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Abstract: Microbial drinking-water quality testing plays an essential role in measures to 

protect public health. However, such testing remains a significant challenge where 

resources are limited. With a wide variety of tests available, researchers and practitioners 

have expressed difficulties in selecting the most appropriate test(s) for a particular budget, 

application and setting. To assist the selection process we identified the characteristics 

associated with low and medium resource settings and we specified the basic information 

that is needed for different forms of water quality monitoring. We then searched for 

available faecal indicator bacteria tests and collated this information. In total 44 tests have 

been identified, 18 of which yield a presence/absence result and 26 of which provide 

enumeration of bacterial concentration. The suitability of each test is assessed for use in the 

three settings. The cost per test was found to vary from $0.60 to $5.00 for a 

presence/absence test and from $0.50 to $7.50 for a quantitative format, though it is likely 

to be only a small component of the overall costs of testing. This article presents the first 

comprehensive catalogue of the characteristics of available and emerging low-cost tests for 
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faecal indicator bacteria. It will be of value to organizations responsible for monitoring 

national water quality, water service providers, researchers and policy makers in selecting 

water quality tests appropriate for a given setting and application. 

Keywords: drinking-water quality; safe water; microbial water testing; faecal indicator 

bacteria; Escherichia coli; coliform test; H2S test 

 

1. Introduction 

Testing water quality is a key element of drinking water safety that has been gaining increasing 

attention, especially in reference to the close of the Millennium Development Goals (MDG) in  

2015 [1,2]. A World Health Organization (WHO) and UNICEF Task Force stated recently that it is 

“essential that new targets for post-2015 efforts should include water quality” [3]. Water testing plays 

an important role in ensuring the correct operation of water supplies, verifying the safety of drinking-

water, investigating disease outbreaks, and validating processes and preventative measures. There are 

significant challenges in implementing comprehensive and appropriate water quality testing, 

particularly in low-resource settings. As a consequence, the extent and quality of the information 

provided by water testing is often inadequate to support effective decision-making. 

Microbial contamination is responsible for the great majority of water-related health burden [4]. 

WHO recommends that the microbial quality of drinking-water be measured using faecal indicator 

bacteria, preferably Escherichia coli; these bacteria are chosen to indicate the presence of faecal 

contamination rather than identifying pathogens directly [4]. Conventionally, analyses take place in a 

laboratory environment using standard procedures, such as those described in the Standard Methods 

for the Examination of Water and Wastewater [5], approved by the U.S. Environmental Protection 

Agency or set by the International Organization for Standardization. We have restricted our analysis to 

tests based on culturing faecal indicator bacteria as these are likely to remain the most common 

methods for microbial water quality monitoring in the short- to medium-term. 

Conventional laboratory methods, such as membrane filtration and multiple tube fermentation, are 

complex and time-consuming. They require a wide range of basic laboratory equipment and skilled 

personnel to achieve consistent results. Sample transportation, especially within the recommended 

timeframe (<24 h, preferably <6 h [6]) and temperature range (<8 °C but not frozen [5]), is often 

impractical. This is particularly the case for rural and dispersed populations, for which the nearest 

laboratory can be at a significant distance from water supplies. Where laboratories are accessible, these 

may be overstretched and only able to conduct infrequent testing of a limited number of supplies. As a 

consequence, testing in the locations with no access to resources such as reliable mains electricity or 

technically trained staff may be preferable.  

Several tests, most notably portable membrane filtration and the hydrogen sulphide test [7], have 

sought to address the challenges of using traditional methods in remote and low-resource settings. 

Developments in chromogenic and fluorogenic enzyme-substrate tests have also greatly expanded the 

range and variety of available tests. A detailed understanding of the resource requirements and 

information provided by these is needed in order to select an appropriate test. However, the available 
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information on microbial water tests is poorly consolidated and in many cases difficult to access—this 

is particularly the case for costs and test performance. Although previous reviews [8–12] include a 

number of factors that are essential in the selection of tests for drinking-water, they are limited in 

scope, do not evaluate tests on a consistent basis or do not provide a side by side comparison. As a 

result, it can be difficult for practitioners to select tests for a particular setting, application and budget. 

Our objectives were: 

(1) To define, in reference to resource settings and the purposes of testing, important characteristics 

which should be considered when selecting a test for faecal indicator bacteria in drinking-

water. 

(2) To collate information on these characteristics for available water tests and assess their 

suitability based on the resources available in a given setting. 

