### Florida International University

# **FIU Digital Commons**

Nicole Wertheim College of Nursing Student Projects Nicole Wertheim College of Nursing and Health Sciences

2024

# An Educational Module in the Usage of Tranexamic Acid (TXA) as an Alternative to Epsilon Aminocaproic Acid (EACA) in Cardiac Surgery to Reduce Perioperative Transfusion Requirements: A Quality Improvement Project

Lianet Ramirez MSN, RN Irami168@fiu.edu

Vicente Gonzalez, DNP, CRNA, APRN

Carmen Chan DNP, CRNA

Follow this and additional works at: https://digitalcommons.fiu.edu/cnhs-studentprojects

#### **Recommended Citation**

Ramirez, Lianet MSN, RN; Gonzalez, DNP, CRNA, APRN, Vicente; and Chan, Carmen DNP, CRNA, "An Educational Module in the Usage of Tranexamic Acid (TXA) as an Alternative to Epsilon Aminocaproic Acid (EACA) in Cardiac Surgery to Reduce Perioperative Transfusion Requirements: A Quality Improvement Project" (2024). *Nicole Wertheim College of Nursing Student Projects*. 194. https://digitalcommons.fiu.edu/cnhs-studentprojects/194

This work is brought to you for free and open access by the Nicole Wertheim College of Nursing and Health Sciences at FIU Digital Commons. It has been accepted for inclusion in Nicole Wertheim College of Nursing Student Projects by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

### An Educational Module in the Usage of Tranexamic Acid (TXA) as an Alternative to Epsilon Aminocaproic Acid (EACA) in Cardiac Surgery to Reduce Perioperative Transfusion Requirements: A Quality Improvement Project

A DNP Project Presented to the Faculty of the

Nicole Wertheim College of Nursing and Health Sciences

Florida International University

In partial fulfillment of the requirements

For the Degree of Doctor of Nursing Practice

By

Lianet Ramirez, BSN, RN

Supervised By

Vicente Gonzalez DNP, CRNA, APRN

| Ca                     | rmen Chan DNP, CRNA, APRN                       |                         |
|------------------------|-------------------------------------------------|-------------------------|
| Approval Acknowledged: | Ann Miller<br>4986D8685093471                   | , DNA Program Chair     |
| Date:                  | 11/7/2024                                       |                         |
| Approval Acknowledged: | <u><u><u>Hiddil</u></u><br/>27267E9FF76F460</u> | _, DNP Program Director |
| Date:                  | 11/8/2024                                       |                         |

#### Abstract

*Background*: Cardiac surgery is associated with significant perioperative bleeding and blood transfusion requirements. The effectiveness of antifibrinolytic therapy and financial concerns are carefully balanced in cardiac surgery in the United States. While TXA has stronger potency and fewer dose requirements than EACA, its higher cost impacts the choice of antifibrinolytic medication. Developing an educational module for anesthesia practitioners on the issue of TXA dosing in cardiac surgery can be an effective strategy. This project thus aimed to develop the educational module.

*Method*: The sample size for participants was selected based on the available pool of CRNAs from the FIU alumni list. This DNP project adopted a pre-/post-intervention design to evaluate the impact of an educational module on the knowledge and practices of CRNAs involved in providing anesthesia for cardiac surgery. These questionnaires captured quantitative and qualitative data, including demographic information. The project used the electronic Qualtrics system to streamline the process and improve data accuracy.

*Results*: This survey had a sample size of 15 participants. Of the participants, 57% (n = 8) were males, and 43% (n = 6) were females. Male participation was slightly higher. All participants were older than 25, with the highest % of participants older than 31 years, 79% (n = 11). Hispanics comprised the most prominent ethnic group of participants at 50% (n = 7). CRNAs with a doctoral level of education comprised 100% (n = 14) of the sample size. Of these providers, 54% (n = 7) had 1-5 years of experience, while the rest had less than a year or more than 5. Compared to the pretest, the posttest demonstrated a greater proportion of questions with the correct answers. The fact that this occurred suggests that the educational intervention was effective.

*Discussion*: The findings indicate the educational module's positive effect on improving clinical confidence and competency among healthcare workers. The most evident flaw in the educational initiative was the small sample size. A limited sample size may impact the study's validity and reliability. The project's findings might increase knowledge among CRNAs, minimize blood loss and transfusion requirements, and promote standardized TXA protocols.

*Keywords:* Tranexamic acid (TXA), cardiac surgery, antifibrinolytic therapy, epsilon aminocaproic acid (EACA)

| PICO                                                              | 6  |
|-------------------------------------------------------------------|----|
| Problem Identification                                            | 6  |
| Background                                                        | 7  |
| Scope                                                             | 8  |
| Consequences of the Problem                                       | 9  |
| Knowledge Gaps                                                    | 9  |
| Proposed Solution                                                 | 10 |
| Rationale                                                         | 10 |
| Literature Review                                                 | 11 |
| Methodology                                                       | 11 |
| Eligibility Criteria                                              | 11 |
| Information Sources                                               | 11 |
| Search Strategy                                                   | 12 |
| Keywords:                                                         |    |
| Results                                                           |    |
| Study Characteristics                                             |    |
| Results of Included Studies                                       |    |
| Appendix A: Literature Review Table                               |    |
| Literature Review Discussion                                      |    |
| Synthesis of the Evidence                                         |    |
| TXA and Its Impact on Transfusion Requirements in Cardiac Surgery |    |
| Dosages Trends of TXA in Cardiac Surgery                          |    |
| Literature Review Conclusion                                      |    |
| Primary DNP Project Goal                                          |    |
| SMART Objectives                                                  |    |
| Specific                                                          |    |
| Measurable                                                        |    |
| Achievable                                                        |    |
| Relevant                                                          |    |
| Time-Bound                                                        |    |
| Description of the Program Structure                              |    |
| Strengths                                                         |    |
| Weaknesses                                                        |    |
| Opportunities                                                     |    |
| Threats                                                           |    |
| Conceptual Underpinning and Theoretical Framework                 |    |
| Theory Overview                                                   |    |
| Theory/Clinical Fit                                               |    |
| Theory Evaluation                                                 |    |
| Setting and Participants                                          |    |
| Procedures                                                        |    |
| Data Collection                                                   |    |
| Data Management and Analysis Plan                                 |    |
| Timeline                                                          |    |
|                                                                   | +) |

# Table of Contents

| Results                                                  | 49 |
|----------------------------------------------------------|----|
| Summary                                                  | 51 |
| Implementation                                           | 53 |
| Limitations                                              |    |
| Discussion of the Results with Implications for Practice | 54 |
| Conclusion                                               |    |
| References                                               | 56 |
| Appendix B: IRB Approval Letter                          | 58 |
| Appendix C: Participant Recruitment Letter               | 59 |
| Appendix D: Informed Consent                             | 60 |
| Appendix E: Educational Module                           | 63 |
| Appendix F: Dissemination PowerPoint                     | 69 |

#### PICO

This research investigated a fundamental question in clinical practice: the role of TXA versus EACA in cardiac surgery. It specifically sought to evaluate whether TXA has the same effect on transfusion needs and intraoperative hemorrhage as EACA. To address this issue, the PICO question posed was, "In patients undergoing cardiac surgery, does the use of tranexamic acid infusion (TXA), compared to epsilon aminocaproic acid (EACA), have similar effects on transfusion requirements and intraoperative bleeding?" Population: Patients undergoing cardiac surgery Intervention: Usage of tranexamic acid (TXA)

Comparison: Usage of epsilon aminocaproic acid (EACA)

Outcome: Transfusion requirement and intraoperative bleeding

#### **Problem Identification**

Antifibrinolytics have long been shown to reduce surgical bleeding and, as a result, the requirement for blood product transfusions. On March 16, 2023, the National Hemophilia Foundation for All Bleeding Disorders announced the bankruptcy and closure of Akorn Pharmaceuticals, a manufacturer and marketer of epsilon aminocaproic acid (EACA). Despite assurances of supply protection, this event raised concerns about accessibility and availability.<sup>1</sup> On the verge of a possible supply and demand imbalance of EACA, tranexamic acid (TXA) may be substituted as the main therapy in cardiac surgery. Such a shift may require adjustments in dosing protocols. There has yet to be a universally agreed-upon consensus on the dosing of TXA in the context of cardiac surgery, and dosing regimens often vary between institutions and even among healthcare providers.<sup>2</sup> Even though research and clinical practice guidelines often provide recommendations or considerations for TXA dosing in cardiac surgery, its dosage and delivery

strategies have long been a source of contention. Drug administration varies widely among studies, and no unanimity has been achieved on the following issues: the optimal TXA dosage, whether TXA should be administered intravenously or topically, and whether continuous infusion or bolus injection should be employed.<sup>2</sup> Furthermore, the dosing of TXA in cardiac surgery typically depends on several factors, including the patient's weight, the procedure, and institutional practices. The current challenge is deciding what dose of TXA is equally efficacious and safe compared to aminocaproic acid in this setting.

#### Background

Cardiac surgery is a standard procedure nowadays. However, although it is commonly practiced, it continues to be associated with significant perioperative bleeding and blood transfusion requirements. The etiology is multifactorial.<sup>3</sup> Contributing risks are platelet dysfunction, hypotension, systemic anticoagulation, and fibrinolysis associated with cardiopulmonary bypass (CPB).<sup>3,4</sup> Antifibrinolytic drugs, such as lysine analogs and aprotinin, have reduced perioperative bleeding. In 2007, a randomized control trial (RTC) revealed that aprotinin was associated with a 53% increase in mortality. Subsequently, the drug was withdrawn globally by its manufacturer.<sup>3</sup> After aprotinin use ceased, TXA and EACA became the leading agents for bleeding reduction during cardiac surgery.<sup>5</sup>

The effectiveness of antifibrinolytic therapy and financial concerns are carefully balanced in cardiac surgery in the United States. While TXA has stronger potency and fewer dose requirements than EACA, its higher cost provides economic issues for institutions, perhaps impacting the choice of antifibrinolytic medication.<sup>6</sup> On average, the medication acquisition cost for EACA was found to be \$2.23 per surgery, while TXA was significantly more expensive at \$39.58 per surgery.<sup>6</sup> Given TXA's considerable price tag, many institutions employ EACA as the mainstay anti-fibrinolytic therapy for their open-heart surgery protocols.

#### Scope

In 2016, the American College of Surgeons Database (ACSD) revealed that cardiac procedures such as coronary artery bypass graft (CABG), isolated aortic valve replacement (AVR), CABG+AVR, mitral valve surgery, and aortic aneurysm repair are among the most performed cardiac procedures worldwide. Approximately 156,931 CABG procedures were performed in 2016 alone in the United States.<sup>7</sup> These procedures share a common feature: the imperative use of antifibrinolytic therapies to prevent extensive bleeding and its associated complications. The prevalent use of antifibrinolytics in these surgeries has a worldwide impact on patient care, as these medications help reduce complications, improve outcomes, and decrease the need for blood transfusions.

The clinical problem posed would significantly impact millions of people globally. Due to a possible shortage of Amicar and a lack of agreement on TXA dose, healthcare facilities' antifibrinolytic medication choices may vary, resulting in uneven treatment regimens. Inconsistent dosage can compromise bleeding control, raising the risk of bleeding complications. Without successful antifibrinolytic medication, there may be a greater demand for blood products, putting a strain on blood bank supplies and increasing the risk of transfusion-related complications. Substituting TXA as the major antifibrinolytic may increase costs, affecting healthcare budgets and resource allocation. Without agreement on TXA dose, cardiac surgical centers may lack standardized care methods, impacting patient care quality and consistency.

#### **Consequences of the Problem**

Without appropriate analysis of the various ways EACA and TXA may differ, patients undergoing cardiac surgery will inevitably suffer the consequences of yet another drug shortage. A review of the literature noting the various ways drug shortages have impacted healthcare points out the potential challenges that may be faced in the future without enough EACA. From an economic perspective, institutions will have to absorb the increased expenses required to manage the change from EACA to TXA use.<sup>8</sup> Still, most frightening is the potential for near misses and medication errors that often follow sweeping medication practices surrounding drug shortages.<sup>8</sup> Furthermore, since drug shortages do not necessarily affect all hospitals equally, a decreased supply of Amicar can disproportionally impact vulnerable populations.<sup>8</sup> There is a lack of consensus and a gap in knowledge to practice because TXA is rarely used in open heart surgery. Practitioners and institutions may need more knowledge about this medication's appropriate dosing, contraindications, and side effects. To resolve this issue, it is imperative to compare the safety profile of TXA and its impact on transfusion requirements and intraoperative bleeding to those of aminocaproic acid.

#### **Knowledge Gaps**

The issue of antifibrinolytic therapy in cardiac surgery is characterized by information gaps, particularly in the absence of EACA and consensus on TXA dose. These include a lack of agreement on optimal dose regimens, a lack of comparative efficacy and safety trials, and a need for more evidence on patient-specific factors impacting medication selection.<sup>9</sup> It is also uncertain whether the dosing route should be intravenous or topical.<sup>2</sup> Long-term follow-up on the issue needs to be more extensive, as are cost-effectiveness assessments. More real-world evidence must be provided on antifibrinolytic use in cardiac surgery results and practices. Addressing

these knowledge gaps through clinical trials, systematic reviews, and collaborative initiatives is critical for enhancing patient treatment, maximizing resource use, and guaranteeing the longterm viability of the field.

#### **Proposed Solution**

This study addressed a critical issue anesthesia providers face in cardiac surgery. It aimed to provide evidence-based dosing recommendations for antifibrinolytic therapy, address existing knowledge gaps, and standardize practice. The results can improve patient care, reduce complications, and optimize healthcare resource utilization. Developing an educational module for anesthesia practitioners on the issue of antifibrinolytic medication dose in cardiac surgery, specifically TXA dosing, can be an effective strategy to address the identified knowledge gaps and solve the problem. Launching said module requires a thorough needs assessment, clear learning objectives, evidence-based content, and an accessible delivery platform. The module should cover topics like TXA and EACA mechanisms of action and recommended dosing in cardiac surgery scenarios. The module should also include an assessment to evaluate comprehension. Regular feedback and updates are crucial for the module's effectiveness.

#### Rationale

The closure of Akorn Pharmaceuticals, a major manufacturer of EACA, in March 2023 has raised concerns about its accessibility and availability.<sup>1</sup> As a result, tranexamic acid TXA may be used as the primary anti-fibrinolytic for cardiac surgery patients, potentially requiring adjustments in dosing protocols. There is no universally agreed-upon consensus on the dosing of TXA in this setting, and dosing regimens often vary between institutions and healthcare providers.<sup>2</sup> The optimal dosage, administration methods, and continuous infusion or bolus injection are all factors that must be considered. This review aims to provide evidence-based dosing recommendations for antifibrinolytic therapy in cardiac surgery, address existing knowledge gaps, and standardize practice. An educational module on antifibrinolytic therapy dosing in cardiac surgery can efficiently manage these shortcomings. The results can improve patient care, reduce complications, and optimize healthcare resource utilization. This session covers the TXA mechanism of action, suggested dose in cardiac surgery, and side effects.

#### **Literature Review**

#### Methodology

#### **Eligibility Criteria**

The review was initially limited to RCTs published in English, chosen for their methodological rigor, and potential to demonstrate TXA efficacy in cardiac surgery. Later, systematic reviews and case studies were included to expand the scope and provide a more comprehensive understanding of the topic. Articles were included if they targeted the specific patient population, adults undergoing elective cardiac surgery, both with and without CPB. Children were excluded from the review due to potential differences in physiological responses, surgical requirements, and dosing considerations.

#### **Information Sources**

The outcome of this review was expected to yield information regarding the optimal dosage and delivery method of TXA with the most negligible adverse effects. A literature search strategy was designed to ensure a systematic and exhaustive approach. The databases of PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) were the primary sources for retrieving relevant research articles published between 2013 and 2023. These databases were chosen for their comprehensive medical and healthcare literature coverage,

including RCTs, systematic reviews, and scholarly publications. They are considered reliable sources of evidence-based practice in healthcare, making them ideal for the study's objectives.

## Search Strategy

The search targeted Evidence Based Practice (EBP)-related articles using keywords and Boolean operators. Included within the search queries were the keywords; "patients undergoing cardiac surgery," "tranexamic acid," "aminocaproic acid," "cardiac surgery," "transfusion requirements," and "intraoperative bleeding." These terms were combined with Boolean operators such as "AND" and "OR" to refine the search results and retrieve articles that addressed the particular elements of the practice query. According to the search strategy described above, the initial question found 179 articles from the Cochrane database, 585 from Embase, and 504 from PubMed.

The titles and abstracts of retrieved articles were screened for significance. Duplicates were removed to prevent redundancy. After assessing 31 full-text articles for eligibility, 9 papers were included for analysis, meeting the criteria and providing a clear, evidence-based assessment of the optimal dosage and delivery method while minimizing potential bias and ensuring relevance to the clinical context of cardiac surgery in adults. The following keywords were used to conduct the literature search: tranexamic acid (TXA), cardiac surgery, antifibrinolytic therapy, and epsilon aminocaproic acid (EACA).

