
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-10-2009

Ranked Search on Data Graphs
Ramakrishna R. Varadarajan
Florida International University, ramkris83@gmail.com

DOI: 10.25148/etd.FI10022554
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Varadarajan, Ramakrishna R., "Ranked Search on Data Graphs" (2009). FIU Electronic Theses and Dissertations. 220.
https://digitalcommons.fiu.edu/etd/220

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/220?utm_source=digitalcommons.fiu.edu%2Fetd%2F220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

RANKED SEARCH ON DATA GRAPHS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Ramakrishna R. Varadarajan

2009

 ii

To: Dean Amir Mirmiran
 College of Engineering and Computing

This dissertation, written by Ramakrishna R. Varadarajan, and entitled Ranked Search on
Data Graphs, having been approved in respect to style and intellectual content, is referred
to you for judgment.

We have read this dissertation and recommend that it be approved.

Shu-Ching Chen

Tao Li

Raju Rangaswami

Kaushik Dutta

Vagelis Hristidis, Major Professor

Date of Defense: March 10, 2009

The dissertation of Ramakrishna R. Varadarajan is approved.

 Dean Amir Mirmiran

 College of Engineering and Computing

Dean George Walker

University Graduate School

Florida International University, 2009

 iii

DEDICATION

I dedicate this Dissertation to my parents, Krishnan Varadarajan and Suganthi

Varadarajan and my brother Venkatanathan Varadarajan. Without their patience,

understanding, support, and most of all love, the completion of this work would not have

been possible.

 iv

ACKNOWLEDGMENTS

I wish to thank the Department of Computing and Information Sciences for extending

me all the support needed for successful completion of my Dissertation. In particular, I would

like to thank the Department for consistently providing me with graduate assistantships,

travel fellowships and awards that kept me motivated throughout my life as a graduate

student. I would like to thank Dr. Yi Deng and Dr. Masoud Milani for their encouragement

and support. I wish to thank the members of my Dissertation committee – Dr. Vagelis

Hristidis, Dr. Tao Li, Dr. Shu-Ching Chen, Dr. Raju Rangaswami and Dr. Kaushik Dutta for

their support and patience in supervising and reviewing my Dissertation. A huge thanks and

deep appreciation to Dr. Vagelis Hristidis for providing me with cutting-edge research ideas

and spending tremendous amount of time and effort in supervising my Dissertation. I would

also like to thank my research Collaborators – Dr. Louiqa Raschid, Dr. Raghuram

Krishnapuram, Dr. Gautam Das, Dr. Maria-Esther Vidal and Dr. Prasad DeshPande for

providing invaluable feedback, comments, support and encouragement. Great thanks to all

the CIS faculty members for providing me with excellent classroom education. A special

thanks to Dr. Masoud Sadjadi, Dr. Giri Narasimhan and Dr. Geoffrey Smith for their

motivating and stimulating classroom teaching. I would also like to thank my PhD candidacy

committee members – Dr. Geoffrey Smith, Dr. Peter Clarke and Dr. Napthali Rishe for their

time. A big thanks to my fellow PhD students – Medha, Kasturi, Fernando, Jorge, Luis, Sajib

and Ricardo for helping me surpass the numerous barriers I encountered on the road to my

PhD. My deepest appreciation to Maria, Martha, Olga, Haydee, Donaley and the rest of the

CIS staff for putting up with all my questions and requests and never failing to help me when

I needed it.

 v

ABSTRACT OF THE DISSERTATION

RANKED SEARCH ON DATA GRAPHS

by

Ramakrishna R. Varadarajan

Florida International University, 2009

Miami, Florida

Professor Vagelis Hristidis, Major Professor

Graph-structured databases are widely prevalent, and the problem of effective search and

retrieval from such graphs has been receiving much attention recently. For example, the

Web can be naturally viewed as a graph. Likewise, a relational database can be viewed as

a graph where tuples are modeled as vertices connected via foreign-key relationships.

Keyword search querying has emerged as one of the most effective paradigms for

information discovery, especially over HTML documents in the World Wide Web. One

of the key advantages of keyword search querying is its simplicity – users do not have to

learn a complex query language, and can issue queries without any prior knowledge

about the structure of the underlying data.

The purpose of this dissertation was to develop techniques for user-friendly, high

quality and efficient searching of graph structured databases. Several ranked search

methods on data graphs have been studied in the recent years. Given a top-k keyword

search query on a graph and some ranking criteria, a keyword proximity search finds the

top-k answers where each answer is a substructure of the graph containing all query

keywords, which illustrates the relationship between the keyword present in the graph.

We applied keyword proximity search on the web and the page graph of web documents

 vi

to find top-k answers that satisfy user’s information need and increase user satisfaction.

Another effective ranking mechanism applied on data graphs is the authority flow based

ranking mechanism. Given a top-k keyword search query on a graph, an authority-flow

based search finds the top-k answers where each answer is a node in the graph ranked

according to its relevance and importance to the query. We developed techniques that

improved the authority flow based search on data graphs by creating a framework to

explain and reformulate them taking in to consideration user preferences and feedback.

We also applied the proposed graph search techniques for Information Discovery over

biological databases. Our algorithms were experimentally evaluated for performance and

quality. The quality of our method was compared to current approaches by using user

surveys.

 vii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION ... 1

2 RESEARCH SIGNIFICANCE.. 5

3 RELATED WORK.. 7
3.1 Keyword Search on Data Graphs.. 7
3.2 IR Ranking.. 8
3.3 Link based Semantics ... 9
3.4 Document Summarization & Web Search.. 10
3.5 Relevance Feedback and Query Reformulation ... 11

4 FRAMEWORK & PROBLEM DEFINITIONS.. 13
4.1 Data Model.. 13

4.1.1 Web graph.. 13
4.1.2 Page graph.. 13
4.1.3 Data graph.. 15
4.1.4 Schema graph... 16
4.1.5 Authority Transfer Schema Graph... 17
4.1.6 Authority Transfer Data Graph.. 19

4.2 Problem definitions... 21
4.2.1 Definition 1 (Minimal Total Web Spanning Tree). ... 21
4.2.2 Definition 2 (Minimal Total Page Spanning Tree). ... 21
4.2.3 Definition 3 (Search Result). ... 23

5 OVERVIEW AND ALGORITHMS ...24
5.1 Web Search ... 25

5.1.1 Building Page Graphs .. 25
5.1.2 Query-Specific Document Summarization .. 29
5.1.3 Search using Composed Pages.. 33
5.1.4 Experimental Results .. 41

5.2 Authority Flow-Based Graph Search.. 46
5.2.1 Explaining Query Results .. 47
5.2.2 Query Reformulation ... 54
5.2.3 Experimental Results ... 58

5.3 Graph Information Discovery (GID) .. 64
5.3.1 GID Query Language... 68
5.3.2 Related Research.. 73
5.3.3 Algebra for GID... 76
5.3.4 GID Soft Filters computed by Authority Flow.. 80
5.3.5 GID Optimizer and Execution ... 85
5.3.6 Experimental Results ... 88

 viii

5.4 Comparing Top-k XML Lists ... 95
5.4.1 XML Lists Distance based on Total Mapping (XLDTM)............................. 98
5.4.2 Computing XLDTM ... 103
5.4.3 Experimental Results ... 105

6 CONCLUSIONS... 110

LIST OF REFERENCES.. 111

VITA... 118

 ix

LIST OF TABLES

TABLE PAGE

Table 1: Top-3 search results for query - Graduate Research Scholarships. 24

Table 2: Real & Synthetic Datasets. ... 41

Table 3: Average Top-5 search result ratings for 10 queries.. 42

Table 4: Average summary ratings for documents. .. 43

Table 5: Average summary ratings for Queries 1 and 2 in DUC topics. 44

Table 6: Average summary ratings for Queries 3 and 4 in DUC topics. 44

Table 7: Queries used for documents.. 45

Table 8: Real and Synthetic Datasets.. 58

Table 9: Physical Implementation of GID Algebra Operators. .. 87

Table 10: Datasets... 89

Table 11: XML Datasets... 105

 x

LIST OF FIGURES

FIGURE PAGE

Figure 1: Sample Web pages from www.fiu.edu. ... 14

Figure 2: A page graph of Page 1 in Figure 1... 15

Figure 3: A subset of the DBLP graph.. 16

Figure 4: The DBLP schema graph. ... 16

Figure 5: DBLP authority transfer schema graph. .. 16

Figure 6: A subset of the Biological data graph. .. 17

Figure 7: Subset of Schema Graph for a Biological Dataset. ... 18

Figure 8: Authority Transfer Schema Graph for Biological Database. 18

Figure 9: The DBLP Authority transfer data graph. ... 19

Figure 10: Authority transfer data graph for Biological database. 19

Figure 11: The Minimal Total Web Spanning Trees of Web graph in
 Figure 1 for query - Graduate Research Scholarships. 20

Figure 12: The Minimal Total Page Spanning Trees of Pages 2 and 4
 in Figure 1 for query - Graduate Research Scholarships. 22

Figure 13: Top summary of web page 1 of Figure 1 for query - research scholarships. .. 29

Figure 14: Top-1 Enumeration Algorithm.. 31

Figure 15: Top-1 Expanding Search Algorithm. .. 33

Figure 16: Composed Page for Search Result #1 for query -
 Graduate Research Scholarships.. 35

Figure 17: Preprocessing Algorithm... 38

Figure 18: Heuristic Top-k Expanding Search Algorithm... 40

Figure 19: The DBLP Authority transfer data graph annotated with
 authority flows for query - OLAP... 48

 xi

Figure 20: Intuition behind flow adjustment. ... 49

Figure 21: Algorithm to Compute Flows in Explaining Subgraph................................... 52

Figure 22: Explaining Subgraph for Range Queries in OLAP paper in Figure 9............. 53

Figure 23: Average Precision for different calibration parameters. 60

Figure 24 : Training of the Authority Transfer Rates. .. 61

Figure 25: Average Precision using structure-only reformulation with Cf=0.5. 61

Figure 26: Training of the Authority Transfer Rates. ... 62

Figure 27: DBLPcomplete Execution... 63

Figure 28: Sample semantic query evaluation. ... 73

Figure 29: Execution plan for query q1 .. 79

Figure 30: Layered Graph... 82

Figure 31: Approximate Single Authority-Flow Soft Filter. .. 83

Figure 32: Performance experiments of Path-Length-Bound Technique. 91

Figure 33: Quality Experiments of Path-Length-Bound Technique................................. 91

Figure 34: Performance experiments of Graph-Sampling Technique. 93

Figure 35: Quality Experiments of Graph-Sampling Technique...................................... 93

Figure 36: Top-3 trees for query - Ullman Database.. 96

Figure 37: Algorithm for computing XLDTM ... 103

Figure 38: XLDTM Experiments on DBLP Dataset. ... 106

Figure 39: XLDTM Experiments on NASA Dataset.. 108

Figure 40: Performance Experiments on NASA dataset .. 110

 1

1 INTRODUCTION

Graph-structured databases are widely prevalent, and the problem of effective search and

retrieval from such graphs has been receiving much attention recently. For example, the

Web can be naturally viewed as a graph [PBMW98, Kle99]. Likewise, a relational

database can be viewed as a graph where tuples are modeled as vertices connected via

foreign-key relationships [BNH+02], and a XML database can be represented as a graph

with XML elements as nodes and containment or ID-IDREF edges as hyperlinks

[GSBS03, CMKS03]. Keyword search querying has emerged as one of the most effective

paradigms for information discovery, especially over HTML documents in the World

Wide Web [PBMW98, Kle99, LCVA01]. One of the key advantages of keyword search

querying is its simplicity – users do not have to learn a complex query language, and can

issue queries without any prior knowledge about the structure of the underlying data.

Since the keyword search query interface is very flexible, queries may not always be

precise and can potentially return a large number of query results, especially in large

document collections. Consequently, an important requirement for keyword search is to

rank the query results so that the most relevant results appear first. Recently, the problem

of keyword search over relational [HGP03, HP02, ACD02, BHP04] and XML [GSBS03,

HPB03, CMKS03] databases has received much attention.

The goal of this thesis is to develop techniques for user-friendly, high quality and

efficient searching of graph structured databases. Several ranked search methods on data

graphs have been studied in the recent years. A data graph is a graph G(V, E), where V is

 2

a set of vertices, and E is a set of edges between the vertices. The graph could be either

weighted or un-weighted. Given a top-k keyword search query on a graph and some

ranking function, a keyword proximity search finds the top-k answers where each answer

is a substructure of the graph containing all query keywords. Conceptually, the problem

may be defined as follows. Given a keyword query Q as a set of keywords, a search result

is a tree R which is a sub-graph of G such that every keyword is contained in at least one

vertex of R, and we cannot remove any node from R and still have a tree. The score1 of R

is defined as the sum of the weights of all edges in R. Given a graph G(V,E), a keyword

query Q, and an integer k, we are interested in retrieving the k search results with the

smallest scores. When k = 1, the keyword proximity search problem has been shown to

be equivalent to the Group Steiner problem [Rei89], which is NP-complete. There have

been efforts to approximate the Group Steiner tree problem in the theory community

[Ihl90,GKR00]. In the database community, past research has focused on fast heuristic

solutions for the keyword proximity search problem for general values of k [BNH+02,

GSVM98, LCVA01]. We apply keyword proximity search on the web and the page graph

of web documents to find top-k answers that satisfy user’s information need and increase

user satisfaction.

 Another effective ranking mechanism applied on data graphs is the authority flow

based ranking mechanism. Given a top-k keyword search query on a graph, an authority-

flow based search finds the top-k answers where each answer is a node in the graph

ranked according to its relevance and importance to the query. This technique was first

1 This (or an equivalent) definition of score has been commonly used in earlier works [GSVM98, LCVA01,
BNH+02, ACD02, HP02] – informally, this measure favors “tighter” trees.

 3

applied on the web [PBMW98] and later over databases [BHP04] and XML[GSBS03]. In

the context of the Web, PageRank [PBMW98] is used to compute a global ranking of the

pages based on the hyperlink structure. ObjectRank [BHP04] applies the idea of authority

flow on a data graph, where nodes represent entities like tuples, and edges represent

associations like primary-to-foreign keys. In contrast to PageRank, ObjectRank provides

query-specific ranking by using the query-specific nodes as the authority source (called

base set). Another key feature of ObjectRank, as explained below, is that different edge

types carry different amounts of authority. The Hubs of Knowledge project [SIY06]

applies the PageRank algorithm on a query-dependent subgraph of the original biological

graph. Raschid et al. [RWL+06] apply PageRank and ObjectRank to answer navigational

queries on biological data. Conceptually, the ranking is produced in the following way:

Myriads of random surfers are initially found at the objects containing the keyword

“OLAP”, which we call the base set, and then they traverse the database graph. In

particular, at any time step, a random surfer is found at a node and either (i) makes a

move to an adjacent node by traversing an edge, or (ii) jumps randomly to an “OLAP”

node without following any of the links. The probability that a particular traversal

happens depends on multiple factors, including the type of the edge. These factors are

depicted in an authority transfer schema graph. Figure 5 illustrates the authority transfer

schema graph used by the ObjectRank project [BHP04]. Assuming the probability that

the surfer moves back to an “OLAP” node is 15% (damping factor−random jump

probability [PBMW98]), the collective probability to move to a referenced paper is up to

85% ⋅ 70% (70% is the authority transfer rate of the citation edge as we explain below),

and so on. As is the case with the PageRank algorithm as well, as time goes on, the

 4

expected percentage of surfers at each node v converges to a limit r(v). Intuitively, this

limit is the ObjectRank of the node.

We develop techniques to improve the authority flow based search on data graphs by

creating a framework to explain and reformulate them taking in to consideration user

preferences and feedback. Querying large biological data collections in a flexible and

efficient way is a research problem which we plan to explore. Our goal is to apply those

techniques taking in to consideration the domain specifics. The specific goals of this

thesis are as follows:

1. Improve Web Search Results: Propose and demonstrate a technique that given a

keyword query, on-the-fly generates new pages, called composed pages that

satisfy the user’s information needs and improves user satisfaction. Propose and

demonstrate novel algorithms for query-specific web page summarization.

Specifically, given a web graph and a keyword query, generate a set of pages,

called composed pages that will satisfy the user’s information need. Also, given a

document and a keyword query, generate a query-specific summary that best

describes the document content in a concise manner.

2. Improve Authority Flow based Graph Search: Create a framework and provide

algorithms to explain query results and reformulate authority flow queries based

on the user’s feedback. Specifically, given a top authority flow query search result

for a data graph, find a best way explain why or how the top result got its current

score. Also, devise efficient query reformulation algorithms to reformulate the

authority flow based keyword query.

 5

3. Provide a Flexible and Efficient Querying and Ranking Framework for

Hyperlinked Databases: Propose a flexible and extensible framework for querying

over large hyperlinked data collections. Specifically, create a flexible and

extensible framework for efficiently querying large hyperlinked data sources.

4. Compare Top-k XML Lists: Present distance measures for computing the distance

between two ranked lists of XML subtrees where all subtrees from the first list are

mapped to subtrees in the second. Unfortunately, previous distance measures are

not suitable for ranked lists of subtrees since they do not account for the possible

overlap between the returned subtrees. That is, two subtrees differing by a single

node would be considered separate objects.

The rest of the dissertation is organized as follows. Section 2 presents the significance of

the research. Section 3 describes the related work. Section 4 describes framework and

problem definitions. Section 5 presents the algorithms. Section 6 describes the

conclusions. Finally, we present the list of references.

2 RESEARCH SIGNIFICANCE

The significance of this research is as follows:

1. Search engine industry is huge. Smallest improvement can result in millions of

revenues. The composed pages technique is a novel web search technique. There

is a possibility of commercialization of the idea.

 6

2. Explaining and reformulating authority flow keyword queries have the possibility

to adapt the ranking mechanism according to user’s feedback, which offers new

operational areas for this ranking method. The presented ideas improve authority

flow ranking methods and make them usable in a broader application area.

3. An increasing amount of data is stored in biological sources, like Entrez Gene,

PubMed, and OMIM. Entities of the sources are interconnected through semantic

links, created manually or automatically (e.g., using BLAST). As the complexity

and size of such databases increases, there is a need for flexible and efficient

methods to discover information. We propose a novel extensible query language

for biological databases, which is simple to use, yet expressive enough for most

query needs.

4. As the use of electronic medical records becomes more widespread, so does the

need to search and provide effective information discovery on them. Information

discovery methods will allow practitioners and other healthcare stakeholders to

locate relevant pieces of information in the growing corpus of available EMRs.

The success of Web search engines has shown that keyword queries are a useful

tool for locating relevant information in an intuitive and effective manner. The

proposed method to apply authority flow ranking techniques considering the

domain specifics have applications in creating search environments in hospitals

for various users like researcher, physician, pharmacist, nurse, respiratory

therapist, physical therapist and so on.

 7

3 RELATED WORK

3.1 Keyword Search on Data Graphs

 For both the document summarization as well as the web search problem, when

the page graphs are already created and a query arrives, the system searches the page

graphs (also the web graph) for sub-trees that contain all (or a subset of) query keywords.

This problem has been studied by the database and graph-algorithms communities. In

particular, recent work [ACD02, BNH+02, GSVM98, GSB+03, HGP03, HP02, KPC+05,

KS06] has addressed the problem of free-form keyword search on structured and semi-

structured data. These works follow various techniques to overcome the NP-

completeness of the Group Steiner problem, to which the keyword proximity search

problems can be reduced. Li et al. [LCVA01] tackle the problem of proximity search on

the Web, which is viewed as a graph of hyperlinked pages. They use of the concept of

information unit, which can be viewed as a logical Web document consisting of multiple

physical pages.

Goldman et al. [GSVM98] use precomputation to minimize the runtime cost. BANKS

[BNH+02] views the database as a graph and proposes algorithms to approximate the

Group Steiner Tree problem. We consider and experimentally evaluate modifications of

these algorithms in this work. XRANK [GSB+03] works on XML trees, which simplifies

the problem. [ACD02, HGP03, HP02] perform keyword search on relational databases

and exploit the schema properties to achieve efficient execution.

 8

Finally, notice that Buneman et al. [BDFS03] view the problem of adding structure to

unstructured data from a completely different angle: how to define a schema to describe a

labeled graph (e.g., an XML document).

3.2 IR Ranking

In creating the document graph and computing the node weights, we adopt ranking

principles from the Information Retrieval community. Various methods for weighting

terms have been developed [Sin01]. The most widely used are the Okapi (Equation 1)

and the pivoted normalization weighting, which are based on the tf-idf principle.

qtfk

qtfk

tf
avdl

dl
bbk

tfk

df

dfN

dQt
+
+

++−

+
+

+−
∑
∈ 3

3

1

1

,

)1(
.

))1((

)1(
.

5.0

5.0
ln

tf is the term’s frequency in document,

qtf is the term’s frequency in query,

N is the total number of documents in the collection,

df is the number of documents that contain the term,

dl is the document length (in words),

avdl is the average document length and

k1 (between 1.0–2.0), b (usually 0.75), and k3(between 0–1000) are constants.

 (1)

For an overview of modern IR techniques we refer to [Sin01]. Any state-of-the-art IR

ranking function is based on the tf-idf principle [Sin01]. The shortcoming of these

semantics is that they miss objects that are much related to the keywords, although they

do not contain them. The most popular specificity metric in Information Retrieval is the

 9

document length (dl). The relevance information is hidden in the link structure of the data

graph which is largely ignored by the traditional IR techniques.

3.3 Link based Semantics

Savoy [Sav92] was the first to use the link-structure of the Web to discover relevant

pages. This idea became more popular with PageRank [PBMW98], where a global score

is assigned to each Web page. HITS [Kle99] employ mutually dependant computation of

two values for each web page: hub value and authority. Balmin et al. [BHP04] introduce

the ObjectRank metric. In contrast to PageRank, it is able to find relevant pages that do

not contain the keyword, if they are directly pointed by pages that do.

 Haveliwala [Hav02] proposes a topic-sensitive PageRank, where the topic-

specific PageRanks for each page are precomputed and the PageRank value of the most

relevant topic is used for each query. Both works apply to the Web and do not address the

unique characteristics of structured databases. Furthermore, they offer no adjusting

parameters to calibrate the system according to the specifics of an application.