We have not carried out any microbiological assessments of the performance of the various tests. 

We expect users of our catalogue should satisfy themselves that the performance of the tests will meet 

their needs. Most manufacturers’ websites make available the findings of appropriate, objective 

studies. Consequently, we are able to assess suitability for resource settings, but not the fitness for 

purpose. Notwithstanding these limitations, we believe that the catalogue will be useful for an 

audience ranging from organizations responsible for monitoring national water quality and water 

service providers to researchers and policy makers. 

2. Methods 

2.1. Identifying Characteristics for Inclusion in the Assessment 

In order to assess the applicability of individual tests, three resource settings and the main 

applications of water testing have been defined (Tables 1 and 2). Important characteristics to be 

considered when selecting a test were then identified based on these definitions and the authors’ 

experience. The definitions of the resource settings focus on the available infrastructure, rather than 

financial and human resources. 

Table 1. Resource settings. 

Low resource Medium resource High resource 

No laboratory. Clean 
space without 
electricity or by the 
water source. 

Basic laboratory or clean 
space with electricity 
within 24 hours. 

Modern laboratory within 24 hours, 
including vacuum, distilled water, 
fume hood and a cold supply chain. 
Reliable electricity. 

The information provided by a monitoring program (Table 2) is influenced by two main factors, the 

indicator bacteria and the extent of quantification, both of which are impacted by regulatory standards. 

The main forms of monitoring water quality can be referred to as compliance/surveillance, depending 

on the agency using the data, and operational monitoring. For compliance or surveillance monitoring, 

regulatory approval of the test is usually required. Operational monitoring is done in the context of 

Water Safety Plans, a risk-based framework for managing water supplies [13]. Other uses, such as 
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treatment efficacy testing, educational and awareness-raising, while important, typically demand lesser 

amounts of testing and the information requirements will need to be determined on a case by case basis.  

Table 2. Types of monitoring and information needs. 

Type Definition 
Information needed 

Indicator 1 Quantification 
Regulatory
Approval 

Compliance  
or Surveillance 

Compliance monitoring is conducted 
by water service providers to 
demonstrate that water meets the 
regulatory standards 

As regulated As regulated 

Required 
Surveillance monitoring is conducted 
by an independent agency to ensure 
water is safe 

Health 
based, 

Usually TC 
and/or EC 

Desirable, ideally 
with range 

depending on 
health risk 

Operational 
The monitoring of operational 
parameters to ensure treatment is 
functioning 

Operational 
parameter, 
often TC 

Desirable Desirable 

Other 

Examples include research into water 
treatment efficacy testing, educational 
and awareness-raising or controlling 
for water quality as part of a study 

Varies 
Varies, though 
often desirable 

Desirable 

1 EC—Escherichia coli, TC—Total coliforms. 

2.2. Finding and Assessing Tests 

A preliminary set of microbial water tests was identified by the authors and colleagues based on 

experience of using and developing microbial drinking-water tests. This was supplemented by a review 

of the literature and internet searches. For the internet searches, keywords included the names of the 

indicator bacteria groups, chemical substrates used to detect these (such as β-glucuronides and  

β-galactosides) [14,15], generic terms such as ‘water test’, the names of previously identified tests and 

their combinations. We refer to ‘test’ as the consumables used per analysis, a ‘kit’ refers to the test and 

required equipment. The list of water quality tests was reviewed by colleagues in industry, academia 

and practice to ensure that it was comprehensive. 

Microbial water tests have been included if: 

(1) The tests are in common use or widely known to be in the latter stages of development. 

(2) The tests are relatively inexpensive (<$10 per test and <$5,000 for specialized equipment).  

(3) They detect faecal indicator bacteria typically used for drinking-water analysis, namely 

Escherichia coli (E. coli), total coliforms, thermotolerant coliforms, or hydrogen sulphide 

(H2S) producing bacteria. 

(4) The volume of the sample is least 1 mL, providing a lower detection limit of ≤100 indicator 

organisms per 100 mL. 

For each water test identified in this review, details were recorded for the characteristics defined in 

Table 3. These were obtained from a variety of sources, including test protocols and direct 
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communication with manufacturers. The suitability of each test for a given resource setting was 

assessed based on the resources required to conduct each test according to its standard protocol and in 

reference to Table 1. Tests that only require resources which are likely to be available in a given 

setting are “recommended” (green). Where a test cannot be recommended, but modifications to the 

procedure could be made to overcome the resource requirements, the test is considered “not ideal” 

(brown). Tests that would be very challenging to conduct in a setting or may be unsafe have been 

labeled “not suitable” (black). 