**Keywords:** Tranexamic acid (TXA), cardiac surgery, antifibrinolytic therapy, epsilon aminocaproic acid (EACA)

#### Results

### **Study Characteristics**

The appendix literature matrix table appraises several studies to gauge the role of TXA in cardiac surgery. Dearholt and Dang's principles and practice approaches for assessing research evidence were used to determine the strength of the evidence of the 9 included studies.<sup>11</sup> Eight randomized controlled trials and one systematic review gave valuable insights into various aspects of TXA administration, including dosages and their related outcomes. Each study's quality and validity were thoroughly assessed.

#### **Results of Included Studies**

The DEPOSITION study, a single-center, double-blind, parallel-group randomized controlled trial, aimed to reduce postoperative blood loss by topical vs. intravenous TXA in open cardiac surgery.<sup>3</sup> The study involved 97 adults undergoing elective on-pump cardiac procedures through a median sternotomy.<sup>3</sup> Patients were randomized to either an intervention group, which received intravenous (IV) placebo and intrapericardial (IP) TXA, or a control group, which received IV TXA and IP placebo.<sup>3</sup> This small Level II RCT found that IP TXA was as effective and safe as IV TXA, leading to decreased bleeding and transfusion requirements. <sup>3,11</sup>According to the study, employing IP TXA based on a small pilot study may overestimate its effectiveness, perhaps resulting in unforeseen clinical repercussions.<sup>3</sup> It underlines the importance of larger RCTs to establish the intervention's safety and efficacy, as applying the intervention without further validation may result in a less effective or risky intervention.

Makhija et al. conducted a prospective RCT comparing TXA and EACA in thoracic aortic surgery on CPB.<sup>4</sup> This study is categorized as a Level II RCT.<sup>11</sup> The study was conducted in a tertiary care center with 64 adult patients. Patients were randomized into 2 groups. Group

EACA received a bolus of 50 mg/kg of EACA after induction of anesthesia over 20 minutes, followed by a maintenance infusion of 25 mg/kg/h until chest closure.<sup>4</sup> Group TXA received a bolus of 10 mg/kg of TXA after induction of anesthesia over 20 minutes, followed by a maintenance infusion of 1 mg/kg/h until chest closure. Findings revealed that both interventions reduced blood loss and transfusion requirements. However, EACA was associated with higher renal injury.<sup>4</sup>

Verma et al. conducted a prospective, randomized, double-blind study comparing TXA and EACA in elective coronary artery bypass grafting (CABG).<sup>10</sup> It involved 80 patients admitted for elective CABG at a tertiary hospital between 2017 and 2018. The TXA group received 10 mg/kg IV at induction and 1 mg/kg/hr throughout the surgery. In contrast, the amino-caproic acid group received 100 mg/kg IV over 20 minutes and 10 mg/kg/hr through surgery completion.<sup>10</sup> The study concluded that TXA significantly reduced postoperative bleeding in off-pump CABG at 24 hours, compared to EACA, but it also had a slightly higher seizure rate. The study's main drawback is that the sample size is too small, making it difficult to accurately determine complication rates, suggesting that more extensive trials are needed for off-pump CABG surgeries.<sup>10</sup>

Shi et al. conducted a randomized clinical trial comparing the efficacy and adverse events of high-dose and low-dose TXA in cardiac surgery with CPB.<sup>5</sup> The study involved 3079 adult patients aged 18-70 undergoing cardiopulmonary bypass at 4 Chinese hospitals from 2018 to 2021. Participants received either a high-dose TXA regimen comprising a 30-mg/kg bolus, a 16mg/kg/h maintenance dose, and a 2-mg/kg prime or a low-dose regimen consisting of a 10mg/kg bolus, a 2-mg/kg/h maintenance dose, and a 1-mg/kg prime dose.<sup>5</sup> Results showed that the High-dose TXA infusion modestly reduced the proportion of patients receiving allogeneic red blood cell transfusions after CABG, meeting noninferiority criteria for 30-day mortality, seizure, kidney dysfunction, and thrombotic events. This trial was limited to the Chinese population. Caution should be exercised when applying the findings to other ethnic groups. Additionally, the red blood cell transfusion rate reduction by high-dose TXA was smaller than the expected absolute rate reduction of 7.4%.<sup>5</sup>

Guo et al. conducted a meta-analysis of RCTs to determine the optimal TXA dosage and delivery method for elective heart surgeries.<sup>2</sup> This study is considered Level I on the hierarchy of evidence.<sup>11</sup> The study systematically searched Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE for relevant articles published before December 2018. As a drawback, only RCT comparing TXA with placebo was considered. After assessing 103 full-text articles for eligibility, the authors included 49 studies with 10,591 participants in this meta-analysis.<sup>2</sup> The study found that TXA significantly reduced blood loss, transfusion requirement, and re-operation rate in adult cardiac surgery. TXA was effective for off-pump and on-pump operations and did not increase the risk of thrombotic events or renal injury.<sup>2</sup> However, it significantly increased the risk of seizure, a rare occurrence in cardiac surgery patients. Intravenous delivery of TXA reduced the transfusion rate by 30%, while topical application showed no signs of lowering transfusion requirement.<sup>2</sup>

Myles et al. performed a large-scale 2-by-2 factorial RCT in patients undergoing coronary artery surgery to assess the effect of TXA.<sup>9</sup> Between 2006 and 2015, 4662 patients were randomly assigned to receive aspirin or placebo and TXA or placebo at 31 sites in 7 countries.<sup>9</sup> The study found that TXA reduced blood loss and transfusion requirements without increasing the risk of death or thrombotic complications. However, it was associated with a higher risk of postoperative seizures. The study reasoned that in a cardiac surgical practice

similar to the one in which the trial population was treated, TXA would save approximately 57 units of blood products for every 100 patients treated.<sup>9</sup> This study is classified as a Level II RCT.<sup>11</sup>

Monaco et al. conducted a double-blinded RCT to investigate the effect of TXA on blood loss in open abdominal aortic aneurysm (AAA) surgery.<sup>12</sup> The study included 100 patients over 50 years old. Patients were randomly assigned to receive a TXA loading dose of 500 mg and a continuous infusion of 250 mg/hr or placebo for elective open AAA repair.<sup>12</sup> This research found that TXA did not significantly reduce intraoperative blood loss but had a beneficial effect on postoperative bleeding. This Level II RCT had several limitations, including being underpowered to assess safety outcomes.<sup>11,12</sup> However, the findings agreed with recent literature that TXA does not increase the risk of thromboembolic events. Further trials should specifically focus on postoperative bleeding, including measurements of blood content in postoperative drainages.<sup>12</sup>

Choudhuri et al. compared the incidence of reopening after open heart surgeries in patients who received either EACA or TXA for controlling perioperative bleeding.<sup>13</sup> The study included 78 patients aged 18-65 with ASA physical status II-IV undergoing elective open heart surgeries under CPB. Patients were divided into 3 groups: group A received EACA, group B received TXA, and group C received intravenous 0.9% normal saline. Group A received EACA as a loading dose of 100 mg/kg body weight before the skin incision, followed by a continuous infusion of 100mL of diluted EACA up to 6 hours postoperatively. Group B received TXA at a loading dose of 10mg/kg body weight, followed by a continuous infusion of 100mL of diluted TXA up to 6 hours postoperatively.<sup>13</sup> Both groups received 0.9% normal saline for dilution. This Level II RCT found that both agents had minimal impact on the re-exploration rate due to excessive bleeding.<sup>11,13</sup> Due to the small sample size, future studies with more power are needed to provide more data for critical comparison.

Tksaudom et al.<sup>14</sup> conducted a double-blind, prospective, randomized, controlled trial that aimed to assess the effectiveness of topical and intravenous tranexamic acid in reducing bleeding in cardiac surgery cases. The study involved 82 adult patients who underwent elective on-pump cardiac surgery between July 1, 2014, and September 30, 2015. The primary endpoint was 24hour blood loss, with secondary endpoints including the volume of blood products transfused, reexploration rate, length of hospital stay, mortality, morbidity, and TA-related complications. Data was collected from cardiac surgery patients using research questionnaires and analyzed using the STATA statistical package.

The study found no significant difference between groups in surgical procedures, operative time, aortic cross-clamp time, or CPB time.<sup>14</sup> Postoperative hematologic profiles were comparable, except for postoperative hemoglobin level and hematocrit. The median blood loss 24 hours after surgery was 350.0mL, and there was no significant difference in the rate of decline of postoperative drainage between groups. The most common postoperative complication was de-novo atrial fibrillation in 12 patients. The study concluded that topical tranexamic acid is safe but does not enhance postoperative blood loss. In contrast, intravenous tranexamic acid alone is sufficient for improving hemostatic effects during on-pump cardiac surgery.

# Appendix A: Literature Review Table

| Citation                   | Design/Metho    | Sample/Settin  | Major          | Measurements    | Findings       | Results       | Conclusions    | Appraisal/     |
|----------------------------|-----------------|----------------|----------------|-----------------|----------------|---------------|----------------|----------------|
|                            | d               | g              | Variables      | /               |                |               |                | Worth to       |
|                            |                 |                | /Definitions   | Data analysis   |                |               |                | Practice Level |
| Habbab et al, <sup>1</sup> | The             | The study      | The primary    | The study       | The IP TXA     | The IP TXA    | The study      | Level II small |
| 2019                       | DEPOSITIO       | involved 97    | outcome was    | used            | group showed   | group had     | suggests that  | RCT            |
|                            | N pilot study,  | adults         | postoperative  | continuous      | comparable     | comparable    | IP TXA         | According to   |
|                            | a single-       | undergoing     | chest tube     | variables such  | outcomes and   | primary       | application is | the study,     |
|                            | center,         | elective on-   | production 24  | as mean,        | adverse events | outcomes      | as effective   | employing IP   |
|                            | double-blind,   | pump cardiac   | hours after    | standard        | to the IV TXA  | compared to   | and safe as IV | TXA based on   |
|                            | parallel group  | procedures     | surgery, with  | deviation,      | group, with    | the IV TXA    | TXA in         | a small pilot  |
|                            | randomized      | through a      | secondary      | median, and     | decreased      | group, with   | cardiac        | study may      |
|                            | controlled      | median         | outcomes       | quartiles, and  | bleeding and   | decreased     | surgery, with  | overestimate   |
|                            | trial, aimed to | sternotomy.    | including      | categorical     | reduced        | chest tube    | potential for  | its            |
|                            | reduce          | Exclusion      | postoperative  | data such as    | transfusion    | drainage and  | greater        | effectiveness, |
|                            | postoperative   | criteria       | seizure rates, | frequency       | requirements.  | less          | effectiveness  | perhaps        |
|                            | blood loss by   | included       | surgical re-   | distributions.  | Secondary      | transfusion   | and safety if  | resulting in   |
|                            | topical vs.     | minimally      | exploration,   | Baseline        | outcomes,      | requirements. | studied in a   | unforeseen     |
|                            | intravenous     | invasive valve | total blood    | characteristics | including      | This was      | larger patient | clinical       |
|                            | tranexamic      | surgery, off-  | transfusions,  | were            | cardiac        | observed in   | population,    | repercussions. |
|                            | acid in open    | pump           | ICU stay       | compared        | tamponade,     | all secondary | but a larger   | It underlines  |
|                            | cardiac         | procedures,    | length, death, | using           | bleeding       | outcomes at   | RCT is         | the            |
|                            | surgery.        | emergency      | nonfatal       | χ2/Fisher's     | reoperations,  | discharge and | needed.        | importance of  |
|                            | Patients were   | operations,    | myocardial     | exact tests and | postoperative  | 30 days       |                | larger RCTs to |
|                            | randomized to   | and severe     | infarction,    | analysis of     | seizures, deep | follow-up,    |                | establish the  |
|                            | either an       | renal          | stroke, and    | variance for    | vein           | including     |                | intervention's |
|                            | intervention    | impairment.    | pulmonary      | numerical       | thrombosis,    | cardiac       |                | safety and     |
|                            | group           |                | embolism.      | variables,      | and            | tamponade,    |                | efficacy, as   |
|                            | (received       |                | Adverse        | with analyses   | pulmonary      | reoperations, |                | applying the   |
|                            | intravenous     |                | events were    | conducted       | embolism,      | pneumonia/re  |                | intervention   |

|                             | (IV) placebo    |                 | recorded on    | using SAS      | also decreased | spiratory      |                | without       |
|-----------------------------|-----------------|-----------------|----------------|----------------|----------------|----------------|----------------|---------------|
|                             | and             |                 | discharge and  | version 9.4,   | at discharge   | failure,       |                | further       |
|                             | intrapericardia |                 | at 30 days.    | with a         | and 30 days    | postoperative  |                | validation    |
|                             | 1 (IP) TXA) or  |                 |                | significance   | post-          | seizures, deep |                | may result in |
|                             | a control       |                 |                | level of 0.05. | intervention.  | vein           |                | a less        |
|                             | group           |                 |                |                | These          | thrombosis,    |                | effective or  |
|                             | (received IV    |                 |                |                | reductions     | and            |                | risky         |
|                             | TXA and IP      |                 |                |                | were observed  | pulmonary      |                | intervention. |
|                             | placebo).       |                 |                |                | at both        | embolism.      |                |               |
|                             | 1 /             |                 |                |                | discharge and  |                |                |               |
|                             |                 |                 |                |                | follow-up.     |                |                |               |
| Makhija et al, <sup>2</sup> | A prospective   | The study was   | The study      | The study      | Both groups    | Cumulated      | EACA and       | Level II RCT  |
| 2013                        | randomized      | conducted on    | compared       | used pre-trial | were           | mean blood     | TXA            |               |
|                             | comparative     | a tertiary care | perioperative  | power          | comparable     | loss, total    | effectively    |               |
|                             | study was       | center with 64  | data from 2    | analysis with  | with respect   | packed red     | reduced        |               |
|                             | conducted to    | consecutive     | study groups,  | a sample size  | to CPB time,   | blood cells,   | perioperative  |               |
|                             | evaluate the    | adult patients  | assessing      | of 29 patients | aortic cross-  | and blood      | blood loss and |               |
|                             | efficacy and    | undergoing      | blood loss,    | per group,     | clamp (AOX)    | product        | transfusion    |               |
|                             | safety of       | thoracic aortic | coagulation    | assuming       | time,          | requirement    | requirements   |               |
|                             | tranexamic      | surgery with    | variables, and | mean blood     | minimum        | up to 24h      | in thoracic    |               |
|                             | acid (TXA)      | cardio-         | safety         | loss of 220.31 | temperature    | postoperativel | aortic surgery |               |
|                             | versus epsilon  | pulmonary       | measures.      | mL in EACA     | on CPB,        | y were         | patients, but  |               |
|                             | aminocaproic    | bypass (CPB).   | Intraoperative | and 198 mL in  | hemoglobin     | comparable     | EACA caused    |               |
|                             | acid (EACA)     |                 | blood loss     | TXA. Data      | before coming  | between        | renal injury   |               |
|                             | on patients     |                 | was measured   | were analyzed  | off CPB, urine | groups. The    | and TXA        |               |
|                             | undergoing      |                 | by the amount  | using SPSS     | output,        | study found    | increased      |               |
|                             | thoracic aortic |                 | of blood       | version 15     | amount of      | that EACA      | seizure        |               |
|                             | surgery on      |                 | collected and  | software, with | conventional   | patients       | incidence.     |               |
|                             | CPB. Group      |                 | required for   | continuous     | hemofiltrate,  | experienced    | Further        |               |
|                             | EACA            |                 | PRBC and       | variables      | intraoperative | significant    | confirmation   |               |
|                             | received a      |                 | blood          | expressed as   | blood and      | renal injury   | and            |               |
|                             | bolus of 50     |                 | products,      | mean and       | blood product  | and increased  | prospective    |               |
|                             | mg/kg of        |                 | while          | categoric      | requirement,   | risk of renal  | placebo-       |               |

