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Origin of salinity variations in Florida Bay

Abstract—This note presents a method of distinguishing the
source of freshwater that causes reductions in salinity in the
coastal environment of South Florida. This technique, which
uses the d18O and dD of the water, allows for differentiation
of the freshwater derived from precipitation as opposed to run-
off, because surface waters in the Everglades have been highly
evaporated and therefore have elevated d18O and dD values
relative to precipitation. A time series of monthly d18O and
dD values of surface waters, collected from stations in Florida
Bay between 1993 and 1999, has shown that, during this time,
the major source of freshwaters causing depressions in the
salinity in the western portion of Florida Bay was derived from
precipitation rather than from the runoff of water from the
Everglades. In the eastern portion of Florida Bay, close to the
boundary between peninsular Florida and the Bay, the pro-
portion of freshwater derived from precipitation drops steadily,
reaching ,10%. This method not only allows differentiation
between the sources of freshwater but can, in a temporal sense,
ascertain the effectiveness of water management practices on
the salinity of the estuarine ecosystems of South Florida.

Florida Bay is a large triangular body of water located
between the Florida Keys and peninsular Florida to the north
(Fig. 1). The water in the Bay is composed of a mixture of
freshwater derived from the Everglades, through Taylor and
Shark Sloughs and directly from precipitation, and seawater
that enters from the Gulf of Mexico and the Florida reef
tract. This mixture allows salinities to fluctuate between es-
sentially zero, close to the Everglades–Florida Bay interface,
to marine values closer to the western and southern margin
of Florida Bay. In addition, as a result of the isolation of
some of the interior portions of the bay, salinities can attain
values as high as 50–70 as a result of evaporation. The
amount of groundwater input into Florida Bay is still un-
known, but wells that have been drilled indicate that these
subsurface fluids are all saline (Bohlke et al. 1999) and have
enriched d18O and dD values (d18O 5 11.5–12.7‰; dD 5
113–120‰). In fact, the saltwater-freshwater interface is
located ;10 km inland from the present coastline (Price
2001; Fitterman et al. 1999). Hence, groundwater is not con-
sidered at present to be a significant source of freshwater
input into Florida Bay.

Over the past 15 yr, there has been growing concern re-
garding the detrimental role salinity plays in controlling the
survivorship of seagrasses and other organisms within Flor-
ida Bay (McIvor et al. 1994). This concern reached its peak
between 1989 and 1991, when salinities within Florida Bay
reached values .60 in some of its interior portions (Boesch
et al. 1993). As a result of this concern, extensive monitoring
programs were instigated that involved the collection of wa-
ter samples from a network of stations throughout Florida
Bay (Boyer et al. 1999). Initial responsibility for the origin
of the high salinity in Florida Bay was believed to be a result
of reduced water delivery to Florida Bay caused by anthro-

pogenic management of water flow from the water conser-
vation areas into the Everglades National Park and, ulti-
mately, into Taylor Slough (Boesch et al. 1993). These
conclusions resulted in the initiation of a large engineering
project that was designed to divert water into Taylor Slough.
Several studies were initiated at this time that attempted to
address the historical record of salinity in Florida Bay by
use of proxy indicators contained within the skeletons of
calcareous material such as corals (Swart et al. 1996) and
shell material (Halley and Roulier 1999). The results of the
study of Swart et al. (1999) indicated that Florida Bay had
experienced a long history of salinity variation but that (1)
the highest salinities over that past 150 yr had indeed oc-
curred since 1960 and (2) a major influence on the salinity
was the construction of the railway between Miami and Key
West. These conclusions were based on an analysis of the
d18O of the skeleton of a massive scleractinian coral growing
in Lignumvitae Basin near the Peterson Keys (site 20; Fig.
1) and a correlation with salinity records between 1955 and
1986 (Swart et al. 1996, 1999).

In order to better understand the relationship between sa-
linity and the d18O of the water, d18O and dD measurements
were made on samples collected by Florida International
University from a series of stations within Florida Bay (Fig.
1) starting in 1993. These data were used to demonstrate
different relationships between salinity and d18O for the pur-
poses of the reconstruction of past salinity records from the
d18O of the skeletons of calcareous organisms (Swart et al.
2001). In this note, we report the results of associations be-
tween salinity and the d18O on samples from Florida Bay
collected between 1993 and 1999 and discuss the implica-
tions that these associations have on the origin of salinity
reductions in Florida Bay. In addition to the data collected
on samples from Florida Bay, we have used data measured
on samples from the Taylor and Shark Sloughs (Price 2001;
Swart et al. 2001) in the Everglades as well as precipitation
samples from four localities in South Miami (Fig. 1).

