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ORIGINAL ARTICLE

Pooling/bootstrap-based GWAS (pbGWAS) identifies new
loci modifying the age of onset in PSEN1 p.Glu280Ala
Alzheimer’s disease
JI Vélez1,10, SC Chandrasekharappa2, E Henao3, AF Martinez1, U Harper2, M Jones2, BD Solomon1, L Lopez3, G Garcia3,
DC Aguirre-Acevedo3, N Acosta-Baena3, JC Correa4, CM Lopera-Gómez4, MC Jaramillo-Elorza4, D Rivera3, KS Kosik5,
NJ Schork6, JM Swanson7,8, F Lopera3,10 and M Arcos-Burgos1,3,9

The literature on GWAS (genome-wide association studies) data suggests that very large sample sizes (for example, 50,000 cases
and 50,000 controls) may be required to detect significant associations of genomic regions for complex disorders such as
Alzheimer’s disease (AD). Because of the challenges of obtaining such large cohorts, we describe here a novel sequential strategy
that combines pooling of DNA and bootstrapping (pbGWAS) in order to significantly increase the statistical power and
exponentially reduce expenses. We applied this method to a very homogeneous sample of patients belonging to a unique and
clinically well-characterized multigenerational pedigree with one of the most severe forms of early onset AD, carrying the PSEN1
p.Glu280Ala mutation (often referred to as E280A mutation), which originated as a consequence of a founder effect. In this cohort,
we identified novel loci genome-wide significantly associated as modifiers of the age of onset of AD (CD44, rs187116,
P¼ 1.29� 10�12; NPHP1, rs10173717, P¼ 1.74� 10�12; CADPS2, rs3757536, P¼ 1.54� 10�10; GREM2, rs12129547, P¼ 1.69� 10�13,
among others) as well as other loci known to be associated with AD. Regions identified by pbGWAS were confirmed by
subsequent individual genotyping. The pbGWAS methodology and the genes it targeted could provide important insights in
determining the genetic causes of AD and other complex conditions.

Molecular Psychiatry (2013) 18, 568--575; doi:10.1038/mp.2012.81; published online 19 June 2012
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INTRODUCTION
Large-scale individual genotyping is typically used for genome-
wide association studies (GWAS).1 This approach is frequently
laborious, expensive, and time consuming, especially in studies
requiring large numbers of participants.2 Furthermore, initial
theoretical expectations of sample sizes required to detect small
effects were not met, and now large sample requirements are
proposed.3 DNA pooling and group genotyping can dramatically
reduce the cost of large-scale GWAS aimed at mapping disease
susceptibility loci.4

In DNA pooling, as opposed to individual genotyping, individual
samples from n1 cases and n2 controls are combined into two
independently pooled samples.4 In general, cases and controls are
defined based on either the presence or absence of a disease trait,
or as related to a quantitative trait (for example, by dichotomizing
the continuous trait by selecting the two extremes of the
distribution).4,5 Disease-associated single-nucleotide polymorph-
isms (SNPs) are identified by a statistical test4 after correction by
multiple testing.6 To corroborate results, SNPs shown to be
disease associated in the DNA pools (as well as other SNPs in the

vicinity) are genotyped, preferably in an independent sample for
strong replication.4

The pooling strategy described above is very efficient in terms
of genotyping costs and for the initial discovery phase. However,
for replication, DNA samples from new patients are necessary,
which constitutes a crucial limitation, especially in the case of rare
diseases.

Here, we describe a new pooling/bootstrap-based GWAS
strategy (pbGWAS), aimed at the identification of disease-
associated SNPs; this strategy makes use of DNA pooling and
resampling (bootstrapping)7 to randomly sort samples from cases
and controls in order to generate multiple pairs of new
comparable DNA pools. Statistical evidence from multiple
comparisons of the pairs is combined in a sequential way using
formal meta-analysis (Figure 1).

To show the high efficiency of the pbGWAS method, in terms of
both genotyping costs and statistical power, we present the
mapping of several modifying loci that influence the age of onset
of Alzheimer’s disease (AD), in individuals carrying the PSEN1
p.Glu280Ala mutation (often referred to as E280A mutation), a
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unique and fully penetrant variant that segregates in one of the
largest and clinically well-characterized multigenerational pedi-
grees.8,9 Along with a unique causal mutation, the pedigree
inhabits a homogeneous environment, and the mean age of onset
of AD falls quite tightly around a mean age of 47 years (s.d.¼ 6.4
years).9 However, there are outliers with onset ages ranging from
34 to B65 years. The signs and symptoms of the entire kindred
with early-onset Alzheimer’s disease (EOAD) have been rigorously
followed,8 as we have identified the vast majority of the
p.Glu280Ala mutation carriers.

Using pbGWAS with eight pairs of resampled DNA pools from
cases (p.Glu280Ala carriers with EOAD) and controls (p.Glu280Ala
carriers with late-onset Alzheimer’s disease (LOAD)) at a total

genotyping cost o$20,000, we successfully located new loci with
associations that exceed standard thresholds for GWAS signifi-
cance and also replicated other loci previously reported to be
associated with AD.