|                |                | variables as   | instrania                     | fo:1           | a a m t m a 111 |  |
|----------------|----------------|----------------|-------------------------------|----------------|-----------------|--|
| EACA after     | postoperative  |                | inotropic<br>support,         | failure        | controlled      |  |
| induction of   | blood loss     | medians. A     | vasopressor                   | compared to    | trials are      |  |
| anesthesia     | through        | significance   | requirement,                  | TXA patients.  | needed.         |  |
| over 20        | thoracic chest | level of $p <$ | and doses of                  | Additionally,  |                 |  |
| minutes        | tubes was      | 0.05 was       | fentanyl,                     | there was a    |                 |  |
| followed by    | measured.      | considered.    | vecuronium,                   | significant    |                 |  |
| maintenance    | Secondary      |                | midazolam,                    | increase in D- |                 |  |
| infusion of 25 | endpoints      |                | heparin, and                  | dimer from     |                 |  |
| mg/kg/h until  | included       |                | protamine. The                | preoperative   |                 |  |
| chest closure. | thrombosis,    |                | median blood                  | to             |                 |  |
| Group TXA      | neurological   |                | loss through                  | postoperative  |                 |  |
| received a     | dysfunction,   |                | chest tube drain              | values in      |                 |  |
| bolus of 10    | renal          |                | was higher in                 | EACA.          |                 |  |
| mg/kg of       | dysfunction,   |                | the TXA group                 |                |                 |  |
| TXA after      | mechanical     |                | compared to                   |                |                 |  |
| induction of   | ventilation    |                | the EACA                      |                |                 |  |
| anesthesia     | duration, and  |                | group. The                    |                |                 |  |
| over 20        | death.         |                | incidence of                  |                |                 |  |
| minutes        |                |                | renal injury<br>significantly |                |                 |  |
| followed by    |                |                | higher in the                 |                |                 |  |
| maintenance    |                |                | EACA group                    |                |                 |  |
| infusion of 1  |                |                | compared to                   |                |                 |  |
| mg/kg/h until  |                |                | the TXA group.                |                |                 |  |
| chest closure. |                |                | Both groups                   |                |                 |  |
|                |                |                | had comparable                |                |                 |  |
|                |                |                | postoperative                 |                |                 |  |
|                |                |                | hbg, platelet,                |                |                 |  |
|                |                |                | BUN, serum                    |                |                 |  |
|                |                |                | creatinine,                   |                |                 |  |
|                |                |                | creatinine                    |                |                 |  |
|                |                |                | clearance, D-                 |                |                 |  |
|                |                |                | dimer values,                 |                |                 |  |
|                |                |                | and use of                    |                |                 |  |
|                |                |                | rFVII.                        |                |                 |  |

| Verma et al, <sup>3</sup> | A prospective, | The study       | Postoperative  | The study      | Bleeding at 4  | The study      | Tranexamic    | Level II RCT   |
|---------------------------|----------------|-----------------|----------------|----------------|----------------|----------------|---------------|----------------|
| 2020                      | randomized,    | involved 80     | bleeding at 4  | used SPSS      | hours did not  | found no       | acid          | The study's    |
|                           | double-blind   | patients        | and 24 hours   | software to    | show           | significant    | significantly | main           |
|                           | study          | admitted for    | as the primary | perform        | significant    | difference in  | reduced       | drawback is    |
|                           | randomized     | elective        | outcome, and   | statistical    | difference     | postoperative  | postoperative | the lack of    |
|                           | patients to    | CABG at a       | rate of        | analysis. A    | between        | bleeding       | bleeding in   | standardized,  |
|                           | receive        | tertiary        | postoperative  | sample size of | groups, 180    | between        | off-pump      | surgery-       |
|                           | tranexamic     | hospital        | transfusion,   | 32 was found   | ml (80–250)    | groups, but at | CABG at 24    | specific       |
|                           | acid or        | between 2017    | re-operations, | to be          | vs 200 ml      | 24 hours,      | hours,        | dosing for     |
|                           | epsilon-       | and 2018,       | complication   | sufficient for | (100–310).     | group TXA      | compared to   | both agents,   |
|                           | amino-caproic  | excluding       | rate, serum    | each group,    | Bleeding at 24 | showed         | epsilon-      | which could    |
|                           | acid. The      | those with      | fibrinogen,    | with a 5%      | hours          | significantly  | amino-        | have caused    |
|                           | tranexamic     | concomitant     | and            | significance   | was            | less bleeding  | caproic-acid. | differences in |
|                           | acid group     | valvular heart  | D-dimer        | level and 80%  | significantly  | than group     |               | results.       |
|                           | received 10    | disease, recent | levels as      | study power.   | lesser in      | EA, possibly   |               | Standardizatio |
|                           | mg/kg IV at    | myocardial      | secondary      | With a 10%     | tranexamic     | due to TXA's   |               | n is also      |
|                           | induction and  | infarction,     | outcomes.      | dropout rate,  | acid group as  | potency.       |               | needed for     |
|                           | 1 mg/kg/hr     | ejection        |                | 80 patients    | compared to    | There was no   |               | drug           |
|                           | throughout     | fraction        |                | were enrolled. | epsilon-amino  | difference in  |               | administration |
|                           | surgery, while | <40%, pre-      |                | Nonparametri   | -caproic acid  | postoperative  |               | timing. The    |
|                           | the amino-     | existing        |                | c data was     | group,         | transfusion    |               | sample size    |
|                           | caproic acid   | neurological,   |                | represented as | 350 ml (130–   | rates or       |               | was small,     |
|                           | group          | pulmonary,      |                | median with    | 520) vs 430    | reopening      |               | making it      |
|                           | received 100   | renal, or       |                | interquartile  | ml (160–730)   | operations for |               | difficult to   |
|                           | mg/kg IV       | hepatic         |                | range, while   | (p = 0.0022)   | excessive      |               | accurately     |
|                           | over 20        | dysfunction,    |                | categorical    | The rate of    | bleeding.      |               | determine      |
|                           | minutes and    | or known        |                | data was       | transfusion,   | There was no   |               | complication   |
|                           | 10 mg/kg/hr    | drug allergy.   |                | represented as | re-operations, | difference in  |               | rates,         |
|                           | through        |                 |                | mean with      | seizures,      | thrombo-       |               | suggesting     |
|                           | surgery        |                 |                | standard       | renal          | embolic        |               | larger trials  |
|                           | completion.    |                 |                | deviation.     | dysfunction,   | complications, |               | are needed for |
|                           |                |                 |                | Nominal data   | fibrinogen     | stroke, DVT,   |               | off-pump       |
|                           |                |                 |                | was analyzed   | levels, and    | or PE. The     |               |                |

|                         |                |                |                | using Chi-     | D-dimer        | incidence of            |                | CABG           |
|-------------------------|----------------|----------------|----------------|----------------|----------------|-------------------------|----------------|----------------|
|                         |                |                |                | square tests,  | levels did not | stroke and              |                | surgeries.     |
|                         |                |                |                | and a P value  | show           | DVT was not             |                | surgeries.     |
|                         |                |                |                | < 0.05 was     | significant    | statistically           |                |                |
|                         |                |                |                | considered     | difference     | significant.            |                |                |
|                         |                |                |                | significant.   | between the    | The study did           |                |                |
|                         |                |                |                | significant.   |                |                         |                |                |
|                         |                |                |                |                | groups.        | not report an increased |                |                |
|                         |                |                |                |                |                | incidence of            |                |                |
|                         |                |                |                |                |                |                         |                |                |
|                         |                |                |                |                |                | renal                   |                |                |
|                         |                |                |                |                |                | dysfunction,            |                |                |
|                         |                |                |                |                |                | possibly due<br>to dose |                |                |
|                         |                |                |                |                |                |                         |                |                |
|                         |                |                |                |                |                | variation and           |                |                |
|                         |                |                |                |                |                | sample size.            |                |                |
|                         |                |                |                |                |                | There was no            |                |                |
|                         |                |                |                |                |                | significant             |                |                |
|                         |                |                |                |                |                | difference in           |                |                |
|                         |                |                |                |                |                | seizures                |                |                |
|                         |                |                |                |                |                | incidence               |                |                |
|                         |                |                |                |                |                | between                 |                |                |
|                         |                |                |                |                | . 11 .         | groups.                 | xx. 1 1        | I INDOT        |
| Shi et al, <sup>4</sup> | This double-   | The study      | The primary    | The primary    | Allogeneic     | A randomized            | High-dose      | Level II RCT   |
| 2022                    | blind,         | involved 3079  | efficacy end   | efficacy end   | red blood cell | clinical trial          | tranexamic     | The trial is   |
|                         | randomized     | adult patients | point was the  | point was      | transfusion    | found that              | acid infusion  | limited to the |
|                         | clinical trial | undergoing     | rate of        | compared       | occurred in    | high-dose               | modestly       | Chinese        |
|                         | compared the   | cardio-        | allogeneic red | using the full | 21.8% of       | tranexamic              | reduced the    | population, so |
|                         | efficacy and   | pulmonary      | blood cell     | analysis set,  | high-dose      | acid infusion           | proportion of  | caution should |
|                         | adverse events | bypass at 4    | transfusion    | while the      | patients and   | reduced the             | patients       | be exercised   |
|                         | of high-dose   | Chinese        | post-          | primary safety | 26.0% in low-  | proportion of           | receiving      | when           |
|                         | vs low-dose    | hospitals from | operation,     | end point was  | dose patients. | patients                | allogeneic red | applying the   |
|                         | tranexamic     | 2018 to 2021   | while the      | compared       | Postoperative  | receiving               | blood cell     | findings to    |
|                         | acid in        | included those | primary safety | using          | seizure,       | allogeneic red          | transfusions   | other ethnic   |

| patients                   | aged 18 to 70,        | end point was         | completed                 | thrombotic     | blood cell     | after cardio-    | groups.       |
|----------------------------|-----------------------|-----------------------|---------------------------|----------------|----------------|------------------|---------------|
| undergoing                 | awaiting              | a composite           | cases with 30-            | events, kidney | transfusion by | pulmonary        | Additionally, |
| cardiac                    | elective              | of 30-day             | day follow-up             | dysfunction,   | 21.8%          | bypass           | the reduction |
| surgery with               | surgery, and          | mortality,            | data. The                 | and death      | compared to    | surgery,         | of red blood  |
| cardiopulmon               | willing to give       | seizure,              | study used                | occurred in    | 26.0%. The     | meeting          | cell          |
| ary bypass.                | informed              | kidney                | multiple                  | 17.6% of       | high-dose      | noninferiority   | transfusion   |
| Participants               | consent.              | dysfunction,          | imputation, $\chi^2$      | high-dose      | group had a    | criteria for 30- | rate by high- |
| received                   | Patients could        | and                   | test, <i>t</i> -test, and | patients and   | 17.6%          | day mortality,   | dose          |
| either a high-             | withdraw at           | thrombotic            | $\chi^2$ test for         | 16.8% of low-  | composite      | seizure,         | tranexamic    |
| dose                       | any time.             | events                | primary and               | dose patients. | safety end     | kidney           | acid was      |
| tranexamic                 | Exclusion             | (noninferiorit        |                           | Fourteen of    | point rate of  | 2                | smaller than  |
|                            | criteria              | y hypothesis          | secondary end points.     | the 15         | 30-day         | dysfunction, and | the expected  |
| acid regimen comprising of | included              | with a margin         | Post=hoc                  | -              | mortality,     | thrombotic       | absolute rate |
| 1 0                        |                       | •                     |                           | secondary end  | •              |                  | reduction of  |
| a 30-mg/kg                 | acquired<br>defective | of 5%). There were 15 | subgroup                  | points were    | seizure,       | events in a      | 7.4%.         |
| bolus, a 16-               |                       | -                     | analyses were             | not            | kidney         | composite        | /.4%0.        |
| mg/kg/h                    | vision, active        | secondary end         | performed to              | significantly  | dysfunction,   | primary safety   |               |
| maintenance                | intravascular         | points,               | investigate the           | different      | and            | end point.       |               |
| dose, and a 2-             | coagulation,          | including the         | consistency of            | between        | thrombotic     |                  |               |
| mg/kg prime                | thrombophilia         | primary safety        | the primary               | groups,        | events         |                  |               |
| or a low-dose              | , previous            | end point             | efficacy of               | including      | compared       |                  |               |
| regimen                    | convulsions or        | components.           | high-dose vs              | seizure, in    | with a 16.8 in |                  |               |
| comprising a               | seizures,             |                       | low-dose                  | high-dose      | the low-dose   |                  |               |
| 10-mg/kg                   | allergy to            |                       | tranexamic                | patients and   | group. The     |                  |               |
| bolus, a 2-                | intravenous           |                       | acid across               | 0.4% in low-   | difference was |                  |               |
| mg/kg/h                    | transexamic           |                       | clinically                | dose patients. | within the     |                  |               |
| maintenance                | acid,                 |                       | important                 | The study      | noninferiority |                  |               |
| dose, and a 1-             | breastfeeding         |                       | subgroups.                | highlights the | margin of 5%.  |                  |               |
| mg/kg prime                | or pregnancy,         |                       | The study also            | importance of  |                |                  |               |
| dose.                      | terminal              |                       | examined the              | considering    |                |                  |               |
|                            | illness with a        |                       | influence of              | secondary end  |                |                  |               |
|                            | life                  |                       | both high- and            | points in      |                |                  |               |
|                            | expectancy of         |                       | low-dose                  | treatment      |                |                  |               |
|                            | less than 3           |                       | tranexamic                | planning.      |                |                  |               |

|                                 | Trials,<br>MEDLINE,    | only RCT<br>comparing      | seizure,<br>stroke, | analysis with<br>no | the control              | increase the           | High-dose<br>trials<br>delivered | underpowered<br>the results.<br>The |
|---------------------------------|------------------------|----------------------------|---------------------|---------------------|--------------------------|------------------------|----------------------------------|-------------------------------------|
|                                 | Controlled             | surgeries, and             | such as             | was used for        | using TXA<br>and 49% for | operations and did not | for seizure.                     | which                               |
|                                 | Register of            | elective heart             | complications       | effect model        | for patients             | pump                   | events, except                   | regimens,                           |
|                                 | Central                | undergoing                 | postoperative       | The fixed-          | rate was 35%             | pump and on-           | adverse                          | and low-dose                        |
|                                 | Cochrane               | adult patients             | mortality, and      | outcomes.           | transfusion              | for both off-          | risk of serious                  | compare high                        |
|                                 | searched               | criteria were              | operation rate,     | continuous          | The overall              | was effective          | increasing the                   | analysis to                         |
|                                 | systematically         | Inclusion                  | blood loss, re-     | calculated for      | 8925 patients.           | surgery. TXA           | without                          | network                             |
|                                 | study                  | analysis.                  | postoperative       | (MD) was            | trials with              | cardiac                | surgery                          | performing a                        |
|                                 | surgeries. The         | this meta-                 | included            | difference          | 29% in 31                | in adult               | cardiac                          | rate and not                        |
|                                 | elective heart         | participants in            | outcomes            | while mean          | transfusion by           | operation rate         | in adult                         | on transfusion                      |
|                                 | method in              | total of 10,591            | secondary           | interval (CI),      | blood                    | and re-                | requirements                     | missing data                        |
|                                 | delivery               | studies with a             | while               | confidence          | allogeneic               | requirement,           | transfusion                      | including                           |
|                                 | dosage and             | included 49                | hospital stay,      | with 95%            | need for                 | transfusion            | loss and                         | limitations,                        |
|                                 | optimal TXA            | authors                    | volume during       | calculated          | reduce the               | loss,                  | reduces blood                    | analysis has                        |
|                                 | identify the           | eligibility, the           | rate and            | (RR) was            | significantly            | reduced blood          | significantly                    | The meta-                           |
|                                 | trials aimed to        | articles for               | transfusion         | relative risk       | been shown to            | significantly          | TXA                              | RCTs                                |
| 2019                            | analysis of randomized | assessing 103<br>full-text | included            | outcomes,           | surgery has              | TXA                    | analysis<br>shows that           | Analysis of                         |
| Guo et al, <sup>5</sup><br>2019 |                        |                            | Primary<br>outcomes | For<br>dichotomous  | The use of TXA in heart  | The study found that   |                                  | Level I<br>Meta-                    |
| $C_{\rm H2}$ at $z^{1.5}$       | This meta-             | After                      | Duine out           | significant.        | The use of               | The sty in             | The meta-                        | Level I                             |
|                                 |                        |                            |                     | statistically       |                          |                        |                                  |                                     |
|                                 |                        |                            |                     | considered          |                          |                        |                                  |                                     |
|                                 |                        | study.                     |                     | was                 |                          |                        |                                  |                                     |
|                                 |                        | interventional             |                     | sided <i>p</i> <.05 |                          |                        |                                  |                                     |
|                                 |                        | another                    |                     | surgery. A 2-       |                          |                        |                                  |                                     |
|                                 |                        | enrollment in              |                     | cardiac             |                          |                        |                                  |                                     |
|                                 |                        | current                    |                     | open-chamber        |                          |                        |                                  |                                     |
|                                 |                        | disability, and            |                     | chamber and         |                          |                        |                                  |                                     |
|                                 |                        | legal                      |                     | non-open-           |                          |                        |                                  |                                     |
|                                 |                        | months,<br>mental or       |                     | acid on seizures in |                          |                        |                                  |                                     |