A draft version of the assessment was presented at the Water and Health: Where Science Meets 

Policy conference at the University of North Carolina [16]. Questions were raised regarding the 

dependence of sanitary significance on source type and what transport restrictions applied to the 

various tests. As a result of feedback, the shelf life columns in Tables 4 and 5 were revised to include 

information on specific storage temperature ranges; these have been included in “other” characteristics. 

The groupings used at the conference were expanded upon in order to provide better differentiation 

between similar tests. These revised versions of the tables were subsequently provided to 

manufacturers for comments and corrections. Manufacturers were also asked for suggestions on how 

these tests might be applied in low and medium resource settings, for example by using alternative 

equipment or procedures. All 20 manufacturers of tests in the list were contacted; 14 responded with 

further information on their tests or comments and corrections.  

3. Results 

3.1. Characteristics Included in the Assessment 

The characteristics included in the assessment are listed in Table 3 

Table 3. Definition of characteristics. 

Characteristic Definition 
Cost per test 1,2 These costs are based on the purchase of 400 to 500 tests. They do not include delivery or 

importation costs. 

Cost of specialized 

equipment 1 

Equipment which is needed for this particular test which would not typically be available 

in a laboratory. The cost is based on a single unit of each piece of durable equipment or in 

the case of glassware, the quantity typically used for a single analysis. 

Analysis time 3 Time taken to conduct a single test, excluding the time required for transport and incubation. 

This includes preparation of media, interpretation of results and appropriate disposal.  

Trained technician A trained technician is required if training is at least one day, for example if standard 

microbiological techniques are needed. 

Controlled incubation Required if specified in the standard procedure for the test. 

Ultraviolet light Required for the detection of fluorogenic substrates. 

Sterilization/disinfection Required unless the test contains an integral disinfectant. 

Deionised water Required for some tests, especially membrane filtration where water samples may require 

dilution. 

Cold storage Required if the test needs to be stored below room temperature. 

Transport  Required if tests cannot be conducted at the water source or if tests require a vehicle 

Disposal 2 Amount of waste generated by each test, including sample collection vessels. 
Sample volume meeting 
WHO Guidelines 

The test is able to satisfy the sample volume aspect of the WHO guidelines “none 
detected in 100 mL”. 
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Table 3. Cont. 

Characteristic Definition 
Undiluted range 4 The lower and upper detection limit for the concentration of bacteria when no dilution is 

performed and the maximum sample volume is analysed. 
Precision 5 Relative assessment of the precision of quantitative estimates over the range. 

Indicator The indicator bacteria used to identify fecal contamination of drinking-water.  

Sanitary significance 6 Relative assessment of the relationship of the indicator to E. coli. 

Standard or approved 7 Whether the test has been approved by the U.S. EPA, is included in the Standard Methods 

for the Examination of Water and Wasterwater or is an International Organization for 

Standardisation standard.  

Time to result The minimum incubation time stated to obtain the final results from a test. A range is 

given for devices where incubation time varies, for example depending on the 

concentration of bacteria in the sample or the incubation temperature.  

Shelf life Shelf life from manufacture, based on dehydrated media where available. 

Storage temperature Recommended long-term storage temperature of test or medium. 
1 Costs were obtained from websites, catalogues or quotations from manufacturer or suppliers. For non-proprietary 

tests costs were estimated based on lowest cost consumables from Sigma Aldrich or Beckton Dickinson. Where a 

separate sample vessel or disposable pipette is required, these have been added at a cost of $0.50 and $0.10 

respectively. Current exchange rates were obtained from xe.com (accessed 28th Feb 2012) to derive costs in the 

same currency, USD. The cost per test and cost of specialized equipment have been rounded to the nearest $0.10 and 

$100 respectively; 2 The volume of waste and the cost per test for laboratory methods are based on reusable 

components; 3 Analysis time assumes that only a small number of tests are conducted on a single day (<10); 4 A 

single presence/absence test does not provide a quantification of the contamination level and as such a range has not 

been defined for these; instead we provide the lower detection limit based on the total volume tested. By dividing a 

sample into subsamples, most probable number devices can yield a statistical estimate of the level of contamination, 

called the Most Probable Number or MPN [17]. A MATLAB program (version R2010b) was used to evaluate the 

highest MPN where a manufacturer’s MPN table was not available or appeared to be inconsistent with the specified 

volumes; this follows the method recommended by the U.S. FDA [18]; 5 For MPN tests the precision has been 

assessed based on the calculated or published MPN tables and colony count tests have been assigned as “best”; 6 In 

order of decreasing specificity to E. coli, we have assigned the following as: Thermotolerant coliforms, “good”; 

Total coliforms and H2S production, “moderate”; 7 These approvals or standards are the basis of regulations in 

many, but not all, countries. 

