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ABSTRACT 

The world is facing an epidemic rise in diabetes mellitus (DM) incidence, which is challenging health 
funders, health systems, clinicians, and patients to understand and respond to a flood of research and 
knowledge. Evidence-based guidelines provide uniform management recommendations for “average” 
patients that rarely take into account individual variation in susceptibility to DM, to its complications, and 
responses to pharmacological and lifestyle interventions. Personalized medicine combines bioinformatics 
with genomic, proteomic, metabolomic, pharmacogenomic (“omics”) and other new technologies to explore 
pathophysiology and to characterize more precisely an individual’s risk for disease, as well as response to 
interventions. In this review we will introduce readers to personalized medicine as applied to DM, in 
particular the use of clinical, genetic, metabolic, and other markers of risk for DM and its chronic 
microvascular and macrovascular complications, as well as insights into variations in response to and 
tolerance of commonly used medications, dietary changes, and exercise. These advances in “omic” 
information and techniques also provide clues to potential pathophysiological mechanisms underlying DM 
and its complications. 

mailto:eddy@tx.technion.ac.il


Personalized Medicine in Diabetes 

 

 

 

Rambam Maimonides Medical Journal 2 January 2014  Volume 5  Issue 1  e0002 
 

KEY WORDS: Diabetes mellitus, personalized medicine, pharmacogenomics, prediction of diabetes 
complications, prediction of diabetes mellitus 

 

INTRODUCTION 

Recent decades have seen a dramatic worldwide 
increase in the incidence and prevalence of diabetes 
mellitus (DM), particularly of type 2 DM.1 The 
potential impact of DM on health, health care costs, 
productivity, and life expectancy in the upcoming 
years will be enormous. Contemporaneously, there 
has been substantial progress in a wide range of 
treatments for DM and for its chronic complications, 
leading to improved life expectancy.2,3 Expert bodies 
now regularly publish “standards of care” and 
recommendations addressing all aspects of DM 
management.4–6 Such documents address the care 
needs of the average or typical patient with DM, 
based largely on the findings of studies advancing 
our understanding of the pathophysiology of DM 
and its complications, as well as randomized control 
treatment trials. Optimal therapy of DM requires 
potentially complex measures to control 
hyperglycemia, prevent hypoglycemia, and to 
address risk factors for a range of diabetic 
complications. The caregiver has also to be aware of 
the patient’s social, cultural, and eco-system 
components (environmental components within the 
closed community—like housing and neighbor-
hood). Many patients are unable to reach treatment 
goals due to the difficulty, complexity, and costs of 
treatment.7 Recognizing the wide range of patients 
with DM, recent guidelines now stress the need to 
personalize DM management goals and treatments.8 

In the face of the “diabetes tsunami”9 the gap 
between knowledge derived from basic scientific and 
clinical research, including newly recognized 
molecular mechanisms and updated medical 
management guidelines and their use at the bedside 
or point of care by practitioners, is growing. 
Developing strategies and tools to bridge this 
knowledge and implementation gap is increasingly 
urgent as medically relevant and novel scientific 
discoveries can now be applied to assess risk factors 
at the genomic level for chronic diseases like cancer 
and DM, as well as the sensitivity to and efficacy of 
drug therapy using tools like bioinformatics and 
pharmacogenomics. These fields, together with the 
evolving areas of genomics, proteomics, and 
metabolomics, constitute the premise and promise 
of personalized medicine. 

Evidence-based medicine seeks to narrow the 
gap between clinical research and practice by 
explicitly and systematically focusing the attention 
of clinicians on the most up-to-date evidence from 
epidemiologic and clinical trial studies. Specifically, 
evidence-based medicine promotes the judicious use 
of meta-analyses of randomized controlled trials and 
other scientifically derived knowledge for clinical 
decision-making. However, an inherent weakness of 
the meta-analytical focus is that individuals vary 
greatly in regard to their manifestations of disease, 
symptoms, co-morbidities, genetic predisposition, 
and variance in molecular sensitivity to drugs, which 
cannot be reflected in guidelines derived from meta-
analyses of the general patient population.  

According to the US President’s Council of 
Advisors on Science and Technology,10  

personalized medicine refers to the tailoring 
of medical treatment to the individual 
characteristics of each patient; […] the ability 
to classify individuals into subpopulations 
that differ in their susceptibility to a 
particular disease or their response to a 
specific treatment. Preventive or therapeutic 
interventions can then be concentrated on 
those who will benefit, sparing expense and 
side effects for those who will not.10  

Given the large health and economic impact of 
DM, there is understandable interest in using 
personalized medicine strategies to identify those 
individuals who are most at risk of developing DM 
and its various complications, and who are most 
likely to benefit from a specific management 
strategy, in order to apply proven measures to delay 
or prevent their progression to DM and its 
subsequent complications.11,12 In this review we will 
provide an introduction to the principal 
personalized medicine tools and strategies, and 
provide examples of how they may be applied to 
diabetes, in particular to type 2 DM (DM2). This 
includes enhanced prediction of the onset and 
course of DM and its complications, treatment 
planning (choice of treatment modality), treatment 
prioritization and goal setting, and recognition of 
potential pathophysiologic mechanisms of DM and 
its complications.  
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PERSONALIZED MEDICINE AND THE 