| for relevant | placebo were    | infarction,  | and the              | also reduced    | thrombotic      | TXA            | mentioned       |
|--------------|-----------------|--------------|----------------------|-----------------|-----------------|----------------|-----------------|
| articles     | considered.     | pulmonary    | random-effect        | the volume of   | events or       | intravenously, | limitations in  |
| published    | There were      | embolism,    | model was            | blood           | renal injury.   | but high-dose  | the meta-       |
| before       | mainly 2        | and renal    | used for             | transfused in   | However, it     | TXA does not   | analysis, may   |
| December     | types of        | dysfunction. | analysis with        | all patients,   | significantly   | decrease       | raise concerns  |
| 2018. Only   | intravenous     | 5            | heterogeneity.       | with a          | increased the   | transfusion    | about the       |
| RCT          | administration  |              | For outcomes         | reduction of    | risk of         | rates and      | feasibility of  |
| comparing    | methods.        |              | with                 | 0.6 units per   | seizure, a rare | tends to cause | directly        |
| TXA with     | One was         |              | heterogeneity,       | patient.        | event in        | more seizure   | applying the    |
| placebo were | bolus infusion  |              | subgroup             | Postoperative   | cardiac         | attacks. They  | study's results |
| considered   | alone (14       |              | analysis was         | blood loss      | surgery         | considered     | to clinical     |
|              | trials) and the |              | used.                | was reduced     | patients.       | low-dose       | practice.       |
|              | other was       |              | Statistical          | by around 247   | Intravenous     | TXA (bolus     |                 |
|              | bolus           |              | heterogeneity        | ml per patient  | delivery of     | injection<50   |                 |
|              | injection       |              | was assessed         | compared to     | TXA reduced     | mg/kg, or 10   |                 |
|              | followed by     |              | using the I2         | the control     | transfusion     | mg/kg +        |                 |
|              | continuous      |              | test, with I2        | group. TXA      | rate by 30%,    | 1mg/kg/h)to    |                 |
|              | infusion (22    |              | values ranging       | significantly   | while topical   | be more        |                 |
|              | trials).        |              | from 0-40%           | decreased the   | application     | preferable.    |                 |
|              |                 |              | to 75-100%. <i>p</i> | risk of         | did not show    |                |                 |
|              |                 |              | < 0.05 was           | reoperation by  | any signs to    |                |                 |
|              |                 |              | considered           | 38%, with a     | reduce          |                |                 |
|              |                 |              | statistically        | reduction in    | transfusion     |                |                 |
|              |                 |              | significant for      | absolute risk   | requirement.    |                |                 |
|              |                 |              | hypothesis           | of 0.01         | Low-dose        |                |                 |
|              |                 |              | testing. The         | (95%CI 0.01,    | intravenous     |                |                 |
|              |                 |              | publication          | 0.02). TXA      | TXA was         |                |                 |
|              |                 |              | bias was             | was             | effective in    |                |                 |
|              |                 |              | visualized           | associated      | reducing        |                |                 |
|              |                 |              | using                | with a 3.21-    | transfusion     |                |                 |
|              |                 |              | symmetry of          | fold increase   | requirements,   |                |                 |
|              |                 |              | funnel plots.        | in the risk of  | while high-     |                |                 |
|              |                 |              | All statistical      | seizure, with a | dose TXA        |                |                 |

|                           |                           |                              |                      | analyses were performed in    | rate of 0.62% for patients | was at least<br>equally |                                  |                               |
|---------------------------|---------------------------|------------------------------|----------------------|-------------------------------|----------------------------|-------------------------|----------------------------------|-------------------------------|
|                           |                           |                              |                      | RevMan and                    | using TXA                  | effective and           |                                  |                               |
|                           |                           |                              |                      | Stata.                        | and 0.15% for              | may be even             |                                  |                               |
|                           |                           |                              |                      |                               | patients in the            | more effective          |                                  |                               |
|                           |                           |                              |                      |                               | control group.             | in reducing             |                                  |                               |
|                           |                           |                              |                      |                               |                            | transfusion             |                                  |                               |
|                           |                           |                              |                      |                               |                            | rate. The use           |                                  |                               |
|                           |                           |                              |                      |                               |                            | of TXA was              |                                  |                               |
|                           |                           |                              |                      |                               |                            | significantly           |                                  |                               |
|                           |                           |                              |                      |                               |                            | associated              |                                  |                               |
|                           |                           |                              |                      |                               |                            | with an                 |                                  |                               |
|                           |                           |                              |                      |                               |                            | increase in             |                                  |                               |
|                           |                           |                              |                      |                               |                            | seizure                 |                                  |                               |
|                           |                           |                              |                      |                               |                            | attacks.                |                                  |                               |
| Myles et al, <sup>6</sup> | A 2-by-2                  | Between 2006                 | The trial            | Using a chi-                  | The primary                | The study               | Tranexamic                       | Level II RCT                  |
| 2017                      | factorial trial           | and 2015,                    | aimed to             | square test                   | outcome was                | found no                | acid was                         | The trial had                 |
|                           | randomly                  | 4662 patients                | determine the        | with a 2-sided                | death or                   | evidence that           | found to be                      | several                       |
|                           | assigned                  | were                         | primary              | type I error                  | thrombotic                 | tranexamic              | associated                       | limitations,                  |
|                           | patients                  | randomly                     | outcome of           | rate of 5%,                   | complications              | acid resulted           | with a lower                     | including                     |
|                           | undergoing                | assigned to                  | postoperative        | they                          | within the                 | in a higher             | risk of                          | underpowered                  |
|                           | coronary-                 | receive                      | myocardial           | calculated that               | first 30 days              | risk of death           | bleeding in                      | dose effects                  |
|                           | artery surgery            | tranexamic                   | infarction,          | a sample size                 | after surgery              | or thrombotic           | patients                         | testing,                      |
|                           | at risk for               | acid or a                    | including            | of 4484                       | in 386                     | complications           | undergoing                       | limited                       |
|                           | perioperative             | placebo at 31                | death and            | patients would                | patients                   | than a placebo          | coronary-                        | inclusion of                  |
|                           | complications to receive  | sites in 7<br>countries. Out | thrombotic           | be required;                  | (16.7%) and<br>in 420      | for patients            | artery surgery,                  | high-risk                     |
|                           | aspirin or                |                              | events.<br>Secondary | they aimed to recruit a total | patients                   | undergoing              | without higher<br>risks of death | patients, and                 |
|                           | -                         | of these, 2311               | -                    | of 4600                       | 1                          | coronary-               | or thrombotic                    | the presence                  |
|                           | placebo and<br>tranexamic | patients in the tranexamic   | outcomes<br>included |                               | (18.1%) in the placebo     | artery surgery.<br>The  |                                  | of attending<br>anesthesiolo- |
|                           | acid or                   | acid group                   | death, stroke,       | patients.<br>Analysis of      | 1                          | tranexamic              | complications within 30          | gists.                        |
|                           | placebo.                  | underwent                    | pulmonary            |                               | group.<br>Myocardial       | acid group              | days, but with                   | gists.<br>Sensitivity         |
|                           | placebo.                  |                              | embolism,            | the primary and               | infarction was             | had a lower             | a higher risk                    |                               |
|                           |                           | surgery, while               | embolism,            | anu                           | marchon was                | nau a lower             | a nigher risk                    | analysis and                  |

|     | 322 patients renal      | failure, | dichotomous     | detected in    | risk of blood   | of            | blinded data     |
|-----|-------------------------|----------|-----------------|----------------|-----------------|---------------|------------------|
|     | the placebo bowel       | ,        | secondary       | 269 patients   | loss, blood     | postoperative | on               |
|     | roup infarc             | tion,    | outcomes was    | (11.6%) and    | transfusion,    | seizures.     | postoperative    |
| e   | 1                       | ration,  | performed       | in 300         | and             |               | blood loss and   |
| su  | urgery. After and       |          | with the use    | patients       | reoperation     |               | transfusion      |
|     | urgery, 2 transf        | usion    | of chi-square   | (12.9%) in the | but a higher    |               | were             |
|     | <b>C</b>                | ements.  | tests           | placebo        | risk of         |               | consistent       |
| pa  | atients in the In Jan   | uary     | constructed     | group,         | postoperative   |               | with the         |
| 1   |                         | seizures | from binomial   | including 58   | seizures. The   |               | study's results. |
| 1   | 0 1                     | added as | regression      | patients       | results were    |               | The trial also   |
| ex  | xcluded, and a safe     | ty       | with a          | (2.5%) and 47  | consistent      |               | included only    |
| th  | ne remaining outcom     | -        | logarithmic     | patients       | across patients |               | a small          |
| 23  | 320 patients based      | on       | link; the       | (1.9%),        | treated with    |               | proportion of    |
| W   | vere included   clinica | al       | results are     | respectively,  | aspirin and     |               | patients         |
| in  | n outcome observ        | vation.  | expressed as    | recovering     | those not.      |               | undergoing       |
| an  | nalyses.                |          | risk ratios     | from isolated  | Patients in the |               | off pump         |
| D   | emographic,             |          | with 95%        | coronary-      | tranexamic      |               | surgery, which   |
| m   | nedical, and            |          | confidence.     | artery bypass  | acid group      |               | may have led     |
| pe  | erioperative            |          | Time-to-event   | grafting.      | received 46%    |               | to clinically    |
| ch  | haracteristics          |          | outcomes        | Postoperative  | fewer units of  |               | important        |
| W   | vere similar            |          | were assessed   | seizures       | blood           |               | differences.     |
| be  | etween the 2            |          | with the use    | occurred in 15 | products than   |               | Despite these    |
| gr  | roups. Two              |          | of the          | patients who   | the placebo     |               | limitations,     |
| pa  | atients in the          |          | Wilcoxon-       | received       | group.          |               | the point        |
| tra | anexamic                |          | Breslow-        | tranexamic     |                 |               | estimates of     |
| ac  | cid group               |          | Gehan test,     | acid and in 2  |                 |               | effects among    |
| ha  | ad                      |          | with data on    | patients who   |                 |               | these patients   |
| in  | ncomplete               |          | length of stay  | received       |                 |               | were             |
| fo  | ollow-up                |          | in the hospital | placebo (0.7%  |                 |               | generally        |
| da  | ata.                    |          | and intensive   | vs. 0.1%;      |                 |               | consistent       |
|     |                         |          | care unit       | relative risk, |                 |               | with those       |
|     |                         |          | censored at 30  | 7.60; 95% CI,  |                 |               | among on-        |
|     |                         |          | days and in-    |                |                 |               | pump surgery     |

|                            |                 |                |                | hospital        | 1.80 to 68.70; |                |                | patients. In a |
|----------------------------|-----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|
|                            |                 |                |                | deaths          | P = 0.002).    |                |                | cardiac        |
|                            |                 |                |                |                 | P = 0.002).    |                |                |                |
|                            |                 |                |                | assigned the    |                |                |                | surgical       |
|                            |                 |                |                | highest length  |                |                |                | practice       |
|                            |                 |                |                | of stay.        |                |                |                | similar to the |
|                            |                 |                |                |                 |                |                |                | one in which   |
|                            |                 |                |                |                 |                |                |                | the trial      |
|                            |                 |                |                |                 |                |                |                | population     |
|                            |                 |                |                |                 |                |                |                | was treated,   |
|                            |                 |                |                |                 |                |                |                | the use of     |
|                            |                 |                |                |                 |                |                |                | tranexamic     |
|                            |                 |                |                |                 |                |                |                | acid would     |
|                            |                 |                |                |                 |                |                |                | save           |
|                            |                 |                |                |                 |                |                |                | approximately  |
|                            |                 |                |                |                 |                |                |                | 57 units of    |
|                            |                 |                |                |                 |                |                |                | blood          |
|                            |                 |                |                |                 |                |                |                | products for   |
|                            |                 |                |                |                 |                |                |                | every 100      |
|                            |                 |                |                |                 |                |                |                | patients       |
|                            |                 |                |                |                 |                |                |                | treated.       |
| Monaco et al, <sup>7</sup> | The study       | This single-   | The primary    | The study       | The            | The study      | In conclusion, | Level II RCT   |
| 020                        | aimed to        | center,        | outcome was    | used SPSS       | tranexamic     | found no       | the use of     | The study has  |
|                            | investigate the | double-        | intraoperative | Statistics      | acid group     | reduction in   | tranexamic     | several        |
|                            | effect of       | blinded,       | blood loss,    | software        | experienced a  | intraoperative | acid in major  | limitations    |
|                            | tranexamic      | parallel-      | which was      | version 23 to   | median blood   | blood loss in  | vascular       | and strengths, |
|                            | acid on blood   | group,         | calculated by  | analyze data.   | loss of 400 ml | patients       | surgery did    | including a    |
|                            | loss in open    | randomized     | combining      | The             | compared to    | undergoing     | not reduce     | historical     |
|                            | abdominal       | clinical trial | blood volume   | distribution of | 500 ml in the  | open AAA       | intraoperative | estimate of    |
|                            | aortic          | was open to    | aspired during | continuous      | placebo        | repair,        | blood loss,    | intraoperative |
|                            | aneurysm        | patients over  | surgery and    | data was        | group. The     | although a     | although it    | blood loss     |
|                            | (AAA)           | 50 years old   | absorbed in    | tested for      | rate of        | reduction in   | might have     | during AAA     |
|                            | surgery. One    | who provided   | gauzes.        | normality       | patients       | postoperative  | had a          | surgery and    |
|                            | hundred         | written        | Secondary      | using the       | receiving red  | restoperative  | beneficial     | being          |
|                            | manarea         |                | Secondary      | using the       | receiving red  |                | Selleneiui     |                |

| patients were | informed        | outcomes      | Shapiro-Wilk            | blood cell      | bleeding was | effect on     | underpowered   |
|---------------|-----------------|---------------|-------------------------|-----------------|--------------|---------------|----------------|
| randomly      | consent.        | included      | test and other          | transfusion     | observed.    | postoperative | to assess      |
| assigned to   | Patients with   | patients      | tests as                | was 14% in      |              | bleeding.     | safety         |
| receive       | known           | receiving     | appropriate. A          | the             |              | _             | outcomes.      |
| tranexamic    | allergies to    | packed red    | <i>p</i> -value < 0.05  | tranexamic      |              |               | However, the   |
| acid (a       | tranexamic      | blood cells,  | was                     | acid group      |              |               | findings agree |
| loading dose  | acid, seizures, | occurrence of | considered              | compared to     |              |               | with recent    |
| of 500 mg and | acute venous    | thrombo-      | statistically           | 24% in the      |              |               | literature in  |
| a continuous  | or arterial     | embolic       | significant.            | placebo         |              |               | that           |
| infusion of   | thrombosis,     | events up to  | Continuous              | group. No       |              |               | tranexamic     |
| 250 mg/hr) or | fibrinolytic    | 28 days after | variables were          | differences     |              |               | acid does not  |
| placebo for   | conditions,     | surgery, and  | compared                | were found in   |              |               | increase the   |
| elective open | severe renal    | mortality 28  | using <i>t</i> -test or | the rate of     |              |               | risk of        |
| AAA repair.   | insufficiency,  | days and 1    | Mann-                   | thrombo-        |              |               | thrombo-       |
|               | hematuria, or   | year after    | eWhitney U-             | embolic         |              |               | embolic        |
|               | ocular          | surgery. A    | test, and               | events, acute   |              |               | events.        |
|               | disturbances    | phone follow- | categorical             | kidney injury,  |              |               | Further trials |
|               | were excluded   | up was        | values were             | pulmonary       |              |               | should         |
|               | from the trial. | performed 28  | compared                | embolism,       |              |               | specifically   |
|               |                 | days and 1    | using a 2-              | bowel           |              |               | focus on       |
|               |                 | year after    | tailed c2 test          | infarction, or  |              |               | postoperative  |
|               |                 | surgery       | with Yates              | seizures. At    |              |               | bleeding,      |
|               |                 |               | correction.             | 28 days, no     |              |               | including      |
|               |                 |               | Two-sided               | death was       |              |               | measurements   |
|               |                 |               | significance            | recorded,       |              |               | of blood       |
|               |                 |               | tests were              | while at the 1- |              |               | content in     |
|               |                 |               | used in all             | year follow-    |              |               | postoperative  |
|               |                 |               | analyses. Data          | up, 3 patients  |              |               | drainages.     |
|               |                 |               | were                    | died in the     |              |               |                |
|               |                 |               | presented as            | control group.  |              |               |                |
|               |                 |               | mean or                 |                 |              |               |                |
|               |                 |               | median, and             |                 |              |               |                |
|               |                 |               | the estimated           |                 |              |               |                |

