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Big Data Analysis Using Modern Statistical and Machine Learning 
Methods in Medicine

Changwon Yoo, Luis Ramirez, Juan Liuzzi1

Departments of Biostatistics, 1Dietetic and Nutrition, Florida International University, Miami, FL, USA

In this article we introduce modern statistical machine learning and bioinformatics approaches that have been used in learning 
statistical relationships from big data in medicine and behavioral science that typically include clinical, genomic (and proteomic) 
and environmental variables. Every year, data collected from biomedical and behavioral science is getting larger and more com-
plicated. Thus, in medicine, we also need to be aware of this trend and understand the statistical tools that are available to ana-
lyze these datasets. Many statistical analyses that are aimed to analyze such big datasets have been introduced recently. However, 
given many different types of clinical, genomic, and environmental data, it is rather uncommon to see statistical methods that 
combine knowledge resulting from those different data types. To this extent, we will introduce big data in terms of clinical data, 
single nucleotide polymorphism and gene expression studies and their interactions with environment. In this article, we will in-
troduce the concept of well-known regression analyses such as linear and logistic regressions that has been widely used in clini-
cal data analyses and modern statistical models such as Bayesian networks that has been introduced to analyze more complicat-
ed data. Also we will discuss how to represent the interaction among clinical, genomic, and environmental data in using modern 
statistical models. We conclude this article with a promising modern statistical method called Bayesian networks that is suitable 
in analyzing big data sets that consists with different type of large data from clinical, genomic, and environmental data. Such sta-
tistical model form big data will provide us with more comprehensive understanding of human physiology and disease.
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INTRODUCTION

In medicine and the biomedical sciences, we want to find out 
how genes interact between themselves and with their environ-
ment and how they influence selected traits at any given point 
in life. For bioinformaticians, biostatisticians, and epidemiolo-
gists, the clinical data, gene-gene and gene-environment causal 
interactions are defined by statistical probabilities. This con-
trasts strongly against the view physicians and biological scien-
tists take, who think that the mere statistical clinical data, gene-
gene and gene-environment interactions aren’t as sufficient ba-
sis for the actual clinical and biological interactions. 
 The primary objective of this article is to examine the clinical 

data, gene-gene and gene-environment interactions, obtained 
from big data, i.e., large datasets from different types of clinical 
and genomic data, using statistical and bioinformatics ap-
proaches. There has been many in depth articles in analyzing 
clinical data using traditional statistical analysis methods, i.e., 
linear or logistic regression [1-6]. The gene-gene causal interac-
tions have been modeled using high throughput data from sin-
gle nucleotide polymorphism (SNP) studies [7-10] and gene 
expression studies [11-15]. Recent research in biology shows 
that the way that genes interact between themselves cannot be 
described without mentioning the environment in which the 
interactions are taking place. Moreover, recent studies in the 
field of epigenetics provide us with possible gene-environment 
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interactions that can potentially alter the genome. The com-
plexity of a statistical model for clinical data, not even including 
gene-gene and gene-environment causal interactions, is already 
overwhelming; nevertheless, we need to be aware that addi-
tional to the clinical data, gene-gene causal interactions and 
gene-environment interactions should be also modeled to com-
plete the understanding of the disease progression. 
 In the following sections, we will look more into different 
types of clinical and genomic data, i.e., electronic patient data, 
gene expression data, SNP data, and epigenetic data, and review 
what bioinformatics and statistical approaches have been used 
to analyze these data. In conclusion, we will show what tradi-
tional statistical methods and recent biostatistical methods can 
be used in modeling clinical data, gene-gene and gene-environ-
ment interactions. In addition, we will present a new promising 
bioinformatics approach called causal Bayesian networks (BNs), 
which provides a natural way of describing causal relationships 
among modeled variables. 