NEW “OMICS” 

Taking advantage of high-throughput technological 
developments in the laboratory and advances in 
data management capabilities, it is now possible to 
acquire and analyze very large volumes of informa-
tion from studies of genetic and metabolic markers 
from great numbers of individuals. This has led to 
the fields of genomics, proteomics, transcriptomics, 
metabolomics, and pharmacogenomics (see Glossa-
ry for definitions). Analyses of large numbers of 
variants from genome-wide association studies 
(GWAS), or of large numbers of protein and other 
metabolites in body fluids, from large cohorts that 
may number in the tens of thousands generate 
enormous amounts of data. The field of bioinfor-
matics uses “big data” approaches to organize and 
usefully analyze these data sets to recognize patterns 
and associations that may have pathophysiologic, 
diagnostic, prognostic, or therapeutic utility.  

These tools of personalized medicine may be 
used to predict risk for developing DM, as well as an 
individual patient’s risk of developing one or all of 
the complicating morbidities associated with DM, 
such as retinopathy, neuropathy, nephropathy, or 
large-vessel disease (macrovasculopathy). They also 
have potential to guide treatment planning, in terms 
of personalized goal setting, choice of treatments, 
and treatment prioritization.  

Genomics and Type 2 Diabetes Mellitus 

Studies of the family medical history of those with 
DM2 as well as observation of differential incidence 
of DM in different ethnic groups have long pointed 
to a significant inherited component to DM2 sus-
ceptibility. Nevertheless, the rapid rise in DM2 
incidence in the last few decades suggests the 
interaction of changes in environment and lifestyle 
with genetic predisposition. The principle of 
genome-wide association studies is to investigate 
differences in the prevalence of genetic variations 
(single nucleotide polymorphisms, SNPs) in DNA 
samples from populations with and without the 
condition of interest. Significant differences point to 
possible etiological associations with the condition. 
Recent expansion of genome-wide association 
studies to include “environment-wide associations” 
may help identify novel nutritional or other 
environmental interactions that modulate genetic 
predisposition to DM.13 After the successful cloning 
of the human genome, initial enthusiasm about the 
possibility of identifying the specific genetic basis 

for DM2 has been followed by the realization that a 
large number of genes contribute to DM2 sus-
ceptibility. These include CDKAL1, CDKN2A , and 
CDKN2B that influence β-cell mass; MTNR1B, 
TCF7L2, and KCNJ11 that influence β-cell function; 
FTO that is associated with obesity; and IRS1 and 
PPAR-γ that contribute to insulin resistance 
independent of obesity.14 Furthermore, there may be 
unique markers of genetic susceptibility to DM2 in 
certain ethnic groups with a high incidence of 
DM2,15,16 and interactions between individual 
genetic variants may also influence DM risk. For 
example, in a study of an Ashkenazi Jewish popula-
tion, the presence of HNF4A or WFS1 SNPs was 
each associated with modestly increased risk of DM, 
while the presence of both increased that risk three-
fold.17 Unfortunately, although genome-wide associ-
ation studies have already identified over 65 gene 
variants related to DM2,18 predominantly involved 
in β-cell function,19 collectively they explain only a 
small portion (<10%) of DM2 heritability.20 Thus, 
while family history of DM approximately doubles 
the risk of developing DM, the genetic variants 
associated with DM risk have only a small effect on 
the ability to predict the future development of the 
disease.21 It is very likely that epigenetic changes 
contribute to familial clustering of risk for obesity 
and DM,22 changes that by definition are not 
detectable with genomic studies.  

In contrast to DM2, a small number of mono-
genic defects have been recognized to cause the 
uncommon autosomal dominantly inherited forms 
of maturity-onset diabetes of the young (MODY).23 
These defects disrupt β-cell function, and their 
recognition and precise genetic diagnosis is clini-
cally important in directing treatment towards more 
effective and easier-to-use sulfonylurea drugs rather 
than insulin. The most common form (MODY3) 
results from a mutation of hepatocyte nuclear 
factor-1α on chromosome 12.24 In MODY2, a defec-
tive glucokinase gene on chromosome 7P results in 
disturbed β-cell sensing of glucose concentration.  

Transcriptomics and Type 2 Diabetes 

Mellitus 

Sometimes referred to as gene expression profiling, 
transcriptomics is the quantitative study of all genes 
expressed in a given biological state25 and measures 
all of the various RNA forms (messenger, ribosomal, 
transfer, etc.) produced by DNA transcription in a 
particular cell or tissue. MicroRNAs are small, non-
coding RNAs that are involved in control of gene 
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expression and play an important role in regulating 
metabolic and cardiovascular processes.26 In 
combination with metabolomics, transcriptomic 
studies in animal models of DM have identified a 
number of novel genetic and metabolic changes, 
including differences in branched-chain amino 
acids, nicotinamide metabolites and pantothenic 
acid, that provide direction for additional studies of 
diabetes pathophysiology.27 

