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PROCEEDINGS Open Access

Application of family-based tests of association
for rare variants to pathways
Brian Greco1†, Alexander Luedtke2†, Allison Hainline3, Carolina Alvarez4, Andrew Beck5, Nathan L Tintle6*

From Genetic Analysis Workshop 18
Stevenson, WA, USA. 13-17 October 2012

Abstract

Pathway analysis approaches for sequence data typically either operate in a single stage (all variants within all
genes in the pathway are combined into a single, very large set of variants that can then be analyzed using
standard “gene-based” test statistics) or in 2-stages (gene-based p values are computed for all genes in the
pathway, and then the gene-based p values are combined into a single pathway p value). To date, little
consideration has been given to the performance of gene-based tests (typically designed for a smaller number of
single-nucleotide variants [SNVs]) when the number of SNVs in the gene or in the pathway is very large and the
genotypes come from sequence data organized in large pedigrees. We consider recently proposed gene-based
tests for rare variants from complex pedigrees that test for association between a large set of SNVs and a
qualitative phenotype of interest (1-stage analyses) as well as 2-stage approaches. We find that many of these
methods show inflated type I errors when the number of SNVs in the gene or the pathway is large (>200 SNVs)
and when using standard approaches to estimate the genotype covariance matrix. Alternative methods are needed
when testing very large sets of SNVs in 1-stage approaches.

Background
Until recently, the majority of methodological approaches
for the analysis of common, single-nucleotide variants
(SNVs; common SNVs have minor allele frequency of at
least 5%) involved analysis of microarrays using either
single-marker or multiple-marker approaches, with single-
marker approaches, by far the more common of the 2
approaches in practice. Typically, large genome-wide asso-
ciation studies will conduct hundreds of thousands (or
millions) of single-marker analyses. Although less com-
mon in practice, considerable methodological develop-
ment has taken place in the area of multiple-marker
analysis in which signals from multiple common SNVs are
aggregated into a single test of association for the set of
SNVs of interest (see Refs. [1,2] for recent reviews).
Of particular interest in the development of multiple-

marker tests is the blurring of the lines that has recently

taken place between what were traditionally considered
“gene-based” tests of association and “pathway-based”
tests of association. Historically, gene-based tests of asso-
ciation aggregated a small number of SNVs within a gene
into a single test statistic, whereas pathway-based tests
operated in 2 stages [1,2]. In the traditional approach to
pathway analysis, researchers first generate a statistic for
each gene. In a second stage, researchers combine multi-
ple gene-level statistics into a pathway statistic. Recently,
however, a single-stage approach was advocated whereby,
in a single stage, all the SNVs in the pathway all simulta-
neously aggregated into a single statistic [1]. Effectively,
this single-stage approach could be considered a “SNV-
set” approach where the set of SNVs can be defined in
any biologically plausible manner. Although this rela-
tively new approach is gaining in popularity in the litera-
ture, little concrete evidence of its performance relative
to the 2-stage approach is available. It has been sug-
gested, however, that the 2-stage approach may be opti-
mal when there are fewer causal variants in each gene,
but each with strong risk, and the single-stage approach
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may be better suited for cases where there are more cau-
sal variants, but with weaker effects [3-5].
With the rapid growth in access to next-generation

sequencing (NGS) technology, there has been a tidal
wave of methodological developments to analyze such
data. At the heart of most analytic approaches for NGS
data is the desire to appropriately handle rare variants.
Because statistical tests of individual rare variants lack
power and multiple testing penalties quickly become
unwieldy because of the preponderance of rare variants,
most recently proposed NGS data analysis approaches
attempt to aggregate multiple SNV association signals
so as to increase power. These rare SNV-set methods
can be viewed as a special type of multiple-marker test
that is particularly useful when SNVs are rare. For a
broad overview and classification of these rare variant
approaches for case-control studies see Liu et al [6].
There are few family-based tests of rare variant associa-

tion that are appropriate for complex pedigrees analyzing
dichotomous phenotypes for association with rare var-
iants (see Hainline et al [7] for more extensive discus-
sion). In this article, we apply several of these recently
proposed approaches to very large sets of SNVs; the very
large sets are created by combining SNVs from multiple
genes into pathway based sets of SNVs. The goal of our
analysis is to evaluate the appropriateness of these meth-
ods for use with massive SNV sets when the proportion
of noncausal variants may be very large, but the set may
also contain multiple causal variants. We evaluate both
single-stage and traditional 2-stage approaches, in which
stage 1 computes a test statistic for each gene in the
pathway, and stage 2 combines the gene-based statistics
into a single statistic for the pathway.

