO4 in a wide temperature range. 

Given the situation described above, we subtract the background by fitting the 

experimental data at 5 ≤ T ≤ 10 K and 30 ≤ T ≤ 50 K using a polynomial [see the 

dashed line in Fig.  5.2(b)]. This yields the magnetic entropy change ΔS = 3.38 J/mol K 

near TN, much smaller than SM = 14.9 J/mol K. This implies that most of the entropy is 

removed above TN. As may be noted in Fig. 5.1, the magnetic susceptibility deviates 

from its high-temperature behavior below ∼ 150 K, indicating the development of short-

range magnetic correlations. Nevertheless, the excess magnetic specific heat  near TN 

is presented in Fig. 5.2(d) above (filled circles) and below (unfilled circles) TN. 

Interestingly, , for either T > TN or T < TN, falls more or less on a straight line when 

plotted as a function of | T – TN | in a semilogarithmic scale. This indicates that the 

magnetic specific heat diverges logarithmically as for a λ-type transition, i.e., 

 

where A1, A2, B1, and B2 are constants. The solid lines in Fig. 5.2(d) represent Eq. 5.2.3. 

5.2.3    Electrical Resistivity 

Considering the nonzero γ value, one may naively expect the system to be electrically 

conductive. Shown in Fig. 5.3(a) is the temperature dependence of the electrical 
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resistivity along both the a (ρa) and the bc (ρbc) directions. It is surprising that both ρa and 

ρbc are large and increase with decreasing temperature. Below about 170 K, the system 

becomes too resistive to measure with our apparatus. In the temperature range between 

200 and 400 K, little magnetoresistance is seen when applying a magnetic field up to 14 

T (data not shown). On the other hand, both ρa and ρbc reflect characteristics of a localized 

electronic state. In this case, the electrical resistivity is expected to follow Mott’s 

variable-range-hopping formula [119] 

 

 

Figure 5.3 Temperature dependence of the electrical resistivities ρa and ρbc between 200 
and 400 K (a). The data are replotted as ρa,bc versus T-n with n = 1/4 (b), 1/3 (c), and 
1/2  (d). The broken lines in (d) are the fit of experimental data to Eq. 5.2.4 using n = 
1/2. 
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where ρ0 and T0 are constants, and n = 1/2, 1/3, 1/4, depending on the dimensionality D 

and temperature range. This means that logρ varies linearly with T-n. For comparison, we 

replot  resistivity data as log ρa,bc vs T-n with n = 1/4 for D = 3 without a Coulomb gap 

[Fig. 5.3(b)], 1/3 for D = 2 [Fig. 5.3(c)], and 1/2 for D = 1 or 3 with a Coulomb gap 

[119] [Fig. 5.3(d)]. Note that the data have better agreement with Eq. 5.2.4 when n = 1/2, 

(errors as determined by χ2 are 0.10 for n = 1/2, 0.44 for n = 1/3, 0.81 for n = 1/4). By 

fitting data between 200 and 400 K to Eq. 5.2.4 using n = 1/2, we obtain 

 and  from ρa and  and 

 from ρbc. The broken lines in Fig. 5.3(d) are the fitting results-that completely 

overlap with the experimental data. This suggests that the electrical conduction is either 

one- or three-dimensional-like with strong Coulomb repulsion between carriers [119]. 

Given the fact that both ρa and ρbc behave similarly, the latter may be more plausible. 

5.2.4    Thermal Conductivity 

The fact that the electrical resistivity can be described by the variable-range-hopping 

model confirms the presence of disorder in our crystal samples, which is likely introduced 

by defects and/or twinning. Microscopically, the defects can be viewed as interstitial or 

substitutional impurity atoms that can move (tunnel) in a multi-minima potential 

provided by the neighbors. In this case, the nonzero γ value no longer reflects the finite 

density of states at the Fermi level as in a metal, but rather the density of tunneling states 

[120]. In this scenario, the thermal conductivity is expected to be proportional to T2 at 

low temperatures [120]. Shown in Fig. 5.4(a) is the temperature dependence of the 

thermal conductivity κbc measured by applying the temperature gradient (heat flow) 

along the bc direction. Qualitatively, κbc, above TN, behaves as expected for a typical 
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insulating crystal-with decreasing temperature, it initially increases then decreases after 

the phonon mean free path reaches a maximum. Remarkably, κbc increases as the 

system is cooled below TN, indicating that the thermal scattering due to spins is reduced.  