|                       |                       |                       |                        | effect size                  |                             |                |                       |                |
|-----------------------|-----------------------|-----------------------|------------------------|------------------------------|-----------------------------|----------------|-----------------------|----------------|
|                       |                       |                       |                        | was assessed                 |                             |                |                       |                |
|                       |                       |                       |                        | using Cohen's                |                             |                |                       |                |
|                       |                       |                       |                        | kappa statistic              |                             |                |                       |                |
|                       |                       |                       |                        | for continuous               |                             |                |                       |                |
|                       |                       |                       |                        | variables,                   |                             |                |                       |                |
|                       |                       |                       |                        | Cliff's <i>d</i> for         |                             |                |                       |                |
|                       |                       |                       |                        | non-normal                   |                             |                |                       |                |
|                       |                       |                       |                        |                              |                             |                |                       |                |
|                       |                       |                       |                        | variables, and absolute risk |                             |                |                       |                |
|                       |                       |                       |                        | difference for               |                             |                |                       |                |
|                       |                       |                       |                        |                              |                             |                |                       |                |
|                       |                       |                       |                        | categorical variables.       |                             |                |                       |                |
| Choudhuri et          | T1                    | T1                    | T1                     |                              | Trans wetten to             | T1             | En elle e             | Level II RCT   |
|                       | The study<br>aimed to | The study included 78 | The primary outcome of | The study                    | Two patients in each of the | The study      | Epsilon               |                |
| al, <sup>8</sup> 2015 |                       |                       |                        | used a sample                |                             | found that     | aminocaproic acid and | The study      |
|                       | compare the           | patients aged         | the study is           | size of 26                   | EACA and                    | demographic    |                       | found that     |
|                       | incidence of          | 18-65 with            | the incidence          | subjects per                 | TXA groups                  | and            | tranexamic            | prophylactic   |
|                       | reopening             | ASA physical          | of reopening           | group to                     | had excessive               | preoperative   | acid show             | administration |
|                       | after open            | status II-IV          | following              | detect a                     | bleeding                    | physiological  | similar effects       | of EACA or     |
|                       | heart surgeries       | undergoing            | open heart             | difference of                | requiring                   | parameters,    | to placebo on         | TXA during     |
|                       | in patients           | elective open         | surgeries in           | 200mL in                     | reopening                   | such as age,   | the incidence         | cardiac        |
|                       | who received          | heart surgeries       | patients who           | blood loss                   | after surgery,              | body weight,   | of reopening          | surgeries      |
|                       | either epsilon        | under CPB.            | were                   | after bypass                 | while 3                     | sex, and       | for excessive         | under CPB      |
|                       | amino caproic         | Patients with         | administered           | surgery.                     | patients in the             | preoperative   | bleeding              | has minimal    |
|                       | acid (EACA)           | redo-cardiac          | either epsilon         | Numerical                    | control group               | coagulation    | following             | effect on the  |
|                       | or tranexamic         | surgery, renal        | amino caproic          | variables were               | had                         | profiles, were | open heart            | rate of re-    |
|                       | acid (TXA)            | insufficiency,        | acid (EACA)            | compared                     | undergone                   | comparable     | surgeries             | exploration    |
|                       | for controlling       | ant platelet          | or tranexamic          | using one-way                | reopening for               | among          | under cardio-         | due to .       |
|                       | perioperative         | therapy,              | acid (TXA)             | analysis of                  | excessive                   | groups. The    | pulmonary             | excessive      |
|                       | bleeding.             | haematologica         | for control of         | variance and                 | bleeding. The               | duration of    | bypass.               | bleeding.      |
|                       | Patients were         | l disorders, or       | perioperative          | Bonferroni's                 | differences in              | cardio-        |                       | However,       |
|                       | divided into 3        | hepatic               | bleeding.              | test, while                  | reopening                   | pulmonary      |                       | future studies |
|                       | groups: group         | dysfunctions          |                        | categorical                  | rates among                 | bypass and     |                       | will provide   |

| A received     | were excluded | data was               | the groups    | patient age   | more data for |
|----------------|---------------|------------------------|---------------|---------------|---------------|
| EACA, group    | from the      | compared               | were          | were also     | critical      |
| Breceived      | study.        | using Chi-             | statistically | similar,      | comparison    |
| tranexamic     |               | Square or              | insignificant | indicating no | and analysis. |
| acid, and      |               | Fisher's exact         | (p > 0.05).   | significant   | The study     |
| group C        |               | tests. All             | · · · ·       | impact on     | emphasizes    |
| received       |               | analyses were          |               | results. The  | the need for  |
| intravenous    |               | 2-tailed, and a        |               | study         | uniform       |
| 0.9% normal    |               | <i>p</i> -value < 0.05 |               | followed      | methods and   |
| saline. Group  |               | was                    |               | uniform       | minimal bias  |
| A received     |               | considered             |               | methods and   | from          |
| EACA as a      |               | statistically          |               | had minimal   | confounding   |
| loading dose   |               | significant.           |               | bias.         | factors.      |
| of 100 mg/kg   |               | C                      |               |               |               |
| body weight    |               |                        |               |               |               |
| before the     |               |                        |               |               |               |
| skin incision, |               |                        |               |               |               |
| followed by a  |               |                        |               |               |               |
| continuous     |               |                        |               |               |               |
| infusion of    |               |                        |               |               |               |
| 100ml of       |               |                        |               |               |               |
| diluted EACA   |               |                        |               |               |               |
| up to 6 hours  |               |                        |               |               |               |
| postoperativel |               |                        |               |               |               |
| y. Group B     |               |                        |               |               |               |
| received TXA   |               |                        |               |               |               |
| at a loading   |               |                        |               |               |               |
| dose of        |               |                        |               |               |               |
| 10mg/kg body   |               |                        |               |               |               |
| weight,        |               |                        |               |               |               |
| followed by a  |               |                        |               |               |               |
| continuous     |               |                        |               |               |               |
| infusion of    |               |                        |               |               |               |

| up to 6 hours<br>postoperative<br>y. Both group<br>received 0.99<br>normal saline<br>for dilution.                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tksaudom et<br>al,9 2017The study<br>aimed to<br>assess the<br>effectiveness<br>of topical and<br>intravenous<br>tranexamic<br>acid in<br>reducing<br>bleeding in<br>cardiac<br>surgery cases<br>Patients<br>undergoing<br>elective on-<br> | The study<br>involved 82<br>adult patients<br>who<br>underwent<br>elective on-<br>pump cardiac<br>surgery<br>between July<br>1, 2014, and<br>September 30,<br>2015. The<br>majority<br>(43.75%)<br>were male and<br>the remaining<br>(56.25%)<br>were female.<br>The primary<br>endpoint was<br>24-hour blood<br>loss, with<br>secondary<br>endpoints<br>including | The primary<br>endpoint was<br>24-hour blood<br>loss, with<br>secondary<br>endpoints<br>including<br>volume of<br>blood<br>products<br>transfused,<br>reexploration<br>rate, length of<br>hospital stay,<br>mortality,<br>morbidity, and<br>TA-related<br>complications. | The study<br>involved<br>recording data<br>from cardiac<br>surgery<br>patients using<br>research<br>questionnaires<br>. The data was<br>analyzed<br>using the<br>STATA<br>statistical<br>package, with<br>categorical<br>data presented<br>as frequency<br>and<br>percentage,<br>and<br>continuous<br>data as mean<br>and standard<br>deviation. The<br>study used | The study<br>found no<br>significant<br>difference in<br>surgical<br>procedures,<br>operative<br>time, aortic<br>crossclamp<br>time, or CPB<br>time between<br>groups.<br>Postoperative<br>hematologic<br>profiles were<br>comparable,<br>except for<br>postoperative<br>hemoglobin<br>level and<br>hematocrit.<br>The median<br>blood loss 24<br>hours after<br>surgery was | There was no<br>significant<br>difference in<br>demographic<br>and<br>intraoperative<br>data except<br>for a<br>significantly<br>lower<br>platelet count<br>preoperatively<br>in the<br>tranexamic<br>acid group<br>(p.0.030).<br>There was no<br>significant<br>difference in<br>postoperative<br>drainage<br>volumes at 8,<br>16, and 24 h,<br>postoperative<br>bleeding over | Topical<br>tranexamic<br>acid is safe<br>but doesn't<br>enhance<br>postoperative<br>blood loss,<br>while<br>intravenous<br>tranexamic<br>acid alone is<br>sufficient for<br>improving<br>hemostatic<br>effects during<br>on-pump<br>cardiac<br>surgery. | Level II.<br>This was a<br>double-blind,<br>prospective,<br>randomized,<br>controlled<br>trial. The<br>study's small<br>sample size,<br>despite<br>theoretically<br>being a large<br>enough<br>sample, did<br>not<br>significantly<br>differ from<br>previous<br>studies,<br>suggesting<br>that<br>intravenous<br>TXA<br>administration<br>alone is |

| acid dissolved | volume of       | Fisher's exact     | 350.0mL, and    | time            | sufficient      |
|----------------|-----------------|--------------------|-----------------|-----------------|-----------------|
| in 100 mL of   | blood           | test, student's    | no significant  | (coefficient.0. | antifibrinolyti |
| normal saline  | products        | <i>t</i> -test, or | difference in   | 713, p.0.709),  | c treatment to  |
| solution       | transfused,     | Wilcoxon's         | the rate of     | or blood        | improve         |
| during sternal | reexploration   | rank-sum test      | decline of      | product         | hemostatic      |
| closure, while | rate, length of | for                | postoperative   | transfusion     | effects during  |
| the placebo    | hospital stay,  | comparison.        | drainage        | between the     | on-pump         |
| group          | mortality,      | Postoperative      | between         | groups.         | cardiac         |
| received 100   | morbidity, and  | blood loss         | groups. The     |                 | surgery.        |
| mL of saline.  | TA-related      | was compared       | most common     |                 |                 |
|                | complications.  | using repeated     | postoperative   |                 |                 |
|                |                 | measures with      | complication    |                 |                 |
|                |                 | mixed              | was de-novo     |                 |                 |
|                |                 | models. A          | atrial          |                 |                 |
|                |                 | <i>p</i> >value of | fibrillation in |                 |                 |
|                |                 | less than 0.05     | 12 patients,    |                 |                 |
|                |                 | was                | with no other   |                 |                 |
|                |                 | considered         | complications   |                 |                 |
|                |                 | significant.       | found. The      |                 |                 |
|                |                 |                    | mean            |                 |                 |
|                |                 |                    | intensive care  |                 |                 |
|                |                 |                    | unit and        |                 |                 |
|                |                 |                    | hospital stay   |                 |                 |
|                |                 |                    | were not        |                 |                 |
|                |                 |                    | significantly   |                 |                 |
|                |                 |                    | different       |                 |                 |
|                |                 |                    | between         |                 |                 |
|                |                 |                    | groups.         |                 |                 |

#### **Literature Review Discussion**

#### Synthesis of the Evidence

Several studies have compared the efficacy of EACA and TXA as antifibrinolytic drugs in various surgical scenarios. Makhija et al. compared EACA and TXA in thoracic aortic surgery.<sup>4</sup> Verma et al. and Choudhuri et al. compared the 2 drugs in elective CABG surgery and elective open-heart surgeries under CBP, respectively.<sup>10,13</sup> There were primarily 2 types of IV administration: bolus infusion alone and bolus infusion followed by continuous infusion. Notably, the dosages utilized in this study follow a consistent trend. All 3 studies employed the same dosing regimens for TXA: a loading dose of 10mg/kg and a maintenance infusing of 1mg/kg/hr, emphasizing the consistency in results achieved with similar dosages.<sup>4,10,13</sup> Makhija et al., on the other hand, used a different dosage of EACA, highlighting the diversity in dosage among research.<sup>4</sup> The precise dosage varied between studies, but the researchers determined that TXA and EACA were non-inferior and successfully decreased perioperative blood loss and transfusion needs. Furthermore, Verma et al. argued that the TXA group showed significantly less bleeding, possibly due to its potency.<sup>10</sup>

Two studies compared different routes of TXA administration. Habbab et al. and Taksaudom et al. compared IV TXA versus IP TXA.<sup>3,14</sup> It should be noted that the IV TXA dose employed by Habbab et al. was not dependent on the patient's weight but on a conventional 100mg dose. This study suggested that IP TXA application is as effective and safe as IV TXA in cardiac surgery.<sup>3</sup> In contrast, Taksaudom et al. found that while intravenous delivery of TXA significantly reduced the transfusion rate by 30%, the topical application showed no signs of lowering transfusion requirements.<sup>14</sup> This result is further confirmed by Guo et al., who debated that topical application of TXA did not reduce the need for allogeneic blood transfusion.<sup>2</sup>

TXA administration was compared to a placebo by Myles et al. and Monaco et al.<sup>9,12</sup> Monaco et al. observed that TXA did not minimize intraoperative blood loss in major vascular surgery.<sup>12</sup> It may, however, have had a favorable effect on postoperative bleeding. Myles et al., on the other hand, concluded that the TXA group had a lower risk of blood loss, transfusion, and reoperation.<sup>9</sup> Furthermore, the disparity in outcomes between these 2 studies could be attributed to the Myles et al. high-dose regimen, which gave either 50 mg/kg or 100 mg/kg of TXA to each patient.<sup>9</sup> A lower dose of TXA will be similarly beneficial while generating fewer side effects.

This research indicated that utilizing TXA was strongly related to increased seizure events. This incidence was linked to greater dosages of TXA rather than low-dose TXA. Shi et al. compared low-dose to high-dose TXA continuous infusion.<sup>5</sup> The authors defined low dose as an intravenous bolus and maintenance regimen of 10 mg/kg and 2 mg/kg/h, respectively, with a pump prime dose of 1 mg/kg and a high dose as 30 mg/kg after anesthesia induction and then maintenance dosage of 16 mg/kg/h throughout the operation with a pump prime dose of 2 mg/kg.<sup>5</sup> This trial substantiates previous findings by showing that high and low doses of continuously infused TXA in patients undergoing cardiac surgery were associated with similar adverse event rates. However, the high dose was more efficacious than the low dose in reducing the need for red blood cell transfusion.<sup>5</sup> The estimate for postoperative seizures was slightly higher in the high-dose TXA group.

Monaco et al. used an average of 1g of TXA to balance the anti-fibrinolytic effects and avoid the previously described neurological problems.<sup>12</sup> Makhija et al. reported a notable tendency for seizure (TXA10% v EACA 3.3%, p = 0.19) after the administration of TXA.<sup>4</sup> Yet the authors considered this difference as insignificant. According to Verma et al., there was no significant difference in the incidence of seizures between the groups.<sup>10</sup> This was consistent with the findings of the study conducted by Makhija et al.<sup>4</sup> Despite differences in dosage regimens and the specific context of the studies (e.g., different types of cardiac operations), the overwhelming opinion is that the incidence of seizures is not statistically different between TXA and control or comparison groups.

#### TXA and Its Impact on Transfusion Requirements in Cardiac Surgery

A significant topic addressed by this review is whether TXA successfully minimizes the requirement for blood product transfusions during and after cardiac surgery compared to other antifibrinolytic drugs. Multiple trials consistently reported reduced blood loss and transfusion needs in patients who received TXA, providing proof of TXA's effectiveness in this area. For example, in a trial comparing TXA with EACA in thoracic aortic surgery, Makhija et al. reported that both antifibrinolytic drugs successfully decreased blood loss and transfusion needs.<sup>4</sup> Similarly, Verma et al. observed that TXA substantially decreased postoperative hemorrhage relative to EACA in elective CABG.<sup>10</sup> This research synthesis emphasizes TXA's essential function in reducing transfusion demands and improving patient outcomes after cardiac surgery, which supports the use of TXA as an alternative to EACA despite its high cost.

#### **Dosages Trends of TXA in Cardiac Surgery**

The research highlighted an essential aspect: the general dose trends of TXA used in cardiac surgery. A consistent tendency appears throughout the included studies regarding TXA

dose, notably concerning bolus and maintenance infusions. For TXA, Verma et al., Makhija et al., and Choudhuri et al. used a 10mg/kg bolus followed by a 1mg/kg/hr maintenance infusion.<sup>4,10,13</sup> This consistent dosage method, reproduced in various investigations, provides a familiar and successful technique for attaining antifibrinolytic effects in cardiac surgery. While the actual dosage may differ somewhat between these trials, the agreement on a loading dose and maintenance infusion dosage highlights a common trend in improving TXA delivery in the setting of cardiac surgery.

#### **Literature Review Conclusion**

This literature review provides valuable insights into antifibrinolytic therapy in cardiac surgery, specifically TXA. The studies consistently show the effectiveness of TXA in reducing perioperative blood loss and transfusion requirements, with a standardized dosage regimen of 10mg/kg bolus followed by a 1mg/kg/hr maintenance infusion being a well-supported practice. The administration route of TXA is also crucial, with studies comparing IV to IP TXA administration suggesting that IP TXA application can be as effective and safe as IV TXA. However, Guo et al.'s findings indicate that topical application of TXA does not significantly reduce the need for allogeneic blood transfusion, calling for further exploration of the optimal route in different cardiac surgical settings.<sup>2</sup>

The incidence of seizures associated with TXA administration is another crucial aspect, with mixed insights from studies. High-dose and low-dose TXA infusions have similar adverse event rates. Monaco et al. used an average of 1g of TXA to balance anti-fibrinolytic effects and neurological concerns.<sup>12</sup> The variability in seizure incidence among these studies underscores the importance of carefully evaluating dosages to mitigate potential adverse effects. The literature

supports the efficacy of TXA in reducing bleeding and transfusion requirements in cardiac surgery, but further investigation is needed to optimize its use in this medical context.