Proteomics and Type 2 Diabetes Mellitus 

Techniques such as matrix-assisted laser 
desorption/ionization,28 mass spectroscopy, and 
electrospray ionization,29 alone or in combination, 
are used to identify and quantify all of the large 
number of protein products of a genome, in a 
specific tissue or body fluid. Differences associated 
with obesity, DM, or other disease states may 
identify novel pathogenic mechanisms, prognostic 
markers, or potential therapeutic targets. Study of 
proteomics is complementary to genomics, as post-
translational modifications of proteins of potential 
importance to understanding the pathophysiology of 
DM and its complications in tissues such as adipose 
tissue or skeletal muscle will not be detected by 
genomic studies.30 

Metabolomics and Type 2 Diabetes Mellitus  

Metabolomics uses tools such as nuclear magnetic 
resonance and mass spectroscopy to identify and 
quantitate large numbers of small-molecule 
products of metabolism. “Targeted” metabolomic 
studies are limited to a certain category of metab-
olites of interest (e.g. amino acids). In the field of 
DM, metabolomics has helped identify novel risk 
factors for DM, which may be useful biomarkers for 
early DM risk31,32 and may also serve as clues to 
increase understanding of the complex pathophysi-
ology of DM2. Analysis of many metabolites in 
baseline samples from large prospective population 
studies, such as the Framingham Heart Study, has 
identified strong independent predictive relation-
ships between levels of branched-chain and 
aromatic amino acids (isoleucine, leucine, valine, 
tyrosine, and phenylalanine) and risk of DM 
incidence over 12 years.31 Further studies in this 
population identified a novel metabolite (2-
aminoadipic acid) which is independently predictive 
of DM risk, pointing to a potential different 
pathophysiologic pathway underlying DM.33 The 
field of “lipidomics” employs the analytic technology 
and large data set approach of metabolomics to 

study variations in lipid structures. Using the same 
Framingham Heart Study population, Rhee et al. 
found that shorter triacylglycerol fatty acid chain 
length and lower double-bond content reflect insulin 
resistance and serve as an independent marker of 
DM risk.34 The potential role of metabolomic studies 
in DM research and practice has recently been 
reviewed.35,36 

Pharmacogenomics and Type 2 Diabetes 

Mellitus 

Pharmacogenomics studies the effect of genetic 
variations on drug kinetics or action. Genetically 
determined differences in absorption or metabolism 
of an agent, or variation in tissue responsiveness, 
may increase or decrease the effectiveness or side 
effects of a drug in a clinically important manner. 
Pharmacogenomic advances have the potential to 
improve the effectiveness and safety of oral anti-
diabetic therapy37,38 but have not yet reached the 
stage of wide clinical applicability. This is in contrast 
to the field of antithrombotic therapy where variants 
in the CYP2C19 enzyme, which affect hepatic 
activation of the widely used anti-platelet agent 
clopidogrel, may result in clinically relevant reduc-
tion in drug effectiveness. Genetic testing for this 
variant is available, but its role in routine practice 
remains controversial.39 In the case of metformin, 
the most widely used drug for DM2, recent findings 
of the role of organic cationic transporter proteins in 
the mechanism of action of metformin led to the 
discovery that variants related to the genes for these 
transporter proteins may reduce metformin 
effectiveness40 and tolerance.41 A GWAS of DM2 
patients linked responsiveness to metformin to a 
SNP associated with the gene for ATM (ataxia 
telangiectasia mutated).42 Although this genetic 
variant accounts for only 2.5% of the variation in 
metformin response, findings such as these facilitate 
understanding of drug mechanisms of action.  

Nutrigenetics and nutrigenomics 

Nutrigenetics has been defined as the science of the 
effect of genetic variation on dietary response, while 
nutrigenomics studies the impact of nutrients and 
other elements of the diet on gene expression.43 
These new fields recognize the major interactions 
between genetic make-up and response to diet and 
dietary changes, both in terms of predisposing to 
development of obesity, metabolic syndrome, and 
DM2, and in determining responsiveness to specific 
dietary changes. For example, while TCF7L2 
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(transcription factor 7–like 2 protein, which is 
involved in the synthesis, processing, and secretion 
of insulin) is strongly and consistently related to 
DM2 risk, this risk is modulated by dietary carbo-
hydrate and is greater when the diet contains larger 
amounts of high glycemic-index foods.44 

PERSONALIZED MEDICINE AND 

PREDICTION OF DM2 RISK 

The disordered metabolic state of type 2 DM is 
characterized by elevated levels of glucose, resulting 
from reduced effectiveness of insulin’s actions on its 
target tissues with an inadequate compensatory 
response of the insulin-secreting pancreatic islet β-
cells.45 The precise glucose levels at which DM2 is 
diagnosed are necessarily arbitrary (based mainly on 
the threshold for presence of background retinopa-
thy in epidemiological studies),23 such that many 
people who do not meet formal diagnostic criteria 
for DM2 nevertheless have abnormally elevated 
levels of glucose, along with a degree of insulin 
resistance and inadequate insulin secretion. Such 
individuals may already have evidence for diabetic 
complications and are at risk for progression of 
these abnormalities over time. A number of high-
quality randomized controlled trials have demon-
strated that risk of progression to DM can be cut in 
half,46 making it a priority to identify those at 
greatest risk who are candidates for primary pre-
vention measures.47 

