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ABSTRACT OF THE DISSERTATION 

A COMPREHENSIVE PORTFOLIO CONSTRUCTION 

UNDER STOCHASTIC ENVIRONMENT 

by 

Ahmed Elshahat 

Florida International University, 2008 

Miami, Florida 

Professor Ali M. Parhizgari, Major Professor 

Prior research has established that idiosyncratic volatility of the securities prices 

exhibits a positive trend. This trend and other factors have made the merits of investment 

diversification and portfolio construction more compelling.  

A new optimization technique, a greedy algorithm, is proposed to optimize the 

weights of assets in a portfolio. The main benefits of using this algorithm are to:  a) 

increase the efficiency of the portfolio optimization process, b) implement large-scale 

optimizations, and c) improve the resulting optimal weights. In addition, the technique 

utilizes a novel approach in the construction of a time-varying covariance matrix. This 

involves the application of a modified integrated dynamic conditional correlation 

GARCH (IDCC - GARCH) model to account for the dynamics of the conditional 

covariance matrices that are employed.  

The stochastic aspects of the expected return of the securities are integrated into 

the technique through Monte Carlo simulations. Instead of representing the expected 

returns as deterministic values, they are assigned simulated values based on their 

historical measures. The time-series of the securities are fitted into a probability 
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distribution that matches the time-series characteristics using the Anderson-Darling 

goodness-of-fit criterion.  Simulated and actual data sets are used to further generalize the 

results. Employing the S&P500 securities as the base, 2000 simulated data sets are 

created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to 

generate 50 sample data sets.  

The results indicate an increase in risk-return performance. Choosing the Value-

at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial 

product currently available on the market, as the comparison for benchmarking, the new 

greedy technique clearly outperforms others using a sample of the S&P500 and the 

Russell 1000 securities. The resulting improvements in performance are consistent 

among five securities selection methods (maximum, minimum, random, absolute 

minimum, and absolute maximum) and three covariance structures (unconditional, 

orthogonal GARCH, and integrated dynamic conditional GARCH). 
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Chapter 1 

Introduction 

Prior research has established that idiosyncratic volatility of the securities prices 

exhibits a positive trend (see, for instance, Campbell et al. (2001), Morck et al. (2000), 

PAstor and Pietro (2003), and Wei and Zhang (2006)). This trend and other factors have 

made the merits of investment diversification and portfolio construction more compelling 

now than in the past. Furthermore, today’s portfolio construction models are more 

computationally complex, and they include more parameters and constraints than 

Markowitz’s classical Mean-Variance (MV) optimization model.  

In addition to the complexity added by including constraints, the estimation 

process of the parameters of the models are more computationally complex than the 

models used in the past. For example, instead of using the unconditional covariance 

matrix, today’s models use multivariate variants of conditional variances and 

covariances, like the multivariate GARCH. With all these complexities, it does not make 

much sense to use models that cannot optimize a portfolio of securities, especially a large 

one, in a reasonable time. 

 This dissertation proposes the use of a greedy algorithm in portfolio optimization. 

The main benefits of using this algorithm are to:  a) increase the efficiency of the 

portfolio optimization process, b) implement large-scale optimizations, and c) improve 

the resulting optimal weights. The greedy algorithm is a very efficient algorithm; it does 

not reconsider any previous selections but moves to newer iterations. The efficiency of an 
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algorithm is a significant factor especially with today’s computationally complex 

mathematical models. 

As with any model, the quality of the output depends on the quality of the input, 

other things being equal. The main criticism of the MV optimization was its sensitivity to 

the inputs used. The main input to a portfolio optimization model is the variance-

covariance matrix. In the proposed model, much attention is paid to the input estimation, 

so that the model is fed with reliable inputs. A conditional covariance matrix is used 

instead of the traditional unconditional covariance matrix to account for the non-

stationary in time-series of the returns. Four different conditional estimation techniques 

are used to estimate the covariance matrix.  These are the traditional unconditional 

covariance matrix, the Constant Conditional Correlation Generalized Autoregressive 

Conditional Heteroskadesticity (GARCH) covariance, the Integrated Dynamic 

Conditional Correlation GARCH covariance matrix, and the Orthogonal GARCH 

covariance matrix. The best results were reached using an adaptive variant of the 

Orthogonal GARCH.  

In this dissertation the stochastic nature of the expected returns is integrated using 

stochastic programming and Monte Carlo simulation. Stochastic programming is a class 

of methods that incorporate the stochastic nature of variables into the traditional 

mathematical programming framework (see, Ruszczyriski and Shapiro (2006)). Instead 

of representing the expected returns as deterministic values, they are assigned scenarios 

generated in advance, based on their historical values. The historical time-series used in 
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our model are fitted into a probability distribution that matches the time-series 

characteristics using the Anderson-Darling goodness-of-fit criterion.  

After the time-series are represented by a probability distribution, the Monte 

Carlo simulation uses the probability distribution to generate different expected returns. 

For example, if a time-series is fitted to a normal distribution, the mean of the distribution 

is the most likely value, so it has a better chance of being generated as an input, but that 

does not prevent other values – with lower probability – from appearing in the 

simulations.  

To make the results more generalized, simulated data sets are used in addition to 

the original data set. Using the initial data set as a base, 2000 simulated data sets are 

created using the Monte Carlo simulation. The methodology used to create the simulated 

data sets is similar to the methodology used in the portfolio resampling techniques 

(Scherer (2002)). 

The remaining parts of this dissertation are organized as follows. The second 

chapter provides a review of portfolio construction framework. The framework covers six 

stages that an investor goes through to construct an optimal portfolio. The first stage is 

determining the portfolio’s objective. The second stage determines a procedure to screen 

out securities that do not meet the requirements of the investors. The third stage discusses 

in detail the different types of portfolio constraints that are used in practice. The fourth 

stage focuses on the portfolio optimization and the optimization algorithms. The fifth and 

the sixth stages discuss the portfolio revisions and performance evaluation issues. 
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The third chapter covers some aspects of the theoretical and empirical techniques 

to estimate inputs of the portfolio model. The chapter starts by discussing the financial 

data irregularities that need to be considered when estimating the parameters, mainly, 

data non-stationarity and the return probability distribution’s fat tails. The different return 

estimation models along with their pros and cons are then discussed. The chapter 

concludes by a discussion about the volatility and the covalatility estimation models. 

The fourth chapter discusses the empirical results. The chapter starts by 

presenting the data set used, and the simulations used to create more variants of the data 

set. The methodology used to estimate the model’s inputs is discussed next, followed by a 

discussion of the application of the greedy algorithm in the portfolio construction. The 

chapter ends by presenting the results reached. Five different selection techniques are 

proposed to select the securities to be included in the optimal portfolio. All the five 

selection techniques are used in the same greedy algorithm framework. Consistent with 

some aspects of the modern portfolio theory, the technique that maximizes the weights of 

securities with the least correlation outperformed the other selection techniques. The 

results of this selection technique are compared to three different benchmarks: S&P500 

index, Russell 1000 index, and Crystal Ball. Crystal Ball is a commercial software used 

to optimize the weights of securities portfolios.  

The results of the proposed model, using the traditional unconditional covariance 

matrix, significantly outperform the three benchmarks used. Furthermore, the use of the 

conditional covariance matrices improves the results further, especially with the 

Orthogonal GARCH covariance matrix.  
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The fifth chapter provides a summary of the results reached, the limitations of the 

results, and the potential for future work.  
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Chapter 2 

Portfolio Construction Framework 

Harry Markowitz’s seminal works on portfolio selection (Markowitz (1952) and  

Markowitz (1987)) have created a shift in the investment field’s focus from individual 

security selection to portfolio construction. The focus of most investment managers is 

now on how an individual security will contribute to the portfolio’s risk and return, rather 

than on estimating the expected risk and return profile of that specific security. This 

chapter provides a review of portfolio construction. The portfolio construction process 

can be summarized in the six steps shown in Figure (1).  

The first and the most important step is setting the objective of the portfolio, as it 

sets the stage for everything to follow.  The second step is to select the securities to be 

included in the portfolio. The third step is to set the constraints to be considered in the 

model. The fourth step is to select the correct algorithm in order to optimize values. The 

fifth step is to set the points for revising the portfolio. The final step is to evaluate the 

portfolio to see whether it has achieved the stated objectives. 

