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Introduction 1 

As has been the case with many wetland ecosystems around the globe, the 2 

Everglades has endured more than a century of drainage, reduced water flow, 3 

agricultural pollution, and urban development (Mitsch & Gosselink 2009). With 4 

increased understanding of the value of wetland ecosystems over the past few 5 

decades, we have seen a shift towards restoration and conservation of these remaining 6 

landscapes.  Today, the greater Everglades ecosystem represents one of the largest 7 

ecosystem restoration undertakings in the world.  As such, it provides an ideal 8 

opportunity for scientists to develop, apply, and adapt tools for projecting ecological 9 

change in response to different restoration (and even climate change) scenarios (Clark 10 

et al. 2001). 11 

South Florida and the Everglades were once synonymous as a mosaic of 12 

hydrologically interconnected landscapes and communities comprising the largest 13 

single marsh system in the United States (Ogden et al 2005). Today, remaining 14 

subtropical wetlands and their drainages are disconnected, over-drained, and managed 15 

by a complex network of canals (2,300 Km) and structures.  As a result, there has been 16 

extensive soil loss due to subsidence and peat oxidation, an increase in algal bloom 17 

frequency and magnitude, decreases in bird and mammal populations, shifts in 18 

vegetative community structure, and saltwater intrusion (Lorenz, 1999; Sklar et al., 19 

2001; Marshall et al. 2009). 20 

In Everglades National Park, located at the southernmost tip of the Florida 21 

Peninsula, decreased flow and increased nutrient loading (especially phosphorus), can 22 

lead to loss of periphyton—the base of the Everglades food web—and irreversible 23 

mailto:sdavis@evergladesfoundation.orgIntroduction


change in vegetative community structure, both of which lead to diminished habitat 1 

quality (Davis, 1994; McCormick et al. 1996; Childers et al., 2001; Durako et al., 2001; 2 

Gaiser et al., 2004).  Therefore restoring the natural flow and quality of water to the 3 

Everglades is critical to protecting the remaining “River of Grass”, mangrove forests, 4 

and estuaries such as Florida Bay. 5 

To date, few modeling or quantitative tools exist to help us understand how 6 

restoring the quantity and quality of flows to Florida Bay will affect its health.  This is 7 

partly due to the complexity of these dynamic coastal environments and difficulty in 8 

accurately predicting ecosystem behavior—let alone responses to different 9 

management decisions (Stow et al. 2003).  Marshall et al. (2011) recently developed a 10 

set of multi-variate linear regression models that link Everglades stage and regional 11 

climatic conditions to salinity.  When coupled to habitat suitability indices developed for 12 

species such as Roseate spoonbills (Ajaja ajaja; Lorenz 1999) and the American 13 

crocodile (Cocodrylus acutus; Green et al. 2001), these tools can be effective in 14 

projecting habitat improvement with hydrologic restoration.  However, there are 15 

currently no means for projecting change in other water quality parameters, such as 16 

nitrogen or phosphorus that affects the productivity and carbon dynamics in the 17 

mangrove ecotone.  This is particularly important given the progress of restoration in the 18 

C-111 canal basin of south Florida and the continual press of sea-level rise. 19 

The C-111 provides flood control for much of southeast Miami-Dade County.  Its 20 

effectiveness in flood control is equaled by its impact on Florida Bay, as it not only 21 

drains much of the developed landscape in South Florida, it also siphons water away 22 

from Taylor Slough—the most important source of freshwater to eastern Florida Bay 23 



(Figure 1).  The seepage barrier of the C-111 Spreader Canal project, a Comprehensive 1 

Everglades Restoration Program (CERP) project, has recently become operational and 2 

will serve to minimize water loss from Taylor Slough to the C-111 canal drainage 3 

system.  Phase 2 of this effort, will eventually result in the filling-in of this canal and will 4 

restore natural flows of freshwater into Florida Bay. 5 

In anticipation of these restoration efforts, we utilized statistical techniques to 6 

understand the relationships between flow and water quality in this region of Everglades 7 