CLINICAL DATA

In the past few years, the federal government has spent billions 
of dollars to improve clinical data analysis through the use elec-
tronic patient records. It is believed that the use of electronic re-
cords has the capacity of improving the errors that occur in 
surgery and Emergency Department (ED) visits, hospitaliza-
tions, and office visits for patients. In addition, using statistical 
regression analyses, the use of electronic health records has al-
lowed to better understanding the interconnection among the 
clinical variables and also allows to better understand the prog-
ress, prognosis, and treatment of diseases. Typically, clinical 
data are analyzed using linear or logistic regressions.

Linear Regression
Sir Galton first introduced linear regression in the 18th century 
[16]. Linear regression is a statistical method for modeling the 
relationship between a dependent variable and one or more ex-
planatory variables. It assumes the outcome can be predicted via 
weighted sums of input variables. Typically this is the very first 
model that you will look into before going into more complex 
models when the outcome variable is continuous. Reed et al. [2] 
researched the association between implementing a highly avail-
able electronic health record (EHR) and ED visits, hospitaliza-
tions, and office visits for patients with diabetes mellitus. They 
applied a linear regression model with fixed effects at the patient 

level and found that, among patients with diabetes, the use of an 
EHR was associated with a modest reduction in ED visits and 
hospitalizations but not on office visit rates.  Jaffe et al. [3] mea-
sured the annual control rates from the Kaiser Permanente 
Northern California hypertension registry by accounting for the 
nonindependence of proportions as a time series, fitting a log-
linear regression of the proportion on time, allowing for auto-
correlated errors. They found that, among adults with hyperten-
sion, implementation of a large-scale hypertension program was 
associated with a significant increase of hypertension control 
compare with state and national control rates. Yuasa et al. [6] 
studied the correlations between the initial tumor size and size 
reduction rate in patients treated with targeted agents. They 
used both univariate and multivariate linear regression analyses 
to discover that only the initial tumor size was associated with 
the rate of reduction in individual tumors. This could be useful 
for physicians who treat patients with metastatic renal cell carci-
noma.

Logistic Regression
Logistic regression is similar in many aspects to linear regres-
sion, they differ in a very critical aspect. Logistic regression as-
sumes outcome can be explained through weighted sum that 
goes through a special mathematical transformation, called 
logit. This transformation allows all weighted sum to be 
mapped into a value in between 0 and 1, which can be inter-
preted as a probability of a binary outcome. Thus, logistic re-
gression is widely used in outcome variable that has two out-
come, e.g., whether you have a disease or not. De Vries et al. [1] 
researched the relationship between mortality and iatrogenic 
illnesses that occur outside the surgical room. The researchers 
implemented a multidisciplinary surgical safety checklist in 
which six hospitals had to check for medication, operative side, 
and medication. Logistic regression was performed to assess 
the relationship between the checklist and mortality. The study 
showed an association between the comprehensive checklist 
and a reduction in surgical complication and mortality and 
hospitals with high standard of care. Shnorhavorian et al. [4] 
investigated the relationship between maternal risk factors and 
congenital urinary tract anomalies. The performed a case-con-
trol study in which they accessed birth-hospital discharge re-
cords from Washington State from 1987–2007, in which cases 
were children diagnosed with urinary anomalies while controls 
did not display such urinary tract anomalies. In the analysis, 
gestational diabetes, preexisting diabetes, and maternal renal 
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disease were all associated with an increased risk of kidney 
anomalies. Peterson et al. [5] researched in-flight medical emer-
gencies and the outcomes of these events. They characterized 
the most common medical problems and the type of on board 
assistance rendered. Through logistic regression, they identified 
that most in-flight medical emergencies are associated to syn-
cope, respiratory symptoms, and gastrointestinal symptoms.