As less than 1/3 of magnetic entropy is removed near TN, the scattering reduction is not 

dramatic. When the temperature is further lowered, κbc decreases again with decreasing 

temperature due to dominant nonmagnetic contributions. In a perfect insulating crystal, 

the thermal conductivity varies with T in the same manner as the phonon specific heat at 

low temperatures, i.e., both proportional to T3. As may be seen in Fig. 5.4(b), κbc vs T3 is 

 

Figure 5.4 (a) Temperature dependence of the thermal conductivity between 1.8 and 
200 K obtained by applying heat current along the bc direction and plotted in 
semilogarithmic scale.  Data below 5 K are replotted as κbc vs T3 (b) and κbc vs T2 (c), 
respectively.  The solid line in (c) is a guide to the eyes. 
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not linear, even over a small temperature range. However, this set of data falls more or 

less on a straight line when plotted as κbc vs T2 as shown in Fig. 5.4(c), confirming that 

the thermal conductivity is mainly governed by phonon-defect scattering below ~ 5 K. 

5.3    Doping Dependence of Ba2-xSrxCoO4 (0 ≤  x ≤ 0.7) including Phase Diagram 

Since the parent compound Ba2CoO4 behaves as an insulator at all temperature 

regime, we will only discuss the doping dependence of magnetic susceptibilities. 

 

The magnetic susceptibilities of Ba2-xSrxCoO4 were measured with powders crushed 

from selected single crystals. Figure 5.5 demonstrates the susceptibility χ versus T 

 

Figure 5.5 Temperature dependence of magnetic susceptibility χ obtained by applying H 
= 0.1 T on Ba2-xSrxCoO4 (0 ≤ x ≤ 0.7). The solid line is the fit of experimental data of 
Ba1.3Sr0.7CoO4 between 150 and 350 K according to Eq. 5.2.1. 
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between 2 K and 350 K measured by applying H = 0.1 T. The data collected in both 

zero-field and field cooling show no hysteresis. The value χ for each sample decreases 

with decreasing the temperature after reaching a maximum at TN, which indicates an 

antiferromagnetic transition for all doping concentrations. The doping dependence of TN 

is shown in Fig. 5.6. Note that the Néel temperature TN slightly increases in the monoclinic 

regime from TN = 25 K up to x = 0.5, then it decreases while the structure becomes 

orthorhombic. It is also worth noting that each sample exhibits more or less residue 

magnetic moment when approaching the base temperature. 

 

On the other hand, the behaviors of χ vs T for all the samples are similar when T > TN, 

which is also well defined by Curie-Weiss law at high temperatures, according to Eq. 

 

Figure 5.6 Phase diagram of Ba2-xSrxCoO4 (0 ≤ x ≤ 0.7).  The circles and squares 
represent the monoclinic and orthorhombic structures, respectively. 



  

118 

 

5.2.1. Our fitting range is fixed as 150 ≤ T ≤ 350 K. The solid line in Fig. 5.5 shows an 

example of Curie-Weiss fitting for Ba1.3Sr0.7CoO4 sample. As shown in Fig. 5.7(a), the 

Curie-Weiss temperatures of all doing concentrations are negative, which confirms the 

antiferromagnetic spin interactions. The values of |θ| are all significantly larger than TN, 

which is similar to the undoped case. As can be seen from Fig. 5.7(b), the effective spins 

Seff of Co atoms of all the samples are around 2.5, implying the highest oxidation states of 

Co4+ (d5) ions at a tetrahedral site. 