#### **Primary DNP Project Goal**

The primary goal of this doctoral project was to enhance the knowledge of Certified Registered Nurse Anesthetists (CRNAs) FIU alumni practicing throughout the United States through an educational module that provides evidence-based dosing recommendations for antifibrinolytic therapy in cardiac surgery, address existing knowledge gaps, and standardize practice. The educational module was based on evidence-based research that evaluates the efficacy, relative significance, and similar outcomes of EACA and TXA in cardiac surgery. On the verge of a medication shortage, TXA has been proven superior in mitigating perioperative blood loss and transfusion requirements.<sup>2</sup> The current administration of TXA during cardiac surgery is not standardized and may not adhere to best practices.<sup>2</sup> The primary emphasis is on adhering to the well-established dosage regimen of a 10mg/kg preload followed by a 1mg/kg/hr maintenance infusion, as supported by the comprehensive findings of the literature review.<sup>4,10</sup> This assessment offers significant perspectives on the pragmatic implementation of TXA and its influence on enhancing patient outcomes across our country.

#### **SMART Objectives**

#### Specific

The project's objective is to ensure CRNAs clearly understand the appropriate administration and dosing of TXA in case of an EACA drug shortage. Implementing a standardized TXA protocol aims to decrease perioperative blood loss and the necessity for allogeneic blood transfusion among patients undergoing cardiac surgery.

#### Measurable

This endeavor's efficacy will be determined by examining the data collected through preand post-educational questionnaires, focusing on participants' understanding of TXA usage during cardiac surgery, dosage regimens, and potential side effects. The primary goal is to detect a significant enhancement in knowledge, and provider's confidence after the educational module's execution.

#### Achievable

This objective is attainable due to its dependence on the application of established and empirically supported methodologies within the domain of cardiac surgery. It also considers CRNA's commitment to continuous education and patient safety.

#### Relevant

Pertinent to the clinical environment, the project aims to educate CRNAs and enhance patient outcomes by mitigating medical errors, standardizing practice, and decreasing blood loss and transfusion requirements, which contribute to patient safety and satisfaction.

#### **Time-Bound**

The project will be concluded within 6 months, including developing the educational module, data acquisition, and analysis of pre- and post-questionnaires. This timeframe guarantees the project's timely completion and comprehensive evaluation.

#### **Description of the Program Structure**

Developing an online educational module initiative that educates CRNAs on administering TXA during cardiac surgery entailed collaboration among multiple disciplines. A meticulous assessment was conducted to pinpoint opportunities, evaluate the project's importance, and gauge its significance to all stakeholders within the context of cardiac surgery. Employing the Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis was instrumental in scrutinizing internal and external factors that could impact the program's development.<sup>15</sup> The SWOT analysis is an instrument utilized in strategic planning wherein an organization's internal strengths, vulnerabilities, and external opportunities and threats are methodically assessed.<sup>15</sup> The SWOT analysis is of utmost importance in our practice, as it facilitates the translation of evidence into practice by identifying potential areas for enhancement to elevate the standard of cardiac surgery care.

The initial step of this project involved determining key stakeholders. These stakeholders will play an essential role in the future implementation of a framework for TXA administrations throughout the country. Healthcare stakeholders include patients, providers, insurance companies, funders, donors, and research committees.<sup>15</sup> Once stakeholders have been identified, participants of this educational initiative were given a pre-test to assess their existing understanding of TXA, EACA, and cardiac surgery-related factors that influence blood transfusion requirements. Subsequently, an educational course was administered. Post-intervention, participants completed a survey to assess for shifts in their knowledge levels before and after the educational course, ensuring the practical impact of the initiative.

#### Strengths

An outstanding aspect of this initiative was its dedication to enhancing the understanding and use of CRNAs in administering TXA during heart surgery. The initiative's primary goal was to improve perioperative outcomes and patient care. This strategy aligned with the project's objective of minimizing blood loss during surgery and the need for blood transfusion, fostering a safer and more efficient procedures. In addition, the initiative utilized technology and evidencebased approaches.

#### Weaknesses

Despite commendable attributes, the administration of antifibrinolytics across the nation possesses evident shortcomings, as discerned via the SWOT analysis. A notable deficiency lies in the absence of standardized protocols for administering TXA during cardiac surgery and a need for provider knowledge. This weakness gives rise to discrepancies in dosage regimens and routes of administration, potentially causing infidelity in patient care and adverse effects on patient outcomes.

#### **Opportunities**

Healthcare organizations can capitalize on several development opportunities to enhance cardiac surgery care. An opportunity exists to align TXA administration practices with guidelines grounded in empirical evidence.<sup>10</sup> TXA is considerably more expensive than EACA but also more potent. Its utilization can minimize blood loss and transfusion needs during cardiac surgery. Heyns et al. consistently supported specific TXA dosage regimens and administration routes. By implementing these evidence-based practices, hospitals nationwide can decrease complications and increase patient satisfaction and outcomes.<sup>16</sup>

#### Threats

The hazards recognized within this framework primarily pertain to the threats of neglecting to rectify the vulnerabilities and failing to exploit favorable circumstances. Potential consequences of non-compliance with TXA administration best practices include inconsistent patient care, increased complications, and patient dissatisfaction.<sup>16</sup> Furthermore, failure to improve TXA practices in cardiac surgery could potentially subject healthcare organizations to legal liabilities and reputational predicaments in the competitive healthcare industry. Another significant threat to the success of this project revolves around securing the support of cardiac

surgeons and pharmacy. Consistent compliance with the intervention hinges on a collaborative effort among these key stakeholders. Overcoming this challenge is paramount to the project's success, and ensuring the desired improvements in patient care.<sup>15</sup>

#### **Conceptual Underpinning and Theoretical Framework**

The importance of theoretical frameworks in nursing care and evidence-based practice cannot be overstated.<sup>17</sup> They provide an organized framework for comprehending and resolving intricate clinical matters besides serving as a guide for systematically implementing and assessing interventions.<sup>17</sup> This project used the Donabedian model in this context, as it is highly relevant to developing healthcare outcomes and quality assessment. The Donabedian model considers 3 fundamental facets of healthcare quality: structure, process, and outcome.<sup>18</sup> Applying this theoretical framework to assess the effects of an online educational module that aims to elevate the knowledge of FIU alumni regarding standardizing TXA administration on cardiac surgery outcomes will be of immense value. This enables a thorough evaluation of how modifications to the TXA administration process (intervention) impact the organizational components of care provision and, ultimately, the results observed in patients undergoing cardiac surgery.

#### **Theory Overview**

The Donabedian model, developed by Avedis Donabedian in the 1960s, is a crucial framework for evaluating healthcare quality and improving healthcare outcomes. It comprises 3 elements: structure, process, and outcomes, also known as the "Donabedian triad."<sup>18</sup> Structure refers to healthcare delivery's environmental and organizational aspects, including tangible assets, establishments, personnel, and machinery. The process element examines how healthcare is administered, including interactions, practices, and procedures during care provision. On the

other hand, outcomes assess the results of healthcare provision, including clinical, patientreported, and functional outcomes. The model suggests that the interaction among these components influences healthcare efficacy, with changes in the care delivery process potentially affecting the structure and resources, leading to enhanced or diminished outcomes.<sup>18</sup> This model provides a comprehensive and systematic structure for assessing healthcare quality and identifying areas for improvement.

#### **Theory/Clinical Fit**

The Donabedian model is an essential conceptual framework for evaluating healthcare quality. It aligns with my Doctor of Nursing Practice (DNP) project, which focuses on educating CRNAs and enhancing the administration of TXA during cardiac surgery in the event of an EACA shortage. The clinical relevance of this model is remarkable for several reasons. It advocates for a comprehensive approach to evaluating healthcare quality, including structural elements, processes, and results. By educating CRNAs and possibly implementing a standardized protocol for TXA administration, which has the potential to impact patient outcomes, resource allocation, and operational processes, this all-encompassing strategy aligns with the characteristics of healthcare interventions. The Donabedian model is also frequently implemented in healthcare quality improvement endeavors. It provides a systematic approach to evaluate current methodologies and pinpoint opportunities for improvement.<sup>18</sup> The efficacy of my research is assessed by alterations in patient outcomes about blood loss and transfusion requirements, consistent with the theory's focal point on attaining superior healthcare delivery results.

The model is consistent with the growing focus on patient-centered care within the healthcare industry.<sup>15</sup> My project aligns with the principles of delivering patient-centered care by

utilizing optimized TXA administration to improve outcomes. This objective is consistent with the needs and expectations of the patients. This model is an all-encompassing, flexible, and patient-focused structure, providing a solid conceptual underpinning for this DNP project.<sup>18</sup> It directs the project's methodology in assessing the effects of standardized TXA administration practices on operational procedures, structural elements, and, above all else, patient results.<sup>29</sup> By facilitating the implementation of evidence-based modifications in TXA administration protocols, this framework ultimately contributes to improving patient care throughout cardiac surgery.

#### **Theory Evaluation**

Utilizing the framework developed by Peterson and Bredow<sup>17</sup>, I can methodically evaluate the Donabedian model, the theoretical foundation of this project.

#### What is the conceptual definition of the theory, and is it congruent with the project?

Three elements comprise the Donabedian model's definition of healthcare quality: structure, process, and outcomes.<sup>17</sup> The project aligned closely with the goals of my DNP endeavor, which is to improve the quality of healthcare through modifications in the process of care (specifically, standardized TXA administration protocols), the structural component (TXA administration practices), and the intended results (a reduction in perioperative blood loss and transfusion requirements).

#### Is the theory relevant to nursing and healthcare?

The relevance of the Donabedian model to the fields of nursing and healthcare is undeniable.<sup>18,19</sup> Utilization in quality improvement, research, and healthcare quality assessment dates back many years.<sup>19</sup> As an essential component of the healthcare system, the nursing

profession stands to gain substantially from the all-encompassing methodology of this model for evaluating and improving the standard of care.

#### Is the theory appropriate for the specific setting and population in your project?

The Donabedian model is adaptable and suitable for various healthcare settings and populations.<sup>18</sup> This method also applies to various clinical settings, rendering it exceptionally suitable for my research project, which revolves around antifibrinolytic use during cardiac surgery.

#### Does the theory offer testable hypotheses for your project?

Although the Donabedian model does not produce testable hypotheses, it does offer a systematic framework for evaluating and enhancing quality.<sup>19</sup> By employing the model in my project, I generated hypotheses concerning the effects of an educational module regarding standardized TXA administration on transfusion needs and perioperative blood loss. This aspect facilitates a methodical pursuit in evaluating the efficacy of the intervention.

#### What variables in your project can be linked to the concepts in the theory?

Several variables in my undertaking can be associated with the concepts of the Donabedian model. For example, the protocols for TXA administration are structural elements comprising the "structure" component.<sup>20</sup> The care processes, including the administration of TXA, follow the "process" element. The intended results, which encompass a decrease in blood loss and transfusion requirements, are associated with the "outcomes" element of the model.<sup>19</sup>

#### Is there existing empirical support for the theory's relevance to your project?

A solid empirical foundation supports the Donabedian model in healthcare quality research and evidence-based practice. It has been implemented in numerous studies and quality enhancement initiatives across various healthcare settings.<sup>20</sup> Within the framework of my project,

the model's pertinence is empirically supported by an extensive collection of research that establishes a direct correlation between the quality of healthcare and the outcomes experienced by patients. These findings further support the suitability of the paradigm for my DNP project.

#### **Setting and Participants**

The educational initiative focused on creating a complete teaching module for CRNAs FIU alumni. The sample size for participants was selected based on the available pool of CRNAs from the FIU alumni list, guaranteeing a representative and practical cohort for the educational module. Participants for this online educational module were recruited voluntarily from the FIU alumni list through email invites. Because of the voluntary nature of involvement, individuals with a thorough comprehension of TXA procedures were identified, establishing a devoted cohort who actively participated in the educational endeavor.

#### Procedures

This DNP project adopted a pre-/post-intervention design to evaluate the impact of an educational module on the knowledge and practices of CRNAs involved in providing anesthesia for cardiac surgery. This research approach is widely recognized in healthcare research, as it measures outcomes before and after implementation.<sup>21</sup> This design is particularly effective in evaluating changes in knowledge, attitudes, or behaviors resulting from educational interventions or programs.<sup>21</sup> Numerous studies support the applicability and efficacy of pre-/post-intervention designs in healthcare education due to their ability to capture changes within the same group of participants, providing valuable insights into the immediate effects of an intervention.<sup>21</sup> The project aligned with best practices, allowing for a robust analysis of the intervention's effectiveness by comparing participants' understanding of TXA evidence-based recommendations after the educational module.

#### **Protection of Human Subjects**

This project aimed to engage anesthesia providers, specifically CRNAs, in an educational initiative to improve patient care during cardiac surgery. The recruitment strategy involved personalized email invitations and informational materials to clarify the project's objectives and expectations, outlining the project's purpose, significance, and role of CRNAs in contributing to the initiative. This initiative prioritized subject privacy and confidentiality. Participants were fully informed about the project's aim, projected time commitment, and voluntary nature of their participation. Responses were kept anonymous, with no way to link them to specific participants. Basic demographic information such as gender, age, and years of service was collected to understand the sample's makeup better. Participants could, however, choose to keep this information private.

Participants signed electronic consent forms showing their comprehension of the project contents and acceptance to participate as part of the informed consent process. The consent form explaining these facts was distributed to participants as part of the recruitment process and included in this document's appendices. Furthermore, participants were notified that the project findings would be presented collectively, preventing individual responses from being identified. To protect participant information further, the project followed the standards and requirements established by the Institutional Review Board (IRB).<sup>21</sup> Obtaining IRB permission was a vital step in guaranteeing the ethical conduct of the research.

#### **Data Collection**

The project used electronic data collection, specifically the Qualtrics system, to streamline the process and improve data accuracy. The platform administered pre- and posteducational intervention questionnaires to CRNAs, assessing participants' knowledge of 47

tranexamic acid administration during cardiac surgery, appropriate dosing, and potential side effects. The questionnaires captured both quantitative and qualitative data, including demographic information.<sup>21</sup> Post-education intervention, the data were graded for accuracy and compared to assess the effectiveness of the educational module. The analysis also explored whether participants planned to alter their current practices based on the insights gained from the educational initiative.

#### **Data Management and Analysis Plan**

The study adhered to strict confidentiality and security protocols in data management and storage. Electronic data collected through the Qualtrics system were stored on a passwordprotected laptop, ensuring only authorized personnel had access. Private information was managed vigilantly, with only essential personnel accessing identifiable information. Results were reported in an aggregated and de-identified format to protect participant privacy. These measures aligned with ethical standards and was communicated to participants during the informed consent process. After the project's completion, all data were securely disposed of, with electronic files permanently deleted.

The statistical evaluation of the data collected in this project involved a combination of descriptive and inferential statistical methods.<sup>21</sup> Descriptive statistics were employed to summarize and present the essential features of the dataset, offering a comprehensive overview of the CRNAs' knowledge levels regarding TXA administration during cardiac surgery. This provided a detailed understanding of the baseline knowledge and the extent of knowledge enhancement achieved through the educational module. In addition to descriptive statistics, inferential statistics were applied to conclude the observed data and to provide evidence of the

educational initiative's effectiveness in improving CRNAs' understanding of TXA administration protocols, dosing, and potential side effects.

#### Timeline

This project was expected to take 6 months to complete. The initial steps were dedicated to initiation and defining objectives. A literature review was also conducted to inform the project's design and proposal. Subsequent tasks involved preparing and submitting the Institutional Review Board (IRB) application, ensuring ethical compliance and participant protection. Once IRB approval was obtained, the next step was to work on participant recruitment and informed consent facilitation, emphasizing voluntary participation.

Pre-intervention data collection and implementation were conducted, with preintervention questionnaires and resources provided. Post-intervention data collection analyzed participants' responses to assess the module's impact. Data were examined in the final months, with findings organized into a cohesive document. The last steps were dedicated to the preparation and execution of the final defense, including a detailed presentation, refining communication skills, and addressing stakeholder queries.