The second step should be distinguished from the fourth step (portfolio 

optimization). Step two involves building expectations about the return, volatility, and 

co-volatility between securities, before applying a selection criterion. This selection is 

meant to narrow down the securities pool to a manageable number. The discretion of the 

investor can be integrated at this stage. Compared with step two, step four is an 

automated selection, based on a pre-specified procedure.   



7 

 

 

 

Figure 1: The Portfolio Construction Process 

2.1. Portfolio Objective  

The statement of the portfolio objective is the most important step in creating a 

portfolio as it forms the basis for everything else in the process (Barksdale and Green 

(1990); Fogler and Russell (1978); Ramaswami et al. (1992)). Particularly in today’s 

financial markets, where every step is governed by sophisticated rules and regulations, 

the portfolio objective is heavily emphasized. The area of securities fraud and 

mismanagement emphasize the importance of clearly stating the portfolio’s objective and 

its implications to the investor (see NASD Manual). For example, the retirement plans in 

the United States, as stated in Section 402 (b)(1) of the Employee Retirement Income 

Security Act of 1974 (ERISA),  requires that: 
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 “Every employee benefit plan shall provide a 

procedure for establishing and carrying out a 

funding policy and method consistent with the 

objectives of the plan.” 

Setting the objective of the portfolio may appear to be an easy task, but a number 

of difficulties exist. These difficulties include: semantics, indecision, subjectivity, and 

multiple beneficiaries (Strong (1999)). With respect to semantics, not every investor has 

the same understanding of the terminologies used in the field.  Common terms, like 

growth, income, and liquidity, may mean different things to different people. Clarifying 

the semantics still leaves some investors undecided, particularly due to the subjective 

nature of investing. The same security might be perceived as a growth security to one 

investor and as an income security to another. 

Although the portfolio objective terminology may differ from one investor to 

another, still the objective can be categorized in one of four categories; preserving the 

principal, income, growth of income, or capital appreciation (Strong (1999)). The most 

conservative objective is the capital preserving. As the name indicates, this objective is 

ensuring that the principal is not jeopardized. Theoretically, this objective generates the 

lowest return. The income objective focuses on generating a smooth flow of income and, 

unlike principal preservation, there is no prohibition against decrease in the principal.  

The growth of income objective attempts to generate an income level that will 

maintain the purchasing power of the investor. Generally, this is achieved by providing 

an increasing level of income over time. The level of increase is generally dictated by the 

level of inflation and risk. Sacrificing current return for higher future return is a common 



9 

 

practice under this objective, and therefore there is no prohibition against decrease in the 

principal.  

The fourth objective, capital appreciation, is a long term objective. It does not 

require any income generation, but rather seeks to obtain capital appreciation. This 

objective involves different tiers based on the investment horizon of the investor, and 

his/her risk tolerance. An investor needs to determine how long he is willing to sacrifice 

liquidity (to determine the investment horizon), and how much he/she is willing to lose 

(to determine the risk tolerance).  

2.2. Securities Screening and Selection 

Security screening is a critical step in portfolio construction that is heavily 

emphasized in practice (Antia and Fridson (2008); Gold and Lebowitz (1999)), but not 

addressed seriously in the literature. The reason might be the trend towards portfolio 

management rather than securities analysis. A number of papers in the literature provide 

some evidence that selecting random stocks is as successful as selecting favorite stocks 

(Evans and Archer (1968)). Securities screening is a procedure aimed at reducing the 

securities population to a manageable size. An investor must choose one security out of 

the thousands listed in the NYSE, Amex, and the NASDAQ, and the many more 

thousands listed overseas.  

The main advantage of securities screening is saving time and avoiding data 

overload. Foe example, if an investor spends only five minutes analyzing a specific stock, 

he/she will need forty hours to analyzing five hundred stocks, and even after such a long 

period of time, the investor will most likely only be more confused. Securities screening 
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also ensures that the securities population meets the investor’s minimum requirements. 

Feeding an optimizer with parameters for thousands of securities might lead to many 

problems. First is the scalability problem, where the optimizer might not be able to 

handle the whole data set. Second is the efficiency problem, where the optimizer might 

take long time to provide optimal solutions. Third, the optimizer might select stocks that 

do not meet the investor’s objective.  

A “security screen” determines which securities to be considered and which to be 

screened out. A major criterion in selecting a sufficient screen is its relevance to the 

investor’s objective. In practice, a multistage screening process is always used, as one 

cannot find a screen that will cover the entire relevant requirement. For example, the use 

of profitability ratios is not very meaningful in isolation. It is necessary to integrate it 

with other ratios to obtain a larger and more relevant picture. Some screens utilize 

objective criterion such as financial ratios, industry averages, and index levels, while 

others use subjective screens implied by the investors. Some screens reflect the past, like 

financial ratios, while others utilize forward-looking criterion, such as expected growth 

rates and expected P/E ratios. 

Socially responsible investing (SRI) is one of the well-known subjective screens 

used as a positive and creative means for allocation of resources (Bakshi (2007)). It is 

defined by the social investment forum as follows (Social Investment Forum: Socially 

Responsible Investing Basics for Individuals): 

“SRI is a broad-based approach to investing that now encompasses 
an estimated $2.71 trillion out of $25.1 trillion in the U.S. investment 
marketplace today. SRI recognizes that corporate responsibility and 
societal concerns are valid parts of investment decisions. SRI 
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considers both the investor's financial needs and an investment’s 
impact on society. SRI investors encourage corporations to improve 
their practices on environmental, social, and governance issues. You 
may also hear SRI-like approaches to investing referred to as mission 
investing, responsible investing, double or triple bottom line 
investing, ethical investing, sustainable investing, or green 
investing.” 

A large number of researchers have investigated the SRI area and found positive 

results. Some researchers found that using the SRI screens leads to an annual 8.7% 

abnormal return (Kempf and Osthoff (2007)). Others studied the effect of the SRI in the 

portfolio context to see whether the usage of SRI screens would affect the level of 

diversification. Evidence supports the claim that portfolios using the SRI screens do not 

differ significantly from those that do not use the SRI (Bello (2005)).  

Academic researchers frequently use screeners such as the S&P Compustat tapes, 

where it is possible to set conditional statements using a list of variables, comparison 

operators, and desired values to assemble a population of securities that meet the pre-

specified criteria. For practitioners, Bloomberg is the strongest platform in the field that 

allows the screening of securities from around the world. Brokerage houses such as 

Fidelity, Schwab, and Merrill Lynch provide screening tools to their clients. Furthermore, 

Yahoo (Stock Screener - Yahoo! Finance) and MSN (MSN Money - Stock Screener: 

Custom Stock Search), provide free powerful securities screeners that enable investors to 

create their own queries using several hundred statistical characteristics.  

Different investors use different strategies to select securities. Some of these 

strategies are quantitative in nature, others are subjective. The quantitative strategies are 

based on models that utilize numerical data. Most of the fundamental analysis fall into 



12 

 

this category. The qualitative models are subjective in nature, and they include most of 

the technical analysis. Regardless of whether the strategy used is quantitative or 

qualitative, an effective strategy must be consistent, applicable in a large scale context, 

and programmable (Fabozzi et al. (2007)).  

The securities selection strategies can be categorized into the following three 

categories: trend strategies, strategies that use exogenous predictors, and strategies that 

use econometric models.  

2.2.1. Trend Strategies  

Trend strategies are probably the most widely-used securities selection strategy. 

They include such strategies as the momentum strategy, and reversal (contrarian) 

strategy. The momentum strategy capitalizes on the persistence of trends over periods 

between 3 to 18 months (Chan et al. (1996a); Jegadeesh (1990); Parhizgari and Duong, 

(2008)). Researchers show that weekly and monthly stock returns tend to have negative 

autocorrelation. Thus, the securities with the best performance during the previous week 

are likely to perform weakly during the following week, and the securities with the 

worst performance in the previous week tend to have the best performance during the 

following week.  

Jegadeesh and Lehmann show that a strategy that buys the winner and sells the 

losers will consistently generate almost 30% annual return before transaction cost 

(Jegadeesh (1990); Lehmann (1990)). More and more research has accumulated 

evidence in favor of momentum strategy profits (Avramov et al. (2007); Miffre and 

Rallis (2007); Scowcroft and Sefton (2005)).  Reversal strategy attempts to identify a 
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change of direction in a trend. The reversal strategy tends to occur either over a very 

short period (less than three months) or on longer horizons (three to five years). Since 

the initial evidence of DeBondt and Thaler (DeBondt and Thaler (1985)), further 

findings have been reached to support the reversal strategy (Avramov et al. (2006); Platt 

(2006)).  