 

 

 

Figure 5.7 The fitting results of (a) Curie-Weiss temperatures, and (b) effective spin 
values of all doping concentration samples of Ba2-xSrxCoO4 (0 ≤ x ≤ 0.7). 
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5.4    Conclusions 

The physical properties of Ba2CoO4 have been thoroughly investigated. The 

compound becomes magnetically ordered at TN = 25 K as shown in the temperature 

dependence of both magnetic susceptibility and specific heat. The magnetic 

susceptibilities of Ba2-xSrxCoO4 show AF interaction for all doping concentrations above 

TN. TN shows little doping dependence when the system remains monoclinic and it 

decreases when the system enters orthorhombic regime. 
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CHAPTER 6 

MAGNETIC STRUCTURE AND EXCITATIONS OF Ba2CoO4 
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6.1    Introduction and Motivation 

The compound of Ba2CoO4 is isostructural to Ba2TiO4 [121], a distorted form of the 

orthorhombic K2SO4 structure type, shows cobalt ions only in the tetrahedral 

environment whereas they are octahedrally coordinated in the 2H structure. The Co4+ 

cation also confers remarkable properties to another (214) material recently studied: 

Sr2CoO4. This oxide, isostructural to the K2NiF4 type with corner-sharing CoO6 

octahedra, exhibits a ferromagnetic transition with a rather high Curie temperature as 

well as metallic behavior [75] and large negative magnetoresistance [76]. It must be 

pointed out that there are few materials with all cobalt atoms in the Co4+ state at a 

tetrahedral site. One of the few reported oxides (together with Li4CoO4) [122] is 

Ba2CoO4. In both cases, despite such a particular feature, its magnetic structures have 

not been widely studied. This chapter is focused on the determination of the magnetic 

structures of Ba2CoO4 using neutron diffraction at different temperatures. 

6.1.1    Experimental Description 

Neutron single crystal diffraction data of magnetic excitations were collected at the 

NIST Center for Neutron Research on the triple-axis spectrometer (BT7) with 

monochromatic neutrons of wavelength 2.3589 Å produced by a PG(002) monochromator.  

The temperature was changed sequentially from 9 K to 300 K. Neutron powder 

diffraction data were collected on the high  resolution powder neutron diffractometer 

(BT1) with monochromatic neutrons of wavelength 1.5403 Å produced by a Cu(311) 

monochromator for the measurements of magnetic structure. Collimators with horizontal 

divergences of 15’, 20’ and 7’ of arc were used before and after the monochromator and 

after the sample, respectively. Data were collected in the 2θ range of 3 − 168° with a step 
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size of 0.05° at 4 K, 33 K and room temperature. The magnetic structural parameters were 

refined using the program GSAS. 

6.2    Magnetic Structure 

6.2.1    Neutron Powder Diffraction Results 

The good agreement between the observed and calculated neutron powder diffraction 

(NPD) patterns of Ba2CoO4 at T = 4 K is presented in Fig. 6.1. The patterns obtained 

below the Néel temperature show the presence of low-angle additional peaks of 

magnetic origin. As the temperature decreases, the intensities of the magnetic peaks 

increase until nearly achieving saturation. 

 

6.2.2    Magnetic Structure 

The magnetic reflections in NPD can be indexed by using the propagation vector k = 

(0.5, 0, 0.5), so the magnetic cell is doubled along the a and c axes with respect to the 

crystallographic cell. 

 

Figure 6.1 Neutron powder diffraction pattern including fitting result for Ba2CoO4 
measured at 4 K (below TN). 
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To determine the magnetic structure, symmetry analysis for the space group P21/n 

with the propagation vector k = (0.5, 0, 0.5) has been performed for the 4e position, 

occupied by the Co atoms in tetrahedral coordination. The output of the analysis is the 

complete set of basis functions of the irreducible representations classifying the 

possible magnetic ordering models, which is summarized in Table 6.1 9

Irreducible 
representation  

. Four one-

dimensional real representations have been obtained. The notation for the atomic 

positions of the Co atoms are: Co(1) (x, y, z), Co(2) (-x + 1/2, y + 1/2, -z + 1/2), Co(3) (-

x, -y, -z), and Co(4) (x + 1/2, -y + 1/2, z + 1/2).  