National Park.  Such relationships are difficult to detect with naturally high variability in 8 

water quality data as well as the confounding effects of natural versus human-induced 9 

control over water flow in this region.  Specifically, we sought to determine the 10 

relationships between salinity, nutrients, and flow in the mangrove ecotone of lower 11 

Taylor Slough.  The motivation for this is that the restoration of flows into Taylor Slough 12 

and the C-111 basin will result in substantially increased flows of freshwater to Florida 13 

Bay.  Based on past research looking at seasonal patterns of water quality in this region 14 

(Childers et al. 2006), we expected that total phosphorus (TP) would show a general 15 

increase with salinity, reflecting a downstream marine source and negatively correlated 16 

with freshwater flow through the mangrove ecotone.  On the other hand, nitrogen likely 17 

increases as freshwater flow passes through the mangrove ecotone, reflecting a 18 

possible internal source (Davis et al. 2003; Childers et al. 2006; Liu et al. this issue). 19 

Site Description 20 

Taylor Slough is located in Everglades National Park and functions as the 21 

southeastern watershed that historically channeled water from the Everglades to Florida 22 



Bay (Figure 1).  Along with Shark River Slough, it is one of the most important 1 

watersheds in Everglades National Park, and it is of vital importance to the overall 2 

health of the park—especially Florida Bay.  The southern Everglades mangrove 3 

ecotone lies at the interface between the freshwater Everglades marshes of lower 4 

Taylor Slough and eastern Florida Bay and one of the major distributaries of flow along 5 

this path is Taylor River (Figure 1). 6 

Two sites were considered in this analysis: the Taylor River mouth site and the 7 

Taylor River upstream site (Figure 1).  The Taylor River mouth site exhibits a daily tidal 8 

range of about 10 cm or less.  The daily tidal signature at the upstream site is 9 

considerably more muted.  Inputs of water to this ecotone are primarily from direct 10 

precipitation, local runoff, releases from water-management structures, and tidal flow 11 

from the Florida Bay into the ecotone, and flow direction and magnitude at both sites 12 

are influenced by seasonal discharge from the freshwater Everglades, wind, and storm 13 

events. 14 

The salinity and nutrient dynamics of this mangrove ecotone illustrate 15 

fundamental ecosystem responses to the natural seasonal rainfall pattern but also to 16 

the imposed (i.e., managed) hydrological regime (Rudnick et al. 1999; Sutula et al., 17 

2003).  Nutrient exchange in Taylor Slough affects the water quality of Florida Bay and 18 

therefore, the Florida Keys (Lapointe et al., 2001).  Taylor Slough, as part of the 19 

Everglades, is considered an oligotrophic environment such that—in its natural state—20 

has very low nutrient availability and efficient biogeochemical cycles (Noe et al., 2003; 21 

Childers et al., 2006).  As a result, oligotrophic Everglades wetlands are particularly 22 



vulnerable to invasion and habitat transformation if additional nutrients are loaded 1 

(Davis 1994; McCormick et al., 1996).   2 

Taylor Slough currently operates in a diminished hydrologic capacity, largely due 3 

to a reduced watershed and its proximity to agriculture, given the reduced groundwater 4 

levels legally mandated during the fall and early winter produce-growing season, 5 

precisely during the natural times for highest freshwater flows (Oct-Nov).  The 6 

downstream consequence of diminished flow has been increased salinity in parts of the 7 

mangrove ecotone and Florida Bay resulting in loss of habitat and reduced density of 8 

pink shrimp and wading birds in Florida Bay (Robblee et al., 1991; McIvor et al., 1994; 9 

Lorenz 1999; Brand 2001).  In turn, this has led to the landward expansion of the ‘white 10 

zone’—a low productivity zone between the mangrove ecotone and the sawgrass-11 

dominated landscape of the southern Everglades—by about 1.5 kilometers between 12 