Based on current American Diabetes Association 
recommendations,23 increased risk for DM2 (often 
termed “prediabetes”), may be identified in one of 
three ways: 1) fasting plasma glucose (FPG) of 100–
125 mg/dL (characterized as impaired fasting 
glucose); 2) plasma glucose 2 hours after a 75-g oral 
glucose challenge of 140–199 mg/dL (impaired 
glucose tolerance); or 3) hemoglobin A1c (HbA1c) 
test of 5.7%–6.4%. These criteria do not identify 
identical groups of people at increased risk for DM2, 
and their pathophysiology and susceptibility to 
complications may differ. For example, those with 
impaired glucose tolerance are at greater risk for 
macrovascular complications, including stroke, than 
those with impaired fasting glucose.48,49 

While the prevalence of prediabetes is now as 
high as 35% of US adults (50% of those 65 and 
older), only a small number of these (as few as 3%) 
develop DM2 each year.50 Even with the categorical 
diagnosis of prediabetes, an individual’s risk for 
progression to DM2 over 5 years can vary widely, 

from 100% (for those with HbA1c 6.0%–6.4% and 
FPG 116–125 mg/dL) to close to zero (for those with 
HbA1c < 6% and FPG < 110 mg/dL), based on 
prospective studies in a Japanese population.51 Thus 
a more precise personalized estimate of absolute 
risk for developing DM2 than is provided for by the 
broad categories of impaired fasting glucose, im-
paired glucose tolerance, and prediabetes is highly 
desirable.  

Personalized medicine has the potential to 
improve prediction of DM2 risk. Simple clinical risk 
factors (age, weight, family history of DM) and 
simple laboratory measures (glucose, triglyceride) 
explain about 80% of the variance in DM inci-
dence.52 Novel clinical/anthropometric risk factors 
for DM development continue to be reported.53 To 
date at least 65 genetic variants contributing to DM2 
have been identified,18,22 but these account for less 
than 10% of cases. Initial studies with a limited 
number of DNA markers showed only modest 
incremental value of adding genetic data to clinical 
information in predicting risk for DM2,21,54,55 thus 
the potential for genomics to enhance prediction of 
DM2 risk remains unrealized.  

While weight or body mass index (BMI) is 
consistently a strong determinant of metabolic 
syndrome and DM2, individuals with the same 
weight or BMI may have very different risks of DM2. 
A personalized assessment of the metabolic impact 
of obesity needs to take into account the distribution 
pattern of the excessive adipose tissue. Intra-
abdominal visceral and in particular hepatic fat 
accumulation is associated with insulin resistance 
and systemic inflammation, with increased risk for 
metabolic syndrome, DM2, and cardiovascular 
disease, while excess subcutaneous fat does not 
impair insulin sensitivity, leading to the concept of 
metabolically “benign versus malign” obesity.56 

A large number of additional novel risk factors 
(including FEV1, adiponectin, leptin, gamma-gluta-
myltransferase, ferritin, inter-cellular adhesion 
molecule 1, complement C3, white blood cell count, 
albumin, activated partial thromboplastin time, 
coagulation factor VIII, magnesium, hip circum-
ference, and heart rate) are each independently 
associated with risk for DM2 but add little or 
nothing to basic clinical prediction models in 
predicting incident DM2.57 Sex hormone-binding 
globulin (SHBG), traditionally considered to be a 
passive transporter protein for sex steroids, may 
have a more active role in DM causation. Observa-
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tional studies identified lower levels of SHBG as a 
risk factor for insulin resistance and incident DM, 
and in-vitro studies demonstrated G-protein-linked 
receptor-mediated effects of SHBG on intracellular 
processes related to insulin resistance.58 Multiple 
confounding factors (e.g. obesity, hyperinsulinemia) 
are associated with lower SHBG and risk for DM2; 
however, recent genetic studies suggest an 
independent role for sex steroids and SHBG in the 
etiology of DM2.59 

In recent years, metabolomic studies of large 
numbers of metabolites in blood and/or urine have 
identified novel predictors of DM risk, e.g. circu-
lating levels of aromatic and branch-chained amino 
acids, which are independent predictors of insulin 
resistance60 and DM risk. Metabolomic studies have 
identified novel pathophysiological mediators of 
metabolic syndrome, such as nicotinuric acid.61 
Using a targeted metabolomic approach and 
measuring over 160 serum metabolites with flow 
injection analysis tandem mass spectrometry in 
prospectively collected samples from large 
population-based studies, Floegel et al. identified a 
number of changes in sugar metabolites, amino 
acids, and choline-containing phospholipids that 
modestly improve prediction of DM risk.62 
Identifying such metabolomic markers may prove to 
be useful in directing studies of the associated genes 
in at-risk populations.63 