Although most academic studies agree that these strategies exist, the trend driver 

is not agreed upon (Jegadeesh and Titman (2001); Scowcroft and Sefton (2005)). 

Furthermore, regardless of the trend driver, these strategies lead to frequent trading, 

which leads to transaction costs. Korajczyk and Sadka (2004) show that these strategies 

are still profitable even after considering the transaction cost. 

2.2.2. Strategies using exogenous factors 

The second category of securities selection models includes regression models of 

return (or excess return) on exogenous explanatory variable. These exogenous variables 

include accounting variables such as the price per earnings (P/E), price per dividends 

(P/D), price per book value (P/B), as well as non-accounting variables such as the market 

capitalization. Many studies have provided evidence for these relationships, including 

Gordon, who demonstrated the negative relationship between stock returns and the firms’ 

size (Gordon (1962a)), (Basu (1977); Campbell and Shiller (2001)).  

2.2.3. Strategies using Econometric models  

Strategies using more sophisticated econometric and time series models are 

getting more acceptances for forecasting purposes (as will be detailed in the following 

two chapters). These models include autoregressive (AR) models (Campbell et al. 
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(1998a)), dynamic factor approach (Stock and Watson (2005)), and cointegration 

techniques (Fabozzi, Kolm and Pachamanova (2007)).  

2.3. Common Portfolio Constraints 

Undoubtedly Markowitz’s seminal work on portfolio selection has had a major 

impact on the field, and  the classical mean-variance (MV) framework can still serve as 

a starting point. In the MV optimization framework, the inclusion of a security in a 

portfolio is merely a function of its interaction with other assets in the portfolio, without 

considering other factors such as the investor’s objective, transaction cost, and 

investment regulations. The MV optimization is often extended in several directions. In 

the previous section, a general coverage of securities screening and selection was 

provided. As stated previously, this step is used to start with a generally accepted pool of 

securities, and to ensure that the number of securities in this pool is manageable. In 

practice, Markowitz’s MV optimization is often amended with various types of 

constraints to satisfy specific objectives. In this section, the common constraints used in 

practice are explored. These constraints can be grouped into two categories: linear (or 

quadratic) constraints, and combinatorial constraints.  

2.3.1. Linear and quadratic Constraints  

These are the commonly used constraints and can be easily handled by typical 

optimizers for solving the MV problem. These constraints include (Fabozzi, Kolm and 

Pachamanova (2007)): budget constraint, long-only constraints, turnover constraints, 

holding constraints, risk factor constraints, and benchmark exposure and tracking error 

constraints. The following notations are used: 

W0 Vector of portfolio’s initial weights.  



15 

 

WP 

 

 

N 
  i 
p 

 

Vector of optimal Weights 

The amount to be traded (WP-W0) 

An individual security 

The total number of available securities  

“ ” as a subscript refers to a security “  " 

“ ” as a subscript refers to a portfolio 

 

 

2.3.1.1. Budget Constraint 

The budget constraint is a linear equality constraint on the optimization. It 

restricts the portfolio weights sum to one. It is also known as full investment constraint. It 

is stated as follows: 

 

2.3.1.2. Long-only constraint 

The long only (no-short-selling) constraint is a linear constraint that sets the sign 

of all the weights to be non-negative. It reflects the avoidance of unlimited liability 

investment that institutional investors are required to follow:  

 

The budget and the long-only constraints are standard constraints used in many 

optimizations. However, advances in trading technology has made short-selling strategies 

more economically viable (Michaud (1998)). Furthermore, research has found that the 

inclusion of the short-selling constraint leads to a sub-optimal portfolio (Gómez and 

Sharma (2006)).  
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2.3.1.3. Turnover constraint  

Frequently revising the portfolio leads to high transaction costs. Thus, it is 

common to have a turnover constraint in a portfolio optimization setting (Schreiner 

(1980)). The constraint can be set for individual assets, using the following relation 

(where U is the upper bound vector): 

 

or it can be set for the whole portfolio, using the following relation: 

 

Alternatively one can use some combination of both constraints. A number of academic 

studies have provided evidence against the benefit of the turnover constraint, stating that 

including this constraint simply limit the investor’s ability to exploit beneficial trades 

(Clarke, de Silva, and Thorley (2001)). Often the upper bound ( ) of the turnover 

constraint is determined based on the average daily volume of security . 

2.3.1.4. Bound Constraint 

Another linear constraint commonly used in the portfolio setting is the bound 

constraint, also known as the holding constraint. The objective of this constraint is to set 

a bound on the weight of specific security. Without the bound constraint, the weight of a 

security can take any value between 0% (which could be negative if there is no short 

sales constraint) and 100% (which could be more than 100% if there is no budget 
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constraint). The bound constraint can be set as follows (where L is the lower bound 

vector): 

 

Without the bound constraint, the ultimate portfolio might not be well-diversified. 

The main objective of the bound constraint is to avoid large concentrations in any 

specific asset’s class, industry, sector, or country. The bound constraint can also be used 

to restrict a specific industry or asset class for the portfolio. This can be set as follows: 

 

2.3.1.5. Risk constraint 

If the optimization objective is to maximize the portfolio’s return, then there must 

be a risk constraint. Without the risk constraint the optimizer will pick up only the stock 

with the highest return to maximize the objective. To achieve the portfolio diversification 

effect, the risk factor must be properly included in the settings. Risk can be the 

optimization objective, part of the optimization objective, or part of the constraints. The 

risk constraint depends on the risk measurement used. Risk measurement is discussed in 

detail in a later chapter. 

2.3.1.6. Benchmark exposure and tracking error constraint 

Some investors – typically passive investors or index fund managers – prefer to 

compare their portfolio to a benchmark. Their objective is to consistently perform better 

than the benchmark. Even a slight over-performance as compared to the benchmark is 

generally acceptable. For this case, a benchmark exposure needs to be included in the 

setting. The easiest way is to restrict the securities weight in the portfolio to be in the 
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neighborhood of the weight of the securities’ weights in the benchmark. Let  be the 

benchmark weights (market capitalization weights), then a common benchmark 

constraint could be set as follows to restrict the portfolio weights from deviating from the 

benchmark weight (where D is a subjective deviation level): 

 

Another way to achieve the same objective is by using the tracking error of the 

variance (TEV) constraint (El-Hassan and Kofman (2003)). The tracking error is the 

variance of the difference between the portfolio’s return ( ) and the benchmark return 

( ). Note that  , and  . The TEV can be calculated as: 

 

where ∑ is the covariance matrix of the securities returns. The  is then restricted to a 

subjective value determined by the investor. Note that a portfolio with the tracking error 

constraint as the only constraint overlooks the portfolio risk. This can lead to inefficient 

MV portfolios (Jorion (2003)). 

The constraints discussed so far can be easily integrated into the MV quadratic 

programming framework. Different algorithms that can integrate these constraints are 

available. However, some of these algorithms only search for local optimum value 

(approximate MV optimizers). It is worth mentioning that the use of these constraints 

depends mainly on the investor’s objective. An investor does not have to use all of them; 

it is just a matter of personal objective. In the following section combinatorial and integer 

constraints are presented. 
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2.3.2. Combinatorial Constraints 

These are integer constraints that are combinatorial in nature. They are more 

difficult to handle in comparison to the linear and quadratic constraints mentioned above. 

Typically they are not preprogrammed in the commonly used MV optimizers. These 

constraints include (Fabozzi, Kolm and Pachamanova (2007)), minimum holding and 

transaction-size constraints, cardinality constraints, and round lot constraints. 

2.3.2.1. Minimum holding and transaction-size constraints 

One of the practical weaknesses of the MV optimization is the weights 

concentration. Often the MV optimization results in a few large weights and many small 

weights. These small weights lead to relatively high transaction costs and they contribute 

little to the portfolio diversification, which makes them not profitable to hold in the 

portfolio. To eliminate the small weights an investor can include a minimum holding 

constraint or a transaction size constraint. These two constraints can either be included in 

the portfolio optimization setting or can be used after the optimization to adjust the 

resulting weights. The minimum holding constraint can be set as (  is the minimum 

holding size for asset ); 

    where   

The transaction size constraint can be similarly set as (where t is the amount to be traded, 

calculated as the difference between ): 
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2.3.2.2. Cardinality constraint 

Even after using the minimum holding constraint, and the transaction size 

constraint, the optimizer can result in a large number of positions or large number of 

trades. To ensure that this problem is overcome, an investor can use a constraint 

commonly used simultaneously with the minimum holding and/or transaction size 

constraint, known as cardinality constraint. The cardinality constraint restricts the number 

of securities to be included in the optimal portfolio. The cardinality constraint is 

commonly used by investors attempting to track a benchmark using a small number of 

securities. The cardinality constraint can be set as: 

 

where K is a positive integer smaller than I (investment pool). 