3.2. Summary Assessment 

Table 4 provides a summary of the main categories of tests and how these compare for the range of 

characteristics we have assessed. Table 5 lists the manufacturers of these tests. In total,  

44 tests were identified in this study. Presence/absence (PA) tests are covered in the first section of 

Table 4. Two main approaches are used to enumerate fecal indicator bacteria: colony counts and the 

most probable number (MPN); these have been used to group quantitative tests. Colony counts are 

achieved by plating, filtration or immobilization of the indicator bacteria within a gel. MPN tests rely 

on sample division or dilution and a statistical method to estimate the level of contamination. 

All PA tests can produce a quantitative result if a number of replicates are used or equivalently the 

sample is subdivided, with or without dilution; this is the principle behind MPN tests. However, the 

precision and range will be limited unless several replicates at different dilutions or volumes are used. 

Conversely, all quantitative tests can be interpreted in a PA manner, with the total volume of original 

sample determining the limit of detection. 
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Hydrogen 
sulphide 

PathoScreenTM $0.60 $0 <5 x S - >5 N/A H2S + 24–72 12 RT 

LTEK H2S 20 mL $0.80 $0 <5 x S - >5 N/A H2S + 24–72 24 RT 

HiWaterTM $2.40 $100 <5 x M + >1 N/A H2S + 24–72 24 RT 

LTEK H2S 100 mL $1.50 $0 <5 x M - >5 N/A H2S + 24–72 12 RT 

Local manufacture ∆ $0 <5 x S ∆ ∆ N/A H2S + 24–72 ∆ RT 

Total Lamotte® Coliform $1.20 $0 <5 x S - >10 N/A TC + 44–48 24 RT 

Coliform Rapid HiColiformTM $0.80 $100 <5 x x x M + >1 N/A TC + 24 36 2-8 

E. coli and 
Total 

coliform 

Colilert® 10 mL $1.50 $100 <5 x x x x S - >10 N/A TC&EC +++ x 24 12 4–30 

Colilert® 100 mL $5.00 $100 <5 x x x x M + >1 N/A TC&EC +++ x 24 12 4–30 

Colisure® $5.00 $100 <5 x x x x M + >1 N/A TC&EC +++ x 24 12 2–25 

Colilert® 18 $5.00 $100 <5 x x x x M + >1 N/A TC&EC +++ x 18 15 2–25 

Modified ColitagTM $4.50 $100 <5 x x x x M + >1 N/A TC&EC +++ x 16 22 4–30 

WatercheckTM [BWB] 3 $5.00 $2,700 <5 x x x x M + >1 N/A TC&EC +++ 24 36 2–30 

Readycult® $3.00 $100 <5 x x x x M + >1 N/A TC&EC +++ x 24 36 15–25
E*Colite $3.00 $100 <5 x x x M + >1 N/A TC&EC +++ x 28 12 RT 
EC Blue 100P $3.70 $100 <5 x x x x M + >1 N/A TC&EC +++ 24 12 RT 

AquaCHROMTM $2.60 $0 <5 x x x M + >1 N/A TC&EC +++ 18 24 15–30

HiSelectiveTM E. coli $2.20 $0 <5 x x x M + >1 N/A TC&EC +++ 24–48 12 2–8 
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Most 
Probable 
Number 

Compartmentalised 
bag test 

$1.00 $0 <5 S + 1–43 + EC +++ 24–72 6–9 RT       

$1.00 $0 <5 S + 1–43 + H2S + 24–72 6–9 RT       

AquatestTM $4.00 $100 5 x x M + 1–230 + EC +++ 24 24 RT       

ColiplateTM $7.50 $200 10 x x x x x L - 5–2400 +++ TC&EC +++ 24 36 2-30       

EC BlueQuant $5.80 $100 5 x x x x x L + 1–1610 ++ TC&EC +++ 24 12 RT       

Multiple tube (LTB/EC-
MUG) 

$3.50 $200 30 x x x x x 
 

x S ∆ ∆ ∆ EC +++ x 48 36 RT       

Multiple tube 
(LTB/BGLB) 