Methods
Sample and genes
There were 849 individuals in complex pedigrees with
simulated phenotype data available. We classified each of
the 849 individuals as either hypertensive (systolic blood
pressure >140 mm Hg or diastolic blood pressure >90 mm
Hg) or not hypertensive based on whether the individual
was classified as hypertensive at any of up to 4 measure-
ments (waves). For our analysis of the simulated data we
focused on simulated phenotype 1. We had knowledge of
the simulation answers for our analysis. SNVs were
mapped to genes using a custom version of ANNOVAR,
where a SNV is assigned to a gene if its physical location
is within the start-stop position of the gene [8].

Creation of gene sets
To evaluate the performance of different approaches to
the analysis of very large sets of SNVs from multiple
genes (eg, pathways) we created 800 sets of 5 genes
each, where 200 of the sets contained no genes with

causal variants, 200 of the sets contained 1 gene with
causal variants, 200 of the sets contained 3 genes with
causal variants, and 200 of the sets had all 5 genes con-
taining causal variants. Sets were created by randomly
choosing genes, without replacement, from lists of genes
that were known (based on the simulation model) to
contain or not contain causal SNVs. The average num-
ber of SNVs in the 800 sets was 880 (SD = 468; mini-
mum = 58; maximum = 2451).

Previously proposed statistical tests
We applied 5 different family-based tests of association
considered by Zhu and Xiong [9] to sets of SNVs. All
tests were conducted in R using software functions writ-
ten by Zhu and Xiong and custom scripts. More details
on the tests are available elsewhere [7,9].
The methods considered by Zhu and Xiong utilize a cor-

rection factor, Pcorr, which summarizes the additional cor-
relation in the samples that occurs as a result of the
complex pedigree structure. Pcorr is a function of the esti-
mated kinship matrix (see Hainline et al [7] for details)
and is used to adjust the standard error of the test statis-
tics for the additional correlation contained in the pedigree
structure.
Zhu and Xiong [9] propose a generalized multivariate

T2 test comparing the mean allele counts across n var-
iants (eg, SNVs within a gene) between the cases and
controls; Hotelling’s T2 test is a multivariate version of
the 2-sample t-test. Alternatively, Zhu and Xiong also
consider a version that collapses rare variants below a
threshold before applying the T2 test (combined multi-
variate and collapsing [CMC]) or uses eigenvectors from
the genotype matrix to reduce matrix dimensionality
(functional principal component analysis [FPCA]; see
Hainline et al [7] for details). In our implementation of
CMC we used minor allele frequency cutoffs of 5% and
0.5%. Briefly stated, in all cases, T2 is computed as if
there was no pedigree structure in the data (T2

initial). The
pedigree-adjusted statistic is computed as T2

initial/pcorr.
Finally, Zhu and Xiong investigate an approach that
applies a single-marker test (pedigree-adjusted single-
marker χ2 test of association) to all SNVs in a set, and
then uses the minimum p value within the set, as the p
value for the entire set. Thus, there are 5 test statistics
in total: T2, CMC5%, CMC0.5%, FPCA and χ2

min, where we
refer to all methods except χ2

min as T2 based approaches,
because they all rely on the Hotelling’s T2 statistic.

Application of the tests to both 1-stage and 2-stage
pathway analysis
In our analysis, we applied the 5 methods described
above in 2 different ways. First, we directly applied each
of the 5 methods to all 800 sets of SNVs (1-stage pathway
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analysis). All 1-stage pathway analysis tests are of the null
hypothesis that no SNVs in the set are associated with
the phenotype, with an alternative hypothesis that at least
1 SNV in the set is associated with the phenotype.
Second, we applied each of the 5 methods to all 5 indi-

vidual genes contained within each of the 800 sets. We
then combined the 5 gene p values for each test-set com-
bination using Fisher’s combined probability test (2-stage
pathway analysis). Fisher’s combined probability test is

defined as Fisherp =
∑5

i=1
−2log(pi) where pi is the

p value from the ith gene in the set and Fisherp ∼ χ2
10,

yielding 1 Fisher’s combined probability test p value for
each of T2, CMC5%, CMC0.5% , FPCA, and χ2

min, as
described in the previous section. Fisher’s combined
probability test is one of many choices for 2-stage path-
way analysis [5], but has the convenient advantage of
having a known null distribution when the p values being
combined are independent (in our case, this means that
there is no linkage disequilibrium between the randomly
chosen genes in the sets, which is a reasonable assump-
tion). All 2-stage analyses have a null hypothesis that
none of the genes in the set of genes contain any SNVs
associated with the phenotype, with an alternative
hypothesis that at least 1 gene in the set of genes contains
at least one SNV associated with the phenotype.