2.3.2.3. Round lot constraint 

The MV optimization assumes a perfect fractionability of the securities. 

Furthermore, it does not consider the round lot transaction cost savings. To consider the 

round lot transaction cost savings and to relax the assumption of the perfect 

fractionability of the market, the round lot constraint is included in the optimization 

model. Furthermore, if stock options are used in the portfolio setting, then using round 

lots becomes a necessity, because options can only be written in round lots. The easiest 

way to integrate the round lot constraint to the optimization problem is to integrate it into 

the portfolio’s weights ( ). The portfolio weights can be represented as follows 

(Fabozzi, Kolm and Pachamanova (2007)): 
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where  is an integer number representing the number of round lots to be considered,  

is a fraction of the portfolio’s wealth,  is the initial security’s price,  is the number of 

securities in a round lot, and the   is the total portfolio wealth. Note that  is not just a 

percentage anymore – it has become a dependent variable. The inclusion of the round lot 

constraint makes a lot of sense, as it has a direct effect on transaction cost reduction. 

However, occasionally it produces a small increase in risk for a pre-specified level of 

return (Chiam et al. (2008)). Often the resulting optimal portfolio using the round lot 

constraint is different that the rounded standard MV optimal portfolio rounded to the 

nearest round lot (Chang et al. (2000)).  

The resulting efficiency frontier from the unconstrained optimization is 

continuous and relatively smooth, which means that the optimization process is relatively 

straightforward. However, the inclusion of these constraints complicates the optimization 

process. The inclusion of the binary and integer variable complicates the MV 

optimization as well as the original quadratic program. With the combinatorial 

constraints, the new formulation becomes a quadratic mixed integer program which 

requires more sophisticated and specialized algorithms that often require significant 

computing time.  
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2.4. Portfolio Optimization 

The optimization concept is fundamental to finance theory. Optimization, in a 

literal sense, refers to finding the optimal value for a problem given a number of 

constraints. In a portfolio context, portfolio optimization is a computational procedure 

that searches for securities optimal weights. Thus, portfolio optimization is a selection 

process. If the optimal weight includes a zero percent for a certain security, this security 

is screened out. As compared to the second section of this chapter, portfolio 

optimization can be perceived as a designed and/or automated selection process. 

Markowitz introduced the classical framework for mean-variance (MV) optimization. 

For an up-to-date revision of the MV optimizations see Steinbach (2001).  

The mathematical formulation of the MV optimization is as follows. Let; 

N = Number of securities available 

W = Vector of portfolio weights on the N securities 

R = Vector of expected returns of the N securities 

∑ = Covariance matrix of the N securities’ return 

1 = Vector of ones of length N 

The portfolio’s mean is calculated as the weighted average of the individual 

securities’ return, and the portfolio’s risk is calculated based on the co-movements 

between the securities included.  
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In the MV setting, the objective function is either to minimize the portfolio’s risk 

for a given level of (minimum required) return ( ), or to maximize the portfolio’s 

return for a given level of risk (maximum accepted risk). For the former objective (risk 

minimization), the optimization setting is as follows; 

Minimize:  

Subject to the constraint:  

As discussed in the previous section, more and more constraints are added to the 

classical MV optimization to satisfy different objectives. One of the useful alternative 

settings for the MV optimization is the parametric quadratic programming (Stone 

(1973)). In the parametric quadratic programming a parameter is added to the objective 

function to reflect the return. Thus, the objective function includes both risk and return. 

Other parametric quadratic methods include the Markowitz’s critical-line algorithm 

(Beale (1955); Markowitz (1952); Markowitz (1987)), and the simplex algorithm (Beale 

(1959); Wolfe (1959)). For a more recent review of the algorithms used for solving 

convex optimization problems see (Boyd and Vandenberghe (2004)). 

Optimization is the process of attempting to find the optimal solution to a 

problem that may have different possible solutions. Most of these problems involve 

many variables that interact based on a set of predetermined relations and constraints. 

The portfolio optimization techniques start with an initial portfolio with initial weights, 

and continue to improve them. The optimization algorithm lies at the core of the process, 

which is how improvements are made.  
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This section will answer the question of why an algorithm matters in the 

optimization process. Next, the algorithms commonly available will be introduced, 

along with the optimality conditions, and the section ends by pinpointing the major 

optimality pitfalls to be avoided. 

2.4.1. Why does the algorithm matter? 

An algorithm is defined as a sequence of computational procedures that 

transforms inputs to outputs (Cormen (2001)). Two main properties are used to assess 

the quality of any algorithm. These two properties are correctness and efficiency. An 

algorithm is said to be correct if for every input the correct output is produced. That does 

not mean that incorrect algorithms are useless. Incorrect algorithms could be useful if 

their error rate can be controlled. In the algorithms literature, efficiency refers to speed 

of processing, in other words, how long it will take for the algorithm to produce the 

results. These two properties are investigated in the field of “Theory of Computation and 

Complexity”.  

Theory of computation helps to formalize the question whether a problem can be 

solved on a computational model using an algorithm. If a problem can be solved, the 

theory then addresses the efficiency. This field is thus divided into two branches – 

computability and complexity. Computability theory, as the name indicates, addresses 

the question of whether a problem is computationally solvable. Complexity theory 

studies how efficiently a problem can be solved and it addresses the algorithm’s 

scalability. In other words, the complexity theory monitors the relationship between the 

input size to the memory requirements and running time of the algorithm. This is also 
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known as the scalability problem, which can be described as the ability of the system or 

process to handle growing quantities of data or to be readily enlarged.  

In the literature of the complexity theory, algorithms are categorized into 

complexity classes. Two major classes that are relevant to the portfolio optimization 

discussion is the NP and P complexity classes. The class NP is the class of problems that 

can be solved using non-deterministic polynomial-time algorithms. This class is a set of 

decision problems whose solutions can be verified by a deterministic Turing machine
1
 in 

polynomial time (Turing (1936)). The traveling salesman problem is an example of a 

problem from the NP class. The class P is the class of problems that can be solved using 

deterministic polynomial-time algorithms. The problems in class P are efficiently 

solvable. The class NP includes a subclass of problems called NP-complete. The 

solutions to problems of this subclass suffer from scalability. Many problems from the 

area of operations research fall under this category; see (Cockshott and Michaelson 

(2007)). Another subclass is called NP-hard, which consists of problem that are at least 

as hard as the hardest problems in NP. Examples of this subclass include portfolio 

optimization problems.  

Algorithms devised to solve the same problem often differ dramatically in their 

efficiency (speed). Algorithms, like computer hardware, are a technology. Particularly in 

today’s financial markets, characterized by rapid information dissemination and 

increasingly large offerings of securities, the speed of an algorithm becomes critical. 

                                                           

1
 Turing machines are basic abstract symbol-manipulating devices that can adapt to the simulated logic of 

any computer. 
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Even with fast processors and assuming an abundance of memory space, an algorithm 

significantly affects the speed of processing (Cormen (2001)). It may seem surprising 

that many portfolio optimizers are not exact solution algorithms, but are instead 

approximate optimizers. Approximate optimizers have limitations; they may find 

suboptimal solutions or even infeasible solutions. Approximate optimizers are used to 

handle NP-complete problems. A significant number of algorithms used today for 

portfolio optimization attempt only local optima (Cornuejols and Tutuncu (2006)).  

2.4.2. The search techniques mechanism 

This area of optimization is highly technical and providing a full theoretical 

coverage of these optimizations is beyond the scope of this dissertation. However, a 

basic understanding of how an algorithm works is necessary to use an optimizer. For a 

detailed technical coverage of these algorithms, see (Nocedal and Wright (1999)).  