 
basis function vectors 

Co(1)  Co(2) Co(3) Co(4)  

Γ1(++++) AxCyAz (1 0 0) (-1 0 0) (-1 0 0) (1 0 0) 
  (0 1 0) (0 1 0) (0 -1 0) (0 -1 0) 
  (0 0 1) (0 0 -1) (0 0 -1) (0 0 1) 

Γ2(++++) GxFyGz (1 0 0) (-1 0 0) (1 0 0) (-1 0 0) 
  (0 1 0) (0 1 0) (0 1 0) (0 1 0) 
  (0 0 1) (0 0 -1) (0 0 1) (0 0 -1) 

Γ3(++++) CxAyCz (1 0 0) (1 0 0) (-1 0 0) (-1 0 0) 
  (0 1 0) (0 -1 0) (0 -1 0) (0 1 0) 
  (0 0 1) (0 0 1) (0 0 -1) (0 0 -1) 

Γ4(++++) FxGyFz (1 0 0) (1 0 0) (1 0 0) (1 0 0) 
  (0 1 0) (0 -1 0) (0 1 0) (0 -1 0) 
 
 

 
 

(0 0 1) (0 0 1) (0 0 1) (0 0 1) 
 

Table 6.1 Irreducible representations and basis functions of the space group P21/n for the 
Wickoff position 4e and propagation vector k = (0.5, 0, 0.5). 

                                                            
9 The characters (+ for 1, - for -1) of each symmetry operator are given in parentheses. 
The list corresponds to the following ordering of the symmetry operators, in Seitz 
notation: {1|000}, {2_0y0|PPP}, {-1|000}, {m_x0z|ppp}, with p = 1/2. 
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After checking all of the possible magnetic modes obtained, the best agreement 

with the experimental data was obtained for the magnetic structure given by the basis 

vectors of the irreducible representation. This means that the magnetic moments become 

ordered with a spin arrangement. The Ax basis vector implies that the coupling among 

the magnetic moments is m1x – m2x – m3x + m4x (similarly for Az), and the Cy basis vector 

implies that the y components are related by m1y + m2y – m3y – m4y. 

The magnetic structure of Ba2CoO4 determined from the neutron diffraction data has 

been represented in Fig. 6.2 and Fig 6.3 (in 3D). We clearly see a relatively 

straightforward AF structure in the ac-plane in this compound.  This interaction is 

lacking along the c axis. 

 

 

Figure 6.2 Magnetic structure of Ba2CoO4 at 4 K along b axis. Though the magnetic cell 
is twice the length of the unit cell in both the a and c directions, only the lower half of 
the magnetic unit cell is shown, so that the spins can be clearly seen. The CoO4  
tetrahedra are displayed with the Co atoms in blue and the O atoms in red. Each 
tetrahedron is shaded to help show the crystal structure. 
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6.3    Magnetic Excitations 

6.3.1    Magnetic Order Parameters 

We first utilized TAS to double confirm the AF transition temperature TN = 25 K. 

The magnetic Bragg peaks were measured at the reciprocal propagation vector position 

(-0.5, 0, 1.5) in the reciprocal space which gives AF order. The scan was performed 

along the transverse direction to avoid the affects from the structure factor. The data are 

represented in two 2D mapping diagrams (see Fig. 6.4) for both warming and cooling 

 

Figure 6.3 3D view of the magnetic structure of Ba2CoO4 at 4 K. 
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processes, respectively. The temperature range of cooling and warming is from 8 K to 35 

K which is around the Néel temperature. 

 

 

Very clearly, the AF peaks begin to arise when the temperature is decreasing below 

25 K which confirms our magnetic susceptibility measurements that the AF transition at 

TN = 25 K. 

 

Figure 6.5 Magnetic Bragg peak intensities at (-0.5, 0, 1.5) as a function of temperature 
of Ba2CoO4 shown in cooling (blue solid circle) and warming (red open circle). 