Methods—Surface water samples were collected on an ap-
proximately monthly basis from a network of stations in
Florida Bay and the Everglades. The stations in Florida Bay
are the same ones analyzed for salinity and other chemical
parameters (Boyer et al. 1999). There are 28 stations within
Florida Bay. Between November 1994 and August 1996,
water samples were only collected from 20 stations. Of the
75 months between October 1993 and January 1999, sam-
ples were collected in 56 months. Samples of precipitation
were also collected at three locations in south Florida (Fig.
1) between 1995 and 1999 and analyzed for their d18O and
dD isotopic compositions. Oxygen and hydrogen isotopic
measurements were made in the Division of Marine Geology
and Geophysics at the University of Miami. Both measure-
ments were made by use of a water equilibration system
attached to a Europa GEO (Swart 2000). In the water equil-
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Fig. 1. Map showing location of sites in Florida Bay in addition to sites from which surface
waters, Everglades samples, and rainfall samples were collected in the Everglades. Numbers refer
to sampling locations, which are listed in Table 1. Contours show mean salinity values in Florida
Bay between October 1993 and January 1999. Salinity data are from Boyer et al. (1999).

ibration system, the d18O was determined on CO2 that had
been injected into serum bottles at slightly above atmospher-
ic pressure that contained 1 cm3 of sample. This method is
similar to that described by Epstein and Mayeda (1953). The
samples are subsequently equilibrated at 358C for 8 h with-
out shaking. The process is entirely automated, with the CO2

being injected and retrieved by use of an autosampler and
the gas being transferred to a dual-inlet mass spectrometer
through a cryogenic trap (2708C) to remove water. The pre-
cision of this method for oxygen, determined by measuring
59 samples of our internal standard, was 60.08‰ for d18O.
The hydrogen isotopic composition was determined by use
of the same device as that used for CO2. Equilibration with
hydrogen gas took place in the presence of a platinum cat-
alyst (Hokko Beads) at 358C (Coplen et al. 1991). The pre-
cision of this method was 61.5‰. Both oxygen and hydro-
gen isotopic data were calibrated by use of Vienna Standard
Mean Ocean Water (V-SMOW) and are reported in ‰, ac-
cording to the conventional notation. Salinity measurements
were made by Florida International University and have been
reported elsewhere in various publications (Boyer et al.
1999).

Florida Bay salinity—During the period for which d18O
values are reported (1993–1999), the mean salinity of Flor-

ida Bay studied varied from 18.1 to 48.3. The lowest salinity
recorded was 0.10 in Highway Creek site and the maximum
(68.4) in Little Madeira Bay (see Fig. 1). Little Madeira Bay
also exhibited the largest range in salinity, varying from 3.4
in October 1995 to 68.4 in April 1999. The smallest range
in salinity occurred at the Oxfoot Bank site (26.8–38.4). A
contour map showing the mean salinity values is shown in
Fig. 1.

Florida Bay oxygen—The mean monthly d18O values for
Florida Bay were positively correlated with the mean salinity
(r 5 0.68, n 5 65) (Fig. 2a). In contrast, there was no cor-
relation if the mean salinities were compared with the mean
d18O values for the individual sites over the study period (r
5 0.0007, n 5 28). The range of mean d18O values for in-
dividual months lay between 21.12‰ and 13.36‰, with the
highest and lowest d18O values occurring in May 1999 and
October 1999, respectively. The range in absolute d18O values
for individual basins ranged from 23.54‰ to 15.71 ‰. The
lowest d18O value occurred in Joe Bay in October 1999 and
the highest d18O value in August 1994 in Manatee Bay. The
largest ranges in d18O values occurred in Joe Bay (8.37‰),
whereas the lowest range occurred at the Sprigger Bank site
(2.9‰).
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Fig. 2. (a) Correlation between salinity and d18O for the entire
Florida Bay between 1993 and 1998. The data set shows a corre-
lation coefficient of 0.65 (n 5 56, P . 0.01). Error bars represent
6 1 SD of the samples measured during a particular month. (b)
Correlation between salinity and dD for the entire Florida Bay be-
tween October 1993 and January 1999. (r 5 0.495, n 5 56, P .
0.01).