Most optimization algorithms are of an iterative nature, where the algorithm 

generates a number of solutions that gets closer and closer to the optimal value. Since 

the optimal value is not known in advance, there must be a termination or convergence 

criteria that determines when the algorithm should stop searching. Among the common 

algorithms used in the field for linear problems are the simplex methods and the interior-

point methods. For the unconstrained nonlinear models, the Newton-type algorithm is 

the most common. For the constrained nonlinear models, modern interior point methods 

and sequential quadratic programming are common. For the more sophisticated model 

that contains combinatorial and integer constraints, the following algorithms are 

common: branch and bound, cutting planes algorithms, and special purpose heuristics. 
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2.4.3. Optimality conditions 

The first order optimality condition for a smooth function is that the derivative of 

the function is equal to zero. This condition is easy to comprehend in two-dimensional 

space. Let  be a local minimum of the optimization function, and  for 

all . The unconstrained optimization problem can be set as: 

 

where  is an N-dimensional function. The necessary optimality condition is given the 

following gradient condition: 

 

If an equality constraint exists, the same optimality condition can be used, by 

converting the constraint problem into an unconstraint problem. This can be achieved by 

including the equality constraint in the objective function using the Lagrangian 

multiplier method. The only difference will be partially deriving the objective function 

once with respect to the x and once with respect to the λ (Lagrangian multiplier). If an 

inequality constraint exists, then the optimality condition is given by Karush-Kuhn-

Tucker (Karush (1939); Kjeldsen (2000); Kuhn and Tucker (1951)). The Karush-Kuhn-

Tucker (KKT) is a necessary optimality condition for nonlinear problems (given the 

regularity conditions). The KKT is a generalization of the Lagrangian multiplier method. 
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2.5. Portfolio Revision 

Portfolio revision is an integral part of managing a portfolio. Although there is a 

large body of academic research that supports passive investment, portfolio revision 

remains a critical factor. The statement of investment policy and investment objective 

often requires portfolio revision to maintain a certain level of income, risk, or return. 

Portfolio revision (rebalancing) includes different strategies. Some strategies attempt to 

maintain the same percentages of the asset classes involved, such as the constant mix 

strategy (Wilkens, Heck and Cochran (2006)).  

Although the constant mix strategy attempts to maintain the status quo, it sells 

appreciating assets and buys depreciating assets. Whether the market is increasing or 

decreasing, the constant mix strategy literally does that. Some portfolio managers are 

forced to use this strategy due to investment policy restrictions. Others hope to make 

profits from trend reversals. However, given that portfolios generally get revised once 

every three to twelve months (a period known for momentum trends), it is not often the 

case that profits are made from trend reversals (Grinblatt et al. (1995); Jegadeesh and 

Titman (2001)). 

Another frequently used portfolio revision strategy is the Constant Proportion 

Portfolio Insurance (CPPI) (Kingston (1989)). The CPPI only maintains a certain level 

(floor value) invested in a low-risk asset class (often fixed income security) that is 

perceived as the portfolio insurance. Any excess value over the floor can be invested 

elsewhere using a multiplier that determines the aggressiveness of the investor. This 

strategy gives the portfolio manager more freedom to buy more of the appreciating asset 

classes and sell the depreciating classes. The downside of this strategy is its tendency to 
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concentrate on specific asset classes which may affect the overall portfolio’s risk. Other 

portfolio revision strategies focus on other parameters such as the portfolio’s beta, its 

relation to an index, the portfolio’s standard deviation, etc.  

Revising a portfolio comes at a cost. Each time a revision is made, trading fees 

are incurred, commissions are paid, and probable transfer taxes are imposed (only in 

some states). Indirect consequences of portfolio revision also include increasing the 

noise in the market place. Institutional investors revising their holding to coincide with 

the investment objective, these revisions in turn increase price volatility and create noise 

in the market place. Another indirect cost of portfolio revision is the management time 

and potential income tax implication (Feldstein and Slemrod (1980)). 

2.6. Portfolio Performance Evaluation 

Portfolio evaluation is one of the critical stages in portfolio management that is 

often not addressed intensively. The objective of this stage is to see whether a portfolio 

achieved its objective. To properly evaluate the portfolio performance, one needs a 

reliable measure for both return and risk. Although fund managers are actually appraised 

on the realized return, with little risk consideration (Strong (1988)), from an academic 

point of view, risk should be an integral part of the performance appraisal.  

The most commonly used performance measurement is the Sharpe ratio (Sharpe 

(1966); Sharpe (1998)), the excess return of the portfolio divided by the portfolio 

standard deviation as a risk-adjusted return measurement for the portfolio performance. 

Treynor used a more generic measurement that applies to both individual securities as 

well as to portfolios by using the beta in the denominator (Treynor (1965)).  Jensen 

proposed another measure for portfolio performance (Jensen (1967)). Jensen stated that 
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running a regression of the excess market return on a portfolio’s excess return should 

lead to a zero intercept (alpha). A positive intercept reflects outperforming the market. 

Many researchers have documented weaknesses in the Jensen measurement.  

In practice, many fund managers are still being assessed based on the portfolio’s 

return figures as compared to a certain benchmark. In case of frequent cash deposits and 

withdrawal, time-weighted or money-weighted rates of return are appropriate 

performance appraisals (Fama (1972)). The Value-at-Risk (VaR) approach is gaining 

more acceptance as a performance evaluation variable (Alexander and Baptista (2003)). 

The VaR and its conditional forms are discussed in details in a later chapter. Many 

researchers have proposed improvements to the Sharpe ratio including the Sharpe ratio 

with expert betas (Bilbao et al. (2007)), Dowd’s adjusted Sharpe ratio (Dowd (2000)), 

and others (Israelsen (2005); Lo (2002); Nielsen and Vassalou (2008)). 
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Chapter 3 

Estimating Portfolio Parameters:  

Theoretical and Empirical Background 

The investment value of a portfolio depends on the estimated parameters, before it 

depends on the optimization process. A perfect optimization process will lead to a sub-

optimal portfolio when it optimizes inaccurate parameters. Traditionally, investors use 

historical data to calculate statistical parameters needed to calculate the MV portfolio. 

The investor’s objective is to maximize the expected return of his or her portfolio given a 

certain level of risk. The expected return and the estimated risk are measured by the mean 

and standard deviation of the historical return available, respectively. In many cases, this 

approach leads to sub-optimal portfolios. Using the mean and the standard deviation as 

measures for return and risk is proven to lead to unstable and highly sensitive portfolios 

(Jobson and Korkie (1980); Jobson and Korkie (1981a); Jobson and Korkie (1981b)). 

No single estimation technique can be perceived as the best. Different estimation 

techniques attempt to establish a balance among different dimensions. For instance, a 

balance must be maintained between the need to capture an accurate time-varying 

volatility and the imprecision that results from using only recent data. For this trade-off, 

the investment horizon plays a critical role. The longer the time horizon, the stronger is 

the need to use a time-varying volatility technique. Another trade-off has to do with the 

data frequency.  The investor may want to extract as much information as possible by 

using higher frequencies, but this might contaminate the resulting estimates, due to mean-
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reverting noise over short periods, different spacing between observation, stale prices, 

and other high frequency data irregularities.  

This chapter presents the different estimation techniques along with their 

extensions and improvements. Before we start the estimation techniques discussion, an 

overview of the financial data irregularities and the choice of the sampling frequencies is 

illustrated.  

3.1. Financial data irregularity 

Relevant to any estimation process is the distribution assumption. Financial 

models tend to assume normality as the probability distribution that fits the data, but the 

financial data are proven not to be always normally distributed. Academic research shows 

evidence that the financial data tend to be skewed, with excess kurtosis (fat tails), which 

makes the higher moments non-negligible. Thus, relying on the mean and variance to 

fully describe the securities’ return distribution is not enough. One of the reasons that the 

financial data is not normally distributed is the regime shifting, which is typically 

modeled by Markov switching techniques. 

This regime shifting makes the financial data transitional in nature, where the 

volatility and correlation of return tend to change over time and asset returns tend to be 

fat-tailed.  These observed facts negate the normality assumption. Financial data time-

series, especially data with higher frequencies, are notoriously auto-correlated and 

heteroscedastic. Thus, an estimation model must account for these irregularities as well.  
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3.1.1. Parameters Transition 

It is now widely accepted that volatility varies over time. Different models have 

been used to model the time-varying volatility. Among these models are simple filters 

like the rolling window standard deviation used by Officer (1973), the exponential 

smoothing, the more sophisticated models like the univariate ARCH by Engle (1982), 

and several generalizations to the multivariate settings. Survey papers covering the vast 

literature in this area exist (see Bollerslev et al. (1992); Campbell et al. (1998b); Ghysels 

et al. (1996); and Hentschel (1995)). 