GENE EXPRESSION DATA

This section is partially adopted and summarized from [17]. 
Microarray techniques positively impacted the course of molec-
ular biology. Before these techniques existed, there were labor-
intensive methods to measure a single gene’s expression patterns 
in cells. Current microarray techniques can measure the expres-
sion level of about 10,000 genes at a time. A successful sequenc-
ing of the entire genome of yeast Saccharomyces cerevisiae in 
April 1996 initiated many experimental studies in other forms 
of yeast [18-20]. These studies fit under a new approach in biol-
ogy that is called systems biology. Systems biology seeks in part 
to model large networks of cellular function, including the caus-
al pathways that capture how genes regulate each other.
 Before describing gene-gene causal interaction models, we 
first place them in the context of gene clustering methods, 
which have been very popular the last few years. Indeed, most 
of the early work on gene expression data analyses used cluster-
ing methods. A cluster analysis typically searches for groups of 
genes that show similarities among different conditions. Other 
analyses followed using similar cluster analyses applied to mi-
croarray data [21-23].
 Clinical studies also used cluster analysis on microarray data 
[24,25]. For example, Alizadeh et al. [24] used cluster analysis to 
find different types of lymphoma among diagnosed patients by 
comparing the clusters of similarly expressed genes and whether 
or not they responded to the current therapy. Along with cluster 
analyses, gene pathway analyses were performed on the gene 
expression data. Analyses to construct pathways among the 
genes yield more information than do cluster or classification 
analyses. Cluster and classification analyses do not necessarily 
provide causal information, which is at the heart of gene path-
way discovery. On the other hand, knowledge of causal path-
ways can be used to produce a causal clustering of the genes.
 In the following subsections, we will briefly review gene-gene 
causal interaction models. More detail review can be found in 
Yoo [17]. 

Boolean Networks
Boolean networks were first introduced by Somogyi and 
Sniegoski [26] in1996. With its simple representation, Boolean 
networks were easily implemented as genetic networks. Howev-
er, since Boolean networks do not explicitly model the uncer-
tainty that the data can have, they cannot model the vague nature 
of a biological system. Also note that when a Boolean network is 
created, no arrows are used; thus, there is no sense of direction or 
causality in the model.

Continuous Models
In mathematics, using differential equations to model a biologi-
cal system has a long history [27-29]. Chen et al. [30] modeled 
a simplified dynamic system of gene regulation (with feedback 
on transcription). Differential equations can model biological 
dynamics better than Boolean networks, but the computational 
cost of using differential equations is high, and often many of 
the parameters are required in order to use differential equation 
modeling are not available. Since most of the dynamics of the 
actual genetic pathways appear to be non-linear, a linear model 
seems to work on only limited dynamics of the genetic pathway.

Bayesian Networks
The BN model has been widely used to learn predictive models 
from data. BNs can model causality based on either the re-
searcher’s knowledge, data or both. It is also used in many med-
ical related domains because of its ability to perform inferences 
easily [31-33]. One practical limitation of BNs is that inference 
within them is not practically feasible with large a number 
(>50) of modeled variables [34], which is a frequent limitation 
of many reasoning methodologies; in response, researchers 
have developed different methodologies to address the issue. 
 A causal BN (or causal network for short) is a BN in which 
each arrow is interpreted as a direct causal influence between a 
parent variable and the variable to which it is directly related to, 
which is called the child variable [35]. Fig. 1 illustrates the 
structure of a hypothetical causal BN structure containing five 
variables that represent genes.
 The causal network structure in Fig. 1 indicates, for example, 
that the Gene1 can regulate (causally influence) the expression 
level of the Gene3, which in turn can regulate the expression 
level of the Gene5. The causal Markov condition gives the con-
ditional independence relationships specified by a causal BN: 
 A variable is independent of its nondescendants given that its 
parents occur (i.e., its direct causes).
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 Murphy and Mian [36] showed that the Boolean network 
model [26], the linear model [37], and the non-linear weighted 
model [38] are all special cases of dynamic BNs (DBNs). A DBN 
incorporates time in BNs (which is then usually called a tempo-
ral BN). 