 Recently, the idea of PageRank has been applied to structured databases [GSB+03,

HXY03]. XRANK [GSB+03] proposes a way to rank XML elements using the link

structure of the database. Furthermore, they introduce a notion similar to ObjectRank

transfer edge bounds, to distinguish between containment and IDREF edges. Huang et al.

[HXY03] propose a way to rank the tuples of a relational database using PageRank,

where connections are determined dynamically by the query workload and not statically

by the schema. However, none of these works exploits the link structure to provide

 10

keyword-specific ranking. Furthermore, they ignore the schema semantics when

computing the scores.

3.4 Document Summarization & Web Search

A large corpus of work has focused on generating query-independent summaries

[AP00,BE97,BM00,GKMC99]. The OCELOT system [BM00] provides the summary of

a web page by selecting and arranging the most (query-independent) “important” words

of the page. Amitay and Paris [AP00] propose a new fully automatic pseudo-

summarization technique for Web pages, where the anchor text of hyperlinked pages is

used to construct summaries. [BE97] uses lexical chains for text summarization.

 The majority of systems participating in the past Document Understanding

Conference [DUC05] (a large scale summarization evaluation effort sponsored by the

United States government), and the Text Summarization Challenge [FO01] are extraction

based. Extraction-based automatic text summarization systems extract parts of original

documents and output the results as summaries [CKS03,Edm69,GKMC99,HL00]. Other

systems based on information extraction [RM98] and discourse analysis [Mar99] also

exist but they are not yet usable for general-domain summarization. However these works

do not exploit the inherent structure of the document and mostly focus on query-

independent summaries. In this work (as in [VH06]) we also show the semantic

connections between the extracted fragments.

 White et al. [WRJ02], Tombros and Sanderson [TS98] and Goldstein et al.

[GKMC99] create query-dependent summaries using a sentence extraction model in

which the documents (web pages) are broken up into their component sentences and

 11

scored according to factors such as their position. A number of the highest-scoring

sentences are then chosen as the summary. [AP97,Hea94,SSMB97] select the best

passage of a document as its summary. However, these works ignore possible semantic

connections between the sentences or the possibility that linking a relevant set of text

fragments will provide a better summary. Radev et al. [RFZ98] provide a technique for

multi-document summarization used to cluster the results of a web keyword query.

[ER04,MT04] provide a technique to rank sentences based on their similarity with other

sentences across multiple documents and then provide a summary with the top ranked

sentences. However, their methods are query-independent in contrast to our work.

 The idea of splitting a Web page to fragments has been used by Cai et al.

[CHWM04] and Song et al. [SLWM04], where they extract query-independent rankings

for the fragments, for the purpose of improving the performance of web search. Cai et al.

[CHWM04] partition a web page into blocks using the vision-based page segmentation

algorithm. Song et al. [SLWM04] provide learning algorithms for block importance.

Finally, all major Web search engines generate query-specific snippets of the returned

results. Although their algorithms are not published, we observed that they simply extract

some of the query keywords and their surrounding words. Recently, some of these

companies made available tools to provide the same search and snippet functionality on a

user’s desktop [GD07,MD07].

3.5 Relevance Feedback and Query Reformulation

Salton and Buckley [SB90] introduced the idea of using relevance feedback for

improving search performance. Relevance feedback covers a range of techniques

 12

intended to improve a user’s query and facilitate retrieval of information relevant to a

user’s information need. In [BSA94, BSA+95], they showed that query expansion and

query term reweighting are essential to Relevance Feedback. For a detailed survey of

relevance feedback methods we refer to [RL03, Har92]. The basic approach of term

selection, term reweighing and query expansion [Efth93,Har88,MSB98,

SVR83,SB95,KF06,XC96,LJ01,HC93] using terms drawn from the relevant documents

works well for traditional IR which is content-based. For link-based metrics like

ObjectRank [BHP04] this yields poor results. Hence, we need link-based (structure-

based) relevance feedback methods.

 Nie et al. [NZW+05] and Ararwal et al. [ACA06] present query-independent

techniques to assign popularity propagation factor values (similar to the authority flow

rates of ObjectRank) to Web objects, given an optimal object ranking. Our structure-

based reformulation technique, which is query and feedback-specific, is inspired by these

works. A recent work [VB06] on relevance feedback is based on web-graph distance

metrics. The basic idea, which is similar to our content-based reformulation technique, is

that relevant pages tend to point to other relevance pages, while irrelevant pages are

pointed to by other irrelevant pages. Another recent study on relevance propagation over

the web [QLZ+05] propose site-based propagation models that out-perform hyperlink-

based models. Another recent work [SZ05] describes active feedback algorithms that help

to choose documents for relevance feedback so that the system can learn most from the

feedback.

 13

4 FRAMEWORK & PROBLEM DEFINITIONS

4.1 Data Model

4.1.1 Web graph: Let D={d1,d2,…,dn} be a set of Web pages d1,d2,…,dn. Also let

size(di) be the length of di in number of words. Term frequency tf(d,w) of term (word) w

in a Web page d is the number of occurrences of w in d. Inverse document frequency

idf(w,D) is the inverse of the number of Web pages containing term w in them.

The Web graph GW(VW,EW) of a set of Web pages d1,d2,…,dn is defined as follows:

• A node vi∈VW, is created for each Web page di in D.

• An (undirected) edge e(u,v)∈EW is added between nodes u,v∈VW if there is a

hyperlink between u and v. �

An example of a web graph is shown in Figure 1.We view the Web graph as undirected

since an association between pages occurs along both directions of a hyperlink.

4.1.2 Page graph: In contrast to previous works in Web search [Kle99, LCVA01,

PBMW98], we go beyond the page granularity. To do so, we view each page as a set of

text fragments connected through semantic associations.

A key component in our work is the page graph Gd(Vd,Ed) of a Web page d which is

defined as follows:

• d is split into a set of non-overlapping text fragments and each fragment is

represented by a node v∈Vd. A text fragment corresponding to a node v is denoted

as t(v).

 14

• An undirected, weighted edge e(u,v)∈Ed is added between nodes u,v∈Vd if there

is an association (further discussed later) between t(u) and t(v) in d. �

Figure 1: Sample Web pages from www.fiu.edu.

 Figure 2 shows the page graph of Page 1 in Figure 1. The process of building

page graphs is explained later. The page graph is equivalent to the document graph in

[VH06]. Notice that there are many ways to define the page graph for a Web page. In this

work we exploit the HTML tags to split the page into text fragments, and edges are added

when the text fragments are associated through common (or related) words. The semantic

association between the nodes is used to compute the edge weights (query-independent)

 15

while the relevance of a node to the query is used to define the node weight (query-

dependent). Note that the Web graph now becomes a graph of page graphs.

Figure 2: A page graph of Page 1 in Figure 1.

4.1.3 Data graph: We view a database as a labeled graph, which is a model that

captures both relational and XML databases. The data graph D(VD,ED) is a labeled

directed graph where every node v has a label λ(v) and a set of keywords. For example,

the node “ICDE 1997” of Figure 3 has label “Year” and the set of keywords {‘‘ICDE’’,

‘‘1997’’, ‘‘Birmingham’’}. Each node represents an object of the database and may have

a sub-structure. Without loss of generality, ObjectRank assumes that each node has a

tuple of attribute name/attribute value pairs. For example, the “Year” nodes of Figure 3

have name, year and location attributes. Notice that the keywords appearing in the

attribute values comprise the set of keywords associated with the node. One may assume

richer semantics by including the metadata of a node in the set of keywords. For example,

the metadata “Forum”, “Year”, “Location” could be included in the keywords of a node.

A subset of a biological data graph is shown in Figure 6.

Each node v has a role λ(v). For instance, the ICDE conference node in Figure 3

has role “conference”. Each edge e from u to v is labeled with its role λ(e) (we overload

λ) and represents a relationship between u and v. For example, every “paper” to “paper”

 16

edge of Figure 3 has the label “cites”. When the role is evident and uniquely defined from

the labels of u and v, we omit the edge label. For simplicity we will assume that there are

no parallel edges and we will often denote an edge e from u to v as “u→v”. The data

graph can represent relational [ACD02, HP02] and XML [HPB03, GSB+03] databases, as

well as the Web [PBMW98], although we repeat that the Web is out of the scope of this

work.

Figure 3: A subset of the DBLP graph.

Figure 4: The DBLP schema graph.

Figure 5: DBLP authority transfer schema graph.

4.1.4 Schema graph: The schema graph G(VG,EG) (Figures dblp_schema and

bio_schema) is a directed graph that describes the structure of D. Every node has an

 17

associated label. Each edge is labeled with a role, which may be omitted, as discussed

above for data graph edge labels. We say that a data graph D(VD,ED) conforms to a

schema graph G(VG,EG) if there is a unique assignment µ of data-graph nodes to schema-

graph nodes and a consistent assignment of edges such that: (1) for every node v ∈ VD

there is a node µ(v) ∈VG such that λ(v) = λ(µ(v)); (2) for every edge e ∈ ED from node u

to node v there is an edge µ(e) ∈ EG that goes from µ(u) to µ(v) and λ(e) = λ(µ(e)).

Figure 6: A subset of the Biological data graph.

4.1.5 Authority Transfer Schema Graph: From the schema graph G(VG,EG), we

create the authority transfer schema graph GA(VG,EA) to reflect the authority flow through

the edges of the graph. In particular, for each edge eG= (u→v) of EG, two authority

transfer edges,
f
Ge

 = (u→v) and
b
Ge = (v→u) are created. The two edges carry the label of

the schema graph edge and, in addition, each one is annotated with a (potentially

different) authority transfer rate -)(f
Geα and)(b

Geα respectively. We say that a data

graph conforms to an authority transfer schema graph if it conforms to the corresponding

 18

Figure 7: Subset of Schema Graph for a Biological Dataset.

Figure 8: Authority Transfer Schema Graph for Biological Database.

schema graph. (Notice that the authority transfer schema graph has all the information of

the original schema graph.) In Balmin at el. [BHP04] the authority transfer rates for each

edge type was assigned manually by a domain expert on a trial and error basis. In contrast,

our techniques allow this task to be done automatically based on the user’s feedback as

we explain in later sections.

Figure 5 shows the authority transfer schema graph that corresponds to the

schema graph of Figure 4 (the edge labels are omitted), while Figure 8 shows the

authority transfer schema graph that corresponds to the schema graph of Figure 7 (the

edge labels are omitted). The motivation for defining two edges for each edge of the

 19

schema graph is that authority potentially flows in both directions and not only in the

direction that appears in the schema. For example, a paper passes its authority to its

authors and vice versa. Notice however, that the authority flow in each direction (defined

by the authority transfer rate) may not be the same. For example, a paper that is cited by

important papers is clearly important but citing important papers does not make a paper

important.

Figure 9: The DBLP Authority transfer data graph.

Figure 10: Authority transfer data graph for Biological database.

4.1.6 Authority Transfer Data Graph: Given a data graph D(VD,ED) that conforms

to an authority transfer schema graph GA(VG,EA), we can derive an authority transfer data

graph DA(VD, A
DE) as follows. For every edge e = (u→v) ∈ ED the authority transfer data

 20

graph has two edges fe = (u→v) and be = (v→u). The edges fe and eb are annotated with

authority transfer rates)(feα and)(beα . Assuming that fe is of type f
Ge , then

)(feα =

=

>

0),(,0

0),(,
),(

)(

f
G

f
Gf

G

f
G

euifOutDeg

euifOutDeg
euOutDeg

eα
 (2)

where),(f
GeuOutDeg is the number of outgoing edges from u, of type f

Ge . The authority

transfer rate)(beα is defined similarly. Figure 9 illustrates the authority transfer data

graph that corresponds to the data graph of Figure 3 and the authority transfer schema

graph of Figure 5.

Each edge is annotated with its authority transfer rate. Note that the edge between

“Range Queries in OLAP” paper and author “Agrawal” is labeled 0.05 as the paper has

three other authors not shown in Figure 9. Notice that the sum of authority transfer rates

of the outgoing edges of a node u of type µ(u) in the authority transfer data graph may be

less than the sum of authority transfer rates of the outgoing edges of µ(u) in the authority

transfer schema graph, if u does not have all types of outgoing edges. Figure 10 illustrates

the authority transfer data graph that corresponds to the data graph of Figure 6 and the

authority transfer schema graph of Figure 8.

Figure 11: The Minimal Total Web Spanning Trees of Web graph in Figure 1 for

query - Graduate Research Scholarships.

 21

4.2 Problem definitions

A keyword query Q is a set of keywords Q={w 1,…,wm} . Before defining the result of a

keyword query we need a few more definitions.

4.2.1 Definition 1 (Minimal Total Web Spanning Tree). Given a Web graph

GW(VW,EW), a minimal total Web spanning tree of GW with respect to a keyword query

Q={w1,…,wm} is a sub-tree T of GW that is both:

• Total: every keyword w∈Q is contained in at least one node (page) of T.

• Minimal: we cannot remove any node from T and still have a total sub-tree. �

Figure 11 shows the minimal total spanning trees for the query “Graduate Research

Scholarships” on the web graph of Figure 1. A result of a keyword query Q at the page

granularity is a minimal total Web spanning tree T. We go one step further in order to

improve the user’s experience and locate the specific parts of each Web page in T that are

relevant to Q. For that, we need the following definition.

4.2.2 Definition 2 (Minimal Total Page Spanning Tree). Given a page graph

Gd(Vd,Ed) for a Web page d and a set of keywords Qi⊆Q (Qi=Q for query-specific

summarization), a minimal total page spanning tree p of Gd is a sub-tree of Gd that is

both:

• Total: every keyword w∈Qi is contained in at least one node of p.

• Minimal: we cannot remove any node from p and still have a total sub-tree. �

 22

Figure 12 shows two minimal page spanning trees for Pages 2 and 4 respectively for

the query “Graduate Research Scholarships”. In both cases v2 is a Steiner node, i.e., it

does not contain any query keyword in it, but is helpful in forming a minimal total

spanning tree for the pages as it has semantic links to the nodes that contain the

keywords.

There is a subtle difference in the page spanning tree computation for our two

different applications - searching using composed pages and query-specific

summarization. For query-specific summarization of a web page we compute the page

spanning tree that contains all the keywords in Q. For the composed pages application,

for single-page results we compute the page spanning tree for Q, while for multi-page

results we compute them for subsets of Q (see Definition 3). Note that for Steiner nodes,

Qi is empty. In this case p is an empty tree, which we represent by just displaying the title

of the page in our system.

Figure 12: The Minimal Total Page Spanning Trees of Pages 2 and 4 in Figure 1 for

query - Graduate Research Scholarships.

A minimal total Web spanning tree T is “refined” by finding a minimal total page

spanning tree p for each of the Web pages d∈T as formally explained in Definition 3.

Henceforth we omit the words “minimal total” for brevity if it is clear from the context

when referring to minimal total Web spanning trees or page spanning trees. The size of a

Web or page spanning tree is the number of edges it contains.

 23

4.2.3 Definition 3 (Search Result). Given a Web graph GW(VW,EW), page graphs for

each Web page in GW, and keyword query Q={w1,…,wm}, a search result R is a minimal

total Web spanning tree T with nodes (pages) d1,..,dz, along with a minimal total page

spanning tree for each di with respect to a subset Qi of Q. Each page di is assigned a

subset Qi of Q (di must contain all keywords in Qi although it may contain more keywords

of Q than Qi) such that Qi ∩ Qj =∅ for every i≠j, and Q1∪…∪Qz=Q. �

For example, Table 1 shows the Top-3 search results for the query “Graduate

Research Scholarships”. The Web spanning tree 3—1 gives rise to two search results.

Page 3 contains keywords “graduate” and “research” and Page 1 contains “research” and

“scholarships”, that is, keyword “research” appears in both pages. One search result is

computed with subsets Q1 = {graduate, research} for Page 3 and Q2 = {scholarships} for

Page 1, while the other with Q1 = {graduate} for Page 3 and Q2 = {research,

scholarships} for Page 1. We only return the best search result for each Web spanning

tree to the user as shown in Table 1.

We are now ready to formally define the two problems addressed in this work. The

scoring of search results and summaries trees is presented in later sections. Smaller scores

correspond to higher ranking.

Problem 1 (Top-k Search Results). Given a Web graph GW, the page graphs for all

pages in GW, and a keyword query Q, find the k search results R with minimum Score(R).

�

 24

Problem 2 (Query-Specific Summarization). Given a document d∈D and its page

graph Gd, and a keyword query Q, find the best summary, i.e., the minimal total spanning

tree with minimum score. �

Table 1: Top-3 search results for query - Graduate Research Scholarships.

Rank Score Search Results

1 12.50

2 101.60

3 209.89

Notice that typically a single summary per page is required and hence Problem 2 is a

top-1 problem. Notice that the totality property implies that we use conjunctive query

semantics (AND). Applying OR semantics to Problem 2 is straightforward, as we just

replace Q by Q′, where Q′ is the set of query keywords contained in the page. Applying

OR semantics to Problem 1 is unintuitive since the primary purpose of the composed

pages approach is to produce complete (total) answers to the user.

5 OVERVIEW AND ALGORITHMS

In this section we present various algorithms used in our system. In section 5.1, we

present the algorithms to compute query-specific summarization and composed pages.

Note that the algorithms used in the query-specific summarization problem are also used

 25

as a component of the composed pages problem. The pre-computation requirements are

also the same. In section 5.2, we present algorithms to improve the authority flow-based

graph search by providing a way to explain query results and also provide algorithms for

query reformulation.

5.1 Web Search

5.1.1 Building Page Graphs

The page graph Gd(Vd,Ed) of a page d∈D is constructed as follows

[VH05,VH06,VHL06,VHL08]. First we parse d and split it into text fragments using

parsing delimiters (e.g., <p>,
 tags). Each text fragment becomes a node in the page

graph. A weighted undirected edge is added to the page graph between two nodes if they

either correspond to adjacent text fragments in the text or they are semantically

associated. The weight of an edge denotes the association degree of the association.

There are many possible ways to define the association degree between two text

fragments. In this work we consider two fragments to be associated if they share common

words (excluding stop words) and the degree of association is calculated by an adaptation

of traditional IR term weighting formulas [Sin01], as described below. We also consider a

thesaurus to enhance the word matching capability of the system. In future versions of

our system we will consider using WordNet and Latent Semantic Indexing (LSI)

techniques to improve the quality of the edge weights. To avoid dealing with a highly

interconnected graph, which would lead to slower execution times and higher

maintenance cost, we only add edges with weights above a threshold. Also notice that the

 26

edge weights are query-independent, so they can be pre-computed. Q is only used in

assigning weights to the nodes of Gd.

The following input parameters are required during the pre-computation stage to

construct the page graph:

1. Threshold for edge weights. Only edges with weights not below threshold will be

created in the page graph. The choice of the threshold is a tradeoff between

performance and quality, since a zero threshold would build a dense graph which

would increase the processing time, while a higher threshold would decrease the

quality of results by not including enough edges.

2. Parsing Delimiters. Parsing delimiters are used to split the Web page into text

fragments. Typical choices are the <p> (paragraph) tag (each text fragment

corresponds to a paragraph) or the
 (each text fragment is a sentence). Other tags

that could be surrounding a possible text fragment are the <table> tag, , tags

and so on. For all these tags the text between the opening and closing counterparts

constitute a text fragment. In this way we found a set of tags that when used as

delimiters lead to paragraphs that are typically short and leads to more compact page

graphs. For plain text documents, typical choices are newline characters (each text

fragment corresponds to a paragraph) or periods (each text fragment corresponds to a

sentence).

3. Maximum Text Fragment Size. This is used in cases where a fragment is too long

which would lead to large nodes (text fragments) and hence large summaries. Users

typically desire concise and short summaries.

 27

After parsing the page and creating the graph nodes (text fragments), for each pair of

nodes u,v we compute the association degree between them, that is, the score (weight)

EScore(e) of the edge e(u,v). If EScore(e)≥threshold, then e is added to Ed. The score of

edge e(u,v) where nodes u, v have text fragments t(u), t(v) respectively is:

()

))(())((

))())),(()),(((

)())()((

vtsizeutsize

widfwvttfwutft

eEScore vtutw

+

⋅+
=

∑
∈ I

(3)

where tf(d,w) is the number of occurrences of w in d, idf(w,D) is the inverse of the

number of pages containing w, and size(d) is the size of the page (in number of words).

That is, for every word w appearing in both text fragments we add a quantity proportional

to the tf⋅idf score of w. Notice that stop words are ignored. Furthermore, we use thesaurus

and stemmer (we rely on Oracle interMedia [OI07]) to match words that are related. The

sum is divided by the sum of the lengths of the text fragments in the same way as the

document length (dl) is used in traditional IR formulas.

Edges between adjacent fragments: We consider adjacent fragment edges as a special

case because two adjacent fragments are semantically related because of their close

proximity. Furthermore, linking the adjacent nodes ensures the connectivity of the page

graph. We use the following formula, which ensures that there is always an edge between

nodes with adjacent text fragments:

EScore(e)=max(EScore(e), threshold) (4)

The calculation of the edge weights concludes the query-independent part of the page

graph creation. Next, when a query Q arrives, the nodes in Vd are assigned query-

 28

dependent weights according to their relevance to Q. In particular, we assign to each node

v corresponding to a text fragment t(v) node score NScore(v) defined by the Okapi

formula [Sin01] (Equation 1). In order to accelerate this step of assigning node scores we

build a full-text index on the set D of pages. The details of this index are out of the scope

of this paper.

Ranking of Page Spanning Trees

In this section we present our ranking framework for page spanning trees. Recall that the

top page spanning tree is the query-specific summary for Problem 2. Given the page

graph Gd of page d and a query Q, a page spanning tree p is assigned a score Score(p) by

combining the scores of the nodes v∈p and the edges e∈p.

∑
∑

∈
∈

+=

pnodev
pedgee vNScore

b
eEScore

apScore
)(

1

)(

1
)(

(5)

where a and b are constants discussed below. EScore(e) is the score of edge e using

Equation 4, NScore(v) is the score of node v using Equation 1.