$2.10 $200 30 x x 
 

x x 
 

x S ∆ ∆ ∆ TC + x 36 36 RT       

Colitag/iMPN1600 $5.77 $0 10 x x x x x L + 1–1600 ++ TC&EC +++ ? 16 22 4–30       

Colilert/Quanti-Tray® $5.50 $4,100 10 x x x x x L + 1–200 +++ TC&EC +++ x 18/24 12 2–25       

Colilert/Quanti-Tray® 
2000 

$6.00 $4,100 10 x x x x 
  

x L + 1–2419 +++ TC&EC +++ x 18/24 12 2–25    

C
ol

on
y 

 C
ou

n
t 

Plate 
Methods 

PetrifilmTM 

E.coli/coliform 
$1.30 $100 <5

 
x 

 
x 

 
x x S - 100–5000 +++ TC&EC +++ 

 
24 18 ≤8       

PetrifilmTM Aqua 
Coliform 

$0.70 $100 <5
 

x 
 

x 
 

x x S - 100–5000 +++ TC + 
 

24 18 ≤8       

CHROMagarTM ECC $0.80 $100 15 x x x x S - 100–5000 +++ TC&EC +++ 24 36 15–30       

Compact Dry ECTM $1.50 $0 <5 x x x S - 100–5000 +++ TC&EC +++ 24 24 1–30   
  

    
  

Gel based 

Coliscan Easygel $2.20 $0 5 x x x x x M - 20–1000 +++ TC&EC +++ x 24 12 <0   

ColiGel/PathoGel 6 $3.50 $100 5 
 

x x 
   

x M + 
1–100 (TC)
1–25 (EC)

+++ TC&EC +++ 
 

28 12 RT       
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Membrane 
Filtration 4 

Portable kit/LSB 5 $0.50 $2,700 20 x x x x x S ∆ ∆ +++ TC/TTC ++ 24 48 RT       

Portable kit/m-coliblue 
24TM 

$2.50 $4,000 15 x x 
 

x x x x M ∆ ∆ +++ TC/TTC +++ x 24 12 2–8   
    

m-Coliblue 24TM $2.50 $2,500 15 x x x x x x M ∆ ∆ +++ TC&EC +++ x 24 12 2–8       

Coliscan MFTM $2.20 $2,500 15 x x x x x x M ∆ ∆ +++ TC&EC +++ 24 12 <0       
m-Endo $1.50 $2,500 15 x x x x x M ∆ ∆ +++ TC + x 24 48 RT       
m-FC $1.50 $2,500 15 x x x x x M ∆ ∆ +++ TTC ++ x 24 48 RT       
CHROMagarTM Liquid 
ECC 

$1.10 $2,500 15 x x 
 

x x 
 

x M ∆ ∆ +++ TC&EC +++ 
 

24 36 15-30 
  

    

CHROMagarTM ECC $1.30 $2,500 15 x x x x x M ∆ ∆ +++ TC&EC +++ 24 36 15-30       
MI Agar $1.70 $2,500 15 x x x x x M ∆ ∆ +++ TC&EC +++ x 24 36 RT       
Chromocult $1.20 $2,500 15 x x  x x  x M ∆ ∆ +++ TC&EC +++ x 24 60 RT       
Rapid E.coli ? $2,500 15 x x  x x  x M ∆ ∆ +++ TC&EC +++  24 ? ?       

1 Costs are known to vary greatly from one location to another, depending on supplier, importation taxes and delivery charges. Where not included in the kit, sample collection 

vessels are required and add an additional $0.50 per test. For plate methods a disposable pipette at $0.10 has been added; 2 Specific equipment costs are based on:  UV torch 

($100), membrane filtration assembly, including vacuum pump ($2500), glassware and racks for multiple tube fermentation ($200), IDEXX Quanti-Tray Sealer ($4000) and 

portable membrane filtration kits ($2700); 3 [BWB] refers to the Bluewater Biosciences WatercheckTM and is not to be confused with the B2P version, denoted [B2P]; 4 Costs for 

membrane filtration are based on one filter. More filters may be used if water is very turbid or may be highly contaminated; 5 Portable kits are available from a number of 

manufacturers including Wagtech, DelAgua and ELE. The cost varies depending on the kit and ranges from approximately $2500 to $5000; 6 PathoGel includes an indicator for 

H2S production (P/A). 
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Key for Table 4 

Symbol Meaning 

? Value not known 

N/A Not applicable 

x Equipment or resource required 

S Small 

M Medium 

L Large 

∆ Varies 

- No/Poor 

+ Yes/Moderate 

++ Good 

+++ Best 

TC Total Coliforms 

H2S Hydrogen sulphide production 

EC Escherichia coli 

TTC Thermotolerant coliforms 

RT Room temperature 

Suitable for resource setting 

Not ideal for resource setting 

Not suitable for resource setting 
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Table 5. Suppliers of proprietary water tests. 