MATERIALS AND METHODS
Subjects
A total of 1784 descendants of AD patients with confirmed PSEN1
p.Glu280Ala mutations were enrolled in the E280A Antioquia cohort study
at the University of Antioquia, Colombia, between January 1, 1995 and
January 27, 2010. These patients were clinically followed every 2 years.
Detailed description of the enrollment, clinical characteristics, and inclusion
criteria are reported elsewhere.8 The PSEN1 mutation in this pedigree is the
result of a founder effect dating back to the seventeenth century; now, after
B20 generations, the pedigree includes 43000 people with several
hundred carriers of the mutation. p.Glu280Ala AD patients with known age
of onset of AD symptoms were selected for this specific study. Because of
the size of the pedigree, any bias of ascertainment and family structure
effect may be considered as minimal. Based on a survival analysis,8 age
cutoff values were matched to the 40th and 60th percentile of the survival
curve, and patients for whom AD symptoms appeared before 48 years of
age (EOAD) were classified as cases; those for whom the age of appearance
was after 50 years of age (LOAD) were classified as controls8 (Figure 2). A
total of 64 cases and 38 controls, all of them PSEN1 p.Glu280Ala carriers,
included in this study, were selected from the 1784 participants enrolled in
the study by Acosta-Baena et al.8

DNA extraction and pool preparation
DNA was isolated from whole blood using the traditional phenol/
chloroform extraction followed by ethanol precipitation. The Infinium
HD10 and GoldenGate11 assays have low DNA loading requirements and
offer the flexibility to support diverse experimental designs. DNA extracted
from blood samples, using the solid-phase platforms from QIAGEN
(QIAGEN Sciences, MD) produces high-quality genotypes and copy number
variants (CNV) data. In our study, we went further and performed phenol/
chloroform extraction of DNA samples to guarantee the highest purity
possible (phenol/chlorophorm extraction is the preferred method of DNA
isolation for more sensitive technologies like next-gen sequencing). DNA
samples were verified for integrity by agarose gel electrophoresis and
samples with 260/280 absorbance ratios o1.8 were again phenol/
chloroform-extracted. Once the DNA samples were ready for the pooling
experiments, their concentrations were measured fluorometrically to

Figure 1. Pooling/bootstrap genome-wide association study (pbGWAS) strategy when considering n1¼ n2¼ 96 cases and controls. After
generating a total of k pairs of randomplates (steps) by bootstrapping DNA samples, m SNPs (single-nucleotide polymorphisms) are tested on
pooled samples at each step. Results from pairs 1 to k is combined using meta-analytical methods.

Figure 2. Definition of case and control individuals in our cohort of
Alzheimer’s disease patients based on a survival analysis of disease
progression in PSEN1 p.Glu280Ala carriers. Modified from Acosta-
Baena et al.8 MCI, mild cognitive impairment.
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guarantee accuracy. DNA concentration was measured using the Qubit
fluorometer (Invitrogen, Carlsbad, CA, USA). To prepare the DNA pools,
individual DNA samples were diluted to 75 ngml�1 and transferred to two
96-well plates, one for EOAD and one for LOAD. In all, 5 ml of each of the
selected samples for a particular pool were mixed together in a single tube
(see Figure 1) and submitted for genotyping.

In addition, to control the inherent variability attributable to technical
issues, we also did try to minimize any variability originated as a
consequence of different technical and personal skills. A single senior
technician was involved in the generation of the stem pools and
subsequent bootstrapped subsets. Furthermore, processing of pools at
each step was done simultaneously for cases and controls to avoid any
batch effects.

Comparable pools were constructed by selecting half of the individuals’
DNA samples available from each group using a bootstrapping procedure.
Though each pair of DNA pools did not contain either duplicated or
triplicated individuals, a DNA sample can result to be (randomly) selected
to be part of more than one pool as a consequence of the resampling
process.

pbGWAS strategy
DNA pools generation. We used the following algorithm for DNA pool
generation: let h be the total number of new pairs of DNA pools to be
generated using resampling/bootstrapping and n1 and n2 be the total
number of individual DNA samples available for cases and controls,
respectively. In order to illustrate how the strategy works, let us assume,
without loss of generality, that n1¼ n2¼ n¼ 96 such that all samples can
be easily organized in a 96-well format plate (Figure 1). To guarantee the
highest variance in the resampling process, we randomly selected half of
the individuals’ DNA samples [nj/2] from each group, j¼ 1,2. Although in
practice it is possible to generate a very large number of bootstrap
replicates, this is not always feasible and some general alternatives have
been proposed.12,13

Allele frequency estimation. Genotyping was performed at the NHGRI
Genome Technology Branch using 370CNV-Quad SNP-chips from
Illumina (www.illumina.com). Genotyping was performed using Illumina
‘Infinium assay’ protocol.10 In brief, the DNA was whole-genome
amplified, fragmented, hybridized, fluorescently tagged, and scanned.
Allele frequency values for each of the eight pairs of DNA pools
were calculated, extracted, and exported in suitable formats using the
Illumina’s GenomeStudio Genotyping Module. Standard quality control
was applied.