Intuitively, if p is larger (has more edges) then its score should degrade (increase) since

larger trees denote looser semantic connections [ACD02,BNH+02,HP02,HPB03]. This is

the reason we take the sum of the inverse of the edge scores in Equation 5. Furthermore,

if more nodes of p are relevant to Q, the score should be improved (decreased). Hence,

we take the inverse of the sum of the node scores.

Constants a and b are used to calibrate the importance of the size of the summary (in

number of edges) versus the amount of relevant information contained. In particular,

 29

higher a values boost the score of smaller and tightly connected summaries, whereas

higher b values benefit summaries with more relevant content (i.e., containing nodes with

high score with respect to the query). Notice that a and b can also be viewed as adjusting

parameters for the query-independent and dependent parts of the scoring function

respectively. We use a=1 and b=0.5 in our system, which we have found to produce

high-quality answers.

5.1.2 Query-Specific Document Summarization

This section tackles Problem 2 [VH05,VH06,VHL08]. Given a query Q and a page graph

Gd for a page d, the query-specific summary is the page spanning tree p of the Gd with

minimum Score(p), according to Equation 5.

 The extraction of the most relevant pieces of information from a web page using

the notion of the page spanning tree has another application (side product), in addition to

being a component in creating composed pages. In particular, it is used to perform query-

specific summarization of web pages. The most popular use of query-specific

summarization today is the snippets displayed for each of the page results of Web search

engines. We show how the query-specific summaries corresponding to page spanning

trees have better quality than current approaches.

Figure 13: Top summary of web page 1 of Figure 1 for query - research

scholarships.

Florida International University, a member of the State University System of
Florida, is a fully accredited comprehensive, multi-campus urban research
institution located in Miami, Florida (more)
 Open House, Latest Scholarships, Honors College

 30

Example: For the web page 1 of Figure 1 and the keyword query “Research

Scholarships”, the top summary v3-v4 is shown in Figure 13. The top summary is the top

spanning tree of the page graph of page 1 shown in Figure 2. Nodes v3 and v4 are

associated because they are adjacent in the text (stronger associations are assigned when

the nodes have common words as explained below in the text). �

 For both Problems 1 or 2, we need to solve a variant of the Group Steiner Tree

problem, which is referred to as keyword proximity search problem [BNH+02,

GSVM98] and is defined as follows: Given a weighted data graph G(V, E), a keyword

query Q which is a set of keywords, and an integer k, find the k minimum-weight sub-

trees of G such that every keyword in Q is contained in at least one vertex of the sub-tree,

and we cannot remove any node from it and still have a tree.

 When k = 1, the keyword proximity search problem has been shown to be

equivalent to the Group Steiner problem, which is NP-complete. The keyword proximity

search problem is slightly more complex since the groups of nodes are not disjoint, in

contrast to the Group Steiner Problem, which is defined as follows:

Given an undirected, connected, and weighted graph G=(V, E); and given a family

R={R1,….Rk} of disjoint groups of vertices, where Ri is a subset of V, find a minimum-

cost tree T that contains at least one vertex from each group Ri. Since the weights of the

graph are non-negative, the solution is a tree-structure.

 This section presents two algorithms adapted from

BANKS [BNH+02] to compute the top query-specific summary: the enumeration and the

 31

expanding search algorithms. The algorithms return a top-1 summary for a Web page d,

given its page graph Gd and a query Q. The reason we employ top-1 summary algorithms

is that typically the user only requests a single summary for a document, as in the case of

snippets in Web search engine results.

Top-1 Enumeration Algorithm : This algorithm, which is abbreviated as Top-1-MTPST-

Enumeration (Top-1-Minimal-TotalPageSpanningTree-Enumeration), is shown in Figure

14. First, we find all combinations of nodes in Gd that are minimal (no node is redundant)

and total (collectively contain all keywords in Q). Then, for each combination we create

Figure 14: Top-1 Enumeration Algorithm.

a complete graph Gc (called closure graph) that contains all nodes in the combination and

all-pairs of edges between them with weight equal to their pre-computed shortest-path

distance. We then calculate all possible spanning trees in Gc, and compute their scores

using Equation 5 and so on (see Figure 14 for more details). This algorithm accepts a

Top-1-MTPST-Enumeration (Page Graph Gd, Query Q, Quality parameter ω)

1. Results ←∅; /*stores summaries*/
2. Find all nodes in Gd that contain some keyword of Q; /*use full-text

index*/
3. Find all minimal combinations of nodes that coll ectively contain all

keywords in Q;
4. For each minimal node combination C do {
5. Create closure graph Gc that contains only the nodes in C;
6. Find all possible spanning trees S of Gc ;
7. Calculate the score of each spanning tree in S using Equation 4

by using shortest path weights between any two node s;
8. Pick the spanning tree p with the minimum score;
9. Replace the edges u~v in p with their pre-computed shortest

paths u~u1~…~uk~v; /* i.e., we are adding the Steiner nodes.*/
10. Trim p to make it a minimal total spanning tree;
11. Recalculate the score of p using Equation 5 and add p to Results ;
12. ω--;
13. If(ω==0) Return the top ranked summary in Results ; }

 32

quality parameter ω. Higher values of ω yield higher quality results. Intuitively this

parameter decides the number of different summaries that are considered before we pick

the best one, given that this is an NP-complete problem.

Top-1 Expanding Search Algorithm: The basic idea is that an expanding area is created

for each keyword node (node that contains a query keyword) of Gd and we start from the

nodes that contain the query keywords and progressively expand them according to a

shortest-paths algorithm until we find all minimal total spanning trees. In particular, the

algorithm (Figure 15) finds (using the pre-computed full-text index) all the nodes that

match some keywords in the query and starts expanding them incrementally. We call the

sub-graph created from each keyword node v, expanding area of v. At each iteration, we

expand each expanding area in parallel by adding all adjacent edges (later we discuss

heuristics of expansion) to the expanding area of the previous iteration. A result

(summary) is generated when a set of expanding areas meet at a common point (node)

and form a minimal total page spanning tree for Q.

 We use the precomputed all-pairs shortest paths data to efficiently grow the

expanding area. That is, we only consider the edges that are contained in a shortest path

from the current node v to any other node u that contains additional query keywords than

v. When two or more expanding areas meet we check for possible new summaries. If a

summary is found, it is trimmed to become minimal and its score is calculated using

Equation 5.

 33

Figure 15: Top-1 Expanding Search Algorithm.

5.1.3 Search using Composed Pages

This section tackles Problem 1 [VHL06,VHL08]. In this Section we explain how a search

result (Definition 3) is ranked and discusses how a composed page is constructed for a

search result.

Ranking search results

Recall that a search result R is a Web spanning tree T where each page d in T is

represented by its page spanning tree p. Clearly there is no optimal ranking function since

it is possible to come up with different ranking functions for different domains or specific

queries. In this work we adopt principles well-accepted in previous works on ranking

Web pages [Kle99,LCVA01,PBMW98] and trees of data

[ACD02,BNH+02,GSVM98,GSBS03,HP02,VH06].

Top-1-MTPST-ExpandingSearch(Page graph Gd, Query Q, Quality
parameter ω)

1. Results ←∅; /*stores summaries*/
2. Find all nodes N={N1,…,N m} that contain the keywords in Q and

create expanding areas for each; /* Ni has the nodes that contain
wi */

3. Repeat until each expanding area spans the en tire graph G {
4. For each node v in N do {
5. Add to the expanding area of v the minimum-score adjacent edge

from the (precomputed) shortest paths starting at v and ending
at a node in N not containing the same keywords as v;

6. Check for new results (summaries);/*i.e., tree s that contain
a node from each of N1,…,N m */

7. Trim summaries to make them minimal;
8. Calculate the score of each summary p using Equation 5 and

store in Results ;
9. ω--;
10. If(ω==0) Return the top ranked summary in Results ;}}

 34

The first ranking principle we adopt [LCVA01] is that search results involving fewer

pages are ranked higher. Intuitively, if a search result is larger (has more edges) then its

score should degrade (increase) since larger trees denote looser semantic connections.

Hence, search results are primarily ranked by the (inverse of the) size of their Web

spanning tree. Recall that by Definition 3, all search results contain all query keywords.

Within search results with the same size of Web spanning tree, we rank according to

the scores of the involved page spanning trees, computed by Equation 5. Note that the

first ranking principle also applies in ranking individual page spanning trees as expressed

in Equation 5, that is, page spanning trees with smaller size are ranked higher.

What is left, is to define how the scores of the constituting page spanning trees computed

by Equation 5, are combined to compute the overall score of a search result. Again, we

do not claim that we have the optimal combining function, but we rely on previous work

to define the next principle. The second ranking principle is that the scores of the page

spanning trees are combined using a monotone combining function to compute the score

of the search result. Notice that we already used another variant of this principle in

Equation 5, where the scores of the nodes and edges are combined using a monotone

function.

To incorporate the global importance of the pages used in constructing a search result,

we use their PageRank [PBMW98] values. Equation 6 computes the score of a search

 35

result R given the scores of its page spanning trees p, where we chose summation as our

monotone combining function.

∑
∈

=
Rp

pPR

pScore
RScore

)(

)(
)(

(6)

where PR(p) is the PageRank score of page d that contains the page spanning tree p.

Figure 16: Composed Page for Search Result #1 for query - Graduate Research

Scholarships.

Composed Pages

Our technique has the following key steps: During the preprocessing stage, for each

web page we create a labeled, weighted graph, called the page graph, by splitting the

page to a set of text fragments (graph nodes) and computing the semantic associations

between them (graph edges). Then, at query time, given a set of keywords, we first find a

tree, called web spanning tree, of hyperlinked pages that collectively contain all the query

keywords. Then we perform keyword proximity search on the each page’s page graph to

discover how the keywords contained in the page are associated with each other. For each

page in the web spanning tree we extract a page spanning tree that contains a subset of

the query keywords. The page spanning trees of the pages of the web spanning tree are

appropriately combined into a composed page, which is returned to the user. As we will

 36

explain later, smaller web spanning trees are preferable and hence single-page results, as

created by current Web search engines for AND semantics are ranked higher.

Example: Figure 1 shows a Web graph extracted from the www.fiu.edu Web site. The

hyperlinks between pages are depicted in the Web graph as edges. The nodes in the graph

represent the Web pages. Figure 2 shows the page graph of Page 1 in Figure 1. As

denoted in Figure 1, Page 1 is split into 7 text fragments v1…v7, using the newline

delimiter, and each one is represented by a node in the page graph. The edges denote

semantic associations. Table 1 shows the Top-3 search results (composed pages) for the

query “Graduate Research Scholarships”. We represent the nodes of a web spanning tree

using rectangles and the nodes of a page spanning tree using circles. Hyperlinks are solid

lines, while the semantic links within in a page graph are dotted lines. The page spanning

trees represent the most “relevant pieces” of each page. �

Note that a key assumption we make in this paper is that hyperlinked pages are

associated to each other. This is a reasonable assumption. Furthermore, each result should

be composed of pages associated to each other to have a cohesive meaning. Hence, we

only consider hyperlinked pages in building web spanning tree.

 A composed page is a dynamic page created on-the-fly by stitching together

pieces from other pages. Given a query Q, a composed page is a representation of a

search result, as defined in Definition 3, in a Web page format. The score of a composed

page is the score of the corresponding search result defined by Equation 6. The key

 37

requirements in constructing a composed page are the following: First, display the tree-

structured (more specifically tree of trees) search result in a page format. Second, allow

users to easily navigate to the original pages that were used to construct the composed

page. Figure 16 shows the composed page constructed for the Search Result #1 of Table

1. A composed page for a search result is constructed by displaying links to all pages in

its Web spanning tree along with the text fragments of the page spanning trees. The page

spanning trees are displayed in an unordered list format that depicts their structure. A

sub-bulleted list denotes the parent-child relationship in the page spanning tree of text

fragments.

Figure 17 describes the preprocessing algorithm. Before any query arrives we pre-

compute and store the following:

• The page graph for each page. In particular, we parse the HTML documents

based on the tags and compute the edge weights. The parameters described in

Section 3 are taken as input and page graphs are built accordingly.

• PageRank values of each page by executing the PageRank algorithm [PBMW98].

• A full-text index to efficiently locate the pages and specifically the text fragments

that contain the keywords and calculate their query-specific score.

• In order to boost the performance of the algorithms, the all-pairs shortest paths

between the nodes of the page graph Gd of every page d. Note that the inverse of

the edge weights is used since larger edge weights denote tighter association in

our setting.

 38

Figure 17: Preprocessing Algorithm.

This algorithm is an adaptation of the Top-1 expanding search algorithm. It also uses the

Top-1-MTPST-ExpandingSearch method as a subroutine to compute the page spanning

trees of the pages in a Web spanning tree. We adapt expanding search and not the naïve

enumeration algorithm since the former is shown to perform better. The key differences

from the algorithm of Figure 15 are the following. First, Heuristic-Top-k-Expanding-

Search (Figure 18) operates on Web graphs instead of page graphs, and hence produces

web spanning trees instead of page spanning trees. Second, we introduce the following

heuristic based on Equation 6, which is our ranking function. In particular, we first

expand towards pages d with highest HeuristicWeight value as defined by:

)(*)()(dIRScoredPRdeightHeuristicW = (7)

where d is a Web page, PR its PageRank value, and IRScore(d) its Information Retrieval

score for Q. The PR(d) component of Equation 7 is intuitive since it also appears in the

Preprocess (Web Graph Gw, Parsing Delimiters P, Threshold τ, Maximum Fragment size sz)
1. For each web page (node) d in Gw do {
 /* create and store page graph Gd for d*/
2. Parse d and split it into text fragments with maximum size

sz using the delimiters in P;
3. Create a node for each text fragment and add it to the page

graph, Gd of d;
4. For every pair of nodes in Gd find if they are semantically

related by calculating the edge weight using Equati on 1 and
add it to Gd if the edge weight ≥ τ;

5. For every pair of adjacent nodes, build an edge e with
weight equivalent to max(Escore (e) , τ) according to Equation
2;/*in close proximity as explained*/

6. Find All-pairs shortest path using Floyd Wa rshall’s
algorithm using the inverse of each edge’s weight;}

7. Compute and store the PageRank values of all pa ges (nodes) in
Gw; /* compute PageRank values; build full-text inde x*/

8. For each keyword w locate and store all pages
 in D that contain w; /*Stemming is used in
 this step. Stop words are ignored */

 39

ranking equation (Equation 6). The IRScore(d) component is a heuristic estimate of the

Score(p) component of Equation 6, where p is the page spanning tree for page d.

 The intuition is that a page with high IR score for Q is also expected to have page

spanning trees with high score for Q. We use the full-text indexer to compute IRScore(d).

Finally, notice that Heuristic-Top-k-Expanding-Search algorithm has two steps: first it

computes the Web spanning trees, and for each one of them it computes the top search

results by computing the corresponding page spanning trees for its pages

(getTopSearchResult method). The following are the key steps of the algorithm involved

in computing the top-k search results for a query Q.

• Compute a minimal total Web spanning tree, WST given the web graph Gw and

query Q.

• Then compute the best search result for WST, given the page graphs of each page

in WST and the query Q by considering all possible combinations of keyword

assignments to the pages of WST.

 The above steps are repeated until k search results are computed. The

getTopSearchResult method takes as input a web spanning tree and the page graphs of the

constituent pages and returns the best search result after evaluating all possible search

results. It uses the Top-1-MTPST-ExpandingSearch method to compute the top page

spanning trees corresponding to the query.

 40

Figure 18: Heuristic Top-k Expanding Search Algorithm.

Heuristic-Top-k-Expanding-Search(Web graph Gw, Page graphs PG ={Gd1, G d2 …
Gdn},Keyword query Q = {w 1,…,w m})
1. Results � 0; /* result count */
2. Find all keyword nodes KN in GW using the full text index; /*nodes that
match some keyword in Q*/
3. Let Zj be the set of nodes of GW that contain wj ;
4. Let L j be the set of expanding areas corresponding to the root nodes in

Zj ;
5. Let buffer (i) be an array ordered by score to buffer search res ults

containing i pages;
6. For each node(page) d contained in Z1∩Z2∩…∩Zm do {/*single-page search

results*/
7. TSR � getTopSearchResult (d,{ Gd}, Q);
8. Insert TSR into buffer(1);/* Insert TSR into the ordered buffer of

single page search results */
9. Results ++;}
10. While (Results < k) {
11. For j in 1.. .m do {
12. For each expanding area L in Lj do {
13. Expand the expanding area L, with a node v having the maximum

HeuristicWeight ; /* Equation 6*/
14. Join v to all previously expanded nodes u generated by the

expanding areas Ls, s≠j ;
/* By “join” we mean find all instances of v as an end node in
the already expanded nodes. */

15. For each web spanning tree WST generated by the join {
16. Trim useless leaves to make it minimal;
17. TSR � getTopSearchResult (WST,{ Gd1, G d2… Gdz}, Q);
18. Insert TSR in to buffer(length(TSR)); / * length(TSR) equals

number of pages in TSR */
19. Results ++; If(Results = k){ Output results in buffer and

return; }}}}}
MODULE: getTopSearchResult(Web spanning tree WST, Page graphs WPG = {Gd1, G d2
… Gdz} of WST, Keyword query Q = {w 1,…,w m})

1. SearchResults ←∅; /*stores search results*/
2. Find the set of possible partitions PQ of Q as per Definition 3;
3. For each partition { Q1,…,Qz} of the keywords in PQ do{
4. For each page d i in WST do {
5. PSPi �φ;
6. If(Q i ≠φ) {
7. PSP i � Top-1-MTPST-ExpandingSearch (Gdi ,Q i , ω); }} /* Qi is the

subset of Q assigned to page di , ω is the quality factor*/
8. Create a search result R with each PSPi and WST;/*if PSPi = φ we

use the title of page d i (this corresponds to the Steiner node
which has no keywords in it) */

9. Compute Score (R) using Equation 6 and add R to SearchResults ;}
10. Return the top ranked search result in SearchResults ;

 41

5.1.4 Experimental Results

To evaluate the quality of the results of our approach for Problems 1 and 2, we conducted

three surveys, one for Problem 1 and two for Problem 2. The subjects of the survey are

twenty students (of all levels and various majors) at Florida International University

(FIU), who were not involved in the project. In these surveys the users were asked to

evaluate the results based on their quality.

Datasets: We use two real datasets (Table 2). FIU1 is a hyperlinked set of 25,108 Web

pages (nodes) crawled from the fiu.edu domain, connected through 137,929 hyperlinks

(edges) used for performance evaluation. FIU2 is a subset of the web pages available in

fiu.edu domain used for quality evaluation, which offers faster response times and more

focused results that are easier to compare.

Table 2: Real & Synthetic Datasets.

Name #nodes
(Web pages)

#edges
(Hyperlinks)

Size
(MB)

FIU1 25,108 137,929 4564
FIU2 6,054 45,405 115

We used FIU2 for our user surveys. The participants were asked to evaluate the quality of

the search results with respect to ten queries. We chose both long and medium sized

queries. For each query, users were asked to rate their satisfaction for the Top-5 search

results produced from the Heuristic Top-k Expanding Search algorithm, and for the

results produced by Google. We chose the first 5 results from Google that are included in

the subset of crawled FIU web pages. The Google query was constrained to pages using

the “site: fiu.edu” condition. Each participant was asked to assign a score between 1 and

 42

5 to each alternative query answer, where 5 denote the highest user satisfaction. The

results of the survey prove the superiority of our approach, as shown in Table 3.

Table 3: Average Top-5 search result ratings for 10 queries.

Keyword Queries

Google
Search

Heuristic
Expanding Search

Undergraduate Housing safety 2.06 3.41
Graduate financial aid regulations 2.41 3.59

Computer Science Internship opportunities 2.88 3.65
Campus Safety requirement regulations 2.24 3.35

Biomedical Research fellowship eligibility 1.24 3.35
Undergraduate Summer athletics

accomplishments
2.25 4.5

Physics alumni achievements 3.25 3.00

Electrical transfer student eligibility 2.66 4.66

Freshman internship opportunities 1.66 4.66

Mechanical Graduate admission policies 1.66 4.66
Average Rating 2.44 3.88

To evaluate the quality of our query-specific summaries we created two user

surveys on a DUC and a Web dataset as explained below. The size of a result was also

taken into consideration by the participants – a longer result carries more information but

is less desirable. Each participant was asked to compare the summaries and rank them,

assigning a score of 1 to 5, according to their quality for the corresponding query. A rank

of 5 (1) represents a summary that is most (least) descriptive.

 Comparison with DUC dataset

The dataset used in this survey consists of twenty documents and four queries taken from

the DUC 2005 dataset [DUC05] as shown in Table 5 and 6. We compare our summaries

with DUC Peer summaries for quality. DUC peers are human and automatic summaries

 43

used in quality evaluation. We compared our summaries against the DUC peers with

highest linguistic quality. Unfortunately, most of the summaries in the DUC datasets are

query-independent and the few query-dependent ones are multi-document. Hence, in

order to compare our work to that of DUC we used the following method to extract

single-document summaries from query-dependent multi-document summaries for a set

of twenty documents over four topics. The sentences that have been extracted from a

document d to construct the multi document summary are viewed as d’s single-document

summary for the query/topic. Notice that the DUC summaries are created by extracting

whole sentences from documents.

Table 4: Average summary ratings for documents.

Keyword Queries
Google Desktop

Summary
MSN Desktop Summary

Top-1 Expanding
Summary

Docs

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

D1 2.33 2.00 3.00 1.67 2.00 2.33 2.00 0.67 1.67 3.00 4.87 4.33 4.93 4.67 4.00

D2 3.67 3.33 2.67 2.67 1.67 3.67 3.00 3.00 3.00 1.00 3.67 3.33 4.00 4.00 3.67

D3 1.60 1.60 2.00 1.60 2.00 1.60 1.00 1.80 2.20 1.20 4.00 4.20 4.00 3.60 3.40

D4 1.00 1.33 0.66 1.33 2.33 2.66 2.00 1.33 1.66 1.33 3.66 3.66 4.00 4.00 3.33

D5 2.50 3.00 2.50 1.00 3.00 1.50 1.50 1.50 2.00 3.50 4.00 3.50 4.00 4.00 3.50

D6 1.00 1.50 1.50 2.50 1.00 2.00 2.50 1.50 3.50 2.00 4.00 4.50 4.00 2.50 4.00

D7 3.00 1.00 3.00 1.00 1.00 1.50 2.50 1.50 2.50 2.00 3.00 4.00 3.00 4.50 4.50

Average
Rating

1.97 2.00 3.89

The results of the survey prove the superiority of our approach, as shown in Table

5 and 6. Our method of combining extracted sentences using semantic connections in the

form of Steiner trees leads to higher user satisfaction than the traditional sentence

extraction methods. In particular, the Steiner sentences in summaries provide coherency

in the aggregation of the keyword-containing-sentences.