 

Figure 6.4 2D mapping diagrams of the magnetic Bragg peaks at (-0.5, 0, 1.5) as a 
function of temperature of Ba2CoO4 in (a) cooling and (b) warming. 
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The magnetic Bragg peak intensities were also calculated by fitting as a Gaussian 

function. As seen in Fig. 6.5, the AF transition starts at Néel temperature TN = 25 K. 

The measurements from cooling and warming show no thermal hysteresis. 

6.3.2    Lattice Constants 

 

The magnetic susceptibility measurements have showed that Ba2CoO4 has an anti- 

ferromagnetic (AF) transition at a Néel temperature of TN = 25 K [123]. However, there 

is no associated structural transition from room temperature to 4 K [124]. We measured 

the temperature dependence of lattice constants (a and c) in the scat- tering plane. The 

temperature range is from 9 K to 300 K (see Fig. 6.6). As the temperature increases, 

the lattice constant of a keeps constant below TN and begins to increase right above TN.  

However, the lattice constant of c first slightly increases as the temperature increases 

below TN and then decreases above TN. A magnetoelastic effect is clear due to the 

 

Figure 6.6 Lattice constants of a (blue triangle) and c (red circle) measured as a function 
of temperature. 
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opposite thermal expansion behavior along the c-axis when the system undergoes the AF 

transition at TN. Although the monoclinic structure maintains at the whole temperature 

range, there may implicitly still be certain correlations between the lattice structure and 

magnetic properties. We will discuss it later. 

6.3.3    Magnetic Excitations 

In order to understand the nature of magnetic properties in this unique high-spin state 

of cobaltates, we have studied the magnetic and spin dynamics of the system. We carried 

out some results from NIST on spin excitations, indicating that there is a magnetic 

excitation feature at ~ 3 meV at zone-center. As shown in Fig. 6.7, this feature is 

dispersive along a-axis but almost not dispersive along c-axis. The magnetic excitation 

does disappear when T > TN, which is indicative of AFM spin wave excitation origin. 

The complete Energy-wavevector dispersion relation is illustrated in Fig. 6.8. This 

low energy excitation is slightly broadened at the zone center. 

 

 

Figure 6.7 The excitation spectra along a-axis (left) and c-axis (right) from energy scans 
at different fixed wavevectors. The dispersion along a-axis is shown in the inset.  The 
arrows indicate the positions of the excitation peak at different wavevectors. 
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Figure 6.8 Energy scans for the complete dispersion relation along a-axis. 
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CHAPTER 7 

DISCUSSION AND SUMMARY 
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In summary, we have successfully synthesized single crystals of Ba2-xSrxCoO4 with 

the doping 0 ≤ x ≤ 0.7 using the floating-zone technique. The X-ray diffraction 

refinement results show the monoclinic structure for the doping of 0 ≤ x ≤ 0.4 and 

orthorhombic structure forms in 0.5 ≤ x ≤ 0.7. The Néel temperature TN slightly 

increases in the monoclinic regime until it reaches the maximum at x = 0.5, then it 

drastically decreases when the structure converts into orthorhombic, which indicates the 

correlations between structure and magnetic properties. By studying the magnetic 

susceptibility, we confirmed this system has an antiferromagnetic ground state. The fact 

of a large |θ|/TN ratio for every doping level suggests either reduced-dimensionality in 

spin interaction and/or the magnetic frustration. 

The studies of the magnetic structure of single crystalline Ba2CoO4 also raise 

questions regarding the existence or absence of magnetic frustration and/or low-

dimensional magnetic interactions, since the Curie-Weiss temperature (θ ~ −110 K) is 

much larger than TN ~ 25 K. Also, we note that  when T → 0 K. This leads 

to the question of spin canting and/or the existence of defects. As stated above, the 

Weak transverse field μ+SR (wTF- μ+SR) results suggest a single second-order phase 

transition occurring throughout the entire volume of the sample. Neutron powder 

diffraction from Boulahya et al. [124] shows a marked difference from the μ+SR results. 