Determining disease-associated SNPs. Without loss of generality,
assume that (i) h SNP chips consisting of s diallelic markers have been
genotyped in cases and controls, (ii) the allele frequency of the major allele
is estimated within each group using standard methods,4 and (iii) after
experimental and statistical quality control, m (mos) SNPs are available for
analysis. Let p1,i and p2,i be the allele frequency for the i-th SNP in cases
and controls, respectively, i¼ 1,2,y,m. To test whether the allele
frequency in the cases is not statistically different from that in the
controls, the null hypothesis is stated as

H0;i : p1;i ¼ p2;i i ¼ 1; 2; . . . ;m ð1Þ

with the alternative hypothesis H1,i being either (i) p1,iap2,i, (ii) p1,i4p2,i, or
(iii) p1,iop2,i. We do not consider (i) as it does not provide information
about the direction of the difference in the allele frequencies.

For two independent pools, the test statistic comparing the allele
frequencies for the i-th SNP has the following form4,14,15

T 2
i ¼
ðp̂1;i � p̂2;iÞ2

ŝ2
i

i ¼ 1; 2; . . . ;m ð2Þ

where p̂1 and p̂2 are the estimated allele frequencies of the major
allele in the pair of pools for cases and controls, respectively, and ŝi

is the variance of p̂1,i--p̂2,i. When a two-pool design is used, ŝi
2 can be

calculated as14

ŝ2
i ¼ p̂ið1� p̂iÞðt2 þ 1Þ 1

2n1
þ 1

2n2

� �
þ 2e2 i ¼ 1; 2; . . . ;m ð3Þ

where p̂i¼ (n1þ n2)�1(n1p̂1,iþ n2p̂2,i) is the common allele frequency, t is
the coefficient of variation of the number of DNA molecules of locus A
contributed by each individual, and e2 is the variance of the pool-
measurement error.14,16

For testing (1), we propose a modification of (3) by introducing the
estimated allele frequencies from both pools so that the estimation of p̂i is
no longer required, and we can focus the analysis on the difference of the
allele frequencies between cases and controls for the SNPs being tested.
Hence, the test statistic is

T�2i ¼
ðp̂1;i � p̂2;iÞ2

ŝ�2i
i ¼ 1; 2; . . . ;m ð4Þ

with

ŝ�2i ¼ ðt2 þ 1Þ p̂1;ið1� p̂1;iÞ
2n1

þ p̂2;ið1� p̂2;iÞ
2n2

� �
þ 2e2 i ¼ 1; 2; . . . ;m ð5Þ

With the current high-throughput genotyping technologies and DNA
extraction techniques, it is possible to obtain accurate estimates of the
allele frequency, so the sampling variation and random experimental
errors are negligible compared with e.16,17 Now, if e is assumed to be close
to zero, (4) can be written as

T�2i ¼
2n1n2ðp̂1;i � p̂2;iÞ2

n2p̂1;ið1� p̂1;iÞ þ n1p̂2;ið1� p̂2;iÞ
i ¼ 1; 2; . . . ;m; ð6Þ

which follows a w2 distribution with one degree of freedom under the null
hypothesis. When t and e2 are known, (4) is preferred. Note that high
values of Ti

*2 indicate a stronger association between the i-th SNP and the
disease.

Let Pi be the P-value calculated for the i-th SNP for testing (1). For each
of the h new pairs of DNA pools generated, disease-associated SNPs are
detected based on the P-values calculated from the T* statistic for each of
the m SNPs passing quality control. For m independent tests for each pair
of pools, the family-wise error rate, defined as the probability that one or
more of the significance tests results in a type I error6 must be controlled,
and standard methods can be applied, including Bonferroni,18 false
discovery rate (FDR),19 spectral decomposition, which corrects by multiple
testing when SNPs being tested are in linkage disequilibrium,20 and a
gene-based (GB) multiple testing correction.21 Here we only focus on the
FDR as it is particularly well suited for exploratory analyses.22 Thus, for each
of the h pairs of new DNA pools, the disease-associated SNPs are those
such that Pi,j*pa, with Pi,j* the FDR-corrected P-value for i-th SNP when the
j-th pair of new DNA pools is being tested, i¼ 1,2,y,m, j¼ 1,2,y,h.

Combining P-values. Up to this point, we have illustrated how to
generate new DNA pools for cases and controls by randomly selecting
individuals’ DNA samples and rearranging them accordingly, as well as the
statistical hypothesis to be tested and how to determine whether the SNPs
are disease-associated. Next, we shall describe the method selected for
combining the P-values generated for each of the h pairs of new pools
being compared.