1940 and 1994 (Ross et al., 2001). 13 

The major direct agent that has altered the hydrology of Taylor Slough is the C-14 

111 canal, which siphons water away from Taylor Slough and routes it into lower 15 

Biscayne Bay/Manatee Bay (via the S-197 structure) and far eastern Florida Bay (Light 16 

and Dineen, 1994).  As such, restoration efforts are centering on the C-111 canal to 17 

increase freshwater flow into Taylor Slough, thus returning the timing of the flows to a 18 

semblance of its natural state.  The seepage barrier component of the C-111 Spreader 19 

Project will create a hydrological head in the surrounding area, keeping more water in 20 

Taylor Slough and allowing for more of that freshwater to enter into Florida Bay 21 

(USACE, 2011). 22 



 1 

Methods 2 

Data Sources and Analyses 3 

Discharge data for the Taylor River mouth and Taylor River upstream sites came 4 

from the USGS (http://fl.water.usgs.gov/Miami/hurricane/) and water quality data were 5 

derived from the Florida Coastal Everglades Long-Term Ecological Research (FCE-6 

LTER) program ( http://fcelter.fiu.edu/data/core/).  Water quality parameters included 7 

total nitrogen (TN), total phosphorus (TP), and salinity values. Sampling intervals were 8 

tri-daily from Jan 1996 to Sept 2009 (POR). Unfiltered water samples were analyzed for 9 

total nitrogen (TN) and total phosphorus (TP). TN was measured using an ANTEK 10 

7000N Nitrogen Analyzer using O2 as carrier gas to promote complete recovery of the 11 

nitrogen in the water samples (Frankovich and Jones 1998).  TP was determined using 12 

a dry ashing, acid hydrolysis technique (Solórzano and Sharp 1980). Data sets were 13 

manipulated to remove null data points and discharge data was 3-day averaged to 14 

match the intervals of the FCE LTER water quality sampling program. 15 

 16 

Cumulative sum charts 17 

We used statistical techniques developed primarily for industrial processes 18 

(standardized cumulative sum) to envision linkages between four base variables: 19 

salinity, total phosphorus (TP) and total nitrogen (TN) concentrations, daily discharge, 20 

and the ratio of total nitrogen (TN) to total phosphorus (TN:TP), a key indicator of the 21 

http://fl.water.usgs.gov/Miami/hurricane/
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biological availability of these ecologically important nutrients.  In doing so, we sought to 1 

predict the direction and likely consequences of hydrologic restoration of the Taylor 2 

Slough ecosystem through the implementation of the C-111 spreader project. 3 

We explored the structure of time-series to identify and characterize their 4 

components (trend, cycles and seasonality) with standardized cumulative sum charts 5 

(Cusum; Manly and MacKenzie 2000).  A standardized Cusum chart is a plot of the 6 

cumulative sum of standardized deviations from a target specification (in our case the 7 

time-series grand mean), against n, the sample number (or date if regularly sampled) 8 

(Ewan, 1963). Standardization is performed as follows:   9 

zi = [(xi – m)/ σ] + zi-1;  m = mean and σ = standard deviation 10 

 11 

As such, the Cusum procedure sums up the deviations around the mean and 12 

provides a visual representation of smoothed data used to infer trends or change points 13 

in a time series. The key elements in Cusum charts are the slopes and slope breaks. 14 

We should keep in mind that interpretation of Cusum line-plots is different from the 15 

usual interpretation of scatter-plots. A segment with a positive slope in the Cusum graph 16 

represents a period where most of the values in the original series (xi) are above-17 

average, and not necessarily that values are increasing, as we usually interpret positive 18 

slopes in scatter-plots. Segments with negative slopes in Cusum space indicate below-19 

average values (not necessarily an indication of a decline in the original series). 20 