Even though the transition temperature is roughly the same, the Boulahya results decrease 

rapidly in the 10 – 20 K range. Boulahya’s NPD experiment was done on a 

polycrystalline sample; this might be a factor. Our more recent neutron scattering results 

on a single crystal sample show a temperature dependence more like that of the μ+SR 

data. 
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Also recently, two opposing magnetic structures of Ba2CoO4 have been proposed.  

Work by Boulahya et al. [124] suggests that the spins are mostly aligned 

antiferromagnetically along the c axis with canting out of the ac plane. Their work was 

primarily based on an elastic neutron scattering experiment with a powder sample. We 

have proposed a similar magnetic structure but with the spins mostly aligned along the a 

axis (see Fig. 6.1). Since μ+SR is highly sensitive to the local magnetic environment, it 

should be helpful in distinguishing which AF structure is correct via the μ+SR results. The 

μ+SR evidence shows Ba2CoO4 seems to have a relatively straightforward AF structure, 

but there remains the question of why magnetic interactions are lacking along the c axis. 

At this time there does not seem to be a single satisfactory explanation of how the 

magnetic moments are actually coupled. 

From the μ+SR measurements, we have observed a sharp magnetic transition in a 

single crystal of Ba2CoO4. From the wTF asymmetry we find that the whole sample 

enters into a magnetic phase below T ~ 25 K. Subsequent zero-field μ+SR (ZF- μ+SR) 

measurements clearly show the existence of static magnetic order for T < 23 K. The 

ZF-μ+SR spectra also confirm commensurate AF order below TN. The T-dependence of 

the ZF signals is consistent with an AF transition of the 2D-Ising type, although the 

CoO4 tetrahedra are well isolated from each other. The reduced frequencies all go to 

zero together with a similar T dependence, which indicates that all muons see magnetic 

environments governed by the same interactions. Finally, μ+SR verified the AF magnetic 

structure we proposed by probing the local magnetic environment. The spins are mostly 

directed along the a direction rather than the c direction. Our results, while giving basic 

information on the magnetic structure, still leave unresolved how the Co ions are 
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coupled together. Thus, this compound continues to represent interesting opportunities 

for further investigation. 

On the other hand, Layered perovskite cobalt oxides Sr2CoO4 can be synthesized 

under high pressure and high temperature conditions. Structure refinement revealed that 

this compound crystallizes in K2NiF4–type structures with space group I4/mmm. Sr2CoO4 

undergoes a ferromagnetic transition with TC = 255 K. Low temperature magnetization 

data suggest the itinerant electron ferromagnetism. Fairly large negative 

magnetoresistance was observed for Sr2CoO4 near the ferromagnetic transition 

temperature of 255 K and in the lower temperature region. The magnetoresistance near 

TC is explained by the intrinsic mechanism while that at lower temperatures is ascribed 

to the field suppression of the spin-dependent scattering at grain (or domain) boundaries. 

It is also worth noting here that Sr2CoO4 can be synthesized in the form of a single-

crystalline thin film with square-lattice CoO2 sheets (K2NiF4-type structure). This form 

of compound was found to be a metallic ferromagnet, with appreciable magnetic 

anisotropy and quasi two-dimensional transport properties. Thus it was demonstrated that 

the CoO2 layers can act as a stage for two-dimensional ferromagnetism as well as 

superconductivity. The fairly high TC (250 K) of Sr2CoO4, which is similar to the powder 

material, may provide intriguing opportunities to explore the spintronic functionality of 

CoO2 layers. 

In future research, the objective is to explore the complete phase diagram of Ba2-

xSrxCoO4 and to fully understand its unusual structural, electronic, and magnetic 

properties as a function of temperature and doping. We will especially focus on the 

doping concentration samples approaching the Sr2CoO4 end. 
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We currently prepared the single crystalline and polycrystalline samples with the 

doping level (x) up to 0.7. We need a high pressure growth technique when approaching 

Sr2CoO4 side although we started from Ba2CoO4 side. We will use elastic and inelastic 

neutron scattering to study the structural and magnetic properties, including their 

dynamics.  
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