Meta-analytical methods combine the results of multiple studies addres-
sing a research question.23,24 The combination of one-tailed P-values is one of
the most widely used meta-analytical methods for summarizing information
from k independent studies.24 Fisher’s combined probability test25 and
Stouffer’s weighted Z-transform26 are two such methods. In Fisher’s method,
the P-values from k tests are combined using the test statistic

w2
F ¼ �2

Xk

l¼1

lnðPiÞ ð7Þ

which follows a w2 distribution with 2k degrees of freedom under the null
hypothesis of no significant effect in any study. Stouffer’s method, on the
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other hand, takes advantage of the one-to-one mapping of the standard
normal distribution to the P-value and uses the test statistic27

ZS ¼

Pk

l¼1
wl ZlffiffiffiffiffiffiffiffiffiffiffiffiPk

l¼1
w2

l

s ; ð8Þ

which follows a standard normal distribution under the null hypothesis (see
above). In (8), wl represents the weight and Zl the quantile of the standard
normal distribution (SND) associated with the P-value for study l, l¼ 1,2,y,k.
When using either method, large values of the test statistic indicate that at
least one of the studies being combined can reject its null hypothesis.23,27 In
our context, this means that at least in one of the new pair of pools the allele
frequency for the i-th SNP, i¼ 1, 2,y, m, is greater in cases than in controls.
However, no information regarding the size of the experimental effect is
available.24 Because the Fisher’s method is asymmetrically sensitive to small
P-values compared with large P-values and is less powerful than Stouffer’s
method,27 the latter was selected for combining P-values.

As we randomly select individual DNA samples from n1 cases and n2

controls to construct the multiple new DNA pools, the assumption of
independence across the multiple pairs does not hold. However, it is
possible to use Stouffer’s method to combine dependent P-values by
introducing some degree of dependence (correlation) between pairs.28 Let
�(kþ 1)�1prp1 be such correlation and suppose that r is known. Thus,
(8) can be written as28

Z�S ðrÞ ¼

Pk

l¼1
wl Zlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� rÞAþ rB
p ð9Þ

with A¼
P

l¼ 1
k wl

2 and B¼ (
P

l¼ 1
k wl)

2. When r is not known, it can be
estimated as28

r̂ ¼ maxf�ðk � 1Þ�1; 1� V½F�1ðZÞ�g ð10Þ

where F�1( � ) is the inverse of the SND, V[ � ] is the variance operator and
Z¼ (Z1, Z2,y,Zk) is a vector containing the quantiles of the SND for the k
studies. It follows28 that the test statistic is

Z�S ðr�; kÞ ¼

Pk

l¼1
wl Zlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Að1� CÞ þ BC
p ð11Þ

with A and B as in (9), C¼ p̂*þO2k (1�p̂*)(kþ 1)�1/2 and kX0 a parameter
regulating the significance level. Note that the one-tailed combined P-
value, PZ�S ð�Þ , can be easily computed as under the null hypothesis of no
significant effect in any study, both (9) and (11) follow a SND. If desired,
PZ�S ð�Þcan easily be converted to a two-tailed test.27

Individual genotyping
In order to validate our DNA pooling results, and to test independence of
the type of chip used, we individually genotyped 23 samples (13 EOAD, 10
LOAD) using Human610-Quad SNP-chips from Illumina, and 48 samples
(27 EOAD, 21 LOAD) using Human370-Quad SNP-chips. These individuals
were selected using the same bootstrap strategy described before to
generate the DNA pools.

Genetic statistical analysis
For the individually genotyped sample, genotypic (using dominant, recessive,
and additive models) and allelic tests were performed as implemented in
Golden Helix’s Genotype module (Golden Helix, Bozeman, MT, Golden Helix
PBAT Software, http://www.goldenhelix.com) with the onset age status
(EOAD vs LOAD) as the phenotype. For all analyses performed, significance of
markers was determined using the raw P-value for the corresponding test.
Further, with this individually genotyped sample, we tested the potential
presence of microdifferentiation (genotype stratification) between the EOAD
and the LOAD samples, as this would potentially introduce important noise at

each bootstrapping step that consequently could invalidate any association
result. To evaluate that possibility, we used the principal component analysis
as implemented in the Golden Helix PBAT Software.

Gene-based association
First, the P-values for the top 5% of SNPs in our discovery phase, as well as
their corresponding P-values in the individual genotyping analysis, were
selected and combined using (9) with r¼ 0. Second, a GB association test
using VEGAS (versatile GB association study)21 was performed on the latter
combined P-values. VEGAS is a freely available software used for
performing GB association tests, which produces a GB test statistic and
then uses a simulation-based approach to calculate an empirical GB
P-value. By default, patterns of linkage disequilibrium for each gene are
estimated using the HapMap2 CEU population.21 SNPs and/or genes
shown to be statistically significant using either test were classified as
modifiers of the age of onset in AD.