 44

Table 5: Average summary ratings for Queries 1 and 2 in DUC topics.

Query 1 (International Organized
Crime) DUC Topic ID: d301i

Query 2 (Women in Parliaments)
DUC Topic ID: d321f

Doc. ID DUC Peer
Top-1

Expanding

Doc. ID

DUC Peer

Top-1
Expanding

FT941-3237 2.33 4.66 FT921-7786 4.00 2.50
FT944-8297 2.50 3.33 FT922-190 2.00 4.00
FT931-3563 2.83 3.00 FT921-937 2.00 4.33
FT943-16477 4.00 4.17 FT922-13353 2.83 4.17
FT943-16238 3.67 3.67 FT921-74 2.33 3.67

Average 3.06 3.77 Average 2.63 3.73

Table 6: Average summary ratings for Queries 3 and 4 in DUC topics.

Query 3 (Drugs Mental Illness)
DUC Topic ID: d383j

Query 4 (Stolen Art Recovered) DUC
Topic ID: d422c

Doc. ID

DUC Peer
Top-1

Expanding
Doc. ID DUC Peer

Top-1
Expanding

FT933-4868 2.00 4.33 LA051889-0110 4.00 3.00
FT942-16465 1.00 5.00 FT911-5359 2.00 3.00

LA090389-0060 1.66 4.33 LA070990-0048 2.33 4.33
FT922-715 1.00 4.33 LA032090-0091 3.00 3.66

LA111290-0137 1.66 4.33 FT923-1946 4.33 3.00
Average 1.46 4.46 Average 3.13 3.40

Comparison with Google and MSN Desktop

The dataset used in this survey consists of seven news documents taken from the

technology section of cnn.com. The participants were asked to evaluate the quality of the

summaries of the seven documents with respect to five queries each (35 queries in total).

We chose queries where keywords appear both close and far from each other. For each

query-document pair, three summaries are displayed corresponding to (a) the result of the

 45

Top-1 expanding search algorithm, (b) Google Desktop’s summary, and (c) MSN

Desktop’s summary. Summaries (b) and (c) were created by indexing the two documents

in our desktop and then submitting the five queries to the Desktop engines.

The summaries are the snippets output for these documents. In order to compare

apples to apples, we chose queries for which the length of the summaries produced by all

three methods are similar, since clearly it is not fair to compare summaries of different

lengths as some people favor conciseness while others the amount of information.

In this survey we set constant a to 1 and b to 0.5 in Equation 5, which we found to

produce higher-quality summaries. Notice that by increasing the value of constant a, we

favor short results, while by increasing constant b we favor longer and more informative

results. Hence, by setting a to 1 and b to 0.5 we favor shorter summaries, which have

similar size to the ones produced by Google and MSN Desktop. This makes their

comparison fairer.

Table 7: Queries used for documents.

Query # Document D1 Document D2
1 Microsoft worm protection IT Research awards
2 Anti-virus protection Algorithms development Research
3 Recovering worm deleted files Software projects

4 Worm affected agencies Large research grants

5 Deleted computer software Computer network security project

The results of the survey, which show the superiority of our approach, are

presented in Table 4, while the queries are shown in Table 7 (only 8 queries are shown

while the remaining 25 are omitted due to space constraints). Notice that Google and

MSN Desktop systems do not always include all keywords in the summary when they are

 46

more than two and have big distances between them. In contrast, our approach always

finds a meaningful way to connect them.

5.2 Authority Flow-Based Graph Search

In this section we first define a query and describe a modified version of ObjectRank

originally presented in [BHP04], called ObjectRank2. The modification to the original

definition is that the nodes of the base set are weighted. The weights are computed using

IR techniques for the original query and using query expansion techniques for subsequent

queries [VH05,VH06,VHL06,VHL08].

Keyword Query. A keyword query Q is defined as a tuple of keywords Q=[t1,…,tm]. To

incorporate weighing in the base set, we define the query vector as follows. For each

query Q=[t1,…,tm] we define a query vector Q=[w1,.. , wm] where wi is the weight of the

query keyword ti. The initial query vector for a query is [1,…,1], since we assume that

the query term weights are all 1. These weights change during the query expansion stage.

The answer to Q is a list of objects with descending ObjectRank2 scores with respect to

Q.

 ObjectRank2 is computed as follows on the authority transfer data graph

DA(VD, A
DE). A surfer starts from a node (database object) vi of the base set of VD and at

each step, he/she follows an edge with probability d or gets bored and jumps to a node in

the base set with probability 1 − d. The ObjectRank2 value of vi is the probability that at a

given point in time, the surfer is at vi. The query base set S(Q) (from now on referred to

simply as base set when the keyword is implied) is the set of nodes/objects that contain at

least one keyword in Q. In contrast to the original ObjectRank [BHP04], the random

 47

surfer jumps to different nodes of the base set with different probabilities. This

probability for a node v is proportional to the IR score IRScore(v,Q) of the node(a node is

also viewed as a document−−−−we overload symbol v in this case) given the query vector Q.

IRScore(v,Q) = v·Q (8)

where “·” denotes the dot product operator, v=[W(v,t1),…,W(v,tm)] is the document vector

for v, and W(v,t) is the IR weight of term t for document v. W(v,t) is defined using well

studied traditional IR formulas like BM25 [RW94] or Okapi [Sin01].

 We normalize the IR scores of the nodes in the base set to sum to one, since they

represent probabilities. The ObjectRank2 scores vector rQ = [rQ(v1),…,rQ(vn)]
T given

query vector Q, where n=|VD|, is defined as follows:

s
QS

d
dAr Q

|)(|

)1(
 r Q −+= (9)

where A is a n × n matrix with Aij =)(eα if there is an edge e(vj → vi) in A
DE and 0

otherwise, d is the damping factor which controls the base set importance, and s =

[s1, . .si . , sn]
T is the base set vector, where si = IRScore(vi,Q) if vi ∈ S(Q) and si= 0

otherwise. Note that the only difference to ObjectRank is the definition of the si’s which

were 0 or 1 in [BHP04].

5.2.1 Explaining Query Results

In this section we tackle the problem of explaining a query result [VHR08]. For instance,

as discussed in Section 1, the “Data Cube” paper in Figure 3 (see Figure 9 for

corresponding authority transfer data graph) is ranked high for the query “OLAP”. What

 48

is the best way to explain to the user why this paper, referred to as the target object,

received a high rank? This problem is even more critical in complex biological databases.

Figure 19: The DBLP Authority transfer data graph annotated with authority flows

for query - OLAP.

Intuitively, we want to show to the user the paths in the authority transfer data graph DA

that authority traversed to reach the target object v, starting from the nodes in the base set

S(Q). For that, we create an explaining subgraph Q
vG of DA that contains all edges that

transfer authority to v given Q, and every edge in Q
vG is annotated with the amount of

authority that flows on this edge and eventually reaches v.

We create Q
vG in two stages:

(i) Construction stage: Q
vG contains all nodes and edges of DA that are part of a directed

path going from the base set S(Q) to v. That is, Q
vG contains all edges that can

potentially carry authority flow to v.

(ii) Flow adjustment stage: We compute the explaining authority flows on the edges of

Q
vG . The explaining authority flow Flow(e) of an edge e is the amount of authority

flow that is transferred through e and eventually reaches v, on DA for Q.

 49

Figure 20: Intuition behind flow adjustment.

The construction stage is straightforward and is achieved as follows: We first construct

the temporary subgraph Dv, starting from the target node v and traversing edges of DA

following the edges in the opposite direction in a breadth first manner (depth first would

also work) until no more edges can be traversed. Then, we start from the authority

sources (base set nodes) of Dv and traverse the edges of Dv in the forward direction until

no more edges can be traversed. All nodes and edges traversed in the forward stage are

added to the explaining sub graphQ
vG .

The flow adjustment stage is more challenging because we have to adjust the “original”

edge authority flows for Q to subtract the authority flow not reaching to v. For instance,

in Figure 20 we must subtract from the edge flows the amount that will eventually “leak”

out of Q
vG through v2→v4. By “original” flows we refer to the authority flows at

convergence state in DA for ObjectRank2 execution for query Q. The original flow for

edge vi→vj is:

)()()(0 i
Q

jiji vrvvdvvFlow ⋅→⋅=→ α (10)

where)(ji vv →α is the authority transfer rate of edge e = (vi→vj) in DA according to

Equation 2.

v1 v2

v3

v

v4

0.3 0.2

0.2
0.1

Q
vG

 50

 Figure 19 illustrates the original authority flows for d = 0.85 and query

Q=[“OLAP”], on the authority transfer data graph of Figure 5. The computed

ObjectRank2 scores vector rQ = [0.076, 0.002, 0.009, 0.076, 0.017, 0.025, 0.083]T, after 5

iterations. It is more intuitive to view the problem as adjusting the edge flows instead of

adjusting the node scores, although the adjusted node scores can be easily computed

given the edge flows in the end. One could think of simply reducing the flow on an

incoming edge vi→vj of Q
vG proportionally to the ratio of the outgoing flow of vj going

outside Q
vG . However, this approach will fail if there are cycles in Q

vG , since adjusting the

flow of an edge can have a ripple effect. Hence, an iterative method is used. In particular,

for every node u, with the exception of the target node v, we iteratively reduce its

incoming flows proportionally to the flow going from u towards nodes outside ofQ
vG . We

do not adjust the incoming flows of the target node v, as the purpose of the explaining

subgraph is to explain to the user the total authority that v receives from other nodes in

DA. We assume all edges are bidirectional (arbitrarily small flow rates can be assigned to

direction of small importance) to guarantee convergence as proved in the extended

version [VHR07].

 For instance, for the explaining subgraph in Figure 20 with target node v, where

we assume d=1 (i.e., nodes pass all their authority to their neighbors) and all edges are of

the same type, we adjust the original edge flows of v1→v2 and v3→v2 as follows: Half of

the flow going through these edges goes through v2→v and half through v2→v4. Since

v2→v4 is outside Q
vG , we cut the flows of v1→v2 and v3→v2 to half, i.e., to 0.15 and 0.05

 51

respectively. This process is repeated iteratively for all edges in Q
vG until the computation

converges. Note that the flow on edges vi→v, i.e., edges that end at v, are not adjusted.

Details of adjustment stage: The details of the adjusting algorithm are as follows: For

each node vk in Q
vG , let O(vk) be the summation of all outgoing flows of vk in Q

vG and I(vk)

be the summation of all incoming flows of vk in Q
vG (we consider all incoming edges in

Q
vG and not DA since Observation 1 below shows that both are equal). It is

∑
∈

→=Ι
Q
vkj Gvv

kjk vvFlowv
),(

)()((11a)

∑
∈

→=
Q
vjk Gvv

jkk vvFlowvO
),(

)()((11b)

Observation 1: There is no incoming edge vi→vj with non-zero authority flow, where vj

is in Q
vG but vi is outside Q

vG . If such en edge existed, it would have been included to Q
vG

during the construction stage. �

As mentioned before, our goal is to compute the factor h(vk) by which the incoming flow

I(vk) of each node vk must be reduced to be consistent with the reduced outgoing flow

O(vk) of vk in Q
vG . It is:

)()()(0 kjkkj vvFlowvhvvFlow →⋅=→ (12)

Intuitively, this factor h(vk) is computed by the ratio of rQ
′(vk) and rQ(vk) which are the

ObjectRank score of vk in Q
vG (the “original” score) and DA respectively. Hence, for a

node vk:

d

vO
vr k

k
Q)(

)(' = (13)

 52

Figure 21: Algorithm to Compute Flows in Explaining Subgraph.

)(

)('
)h(

k
Q

k
Q

k vr

vr
v = (14)

Combining Equations 10, 11b, 12, 13 and 14, we get the following fixpoint equation for

the computation of h(vk). (For the intermediate steps and more details see [VHR07].)

()
)(

),()(

)h(
),(

0

k
Q

Gvv
jkj

k vrd

vvFlowvh

v
Q
vjk

⋅

⋅
=
∑

∈

We rewrite this equation using Equation 10:

()
)(*

)().()(

)h(
),(

k
Q

Gvv
k

Q
jkj

k vrd

vrvvdvh

v
Q
vjk

∑
∈

→⋅⋅
=

α

Explain-ObjectRank(Target Object v, Graph DA, Base Set
S(Q)={s1,…,s n},Threshold T) {

/*Construction Stage */
1) Create a temporary subgraph Dv by executing breadth-

first search on DA with v as the root node,
traversing edges in opposite direction;

2) Create explaining subgraph, Q
vG by executing breadth-

first search on Dv with the nodes in base set S(Q) as
root nodes, traversing edges in right direction;
/*Flow Adjustment Stage */

3) For each edge v i -> v j in Q
vG ,compute Flow 0(v i -> v j) using

Equation 10;
4) For each node vk in Q

vG set h(v k)=1;

5) While not converged do
 For each node vk in Q

vG except v do

Compute h(v k) using Equation 15;
6) Update the Flow of each edge in Q

vG using

Equation 12 ;

7)Return
Q
vG ;

 53

which then becomes

()
)(

)()()(

)h(
),(

k
Q

Gvv
jkjk

Q

k vrd

vvvhvrd

v
Q
vjk

⋅

→⋅⋅⋅

=
∑

∈

α

and finally,

()∑
∈

→⋅=
Q
vjk Gvv

jkjk vvvhv
),(

)()()h(α (15)

Observation 2: The “original” ObjectRank2 scores are not used in computing the

reduction factor h(vk). �

The iterative computation of Equation 10 on the explaining subgraph converges [VHR07].

Figure 22: Explaining Subgraph for Range Queries in OLAP paper in Figure 9.

Example. Figure 22 shows the explaining subgraph for Q=[“OLAP”] and target object

v4 after 5 iterations of Equation 15. Note that the “Data Cube” paper (see Figure 9) is

not in Q
vG , since there is no path from that paper to v4. Notice that the incoming flows of

the target object v4 are the same as the original ones of Figure 19. The computed

reduction factors after 5 iterations are as follows: h(v1)=1.59e-4, h(v2)=4.77e-4,

h(v3)=0.0011, h(v4)=1.0, h(v5)=0.1006 and h(v6)=0.0067. Note that h(v4) is 1 as v4 is

 54

the target object which implies that its incoming flow from v5 is not adjusted as shown in

Figure 14. �

 The explaining subgraph QvG can be very large which would make its generation

slow and its display to the user, impossible. Hence, in practice we limit the radius of

Q
vG to L (longer paths are generally unintuitive [CQ69] and carry less authority) and only

keep the paths with high authority flow. We apply these techniques in our online demo.

We have found that a relatively small L (e.g., L=3) value is adequate to effectively

explain a result and produce useful reformulations. Figure 21 presents the Flow

adjustment algorithm.

Theorem 1: Iteratively computing Equation 15 on the explaining subgraph converges.

Proof: The fixpoint computation of Equation 15 is equivalent to the PageRank

computation, if we replace incoming by outgoing edges and remove the damping factor.

The PageRank computation has been shown to converge if the graph is aperiodic and

irreducible [MR95]. The former is generally satisfied, whereas the latter is satisfied for

connected graphs. The explaining subgraph is connected due to its construction method –

all nodes are connected to the target node. To guarantee convergence, we always consider

a non-zero reverse direction edge type for every edge type. Furthermore, there are no

flow sinks [BP98] since there is a path from every node to the target node. �

5.2.2 Query Reformulation

Query reformulation [VHR08] using relevance feedback has been well studied in

traditional IR [SB90, RL03, Efth93, BSA+95, Har88], where query expansion has been

 55

the dominant strategy. That is, keywords are added to the original query according to the

user’s feedback. Such techniques are not adequate for ObjectRank2, since they ignore the

link-structure of the graph which plays a key role in the ranking. For instance, if the user

selects the “Range Queries in OLAP” paper in Figure 9 as a relevant object, what is the

best way to reformulate the query using this paper (referred as feedback object)? The

explaining subgraph described in previous Section is a key structure for query

reformulation since a “vote” of the user for feedback object v can be viewed as “vote” of

the user for the explaining subgraph Q
vG of v.

Overview of process: First, the system computes the top-k objects with the highest

ObjectRank2 values. The user marks a result object v (we extend to multiple objects in

[VHR07]) as relevant − user’s click-through could be used to implicitly derive such

markings. Then the explaining subgraph Q
vG of v is computed. Based on the content and

link-structure of Q
vG we reformulate the initial query. In particular, the Content-based

component of the reformulation is inspired by traditional query expansion ideas and leads

to a query expansion; whereas the Structure-based component adjusts the authority

transfer rates of the authority transfer schema graph based on the edge types inQ
vG . The

two reformulation components can be combined.

Content-based Reformulation

According to traditional reformulation techniques, the terms in the feedback object v

(viewed as a document) should be added, appropriately weighted, to the original query.

However, due to the nature of authority flow ranking, we extend this idea to also include

 56

terms in the objects that transfer high authority to v. These objects are the nodes of the

explaining graph Q
vG . The weight of an expansion term t is proportional to the flow that

the nodes that contain t pass to v, that is, the outgoing flow of these nodes inQ
vG .

A term t is weighted according to its distance from v and the amount of authority it

transfers to v, as shown in Equation 16. The authority flow a node transfers to v is its

outgoing flow in the explaining graph Q
vG .

 ∑ ∑
∈∧∈ ∈

→⋅=

k
Q
vk

Q
vjk

k

vtGv Gvv
jk

vvD
d

f vvFlowCtw
),(

),()()()((16)

where 0 ≤ dC ≤ 1 is the decay factor (in the spirit of XRANK [GSB+03]) which is

typically set to 0.5, and D(vk,v) is the distance (length in number of edges) of vk from v.

Note that if vk is v, then we use ∑
∈

→⋅
Q
vkj Gvv

kj vvFlowd
),(

)(instead of ∑
∈

→
Q
vjk Gvv

jk vvFlow
),(

)(, since

the outgoing flow of v is not specified in Q
vG . We select the top-s terms Z with highest

weight (ignoring stop words) and add them, after normalizing them as explained below,

to the original query vector Q0. The reformulated query vector Qi at iteration i is defined

as

=

>⋅⋅+
= ∑

∈
−

0,Q

1,t)(Q
Q

0

1

i

itwC
Zt

f
ei

i (17)

where t is the vector of term t (as in the vector space model [Sin01]), and 0≤ eC ≤1 is the

expansion factor, typically 0.5, used to scale the weights of new terms (as well as new

weights of old terms) with respect to the terms present in current query vector.

Normalization issues are discussed in [VHR07].

 57

Example. Consider the authority transfer data graph of

Figure 9, query Q=[“OLAP”], and feedback object, v is the “Range Queries in OLAP”

paper. The explaining subgraph Q
vG (Figure 14) is created. Using Equation 16, and

assuming Cd and Ce are 0.5, the top-5 new terms are olap(1.0), cubes(0.99), range(0.99),

multidimensional(0.05) and modeling(0.05). Note that the terms in the feedback object

(target object of Q
vG) generally get a higher weight due to the decay factor Cd. The

reformulated query vector Q computed by Equation 17 is [olap, cubes, range,

multidimensional, modeling] = [2.0, 0.99, 0.99, 0.05, 0.05].�

Structure-based Reformulation

The structure-based reformulation adjusts the authority transfer rates based on the

explaining subgraph Q
vG . Intuitively, if edges of an edge type eG carry large authority in

Q
vG then the user probably believes eG is an important edge type for the query. We boost

the authority transfer rate of each edge type present in Q
vG according to the authority it

transfers (to the feedback object v). The reformulated authority transfer rate)(' Geα of

edge type eG is computed by,

)()(1)('
),(),(

G
etypehasvvGvv

jkfG evvFlowCe
Gjk

Q
vjk

αα ⋅

→⋅+= ∑

∧∈
 (18)

where 0≤
fC ≤1 is the authority transfer rate adjustment factor, typically set to 0.5, used

to scale the authority transfer rates with respect to their previous values,)(Geα is the

 58

previous authority flow rate of edge type eG. Normalization issues are discussed in

[VHR07].

Example. The authority transfer rates of the original query are

[PP,PP′,PA,AP,CY,YC,YP,PY] = [0.7,0.0,0.2,0.2,0.3,0.3,0.3,0.1]. Using Equation 18 and

the normalization process, the reformulated authority transfer rates are

[0.67,0.0,0.24,0.16,0.24,0.24,0.24,0.08]. Notice that the transfer rates of PA and AP edge

types are increased and decreased respectively as they carry greater and lesser authority

to the feedback object respectively. �

5.2.3 Experimental Results

We experimentally evaluate our algorithms in terms of quality and performance. This

section is organized as follows: First we briefly describe the datasets used for evaluation

and then present the user surveys and the performance experiments respectively.

Datasets: We use two real datasets (Table 8). DBLPcomplete and DBLPtop are the

complete DBLP dataset and a databases-related subset respectively. We shredded the

downloaded DBLP file into the relational schema.

Table 8: Real and Synthetic Datasets.

Name #nodes #edges Size(MB)
DBLPcomplete 876,110 4,166,626 3950
DBLPtop 22,653 166,960 136

User Surveys

We used DBLPtop for our user surveys and not DBLPcomplete since on-the-fly

ObjectRank2 executions on the latter are slow and survey subjects would be irritated. The

 59

first phase was conducted at Florida International University (FIU) involving five

professors and PhD students from the database lab, who were not involved with the

project. The goal of this survey was to compare content-based, structure-based, and

content & structure-based reformulations. The result was that structure-based

reformulation is superior. The second phase focused on structure-based reformulation and

involved 10 FIU and outside (including IBM TJ Watson and Almaden) database

researchers, not involved in the project. In both phases we also measure the capability of

our system to discover the authority transfer rates set by a domain expert.