PREDICTING TYPE 1 DM RISK 

Autoimmune-mediated destruction of the insulin 
producing β-cells of the pancreatic islets results in 
type 1 DM. Increased risk for developing type 1 DM 
may be recognized by a family history of type 1 DM 
or other autoimmune diseases, by the presence in 
the blood of a range of antibodies to insulin and 
islet-related antigens (e.g. islet-cell antibodies, 
insulin autoantibodies, antibodies to glutamic acid 
decarboxylase), or by the identification of a “high-
risk” HLA type.64 Recently genomic studies com-
bined with bioinformatics techniques have been able 
to identify a small number of SNPs that can rapidly 
and inexpensively predict the presence of the high-
risk HLA-DR/DQ types,64 which may facilitate 
identification of those individuals who are candi-
dates for studies of interventions to prevent 
complete β-cell loss and thereby prevent or 
ameliorate the type 1 DM.65 

PERSONALIZED MEDICINE AND 

CHRONIC MICROVASCULAR 

COMPLICATIONS OF DM 

As a function of time and extent of hyperglycemic 
burden, individuals with DM are prone to develop 
renal, retinal, or neurological damage that can result 
in renal failure, blindness, disabling pain, or lower-
extremity amputations. However, not all patients 
with DM develop these complications, regardless of 
duration or degree of hyperglycemic control. Fifteen 
to twenty years after diagnosis of DM, 50%–80% 
have evidence for retinopathy,66 only a minority of 
which is vision-threatening, up to 30% have 
increased levels of albumin in the urine (an early 
stage in the development of nephropathy),67 and 
about 50% have symptoms of peripheral 
neuropathy.68 Randomized controlled trials, includ-
ing DCCT,69 UPKDS,70 Kumamoto,71 ACCORD,72 and 
ADVANCE,73 demonstrate the potential to reduce or 
delay some or all of these risks by controlling 
hyperglycemia. It has also become apparent that 
uncontrolled hyperglycemia early in the course of 
DM may result in sustained increased risk of 
complication development, regardless of subsequent 
glycemic control. This concept of “metabolic 
memory” may reflect epigenetic changes (e.g. DNA 
methylation and post-translational histone modifi-
cation).74 Personalized management of complication 
risk would be greatly enhanced by improved 
discrimination of those not destined to develop the 
complication from those who would most benefit 
from aggressive measures to reduce their risk.  

Diabetic Nephropathy Prediction and 

Prevention 

Nephropathy occurring as a complication of type 1 
and type 2 DM is characterized clinically by 
increased levels of protein in the urine, declining 
glomerular filtration rate, hypertension, and 
eventual progression to renal failure, requiring renal 
replacement therapy with dialysis or transplanta-
tion. Not all patients with DM develop albuminuria, 
and this is not always progressive. Progression may 
be slowed by excellent glycemic and blood pressure 
control, as well as use of angiotensin-converting 
enzyme inhibitor medications.75 

Numerous clinical factors are associated with 
risk for nephropathy (blood pressure, age, obesity, 
extent of hyperglycemia). There is also a clear 
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inherited (familial and racial) contribution to 
nephropathy susceptibility. Although genome-wide 
association studies have not identified definite DM 
nephropathy susceptibility loci in DM2, ongoing 
family studies may provide clues to uncommon gene 
variants that increase nephropathy risk.76 Studies to 
date have also not clearly confirmed a specific gene 
marker associated with nephropathy in type 1 DM.77 
Transcriptomic studies of non-coding RNA 
molecules involved in regulation of gene expression 
point to their role in influencing renal response to 
hyperglycemia,78 and measurement of specific 
microRNAs in the urine may improve prediction of 
risk for development and progression of DM 
nephropathy.78 New proteomic techniques may 
permit earlier recognition, and therefore more 
directed treatment, of those at risk for DM 
nephropathy.79 One such novel urinary marker is 
liver-type fatty acid-binding protein, which may 
enhance prediction of risk for progression of early 
nephropathy in type 1 DM.80 The ability to identify 
diabetic patients not at risk for future nephropathy 
would permit relaxed screening and treatment 
recommendations. 

Diabetic Retinopathy Prediction and 

Prevention 

Eye changes in DM result from abnormal retinal 
microvasculature (microaneurysms with abnormal 
permeability as well as vascular occlusion with 
consequent ischemia and neovascularization).81 
Background retinopathy changes may be evident at 
the time of diagnosis of DM2 and eventually develop 
in the majority of type 1 and type 2 DM patients. 
Only a minority of these progress to vision-
threatening proliferative retinopathy, typically as a 
function of time and degree of glycemic control, 
especially in the presence of other complications like 
nephropathy or non-healing foot ulcers.82 Medical 
interventions are effective in arresting the progress-
sion of vision-threatening retinopathy, forming the 
basis of current screening recommendations for 
asymptomatic retinopathy in all type 1 and type 2 
DM.4–6 Along with improved glycemic control in 
recent decades, this has led to a declining incidence 
and severity of diabetic retinopathy in the USA.83 In 
recent years genomic studies have identified 
potential genetic associations with DM retinopathy 
risk, for example the gene encoding the receptor for 
advanced glycation end products (RAGE, especially 
the 1704T allele)84 and the gene for methylenetetra-
hydrofolate reductase (MTHFR),85 where the 

677C/T polymorphism has been associated with 
modestly increased risks for nephropathy and 
retinopathy. Investigators have recently reported 
use of proteomic methods to study proteins in the 
aqueous humor of the eye that may provide insights 
into the pathophysiology of DR,86 but proteomic and 
genomic testing for diabetic retinopathy risk are not 
yet useful in clinical practice.  