RESULTS
Discovery phase
A total 102 DNA samples (n1¼ 64 cases and n2¼ 38 controls)
were considered in this study. Comparison of the age of
appearance of AD symptoms in both groups disclosed statistically
significant differences (EOAD: average¼ 45.26 years, s.d.¼ 2.24,
range¼ 39--48; LOAD: average¼ 54.89, s.d.¼ 4.64, range¼ 51--75;
t¼�11.978, d.f.¼ 47.481, Po5� 10�15). Eight pairs of DNA pools
were generated using an algorithm written in R29 as previously
described. Allele frequencies for 373,397 variants (CNVs and SNPs)
for all DNA pools were estimated using the 370CNV-Quad SNP
chip, but only 287,368 were included in the final analysis. CNVs
(B22 K) were excluded as they were not used for analysis and
B64 K SNPs were excluded because at least one of the allele
frequencies in at least one of the 16 SNP-chips was o1 or 499%.
The call rates for the 16 DNA pools ranged from 65.1 to 66.2%
when clustered with the Illumina cluster file, and from 97.6 to 99%
when re-clustered against each other. A replication sample,
selected ad hoc, was used for quality control demonstrating the
high reliability of the allele frequency estimation (Figure 1, see
Supplementary Material online). Q-Q plots for the FDR-corrected P-
values obtained at each step of comparison depict good control of
the type-I error probability, with SNPs with Po10�4 shown in
green (Figure 2, see Supplementary Material online). In addition, an
empirical evaluation of the type-I error probability was implemen-
ted using a simulation procedure that considered different
scenarios, for example, different number of cases and controls,
markers, and number of steps. Methods used for this simulation
process as well as results are presented in the Supplementary
Material (see Supplementary Figures 4--8, and Supplementary
Table 1 online). In general, it was demonstrated that the type-I
error probability was well controlled by our pbGWAS strategy.

Disease-associated SNPs for each pair of new DNA pools were
determined using the corresponding FDR-corrected P-value of (6)
with n1¼ 64 and n2¼ 38. Further, to obtain PZ�S ð�Þ , FDR-corrected P-
values from the eight pairs of pools were combined using (9) with
r¼ 0.95 and wl¼ 1, l¼ 1,2,y,8. Figure 3 depicts Manhattan plots for
loci modifying the age of onset in AD based on our discovery phase.
As this figure shows, SNPs close to or within the Nephronophthisis 1
(NPHP1) gene on chromosome 2, the Arylsulfatase J precursor (ARSJ)
gene on chromosome 4, the Calcium-Dependent Secretion Activator 2
(CADPS2) gene on chromosome 7, and the CD44 antigen isoform 1
precursor (CD44) gene on chromosome 11 were found to be
statistically significant after combining the information from the
generated DNA pools. Although additional loci were found to be
significantly associated with the age of AD onset in our discovery
phase, these four were selected as they are novel and because
patterns of expression, as well as potential function, suggested them
as promising candidate loci.
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In Table 1, we present the top 30 SNPs based on the PZ�S ð�Þvalues,
the raw P-value for the basic genotypic test, and the combined P-
value of both (see Materials and Methods section). Several SNPs
shown here to act as modifiers of the age of onset in AD involve
genetic loci previously reported to be associated with frank AD
(that is, with the presence or absence of AD). For example, the
CADPS2 gene (marker rs3757536, Table 1) was found to be
associated with AD in a voxelwise GWAS (vGWAS) aimed at
detecting genes related to brain structure and function.30 In the
same vein, CD44 gene (marker rs187116, Table 1) expression levels
in lymphocytes are higher in AD subjects than in healthy
subjects.31 In addition, CD44-positive astrocytes have been shown
to be involved in shaping normal neuronal mechanisms as well as
in neurodegenerative process such as those involved in AD,
Huntington, and Parkinson diseases.32,33

Individual genotyping
Call rates for the 23 samples (using the Illumina Human610-Quad
SNP-chips) ranged from 37.8 to 99.8% when clustered with the

Illumina cluster file, and from 56.2 to 99.6% when re-clustered
against each other. For the Human370-Quad SNP-chip (48
samples), the calls ranged from 86.4 to 99.9% when clustered
with the Illumina 370CNV-Quad cluster file. As implemented in
GenomeStudio, genotypes for all variants were retrieved and
further exported in the appropriate format to run genetic models
using GoldenHelix. In Table 1, we present the corresponding raw
P-values for the top 30 SNPs. Test for microdifferentiation showed
no effect of stratification with two principal components
extracted, excluding the possibility of type-I error inflation as a
consequence of genotype stratification.