Likewise, horizontal segments in the Cusum represent average conditions. Finally, 21 

monotonically increasing secular trends in the dataset produce positive parabolic 22 



Cusum curves (cup- or V-shape) and monotonically decreasing trends produce negative 1 

parabolic curves (dome- or peak-shape). 2 

Cusum charts and Cusum analysis are standard procedure in the field of 3 

industrial process control (Duncan 1974; Grant and Leavenworth 1980; Montgomery 4 

2001), and the direct connection between Cusum and process performance, has driven 5 

increasing applications to the earth sciences, especially for the analysis of time-series 6 

data in oceanography, geology, climate change and ecology (Ibanez et al. 1993; Adrian 7 

et al. 2006; Molinero et al. 2008; Briceño and Boyer 2010; Wachnicka et al. 2013), 8 

especially when identifying cause-effect (driver-response) relationships.  In our case, 9 

Cusum analyses were first run to identify temporal changes in salinity, nutrients (TN and 10 

TP), and discharge time series. Then, Cusum charts were used to assess changes in 11 

TN, TP, salinity and TN:TP molar ratios relative to discharge gradients.  12 

 13 

Results 14 

The mouth of Taylor River is considerably more saline and influenced by tide and 15 

wind-driven shifts in discharge compared with the upstream site (Table 1).  Both Taylor 16 

River sites exhibited similar TP concentrations, but median TN concentrations were 17 

about 4 µM higher at the mouth site compared with the upstream site during the period 18 

of record (7/30/99 to 9/30/09).  This is reflected in slightly higher TN:TP ratios at the 19 

mouth site (Table 1).  20 

As with other areas of the Everglades, temporal patterns in coastal Everglades 21 

water quality reflect the intra-annual seasonality of hydrologic conditions (Davis et al. 22 



2003; Childers et al. 2006).  Considering hydrologic conditions at Taylor River mouth 1 

and using this as a surrogate for conditions throughout the region, we found a clear 2 

seasonal pattern of discharge coinciding with wet season rainfall that begins in late 3 

May/early June and typically runs through November (Figure 2a).  Mean daily stage in 4 

Taylor River corresponded with this (Figure 2b), likely as a result of upland runoff 5 

backing up against the Buttonwood Ridge—a sediment embankment running along the 6 

interface between the mangrove ecotone and eastern Florida Bay.  As expected, salinity 7 

at Taylor River mouth is inversely related to discharge, with lowest values in the wet 8 

season and highest values at the height of the dry season in May (Figure 2c).  However, 9 

surface water TP concentrations, which are variable throughout the year, seemed to 10 

track salinity with highest minimum and median concentrations occurring at the peak of 11 

the dry season (Figure 2d). 12 

 13 

Temporal trends 14 

Cusum charts were constructed by plotting standardized cumulative data for 15 

each variable along the y-axis, and time on the x-axis (see panels in Figure 3). Results 16 

show that rainfall at NOAA’s Everglades Station (Figure 3a and 3b) and discharge 17 

(Figure 3c and 3d) follow similar patterns until mid 2005, with discharge lagging rainfall 18 

by about 1-3 months. Relative low discharges prevailed until June 1997 (steep negative 19 

slope), then a more obvious seasonal pattern with two 4-year cycles were experienced, 20 

followed by a strong departure towards high discharges during the 2005 hurricane 21 

season (i.e., Katrina, Rita, Wilma). Since then, we have seen a seasonal pattern of 22 



discharge superimposed on a below-average discharge tendency (Figure 3d), while 1 

rainfall follows an above-average tendency. Salinity exhibited a long-term increasing 2 

secular trend (Figure 3e; also note cup-shaped cusum in Figure 3f) in which well-3 

defined seasonal cycles were superimposed (Figure 3e and 3f). For this record, salinity 4 

was below-average until early 1999 when an average tendency began and remained as 5 

such until 2001. It was followed by a below-average tendency until March 2004 (Figure 6 

3f). Since then the general tendency has been one of above-average salinity values 7 