As an example to show volatility transition, the daily standard deviation of the 

Morgan Stanley Capital International (MSCI) indices for the United States and for the 

European Union’s aggregate stock market are depicted in Figure 2. The excess return 

over the risk free rate of return is used for both time-series. For the MSCI-EU, the 

LIBOR is used as the risk-free return, and, for the MSCI-US, the return on three-month 

Treasury bill is used. We depicted the standard deviation from January 1989 through 

September 2007. Over the observed period, the EU volatility changes between 0.48-2.9 

percent, and the US volatility changes between 0.55-3.6 percent. 

Similar to the volatility, correlation is also time-varying. Research has 

documented the sensitivity of the financial models to changes in the correlation 

coefficients (Ingersoll (1987); Rebonato (1999)). Thus, it is critical to consider the 

returns-correlation transition. Many attempts to model the time-varying correlations exist 

(Alexander (2001); Bollerslev, Engle and Wooldridge (1988); Christodoulakis and 

Satchell (2002); Christodoulakis (2007); Engle and Manganelli (2004)). Figure 3 

compares two correlation estimates of the co-movements between the MSCI-US, and 
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MSCI-EU. During the 20-year period, the correlation coefficient ranged from – 26.8% to 

+ 67.7%. 

Figure 2: Time-Varying Volatility using 60-day Rolling Window 

 

Figure 3: Time-varying correlation Coefficient between the US and EU 

 

3.1.2. Fat tails 

Research has documented that financial data possess excess kurtosis, or what is 

known as the fat tails, see (Kang and Yoon (2007); Kirchler and Huber (2007)). Normal 

distribution has a kurtosis of three (excess kurtosis over zero), which means that normal 

distribution cannot fit the financial data, as it understates the probability of extreme 
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values (tails). This means that assuming normality would understate the true risk 

measurement. The fact that financial data has fat tails does not come as a surprise. 

Normal distributions assume independence between error terms; however, this 

independence does not exist in the financial data. 

It is clear that the assumption about the data distribution is critical to the risk 

measurement and the portfolio construction. Ignoring this fact will affect the accuracy of 

the estimated parameters. Bidarkota and Dupoyet (2007) report that, by taking the fat 

tails into consideration, the implied mean risk-free rate is 20% lower, the equity premium 

is 80% higher, and the term premium is 20% higher, as compared to a Gaussian process. 

Their results make the model implications closer to the empirically found observations. 

They also document an increase in the volatility of both risk-free rate and of the equity 

premium, as implied by their model. Doganoglu et al. (2007) propose a portfolio 

selection approach using multivariate stable distribution that considers the financial data 

fat tails as well as the conditionally varying volatility.  

3.2. Data frequency 

In addition to the data distribution, the data frequency is not of any less 

importance. Data provide information, so more data frequency, within the same time 

interval, results in more information. Merton shows that a long history of data is needed 

to estimate an accurate expected return (Merton (1980)). However, as the data frequency 

increases, the data quality decreases, where the data becomes contaminated by more 

noise. Price changes may reflect bid/ask spread, non-synchronous trading due to different 

time zones, and unequally spaced observation. Furthermore, high frequency data, if not 
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handled carefully, can capture effects not accounted for, like volatility due to economic 

data release, time of the day, or trading hours of another exchange.  

There are many data-clustering algorithms that model the data and fit them to a 

distribution. However, their performance depends to a large extent on the model’s 

parameters. Saltenis (2006) proposed a data-clustering algorithm that does not rely on the 

model’s parameters, where the parameters are taken as a natural adaptation of distances 

between observations.  

The optimal data frequency needed for estimating volatility and co-volatility is 

different from the optimal data frequency for estimating expected return. Volatility and 

co-volatility estimates can be improved by increasing the sampling frequency. On the 

other hand, increasing the sampling frequency increases the noise level in estimating the 

expected return (Garman and Klass (1980); Parkinson (1980)).  

Figure 4: US Time-Varying Volatility with different frequencies 
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In this dissertation, we use monthly data, which are expected to reflect 

information about the primary return and volatility trends. Monthly data are also less 

contaminated by the factors mentioned in this section. For example, unlike intra-daily and 

daily data, the Monthly data are equally spaced, not affected by holidays, and stale prices. 

To show how different data frequency behaves differently, Figure 4 uses daily, two days, 

weekly (five days), and monthly (22 days) data frequencies over the period of 1988-2006. 

It is intuitive that lower frequency averages the trend.   

3.3. Estimating return 

Since the creation of stock markets, forecasting a security’s return has drawn most 

of the attention of researchers. Many models have been proposed, but still no one model 

has proved to be completely satisfactory. Some of the models focus on the evolution of 

returns (time-series analysis), while others focus on the relationship between the behavior 

of a securities’ return at a given point in time (cross-sectional analysis). As in the case of 

any forecasting model, return estimation models are not exact ones. Return estimation 

models are only stochastic models that are expected to have forecasting power under 

certain assumptions. 

The return estimation models can be categorized into two groups: theoretical and 

empirical (econometric). In the following section, both models are introduced. 

3.3.1. Theoretical models 

 These models are forms of the economic general equilibrium theory (GET). The 

GET is based on a number of assumptions. These assumptions include the assumption of 

supply and demand equilibrium and that agents maximize their utility function (rational 
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agents). The most famous theoretical model is the Capital Asset Pricing Model (CAPM) 

which was developed by Tobin, Treynor, Sharpe, and Lintner independently (Lintner 

(1965); Sharpe (1964); Tobin (1958); Treynor (1961)). The CAPM is the simplest form 

of the GET. The CAPM states that, under the pre-defined assumptions, the expected 

return of a security is a positive linear function of its beta, where beta reflects a security’s 

systematic risk. The higher the beta, the higher the expected return.  

During the 1980s and 1990s, evidence was gathered against the CAPM. A number 

of academic researchers did not find the beta to be a good measurement of the systematic 

risk and a number of anomalies were accumulating (Fama and French (1992b); Fama and 

French (1993)). In the absence of other reliable models (Fama and French (1996); Fama 

and French (1996)), improvements were made to the original CAPM. These 

improvements include the Conditional CAPM (C-CAPM), in which the CAPM is 

conditioned on information set at a lagged period (Jagannathan and Wang (1996)). The 

main problem with the conditional CAPM is the difficulty of identifying the information 

set (Hansson and Hordahl (1998); Lewellen and Nagel (2006)). Other modifications to 

the original model include: the zero-beta CAPM (Shanken (1985)), the Consumption-

Oriented CAPM (Breeden, Gibbons and Litzenberger (1989)). For a detailed discussion 

of the CAPM and its different variants see Fama and French (2004). 

Stephen Ross proposed an alternative to the CAPM, based on arbitrage 

arguments, called the arbitrage pricing theory (APT). The APT stated that, unlike the 

CAPM, a security’s expected return is affected by different factors, not just the market 

risk (as suggested by the CAPM). The APT postulates a positive linear relationship 

between a security’s expected return and some factors (Roll and Ross (1980); Ross 
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(1976)). The APT proved to have some disadvantages. The main disadvantage is that the 

factors are not defined by the model (Dhrymes, Friend and Gultekin (1984); Shanken 

(1982)). 

Other techniques from the traditional fundamental analysis that can be used for 

estimation purposes include Gordon’s Dividend Discount Models (DDM) and its 

improved variant, the Residual Income Model (RIM). The DDM calculates the expected 

price of a security by discounting its future cash flows (Gordon (1962b)). The DDM was 

found to be very sensitive to errors in the inputs, which is highly based on assumptions 

about the security’s growth. An improved variant of the DDM is the RIM, which was 

proved to be much less sensitive to errors in the input than the DDM. As the name 

indicates, the RIM uses residual income (abnormal return) rather than the absolute return. 

The RIM states that the value of a stock is equal to its book value per share, plus the 

present value of expected future residual income per share (Claus and Thomas (2001); 

Philips (2003)).  

Sharpe and Fisher, in two independent papers, introduced another model to 

accurately estimate the expected return, without using the historical prices; see, (Fisher 

(1975); Sharpe (1974)). The model was referred to as Reverse Optimization or Implied 

Expected Returns. Their model computed the expected return on a security as the product 

of the market price of risk, the covariance matrix, and the market capitalization weights. 