Fig. 3. Plot of mean d18O and dD values from Florida Bay, pre-
cipitation, and mean monthly surface water samples from Shark and
Taylor Slough (see Fig. 1) with respect to the MWL. The error bars
on the data from the Everglades represent 61 SD of the values
collected from the stations during a particular month. The intercept
of the best-fit line with data from Florida Bay and the Everglades
intercepts the MWL at values that are indistinguishable from local
precipitation (Meyers et al. 1993; Price 2001; this study). The
weighted means for d18O and dD of precipitation are 22.8‰ and
210.5‰, respectively.

Fig. 4. Time series of the oxygen isotopic composition of surface
water samples from the Everglades (Swart et al. 2001). Error bars
represent 61 SD of the stations in either Shark or Taylor Slough
(see Fig. 1).

Florida Bay hydrogen—The dD of the monthly means for
Florida Bay were positively correlated with salinity (r 5 0.6,
n 5 65) (Fig. 2b). The d18O and dD values were also cor-
related (r 5 0.82). The correlation exhibited a slope of 6,
compared with a slope of 8 for the meteoric water line
(MWL) (Fig. 3). The mean range of dD values in Florida
Bay extended from 25.0 to 125.8‰. The highest values
(170‰) and ranges (71‰) occurred in Little Blackfoot
Sound, whereas the lowest ranges occurred in the western
portion of Florida Bay at Oxfoot Bank. The d18O and dD
were positively correlated but deviated from the MWL (Fig.
3).

Florida Bay precipitation—The d18O of precipitation mea-
sured between 1997 and 1999 ranged from 26.5‰ to 0‰,
with a mean weighted value of 22.83‰. This value agrees
well with a mean d18O of 22.7‰ calculated by Swart et al.
(1989). The weighted mean of the dD was 210.59‰. The
plot of d18O and dD shows that the data plot is indistinguish-
able from the MWL (Fig. 3).

Everglades—The mean d18O value of waters collected
from six surface sites in Shark Slough (Fig. 1) was 10.86‰
(dD 5 17.1‰) and ranged between 22.98‰ and 13.65‰
(dD 5 217 to 123‰) (Fig. 4). This was in contrast to a
mean value of 10.16‰ (dD 5 14.8‰) and ranged from
22.25‰ to 1.55‰ (dD 5 26.6 to 120‰) for three stations
from Taylor Slough (Fig. 4). The d18O and dD were posi-
tively correlated and exhibited a similar slope to that rela-
tionship exhibited in Florida Bay (Fig. 3).
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Fig. 5. Model data showing the behavior of oxygen during evap-
oration (Gonfiantini 1986). The initial oxygen isotopic composition
of the evaporating water in this model is 23‰. Under these envi-
ronmental conditions (temperature, 23.58C; oxygen isotopic com-
position of atmospheric water vapor, da, 28.5), the maximum ox-
ygen isotopic composition that could be attained is approximately
12‰ under a relative humidity of 85%. The mean relative humidity
in South Florida is 75%, although, during the summer, when the
majority of evaporation occurs, the relative humidity can be signif-
icantly higher.

Fig. 6. Model data showing the behavior of d18O and dD during
evaporation (Gonfiantini 1986) from a initial composition similar to
that shown in Fig. 6. With increasing relative humidity, the corre-
lation between oxygen and hydrogen plots closer to the MWL.

Origins of oxygen isotopic variation—The processes that
control the d18O and dD of surface waters are well known
and have been described in a large number of papers (Gon-
fiantini 1986). In Florida Bay, the inputs of water are pre-
cipitation, runoff from the Everglades, inputs from ground-
water, and inundation by marine fluids. In addition to these
sources, a major influence on the d18O and dD is exerted by
evaporation. These processes have been described in Florida
Bay in papers by Lloyd (1964) and Swart et al. (1989).

Evaporation: As a result of the fractionation of water dur-
ing evaporation, residual water bodies become enriched in
the heavier isotopes of hydrogen and oxygen. The absolute
isotopic composition that can be attained by an evaporating
body is primary dictated by the relative humidity of the at-
mosphere and, to a lesser degree, by the temperature of evap-
oration, the isotopic composition of the atmospheric water
vapor, and the salinity of the fluid being evaporated (Gon-
fiantini 1986). High isotopic values can be attained in en-
vironments of low relative humidity, whereas the maximum
d18O of evaporating waters in South Florida, which has a
mean humidity of ;75%, is approximately 14–15‰ (Fig.
5). Although the behavior of d18O and dD during evaporation
is similar, slight differences between these elements produc-
es a different relationship between d18O and dD when com-
pared with the MWL, the relationship seen in precipitation
(Craig and Gordan 1965). Progressive deviations from the
MWL occur during the evaporation of fluids into atmo-
spheres of progressively lower relative humidity (Fig. 6).
Modeling of the relationship between d18O and dD can there-
fore be used to calculate the relative humidity under the
assumption of a knowledge of the temperature of evapora-

tion and the isotopic composition of atmospheric water va-
por (Gonfiantini 1986; Swart 1991).