(>15.5 ppt). Concentrations of TN were relatively high until 2003, exhibiting two similar 8 

cycles of below-average to above-average values within that period (Figure 3g and 3h). 9 

After 2003, low TN prevailed at Taylor River mouth until early 2008. Since then TN has 10 

increased to above-average levels (Figure 3h). On the other hand, total phosphorus 11 

(TP; Figures 3i and 3j) showed irregular seasonal patterns until late 2000 when a 12 

sustained low TP period began, and lasted until the end of 2005 (Figure 3j). Since 13 

January 2006 TP concentrations have been relatively high.  Relating these patterns of 14 

change in TN to TP, the TN:TP molar ratio experienced irregular oscillations until 15 

September 2000, followed by a significant departure towards high values (TN:TP=342) 16 

from October 2000 to April-2003 (Figure 3k and 3l). After a short period of close to 17 

average tendency (TN:TP=224), which extended to mid 2004,  there was a sustained 18 

decline of TN:TP (=158) lasting until early 2009. 19 

 20 

Discharge gradients 21 



 Slopes of ordinary linear regressions of salinity, TP, TN and TN:TP on discharge 1 

were calculated to estimate secular trends along discharge gradients (Table 2). Most 2 

slopes are statistically significant at p<0.10, except TN at upstream Taylor and TN:TP at 3 

Taylor Mouth.  4 

Taylor River upstream: 5 

As expected, salinity at the Taylor River upstream site was negatively correlated 6 

with discharge showing a clear declining secular trend (i.e., dome-shaped cusum; 7 

Figure 4a). The inflexion point for salinity, from below-average to above-average salinity 8 

occurred at 0.17 m3/s. Cusum trend results for TN at the upstream site had two 9 

important breaks, which highlight the non-linear response of TN to discharge at this less 10 

tidally-influenced site: from below-to-above average TN at about -0.18 m3/s, and from 11 

above-to-below average at 0.30 m3/s (Figure 4b). Hence, very low TN concentrations 12 

prevailed during negative flows (e.g., during strong southerly wind or tidal events) as 13 

well as during extreme positive flows (e.g., wet season discharge events). TP exhibited 14 

a marked declining secular trend with increasing discharge (note clear dome-shaped 15 

cusum in Fig 4c). The most important breaks in TP occurred from above-average to 16 

average concentrations at 0.10 m3/s discharge and from average to below-average at 17 

0.16 m3/s discharge (Figure 4c). 18 

TN:TP ratios at the Taylor River upstream site were directly correlated with 19 

discharge (positive parabolic cusum; Figure 4d). Given this and the good negative 20 

correlation between TP and discharge, ratios at the upstream site seemed to be driven 21 

more by flow-related changes in TP concentrations than to TN values. Below-average 22 



TN:TP values occurred below 0.11 m3/s, and above-average TN:TP occurred for 1 

discharges above 0.25 m3/s. 2 

Taylor River mouth: 3 

At the mouth of Taylor River, salinity declined with discharge and the inflexion 4 

point for above-to-below average salinity (13.46 ppt) occurred at 0.80 m3/s (Figure 4e).  5 

TN and TP cusum patterns versus discharge were non-linear and similar up to 0.7 m3/s 6 

discharge (Figure 4f and 4g). When considered separately, negative flows produced an 7 

increasing trend of TN and TP as discharge approached zero but overall below-average 8 

TN and TP concentrations of 54.5 and 0.33 uM, respectively. Between zero and 0.70 9 

m3/s discharge TN and TP concentrations increased to 60.1 and 0.36 uM respectively. 10 

Larger discharges resulted in TP decline to a mean of 0.31 uM. On the other hand, TN 11 

declined to 52.1 uM at discharges between 0.7 and 1.12 m3/s. Beyond that, TN 12 

increased to 60.3 uM between 1.12 and 1.18 m3/s and finally declined to an average of 13 