The Black-Litterman portfolio model, and its predecessor, the Treynor-Black model, used 

this model to estimate the expected return ( see Black and Litterman (1991); Treynor and 

Black (1973)). 
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3.3.2. Econometric models 

 These models are based on an econometric hypothesis, which has the status of an 

economic theory. The most famous econometric models used for estimating securities 

return are the Random Walk (RW) models, and the multifactor models. The simple RW 

model is based on the market efficiency assumption, where the securities return can be 

viewed as fluctuations around their mean return (Kac (1947)). It is also assumed that the 

returns are independently and identically distributed (iid).  

Different RW models were established by making incremental improvements. 

The models include: the arithmetic RW, the geometric RW, and the multivariate RW. 

The Arithmetic RW (ARW) standardizes the positive and negative deviation from the 

mean by using a Bernoulli variable. The ARW differentiates between two different noise 

terms (deviation). Unlike the RW model, the ARW states that there is no mean reverse 

process. The Geometric RW (GRW) corrects the drawbacks of the ARW where it avoids 

negative prices by using an absorbing barrier, and it is more consistent with empirical 

results (Guerre and Jouneau (1998)). Another advantage of the GRW is that it does not 

assume linearity and it approximates a lognormal model. Both the ARW and the GRW 

are univariate models, which make them too simple to be applicable empirically, as they 

implicitly assume that the return time-series are independent. The multivariate RW 

(MRW), as the name indicates, improves the ARW and the GRW by using multivariate 

time-series (Harvey, Ruiz and Shephard (1994a)).  

Factor models are models where the expected return is estimated using different 

factors. The APT was one of the first models to provide theoretical support for this type 
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of models. Factor models can be categorized into the following three categories (Connor 

(1995)): statistical factor models, macroeconomic factor models, and fundamental factor 

models. The statistical factor model uses historical and cross-sectional data on a 

security’s return to explain the return’s behavior using factors that are linear return 

combinations and uncorrelated. These types of models use the Principle Component 

Analysis (PCA) to determine the factors. The problem with the statistical factor model is 

that the factors do not have any economic meaning.  

The Macroeconomic Factor Model (MFM) uses the historical securities return 

along with macroeconomic variables (raw descriptors) to determine those variables with 

explanatory power (Burmeister, Roll and Ross (2003)). The fundamental factor models 

use company and industry variables and market data as independent variables that are 

expected to have relevant predictive powers (Fama and French (1992a); Fama and French 

(1993)).  

3.4. Estimating volatility 

It has been perceived that good return expectations will overpower weak volatility 

estimation. However, extensive empirical evidence has proved the importance of the 

accuracy of the volatility estimation technique. Unlike prices and returns, volatility and 

co-volatility are not directly observable in the market and must instead be estimated. 

Since the 1990s, the volatility estimation techniques have experienced considerable 

innovation and improvements. Among the key improvements in the volatility estimation 

are volatility decomposition and the attention paid to the risk of the tails. Volatility 

measures can be categorized in two groups: dispersion and downside. 
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3.4.1. Dispersion volatility models  

Dispersion models measure the security’s deviation from the mean. These models 

consider both the positive deviation and the negative deviation as a risk, which reflects an 

unfavorable sign. However, this is not always the case. For an investor with a long 

position, an increasing price (positive deviation) over the mean reflects good news, and 

for an investor with a short position, a decreasing price (negative deviation) over the 

mean reflects good news. The dispersion volatility measurements include the standard 

deviation and the variance, the mean-absolute deviation, and the mean-absolute moments. 

The MV optimization use of a dispersion volatility measurement is the most common 

critique levied against it, as it penalizes the positive deviation.  

3.4.2. Downside volatility models  

These models assume that the investor is taking a long position, and considers 

only the downside, negative deviation, as a volatility measure (Bawa (1975); Nawrocki 

(1999)). Theoretically, these models are more appealing, but they have some practical 

limitations. Typically, these models are computationally more complicated to use in a 

portfolio setting, cannot be aggregated into portfolio downside risk, leads to higher risk 

measurement, and are accompanied by a higher estimation error (Grootveld and 

Hallerbach (1999)). In this section, six categories of downside volatility measurements 

are presented. These are traditional models, VaR models, implied volatility models, 

Markov Chains and volatility clustering, ARCH/GARCH models, and stochastic models. 
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3.4.2.1. Traditional models 

Roy’s paper on safety first was one of the first attempts to consider only the 

downside risk (Roy (1952)). Harry Markowitz proposed using the semi-variance, since 

the variance penalizes over-performance (Jin, Markowitz and Yu Zhou (2006); 

Markowitz (1991)). Bawa (1976) provided a more general measure for the downside risk 

called lower partial moment risk measure (Bawa (1976)).  

3.4.2.2. VaR, CVaR, and CaViaR 

JP Morgan developed the Value-at-Risk (VaR) measurement, which is now 

perceived to be the most well-known downside risk measurement (RiskMetrics). The 

VaR measures the predicted maximum loss at a pre-specified probability level, over a 

certain time horizon. Since the year 2000, many academic researchers have investigated 

the VaR as a measure of downside risk (Alexander and Baptista (2002); Mittnik, Rachev 

and Schwartz (2002); Pflug and Gaivoronski (2005); Yamai and Yoshiba (2005)). 

Before defining the VaR, two dimensions need to be decided upon. The first dimension 

is the time interval used in computing the VaR. This time interval reflects the investment 

horizon, or the time period before revising the portfolio. The second is the confidence 

interval (α), which is the probability that the VaR is not expected to exceed a certain 

maximum loss. VaR can be defined mathematically in several ways. The following 

notations are used in standard references: 

 

where 

 is the portfolio’s (security’s) Value-at-risk with  confidence interval. 
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X is an arbitrary small value of the portfolio (security) 

P is the probability function 

L is the possible portfolio loss 

α is the confidence interval in percentage. 

 

The above equation states that the VaR for a confidence level α is the value X, 

such that the probability that the possible loss L exceeds X is at most some small number 

(1- α). Even with the VaR, a number of drawbacks exist. These drawbacks can be 

summarized as follows (Rau-Bredow and Str (2004)): subadditivity, non-smooth and 

non-convex function, and ignoring the magnitude of losses beyond the VaR value. First, 

the subadditivity problem refers to the fact that the VaR computed for a portfolio may be 

higher than the weighted average of the VaR computed for the individual securities in the 

optimal portfolio.  

Thus, due to the subadditivity, the VaR penalizes the portfolio construction and it 

negates the portfolio diversification concept. Second, the VaR leads to a non-smooth and 

non-convex function, which will hinder the optimizer from finding the optimality 

condition. The VaR leads to multiple stationary points that complicate the optimization 

process (Grootveld and Hallerbach (2004)). Third, the VaR only computes the probable 

losses until the VaR value; it does not consider the magnitude of the losses beyond the 

VaR value. 

All these drawbacks lead to the conditional variant of the VaR, Conditional 

Value-at-Risk (CVaR). The CVaR measures the expected losses in the tail of the 

distribution of possible portfolio losses, beyond the portfolio VaR (Artzner et al. (1999)). 



45 

 

Thus, the CVaR measures the market risk conditional on the current information. The 

CVaR can be mathematically defined using the following formula: 

 

A concept that is defined very closely to the CVaR is the expected shortfall 

(Acerbi and Tasche (2002)). The expected shortfall measurement result has been shown 

to be equivalent to the CVaR, even though it is defined in a different way. Engle and 

Manganelli (2004) used a different methodology to compute a different variant of the 

CVaR. They called their measure conditional autoregressive Value at Risk (CaViaR). 

Using an autoregressive process, their model specifies the evolution of the CVaR over 

time.  

3.4.2.3. Implied Volatility 

Implied Volatility (IV) measures the volatility as implied by the stock option 

market. Instead of using the historical data to estimate the volatility, this technique uses 

the actual options’ prices (using an option pricing model) to determine the asset’s implied 

volatility. This model has the obvious advantage of using a forward looking estimate, in 

which it relies on the expectations of the investors, rather than relying of the historical 

prices.  

The IV model suffers from the following shortcomings, which affect its 

applicability and accuracy. First, option contracts are not available for every single 

security in which an investor might be interested. Second, the estimation could be 

perceived as a snapshot or a volatility measure at one point in time. Third, the usage of an 

option pricing model to calculate the prices adds another risk, i.e., the modeling risk. 



46 

 

Thus, this technique could be used as a diagnostic tool, rather than a stand-alone 

estimation model. The evidence available in the literature about whether the estimated IV 

is superior to the realized historical volatility is mixed (Duque and Paxson (1999); Fung 

and Hsieh (1991)). 