Combined statistics
A total of 14,369 SNPs were in the top 5% after combining the P-
values from the discovery phase. Table 2 reports the genes shown
to be statistically significantly associated with AD age of onset
after performing the GB test on the combined P-value from the
discovery phase and the individual genotyping using VEGAS.
Q-Q plots for the FDR-corrected P-values obtained for the

Figure 3. (a--d) Manhattan plot of the results of applying a pooling/bootstrap genome-wide association study (pbGWAS) strategy with eight
pairs of DNA pools generated from patients from a unique and clinically well-characterized multigenerational pedigree affected by Alzhei-
mer’s disease with different ages of onset, all of whom carry the PSEN1 p.Glu280Ala (E280A) mutation. At the y axis, the --log10(P-value) for
autosomal single-nucleotide polymorphisms are represented by dots; the x axis corresponds to the genomic coordinates. For display
purposes, values in the y axis were smoothed by the median as implemented in Golden Helix. Abbreviations follow the same notation as in
Figure 1. Though rs10173717 is B20 Kb downstream NPHP1 and B2.5 Kb downstream of NCRNA00116, NPHP1 appears to be a better
candidate than NCRNA00116 becauseNPHP1 encodes a protein that interacts with PTK2B and BCAR1.44,45 PTK2B, in turn, encodes a cytoplasmic
protein having an important role as intermediate between neuropeptide-activated receptors or as neurotransmitters that increase calcium
flux and the downstream signals that regulate neuronal activity. BCAR1, in turn, is involved in cellular migration, survival, transformation, and
invasion.46 Furthermore, the gene-based approach showed that a total of 10 markers inside the NPHP1 gene (chr2: 110 238 202--110 319 928),
clustered associated (statistic¼ 177.01, P¼ 2.08� 10�4). This gene-based association was not present in NCRNA00116.
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Table 1. Pooling/bootstrap GWAS, individual genotyping, and combined P-values for the top 30 SNPs potentially modifying the age of onset in AD
patients carrying the p.Glu280Ala mutation