Internal Survey. The residual collection method [RL03, SB90] can be summarized as

follows: All objects seen by the user or marked as relevant are removed from the

collection and both the initial and all reformulated queries are evaluated using the

residual collection. We use the average precision as the evaluation measure. Note that the

recall is the same as the precision in our case since we limit the output results to k. We

report the survey results for 4 relevance feedback iterations and for the following 3

settings: i) Content-Only reformulation (Cf=0&Ce=0.2), ii) Content & Structure-based

reformulation (Cf =0.5& Ce =0.2) and iii) Structure-Only reformulation (Cf =0.5& Ce =0).

(We have found that these values of Cf and Ce are appropriate for this dataset.) The decay

factor Cd is set to 0.5. We use L=3 to limit the size of the explaining subgraph as

explained. We initialize the authority transfer rates of each edge type to 0.3. Figure 23

shows the survey results. We see that the structure-only reformulation performs the best.

Content-based reformulation is not effective in our setting because the users are domain

experts and hence know the right keywords, i.e., traditional query expansion is not

 60

effective. Note that in a different domain the results could vary. Next we evaluate the

effectiveness of structure-based reformulation to automatically train the authority transfer

rates of the DBLP authority transfer schema graph and compare the learned weights to

the ones of [BHP04], which we view as ground truth. The rates there

10.00%

20.00%

30.00%

40.00%

50.00%

1 2 3 4 5

A
ve

ra
ge

 P
re

ci
si

on

Content & Structure-based
Structure-Only
Content-Only

Initial
Query

Reformulated Queries

Figure 23: Average Precision for different calibration parameters.

were assigned manually by domain experts in a trial and error manner. We start by setting

the transfer rates of all edge types to 0.3. We again limit the length of paths of the

explaining graph with L=3. Let UserVector[PP,PP′,PA,AP,CY,YC,YP,PY] be the

authority rates vector. It is initialized to [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3]. The ground truth

ObjVector is [0.7,0.0,0.2,0.2,0.3,0.3,0.3,0.1]. At each iteration we compute the current

UserVector produced by the reformulation and compute the cosine similarity

cos(ObjVector,UserVector). Figure 24 shows the cosine similarity training curves for 4

users averaged over 5 queries each for a different value of Cf (Ce is always 0). We see

that the cosine similarity initially increases with the number of iterations and then

decreases due to overfitting. Larger Cf values lead to faster peak, since the adjustment of

the rates is less smooth.

 61

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

1 2 3 4 5 6

Iterations

C
os

in
e

Cf=0.1 Cf=0.3 Cf=0.5 Cf=0.7 Cf=0.9

Figure 24 : Training of the Authority Transfer Rates.

25.00%

30.00%

35.00%

40.00%

1 2 3 4 5

Iterations

A
ve

ra
ge

 P
re

ci
si

on

Structure-Only

Initial
Query Reformulated Queries

Figure 25: Average Precision using structure-only reformulation with Cf=0.5.

ObjectRank2 vs. ObjectRank: We also conducted a survey comparing the quality of

ObjectRank2 with ObjectRank [BHP04]. We found that ObjectRank2 is only slightly

better by 3%. The reason is the ObjectRank also uses something equivalent to the idf of

our IR function: they weigh the ObjectRank values for multi-keyword queries according

to the size of the base set. However, we believe that ObjectRank2 will be superior in

datasets with longer text descriptions.

 62

External Survey. We conducted an external survey operating on DBLPtop using only

structure-based reformulation as it was found to be the best, in the internal survey. Figure

25 shows the average precision curve for 5 iterations averaged over 20 queries by 10

users (2 queries per user). Figure 26 shows the authority transfer rate training curves for

the external survey which are similar to those in the internal survey.

0.8

0.82
0.84

0.86
0.88

0.9
0.92

0.94
0.96

0.98
1

1 2 3 4 5

Iterations

C
os

in
e

Cf=0.5

Figure 26: Training of the Authority Transfer Rates.

Performance Experiments: To evaluate the performance of our algorithms, we

conducted experiments on DBLPcomplete. We used a linux machine with Power 4+

1.7GHz processor and 20GB of RAM. The total execution time is measured for various

stages: (a) computing the top-k objects for the initial or reformulated query, (b) creating

the explaining subgraph, (c) executing the explaining ObjectRank2 on the explaining

subgraph, and (d) creating the reformulated query. As in [BHP04], for the initial user

query, we initialize every node in DA with their global ObjectRank values, to achieve

faster convergence. Then, for the first reformulated query we use the ObjectRank values

of the initial query and so on. The intuition is that the ObjectRank values of the newly

reformulated query are expected to be close to the ones obtained by the previous query.

 63

 Figure 27(a) shows the execution times for the various components of the process:

execute the query (first bar), and create the reformulated query (last three bars) at each

user feedback and reformulation iteration. We use L=3 as the radius of the explaining

subgraph, and convergence threshold 0.0001. Figure 27(b) shows the number of

ObjectRank2 iterations for the initial and the reformulated queries over the whole graph.

Clearly, using the previous scores as initial values accelerates the convergence of

ObjectRank2.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 3 4 5

T
im

e(
se

cs
)

ObjectRank2 Execution Explaining Subgraph Creation

Explaining ObjectRank2 Execution Query Reformulation

~113.63 ~28.50 ~28.76 ~28.88 ~29.00

Initial Query Reformulated Queries

`

(a): Query and Reformulation Times.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

O
bj

ec
tR

an
k2

 It
er

at
io

ns

Initial Query Reformulated Queries

(b): ObjectRank2 iterations.

Figure 27: DBLPcomplete Execution.

 64

 The ObjectRank2 execution times for DBLPcomplete is clearly too long for

exploratory searching. This can be addressed in one of the following ways: use faster

hardware, precompute ObjectRank2 values as in [BHP04], or define focused subsets like

DBLPtop. The ObjectRank2 execution times for these datasets are about 2 seconds for

the initial query and less than 1 sec for the subsequent reformulated queries (graphs

omitted due to space constraints).

5.3 Graph Information Discovery (GID)

There has been an explosion of hyperlinked data in many domains, e.g., the biological

Web. Expressive query languages and effective ranking techniques are required to

convert this data into browsable knowledge. We propose the Graph Information

Discovery (GID) framework [VHR+09] to support sophisticated user queries on a rich

web of annotated and hyperlinked data entries, where query answers need to be ranked in

terms of some customized ranking criteria, e.g., PageRank or ObjectRank. GID has a data

model that includes a schema graph and a data graph, and an intuitive query interface.

The GID framework allows users to easily formulate queries consisting of sequences of

hard filters (selection predicates) and soft filters (ranking criteria); it can also be

combined with other specialized graph query languages to enhance their ranking

capabilities. GID queries have a well-defined semantics and are implemented by a set of

physical operators, each of which produces a ranked result graph. We discuss rewriting

opportunities to provide an efficient evaluation of GID queries. Soft filters are a key

feature of GID and they are implemented using authority flow ranking techniques; these

are query dependent rankings and are expensive to compute at runtime. We present

 65

approximate optimization techniques for GID soft filter queries based on the properties of

random walks, and using novel path-length-bound and graph-sampling approximation

techniques. We experimentally validate our optimization techniques on large biological

and bibliographic datasets. Our techniques can produce high quality (Top K) answers

with a savings of up to an order of magnitude, in comparison to the evaluation time for

the exact solution.

 Consider a rich web of annotated data entries (objects) in Internet accessible

sources with hyperlinks to entries in other sources. Examples include the biological Web,

GIS datasets and their metadata, bibliographic data sources, healthcare data, desktop files

and Intranets. Such graphs have significant differences from the general Web graph.

Each of the data entries or documents contains some specific typed knowledge, e.g.,

information on genes and proteins for the biological Web. Thus, this graph has an

underlying schema graph. Users of such typed webs want answers to queries that are

meaningful to them and go beyond traditional Information Retrieval (IR) keyword

queries. These users have sophisticated information needs, which require both

customization and personalization, when ranking query results. For example, a biologist

may only want to retrieve protein data entries from SwissProt, or she may be interested in

discovering the associations between a particular drug and a disease by following the

links among publications that are linked to proteins and vice versa.

The challenges to query answering in this rich web of entities include supporting

users to retrieve meaningful answers, given the user’s preferences, rather than just

 66

retrieving relevant data entries. The Graph Information Discovery (GID) framework must

support a simple yet flexible query interface where a user can easily pose a complex

query. Ranking of answers must reflect the semantics of this rich Web and the user’s

personal perspective. GID queries must be interactive and support the exploratory

discovery process. Hence, they must support formal semantics so that queries can be

optimized and evaluated efficiently.

The limitations of many prior solutions are that they typically converge on the

extremes of query complexity, i.e., plain keyword or complex queries, with few solutions

in between, or they fail to consider ranking. Web search [PBMW98, Hav02, FLW+06,

NDQ06, RPB06] employs excellent ranking techniques but have limited search capability.

The keyword search paradigm of Web search has also been adapted to structured

databases [ACD02, HP02, BNH+02]. On the other hand, there are a variety of extensions

of SQL for Web graphs (WebSQL [MMM97], W3QL [KS95], WebOQL [AA98],

StruQL[FFL+97, FLM98]) and RDF graphs (SPARQL [SPQL]). However, none of these

languages provide customized ranking techniques. The approach in [RG03] is an

excellent start towards incorporating ranking in structured Web queries. They provide an

underlying algebra and optimization; however, they do not support an interface that

allows users (scientists in the case of the scientific Web) to intuitively write useful

complex queries, nor do they support powerful ranking techniques like authority flow

based ranking. NAGA [KSI+08] implements reasoning tasks on RDFS documents, and

supports complex queries and ranking. NAGA targets typed graphs of facts and labeled

relationships that may be expensive to create and keep up-to-date. It does not support

 67

query-customized ranking. That is, a fixed confidence-based ranking function is applied

to the final results. In contrast, GID allows the user to specify what ranking. mechanism

(if any) should be used for each leg of the query. Furthermore, NAGA uses expensive

reasoning algorithms, which may not scale to very large datasets like PubMed, whereas

GID relies on a suite of scalable approximation and optimization techniques. We show

that our framework can complement such prior research and extend it with support for

sophisticated queries and ranking.

This section addresses the challenges of expressing and answering sophisticated user

queries on typed graphs. We focus on a web of annotated data entries from biological

data sources for our running examples and experiments. However, the generic GID

framework is applicable in multiple domains; we use bibliographic data as a second

evaluation domain in our experiments. The GID framework has the following features

and capabilities:

• Given a typed graph, GID provides a user interface to specify a combination of hard

and soft filters; the latter incorporate ranking in an intuitive manner. GID emulates

domain graph query languages such as lgOR, lgPR [RWL+06] and filter queries in

PubMed [PM07]. GID can be combined with more general graph languages to

support complex queries.

• Filters are implemented by an underlying closed algebra of physical operators. Each

operator produces a ranked graph and GID operators can be combined. The properties

of the operators are used to determine the relevant query rewriting rules.

 68

• GID soft filters are implemented using authority flow based ranking; they are query

dependent and must be computed at runtime. Two novel approximation techniques

are studied in order to achieve interactive query response times. One is a path-length-

bound technique, where only paths of limited length are considered. The second is a

graph-sampling approximation technique, where sampling over a Bayesian network is

used to create sampled graphs and estimate the ranking scores.

• GID queries were evaluated on biological and bibliographic datasets. We show that

our approximation methods achieve execution time reductions of up to an order of

magnitude, with negligible degradation of the Top-k answer’s quality (in comparison

to the exact ranking). This allows GID to support an exploratory framework.

5.3.1 GID Query Language

The intuition of the GID framework is the application of a sequence of hard and soft

filters. A filter generally takes as input a ranked graph and outputs a ranked subgraph of

the input graph. A hard filter is used to eliminate some nodes in a Boolean manner

whereas a soft filter provides ranking.

GID Query Syntax: Given a data graph DG and a schema graph SG, a query q is a

sequence q=[r1>…>r m] of filters r i. We use the “>” symbol to denote a total order

between the filters and this represents a pipelining of the output of one filter as input to

the next. The results of a query, which are usually (see exception below) the nodes of the

graph output by the last filter, are referred to as target objects.

 69

A query may also specify the number k of the requested top-k results. A filter r= {R,N,S}

is the following 3-tuple:

(1) The selection condition R as follows:

• A keywords Boolean (OR, AND, NOT) expression E, e.g., Keywords = “cancer”

AND “breast”.

• An attribute value pair av, e.g., title = “A comparative…”

• A type T, e.g., Type = {EntrezGene}.

• A Path expression P, e.g., Path = EntrezGene /PubMed or Path = EntrezGene

[Keywords = “tnf”] / PubMed [author=“Michael”].

(2) A Boolean N; the value=true means that r is negated.

(3) A Boolean S; a value=true means that r is soft.

GID does not support soft filters (S=true), where R is a path expression, or negated soft

filters (N=true and S=true) since the semantics are unintuitive. Path expression P may

contain types, unidirectional single step navigational operators (/), multi-step navigational

operators (//), and type wildcards (*). Notice that “Path”, “ Keywords” and “Type” are

reserved words in GID. GID does not support a combination of selection conditions

(keyword expression, attribute value pair, type or path expression) within a single filter,

in order to simplify the implementation and optimization process.

Example: A biologist’s exploration is as follows: Starting from genes in Entrez Gene she

follows links to Entrez Protein and then to PubMed; her target objects are a set of papers

 70

in PubMed. She wants to rank these papers by their importance/relevance to the word

“human”. The following expresses her needs:

q1 = [{ Path = EntrezGene/EntrezProtein/PubMed, false, false}

 > {Keywords=“human”, false, true}

 > {Type = PubMed, false, false}] .

The first hard filter creates a subgraph of paths from genes in Entrez to proteins to

PubMed publications. The second, soft filter provides a “goodness” ranking (to be

discussed below) with respect to the keyword “human”, and the last, hard filter identifies

the “target objects” - publications from PubMed – in the result. �

The most simple and intuitive GID query for novice users is to specify a set of hard filters

{ r1,…,rt } and a single soft filter rs. This can have a default interpretation of q ={ r1,…,rt}

> rs or as q = r s >{ r1,…,rt} depending on the application semantics. The specific ordering

of the hard filters {r1,…,r t} is not important as long as they do not include Path filters.

Target Objects: As mentioned above, we assume by default that all the objects of the

resulting subgraph of the query are output to the user. Alternatively, the $ sign is used to

select a more fine-grained group of target objects. For instance, q2 = [{ Path =

$EntrezGene$/EntrezProtein, false, false}] returns all EntrezGene objects that point to an

EntrezProtein object.

GID Query Semantics: To define the semantics of GID queries, we first define a score

assignment function, Score for a data graph DG(VD,ED) to be a mapping of nodes v∈VD

to real values Score(v) in [0,1]. A unit score assignment, Scoreunit, assigns Scoreunit(v)=1

to every v∈VD. The input of a filter r is a pair (Gin,Scorein) of a data graph Gin and a

 71

scores assignment Scorein for Gin. Similarly, the output is a pair (Gout,Scoreout), where

Gout is a subgraph of Gin. Applying the filter is as follows: r(Gin,Scorein)=(Gout,Scoreout).

Given a GID query q=[r1>r 2>…>r m-1>r m] on the data graph DG=(VD,ED) the result

(GR,ScoreR) of q is rm(rm-1(…(r2(r1(DG, Scoreunit)))…)).

 During query evaluation, filters are applied in the order indicated in the query.

Note that the unit score assignment is used for the first filter r1. Alternative initial scores

are possible, e.g., the global score of a node computed by a method like PageRank

[PBMW98]. Each filter may change the scores of the data graph. This may also eliminate

nodes and edges as explained next. Applying filter r on graph DG is as follows:

• Each v in DG is assigned a score Score(v) in [0.0,1.0].

• When node v is assigned Score(v)=0, then the node and its incident edges are

removed. For example, applying r = {Keywords=“human”, false, false} removes

all nodes and incident edges in graph Gin that do not contain the keyword

“human” to create Gout .

Given the result (DGR,ScoreR) of q, where DGR=(VR,ER), GID will display a list of the

nodes v of VR ranked by decreasing ScoreR(v) values.

Hard filters are used to eliminate nodes (and their incident edges) of Gin. The filter is

evaluated as a Boolean and may assign score 0 to some nodes. The score is unchanged

for the rest of the nodes. Consider the following filter r= {R,false,false}:

1. If R is a keyword expression E (or simply a keyword), Scoreout(v)=0 if v does not

satisfy E, else Scoreout(v) = Scorein(v).

 72

2. If R is a attribute value pair av, then Scoreout(v)=0 if node v does not satisfy av,

else Scoreout(v) = Scorein(v).

3. If R is a type T, then Scoreout(v)=0 if v is not of type T, else Scoreout(v)=Scorein(v).

4. If R is a path P, then Scoreout(v)=0 for nodes not contained in a path of type P,

else Scoreout(v)=Scorein(v).

The opposite scores are assigned if r= { R,true,false}.

Soft filters rank a result subgraph and are inherently fuzzy. Suppose R is a keyword w or

keyword expression E, then, applying r results in the following score:

Scoreout(v)=f(Scorein(v),Scorer(v)) where 0≤Scorer(v)≤1 is the score assigned to v by r.

Scorer(v) shows how “good” v is, given the graph Gin. GID does not specify the exact

semantics or computation of these scores Scorer(v) for soft filters. Various approaches are

possible including authority flow, IR scoring [Sin01], path count [Katz53], keyword

proximity [GSVG98, HPB03], minimum distance from the keyword nodes and so on.

 Note that Scorer(v) must be positive (non-zero) and must not depend on the input

score assignment Scorein(v). This important assumption, the non-pruning order-free

assumption for soft filters, is needed to obtain useful rewriting axioms. This assumption

is reasonable to implement since a small epsilon value can be assigned to nodes instead

of 0 if they are completely irrelevant to R. We use a combining function f (e.g., product or

min). In principle, any combining function may be used. However, a monotone function

is usually more intuitive and also allows pipelining and fast computation of the top results

[FLN01]. In order to maintain the Score(v) in [0.0,1.0], we normalize the Score(v) after

application of each filter.

 73

Figure 28: Sample semantic query evaluation.

Example (cont’d): Figure 28 shows the query evaluation of query q1 given the input data

graph DG of Figure 6. We assume initial unit scores assignment Scoreunit. We also

assume a simple soft filter scoring function with Scorer(v)=0.5 if a node does not

contains the term and Scorer(v)=1 otherwise. The combining function f is summation. �

5.3.2 Related Research

Meeting target user needs: We interviewed biomedical domain experts and examined

popular search tools. When asked to describe the selection of target objects (results) that

are documents in PubMed, these users chose progressive filtering of the objects; see

PubMed filter queries [PM07]. They also requested simple navigational paths. PubMed

supports filters in a limited manner; users can select a set of predefined filters (hard filters

in our terminology), e.g., filter the publications that cite MEDLINEplus articles. In

[VHR08], we conducted user experiments that show the benefits of soft filters for this

domain. We note that the real test of the GID framework will be a friendly graphical user

interface and user evaluation studies; this is included in our future work.

 74

 A second aspect of user needs is the richness of the data model. The GID model is

much simpler compared to RDF, yet it can capture much of the knowledge used by a

scientist in the process of literature based discovery (LBD) on the Web. NAGA [KSI+08]

has a similar labeled directed multi-graph data model. However, they may have

significant overhead in determining the confidence of facts and relationships of the RDFS

graph.

A third aspect of user needs is personalized ranking. NAGA does not support

query-customized ranking. That is, a fixed ranking function is applied to the final results,

based on confidence-based edge weights that reflect the estimated accuracy of the

extraction process and trust in the source. In contrast, GID allows the user to specify what

ranking mechanism (if any) should be used for each leg of the query. GID supports

authority flow based ranking and the authority weights can be personalized. This is well

suited to scientists whose value for specific domain knowledge may vary depending on

the task.

Expressive power: GID is clearly more powerful than the current PubMed language

which only supports hard filters and has no ranking capability. Research by Raghavan

and Garcia-Molina [RG03] studies an expressive graph algebra and query operators. The

GID language can support the “linear” plans of this algebra. The “tree” plans were not

considered since they cannot be supported by a simple user language. While users wanted

navigation, they did not express a need for general join operations, recursion, etc. as

found in [RG03]. GID soft filters are more general than the ranking operators in [RG03].

GID soft filters are evaluated against the whole input subgraph (e.g., ObjectRank) instead

 75

of just relying on the properties of each individual node as is done in [RG03]. This

property is the key to intuitive GID user query interface.

Example: This example shows that the GID query language allows expressing complex

queries in an intuitive way; no query language was proposed in [RG03]. Consider the

following sample query from [RG03]: “Generate a list of universities with whom

Stanford researchers working on ‘Mobile networking’ collaborate”. A sequence of

instructions corresponding to this query is presented in [RG03]: Let S be a weighted set

consisting of all the pages in the stanford.edu domain that contain the phrase ’Mobile

networking’. The weight of a page in S is equal to the normalized sum of its PageRank

and text search ranks. Compute R, the set of all the “.edu” domains (except stanford.

edu) to which pages in S point. For each domain in R, assign a weight equal to the sum of

the weights of all the pages in S that point to that domain. List the top-10 domains in R in

descending order of their weights [RG03]. Creating the algebraic execution plan for this

query (Figure 8 of [RG03]) requires significant training.

 In contrast, the hard and soft filters of GID can express this query in the following

sequential and straightforward manner: [{ Keywords="",false,true}>{ IRFilter("Mobile

Networking"), false, true} > { Path=Webpage[URL="stanford.edu" AND Keywords =

"Mobile networking"]/$Webpage[URL=".edu" AND URL ≠ "stanford.edu"]$, false,

false}> { URL="stanford.edu", false, true}].

 76

 For this query, we first initialize the graph nodes with global PageRank scores

(empty keywords expression in first soft filter). For computing the textrank (IRscores),

we need to introduce the IR soft filter. The combining function, f is summation that adds

textranks and pageranks. Notice that the last filter is a soft filter that computes the final

scores for each web page and outputs the non-Stanford.edu pages in descending score

order. We assume that this attribute-constrained soft filter uses the scores of the nodes in

the input graph as the weights in the base set for the authority flow execution algorithm.