#### Results

As mentioned before, upon receiving the official IRB and faculty approval, the Qualtrics survey containing the pre- and post-questionnaires and the educational module was launched. Emails containing an invitation to follow Qualtrics's link were submitted to the list of FIU CRNA alumni provided by the faculty. Participants had almost 2 months to complete the survey, with reminders sent every 2 weeks for a total of 3 reminders. Eighteen replies were collected; however, 3 were empty and subsequently invalidated from the results and data analysis. This survey had a sample size of 15 participants. One participant declined to answer after consent, but 14 consented and completed the survey. Of the participants, 57% (n = 8) were males, and 43% (n = 6) were females. Male participation was slightly higher. All participants were older than 25, with the highest number of participants older than 31 years, 79% (n = 11). Hispanics comprised the most prominent ethnic group of participants at 50% (n = 7). CRNAs with a doctoral level of education comprised 100% (n = 14) of the sample size. Of these providers, 54% (n = 7) had 1-5 years of experience, while the rest had less than a year or more than 5. Participants' demographics are shown with details in the following tables.

| Table 1. Sample S | ize |
|-------------------|-----|
|-------------------|-----|

| Response           | Count | Percentage |
|--------------------|-------|------------|
| Completed Survey   | 14    | 93         |
| Declined to answer | 1     | 7          |
| Total Participants | 15    | 100        |

| Characteristic   | Count | Percentage |
|------------------|-------|------------|
| Gender           |       |            |
| Male             | 8     | 57         |
| Female           | 6     | 43         |
| Age              |       |            |
| 25-30            | 3     | 21         |
| 31-40            | 7     | 50         |
| 41 and above     | 4     | 29         |
| Ethnicity        |       |            |
| Hispanic         | 7     | 50         |
| Caucasian        | 5     | 36         |
| African American | 1     | 7          |
| Asian            | 0     | 0          |
| Other            | 1     | 7          |

#### Table 2. Demographic Characteristics

| Level of Education  |    |     |
|---------------------|----|-----|
| Certificate         | 0  | 0   |
| Bachelor's degree   | 0  | 0   |
| Master's degree     | 0  | 0   |
| DNP                 | 14 | 100 |
| PhD                 | 0  | 0   |
| Years of Experience |    |     |
| Less than 1 year    | 5  | 36  |
| 1-5 years           | 7  | 50  |
| 6-9 years           | 0  | 0   |
| More than 10 years  | 2  | 14  |

#### Summary

The pretest was crafted to identify knowledge disparities among providers. In the pretest, the vast majority of the providers identified a decrease in perioperative bleeding as the primary purpose of using antifibrinolytic therapy, such as TXA or EACA, during cardiac surgery (n = 11, 77%). Common missed knowledge was regarding the antifibrinolytic drug that was associated with a 53% increase in mortality and subsequently withdrawn globally in 2007. Most participants believe the drug to be aprotinin (n = 7, 50%), while others thought it to be lysine analogs or EACA. Most participants were able to correctly identify platelet dysfunction, hypotension, and systemic anticoagulation as contributing risks to significant perioperative bleeding in cardiac surgery (n = 8, 60%), while a minority wrongly chose hypertension and platelet aggregation. Regarding the adverse effects associated with a high dose of antifibrinolytics, only n = 6 (43%) were able to identify seizures during cardiac surgery as the answer. Less than half of the participants (n = 6, 45%) could pinpoint 10mg/kg as the loading dose of TXA commonly used in studies comparing TXA and EACA in cardiac surgery. When identifying 30 mg/kg loading dose

and 16 mg/kg/hr maintenance as the high-dose regimen of TXA recognized as more effective in reducing the need for red blood cell transfusion, only n = 1 (7%) could pick the correct answer.

CRNA (7%) knew the dosage method suggested by the research as the safer choice for TXA in cardiac surgery. These statistics showed that CRNAs are deficient in knowledge regarding proper dosing of TXA or antifibrinolytics in general.

Compared to the pretest, the posttest demonstrated a greater proportion of questions with the correct answers. The fact that this occurred suggests that the educational intervention was effective. Eighty-seven percent of the providers correctly identified seizures as the principal adverse effect associated with high doses of antifibrinolytics compared to 43% in the pretest. The high-dose regimen of TXA identified as more effective in reducing the need for red blood cell transfusion, and the dosage method suggested by the research as the safer choice for TXA in cardiac surgery, the 2 lowest scoring questions from the pretest, had score increases of 43% and 53%, respectively. However, the question with the most significant score improvement of 55% was the loading dose of TXA commonly used in studies comparing TXA and EACA. The educational intervention successfully addressed inadequacies in the providers' knowledge, as seen by the considerable improvement in the questions with the lowest scores.

#### Table 3. Pretest and Posttest Responses

| Questions                                                                                                         | Pretest<br>(% of correct<br>answers)<br>n = 14 | Posttest<br>(% of correct<br>answers)<br>n=14 | Difference |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|------------|
| What is the primary purpose of using<br>antifibrinolytic therapy, such as TXA or EACA,<br>during cardiac surgery? | 77%                                            | 100%                                          | 33%        |

| Which antifibrinolytic drug was associated with a 53% increase in mortality and subsequently withdrawn globally in 2007                   | 50% | 87%  | 37% |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|
| What are some contributing risks to significant perioperative bleeding in cardiac surgery?                                                | 60% | 100% | 40% |
| Why might institutions choose EACA over TXA for open-heart surgery protocols?                                                             | 72% | 100% | 28% |
| Which adverse effect has been associated with<br>high doses of antifibrinolytic drugs, including<br>TXA and EACA, during cardiac surgery? | 43% | 87%  | 44% |
| What loading dose of TXA is commonly used in studies comparing TXA and EACA in cardiac surgery?                                           | 45% | 100% | 55% |
| Which high-dose regimen of TXA has been<br>identified as more effective in reducing the need<br>for red blood cell transfusion?           | 7%  | 50%  | 43% |
| What dosage method is suggested by the research as the safer choice for TXA in cardiac surgery?                                           | 7%  | 60%  | 53% |

## Implementation

Before the educational material, most participants (n = 6, 42%) reported feeling either somewhat comfortable or extremely comfortable administering TXA during cardiac surgery. In comparison, 28% felt neither comfortable nor uncomfortable, and 14% felt somewhat uncomfortable. However, 75% of CRNA participants felt either somewhat comfortable or extremely comfortable with TXA administration after the educational module, marking a 33% improvement from previous responses. These findings clearly indicate the educational module's favorable effect, underlining its significance in improving clinical confidence and competency among healthcare workers.

#### Limitations

The most evident flaw in the educational initiative was the small sample size. Although email invitations were initially distributed to over 100 FIU alumni, after multiple reminders were sent, merely 15 replies were collected. Of those, only 14 consented to participate in the survey. The study's validity and reliability may be impacted by a limited sample size. It is worth mentioning that only 9 articles were considered for inclusion in the initial literature review.

#### **Discussion of the Results with Implications for Practice**

The anticipated outcomes of this program will have far-reaching ramifications for advanced nursing practice in various ways. Implementing this module is expected to raise awareness and understanding among CRNAs. This might result in a more informed and trained workforce capable of providing evidence-based treatment in the ever-changing field of cardiac anesthesia, reducing perioperative blood loss and the need for allogeneic blood transfusions.

The next step of this educational module is to make the results available to hospital stakeholders. If a shortage of EACA were to occur, stakeholders may use the EBP information collected as a tool to make decisions regarding the care of cardiac surgery patients. While implementing new recommendations for best practices in this area may result in additional expenses, it might also involve a better surgical experience for the patient. It is advised to carry out more research on the use of TXA in cardiac surgery.

#### Conclusion

Cardiac surgery involves considerable perioperative bleeding and blood transfusions. Antifibrinolytics, such as TXA, have been demonstrated to prevent bleeding. However, their greater cost may limit healthcare facilities' options. Inconsistent dosing may impair bleeding control and increase the risk of complications. Creating an educational module for anesthesia practitioners on TXA doses may fill knowledge gaps and enhance patient care. The project's findings might increase knowledge among CRNAs, minimize blood loss and transfusion requirements, and promote standardized TXA protocols. The project's success may establish the hospital as a leader in evidence-based cardiac surgical techniques, perhaps impacting more extensive healthcare policy.

# References

- 1. Aminocaproic acid manufacturer shuttered, though not expected to trigger shortage. National Hemophilia Foundation. Published March 16, 2023. Accessed May 31, 2023. <u>https://www.hemophilia.org/news/aminocaproic-acid-manufacturer-shuttered-though-not-expected-to-trigger-shortage</u>
- 2. Guo J, Gao X, Ma Y, et al. Different dose regimes and administration methods of tranexamic acid in cardiac surgery: a meta-analysis of randomized trials. *BMC Anesthesiol*. 2019;19(1):129. doi:10.1186/s12871-019-0772-0
- 3. Habbab LM, Hussain S, Power P, et al. Decreasing postoperative blood loss by topical vs. intravenous tranexamic acid in open cardiac surgery (DEPOSITION) study: results of a pilot study. *J Card Surg.* 2019;34(5):305-311. doi:10.1111/jocs.14027
- 4. Makhija N, Sarupria A, Kumar Choudhary S, Das S, Lakshmy R, Kiran U. Comparison of epsilon aminocaproic acid and tranexamic acid in thoracic aortic surgery: clinical efficacy and safety. *J Cardiothorac Vasc Anesth*. 2013;27(6):1201-1207. doi:10.1053/j.jvca.2013.04.003
- 5. Shi J, Zhou C, Pan W, et al. Effect of high- vs low-dose tranexamic acid infusion on need for red blood cell transfusion and adverse events in patients undergoing cardiac surgery: the OPTIMAL randomized clinical trial. *JAMA*. 2022;328(4):336-347. doi:10.1001/jama.2022.10725.
- Churchill JL, Puca KE, Meyer E, Carleton M, Anderson MJ. Comparing ε-aminocaproic acid and tranexamic acid in reducing postoperative transfusions in total knee arthroplasty. *J Knee* Surg. 2017;30(5):460-466. doi:10.1055/s-0036-1593362
- D'Agostino RS, Jacobs JP, Badhwar V, et al. The society of thoracic surgeons adult cardiac surgery database: 2018 update on outcomes and quality. *Ann Thorac Surg.* 2018;105(1):15-23. doi:10.1016/j.athoracsur.2017.10.035
- 8. Tucker EL, Cao Y, Fox ER, Sweet BV. The drug shortage era: a scoping review of the literature 2001-2019. *Clin Pharmacol Ther*. 2020;108(6):1150-1155. doi:10.1002/cpt.1934
- 9. Myles PS, Smith JA, Forbes A, et al. Tranexamic acid in patients undergoing coronary-artery surgery. *N Engl J Med*. 2017;376(2):136-148. doi:10.1056/nejmoa1606424
- 10. Verma S, Srinivas U, Sathpathy AK, Mittal P. Comparison of effectiveness of tranexamic acid and epsilon-amino-caproic-acid in decreasing postoperative bleeding in off-pump CABG surgeries: a prospective, randomized, double-blind study. *Ann Card Anaesth.* 2020;23(1):65-69. doi:10.4103/aca.ACA\_142\_18.
- 11. Dearholt SL, Dang D. Johns Hopkins Nursing Evidence-Based Practice Model and Guidelines, Second Edition. SIGMA Theta Tau International, Center for Nursing; 2012.

- 12. Monaco F, Nardelli P, Pasin L, et al. Tranexamic acid in open aortic aneurysm surgery: a randomised clinical trial. *Br J Anaesth*. 2020;124(1):35-43. doi:10.1016/j.bja.2019.08.028
- Choudhuri P, Biswas BK. Intraoperative use of epsilon amino caproic acid and tranexamic acid in surgeries performed under cardiopulmonary bypass: A comparative study to assess their impact on reopening due to postoperative bleeding. *Ethiop J Health Sci.* 2015;25(3):273-278. doi:10.4314/ejhs.v25i3.11
- Taksaudom N, Siwachat S, Tantraworasin A. Additional effects of topical tranexamic acid in onpump cardiac surgery. *Asian Cardiovasc Thorac Ann*. 2017;25(1):24-30. doi:10.1177/0218492316683759
- 15. Benzaghta MA, Elwalda A, Mousa M, Erkan I, Rahman M. SWOT analysis applications: An integrative literature review. *Journal of Global Business Insights*. 2021;6(1):55-73. doi:10.5038/2640-6489.6.1.1148
- Heyns M, Knight P, Steve AK, Yeung JK. A single preoperative dose of tranexamic acid reduces perioperative blood loss: A meta-analysis. *Ann Surg.* 2021;273(1):75-81. doi:10.1097/sla.00000000003793
- Butcher HK. Commentary and book review of Middle Range Theories: Application to Nursing Research and Practice (5th edition) by Sandra J. Peterson and Timothy S. Bredow (2020). *Nurs Sci Q.* 2021;34(2):211-216. doi:10.1177/0894318421992031
- Tossaint-Schoenmakers R, Versluis A, Chavannes N, Talboom-Kamp E, Kasteleyn M. The challenge of integrating eHealth into health care: systematic literature review of the Donabedian model of structure, process, and outcome. *J Med Internet Res.* 2021;23(5):e27180. doi:10.2196/27180
- 19. Santry HP, Strassels SA, Ingraham AM, et al. Identifying the fundamental structures and processes of care contributing to emergency general surgery quality using a mixed-methods Donabedian approach. *BMC Med Res Methodol*. 2020;20(1):247. doi:10.1186/s12874-020-01096-7
- 20. Hofmann A, Aapro M, Fedorova TA, et al. Patient blood management in oncology in the Russian Federation: resolution to improve oncology care. *J Mod Onco*. 2020;22(3):59-78. doi:10.26442/18151434.2020.3.200340
- 21. Polit DF, Beck CT. *Nursing Research: Generating and Assessing Evidence for Nursing Practice*. 10th ed. Lippincott Williams and Wilkins; 2015.

#### **Appendix B: IRB Approval Letter**



Office of Research Integrity Research Compliance, MARC 430

#### **MEMORANDUM**

| То:             | Dr. Vicente Gonzalez                                                                                                                                                                                                               |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC:             | Lianet Ramirez                                                                                                                                                                                                                     |
| From:           | Kourtney Wilson, MS, IRB Coordinator                                                                                                                                                                                               |
| Date:           | February 14, 2024                                                                                                                                                                                                                  |
| Protocol Title: | ""An Educational Module on the usage of Tranexamic Acid (TXA) as an<br>alternative to Epsilon Aminocaproic Acid (EACA) in cardiac surgery to<br>reduce perioperative transfusion requirements: A Quality Improvement<br>Project."" |

The Florida International University Office of Research Integrity has reviewed your research study for the use of human subjects and deemed it Exempt via the **Exempt Review** process.

 IRB Protocol Exemption #:
 IRB-24-0057
 IRB Exemption Date:
 02/14/24

 TOPAZ Reference #:
 113928

As a requirement of IRB Exemption you are required to:

- 1) Submit an IRB Exempt Amendment Form for all proposed additions or changes in the procedures involving human subjects. All additions and changes must be reviewed and approved prior to implementation.
- Promptly submit an IRB Exempt Event Report Form for every serious or unusual or unanticipated adverse event, problems with the rights or welfare of the human subjects, and/or deviations from the approved protocol.
- 3) Submit an IRB Exempt Project Completion Report Form when the study is finished or discontinued.

Special Conditions: N/A

For further information, you may visit the IRB website at http://research.fiu.edu/irb.

KMW

# **Appendix C: Participant Recruitment Letter**

# "An Educational Module on the usage of Tranexamic Acid (TXA) as an alternative to Epsilon Aminocaproic Acid (EACA) in cardiac surgery to reduce perioperative transfusion requirements: A Quality Improvement Project."

Dear FIU ALUMNI Perioperative Providers:

My name is Lianet Ramirez, and I am a student in the Anesthesiology Nursing Program Department of Nurse Anesthesiology at Florida International University. I invite you to participate in my quality improvement project. This project aims to increase healthcare providers' awareness of evidence-based dosing recommendations of TXA as an alternative to EACA with a focus on contraindications and side effects during cardiac surgery. You are eligible to participate in this project because you are a part of the FIU ALUMNI perioperative provider.

If you decide to participate in this project, you will be asked to complete and sign a consent form. Next, you will complete a pre-test questionnaire, which is expected to take approximately 5 minutes. You will then be asked to view an online educational presentation that is around 15 minutes long. After going through the educational module, you will be asked to complete the post-test questionnaire, which will take about 5 minutes. *No compensation will be provided*.

Remember, this is entirely voluntary. You can choose to be in the study or not. If you'd like to participate or have questions about the study, please email or contact me, Lianet Ramirez, at 786-447-4466 or lrami168@fiu.edu.

Thank you very much.

Sincerely,

Lianet Ramirez, SRNA 786-447-4466 lrami168@fiu.edu.

# **Appendix D: Informed Consent**



# CONSENT TO PARTICIPATE IN A QUALITY IMPROVEMENT PROJECT

An Educational Module on the usage of Tranexamic Acid (TXA) as an alternative to Epsilon Aminocaproic Acid (EACA) in cardiac surgery to reduce perioperative transfusion requirements: A Quality Improvement Project

# SUMMARY INFORMATION

Things you should know about this study:

- <u>**Purpose:**</u> Educational module to increase providers' awareness of TXA dosing, contraindications, and side effects in the field of cardiac anesthesia.
- <u>**Procedures**</u>: If the participant chooses to participate, they will be asked to complete a pretest, watch a voice PowerPoint, and then a post-test
- **<u>Duration</u>**: This will take about a total of 25 minutes total.
- <u>**Risks**</u>: There will be minimal risks involved with this project, as would be expected in any type of educational intervention, which may include mild emotional stress or mild physical discomfort from sitting on a chair for an extended period.
- <u>Benefits</u>: The main benefit to you from this research is to increase the participants' knowledge of evidence-based dosing recommendations of TXA as an alternative to EACA during cardiac surgery.
- <u>Alternatives</u>: There are no known alternatives available to the participant other than not taking part in this quality improvement project.
- **<u>Participation</u>**: Taking part in this quality improvement project is voluntary.