A further complication in the relationship between salinity
and isotopic composition can be introduced during the evap-
oration of saline fluids as a result of interaction between
different ions in the solution. As a result of this interaction,
during the final stages of evaporation, the d18O and dD val-
ues can actually decrease producing a different relationship
between the d18O and dD values (Gonfiantini 1986).

Modeling of the d18O and dD data collected in this study
is complicated by mixing with saline fluids. However, by
coincidence, the d18O and dD composition of marine waters
falls more or less on the same trend produced by the evap-
oration of local precipitation, with a d18O and dD composi-
tion of 22.7‰ and 212‰. Hence, whether by coincidence
or by artifact, a best fit of the d18O and dD data produced
an intercept with the MWL (Fig. 3), which is similar to
measurements on the d18O and dD for the local rainfall
(Meyers et al. 1993; Price 2001).

Everglades—Peninsular Florida is characterized by a low
relief and high rainfall (114 cm yr21, Nuttle et al. 2000). The
bedrock is principally composed of porous limestone, which
is a major aquifer. Generally, water is considered to flow
from north to south along a very slight hydraulic gradient
and is accompanied by severe evaporation. The climate in
southern Florida is principally subtropical, separated into
wet (June–October) and dry seasons. Approximately 70% of
the precipitation occurs during the wet season, although the
dry season is known to be dominated by cyclicity related to
El Niño, during which exceptionally high precipitation can
occur. The surface waters in the Everglades are typically
considerably enriched in the heavier isotopes of hydrogen
and oxygen compared with rainfall. In addition, the mean
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Fig. 7. Plot of the (a) salinity vs. d18O from Lignumvitae Basin
(Peterson Keys, Sta. 20; see Fig. 1) and (b) Joe Bay site (see Fig.
1). The intercept with the zero salinity yields the oxygen isotopic
composition of the zero salinity end member. See Table 1 for values
of intercept and regression coefficients.

d18O and dD values of water from Shark Slough are consis-
tently isotopically enriched compared with Taylor Slough. A
plot of d18O versus dD for all surface water data from the
Everglades shows a strong positive correlation (r 5 0.9, n
5 20) with a slope of 7, compared with 8 for MWL. The
intercept of this line with the MWL indicates a mean d18O
and dD isotopic composition of rainfall 23‰ and 216‰,
respectively (Fig. 3). The slope of the trend between the d18O
and dD is controlled by a number of factors, as outlined by
Gonfiantini (1986) and agrees with the model of d18O and
dD during evaporation (Gonfiantini 1986) when the mean
atmospheric temperature and humidity of South Florida and
the atmospheric composition are used in equilibrium with
mean isotopic composition of precipitation.

Florida Bay—Florida Bay exhibits wide ranges in salinity.
The average amount of rainfall received by Florida Bay
varies from 114 cm yr21 in the northeast to 102 cm yr21 in
the southwest (Nuttle et al. 2000). Although decreases in
salinity of Florida Bay are caused by inundation of fresh-
waters derived as a result of runoff from the Everglades and/
or precipitation, increases in salinity relative to marine val-
ues are caused exclusively by evaporation. The oxygen
isotopic composition of marine areas outside Florida Bay
have been measured previously by various authors and range
between 0.5‰ and 11.0‰ (Ortner et al. 1995; Leder et al.
1996). Data presented in this paper and in previous work
(Meyers et al. 1993) show that, as a result of evaporation,
waters from the Everglades have d18O and dD values that
are distinctly different from local precipitation (Swart et al.
1986). Therefore, the salinity versus d18O relationships found
in Florida Bay result from the mixing of marine water, with
a relatively positive d18O value of between 10.5‰ and
11.0‰, and freshwater derived either from the runoff from
the Everglades or from precipitation. Hence, by use of these
differences, it is possible to distinguish the source of the
freshwater in Florida Bay that causes reductions in salinity.
Examples of the trends shown in two basins are exhibited
in Fig. 7a,b. These basins, Joe Bay and Lignumvitae Basin
(see Fig. 1), represent end members of a transition from the
freshwater to the marine environment. The d18O and dD of
the intercept at zero salinity represents the isotopic compo-
sition of the freshwater that is principally responsible for
causing the salinity variation. Although there are slight dif-
ferences between the behavior of d18O and dD, in the fol-
lowing discussion we will deal with only the d18O data, be-
cause similar conclusions can be reached by use of the dD
data. On the basis of a correlation between the salinity and
d18O for all of the sites from which samples were collected,
the intercepts of the correlation between d18O and salinity
can be calculated for each of the basins. The results of these
calculations, together with the correlation coefficients and
statistical significance, are shown in Table 1 and Fig. 8a,b
and indicate that sites closer to the Everglades have inter-
cepts that suggest that the principal source of the water caus-
ing the lower salinity values was derived from the Ever-
glades. In contrast, sites further away from the Everglades–
Florida Bay transition indicate a freshwater component that
appears to be dominated by precipitation. The trend from a
runoff source toward a precipitation source is progressive