Type Product Manufacturer Website 

Colony 
Count 

CHROMagar™ ECC CHROMagar www.chromagar.com 

CHROMagar™ Liquid ECC CHROMagar www.chromagar.com 

Chromocult EMD Chemicals www.emdchemicals.com 

Coliscan Easygel Micrology labs www.micrologylabs.com 

Coliscan MF™ Micrology labs www.micrologylabs.com 

Compact Dry EC™ Nissui Pharma www.nissui-pharm.co.jp 

Portable Membrane Filtration Delagua www.delagua.org 

Portable Membrane Filtration ELE www.ele.com 

Portable Membrane Filtration Wagtech www.wagtech.co.uk 

Portable Membrane Filtration Merck Millipore www.millipore.com 

m-Coliblue 24™ Merck Millipore www.millipore.com 

Petrifilm™ E.coli/Coliform Count  3M www.3m.com 

Petrifilm™ Aqua Coliforms 3M www.3m.com 
RAPID’E. coli Bio Rad Labs www.bio-rad.com 

ColiGel/PathoGel Charm Sciences www.charm.com 

Most 
Probable 
Number 

Aquatest™1 Aquatest consortium www.bris.ac.uk/aquatest 

Colilert 10 mL  IDEXX www.idexx.com 

Coliplate™ Bluewaterbiosciences www.bluewaterbiosciences.com 

Compartmentalised bag test 1 University of North Carolina www.unc.edu/sobseylab 

Compartmentalised bag test 1 University of North Carolina www.unc.edu/sobseylab 

EC BlueQuant Nissui Pharma www.nissui-pharm.co.jp 

LaMotte Coliform test MPN LaMotte www.lamotte.com 

Modified Colitag™/iMPN1600 1 CPI www.cpiinternational.com

Colilert/Quanti-Tray® 200 IDEXX www.idexx.com 

Colilert/Quanti-Tray® 2000 IDEXX www.idexx.com 

Presence/ 
Absence 

AquaCHROM™ CHROMagar www.chromagar.com 

Colilert® 10 or 100 mL IDEXX www.idexx.com 

Colilert® 18™ IDEXX www.idexx.com 

Colisure® IDEXX www.idexx.com 

Modified Colitag™ CPI www.cpiinternational.com 

E*Colite Charm Sciences www.charm.com 

EC Blue 100P Nissui Pharma www.nissui-pharm.co.jp 

H2S test 20 or 100 mL  LTEK www.lteksystems.com 

HiSelective™ E. coli HiMedia www.himedialabs.com 

HiWater™ HiMedia www.himedialabs.com 

LaMotte® Coliform LaMotte www.lamotte.com 

PathoScreen™ Hach www.hach.com 

Rapid HiColiform™ HiMedia www.himedialabs.com 

Readycult® EMD Chemicals www.emdchemicals.com 

Watercheck™ Bluewaterbiosciences www.bluewaterbiosciences.com 

Standard media (LTB, BGLB, EC MUG, MI Agar, m-Endo, modified m-TEC, m-FC etc.) are available from a variety 

of suppliers, including BD (www.bd.com), Sigma (http://www.sigmaaldrich.com); 1 Product not commercially 

available at time of publication. 
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4. Discussion 

There is a wide variety of characteristics within our catalogue. We recommend that users should 

select a short-list of tests for further consideration, based on two criteria: (i) matching tests to resources 

and (ii) matching tests to applications. After selecting a shortlist for further consideration, users should 

consult manufacturers’ websites to review the microbiological performance assessments that have been 

carried out to ensure that the chosen products will provide appropriate sensitivity and specificity for 

the target application. 

4.1. Matching Tests to Resource Settings 

When considering the resource constraints, is it valuable to consider a number of alternative testing 

arrangements which could include: transport of the sample to a fixed laboratory, mobile field testing 

laboratory, decentralized onsite testing, and sample preparation onsite followed by incubation in a 

laboratory. If the testing forms part of a longer term monitoring system, sampling strategies including 

screening and/or combining complementary tests should be considered. Decisions on where and how 

to conduct the testing may be equally, or more important, than the cost per test [19]. This will be the 

case especially when the costs of transport, labor, and setting up, equipping and maintaining 

laboratories are taken into account. As such, whether testing will be taking place at the source using a 

portable kit, in a nearby health clinic or district laboratory warrants careful consideration.  