Diabetic Neuropathy Prediction and 

Prevention 

Peripheral nerve dysfunction results from metabolic 
as well as microvascular damage and may lead to 
significant pain, as well as loss of sensation 
predisposing to lower-extremity amputation. 
Autonomic neuropathies affect gastrointestinal 
motility and can lead to cardiac dysfunction. Risk 
for neuropathy rises with duration of DM, degree of 
hypertension and hyperglycemia, as well as 
smoking.87 Vitamin D insufficiency may also be an 
independent predictor of developing neuropathy 
symptoms.68 Nevertheless, about 50% of DM 
patients appear resistant to these factors and do not 
develop neuropathy. Recent proteomic studies of 
patients with diabetic neuropathy have identified a 
number of proteins, including a fragment of the 
apolipoprotein C-I precursor, that associate with 
diabetic neuropathy.88 Metabolomic studies have 
identified phospholipid biomarkers that may 
improve discrimination between those DM patients 
with and without neuropathy.89 Such advances may 
lead to improved assessment of neuropathy risk and 
may enhance understanding of the pathophysiology 
of diabetic neuropathy.  

PERSONALIZED MEDICINE AND 

CHRONIC MACROVASCULAR 

COMPLICATIONS OF DM 

While historically much attention was focused on 
preventing the aforementioned microvascular 
complications of DM, in reality the most significant 
area of preventable DM-related morbidity, mortal-
ity, and heath care utilization90 is arteriosclerotic 
narrowing in the coronary, cerebrovascular, and 
peripheral arterial beds. This results in the 
devastating manifestations of angina pectoris, acute 
myocardial infarction, sudden cardiac death, heart 
failure, stroke, intermittent claudication, and lower-
extremity amputation. Risk of atherosclerotic 
cardiovascular disease (ASCVD) rises with fasting 
glucose even in the “prediabetes” range.91 While 
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glycemic control in the short or medium term 
appears to have little impact on the course of these 
macrovascular manifestations, long-term follow-up 
studies from the DCCT92 and the UKPDS70 trials 
(including type 1 and type 2 DM patients, 
respectively) showed a beneficial long-term “legacy” 
effect of early glycemic control on long-term 
macrovascular disease risk. In contrast to glycemic 
control, there is strong evidence that addressing 
other cardiac risk factors (encouraging smoking 
cessation, use of angiotensin-converting enzyme 
inhibitor drugs, control of blood pressure and 
elevated LDL-cholesterol, as well as use of anti-
platelet agents) substantially lowers short- and long-
term risk of macrovascular events in those with 
DM2.93 A clinically important barrier to therapy 
with HMG-CoA reductase inhibitors (“statins”) in 
DM is the occurrence of muscular symptoms, which 
typically are mild (aching, weakness) but rarely may 
be severe or life-threatening (rhabdomyolysis). 
Recent pharmacogenetic studies found that variants 
in the SLCO1B1 gene (affecting cytochrome-
mediated drug clearance) are associated with an 
increased risk of statin-induced myopathy,94 
particularly with simvastatin but not pravastatin.  

In some studies, those with DM2 but without 
history of cardiac events bear the same risk of 
experiencing a cardiac event as non-DM patients 
who have already experienced an event.95 As a 
result, primary prevention of ASCVD in DM2 is 
treated in the same way as secondary prevention in 
those without DM (“DM as a coronary disease 
equivalent”).4 Consequently, patients with DM2 
typically are exposed to the costs, complexity, and 
risk of side effects from poly-pharmacy, receiving 
multiple medications to lower LDL-cholesterol and 
blood pressure as well as glucose. Improved assess-
ment of ASCVD risk would allow for a more person-
alized implementation of these preventive measures. 
More than a dozen models have been developed to 
predict absolute risk for ASCVD in DM2 patients, 
which vary in their predictive power (AUC ranging 
from 0.61 to 0.86), validation, and evidence for 
impact on clinical practice and outcomes.96 
Estimates of ASCVD risk need to take into account 
ethnicity.97 All use clinical variables (such as age, 
gender, HbA1c, duration of DM, presence of 
albuminuria, tobacco use, measures of blood 
pressure, and lipid parameters). None incorporate 
novel risk factors such as soluble receptors for 
advanced glycation end products (sRAGE),98 hsCRP 
or other measures of inflammation, markers of 

endothelial dysfunction, or growth factors such as 
placental growth factor or transforming growth 
factor-β that are associated with increased cardiac 
risk.99 None to date include genomic, proteomic, or 
metabolomic information.  

A novel predictor of ASCVD risk in those with 
both type 1 and type 2 DM is the haptoglobin 
genotype.100 Haptoglobin is a circulating hemo-
globin-scavenging protein that exists in three 
variants: 1-1, 1-2, and 2-2. A number of studies 
identified a doubled risk for ASCVD for those with 
the 2-2 genotype,100 which is present in approxi-
mately 36% of DM2. An intriguing pharmaco-
genomic finding from intervention trials is that only 
those DM patients with the 2-2 genotype appear to 
respond to anti-oxidant treatment (vitamin E) with 
reduced ASCVD risk of up to 50%.100 If these 
findings are confirmed, then testing for haptoglobin 
genotype of all DM patients could be recommended, 
with addition of vitamin E treatment to reduce 
ASCVD risk for those with the 2-2 genotype. 