Please carefully read the entire document before agreeing to participate.

# NUMBER OF STUDY PARTICIPANTS:

If the participant decides to be in this study, they will be 1 of 20 people in this research study.

# PURPOSE OF THE PROJECT

The participant is being asked to be in a quality improvement project. The goal of this project is to increase providers' knowledge of best practices in perioperative TXA administration during cardiac surgery, with a focus on dosage protocols, administration techniques, and associated benefits and risks. If you decide to participate, you will be 1 of approximately 20 participants.

# **DURATION OF THE PROJECT**

The participation will require about 25 minutes.

# **PROCEDURES**

If the participant agrees to be in the project, PI will ask you to do the following things: 1. Complete an online 10-question pre-test survey via Qualtrics, an Online survey product for which the URL link is provided

2. Review the educational PowerPoint Module lasting 15 minutes via Qualtrics, an Online survey product for which the URL link is provided.

3. Complete the online 10-question post-test survey via Qualtrics, an Online survey product for which the URL link is provided.

# **RISKS AND/OR DISCOMFORTS**

The main risk or discomfort from this research is minimal. There will be minimal risks involved with this project, as would be expected in any type of educational intervention, which may include mild emotional stress or mild physical discomfort from sitting on a chair for an extended period.

# **BENEFITS**

The following benefits may be associated with participation in this project: enhanced understanding of TXA administration in cardiac surgery, increased knowledge of dosage regimens, heightened awareness of potential side effects, and the chance to contribute to advancing evidence-based practices in perioperative care. The overall objective of the program is to increase the providers' knowledge based on the current literature.

# ALTERNATIVES

There are no known alternatives available to the participant other than not taking part in this project. However, if the participant would like to receive the educational material, it will be provided to them at no cost.

# CONFIDENTIALITY

The records of this project will be kept private and will be protected to the fullest extent provided by law. If any sort of report PI might publish, it will not include any information that will make it possible to identify the participant. Records will be stored securely, and only the project team will have access to the records.

PARTICIPATION: Taking part in this quality improvement project is voluntary.

# **COMPENSATION & COSTS**

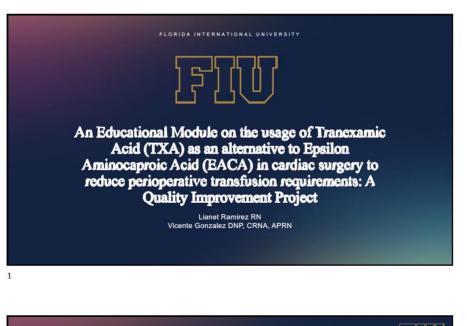
There is no cost or payment to the participant for receiving the health education and/or for participating in this project.

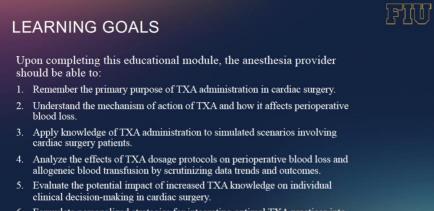
# **RIGHT TO DECLINE OR WITHDRAW**

Participation in this project is voluntary. The participant is free to participate in the project or withdraw the consent at any time during the project. The participant's withdrawal or lack of participation will not affect any benefits to which you are otherwise entitled. The investigator reserves the right to remove the participant without their consent at such time that they feel it is in their best interest.

# **RESEARCHER CONTACT INFORMATION**

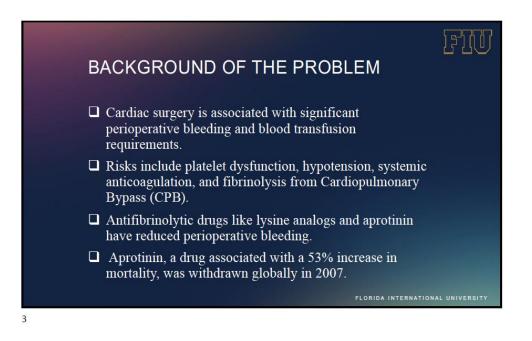
If you have any questions about the purpose, procedures, or any other issues relating to this research project, you may contact Lianet Ramirez at 786-447-4466/lrami168@fiu.edu and Dr. Vicente Gonzalez at 305-348-0062/ gonzalv@fiu.edu.

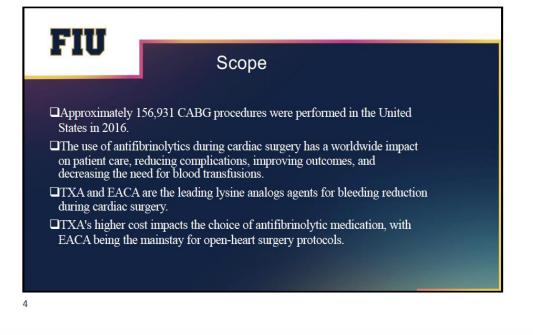

# **IRB CONTACT INFORMATION**


If the participant would like to talk with someone about their rights pertaining to being a subject in this project or about ethical issues with this project, the participant may contact the FIU Office of Research Integrity by phone at 305-348-2494 or by email at ori@fiu.edu.

## **PARTICIPANT AGREEMENT**

I have read the information in this consent form and agree to participate in this study. I have had a chance to ask any questions I have about this study, and they have been answered for me. By clicking on the "consent to participate" button below, I am providing my informed consent.


#### **Appendix E: Educational Module**

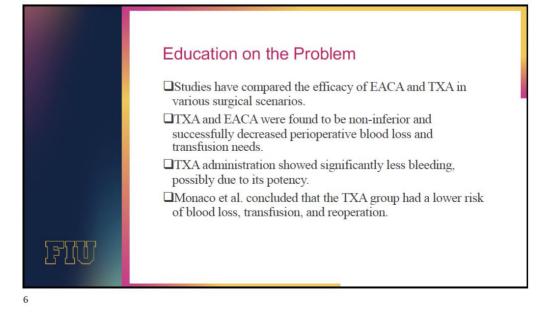





6. Formulate personalized strategies for integrating optimal TXA practices into participants' cardiac surgery protocols.

2

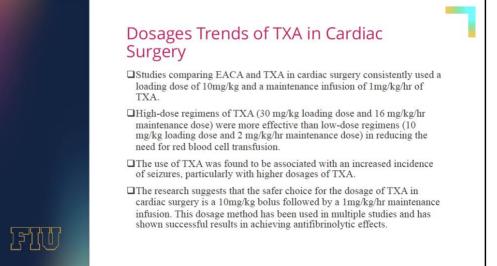




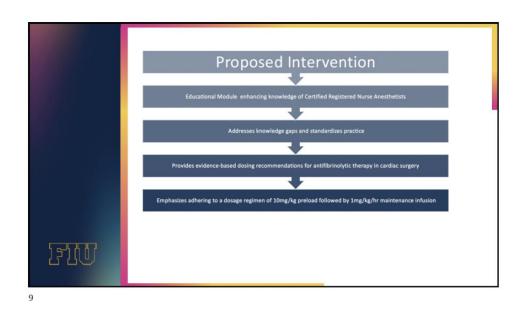

# Problem Statement

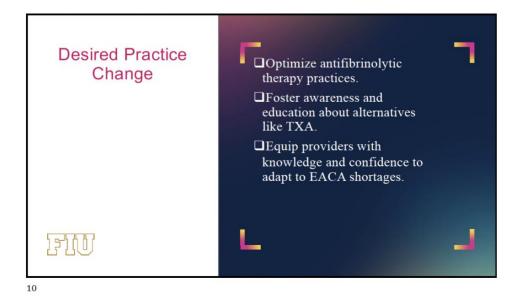
- □ National Hemophilia Foundation's announcement on Akorn's closure raises accessibility concerns for EACA.
- □ Substitution with TXA: possible shift to TXA due to EACA shortage in cardiac surgery.
- Lack of consensus on TXA dosing in cardiac surgery, leading to varied regimens.
- □Need for determining equally efficacious and safe TXA dose compared to aminocaproic acid in cardiac surgery.

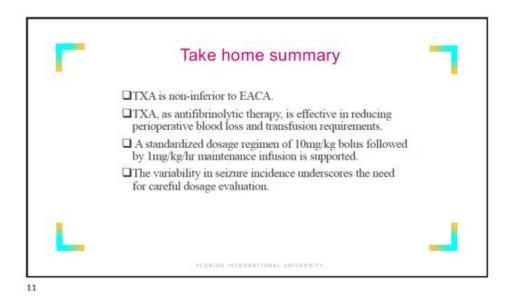



FIU




# TXA and its Impact on Transfusion Requirements

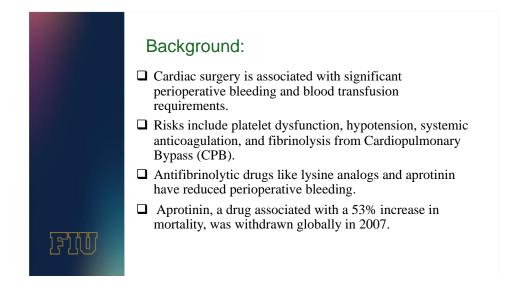

- The literature suggests that TXA is effective in minimizing the need for blood transfusions during and after cardiac surgery.
- A study comparing TXA with EACA in thoracic aortic surgery found that both drugs successfully decreased blood loss and transfusion needs.
- Another study observed that TXA significantly reduced postoperative hemorrhage compared to EACA in elective CABG
- The literature supports the use of TXA as an alternative to other antifibrinolytic drugs, despite its higher cost, due to its ability to reduce transfusion demands and improve patient outcomes in cardiac surgery.

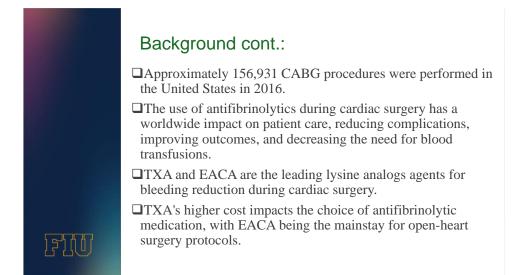


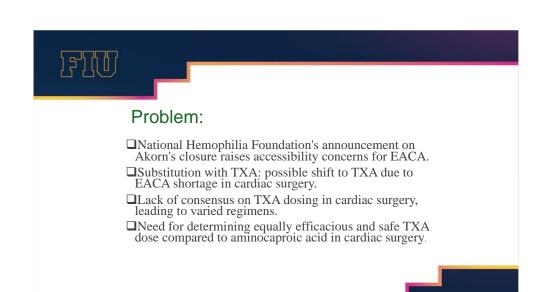







### **Appendix F: Dissemination PowerPoint**









# **PICO** Question:

"In patients undergoing cardiac surgery, does the use of tranexamic acid infusion (TXA), compared to epsilon aminocaproic acid (EACA), have similar effects on transfusion requirements and intraoperative bleeding?"

Deputation: Patients undergoing cardiac surgery

□Intervention: Usage of tranexamic acid (TXA)

Comparison: Usage of epsilon aminocaproic acid (EACA)

Outcome: Transfusion requirement and intraoperative bleeding

FLORIDA INTERNATIONAL UNIVERSITY

# **DNP** Project Purpose:

Optimize antifibrinolytic therapy practices.

□Foster awareness and education about alternatives like TXA, providing evidence-based practice recommendations.

Equip providers with knowledge and confidence to adapt to EACA shortages.

FLORIDA INTERNATIONAL UNIVERSITY



# QI Methods:

#### Setting and participants:

Selection based on the FIU ALUMNI list.

Aims for representative, practical cohort.

The project complies with the Institutional Review Board (IRB) for ethical research.

#### Protection of Human Subjects:

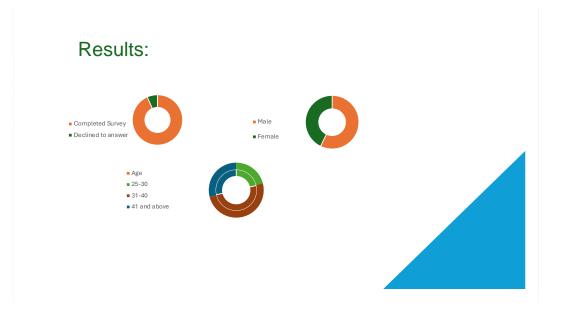
Prioritizes subject privacy and confidentiality. □Participants were informed about the project aim, time commitment, and voluntary participation.

Responses are kept anonymous, with no link to specific participants.



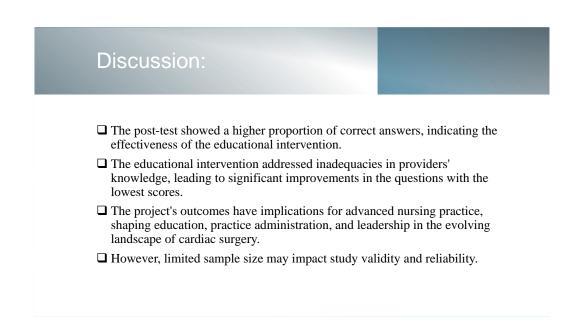


# QI Methods:


#### Design:

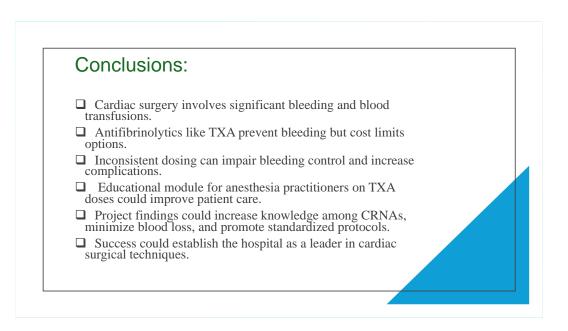
 $\Box$ Pre-/Post-Intervention Design  $\Longrightarrow$  Effectively evaluates changes in knowledge, attitudes, or behaviors from online educational intervention.

#### Data collection:


Utilization of Qualtrics system for efficient data collection.

- Captures both quantitative and qualitative data, including demographic information.
- Post-intervention data is compared for accuracy and effectiveness.




| Response                 | Count      | Percentage |                       |       |            |
|--------------------------|------------|------------|-----------------------|-------|------------|
| Less than 1year          | 5          | 36         |                       |       |            |
| 1-5 years                | 7          | 50         |                       |       |            |
| 6-9 years                | 0          | 0          |                       |       |            |
| 1ore than 10 years       | 2          | 14         |                       |       |            |
| Total                    | 14         | 100        | Response              | Count | Percentage |
|                          |            |            | 25-30                 | 3     | 21         |
|                          |            |            |                       |       |            |
|                          |            |            | 31-40                 | 7     | 50         |
|                          |            |            | 31-40<br>41 and above | 7 4   | 50<br>29   |
|                          |            |            |                       |       |            |
|                          |            |            | 41 and above          | 4     | 29         |
| Response                 | Count      | Percentage | 41 and above          | 4     | 29         |
| Response<br>Certificate  | Count<br>0 | Percentage | 41 and above          | 4     | 29         |
|                          |            |            | 41 and above          | 4     | 29         |
| Certificate              | 0          | 0          | 41 and above          | 4     | 29         |
| Certificate<br>Bachelors | 0          | 0          | 41 and above          | 4     | 29         |

| Questions                                                                                                                                 | Pre-test (% of<br>correct<br>answers)<br>n=14 | Post-test (%<br>of correct<br>answers)<br>n=14 | Difference |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------|
| What is the primary purpose of using<br>antifibrinolytic therapy, such as TXA or EACA,<br>during cardiac surgery?                         | 77%                                           | 100%                                           | 33%        |
| Which antifibrinolytic drug was associated with a<br>53% increase in mortality and subsequently<br>withdrawn globally in 2007             | 50%                                           | 87%                                            | 37%        |
| What are some contributing risks to significant perioperative bleeding in cardiac surgery?                                                | 60%                                           | 100%                                           | 40%        |
| Why might institutions choose EACA over TXA for<br>open-heart surgery protocols?                                                          | 72%                                           | 100%                                           | 28%        |
| Which adverse effect has been associated with<br>high doses of antifibrinolytic drugs, including TXA<br>and EACA, during cardiac surgery? | 43%                                           | 87%                                            | 44%        |
| What loading dose of TXA is commonly used in<br>studies comparing TXA and EACA in cardiac<br>surgery?                                     | 45%                                           | 100%                                           | 55%        |
| Which high-dose regimen of TXA has been<br>identified as more effective in reducing the need<br>for red blood cell transfusion?           | 7%                                            | 50%                                            | 43%        |
| What dosage method is suggested by the research as the safer choice for TXA in cardiac surgery?                                           | 7%                                            | 60%                                            | 53%        |



# Discussion:

May pave the way for collaborative, multidisciplinary approaches to heart surgical treatment, improving the hospital's reputation. Administratively, standardized TXA protocol could establish a uniform, evidence-based care framework, positioning the hospital as a leader in evidence-based cardiac surgery practices.



# Acknowledgments:

Thank you to my program's faculty, especially Dr. Vicente Gonzalez, for his patience and guide