The use of many of the tests included in this assessment in low- and middle-resource settings is 

limited by equipment required to conduct the tests. This is particularly the case if a decentralized 

approach to testing is adopted, wherein many full sets of equipment are needed. By selecting lower-

cost alternatives to standard equipment, or modifying testing methods (Table 6), significant savings on 

the cost of equipment may be possible. In most cases, the extent to which performance is compromised 

by these adaptations is not well understood. Despite these options, cold storage, safe handling and 

disposal, training, and temperature control during incubation or, where required, sample transport 

remain barriers to testing in low-resource settings. Furthermore, transport restrictions are known to 

apply to the consumables required for some tests, such as methanol for portable membrane filtration.  

Table 6. Alternatives to standard equipment and methods. 

Standard 1 Alternative 1 Advantages Limitations 

Laboratory 

Incubator 

($$$) 

Ambient incubation (-) 

Possibly acceptable in 

tropical climates [20] or 

potentially indoors 

Recoveries for injured bacteria may be poor; 

increased and poorly defined incubation time; 

not applicable everywhere  

Low-cost electric 

incubators ($–$$)  

e.g., egg incubator 

Good temperature control 
Reliant on electricity, may not be available for 

higher temperatures (44.5°C for TTC) 

Body incubation (-) Readily available 
Acceptability, health and safety issues and 

limited number of tests 

Phase change incubator 

($) 

Good temperature 

control, only requires hot 

water 

Requires heat source, can be bulky, particularly 

for many tests 
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Table 6. Cont. 

Standard 1 Alternative 1 Advantages Limitations 

De-ioniser 

($$$) 

Boiled water (-) Readily available 

May not inactivate all organisms; can 

concentrate chemical contaminants need to 

run blanks 

Steam distiller ($$) Produces very pure water 
Requires high-voltage and power; requires 

running water; fragile 

Autoclave (see below) 
May be available or has 

dual use (see below) 

Turbid waters may not provide suitable dilution 

water, especially for membrane filtration 

Membrane 

Filtration 

assembly & 

vacuum ($$$) 

Portable MF assembly, 

including hand pump or 

MIT D-lab kit ($–$$) 

Manual, portable 
Time consuming procedure 

Separate incubator required 

Autoclave ($$) 

Portable autoclave ($) Portable Requires heat source 

Pressure cooker ($) Independent of electricity Requires heat source 

Bleach or disinfectant ($) 
Readily available, good 

for disinfecting waste 

Handling of cultures; care must be taken in 

reusing components to prevent false negatives 

due to residual disinfectant 

Refrigerator 

or freezer ($$) 

Storage at room 

temperature (-) 

Independence from 

electricity 

Shelf-life unclear for many media, particularly 

hydrated media; samples cannot be retained 

for subsequent analysis 

Sample 

transport on 

ice 

Ambient temperature 

transport 
Simple 

Potential population increase or die-off of 

bacteria 

Insulated box (with cool 

water if available) 

May be better than 

ambient 

Change in bacterial population unknown, 

likely to be better than ambient 
1 Approximate costs are: Free (-), $ (1–100), $$ (100–1,000), $$$(1,000–10,000). 

4.2. Matching Tests to Applications 

While it is relatively straight-forward to classify tests based on suitability for resource settings and 

most manufacturers will provide performance statistics for sensitivity and specificity, a similar, simple 

classification is not possible for the suitability of tests for particular applications. The purpose of 

testing may need to be established on a case by case basis. In general, there are three main factors in 

low and medium resource settings: indicator bacteria, quantitative performance and regulatory approvals. 

The choice of indicator bacteria will be influenced by the application; a distinction can be drawn 

between cases where presence of the indicator is evidence of faecal pollution, and therefore potential 

health risk, or an assessment of the efficacy of a treatment process [21]. The former requires that the 

indicator be ubiquitous in faeces but must not occur naturally. As some total coliforms occur naturally 

in the environment E. coli, or alternatively thermotolerant coliforms, are recommended by the 

WHO [4]. This is reflected by the sanitary significance column of Tables 4 and 5. E. coli are also used 

for treatment assessment purposes, but in this context total coliforms are generally recommended [22]. 