and agrees with a pattern one would expect intuitively. The
application of a simple two-component mixing model to the
data presented in Table 1, using Equation 1, enables calcu-
lation of the parameter x, the

dm 5 xdp 1 (1 2 x)de (1)

relative proportion of freshwater derived from precipitation
as opposed to the amount of freshwater derived from the
Everglades. In this equation, dm is the measured isotopic
composition, dp is the isotopic composition of precipitation
(22.7‰), and de is the isotopic composition of water from
the Everglades (10.2‰). Hence, the data presented in Fig.
8a can be converted into an estimate of the relative propor-
tion derived from the Everglades (Fig. 8c). On the basis of
this calculation, .80% of the salinity decreases in large por-
tions of western Florida Bay are a result of dilution by rain-
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Table 1. Intercepts, regression coefficients, and minimum and
maximum intercepts (at 95% confidence limits) between salinity
and oxygen isotopic composition. The regressions coefficients are
statistically significant at the 99% confidence, with the exception of
Old Dan Bank, which was statistically significant at the 95% con-
fidence limits.

Station name Intercept
Mini-
mum

Maxi-
mum R

1 Card Sound Bridge
2 Middle Key
3 Manatee Bay
4 Barnes Sound
5 Blackwater Sound
6 Little Blackwater Sound
7 Highway Creek
8 Long Sound
9 Duck Key

10 Joe Bay
11 Little Madeira Bay
12 Terrapin Bay
13 Whipray Basin
14 Garfield Bight
15 Rankin Lake
16 Murray Key
17 Johnson Key Basin
18 Rabbit Key Basin
19 Twin Key Basin
20 Peterson Keys
21 Porpoise Lake
22 Captain Key
23 Park Key
24 Butternut Key
25 East Cape
26 Oxfoot Bank
27 Sprigger Bank
28 Old Dan Bank

20.31
22.32
21.24
20.57
20.28
20.10

0.52
20.05
20.29

0.45
20.60
20.69
20.66
20.43
21.07
22.22
22.53
21.73
22.91
22.28
21.21
21.03
20.29
20.62
21.36
22.18
20.44
21.81

24.2
24.0
22.8
21.8
23.0
21.2

0.0
21.0
21.1

0.0
21.2
22.2
22.5
21.2
22.0
23.5
24.0
23.6
24.6
24.3
22.1
21.9
21.0
21.1
23.0
23.9
23.2
24.1

11.4
0.0

20.2
10.2

0.0
11.0
11.0
10.4
10.6
11.0
10.2
20.1
10.5
10.6

0.0
21.2
21.0
20.1
21.2
21.2
10.3

0.0
10.2

0.0
11.0
20.5
10.8
11.1

0.37
0.59
0.75
0.58
0.58
0.56
0.75
0.71
0.61
0.60
0.65
0.61
0.51
0.56
0.64
0.61
0.57
0.46
0.62
0.62
0.65
0.67
0.71
0.74
0.33
0.54
0.35
0.29