Name Chromosome Position (bp) Closest gene(s)
P-value

pbGWASa Individual genotypingb Combined c

rs4341804 17 218,145 RPH3AL 1.86� 10�9 1.9� 10�5 d 7.10� 10�13

rs778296 13 104 986 574 DAOA 2.90� 10�10 1.25� 10�4 d 1.58� 10�12

rs4923709 15 34 405 797 ATPBD4/MEIS2 7.91� 10�9 1.72� 10�4 d 3.34� 10�11

rs187116 11 35 122 376 CD44 3.38� 10�11 3.73� 10�4 d 1.29� 10�12

rs203632 8 51 173 297 SNTG1 1.08� 10�8 7.35� 10�4 d 2.68� 10�10

rs1952966 14 31 508 235 NUBPL 5.93� 10�10 8.22� 10�4 d 3.36� 10�11

rs1437683 2 119 015 357 DDX18 5.68� 10�10 8.77� 10�4 d 3.56� 10�11

rs1974888 16 64 402 296 CDH11 7.76� 10�10 1.39� 10�3 d 8.53� 10�11

rs12129547 1 238 761 878 GREM2 9.07� 10�14 1.69� 10�3 d 1.69� 10�13

rs4977114 8 144 250 835 CYP11B1/LY6E 3.26� 10�10 2.77� 10�3 d 1.23� 10�10

rs4865656 5 50 695 545 ISL1 2.33� 10�11 4.47� 10�3 d 3.95� 10�11

rs6489968 12 113 623 027 TBX3 2.73� 10�12 8.22� 10�3 d 2.51� 10�11

rs533178 4 56 844 407 AASDH/PPAT/PAICS 6.41� 10�9 1.00� 10�2 d 7.27� 10�9

rs889701 16 6 074 670 A2BP1 4.89� 10�8 1.06� 10�2 d 3.34� 10�8

rs10173717 2 110 340 339 NPHP1 2.45� 10�14 1.06� 10�2 d 1.74� 10�12

rs4279283 4 115 401 739 CAMK2D 4.04� 10�8 1.09� 10�2 d 3.05� 10�8

rs3757536 7 121 867 133 CADPS2 1.21� 10�11 1.31� 10�2 d 1.54� 10�10

rs1134597 16 3 529 111 CLUAP1/NLCR3 3.80� 10�9 1.65� 10�2 d 1.12� 10�8

rs2998144 10 134 852 827 KNDC1 4.19� 10�10 1.70� 10�2 d 2.63� 10�9

rs7662084 4 115 398 766 CAMK2D/ARSJ 2.94� 10�9 1.77� 10�2 d 1.06� 10�8

rs6419191 4 115 400 783 ANK2/CAMK2D 1.64� 10�9 2.28� 10�2 d 1.09� 10�8

rs10863904 1 209 750 959 RD3 2.76� 10�8 2.43� 10�2 d 8.19� 10�8

rs2575735 8 97 603 827 SDC2 2.24� 10�8 3.54� 10�2 d 1.34� 10�7

rs9283839 6 72 149 401 OGFRL1 2.43� 10�10 4.51� 10�2 d 1.08� 10�8

rs4965279 15 98 493 374 ADAMTS17 9.38� 10�9 5.58� 10�2 1.69� 10�7

rs7826446 8 114 772 471 CSMD3/TRPS1 8.61� 10�8 6.41� 10�2 9.12� 10�7

rs12977050 19 35 520 535 ZNF536 3.01� 10�9 1.32� 10�1 4.73� 10�7

rs2804737 6 660 196 EXOC2 2.15� 10�8 1.85� 10�1 3.28� 10�6

rs2734394 21 36 936 522 CLDN14 5.74� 10�9 2.75� 10�1 4.12� 10�6

rs7800473 7 15 619 579 MEOX2 3.79� 10�8 3.97� 10�1 3.34� 10�5

AD, Alzheimer’s disease; bp, base pair; pbGWAS, pooling/bootstrap genome-wide sssociation study; SNP, single-nucleotide polymorphism.
aPooling/bootstrap GWAS strategy.
bPerformed using Human610-Quad SNP-chips (23 individuals; 13 EOAD (early-onset Alzheimer’s Disease), 10 LOAD (late-onset Alzheimer’s Disease)) and
Human370-Quad SNP-chips (48 individuals; 27 EOAD, 21 LOAD) from Illumina; genotype data was merged using Golden Helix’s editing facilities. Individuals
were selected using the same bootstrap strategy described before.
cUsing a modified Stouffer’s method with equal weight for all pair of pools as described in the Materials and Methods section.
dDisease-associated markers for which the association was replicated in the individual genotyping step.
SNPs were ranked based on the results of our discovery phase.
Note: SNPs located in genes previously reported as being associated with Alzheimer’s disease are highlighted in gray.

Table 2. Results of a gene-based association tests (VEGAS) for the combined P-values from the discovery phase and individual genotyping

Chromosome Gene N B (� 1000) Start (bp) Stop (bp) Statistic P-value

1 GREM2 2 1000 238 719 495 238 842 085 65.66 o10�6

3 MYLK 8 1000 124 813 832 125 085 839 97.33 o10�6

6 HLA-A 2 1000 30 018 309 30 021 633 32.19 o10�6

7 CADPS2 7 1000 121 745 713 122 313 790 111.90 o10�6

10 KNDC1 7 1000 134 823 960 134 889 906 87.31 o10�6

11 CD44 8 1000 35 116 992 35 210 525 115.13 o10�6

16 A2BP1 19 1000 6 009 132 7 702 500 101.03 o10�6

8 SNTG1 30 1000 50 987 149 51 867 980 430.53 o10�5

6 EXOC2 13 1000 430 137 638 109 130.34 o10�5

8 CLU 2 1000 27 510 367 27 528 244 35.60 o10�4

2 NPHP1 10 1000 110 238 202 110 319 928 177.01 1.2� 10�4

3 CLSTN2 5 1000 141 136 896 141 769 322 29.99 0.00027
4 PAICS 9 1000 56 996 671 57 022 291 92.26 0.00061
7 MEOX2 6 1000 15 617 361 15 692 833 31.61 0.00266
1 CR1 1 100 205 736 095 205 881 733 4.12 0.04077

B, total number of simulations; bp, base pair; N, total number of SNPs; SNP, single-nucleotide polymorphism; VEGAS, versatile gene-based association study.
Note: Genes previously reported to be associated with Alzheimer’s disease are highlighted in gray.
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combined values demonstrate good control of the type I-error
probability; SNPs with Po10�4 shown in green (Figure 3, see
Supplementary Material online).

Several studies making use of DNA pooling have consistently
reported a very high allele frequency estimation reliability and
accuracy when it is compared with determination of allele
frequencies by individual genotyping.15,34,35 These results are
even more consistent when the pool involves individuals of similar
ethnic background (as it is the case of this study)34 and remain still
consistent throughout different platforms (in this study, we use a
unique platform).15,35 In order to evaluate both accuracy and
reliability of allele frequencies estimated by DNA pooling in this
particular study, we evaluated the correlation between gene
frequencies estimated by DNA pooling with those determined by
individual genotyping. Thus far, for each one of the eight pools,
gene frequencies were determined for the subset of patients that
were individually genotyped and making part of the specific pool.
Supplementary Table 2 describes the number of DNA samples
used in each step of the pbGWAS strategy that also were
individually genotyped.

It is worth mentioning that numbers do not add to 100% of the
samples subjected to each step of pooling because the subset---that
of individuals that were subjected to individual genotyping---was
obtained by bootstrap drafting. First, we compared heterozygosity
values (calculated as 2pq) of DNA pools with those of the individual
genotypes represented in their respective pool. Using the hetero-
zygosity values from both strategies for cases and controls, we
further calculated the linear correlation coefficient and 95%
confidence intervals associated with it (see Supplementary Table
3 online). Heterozygosity values were significantly correlated.
Supplementary Figure 9 depicts the cumulative distribution
function of the heterozygosity values in cases and controls for
individual genotyping (red dots) and DNA pooling (black dots),
demonstrating full consistency of both distributions.