Genomic approaches (GWAS) not specifically in 
patients with DM have identified more than 20 
variants (SNPs) that are associated with increased 
risk for coronary artery disease.101 In patients with 
DM2, a genetic predisposition score derived from 
GWAS of DM2 predisposition was independently 
associated with risk for cardiovascular complica-
tions,102 pointing to an overlapping etiological basis 
for DM2 and ASCVD. However, it is not clear that 
genomic information enhances the more traditional 
clinical risk factor approach to ASCVD prediction.103 
Nevertheless, genomic studies of coronary artery 
disease, as with DM2 itself, have potential to 
improve understanding of pathophysiology, predict-
tion, prognosis, diagnosis, and management.104 

Studies of circulating microRNA in patients with 
DM found that presence of peripheral vascular 
complications in DM is associated with loss of 
endothelial mIR-126, possibly due to disturbed 
fibrinolysis.26 This field of study has potential to 
increase understanding of the pathophysiology of 
diabetic macrovasculopathy. Proteomic studies of 
vascular tissue, plaque, and body fluids from 
patients with atherosclerosis have been performed, 
with some progress in identifying potential 
biomarkers of disease activity or disease risk, as well 
as proteins of potential pathophysiological sig-
nificance. Proteomic approaches have identified 
unusual apolipoprotein patterns in the small dense 
LDL of insulin-resistant patients with DM and 
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metabolic syndrome that may help explain their 
susceptibility to ASCVD.105 

PERSONALIZED MEDICINE AND DM 

TREATMENT 

A goal as yet unrealized in the clinical management 
of patients with DM is to use genomic, metabolic, 
and other data to predict which patients will 
progress to a particular complication of DM, in 
order to establish an indication for specific prevent-
ive interventions. Within the realm of preventive 
therapy, the ideal situation would be the ability to 
predict individual responsiveness to and tolerance of 
a particular treatment, in order to design the most 
effective and best-tolerated individual program of 
drug, dietary, and exercise therapies. There has been 
modest progress in understanding the pharmaco-
genomics of the glucose-lowering medications,37 but 
practical implementation remains elusive. Thus, 
choice amongst drugs and drug classes for DM 
remains largely empirical.8 

Compared to the field of pharmacogenomics 
there has been less research into the genetic 
determinants of responsiveness to dietary change or 
increased physical activity, two key modalities in the 
prevention and treatment of DM. Intriguing recent 
studies point to differential sensitivity to particular 
dietary regimens based on genotype. Genome-wide 
association studies have identified a number of 
genetic loci that associate with BMI,106 one of the 
most consistent of which is the “fat mass and obesity 
associated gene” (FTO). Interaction between FTO 
variants and diet and exercise has been found. The 
interaction between FTO and risk of obesity is 
modulated by exercise, in that increased levels of 
physical activity attenuate the rise in weight seen in 
men carrying the FTO rs1861868 SNP.107 Interaction 
with diet has also been found, with recent 
randomized trial data suggesting that individuals 
with the FTO variant rs1558902 showed enhanced 
changes in weight, body composition, and 
superficial fat mass in response to a high-protein 
diet,108 while subjects with the TCF7L2 rs12255372 
genotype showed greater reduction in weight and 
DM risk by consumption of a low fat (20%) diet.109 If 
these kinds of findings are confirmed, specific 
dietary prescription for patients with obesity and 
DM2 may be aided by genomic testing. However, it 
is not clear that information about genetic risk 
influences behavior in a clinically useful manner. A 

recent randomized control trial found no significant 
effect of counseling on personalized genetic risk for 
DM2 on participation in and outcome of a lifestyle 
change program to prevent DM2.110 

A recent GWAS linked genetic variants in the 
SGIP1, CYP19A1, and LEPR genes to voluntary 
leisure-time activity, independently of BMI. Even 
though these effects were small, studies such as this 
point to possible explanations for variations in 
habitual exercise activity and related health conse-
quences.111 Great variation in individual responses to 
exercise training has long been recognized, both in 
terms of improved muscle strength and aerobic 
performance. Genetic determinants underlying this 
variation have been uncovered. Variants in the 
ISIG2 gene (a gene associated with obesity) contrib-
ute to variation in subcutaneous fat in women and to 
attenuation of the effects of resistance training in 
men.112 Variants in the genes for CCL2 (chemokine 
(C-C motif) ligand 2) and its receptor (CCR2), a 
chemokine related to muscle repair and response to 
exercise, influence muscle strength and response to 
strength training.113 In spite of these preliminary 
findings, “exercise prescription” for patients with 
DM remains largely empirical, and clearly much 
research remains to be done in order to understand 
adequately the individual variation in response to 
physical training,114 and in order to match optimally 
the exercise recommendations to individual patients 
with DM. 