52.9 uM for higher discharges (Figure 4f). The correlation coefficient for a power 14 

regression model between TP and TN:TP is 0.71, while the best for TN versus TN:TP is 15 

0.15. Hence, although TN and TP cusum patterns are similar to TN:TP at the mouth 16 

site, TP seems to  drive much of the discharge-related fluctuations in TN:TP ratios at 17 

the mouth site during the period of record (Figure 4h).  18 

 19 

Discussion 20 

 Variations in tidal creek flow are known to affect patterns of estuarine water 21 

quality (Eyre and Balls 1999); however, these patterns can be greatly modified by short-22 



term storm events, longer term variations in climate, and interactions with human 1 

activities (Childers et al. 1990; Paerl et al. 2006).  This confounds our ability to 2 

effectively predict water quality fluctuations in sensitive coastal waters subjected to a 3 

range of natural and human-related drivers.  The descriptive statistical approach we 4 

used, combined with evidence observed by others, can help establish the link between 5 

flow of water from Taylor Slough, phosphorus and nitrogen dynamics, and TN:TP ratios 6 

in the southern Everglades mangrove ecotone.  Once those relationships are 7 

established, we can begin to unravel the effects of water management, restoration, 8 

climatic, and event-driven dynamics. 9 

 The period around 2004-2005 marked a series of distinct water quality changes 10 

at these sites (Figure 3; e.g., increase in salinity, decline in TN, increase in TP, and 11 

decline in TN:TP ratio).  This is noteworthy, as it was a period of time marked by two 12 

very active hurricane seasons, and there is ample evidence showing that water quality, 13 

hydrology and sediment dynamics of this region are greatly influenced by such storm 14 

events (Davis et al. 2004; Woods and Zucker, 2007; Castañeda-Moya et al., 2009; 15 

Briceño and Boyer 2010). Furthermore, these trends gradually reverted to previous 16 

conditions by 2009, indicating the lasting effects of these types of events (Figure 3; e.g., 17 

Paerl et al. 2006). In south Florida, these lasting impacts are to be expected given the 18 

large volumes of seawater and P-rich marine/bay sediments brought to the mangrove 19 

forests by the storm surges (Davis et al. 2005; Castañeda-Moya et al. 2009). 20 

 Phosphorus concentrations along lower Taylor Slough were greatly influenced by 21 

hydrologic conditions affecting discharge and salinity, with highest TP concentrations 22 

found at lowest or negative discharge values and moderately high salinity values (10-31 23 



ppt).   This seemed clearest at the upstream site, where Everglades runoff and internal 1 

processes have prevailing control over nutrient availability.  High TP under these low 2 

flow conditions may result through a number of processes including increased 3 

discharge of relatively high TP groundwater (Price et al. 2006), increased influence of 4 

the relatively high TP marine end-member (Childers et al. 2006), evaporative 5 

concentration of TP, or a decreased demand for surface water TP due to labile C 6 

limitation resulting from high hydrologic residence times (as suggested by Davis and 7 

Childers 2007).  This supports findings from other water quality studies in this region 8 

indicating that increased freshwater flows from the C-111 will not only reduce 9 

hypersalinity events in the bay but will also lower surface water TP concentrations in the 10 

mangrove ecotone, thus contributing to a restoration of the oligotrophic character of this 11 

region. 12 

 Nitrogen dynamics are more complicated and perhaps indicate the influence of 13 

both external and internal sources of TN at different times of the year.  Further, 14 

evidence suggests that the Everglades mangrove ecotone may be a hot spot for 15 

nitrogen dynamics driven by high organic matter accumulation and N immobilization 16 

(Rivera-Monroy et al. 2011).  Relating flows and water quality, Davis et al. (2003) and 17 