fall rather than by runoff from the Everglades. The estimate
in the range of the intercept at zero salinity (95% confidence
limits) is included in Table 1. The resultant error arises from
a combination of analytical error, seasonal variation in the
isotopic composition of the rainfall, and runoff from the Ev-
erglades, and the amount of evaporation (see discussion be-
low). Relatively low regression coefficients and narrow rang-
es of salinity result in a higher range of intercept values (i.e.,
Old Dan Bank) compared with stations with well-correlated
salinity and oxygen isotopic compositions (i.e., Peterson
Keys). It is not possible to use these estimate to produce a
range in uncertainty of the amount of precipitation, because
the minimum and maximum values are in some instances
outside the range of the values used as the end members.
For example, in the case of the correlation obtained from
the Peterson Keys (Fig. 1) station, which shows a range from
24.3‰ to 21‰, the variation in the intercept could be in-
terpreted as reflecting dilution by water with an oxygen iso-
topic composition of between 24.3‰ and 21‰. This range
is well within that expected in precipitation but is signifi-
cantly more negative than that derived from runoff. Hence,
the conclusion based on the use of the intercept from the
best fit to the data remains, that a significant proportion of
the salinity variations in this particular basin is derived from

precipitation rather than runoff. In another example, Old Dan
Bank (Fig. 1), there is a relatively poor correlation between
salinity and d18O, combined with a narrow range of salinity
values (28–40). These factors combined to produce a large
error in the intercept (24‰ to 11‰). In this case, it is not
possible to determine whether salinity variations are a result
of either precipitation or runoff, although the best fit inter-
cept of 21.81‰ suggests that the predominant source of
freshwater is precipitation. A final example is Joe Bay (Figs.
1, 7b). Here the salinity ranges from 0 to 30, and the d18O
of the intercept varies from 0 to 11‰. In this situation, most
of the salinity variation is a result of inundation by water
from the Everglades, although there were instances during
which the mean d18O of the water was close to that from
rainfall.

Influence of evaporation of relationships between salinity
and oxygen isotopic composition—On the basis of the work
of Gonfianitini (1986), the expected change in d18O during
evaporation can be calculated and related to expected chang-
es in salinity. Because both the salinity and d18O increase
during evaporation a positive correlation will arise between
these two variables, which will yield an intercept at zero
salinity that could be interpretable as reflecting the d18O of
water with a salinity of zero. To assess whether this artifact
is significant in influencing the estimate of the intercept mea-
sured during this study, we recalculated the intercepts using
only salinity values ,36. Hence, we assumed that salinity
values .36 were a result of evaporation, whereas salinity
values ,36 were a result of mixing between a freshwater
source and seawater. In reality, of course, there is the like-
lihood that evolution of the salinity of any water is the com-
plicated product of mixing and evaporation followed by fur-
ther evaporation and mixing. Although our data do not allow
us to understand these complications, eliminating samples
with salinity values .36 removes samples that have un-
equivocally been influenced by evaporation. The results of
this calculation reveal that the conclusions based on the en-
tire data set remain essentially unchanged (Fig. 8b). Small
differences in the percentage of freshwater derived from the
Everglades appear in the central Florida Bay region, but in
most cases the results are not significantly different from
those calculated when the entire data set was used.

Perhaps the most persuasive argument that the intercept
of the relationship between salinity and d18O has significance
lies in the analysis of the spatial distribution of this intercept
as shown in Fig. 8a,b. This figure shows a steady and non-
random change in the intercept from relatively positive val-
ues close to the Everglades–Florida Bay interface in the east-
ern portion of the Bay toward more negative values in the
west. These changes are consistent with the interpretation
offered in this note and cannot be produced as a result of
differences in evaporation or mixing with marine waters.

The implication of the data presented in this note is that
a principal input of freshwater over a major portion of Flor-
ida Bay is derived directly from precipitation rather than
from runoff. This can be confirmed by use of the estimated
input of freshwater into Florida Bay that results from the
input from runoff, which is estimated to be 10% of that
derived from rainfall (Nuttle et al. 2000), compared with the
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Fig. 8. (a) Color contour map of the intercept between d18O and salinity for Florida Bay. (b)
Contour map of the intercept between d18O and salinity for Florida Bay that used water samples
with salinity values ,36‰ only. (c) Contour map of the solution to Eq. 1 that used contours
calculated in (a). Values are shown as percentage of freshwater derived from precipitation.
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mean input of water from precipitation. Because most of this
runoff passes through Taylor Slough and from wetland areas
to the east, its influence is evident on the oxygen isotopic
composition of northeastern Florida Bay in this region, de-
spite the low contribution of runoff relative to precipitation.

P. K. Swart and R. Price1

Stable Isotope Laboratory
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