There has been significant work on query languages for the Web and search engines

ranging from keywords based languages to query languages for semi-structured data, to

graph query languages. For users who require general query language features to write

complex queries, the GID operators and ranking semantics can be incorporated in a

straightforward manner into a language such as SPARQL. Alternatively, more complex

path expressions or other relational operators can be incorporated into the GID language.

NAGA too can express complex queries and can support a powerful inference

mechanism; however, this may not scale well to large graphs and an interactive discovery

process.

5.3.3 Algebra for GID

We present a closed algebra where the algebraic operators have a one-to-one

correspondence to the filters. A binary Combine operator is introduced to combine scores.

Each (unary) operator, with the exception of Combine, accepts as input a pair of data

graph and score assignment (DG, Score) and produces the pair (DG′, Score′), where

DG=(VD,ED) and DG′=(VD′,ED′). Further, VD′ ⊆ VD and ED′⊆ ED.

 77

Operators

1. HardExp(DG,Score,E) → (DG′,Score′) where E is a Boolean expression over

keywords, such that, VD′ ={ v | v ∈ VD and satisfy(v,E)}, ED′={ e=(u,v) | e∈ED and

u,v ∈ VD′} and the Boolean predicate satisfy(.,.) is defined by induction over E as

follows:

• If E is a term, satisfy(v,E)=true if v contains the term E, false otherwise.

• If E=E1 Op E2, satisfy(v,E)=satisfy(v,E1) Op satisfy(v,E2).

• If E = not (E1), satisfy(v,E)= not(satisfy(v,E1)). The score of each node v∈VD′

remains the same, i.e., Score′(v)=Score(v).

2. HardAttribute(DG,Score,av) → (DG′,Score′) where av is an attribute value pair,

such that, VD′ ={ v | v ∈ VD and satisfy(v,av)}, ED′={ e=(u,v) | e∈ED and u,v ∈

VD′} and the Boolean predicate satisfy(v,E)=true if v contains the corresponding

value for the attribute specified, false otherwise. Notice that we overload the

satisfy predicate.

3. HardType(DG,Score,T)→(DG′,Score′) where T is a set of types (nodes of the

schema graph), VD′ ={v | v ∈ VD and ∃ t ∈ T and v∈ t}, ED′={ e=(u,v) | e ∈ ED

and u,v ∈ VD′}. The score of each node v ∈ VD′ remains the same, i.e.,

Score′(v)=Score(v).

4. HardPath(DG,Score,P)→(DG′,Score′) where P is a path expression, VD′ = { v | v

∈ VD and satisfyPath(v,P)}, ED′={ e=(u,v) | e ∈ ED and u,v ∈ VD′}, the Boolean

predicate satisfyPath(v,P) is true if v is part of a path p that satisfies P; false

 78

otherwise. The score of each node v ∈ VD′ remains the same, i.e.,

Score′(v)=Score(v).

5. SoftExp(DG, Score, E, ScoreFunction) → (DG′, Score′) where E is a Boolean

expression over keywords, and ScoreFunction is a function such that, given E and

DG, maps each node v to a score ScoreFunction(DG,E,v) in [0.0,1.0] ((0.0,1.0]

given the non-pruning assumption for soft filters). Alternatives for ScoreFunction

include ObjectRank, path count, MinDistance, keyword proximity and so on. The

score for E is computed as follows:

• If E=E1 OR E2, ScoreFunction(DG,E,v) = ScoreFunction(DG,E1,v)+

ScoreFunction(DG,E2,v).

• If E=E1 AND E2, ScoreFunction(DG,E,v) = ScoreFunction(DG,E1,v) .

ScoreFunction(DG,E2,v).

• If E=not(E1), ScoreFunction(DG,E,v) = 1 – ScoreFunction(DG,E1,v).

• If E is a term w, ScoreFunction(DG,E,v) = ScoreFunction(DG,w,v).

Once ScoreFunction is executed, the scores Score′(v) of the nodes in DG are updated as

follows: Score′(v) = ScoreFunction(DG,E,v). Note that Score′(v) is the Scorer(v), that is,

the score assigned by the soft filter. This score will then be combined with the previous

nodes scores Score(v) using the Combine operator below.

6. Combine(DG1,Score1,DG2,Score2,f) → (DG′,Score′) where f(score1,score2) is a

combining function like product. For every node in the union of DG1 and DG2,

Score(v) = f(Score1(v),Score2(v)). Given DG1=(VD1,ED1) and DG2=(VD2,ED2), the

 79

graph DG′= (VD′ , ED′) is defined as follows: VD′ ={v | v ∈ VD1 ∪ VD2 and

Score′(v)>0.0}, ED′={ e=(u,v) | e ∈ ED1 ∪ ED2 and u,v ∈ VD′}.

Figure 29: Execution plan for query q1

Example (cont’d): Figure 29 shows an execution plan for query q1. We use

f(.,.)=SUM(.,.) as the combining function (other combining functions are possible as

explained above) and ObjectRank as the ScoreFunction . �

Axioms: In this section we present the rewriting rules for GID queries, assuming any

implementation for the soft filters, i.e., any definition of ScoreFunction. These rules will

be applied together with the approximations. Consider the following theorems (without

proof):

Theorem 2: Let Hi, Hj be hard filters and Si, Sj be soft filters. The following properties

hold:

1. The commutative property of non-path hard filters Hi > Hj ⇔ Hj > Hi.

2. The commutative property of soft filters Si > Sj ⇔ Sj > Si.

3. The idempotence property of hard filters Hi > Hi ⇔ Hi �

 80

The proof is straightforward and relies on the following: The soft filters are non-pruning

and always assign a non-zero score. The combining function f which combines the scores

of a soft filter with the current scores is commutative (e.g., product, sum, max).

Theorem 3: The rewritings of Theorem 2 can be applied to any subsequence of a query.�

For example, if Q = S1>H1>H2>S2 where Hi and Sj are hard and soft filters respectively,

then using the commutative property of hard filters we can rewrite Q as S1>H2>H1>S2.

5.3.4 GID Soft Filters computed by Authority Flow

GID soft filters will typically be the most expensive operators since the popular

authority-flow based ranking techniques used by most soft filters are well known to be

expensive for relatively large data graphs. PageRank [PBMW98] and ObjectRank

[BHP04], rely on pre-computing and indexing global or keyword-specific rankings.

Given that the GID framework is meant to be interactive and exploratory, we

aggressively optimize the evaluation of authority-flow soft filters. We first provide an

overview of some ranking metrics. We then discuss two approximation techniques.

Layered Graph ObjectRank (lgOR): The class of GID queries with a hard path filter

followed by a soft term filter is very useful and expressive. [RWL+06] proposed the

lgOR ranking, a variant of ObjectRank, to answer such queries. These queries apply

authority flow ranking on an acyclic directed layered graph produced by the hard path

filter.

 81

Example: Consider the following GID query: [{ Path =

EntrezGene/EntrezProtein/$PubMed$, false, false } > {Keywords=“aging” OR

“cancer”), false, true}]. First, the hard filter creates a layered graph of paths satisfying

the path expression EntrezGene/EntrezProtein /PubMed (Figure 30). A layered graph is

a DAG comprised of layers; each layer has data entries of one or more types, which have

only edges to data entries in the next layer of the graph. The data entries in the last layer,

which are returned by the query, are called the target objects. For simplicity we assume

that each layer is composed of data entries of one type. Next, the soft filter executes

ObjectRank on the layered graph for the keyword expression “aging” OR “cancer”. The

target objects (PubMed objects) are ranked according to their ObjectRank value. �

A key point of lgOR is that the authority flows between objects in the layered graph are

only determined by the scores of the parents of each object in the previous layer of the

graph, and the incoming authority transfer rates. lgOR is defined as follows: The ranking

vector R of the target objects in the last layer of the layered graph RG=(Vlg,Elg) of k

layers is defined by a transition matrix Alg and an initial ranking vector Rini:

ini
k

l

inik RARAR)(
1

1

lg
1

lg ∏
−

=

− ==
 (19)

The transition matrix is Alg, where, αlg(e) is the authority transfer rate of edge e between

nodes u and v of type U and V, respectively, in adjacent layers p and q. The

 82

OutDeg(u,V), the outdegree of node u to nodes of the type V, is limited to nodes and

edges in the layered graph as follows:

 ∈→=

=
otherwise

Evueife
vuA

,0

)(,)(
],[

lglg
lg

α

 (20)

We present two techniques to achieve fast, high quality approximate rankings.

Each of these two techniques is more effective in different settings. The path-length-

bound technique considers paths with an upper bound on the length, in computing

authority flow. The approximation is effective in evaluating a single authority-flow soft

filter and can be applied to a sequence of soft filters. The graph-sampling technique

probabilistically selects a subset of the paths using a Bayesian network. It is applied to

approximating lgOR queries (introduced in [RWL+06]), which are equivalent to a hard

path hard filter followed by an authority-flow soft filter. This approximation is

indispensable when the data graph is large. In both techniques, the complexity of

evaluating a query is reduced, by minimizing the number of nodes visited during query

execution time.

Figure 30: Layered Graph.

 83

Approximate a Soft Filter with Path-Length-Bound Technique: A path-length-bound

technique is applied to approximate the evaluation of an authority-flow soft filter. The

key idea is to evaluate ObjectRank on a subgraph TDG′(VTD′,ETD′) of TDG (VTD,ETD).

TDG′ is created by first selecting all nodes VTD′, ⊆ VTD with distance up to M from the

base set (the nodes that contain the keywords of the soft filter), where M is the radius

constant, usually set to a number between 2 and 4 in our datasets. We add the edges ETD′

⊆ ETD that connect nodes in VTD′. Figure 31 shows the detailed steps of this optimization.

 In order to guarantee interactive response times, we start with path length M=1

and progressively increase it to improve the results quality, until the user is satisfied with

the current results’ quality. To further accelerate the execution, we reuse the ObjectRank

values of the previous iteration. Note that this algorithm is applicable for a sequence of

soft queries, by merging their base sets (node weights are added if ObjectRank2 [VHR08]

is used, which has weighted base set).

Error!

Figure 31: Approximate Single Authority-Flow Soft Filter.

Approximate lgOR: {Hard Path Filter} > {Soft Filter } with a Graph-Sampling

Technique: A graph-sampling technique can be applied to approximate lgOR on a query

comprising a hard path filter followed by a soft filter. Given a layered graph

1. Let q=[r s] be a query composed of a single soft filter r s
2. Let w be the keyword expression of r s.
3. Initialize TDG′ with the set of nodes in TDG satisfying w.
4. Repeat until user is satisfied with current resu lts ’

quality {
5. Do one step of breadth-first search in TDG′ and add each

newly accessed node.
6. Exit loop, if no new nodes are added.
7. Execute ObjectRank on TDG′.
8. Output top- k objects. }

 84

RG=(Vlg,Elg), the problem of approximating lgOR for RG is reduced to estimating a

subgraph RG′ of RG, so that with high confidence (at least δ) the relative error of

computing an approximation of lgOR in RG′ is ε. First, a set {RG1,…,RGm} of

independent and identically distributed subgraphs of RG is generated. Then, RG′ is

computed as the union of the m subgraphs. Each RGi is generated using a Direct

Sampling technique over a Bayesian network [RN03] that encodes all the navigational

information encoded in RG and in the transition matrix Alg. Finally, an approximation of

lgOR is computed in RG′.

A Bayesian network BN=(VB,EB) is built as follows:

• BN and RG are homomorphically equivalent, i.e., there is a mapping f: VB→ Vlg, such

that, (f(u),f(v)) ∈ Elg iff (u,v) ∈ EB.

• Nodes in VB correspond to discrete random variables that represent if a node is visited

or not, i.e., VB = {X | X takes the value 1 (true) if the node X is visited and 0 (false)

otherwise}.

• Each node X of VB has a conditional probability distribution:

Pr(X | Parents (X)) = (α (f (Y j), f (X))
j = 1

n

∑ ⋅ Y j)
 (21)

where, Yj is the value of the random variable that represents the j-th parent of the node X

in the previous layer of the network, and α(f(Yj),f(X)) corresponds to the authority transfer

rate of edge (f(Yj),f(X)) in the layered graph, and is seen as the probability to move from

Yj to node X in the network. Thus, the conditional probability distribution of a node X

represents the collective probability that X is visited by a random surfer, which starts

from the objects in the first layer of the layered graph. Finally, the probability of the

 85

nodes in the first layer of the network corresponds to a score that indicates how good

each object is with respect to the keywords in the original query.

Direct Sampling is performed using the Bayesian Network and the topological

ordering of the layered graph to generate each subgraph RGi. Once an iteration i of the

Direct Sampling is finalized, the sampled layered graph RGi=(Vi
lg,E

i
lg) is created. The

conditional probability of each node in the last layer of each subgraph RGi corresponds to

an approximated value of lgOR. After all the subgraphs RG1,…,RGm are computed, an

estimate RG′ is obtained as the union of these m subgraphs. The approximation of lgOR

in the graph RG′ is computed as the average of the approximated lgOR values of target

objects in the subgraphs RG1,…,RGm. To achieve an estimate RG′ so that the confidence

level in the relative error ε of computing an approximation of lgOR in RG′ is at least δ,

the Chernoff-Hoeffding’s bound yields an upper bound on the number of times the Direct

Sampling process needs to be evaluated, i.e., an upper bound on the size m of

{ RG1,…,RGm}.

5.3.5 GID Optimizer and Execution

We present an overview of the GID optimizer and execution engine, to illustrate

how the rewriting rules and the approximation techniques are applied together to achieve

interactive response times for GID queries. ObjectRank is used to implement the soft

filters. The GID system works on top of relational DBMS, which stores the data graph.

Precomputation: Precomputation is required to achieve exact and timely query

answering. (1) We build an ObjectRank index which stores the ObjectRank score for

 86

each pair of a keyword and an object. A threshold is used to avoid storing objects with

very small scores. (2) Full-text indexes are created for all text attributes and keyword, as

well as indexes on the primary keys of the relations. However, if the query does not allow

the use of pre-computed structures (e.g., the soft filter follows a hard filter), then the

approximation techniques are employed.

Query time: The GID optimizer accepts an input GID query and produces an execution

plan. In particular, the following rewritings are possible:

1. Select a physical implementation for each GID algebra operator. Table 9 shows the

available physical operators for the GID algebra operators. Note that the path-length

approximation is identified as a possible implementation for SoftExp.

2. Change the order of operators using the rewriting potential of the axioms.

3. Insert the Combine operator to support each SoftExp operator.

4. Replace a subsequence of operators with an equivalent “superoperator”. Only one

such superoperator is currently implemented as shown in the last line of Table 9. It

replaces (HardPath> SoftExp) and is implemented using the graph-sampling

approximation.

Note that we only consider linear plans in this version of GID optimizer. This is a natural

choice given the linear nature of execution of GID operators. We will relax this

restriction as more capabilities are added to the GID algebra.

We use some rules-of-thumb as indicated in the last column of Table 9 to determine

which physical operator is preferred by the optimizer for each algebraic operator. Again,

fine-tuning will be conducted in future versions in order to avoid using an index for non-

 87

selective hard filters. Also note that the Graph-Sampling algorithm is always used for

HardPath>SoftExp subsequences. When re-ordering hard filters, we first apply the more-

selective filters (if these statistics are known). In the future, we plan to integrate our GID

optimizer with the relational cost-based optimizer to make better decisions.

Table 9: Physical Implementation of GID Algebra Operators.

Algebra
Operator

Physical Operator Requirements/Conditions
for Selecting

Index Lookup Full-Text Index Available/
Always if available

HardExp

On-the-fly None
Index Lookup

(not supported currently)
Path Indexes Available/

Always if available
HardPath

On-the-fly None
Table Scan Separate objects table for each

type/ Always if available
HardType

On-the-fly None
Index Lookup B+-tree index on this attribute

available/
Always if available

HardAttribute

On-the-fly None
ObjectRank index lookup ObjectRank index available. Should

be First filter of query/Always if
available

SoftExp

Path-Length-Bound Approximation
(Progressively increase path length)

None

Combine On-the-fly None

HardPath >
SoftExp

Graph-Sampling None/Always used for this
sequence of operators

We illustrate how the optimizer creates a plan for three key template queries

involving the expensive soft filters.

a. If the query begins with a keyword SoftExp, the precomputed ObjectRank index is

used to evaluate the filter. For instance, for query {Keywords=“TP53”, false,

true} > { Path = EntrezGene/PubMed, false, false}, the precomputed ObjectRank

index of keyword “TP53” is used to evaluate the soft filter.

 88

b. If the query starts with a HardPath filter followed by a keyword SoftExp filter,

e.g., {Path = EntrezProtein/PubMed, false, false} > { Keywords =“cancer”, false,

true}, we replace this subsequence with the superoperator and introduce the

Combine operator. Our experiments will show that this superoperator and the

graph-sampling approximation are essential when the data graph is large.

c. If a hard filter (excluding a HardPath filter) is followed by a keyword SoftExp

filter, e.g., { Keywords = “TP53”, false, false} > {Keywords =“cancer”, false,

true} - then we apply the path-length-bound technique. We start with path length

M=1 and progressively increase it to improve the result quality.

Clearly, it is not always possible to compute accurate results in interactive time for some

complex queries, e.g., for a long alternating sequence of hard/soft filters. However, such

queries are typically unintuitive.

5.3.6 Experimental Results

Our experiments focus on the evaluation time performance and the quality of producing

approximate answers in the interactive GID framework. We do not compare with other

systems. The framework of [RG03] is not targeted for online computation. They report

on the evaluation times for an exact computation (in a warehouse environment) and the

execution times that they report are in many hundreds of seconds. Other graph query

languages, e.g., SPARQL, do not provide the sophisticated ranking which is the key to

GID framework and so the comparison would not be meaningful.

 89

Table 10: Datasets

Name #nodes #edges Size (MB)
DS7 699,199 3,533,756 2,189

DBLP 876,110 4,166,626 3,950
DS3 28,351,615 10,014,869 5,978

Datasets: We use three real datasets (Table 10). DS3 and DS7 are two biological datasets

while DBLP is a bibliographical dataset. The biological datasets were created following

an experimental protocol that start from annotated gene records in public Web accessible

sources, and follow hyperlinks, to reach publications in PubMed. A subset of the schema

of DS3 and DS7 is in Figure 7. DS7 follows less hyperlinks and visits less sources; hence

it creates a smaller graph. We use the larger graph DS3 to experiment with the graph-

sampling approximation. We shredded the downloaded DBLP file [DBLP09] into the

relational schema shown in Figure 4.

Evaluation Metrics: We evaluate both quality and performance.

(1) The quality of the ranking is with respect to the exact ranking. For the

approximation techniques presented we measure the quality of the approximation

using a normalized top-k Spearman’s rho with ties [FKM+04, FKM+06, FKS03].

Let σ1 and σ2 be 2 top-k lists. The set of results in ties is called a bucket. The

ranked list of results, then can be viewed as ranked buckets B1, B2,….,Bn. The

position of bucket Bi, denoted pos(Bi) is the average location within bucket Bi. We

assign σ(x)=pos(B) where σ(x) is the rank of result, x and B is the bucket of x. ρ is

 90

the Spearman’s rho metric, which is a normalized distance measure that lies in the

interval [0, 1] defined as follows:

() 2/1

2/1

1

2

21

21
3/)12(*)1(*

)()(

),(
++

 −
=

∑
=

kkk

ii
k

i

σσ
σσρ

 (22)

where we use k+1 as the penalty constant [FKS03]. Note that the denominator of

Equation 22 is used for normalization.

(2) We also report on runtime performance. The experiments were evaluated on a

Solaris machine with Sparcv9 1281 MHz processor and 16GB of RAM. All

algorithms were implemented in Java (JDK version 1.5.0_12). Oracle DBMS

(version 10g Enterprise Edition Release 10.2.0.1.0) was used to store the database

and JDBC was used to connect to the database system. We report on the

execution time for successive iterations of the approximation algorithm.

Evaluate Path-Length-Bound Technique: We evaluate the effectiveness of the path-

length-bound optimization technique described on query template (c) as follows: Hard

Filter > Keyword Soft Filter. We conducted these experiments on the DS7 and DBLP

datasets. We did not use DS3 because this approximation technique was not scalable to

the large DS3 dataset, as the value of the radius constant, M, increased. The entire data

graph is loaded into memory. The database is then consulted only to find the base set

(with their IR scores using oracle intermedia contains()) of each query. We optimize the

query execution by avoiding the explicit creation of a subgraph. To do this, we reuse the

original DBLP or DS7 database graph (already in memory) and mark the nodes in the

 91

subgraph using a Boolean. For example, we mark all nodes that are part of the subgraph

“ true” while the rest are marked “false”. Then we execute the path-length-bound

approximation of ObjectRank using only those nodes and edges that are part of the

subgraph.

0

1

2

3

4

5

Exact M=1 M=2 M=3 M=4 M=∞

M
ea

n
T

im
e(

se
cs

)

SubGraph Marking ObjectRank Execution

~20.09 ~8.15

0

0.5

1

1.5

2

2.5

3

Exact M=1 M=2 M=3 M=4 M=∞

M
ea

n
T

im
e(

se
cs

)

SubGraph Marking ObjectRank Execution

~8.40 ~6.14

(a): DBLP Execution (b): DS7 Execution

Figure 32: Performance experiments of Path-Length-Bound Technique.

0

0.02

0.04

0.06

0.08

0.1

10 25 100 500 1000

Top-k

N
or

m
al

iz
ed

 S
pe

ar
m

an
's

 rh
o

M=1 M=2 M=3 M=4 M=∞

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

10 25 100 500 1000
Top-k

N
or

m
al

iz
ed

 S
pe

ar
m

an
's

 rh
o

M=1 M=2 M=3 M=4 M=∞

 (a): DBLP Execution (b): DS7 Execution
Figure 33: Quality Experiments of Path-Length-Bound Technique.

The total execution time is measured for the following stages: (i) creating the

subgraph for the keyword hard filter and (ii) executing the keyword soft filter

(ObjectRank) on the subgraph. Figures ptlen_per(a) ptlen_per(b) show the execution time

averaged over 20 queries, for the DBLP and DS7 datasets respectively, for increasing

 92

values of the radius constant, M, and a convergence threshold of 0.0001. To provide a

baseline, we compare our execution time with the exact solution - the original

ObjectRank algorithm executed over the data subgraph after application of the hard filer.