Mixture Models and Other Models
McAdams and Shapiro [39] modeled the E. coli λ phage lysis-
lysogeny genetic switch using a mixture of Boolean networks 
and continuous input-output relations. Yuh et al. [40] was able 
to model a single gene within the sea urchin embryo with a 
similar hybrid model. Matsuno et al. [41] used a Petri net that 
models continuous variables and analyzes the genetic switch 
mechanism of λ phage. Goss and Peccoud [42] used stochastic 
Petri nets to model the stabilizing effect of proteinson the ge-
netic network regulating plasmid replication. 
 There are many different kinds of statistical classification 
methods. A method commonly used for statistical classification 
is k-Nearest Neighbor (kNN), which classifies a new case by 
calculating the minimum distance between the new case and a 
set of training cases. kNN has been used in areas such as radiol-
ogy and immunology. Variations of kNN have recently been 
used in classifying and clustering genes from large gene expres-
sion datasets [18,21-23].
 Petri nets are a formal graphical language appropriate for 
modeling systems where concurrency occurs. Petri nets were 
used in guidelines for patient care flow [43]. It has also been 
used in modeling mechanisms in a cell [41,42,44].
 Genetic programming uses the three basic mechanisms that 
drive natural evolution—reproduction, mutation, and selec-

tion—in its search for a model that best fits the training data. 
Evolutionary methods allow a program to evolve, giving it great 
freedom to search through a large space of possible models. 
Koza et al. [45] has used genetic programming to learn gene 
networks from simulated data that was generated by a comput-
er model of the cell, called E cell [46].

SINGLE NUCLEOTIDE POLYMORPHISMS

Recent genome-wide association studies have discovered sig-
nificant associations between complex diseases and SNPs.  A 
SNP is a DNA sequence variation resulting from an alteration 
of a single nucleotide in the genome. It differs from a mutation 
in that the variation must occur within at least 1% of the popu-
lation. SNPs are the most common genetic variations and thus 
are the most thoroughly investigated. It is believed that SNP-
SNP interactions, not the individual SNPs themselves, play an 
important role in the development of complex diseases. Multi-
ple models have been employed in SNP-SNP analysis, most no-
tably logistic regression, combinatorial methods, support vector 
machines (SVMs), and logic regression. 
 Logistic regression, a fairly traditional model used for SNP 
analysis, is capable of linking SNPs to disease outcome using a 
function called logit. SNP-SNP interactions can be considered 
by including interaction terms in the model. This of course can 
result in a large number of variables. When stratification is 
present within the data, the conditional logistic regression 
(CLR) method can be used. By stratifying the data, the CLR 
method is able to adjust for the matching of the the variables 
with each other [47].
 A widely used combinatorial method for SNP analysis is 
multifactor dimensionality reduction (MDR). MDR attempts 
to combine two or more attributes, in this case SNPs, into a sin-
gle attribute to improve disease prediction. The combination of 
SNPs is a great predictor of a disease because it minimizes error.  
A number of MDR variations have been proposed, including 
pair-wise MDR, which addresses the problem of MDR’s inabili-
ty to classify empty cells [9] and robust MDR which makes use 
of the Fisher exact test [10].
 Goodman [48] developed an approach similar to MDR, 
known as polymorphism interaction analysis (PIA) to explore 
SNP interactions and colon cancer risk. Like MDR, PIA exam-
ines all possible SNP combinations to find the interaction that 
best predicts the risk of disease. They differ in that PIA uses two 
unique scoring functions, the Gini index and the percentage 

Fig. 1. A causal Bayesian network that represents a hypothetical 
gene-regulation pathway.