ECO-SYSTEM IN PERSONALIZED 

MEDICINE 

Improved diet and exercise are hallmarks of DM 
prevention and treatment. However, they are 
difficult to sustain. When prescribing such treat-
ments, the caregiver has to be aware of the patient’s 
eco-system at the point of care. For example, a 
project involving a US Veterans Administration’s 
data set has been recently launched in order to apply 
personalized medicine at the point of care. This data 
set contains 10 million patient records with demo-
graphic, clinical, and genomic data. The demo-
graphic data will be analyzed and processed to 
render approximate geolocation. A high-perform-
ance query interface will be enabled to co-query 
records based on geography, clinical, and genomic 
attributes. Interactive data maps and heat maps will 
be created. The data set will be mined for the 
derivation of knowledge, and, utilizing The Terra Fly 
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Geospatial Analytics System (http://terrafly.com), 
correlates of eco-system components with DM and 
obesity will be determined. For example, studies 
have indicated that residents of neighborhoods 
without sidewalks tend to be overweight.115 The 
absence of sidewalks seems to be a factor in 
discouraging people from walking, thus reducing the 
potential benefits of this simple exercise to prevent 
and treat DM. The presence of sidewalks is 
automatically derivable from analysis of aerial and 
satellite images and property boundaries represent-
ed by polygons; it allows correlation of findings from 
imagery analysis and the obesity demographics 
statistics. 

PERSONALIZED MEDICINE AND DM 

TREATMENT TARGETS 

Recent guidelines recommend moving away from 
uniform glycemic control goals for people with 
DM,4,8 with the result that the majority of DM 
patients may not be candidates for the most 
aggressive HbA1c goals.116 Personalization of 
glycemic control target is based on clinical 
parameters, including age, duration of DM, and 
presence of DM complications or co-morbidities, 
and eco-system components. If microvascular or 
macrovascular risk could be more precisely assessed 
than currently, more or less aggressive treatment 
targets could be used, not just for glucose, but also 
for blood pressure and lipid lowering treatments.  

CONCLUSIONS 

Patients, physicians, health care organizations, and 
policy planners are grappling with the worldwide 
rise in incidence of DM. Diabetes mellitus and its 
related complications cause substantial morbidity 
and mortality and are consuming an increasing 
proportion of health care budgets. There is wide 
individual and ethnic variation in susceptibility to 
DM as well as environmental factors, making a “one 
size fits all” approach to DM management ineffi-
cient. The vision of DM care in the era of personal-
ized medicine is that patients and physicians, using 
decision support systems embedded in the 
electronic medical record at the point of care, will 
have access to the results of individualized genomic, 
proteomic, and metabolic information, as well as the 
most current evidence-based guidelines and 
literature updates.12 This will provide them with up-
to-date, accurate, and actionable information on risk 
for DM and its diverse manifestations, allowing 
them jointly to prioritize and optimize diagnostic, 
treatment, and monitoring plans. In this way, the 
most cost-effective and best-tolerated treatments 
can be directed at the manifestations of disease most 
likely to impact that individual’s health and life 
expectancy, while avoiding treatments that are 
unlikely to be of benefit. The tools of personalized 
medicine have made substantial progress towards 
understanding the pathophysiologic mechanisms 
behind individual variation in DM and its 
manifestations. 

 

GLOSSARY 

Term Definition Examples of Techniques Used 

Personalized medicine “The tailoring of medical treatment to 
the individual characteristics of each 
patient”10 

 

Genomics “The study of all of a person’s genes (the 
genome), including interactions of those 
genes with each other and with the 
person’s environment”117 

Genome-wide association studies 

Genome-wide 
association study 
(GWAS) 

“An approach used in genetics research to 
look for associations between many 
(typically hundreds of thousands) specific 
genetic variations (most commonly single-
nucleotide polymorphisms) and particular 
diseases”118 

 

Epigenetics “Changes in gene expression and cellular 
phenotypes that are mitotically stable but 
that occur without accompanying changes 
in primary DNA sequence”22 

Studies of gene methylation patterns 

http://terrafly.com/
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Term Definition Examples of Techniques Used 

Transcriptomics “The quantitative study of all genes 
expressed in a given biological state”25 

Gene expression microarrays; RNA 
sequencing25 

Proteomics Large-scale analysis of all the proteins in 
an organism, tissue type, or cell (called 
the proteome). Proteomics can be used to 
reveal specific, abnormal proteins that 
lead to diseases 

Matrix-assisted laser 
desorption/ionization28; mass 
spectroscopy; electrospray ionization29 

Metabolomics 
(metabolic profiling) 

“Measurements of the metabolome, which 
represents the entire collection of all 
small-molecule metabolites present in 
any biological organism”36 

Nuclear magnetic resonance; mass 
spectrometry36 

Pharmacogenomics  “Pharmacogenomics is the study of an 
individual’s interaction with a specific 
drug based upon the genetic make-up of 
the individual”39 

“Pharmacogenomics studies the 
influence of genetic variations on the 
patient’s response to specific drugs, 
such as the correlation between the 
efficacy or toxicity of a certain drug 
and a specific gene expression or a 
single-nucleotide polymorphism”39 

Bioinformatics “Information technology as applied to the 
life sciences, especially the technology 
used for the collection and analysis of 
genomic data”118 
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