This is equivalent to setting M to ∞. Note the significant execution time for the exact

solution (over 20 seconds) for DBLP when compared to DS7 dataset is due to its larger

size and high connectivity.

We note that in the GID exploratory framework, we can iteratively provide

answers to users. Thus, for M values of 1 and 2, we can provide answers after a relatively

short delay (in Figure 32 each bar for varying M=1, 2, 3, 4 represents the delay time

while M=∞ represents the total execution time). Figures 33(a) and 33(b) show the quality

of the results using the top-k Spearman’s rho metric for the DBLP and DS7 datasets,

respectively. Each group of results is for varying top-k and each bar is for varying M. As

the radius constant M increases, the performance degrades and the quality improves

(lower value of Spearman’s rho metric) since a larger subgraph is used for ObjectRank

execution. There is clearly a trade-off; for lower M we have lower delay but also lower

quality. Notice that in both datasets, for M=2, we achieve a good tradeoff of quality and

performance (higher quality for a relatively shorter delay time), when compared to M=1,

3, or 4. There is a small improvement in quality (lower value of Spearman’s rho metric)

for Top-500 and Top-1000 in both datasets. This is because of the large number of ties

towards the end of these top-k lists.

 93

0

2

4

6

8

10

Exact
lgOR

1 2 3 5 7

Graph Sampling Iterations

M
ea

n
T

im
e(

se
cs

)

0
1
2
3
4
5
6
7
8

Exact
lgOR

1 2 3 5 7

Graph Sampling Iterations

M
ea

n
T

im
e(

se
cs

)

(a) DS3 Execution. (b): DBLP Execution.
Figure 34: Performance experiments of Graph-Sampling Technique.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 3 4
Top-k

N
or

m
al

iz
ed

 S
pe

ar
m

an
's

rh

o

i=1 i=2 i=3

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 4

Top-k

N
or

m
al

iz
ed

 S
pe

ar
m

an
's

rh

o

i=1 i=2 i=3

(a) DS3 Execution. (b): DBLP Execution.
Figure 35: Quality Experiments of Graph-Sampling Technique.

Evaluate Graph-Sampling Technique: We evaluate the effectiveness of the

approximate lgOR metric using the Bayesian network and graph-sampling on the DS3

and DBLP datasets. (DS7 results are similar and omitted). We consider 30 queries of the

query template (b). The sample queries for DS3 are as follows: {Path =

EntrezGene/*/PubMed, false, false} > Keyword Soft Filter.

A key success factor in sampling is to reach the golden objects. For these queries,

we identified the golden objects as the objects in PubMed whose normalized score was

greater than some threshold. To compute the exact lgOR metric for a given query, the

entire layered graph is loaded in memory. The database is contacted to construct the

 94

layered graph and to find the base set of the query. Then, the lgOR is computed by

traversing the whole layered graph. To compute the graph-sampling for a given query,

the entire layered graph is also loaded into main memory to build the Bayesian network.

Then, the approximated lgOR is computed by following the direct sampling method in

which a node in the network is visited depending on the conditional probability

distribution of the node. Assuming that golden objects have a relatively high probability

of being visited during the sampling, we optimize the query execution by avoiding

traversing the whole layered graph and visiting only nodes that conduce to the golden

objects of the query.

Figure 34(a) reports the average execution time over 30 top-k queries in DS3 and

Figure 34(b) reports time over 30 queries in DBLP. Graph-sampling is executed for i = 1

to 7 iterations where i corresponds to the number of sampled layered graphs RGi. The

total execution time corresponds to the time of creating the layered graph and the base set

and computing approximate lgOR on the layered graph. We first observe that despite

DS3 being a very large dataset, the execution times of approximate lgOR range from 1 to

2 seconds and show up to an order of magnitude improvement over the exact

computation. This improvement suggests that this sampling method will be the key to

success of the GID exploratory framework. These savings are maintained over additional

iterations, in particular for the large dataset DS3. The savings for the smaller DBLP

dataset are also significant after multiple iterations.

Figure 35 reports the normalized Spearman’s rho for the queries in DS3 and

DBLP. We group the queries into three groups of ten queries according to the number of

golden objects whose normalized score is greater or equal than 0.7. The Top-1 group

 95

comprised of queries with one golden object; the Top-3 group with three golden objects

and Top-4 group with four golden objects. We report on the average normalized

Spearman’s rho values over 10 queries of each group. As can be seen, the graph-sampling

technique is able to rank the top-k objects in the sampled layered graphs RGi in an order

close to the exact solution. These results indicate that the graph-sampling technique

successfully achieves our optimization goal of minimizing the number of visited nodes

during query execution time.

5.4 Comparing Top-k XML Lists

Systems that produce ranked lists of results are abundant. For instance, Web search

engines return ranked lists of Web pages. To compare the lists produced by different

systems, Fagin et al. [FKM+04, FKM+06, FKS03] present distance measures for top-k

lists that extend the traditional distance measures for permutations of objects, like

Kendall tau [FKS03] and Spearman’s Footrule [FKS03].

In addition to ranking whole objects (e.g., Web pages), there is an increasing number of

systems, including XRANK [GSBS03], XSEarch [CMKS03] and XKeyword [CMKS03]

that provide keyword search on XML or other semi-structured data, and produce ranked

lists of XML subtrees. In addition, XML lists distance measures can also be applied to

rank-aware extensions of XPath and XQuery. Furthermore, these measures are needed for

XML lists aggregation, where the results from several XML search engines can be

aggregated to find the best top-k list for the given lists. Clearly, there is a need to have

 96

measures to compare the results of such systems among each other or against the user’s

ideal list of results.

Unfortunately, previous distance measures are not suitable for ranked lists of

subtrees since they do not account for the possible overlap between the returned subtrees.

That is, two subtrees differing by a single node would be considered completely different

objects. Figure 36 shows two top-3 lists of subtrees produced by two imaginary XML

keyword proximity search algorithms. Trees Ta2 and Tb3 only differ by a single node but

this is ignored by object-level distance measures.

Figure 36: Top-3 trees for query - Ullman Database.

We present the first distance measures for ranked lists of subtrees. In particular,

the distance measures consist of two components: the tree similarity component and the

 97

position distance component. The former captures the similarity between the structures of

the returned subtrees, while the latter captures the distance of the subtrees in the two lists,

similarly to previous object-level distance measures [FKM+06].

Intuitively, our distance measures work in two phases. In the first phase, they find

the optimal (closest) mapping between the two top-k lists of subtrees, where the distance

between a pair of subtrees is computed using one of the approaches proposed in previous

works, including tree edit distance [Bil03], tree alignment distance [Bil03], Fourier

transform-based similarity, entropy-based similarity, tag similarity, and path shingle

similarity. The cost of the optimal mapping between the two lists of subtrees represents

the tree similarity component. Next, we compute the position distance component given

the optimal mapping, using one of the previously proposed techniques on measuring the

distance between top-k permutations [FKM+04, FKM+06, FKS03].

 The goal of this work is to define and compute the distance between two lists La,

Lb of XML trees, La=Ta1, Ta2,… Tak and Lb= Tb1, Tb2,…, Tbk, where Txi are XML trees.

Often, as is the case with XML proximity search systems, all Tai, Tbj are included

(obtained by a sequence of deletes) in a tree Ti of a collection D=T1,..,Tn. However, this

property is not important in our definitions.

 Note that for the case of complete lists (permutations) of subtrees where each

subtree appears in both lists, the problem is reduced to the permutations distance

 98

problem.. However, this case is not practical since XML search engines return different

XML trees. Hence, we focus on top-k lists.

A total mapping f from La to Lb is a bijection from La to Lb. Hence, tree Tai is

mapped to Tbj=f (Tai). N is the set of all possible total mappings, f from La to Lb. Let

TS(T1,T2) be the tree similarity between two trees T1, T2. TS can be the tree edit distance

or another measure. TS is normalized in [0,1].

5.4.1 XML Lists Distance based on Total Mapping (XLDTM)

 We present our first measure for the distance between two top-k lists of XML

trees. The key intuition is that we extend previous list distance measures that only

consider exact mappings between the objects of the two lists to also consider approximate

mappings. In particular, we first compute the closest pair-wise mappings between the

XML trees from the two lists and then view these mappings as exact mappings and apply

list permutation distance measures.

Assuming k elements in each XML list, XLDTM is defined as follows. First we

define the total mapping similarity distance MSDT(La,Lb,f) between La and Lb for a total

mapping f as

k

TafTaTS
fLbLaMSD ki

ii
T

∑
== ..1

))(,(
),,(

That is, MSDT is a measure of how “tight” the total mapping f is. Notice that

MSDT(La,Lb,f) takes values in [0,1], since TS is also in [0,1] and we divide by k.

 99

We next define the minimum total mapping fminT as the total mapping between

La and Lb with minimum MSDT(La,Lb,f). It is,

fminT = argminf MSDT(La,Lb,f)

that is, argminf is the f that minimizes MSDT.

Given fminT, we define the minimum total mapping similarity distance,

MinMSDT(La,Lb) = MSDT(La,Lb,fminT)

Definition: The XLDTM between XML lists La, Lb has two components:

a. The XML similarity component MinMSDT(La,Lb).

b. The total mapping position distance component PDT(La,Lb,fminT), which

is also referred as the position component in this section. PDT is defined using one

of the well known metrics on permutations as discussed below. PDT is in [0, 1].

It is

XLDTM(La,Lb) = a⋅MinMSDT(La,Lb) + b⋅PDT(La,Lb,fminT)

where a, b are the XML similarity and position component constants respectively.

a, b adjust the relative importance of the two components. Notice that XLDTM(La,Lb) is

in [0,2] since MinMSDT(La,Lb) and PDT(La,Lb,fminT) are in [0,1] and constants a and b

are in [0,1].�

We choose fminT to minimize the XML similarity component and not the whole

XLDTM, because we believe it is more intuitive to compute the distance component

based on the tightest XML similarity mapping rather than mixing the two components.

Note that other functions can be used to combine the contribution of the two components,

as we discuss below.

 100

Measures for XML Similarity component, MinMSDT(La,Lb): The tree similarity, TS

which is used to compute MinMSDT(La, Lb) can be any of the tree or XML similarity

measures.

Measures for Position component, PDT(La, Lb, fminT): Note that list permutation

distance metrics (not top-k list distance measures) are used in XLDTM. Given the

mapping fminT, we naturally extend the Spearman’s footrule distance and Kendall tau

distance for permutations with ties [FKM+04, FKM+06, FKS03] as follows:

Position distance (PDTF) based on Spearman’s footrule metric for permutations, is

given by:

∑
=

−=
k

i
i

T
LbiLa

TTF TafminposTapos) n(La,Lb,fmiPD
1

))(()(

where posLa(Tai) is the position of tree Tai in list La. This formula is extended as

follows to consider ties. A set of trees with the same score is called a bucket. The ranked

list of results can be then viewed as ranked list of buckets B1, B2,….,Bn. The position of

bucket Bi, denoted pos(Bi) is the average result location within bucket Bi. We assign

posLa(Tai) =pos(B(Tai)) where B(Tai) is the bucket of Tai.

Position distance (PDTK) based on Kendall tau metric for permutations

considering ties, is given by:

)'Lb,La(K)n(La,Lb,fmiPD j,iP}j,i{
TTK ∑ ∈=

where Lb’ is constructed from list Lb when element Tbj is replaced by Tai=

(fminT)-1(Tbj), that is, Tbj = fminT(Tai). That is, we assume that an element Tai in La and

 101

its corresponding element Tbj in Lb are the same. Hence, we just have k distinct elements

{1, 2, … ,k} in both lists, and the problem of computing PDTK(La, Lb, fminT) of the two

XML lists is same as computing the Kendall Tau metric of two permutations. P is the set

of all unordered pairs of the k distinct elements.

If there are two mappings fmin1T and fmin2T that have equal MSDT, i.e.,

MSDT(La,Lb,fmin1T) = MSDT(La,Lb,fmin2T), then we compute PD for both and in the

end pick the one that gives the smallest PD.

Hence, there are two variants of XLDTM:

XLDTMF(La,Lb)= a⋅MinMSDT(La,Lb)+b⋅PDTF(La,Lb,fminT)

XLDTMK(La,Lb) = a⋅MinMSDT(La,Lb)+b⋅PDTK(La,Lb,fminT)

Example: Consider the top-3 lists La and Lb in Figure 36. We will illustrate the steps

involved in computing XLDTMF(La, Lb) and XLDTMK(La, Lb). In this example, we use

tree edit distance, TED as the tree similarity measure, TS. We first compute the XML

similarity component by finding all possible total mappings, N= { f1, f2, f3, f4, f5, f6}:

f1(Ta1)=Tb1, f1(Ta2)=Tb2, f1(Ta3)=Tb3

f2(Ta1)=Tb3, f2(Ta2)=Tb2, f2(Ta3)=Tb1

f3(Ta1)=Tb2, f3(Ta2)=Tb1, f3(Ta3)=Tb3

f4(Ta1)=Tb1, f4(Ta2)=Tb3, f4(Ta3)=Tb2

f5(Ta1)=Tb3, f5(Ta2)=Tb1, f5(Ta3)=Tb2

f6(Ta1)=Tb2, f6(Ta2)=Tb3, f6(Ta3)=Tb1

 102

The normalized tree edit distance between each pair of trees in La and Lb is given

by the following matrix:

58.043.078.0

20.058.071.0

71.078.000.0

3

2

1

321

Ta

Ta

Ta
TbTbTb

The total mapping similarity distance of each total mapping in N is calculated by

as follows:

MSDT(La, Lb, f1) = (0.00+0.58+0.58)/3 = 1.16/3 = 0.38

MSDT(La, Lb, f2) = (0.71+0.58+0.78)/3 = 2.07/3 = 0.69

MSDT(La, Lb, f3) = (0.78+0.71+0.58)/3 = 2.07/3 = 0.69

MSDT(La, Lb, f4) = (0.00+0.20+0.43)/3 = 0.63/3 = 0.21

MSDT(La, Lb, f5) = (0.71+0.71+0.43)/3 = 0.63/3 = 0.62

MSDT(La, Lb, f6) = (0.78+0.20+0.78)/3 = 0.63/3 = 0.59

Hence, f4 is the mapping with the minimum mapping distance. It is minMSDT(La,

Lb) = MSDT(La, Lb, f4) = 0.21.

The normalized Spearman’s footrule position component is

PDTF(La,Lb,f4)=2.0/4.0=0.5. Hence, XLDTMF(La,Lb) = 0.21+0.5 = 0.71 (assuming a=1

and b=1). If the position distance is calculated using normalized Kendall tau, then

PDTK(La,Lb,f4)=1.0/3.0=0.33 and XLDTMK(La,Lb) = 0.21+0.33 = 0.54 (assuming a=1

and b=1). The difference in the two scores is due to inherent differences between the

Spearman’s footrule and Kendall tau metrics. �

 103

5.4.2 Computing XLDTM

In this section, we describe efficient algorithms to compute XLDTM given two XML top-

k lists.

Naive approach: XLDTM for any two top-k XML lists La and Lb is computed as follows.

First, the set N of all possible total mappings from La to Lb is computed. Then, for each

total mapping f in N, we compute the total mapping similarity distance, MSDT(La,Lb,f),

and then find the minimum mapping fminT. If we find more than one mapping with the

same minimum mapping similarity distance we break the tie by computing the position

distance, PDT(La,Lb,fminT) for each of them and in the end pick the one that gives

smaller PDT. Then, we compute XLDTM(La,Lb).

Figure 37: Algorithm for computing XLDTM

Compute-XLDTM (XML List La={Ta1,Ta2,…,Tak}, XML List Lb = {Tb1,Tb2,
…,Tbk}, constants a and b):
1. Let S[k, k] be a 2-D array that stores the tree similarity measures between every

pair of XML trees (one from each List);
2. For i in 1...k do {
3. For j in 1...k do {
4. Compute TS(Tai,Tbj);
5. Normalize TS(Tai,Tbj);
6. S[i, j] ← TS(Tai,Tbj); } }
7. Let assignmentm[k,2] be a 2-D array that stores the mth fminT with the minimum

mapping distance;
8. assignment ← Ext-Hungarian-Algorithm(S, “min”);
9. For each fminT compute the normalized position distance, PDT(La,Lb,fminT) for

Spearman’s footrule or for Kendall Tau;
10. Select fminT with the minimum position distance;
11. Compute XLDTM;

 104

Overview of our algorithm: Instead of computing the set N of all possible total

mappings and then selecting the minimum mapping fminT, we precompute the tree

similarity measure of each tree pair across the two lists, build a bipartite graph, and apply

a minimum cost perfect matching algorithm to compute all minimum mappings fminT.

Figure 37 presents the algorithm.

Algorithm details: The following high-level steps of execution explain the algorithm in

detail:

1. Precompute the tree similarity TS(Tai, Tbj) between every pair of XML trees, one

from each list La and Lb. There are k2 such pairs, hence the complexity of this

step is k2⋅Cost(TS(Tai, Tbj)) where Cost(TS(Tai, Tbj)) is the complexity of

computing the tree similarity between the two trees Tai and Tbj.

2. Create a weighted complete bipartite graph G(C, P, W) as follows. The first set of

nodes C = {1, 2…., k} denote the set of elements in XML list La. The second set

of nodes P = {1, 2…., k} denote the set of elements in XML list Lb. The weight

W(i, j) = TS(Tai, Tbj).

3. Execute a minimum cost perfect matching algorithm on G(C, P, W) to compute

fminT. We use the Hungarian algorithm. Notice that, in our case we use an

extended version of the Hungarian algorithm that outputs the set of all fminT with

the same minimum mapping similarity distance, minMSDT. Then, for each fminT

we compute the position distance PDT(La,Lb,fminT) and pick the one with the

least PDT. Finally, XLDTM is computed for Spearman’s footrule and Kendall tau

position component respectively. The complexity of the Extended Hungarian

 105

algorithm is O(k3), which is the same as the original Hungarian algorithm. Total

Complexity of the algorithm is O(k2.Cost(TS(Tai, Tbj))+ k3).

5.4.3 Experimental Results

In this section we experimentally evaluate the measures presented in the previous

sections by comparing three popular XML keyword search algorithms. We use tree edit

distance as the XML similarity measure.

Table 11: XML Datasets

DATASET NUMBER OF

ELEMENTS
AVERAGE

DEPTH
MAXIMUM

DEPTH
DBLP 7 ,137, 933 1.90 5
NASA 791,923 5.58 8

Datasets: We use two real datasets: the DBLP dataset and the NASA XML dataset

available at [NSD08]. Table 11 summarizes their characteristics. We implemented the

following XML keyword proximity search systems: XRANK [GSBS03], XSEarch

[CMKS03] and XKeyword [HPB03]. These three algorithms take as input a corpus of

XML documents and a keyword query, and return as output an ordered list of XML

fragments that satisfy the query by containing all the keywords. All three algorithms

favor minimal and compact subtrees that satisfy the query, but use different ranking

functions and pruning rules. In particular, while XKeyword ranks its answers by the size

of the resulting subtree, XRANK and XSEARCH also utilize Information Retrieval (IR)

score functions based on tf·idf. XSEarch prunes result paths that repeat the same tag in

internal nodes, while XRANK prunes results if there is a more specific result in the same

 106

element. Also, XRANK returns whole subtrees while XSEarch and XKeyword return

paths.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

Top-1 Top-5 Top-10 Top-25 Top-50

Top-k

XML Similarity Distance Position Distance

X
LD

T
MF

XRANK(XR), XSEarch(XS),
XKeyword (XK)

(a) Average XLDTMF vs. Top-k

0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

Top-1 Top-5 Top-10 Top-25 Top-50

Top-k

XML Similarity Distance Position Distance

X
LD

T
MK

XRANK(XR), XSEarch(XS),
XKeyword (XK)

(b) Average XLDTMK vs. Top-k

Figure 38: XLDTM Experiments on DBLP Dataset.

 In our implementation, we used the IR score provided by the CONTAINSTABLE

function of Microsoft SQL Server 2000 to compute the IR components of both XRANK

and XSEARCH ranking functions. The experiments were performed on a PC with an

Intel Pentium Core 2 Duo, 2.00 GHz processor, 2GB RAM, running Windows Vista

Business. All algorithms were developed in Java (JDK version 1.6.0_06), use the

 107

Document Object Model (DOM) for XML parsing and navigation, and Microsoft

SQLServer 2000 for the persistent storage of indexes. The tree similarity (TS) measure

we use in our experiments is the dynamic programming algorithm by Zhang and Shasha

[34] which computes the tree-edit-distance between ordered trees [Bil03]

whose complexity is Cost(TED(Tai,Tbj)) = O(|Tai||Tbj|⋅min(leaves(Tai),

depth(Tai))⋅min(leaves(Tbj), depth(Tbj)). We refer to a detailed survey of tree edit

distance algorithms [Bil03]. We report average XML Lists Distance values over many

experiments on the two datasets.

Figures 38(a) and 38(b) show the total distances (split into the two components)

between the result lists produced by the three search algorithms on the DBLP dataset

averaged over 50 two-keyword queries, using XLDTMF and XLDTMK, respectively. The

queries used include: “artificial intelligence”, “ xml indexing”, “ text mining”, “ image

retrieval”, “ OLAP mining”. Notice that the distance increases as k increases because as

the trees get larger, the results become more disparate due to the pruning rules of the

algorithms that go in effect for larger trees. As mentioned before, XKeyword ranks its

answers by the size of the resulting subtree, while XRANK and XSEARCH also utilize

Information Retrieval (IR) score functions based on tf·idf. The reason that XKeyword

has large distance to the other two rankings is that it does not have an IR component in its

ranking function. Hence, when multiple trees have the same size, they are ranked

arbitrarily. XRANK and XSEarch have smaller distance between them because their

rankings are more similar given that the results were mostly single-node trees.

 108

0

0.2

0.4

0.6

0.8

1

1.2

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

Top-1 Top-5 Top-10 Top-25 Top-50

Top-k

XML Similarity Distance Position Distance

X
LD

T
MF

XRANK(XR), XSEarch(XS),
XKeyword (XK)

(a) Average XLDTMF vs. Top-k

0

0.2

0.4

0.6

0.8

1

1.2

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

X
R

-X
S

X
R

-X
K

X
S

-X
K

Top-1 Top-5 Top-10 Top-25 Top-50

Top-k

XML Similarity Distance Position Distance

X
LD

T
MK

XRANK(XR), XSEarch(XS),
XKeyword (XK)

(b) Average XLDTMK vs. Top-k

Figure 39: XLDTM Experiments on NASA Dataset.