Gene1

Gene4 Gene5

Gene2 Gene3
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wrong (i.e., the percentage of misclassified subjects), to find the 
interactions most likely associated with disease risk. In addi-
tion, PIA makes use of ten-fold cross validation and, excludes 
SNPs or SNP combinations that have a ratio greater than 1.2 
from the analysis [48].
 SVMs have also been recently used in SNP-SNP analyses. 
SVMs are a collection of supervised learning methods used for 
both classification and regression. Whereas many classifiers 
aim to minimize prediction error, SVMs are trained to maxi-
mize accuracy. Observations are represented as points in space 
while a hyperplane is constructed and treated as the decision 
boundary between the outcome categories. The prediction ac-
curacy is maximized by finding the hyperplane that has the 
greatest distance to the nearest training data points [8].  
 Chen et al. [8] proposed the following four search algorithms 
to detect interaction among SNPs: recursive feature addition 
SVM (SVM-RFA), recursive feature elimination SVM (SVM-
RFE), SVM with local search (SVM-local), and SVM with ge-
netic algorithm (SVM-GA).  RFA/E discovers the optimal sub-
set of SNP combinations by ranking the subsets according to a 
ranking criterion. SNP combination(s) are added/eliminated at 
each iteration using the correlation coefficients as the ranking 
criteria [8]. 
 The SVM-local algorithm is similar to most local searches in 
that a random subset of SNP interactions is initially generated. 
A search is then conducted through the initial subset’s neigh-
bors in an attempt to find a “better” subset. If one is found, the 
“better” subset is accepted. This continues until a subset is se-
lected in which no “better” subset exists. In order for a given 
subset of SNP interactions to have a neighbor(s), they both 
must differ by a single element [8].
 Unlike SVM-local, SVM-GA is a stochastic search that is 
based upon natural selection and genetics. The search begins by 
generating a random set of SNP combinations, called the popu-
lation. Genetic operations, crossovers, and mutations are per-
formed on randomly selected chromosomes (individual SNP 
combinations within the population) to yield the next genera-
tion. An evolution process, called selection, is then performed 
on both generations to improve the chromosomes. New gener-
ations are created and the above is repeated until the chromo-
somes in the population converge. The final chromosome is 
considered the best subset of SNP interactions [8].
 In logic regression, the interactions among SNPS are repre-
sented in logic trees and logic expressions. Both make use of the 
logic operators “or” and “and”, the latter signifying an interac-

tion. Traditional logic regression uses the Monte Carlo Markov 
Chain (MCMC) method to find the collection of best logic re-
gression models. From that collection, the SNP combinations 
occurring most frequently are identified and assumed to be im-
portant interactions. The importance of interactions is quanti-
fied by the proportion of models in which the SNP combina-
tions appear. Interactions that are only significant in small sub-
groups of the population thus have the potential to be over-
looked. The LogicFS [7] approach to logic regression uses sam-
pling to address this issue. Another advantage of the LogicFS 
approach is that, unlike MCMC logic regression, it uses two 
unique measures that allow for the comparison of very distinct 
interactions. Logic regression is considered more practical than 
other methods used in SNP-SNP analysis because it does not 
require interaction terms to be included in the model as inputs. 
 Logistic regression, MDR, SVMs, and logic regression are all 
methods that are capable of identifying important SNP-SNP in-
teractions. Algorithms that use different search mechanisms, 
different ranking/importance criterion, and/or that are geared 
toward specific situations have been proposed. Despite these 
advantages, the literature seems to lack studies that seek out 
causal discovery among SNPs. Like the other models, BNs are 
able to identify important associations among SNPs. It is being 
proposed that BNs are also capable of extracting causal infor-
mation from those SNP-SNP and SNP-disease associations.

EPIGENETIC REGULATION OF THE GENOME

Epigenetics modify genomes functions without altering the 
DNA sequence. Thus, the epigenetic modifications change the 
transcriptions of genes.
 DNA methylation, which involves the addition of a methyl 
group onto cytosines in the DNA, was thought to be active only 
during embryonic development. However, recent studies show 
that DNA methylation occurs in even fully differentiated cells 
[49]. This shows biological examples of gene-environmental in-
teractions. Such interactions need to be considered in modeling 
gene expression. The gene-environment interactions also arise 
from gene transcription.
 Fu et al. [50] developed Bayesian inference methods for epi-
genetic data to study the transmission of DNA methylation pat-
terns over cell divisions. Genome-wide methylation data were 
analyzed using the genome-wide statistical significance calcula-
tion for increased variability [51] and Bayesian hierarchical 
model [52]. A beta-mixture model was used in analyzing ge-
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nome-wide methylation patterns of colon cancer.