Modified implementation of the Zhu and Xiong methods
When the Zhu and Xiong approaches are applied to the
800 sets of SNVs, a dramatic inflation of the type I error
rate is observed. In particular, among the 5 single-stage
approaches, type I error rates ranged from 43.5% to
99.5%, and among the 5 two-stage approaches, type I
error rates ranged from 7.5% to 90.5%. Although we do
not provide detailed results here, we note that the magni-
tude of the type I error rate increased as the number of
SNVs in the set increased; in particular, the inflated type
I error rates only occurred on sets containing more than
200 SNVs. We determined that a potential cause of the
inflated type I error rate was in the approach taken when
estimating the SNV genotype covariance matrix [10].
When analyzing large sets (>200) of SNVs and given the
relatively small sample size (n = 849), prior research
shows that the use of the maximum likelihood estimates
(MLEs) in covariance matrix estimation may yield
unstable results, and that a shrinkage covariance estima-
tor may perform better [10].
We modified the covariance estimation procedure for

all methods, replacing the MLEs with the shrinkage esti-
mator. Although we lost the guarantee of the analytic
null distribution derived by Zhu and Xiong, we explored
the use of the shrinkage estimator using the null distri-
bution in Zhu and Xiong. We found that this approach
provided increasingly overconservative results as the set

size increased (detailed results not shown). Nonetheless,
we still expect that large values of the test statistic
should lead to rejection of the null hypothesis.
To account for the effect of set size on the behavior of

the statistic, we estimated the empirical cumulative distri-
bution function of the p values for the “null” sets (sets
containing no causal SNVs) separately as a function of the
number of SNVs in the set for each of the test statistics.

In particular, Fm,n(t) =
1
k

∑k

i=1
1

{
pi,m ≤ t

}
, where pi,m,

I = 1...k, are the p values for test statistic m (eg, T2, CMC)
when the set size is n. To obtain robust estimates of F(t),
we binned sets of similar set size; there were 5 bins in
total, representing quintile breaks in the null set size distri-
bution. To provide appropriate control of the type I error
rate and allow evaluation of the different methods, we
computed a modified p value, p(modified)i,m = Fm,n(pi,m),
for all null and nonnull (contain at least 1 causal SNV)
sets. These modified p values necessarily control the type I
error rate for null sets, allowing us to get a sense of the
performance of the different methods if we had an appro-
priate null distribution for the new test statistics. Although
in practice we do not have knowledge of the null set of
pathways, this serves as an exploratory analysis to motivate
derivation of a closed form null distribution for the modi-
fied Zhu and Xiong statistic.

Results
We applied each of the 10 tests described earlier to all
800 sets of genes. Table 1 illustrates the percent of sig-
nificant sets (a = 0.05) across the 800 sets, where we
stratify the 800 sets into 200 sets containing varying
numbers of causal and noncausal genes.
By design, sets containing no causal genes have

empirical type I error rates of approximately 5%. The
reason for some deviation from 5% in Table 1 is because
of a combination of estimating the empirical null distri-
bution based on 200 null sets and the binning procedure
used (see Methods). In general, modest increases in the
percent of significant sets are observed as more causal
genes (genes containing at least 1 causal SNV) are
added to the set for single-stage and 2-stage methods
based on FPCA and χ2

min, single-stage CMC0.5%, while
other methods showed little difference in the percent of
significant null sets and nonnull sets.