Childers et al. (2006), respectively, suggested that a positive relationship between 18 

freshwater flow and TN concentrations reflected a possible upland source (i.e., 19 

freshwater marsh) of TN or an internal mangrove source (i.e., mangrove) of TN in 20 

response to wet season onset.  An analysis of limited flux data from within the 21 

mangrove ecotone indicated a net release of TN from the mangrove to the water 22 

column at salinity values above about 27 ppt (Davis et al. 2003). More recent flux data 23 



by Liu and Davis (this issue) indicate consistent low-level soil/sediment uptake of nitrate 1 

+ nitrite in combination with high-level release of ammonium in different ecotone 2 

habitats.  The imbalance between these fluxes combined with seasonal re-wetting of the 3 

upstream marsh may represent a significant source of TN in this region driving up ratios 4 

of TN:TP early in the wet season. 5 

 In general, our approach showed that TN varied more over annual to inter-annual 6 

scales relative to TP that, despite exhibiting variation over longer time-scales, also 7 

showed a clearer relationship with seasonal discharge.  Still, there were ranges of high 8 

discharge, perhaps at the outset of the wet season, when high discharge corresponded 9 

with high TN.  This only speaks to the complex array of drivers affecting TN in this 10 

region and that more biogeochemical work needs to be done to understand nitrogen 11 

dynamics across the mangrove ecotone of Taylor Slough. 12 

The Taylor Slough and C-111 restoration efforts are predicted to restore up to 13 

87% of natural volume of flows according to the U.S. Army Corps of Engineers’ best 14 

restoration alternative (USACE 2011).  Assuming that current C-111 discharges to the 15 

coast will be retained in the Taylor Slough and adjacent marsh below the C-111 canal 16 

(i.e., the “C-111 basin”) with full C-111 restoration, we could see 10% or more 17 

freshwater flowing into eastern Florida Bay each year relative to current conditions.  18 

With restored flows, increased freshwater passing through Taylor Slough and the C-111 19 

basin could reduce phosphorus concentrations in the mangrove ecotone by reducing 20 

potential terrestrial sources and by minimizing the periods of time where Florida Bay is 21 

actively inputting phosphorus into the ecotone (Rudnick et al., 1999; Price et al. 2006; 22 

Childers et al. 2006).  This will also shorten hydrologic residence times, which may also 23 



minimize local evaporative concentration and decrease periods of possible labile C 1 

limitation in the water column. 2 

 As a result of these actions and advanced states of Everglades restoration, we 3 

could anticipate a restored oligotrophic status to the lower Taylor Slough area of the 4 

Everglades.  However, as we have shown, these assumptions may be too simplistic. 5 

Restored oligotrophic status is certainly the goal, but ecosystem responses are not 6 

linear and recent research suggests that elevated P availability and the associated 7 

changes in ecosystem structure will remain for extended periods following flow 8 

restoration (Herbert and Fourqurean 2008). This is due in part to the retention of P in 9 

sediments (Liu et al. this issue) of these strongly P-limited ecosystems that has 10 

occurred in the recent past combined with future changes in the availability of N across 11 

this ecotone.  Further, it does not consider the continual effects of sea-level rise along 12 

the vulnerable south Florida coastline. 13 

 Our approach presented here is useful in that it provides a tool for revealing 14 

patterns, relationships, and change points in otherwise noisy water quality and 15 

hydrologic data.  With the inclusion of more sites, longer time series, and process-16 

specific information on fluxes of N and P, we hope to generate a better understanding of 17 

long-term trends in water quality.  This will allow us to link major climatic events and 18 

cycles to regional hydro-ecological processes it will also be necessary to evaluate the 19 

long-term benefits of restored flows in Taylor Slough and throughout the Greater 20 

Everglades ecosystem. 21 

 22 
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List of Figures 1 

Figure 1:  Map showing Florida Bay and location of water quality sampling sites 2 

considered in this analysis.  C-111 canal basin and Taylor Slough are delineated.  3 

Sites in map are identified as follows TRup: Taylor River upstream, TRm: Taylor 4 