CONCLUSIONS

We have reviewed bioinformatics and statistical methods for 
clinical data, gene-gene and gene-environment causal interac-
tions using big data, typically from different sources; i.e. ge-
nomic and clinical data. Traditionally in statistics, modeling 
clinical data and even complex gene-gene and gene-environ-
ment interactions are given in a linear equation among mod-
eled variables [53]. However, note that there are pros and cons 
of the traditional statistical approach. Moreover, modeling cau-
sality is not a straight forward extension.
 Recently, there have been many or statistical methods that 
have been used in order to study complex gene-gene and gene-
environment interactions. These bioinformatics methods were 
presented in the previous sections. Here we present causal BNs 
as a method that can model complex clinical, gene-gene and 
gene-environment interactions using big data, from different 
types of genomic and clinical data.

 Given the emergence of datasets in medicine and biology 
with large number of variables, BNs have been successful in de-
veloping efficient algorithms that are able to handle very large 
datasets and develop high quality predictive models from ge-
nomic and clinical data [12]. A BN is a directed acyclic graph in 
which each node represents a variable and each arc represents a 
relationship. In BNs, each arc is interpreted as a direct influence 
between a parent node (variable) and a child node.
 BNs are also built based on the causal Markov conditions 
[35]. This can be understood with the following hypothetical 
example BN:
 In Fig. 2, either Rain occurs or you turn or the Sprinkler, 
both of which can make your lawn wet. Also, if your lawn gets 
enough water, it gets green (My Lawn Green). Of course, your 
neighbor, who does not have a sprinkler, can get his lawn wet 
when it rains. In the above network, we can identify the follow-
ing three sub networks:
 In Fig. 3A, which are called converging arcs, if you know 
your lawn is wet and you know it didn’t rain then there is a high 
chance that your sprinkler is on (Sprinkler). In other words, if 
nodes A and B converge into node C, then A and B becomes 
dependent given that C occurs. Also note that in Fig. 3B, called 
diverging arcs, if it rains, your lawn and your neighbor lawn get 
wet. If you know it rained (Rain), knowing your lawn is wet 
does not tell you about your neighbor’s lawn being wet, in other 
words, if variable C diverges into variables A and B, then A and 
B becomes independent given that C occurs. In Fig. 3C, called 
serial arcs, if it rains (Rain), then my lawn gets wet, and eventu-
ally, your lawn gets green. In this case, if you know your lawn is 
wet, then knowing whether it rained or not will not tell you 
much more about your lawn getting green, in other words, if 
the serial arcs goes from a variable A to a variable B to a vari-

Sprinkler Rain

My Lawn Wet Neighbor Lawn Wet

My Lawn Green

Fig. 2. A simple example Bayesian network.

Fig. 3. Sub networks from Fig. 2. (A) Converging arcs, (B) diverging arcs, and (C) serial arcs.

A B C

Sprinkler

My Lawn Wet My Lawn Wet Neighbor Lawn Wet

Rain Rain

Sprinkler

My Lawn Wet

My Lawn Green
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able C, then A and C are independent given that B occurs.
 These three sub networks (converging, diverging, and serial) 
provide ways to express causal interactions in intuitive ways. 
The fact that causal BNs can provide a myriad of combinations 
with the statistical analysis of collected data, makes an excellent 
bioinformatics statistical tool in modeling complex clinical pa-
rameters, gene-gene, and gene-environment interactions from 
different types of genomic and clinical data.
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