Discussion
Few analyses have considered methods to analyze path-
ways (sets of genes; large sets of SNVs) for association
with rare variants in family studies. Previous research
showed that, depending on the underlying genetic archi-
tecture, either single-stage or 2-stage approaches to
pathway testing may provide a powerful testing
approach. However, this result has not been rigorously
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established across the large class of pathway testing
approaches, especially rare variant pedigree data. In this
article, we considered both 1-stage and 2-stage
approaches to pathway analysis by applying methods
proposed by Zhu and Xiong to very large multi-SNV
sets (1-stage), or a 2-stage approach using Fisher’s com-
bined probability test in conjunction with the methods
of Zhu and Xiong.
As with most gene-based testing approaches the

authors of the primary methods considered here only
evaluated their method on “small” sets of SNVs (189
SNVs) [9]. However, the assumption of many authors of
gene-based testing approaches is that the methods can be
applied to large sets of SNVs that may contain SNVs
from multiple genes (see, eg, Madsen and Browning [3]).
This is both a reasonable and natural assumption,
although one that has rarely been considered explicitly in
the literature.
In our consideration of 1-stage approaches, we found

a substantially inflated type I error rate, which increased
as the number of SNVs increased. Further analysis pin-
pointed the issue to the use of MLEs when estimating
the genotype covariance matrix (as in the Zhu and
Xiong code). Schafer and Strimmer [10] showed that a
shrinkage estimator provides robust covariance esti-
mates as the number of SNVs increases relative to the
sample size. When we implemented the shrinkage esti-
mator, the results were overly conservative (empirical
type I error rate was substantially less than the nominal
rate) when using the null distribution for MLEs from
Zhu and Xiong. This pattern of findings also held true
for 2-stage approaches when any genes in the set were
large (containing more than 200 SNVs). To address
these limitations, we applied an empirical correction

factor to the p values, which allowed us to examine per-
formance of the 10 methods.

Conclusions
Further research is necessary to develop alternative cov-
ariance estimation procedures and corresponding null
distributions for large (more than 200 SNVs) sets. We
note that, in both a companion paper [7] and here, use of
the MLE estimation approach yields well-controlled type
I error rates for SNV sets with less than 200 SNVs.
Permutation approaches to control type I error should
also be explored, however, given the complex pedigree
structure present in the data will require gene dropping
or related approaches that may limit their practical
utility.
Assuming that appropriate finite sample null distribu-

tions can be derived when applying SNV-set methods to
very large sets of SNVs, the true underlying genetic disease
architecture will play a significant role in determining
which statistical methods will perform best in practice. A
recent article evaluating the differences in rare variant
tests of association illustrated that for sets of SNVs where
the proportion of noncausal SNVs is very large, as will
likely be the case in 1-stage approaches for rare variants,
tests like the minimum χ2

min (equivalent to an L∞ norm)
will perform better than T2-based (L2 or L1 norm) type
tests (see Liu et al [6] for details) by empirically upweight-
ing the strongest SNV-phenotype associations.
Few methods exist for the analysis of potential relation-

ships between binary phenotypes and rare genetic varia-
tion; fewer still have considered how such methods will
perform on very large sets of SNVs that may span multi-
ple genes. Our analysis identified substantial inflation of
the type I error rate using a standard approach, and so

Table 1 Percent significant sets at a = 0.05 by number of causal and noncausal genes in the set using modified p
values

Pathway testing approach Number of causal and noncausal genes in the set
(all sets contain 5 genes)

0 causal,
5 noncausal

1 causal,
4 noncausal

3 causal,
2 noncausal

5 causal,
0 noncausal

Single-stage approach

FPCA 2.5% (5/200) 6.5% (13/200) 5.0% (10/200) 9.0% (18/200)

χ2
min 3.5% (7/200) 6.5% (13/200) 8.5% (17/200) 16.5% (33/200)

T2 5.0% (10/200) 3.0% (6/200) 1.5% (3/200) 2.5% (5/200)

CMC5% 1.5% (3/200) 0.0% (0/200) 2.5% (5/200) 1.5% (3/200)

CMC0.5% 3.5% (7/200) 5.5% (11/200) 9.5% (19/200) 8.0% (16/200)

Two-stage approach

FPCA 2.0% (4/200) 1.5% (3/200) 9.0% (18/200) 5.0% (10/200)

Fishers_χ2
min 3.5% (7/200) 4.0% (8/200) 8.5% (17/200) 11.0% (22/100)

Fishers_ T2 1.5% (3/200) 3.5% (7/200) 2.0% (4/200) 1.0% (2/200)

Fishers_ CMC5% 3.0% (6/200) 2.0% (4/200) 3.5% (7/200) 1.0% (2/200)

Fishers_ CMC0.5% 2.0% (4/200) 2.0% (4/200) 3.5% (7/200) 0.5% (1/200)
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we implemented an empirical approach to evaluate the
relative performance of different methods. Further
research is necessary to explore robust test statistics and
analytic strategies for large SNV sets in complex pedi-
grees across a wide variety of genetic architectures.
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