Figure 39 repeats the set of experiments of Figure 38 on the NASA dataset. Some

sample two-keyword queries used in these experiments are: “arcminutes magnitude”,

“astrographic motion”, “equinox culmination”, “photographic wavelengths”, “oxford

zone”. Some important observations on the results of NASA dataset are (a) Distance

between XML lists is generally larger for NASA dataset because of its larger depth. (b)

In contrast to Figure 38, XSEarch and XKeyword have the smallest distance because both

 109

algorithms return paths as result. This factor was less important in Figure 38 because

most results were single-node. In contrast, XRANK has large distance to the other two

rankings because it returns whole subtree as result. (c) XRANK is very close to XSEarch

in DBLP, but very far in NASA dataset. The reason is that the XRANK and XSEarch

pruning conditions are very rare for very shallow subtrees (DBLP) but more frequent for

deeper subtrees (NASA dataset). The latter also leads to unpredictable fluctuations to the

distances for increasing k, in contrast to the linear increase in the DBLP dataset. In both

datasets, notice that the XML Similarity distance contributes the most to the total distance.

This shows that the main difference of these three algorithms comes more from how they

define a result and less on how they rank them.

We also present performance results on the deeper NASA dataset. Figure 40

shows the average execution time to compute XLDTM for various values of k, over the

same 50 two-keyword queries used in the distance experiments. As expected, the average

execution time increases superlinearly as k increases because there are more results in the

top-k lists under comparison. Notice that the execution times are different for the three

pairs of search algorithms. The reason is that XRANK produces the largest size of results

as it returns whole XML elements, while XKeyword produces concise results by

returning paths. XSEarch produces results of intermediate size by returning paths like

XKeyword but has different pruning rules. Thus, the execution times of XRANK vs.

XSEarch are the highest, while XSEarch vs. XKeyword is the lowest.

 110

0
0.5

1
1.5

2
2.5

3

1 5 10 25 50
Top-k

T
im

e(
se

cs
)

XRANK vs. XSEARCH
XRANK vs. XKEYWORD
XSEARCH vs. XKEYWORD

~4.19 ~9.73 ~4.03

Figure 40: Performance Experiments on NASA dataset

6 CONCLUSIONS

This dissertation presents novel techniques and methods to provide user-friendly, high

quality and efficient searching of graph structured databases. In

[VH05,VH06,VHL06,VHL08] we propose and demonstrate a technique that given a

keyword query, on-the-fly generates new pages, called composed pages that satisfy the

user’s information needs and improves user satisfaction. In [VHR08] we create a

framework and provide algorithms to explain query results and reformulate authority

flow queries based on the user’s feedback. In a recent work, we propose a flexible and

extensible framework for querying over large hyperlinked data collections [VHR+09].

We also devise methods to automatically compare top-k XML lists.

 111

LIST OF REFERENCES

[ACA06] A. Agarwal, S. Chakrabarti, and S. Aggarwal. Learning to rank networked
entities. ACM SIGKDD 2006

[ACD02] S. Agrawal, S. Chaudhuri and G. Das: “DBXplorer: A System for Keyword-
Based Search Over Relational Databases”, IEEE ICDE, 2002.

[AP00] E. Amitay and C. Paris: “Automatically Summarizing Web Sites -Is there any
way around it?” CIKM, 2000.

[AA98] G. Arocena, A. Mendelzon: WebOQL: Restructuring documents, databases and
webs. ICDE 1998.

[AP97] J.Abracos and G. Pereira-Lopes: “Statistical methods for retrieving most
significant paragraphs in newspaper articles”, ACL/EACL Workshop on Intelligent
Scalable Text Summarization, 1997.

[Bil03] P Bille. A survey on tree edit distance and related problems, Theoretical
Computer Science, 2005.

[BDFS03] P. Buneman, S. Davidson, M. Fernandez, D. Suciu "Adding Structure to
Unstructured Data". ICDM, 2003

[BE97] R. Barzilay and M. Elhadad: “Using lexical chains for text summarization”, ISTS,
1997.

[BHP04] A. Balmin, V. Hristidis and Y. Papakonstantinou: “Authority-Based Keyword
Queries in Databases using ObjectRank”. VLDB 2004.

[BM00] A. L. Berger and V. O. Mittal: “OCELOT: A System for summarizing web
pages”, ACM SIGIR, 2000.

[BNH+02] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti and S.Sudarshan:
“Keyword Searching and Browsing in Databases using BANKS”, IEEE ICDE, 2002.

[BSA+95] C. Buckley, G. Salton, J. Allan and A. Singhal. Automatic query expansion
using SMART. TREC-3. NIST special publication 500-225. pp 69-80. 1995.

[BSA94] C. Buckley, G. Salton and J. Allan. The effect of adding relevance information
in a relevance feedback environment. ACM SIGIR 1994.

[CHWM04] D. Cai, X. He, J.Wen and W.Ma: “Block-level Link Analysis”, ACM SIGIR,
2004.

 112

[CKS03] H.H. Chen, J.J. Kuo and T.C. Su: “Clustering and Visualization in a Multi-
Lingual Multi- Document Summarization System”, ECIR, 2003.

[CQ69] A. Collins and M, Quillian, Retrieval Time From Semantzc Memory. J. of Verbal
Learning and Verbal Behaviour, Vol 8, pp 240-247, 1969.

[CMKS03] S. Cohen, J. Mamou, Y. Kanza and Y. Sagiv. “XSEarch: A Semantic Search
Engine for XML”, VLDB, 2003.

[DBLP09] http://dblp.uni-trier.de/xml/

[DUC05] Document Understanding Conference, http://duc.nist.gov, 2005.

[Edm69] H.P. Edmundson: “New Methods in Automatic Abstracting”, ACM Journal,
vol.16, no.2, pp. 264-285, 1969.

[Efth93] E. N. Efthimiadis. Interactive query expansion: A user-centered evaluation of
ranking algorithms for interactive query expansion. ACM SIGIR. pp 146-159. 1993.

[ER04] G. Erkan and D.R. Radev: “Lexrank: Graph-based centrality as salience in text
summarization”, JAIR, vol.22, pp 457-479, 2004.

[FFL+97] M. Fernandez, D. Florescu, A. Levy, D. Suciu: A query language for a web
site management system. SIGMOD Record 1997.

[FLM98] D. Florescu, A. Y. Levy and A. O. Mendelzon: “Database techniques for the
World-Wide Web: A survey”. SIGMOD Record, 1998.

[FKM+04] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee: “Comparing and
Aggregating rankings with Ties”. PODS, 2004.

[FKM+06] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee: “Comparing Partial
Rankings”. SIDMA, 2006, vol. 20, No. 3.

[FKS03] R. Fagin, R. Kumar, D. Sivakumar: “Comparing Top-k lists”. SODA, 2003.

[FLN01] R. Fagin, A. Lotem, M. Naor: Optimal Aggregation Algorithms for Middleware.
PODS,2001.

[FLW+06] G. Feng, T.Y. Liu, Y. Wang, Y. Bao, Z. Ma, X. Zhang and W.Y. Ma:
“AggregateRank: Bringing order to web sites”. SIGIR, 2006.

[FO01] T. Fukusima and M. Okumura: “Text Summarization Challenge Text
Summarization Evaluation in Japan”, WAS, 2001.

 113

[GD07] Google Desktop search, http://desktop.google.com/,2007.

[GKMC99] J. Goldstein, M. Kantrowitz, V. Mittal and J. Carbonell: “Summarizing text
documents: Sentence selection and evaluation metrics”, ACM SIGIR, 1999.

[GKR00] N. Garg, G. Konjevod and R. Ravi. A polylogarithmic approximation algorithm
for the group Steiner tree problem.Journal of Algorithms, Volume 37 , Issue 1 (October
2000), Pages: 66 – 84.

[GSBS03] L. Guo, F. Shao, C. Botev and J. Shanmugasundaram: “XRANK: Ranked
Keyword Search over XML Documents”, ACM SIGMOD, 2003.

[GSVM98] R. Goldman, N. Shivakumar, S. Venkatasubramanian and H. Garcia-Molina:
“Proximity Search in Databases”. VLDB, 1998.

[HC93] D. Haines and W.B. Croft. Relevance feedback and inference networks. ACM
SIGIR 1993.

[Har88] D. Harman. Towards interactive query expansion. ACM SIGIR pp 321-331.
Grenoble. 1988.

[Har92] D. Harman. Relevance feedback and other query modification techniques.
Information retrieval: data structures and algorithms, Prentice-Hall Inc, 1992.

[Hav02] T. Haveliwala: “Topic-Sensitive PageRank”. WWW, 2002.

[Hea94] M.A. Hearst: “Using categories to provide context for full-text retrieval results”,
In Proceedings of the RIAO, 1994.

[HGP03] V. Hristidis, L. Gravano and Y. Papakonstantinou: “Efficient IR-Style Keyword
Search over Relational Databases”, VLDB, 2003.

[HL00] E. Hovy and C.Y. Lin: “The automated acquisition of topic signatures for text
summarization”, ICCL, 2000.

[HP02] V. Hristidis and Y. Papakonstantinou: “DISCOVER: Keyword Search in
Relational Databases”, VLDB, 2002.

[HPB03] V. Hristidis, Y. Papakonstantinou and A. Balmin: “Keyword Proximity Search
on XML Graphs”, IEEE ICDE, 2003.

[HXY03] A. Huang, Q. Xue, and J. Yang. TupleRank and Implicit Relationship
Discovery in Relational Databases. WAIM, 2003.

 114

[HVP06] H. Hwang, V. Hristidis, and Y. Papakonstantinou. ObjectRank: A System for
Authority-based Search on Databases. Demo at SIGMOD, 2006.

[Ihl90] E. Ihler. Bounds on the quality of approximate solutions to the Group Steiner
Problem. Lecture Notes In Computer Science; Vol. 484, Proceedings of the 16rd
International Workshop on Graph-Theoretic Concepts in Computer Science table of
contents, Pages: 109 - 118, 1990.

[JW03] G. Jeh, J. Widom: “Scaling Personalized Web Search”. WWW, 2003.

[KF06] D. Kelly and X. Fu. Elicitation of term relevance feedback: an investigation of
term source and context. ACM SIGIR 2006.

[Kle99] J. Kleinberg: “Authoritative Sources in a Hyperlinked Environment”, ACM
Journal, vol.46, no.5, pp. 604-632, 1999.

[KPC+05] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai and H.
Karambelkar: Bidirectional Expansion for Keyword Search on Graph Databases”, VLDB,
2005.

[KS95] D. Konopnicki, O. Shmueli: W3QS: A query system for the World Wide Web.
VLDB 1995.

[KS06] B. Kimelfeld and Y. Sagiv: “Finding and Approximating top-k answers in
Keyword Proximity Search”, PODS, 2006.

[KSI+08] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, G. Weikum: NAGA:
Searching and Ranking Knowledge. ICDE 2008: 953-962.

[LCVA01] W.S. Li, K. S. Candan, Q. Vu, and D. Agrawal: Retrieving and Organizing
Web Pages by "Information Unit". WWW, 2001

[LJ01] A. M. Lam-Adesina and G.J.F. Jones. Applying summarization techniques for
term selection in relevance feedback. ACM SIGIR 2001.

[Mar99] D. Marcu: “Discourse trees are good indicators of importance in text”, Advances
in Automatic Text Summarization, 1999.

[MD07] MSN Desktop search, http://toolbar.msn.com/, 2007.

[MMM97] A. Mendelzon, G. Mihalia, T. Milo: Querying the World Wide Web. Journal
on Digital Libraries 1(1):54-67, 1997.

[MSB98] M. Mitra, A. Singhal and C. Buckley. Improving automatic query expansion.
ACM SIGIR pp 206-214. 1998.

 115

[MT04] R. Mihalcea and P. Tarau: “TextRank: Bringing Order into Texts”, EMNLP
2004.

[NDQ06] L. Nie, B. D. Davison, X. Qi: “Topical link analysis for web search”. SIGIR,
2006.

[NSD08] University of Washington Computer Science and Engineering. XML Data
Repository. http://www.cs.washington.edu/research/xmldatasets/www/repository.html.
2008.

[NZW+05] Z. Nie, Y. Zhang, J. Wen, and W. Ma. Object-level ranking: Bringing order
to Web objects. WWW 2005.

[OI07] Oracle interMedia : http://www.oracle.com/technology/products/intermedia, 2007.

[PBMW98] L. Page, S. Brin, R. Motwani and T. Winograd: “The pagerank citation
ranking: Bringing order to the web”, Technical report, Stanford University, 1998.

[PM07] http://www.ncbi.nlm.nih.gov/sites/entrez, 2007.

[QLZ+05] T.Qin, T. Liu, X. Zhang, Z. Chen and W.A study of relevance propagation for
web search. ACM SIGIR 2005.

[Rei89] P. W. G. Reich. Beyond Steiner’s Problem: A VLSI Oriented Generalization.
Workshop on Graph-Theoretic Concepts in Computer Science, 1989.

[RFZ01] D.R.Radev, W. Fan and Z. Zhang: “WebInEssence: A Personalized Web-Based
Multi-Document Summarization and Recommendation System”, NAACL Workshop on
Automatic Summarization, 2001.

[RG03] S. Raghavan, H. Garcia-Molina: “Complex Queries over Web Repositories”.
VLDB, 2003.

[RM98] D.R. Radev and K.R. McKeown: “Generating Natural Language Summaries
from Multiple On-line Sources. Computational Linguistics”, vol.24, no.3, pp. 470-500,
1998.

[RN03] S. Russell and P.Norvig: “Artificial Intelligence: A modern approach. Second
Edition. Princeton Hall. 2003.

[RPB06] M. Richardson, A. Prakash and E. Brill: “Beyond PageRank: machine learning
for static ranking”. WWW, 2006.

 116

[RWL+06] L. Raschid, Y. Wu, W.J. Lee, M.E. Vidal, P. Tsaparas, P. Srinivasan, A.K.
Sehgal: “Ranking target objects of navigational queries”. ACM WIDM, 2006.

[RW94] S. E. Robertson and S Walker. Some simple effective approximations to the 2-
Poisson model for probabilistic weighted retrieval. SIGIR 1994.

[RL03] I. Ruthven and M. Lalmas. A survey on the use of relevance feedback for
information access systems . The Knowledge Engineering Review. 94-145. vol 18, issue
2. 2003.

[SPQL] SPARQL: Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query/

[Sav92] J. Savoy. Bayesian inference networks and spreading activation in hypertext
systems. Information Processing and Management, 28(3):389–406, 1992.

[SB90] G. Salton and C. Buckley. Improving retrieval performance by relevance
feedback. Journal of the American Society for Information Science. 41. 4. pp 288-297.
1990.

[SB95] G. Salton and C. Buckley. Optimization of relevance feedback weights. ACM
SIGIR 1995.

[Sin01] A. Singhal: “Modern Information Retrieval: A Brief Overview”. Google, IEEE
Data Eng. Bull, 2001.

[SIY06] P. Shafer, T. Isganitis, G. Yona. “Hubs of knowledge: using the functional link
structure in Biozon to mine for biologically significant entities”. BMC Bioinformatics,
2006, Feb 15;7:71.

[SLWM04] R. Song, H. Liu, J. Wen and W. Ma: “Learning Block Importance Models for
Web Pages”, WWW 2004.

[SSMB97] G. Salton , A. Singhal , M. Mitra and C. Buckley: “Automatic text structuring
and summarization”, Information Processing and Management, vol.33,no.2,pp.193-207,
1997.

[SVR83] A. Smeaton and C. J. van Rijsbergen. The retrieval effects of query expansion
on a feedback document retrieval system. The Computer Journal. 26. 3. pp 239-246. 1983.

[SZ05] X. Shen and C. Zhai. Active feedback in ad hoc information retrieval. ACM
SIGIR 2005.

[TS98] A. Tombros and M. Sanderson: “Advantages of Query Biased Summaries in
Information Retrieval”, ACM SIGIR 1998.

 117

[VB06] S. Vassilvitskii and E. Bill. Using web-graph distance for relevance feedback in
web search. ACM SIGIR 2006.

[VGS02] N. Vanetik, E. Gudes and S.E. Shimony: “Computing frequent graph patterns
from semistructured data”. IEEE ICDM, 2002.

[VHR08] R. Varadarajan, V. Hristidis, L. Raschid: “Explaining and Reformulating
Authority Flow Queries”. IEEE ICDE, 2008.

[VHR+09] R. Varadarajan, V. Hristidis, L. Raschid, M.E. Vidal, L. lbanez and H.
Rodriguez: “Flexible and Efficient Querying and Ranking on Hyperlinked Data Sources”.
EDBT, 2009.

[VHR07] R. Varadarajan, V. Hristidis, L. Raschid: “Explaining and Reformulating
Authority Flow Queries”. Extended version.
(http://dbir.cs.fiu.edu/ObjectRankReformulation/)

[VH06] R. Varadarajan and V. Hristidis: “A System for Query-Specific Document
Summarization”, ACM CIKM, 2006.

[VHL06] R. Varadarajan, V. Hristidis and T. Li: “Searching the Web Using Composed
Pages”, Poster at ACM SIGIR, 2006.

[VHL08] R. Varadarajan, V. Hristidis and T. Li: “Beyond Single-Page Web Search
Results”, IEEE TKDE, 2008.

[VH05] R. Varadarajan and V. Hristidis: “Structure-Based Query-Specific Document
Summarization”, Poster at ACM CIKM 2005.

[WRJ02] R. W. White, I. Ruthven and J. M. Jose: “Finding Relevant Documents using
Top Ranking Sentences: An Evaluation of Two Alternative Schemes”, ACM SIGIR 2002.

[XC96] J.Xu and W.B. Croft. Query expansion using local and global document analysis.
ACM SIGIR 1996.

[YH03] X. Yan and J. Han: “CloseGraph: mining closed frequent graph patterns”. ACM
SIGKDD, 2003.

 118

VITA

RAMAKRISHNA R. VARADARAJAN

EDUCATION

Doctoral Candidate in Computer Science, Florida International University (2004 – 2009)
 School of Computing & Information Sciences, Miami.
 CGPA: 3.97/4.0.

M.S. in Computer Science, Florida International University (2004 – 2006)
 School of Computing & Information Sciences, Miami.
 CGPA: 3.95/4.0

B.E. in Computer Science & Engineering, University of Madras, India(2000–2004)
 First Class Honors (Ranked 5th – awarded University Medal)

RESEARCH EXPERIENCE

Graduate Research Assistant, Florida International University (2005 – 2009)
Databases & Systems Research Laboratory (DSRL),
School of Computing & Information Sciences, Miami.

Intern at IBM India Research Lab (May – August 2008)

TEACHING EXPERIENCE

Undergraduate Course Instructor, Florida International University (Spring 2008)
 School of Computing & Information Sciences, Miami
 Course Title: Introduction to Programming in Java

Teaching Assistant, Florida International University (2006 – 2008)
 School of Computing & Information Sciences, Miami
 Courses: Data Structures and Principles of DBMS

Lab Assistant, Florida International University (2004 – 2006)
 School of Computing & Information Sciences, Miami
 Labs: Operating Systems, Computer Data Analysis, Introduction to Micro-
 computers and Computer Applications for Business.

AWARDS, HONORS AND FELLOWSHIPS

Dissertation Year Fellowship, Florida International University (FIU), 2008-2009.

Presidential Fellowship, School of Computing and Information Sciences(SCIS), FIU.

 119

Outstanding Graduate Research Award, SCIS, FIU, 2007.

Excellence Award, SCIS, FIU, 2006-2007.

Student & New Researcher Travel Support, SIGIR 2006.

Graduate Committee Travel award for IEEE ICDE 2008 & ACM CIKM 2006, SCIS, FIU.

Travel award for IEEE ICDE 2008 & SIGIR 2006, Graduate Student Association - FIU.

University Gold Medal and Shield from University of Madras, Chennai, India. Program:
B.E Computer Science and Engineering. Rank: 5th in the University (First Class Honors)
- Percentage Score: 90%.

PUBLICATIONS

Ramakrishna Varadarajan, Vagelis Hristidis, Louiqa Raschid, Maria-Esther Vidal, Luis
lbanez and Hector Rodriguez-Drumond: “Flexible and Efficient Querying and Ranking
on Hyperlinked Data Sources”, Extending Database Technology (EDBT) 2009, Saint-
Petersburg, Russia. (Acceptance rate – 32.50% Impact factor – 0.90).

Ramakrishna Varadarajan, Vagelis Hristidis and Louiqa Raschid: “Explaining and
Reformulating Authority Flow Queries”, IEEE 24th International Conference on Data
Engineering (ICDE) 2008, Cancun, Mexico. (Acceptance rate – 19% Impact factor –
0.97).

Ramakrishna Varadarajan and Vagelis Hristidis: “A System for Query-specific
Document Summarization”, ACM 15th Conference on Information and Knowledge
Management (CIKM) 2006, Arlington, VA, pages 622-631. (Acceptance rate – 15%
Impact factor – 0.90).

Ramakrishna Varadarajan, Vagelis Hristidis and Tao Li: “Searching the Web using
Composed Pages” (poster paper), ACM SIGIR Conference on Research and
Development on Information Retrieval 2006, Seattle, WA, pages 713-714. (Acceptance
rate – 37% Impact factor – 0.94).

Ramakrishna Varadarajan and Vagelis Hristidis: “Structure-Based Query Specific
Document Summarization” (poster paper), ACM 14th Conference on Information and
Knowledge Management (CIKM) 2005, Bremen, Germany.

Ramakrishna Varadarajan, Vagelis Hristidis and Tao Li: “Beyond Single-Page Web
Search Results”, IEEE Transactions on Knowledge and Data Engineering (TKDE) 2008.

	Florida International University
	FIU Digital Commons
	3-10-2009

	Ranked Search on Data Graphs
	Ramakrishna R. Varadarajan
	Recommended Citation

	Dissertation