Both indicators suffer from being more sensitive to disinfection processes than some pathogens [4]. 

Tests that detect the presence of H2S-producing bacteria are frequently used, particularly where 

resources are limited; however there is ongoing debate about their sanitary significance [23,24]. 

Quantitative tests are generally more expensive and require more resources. If the purpose of testing 

is to ascertain whether water meets national regulations (or the WHO Guidelines [4]), PA tests may be 
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entirely adequate as long as the volume is sufficient and the test has the necessary validation and 

approvals. PA tests are also valuable when monitoring water supplies that are usually free of 

contamination. The resulting string of “non-detects” or infrequent positives gives more confidence 

than a single quantitative test [25]. However, if there is a need for relative prioritization (e.g., source 

selection) or if monitoring changes over time and there is a reasonable risk of contamination, a 

quantitative test will generally add value. Furthermore, the cost per analysis increases if a wide range 

of contamination levels are to be measured with high precision. As such, the range of a test, its lower 

and upper detection limits, needs careful consideration. For operational monitoring this decision 

should be based on an understanding of the likely levels of contamination in the sources being 

assessed. Guidance on the volumes which should be assessed using membrane filtration and multiple 

tube fermentation are available elsewhere [6,11]. It should be noted that the ranges are likely to be 

strongly influenced by both indicator bacteria and source type. For surveillance monitoring the testing 

of volumes lower than the WHO Guideline of 100 mL should only be considered if the majority of 

supplies are known to be contaminated. The range and precision should also be chosen with thought 

given to data analysis, decision-making, responsibilities and integration with existing data.  

Regulatory approvals are required for compliance and, usually, surveillance monitoring. Furthermore 

they provide additional reassurance of tests’ performance. We have not conducted a review of 

international regulations; instead, we compiled information on whether tests have obtained U.S. EPA 

approval or are featured in the Standard Methods [5] or standards published by the International 

Standards Organization. These approvals are the basis of the standards in a number of countries.  

4.3. Limitations 

There are number of limitation to this assessment. Firstly, the full cost of testing will include a 

number of factors which we have not been able to take into account in this catalogue. This includes 

variability in the per test and equipment costs resulting from shipping and distribution. In most cases, a 

significant element of the overall cost of testing will be related to the resources such as labor, transport 

and infrastructure [19]. We have listed many of the resource requirements, but we do not calculate 

their associated costs; clearly this will vary considerably depending on the circumstances. Secondly, a 

number of characteristics were not included in this catalogue. Test performance in terms of false 

positive and false negative rates (or specificity and sensitivity) was not included as this information is 

not available for all tests and, unless a comparative study (e.g., [26]) is undertaken, these cannot be 

compared on a consistent basis. A review of the validations and national regulatory approvals each test 

has obtained was beyond the scope of this assessment. The precision of tests varies depending on the 

concentration of indicator bacteria. The availability of tests and equipment will vary both within and 

between countries; this would need to be established for a particular setting and factored into test 

selection. Thirdly, we do not include all microbiological growth media or tests based on the detection 

time for which sufficient information was not made available. Finally, we have not assessed the 

suitability of individual or combinations of tests for particular applications. This is because the 

information required depends on a number of variables (such as source type and regulatory standards) 

and is context specific. Moreover, ongoing debate about the sanitary significance and applicability of 

indicator bacteria, particularly H2S [23,24], limits the guidance that can be provided.  
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5. Conclusions 

Important characteristics to consider when choosing a microbial drinking-water test have been 

identified and this information has been compiled for 44 tests. The tabulated information should assist 

users in short listing tests for their particular requirements and setting. The identified tests include both 

presence/absence and quantitative tests for E. coli, total and thermotolerant coliforms, and H2S. The 

results are provided in tabular form to facilitate comparisons between tests.  

The cost per test was found to range from $0.60 to $5.00 for a presence/absence device and from 

$0.50 to $7.50 for a quantitative test. Although the costs of tests themselves are important, in fact they 

are likely to be a small component of the overall costs of testing, when the infrastructure and human 

resources are considered. The ability of tests to support alternative testing arrangements that reduce 

reliance on these resources and consequently the overall cost of testing is a key issue. 

Few of the identified tests are ideal for low-resource settings if implemented according to their 

standard protocols. This is especially the case for quantitative tests. A number of alternative 

procedures which would greatly simplify testing in low-resource environments have been identified. 

We encourage further work to evaluate these and establish guidelines for their application.  
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