DISCUSSION
In the recent era of GWAS, the identification of any significant
association for complex diseases, including neurodegenerative
and psychiatric disorders, meeting the rigorous criteria for
statistical significance has been shown to be a very expensive
and sometimes futile endeavor. For AD and other conditions,
empirical data verified that initial sample size estimations from
power calculations based on the assumptions of the common
disease--common variant hypothesis (for example, nB1000 for
cases and controls) were not adequate to detect associations, and
this extended to the meta-analyses of samples combined across
studies to generate sample sizes of 10,000 cases and 10,000
controls. Now, even larger sample sizes are being used, with
50,000 cases and 50,000 controls, which may be required to detect
associations using standard GWAS methods.

Based on the use of large numbers of samples, GWAS have
been successful in identifying novel loci that confer susceptibility
to AD. However, the costs and logistics involved in reaching such
definition, resolution and power are highly demanding as well.
Furthermore, because of the implicit clinical and genetic hetero-
geneity of neurodegenerative and psychiatric conditions, collec-
tion of sample sizes of this magnitude is almost impossible.

Here we have described a theoretical method, pbGWAS, and
applied it empirically to a homogeneous sample of patients with
one of the most severe forms of EOAD. These patients carrying the
p.Glu208Ala mutation belong to a unique and clinically well-
characterized multigenerational pedigree that segregated AD as
consequence of a founder effect.8 The pbGWAS method combines
the established strategy of DNA from exquisitely well-defined
homogenous cohorts, and a new a sequential strategy of
resampling (bootstrapping) from small samples of cases and
controls. These procedures provided increased statistical power in

order to reach the rigorous criteria for statistical significance
needed by a GWAS. In contrast to the traditional GWAS approach,
we have been able to identify new loci potentially implicated as
modifiers of the age of onset of AD using limited and a relatively
small sample.

Because DNA samples from cases and controls are repeatedly used
to construct the DNA pools and test disease-associated markers, the
pbGWAS strategy, as other methods that combine evidence, is more
powerful.36 In fact, by constructing eight pairs of comparable
replicated DNA pools using 32 EAOD and 19 LOAD individuals, each
time, and combining the information, the resulting effective sample
size is 408. This sample size is comparable to 471 that, for a power of
80%, is the one required to detect a moderate odds ratio of 2.5,
assuming a minimum allele frequency of 0.3, a Bonferroni genome-
wide corrected level of significance of 5%, genotype frequencies in
cases, controls, and in the combined group in Hardy Weinberg
Equilibrium, and using 1 million of SNPs (http://bioinformatics.cen-
trillionbio.com/sscalc/). At an average genotyping cost of US$300 per
sample, the total cost would have been at least US$141,300.
Therefore, savings for using our approach add up to US$120,000.

Although it is suggested that DNA pooling must be conducted as
an initial screening and further individual genotyping is required for
confirmation, especially for the most promising loci,15 we argue that
by genotyping only the top hits we would miss the opportunity to
apply GB (as opposed to marker-based) association analysis. An
additional practical argument is that prices of genotyping from
thousand to million SNPs have very small differences.

Despite the herein demonstrated cost savings and intriguing
results accomplished by the pbGWAS strategy in this particular
case, there are some intrinsic limitations associated to the SNP-chip
type and technology, inherent variability of phenotyping, sample
size, and the presence of population stratification. Along with the
problems of phenotype outline, population stratification is
probably the more important constraint to large-scale association
studies, either using individual genotyping37 or DNA pooling.35

DNA pooling strategies are highly sensitive to these effects, as
the real influence of genotype stratification (true microdifferentia-
tion) cannot be discriminated from allelic stratification. Although
novel statistical methods have been proposed to deal with this
problem, including the use of either background markers,38,39

genomic controls,40,41 structured association,42,43 or hundreds of
thousands of markers,37 for this particular type of strategy we
strongly recommend the use of methodologies, as the one
described by Turakulov and Easteal,39 that not only define a
minimum number of highly selected SNPs but which can also be
applied under a sequential strategy.

An additional issue refers to the definition of the sample size,
not only for the original stem pools, but also for the size of the
bootstrapped pools and number of steps. Though in theory, the
higher the size of the stem pool, the higher the potential number
of bootstrapped replicated sub-samples (higher variance), in
practical terms pools of 96 samples that adjust to standard plates
of a broad number of current technological robotic supports, will
be of choice. Similarly, we have theoretically and empirically
observed that bootstrapped replicates of 50% maximize the
information. With regards to the number of sequential steps of
replication, we empirically found that once reached the forth step
of resampling, quantitative fluctuations are small.

Though the need for replication is clear, we considered that the
demonstrated technique, as well as the new findings described
here, might provide important insights both into the natural
history of AD, as well as a novel methodology that can be applied
to a wide variety of conditions. These results will feedback from
further replications in cohorts of patients with sporadic forms of
AD, other type of dementia, and patients with minimal cognitive
impairment. Though it is difficult to warrant that the same group
of genes might be commonly causal for this wide spectrum of
pathologies, the fact that some usual suspects, that is, CADPS2, are
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showing up, indicates that these findings originated from the use
of conspicuous and homogenous forms of a pathology might be
proficient for broad applications.
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