River mouth  5 

Figure 2: Box and whisker plots of (a) daily discharge (m3 s-1;NAVD88), (b) mean daily 6 

stage (m), (c) mean daily salinity (ppt), and (d) tri-daily TP (µM) by month at 7 

Taylor River mouth during the period of record. The center horizontal line of the 8 

box is the median of the data, the top and bottom of the box are the 25th and 75th 9 

percentiles (quartiles), and the ends of the whiskers are the 5th and 95th 10 

percentiles. The notch in the box is the 95% confidence interval of the median. 11 

When notches between boxes do not overlap, the medians are considered 12 

significantly different. Outliers (<5th and >95th percentiles) were excluded from 13 

the graphs to reduce visual compression. 14 

Figure 3: Temporal time series and their respective standardized cusum charts for 15 

Rainfall at NOAA’s Everglades Station (N 25°51’; W81°23’), and Taylor River 16 

mouth station discharge, salinity, TN, TP, and TN:TP. General cup-shaped chart 17 

(i.e. salinity) indicates increasing secular trend, while dome-shaped line-plot 18 

indicates declining secular trend (i.e. TN:TP). Note the time-series and cusum 19 

seasonality in discharge and salinity, as well as cusum changes in salinity, TN, 20 

TP, and TN:TP around 2004-2005 in association with those strong hurricane 21 

seasons.  22 

Figure 4: Discharge gradient cusum charts for salinity, TN, TP, and TN:TP in Taylor 23 

upstream (a-d) and Taylor mouth (e-h), respectively. TP in Taylor upstream and 24 

salinity in both stations display declining secular trends with discharge, while 25 

TN:TP trend in upstream station increases. TP and TN:TP in Taylor mouth and 26 

TN in both stations display non linear responses to discharge. Peak-shaped 27 

inflexion points highlight largest changes from above-average to below-average 28 

values, while V-shaped inflexion points indicate the opposite. 29 
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Table 1: Basic statistics for relevant parameters at Taylor Mouth and Upstrean Taylor 1 

Stations. Units: TP and TN in uM; TN:TP in molar ratio; Salinity in ppt; Stage in m; and 2 

Discharge in cfs. 3 

 4 

 5 

 6 

Table 2: Slopes of Line of Ordinary Regression as estimate of secular trends along 7 

discharge gradients 8 

 9 

UPSTREAM TAYLOR TP TN TN:TP Salinity Stage Discharge

Average 0.36 49.01 209.77 8.51 -0.33 9.20

Stdev 0.29 23.49 175.45 11.94 0.44 10.53

Median 0.28 41.95 152.72 2.00 -0.38 10.78

Max 2.76 185.68 1304.80 49.00 1.47 35.05

Min 0.04 16.16 14.82 0.00 -1.26 -24.38

TAYLOR MOUTH TP TN TN:TP Salinity Stage Discharge

Average 0.32 51.48 225.14 15.56 -0.59 44.39

Stdev 0.30 24.09 161.80 12.36 0.37 81.30

Median 0.25 46.24 174.19 14.00 -0.59 27.95

Max 6.64 278.30 1284.89 49.00 0.88 935.94

Min 0.05 19.48 21.42 0.00 -1.65 -183.51

TP TN TN:TP Stage Salinity 

Upstream Taylor

slope -0.0096 -0.0491 4.8889 0.0061 -0.7317

p <.0001 0.4691 <.0001 <.0001 <.0001

Taylor Mouth

slope -0.0002 -0.0323 -0.0661 0.0007 -0.0797

p 0.0582 <.0001 0.1955 <.0001 <.0001


	Florida International University
	FIU Digital Commons
	6-2014

	Relating Freshwater Flow with Estuarine Water Quality in the Southern Everglades Mangrove Ecotone
	Henry O. Briceño
	Gabriel Miller
	Stephen E. Davis III
	Recommended Citation


	tmp.1403194165.pdf.x3ihd