3.4.2.4. Markov Chains and volatility clustering 

The Markov Chains is perceived as a clustering technique that forms groups that 

can be distinguished from other groups. The Markov Chains is a discrete-time stochastic 

process that drops the concept of regimes independence over time. The Markov Chains 

can be perceived as a chain with no memory. The use of the Markov Chains in portfolio 

construction became more evident by the seminal work of Jacquier et al. (1994) who 

fully carried out Bayesian inference through a Markov chain Monte Carlo scheme. The 

transition probability has the benefit of producing volatility clustering. However, the 

main shortcoming of using the Markov Chain is the increased number of parameters that 

must be estimated due to the inclusion of the transition probability. For more detailed 

applications of the volatility clustering measurements, see Duda et al. (2000) and Focardi 

(2004). 

3.4.2.5. ARCH/GARCH models 

Regression models assume that the observations used are independent in nature. 

Volatility levels tend to be persistent, and thus volatility of different periods tends to be 

related. The Autoregressive Conditionally Heteroscedastic (ARCH) process accounts for 

the dependency that some variables possess (Engle (1982)).  Bollerslev introduced a 
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generalization for the ARCH process (GARCH), (see Bollerslev (1986)).  The GARCH 

model generally assumes dependency of the variance over time. Under the GARCH (p, q) 

process, the conditional variance 2

th evolves according to the following equation (where 

 are the parameters to be estimated): 
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The GARCH models allow for long memory processes; they use the past squared 

residuals to estimate the current variance. If the value of αi and γi are positive, the 

GARCH model would imply that the current variance will be above its long-run mean 

during high volatility periods. The GARCH accounts for the fat-tailed distribution and it 

captures the volatility clustering. A major advantage of the GARCH model is its 

consistency in estimating volatilities over longer time horizons (Chang and Yang 2005). 

The GARCH model has been comprehensively tested. See for instance, Bollerslev, Chou 

and Kroner (1992)' Bollerslev, Engle and Wooldridge (1988), and Ding and Engle 

(2001).  

However, the large scale application of the GARCH model in portfolio 

construction is not explored well. The main reason is the huge correlation matrix that the 

GARCH model would produce, which makes it hard for optimization. Further, the 

GARCH models are very dependent on the data frequency, and thus, the results will be 

different by the use of different frequencies. The first attempt to create a multivariate 

GARCH model was made by Bollerslev, Engle and Wooldridge (1988).  The model was 



48 

 

referred to as VECH. The major disadvantage was that the conditional variance-

covariance cannot often be positive semi-definite (Lien and Luo (1994)). Among the 

seminal empirical work in the multivariate analysis of variance are the works of Aguilar 

and West (2000); Chib, Nardari and Shephard (2006); Harvey, Ruiz and Shephard 

(1994b); Lopes and Migon (2002); and Pitt and Shephard (1999).  

Engle and Kroner proposed a multivariate GARCH model that will ensure that the 

covariance matrix is positive semi-definite (Engle and Kroner (1995)). The model is 

known as BEKK (standing for Baba, Engle, Kraft, Kroner). The VECH and the BEKK 

models had to be re-estimated each time period for the whole data set. Engle (2002) 

proposed a new class of multivariate GARCH models called the Dynamic Conditional 

Correlation (DCC) models (Engle (2002)). His model has the flexibility of the univariate 

GARCH but not the complication of the multivariate GARCH. This new setting solves 

the main problem that the other GARCH models have in the portfolio construction 

context. In the DCC-GARCH, the number of parameters to be estimated is independent 

of the number of series to be correlated. Thus, it makes the estimation of very large 

matrices applicable. The applicability of this model was analyzed by (Engle and 

Sheppard (2001)). The results showed that the DCC-GARCH often provided the most 

accurate estimation results. 

3.5. Estimating Co-Volatility 

The estimation of the co-movement or the co-volatility lies at the heart of the 

portfolio construction, as well as of the risk diversification. The estimation of the co-

volatility can be claimed as the most important parameter in the whole process. The most 
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commonly used measure for the co-volatility is the sample covariance matrix estimator, 

calculated using historical prices. The covariance matrix represents a summary of the 

estimated volatility (matrix diagonal) and co-volatility (off-diagonal) of the assets used in 

a portfolio. In the N securities case, the sample covariance matrix ( ) can be defined, 

using matrix form, as: 

 

where  is the N by T matrix of the time series of the deviation of the N securities over 

their historical mean ( ): 

 

Markets and economic conditions change from one period to another, and firms 

react differently towards these changing conditions. Thus, assuming that the past is a 

good estimate for the future leads to biased estimators. A large number of academic 

researchers showed the non-stationarity of different estimators, and thus, showing that 

extrapolating these estimators to the future provides very poor forecasting power (Fama 

and French (2002)). One of the first techniques used to account for the non-stationarity 

problem was to use the excess return, instead of using the return figures. The advantage 

of using the excess return is the subtraction of a return figure, which is being affected by 

the same market and economic conditions.  
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Using the excess return time series does not solve the problem. The sample mean, 

standard deviation, and covariance matrix are still poor estimates for a number of 

reasons. First, the sample estimators provide good estimators only for normally 

distributed time series, or generally for distributions with no excess kurtosis. Financial 

time series are known to be heavy-tailed. Thus, using the sample estimators to forecast 

the future is expected to be biased (Ibragimov (2005)). Second, estimating the covariance 

matrix for N securities requires N time periods of observed return. Thus, the estimation 

process could be bounded by data availability. Third, the covariance matrix is highly 

sensitive to the estimation error, which might affect the value of the resulting optimal 

portfolio.  

Fourth, the covariance matrix needs to be inverted to reach the optimality 

condition. A non-singular, and thus non-invertible, covariance matrix will prohibit an 

exact optimizer from reaching its optimality condition (Michaud (1998)). Many 

commercial optimizers are non-exact optimizers that are insensitive to whether the 

covariance matrix is well-defined or not. The optimal portfolios produced by these 

optimizers are inaccurate and should be avoided. The ill-conditioned covariance matrix is 

the most important reason behind the instability of an optimizer and should be handled 

with care. 

Several improvements were suggested to improve the forecasting power of the 

covariance matrix. The first improvements attempted to capture the changing nature of 

the markets and the economic conditions by using weighted data. Given that the most 

recent data is more relevant. Thus, more weight is assigned to it, and less weight is 
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assigned to the older data (Litterman and Winkelmann (1998); Pafka, Potters and Kondor 

(2004)). However, for the weighted covariance matrix to have a viable forecasting power, 

the distribution of the return time series must be independent and identical, which is not 

always the case. In the general case, when the return is not independent and identically 

distributed, the sample covariance matrix will be highly sensitive to the estimation error, 

thus the results of the MV optimization will be inaccurate.  

The remaining part of this section discusses different attempts to improve the 

forecasting power of the covariance matrix. These attempts are the rolling windows, 

ARMA and ARIMA models, covariance matrix shrinkage, discounting, using implied co-

volatility, incorporating outliers, and decomposition of co-volatility. 

3.5.1. Rolling window and Exponential smoothing 

Officer (1973) was among the first to account for the volatility and co-volatility 

transitions by using monthly moving series for the period 1897-1969 to assess the 

volatility transition. The calculation of the moving average progresses from a simple 

moving average, to a weighted moving average, to an exponential moving averages 

(Brown's exponential smoothing). See Brown and Meyer (1961) and GARDNER Jr 

(1985). 

3.5.2. ARMA and ARIMA models 

The Autoregressive Moving Average (ARMA) models and the Autoregressive 

Integrated Moving Average (ARIMA) models are generalizations of the moving averages 

(Campbell, Lo and MacKinlay (1996)). The ARIMA models have three stages: 
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identification, estimation, and forecasting. In the identification stage, the sample 

autocorrelation and partial autocorrelation that can be examined to establish a pattern for 

the model is identified. The estimation stage serves two purposes:  it estimates the 

model’s parameters, and it serves as a check point for adequacy of the model. The 

forecasting stage, as the name indicates, provides the forecast. 

3.5.3. Stein or Shrinkage covariance matrix 

In the mid 1950s, Charles Stein provided evidence that there are uniformly better 

methods for estimating parameters of a time series than the sample parameters (Stein 

(1955)). The Stein (Shrinkage) estimators can be perceived as an example of the 

Bayesian estimation procedures. A number of Stein estimators were developed for the 

MV optimization. These attempts include Frost and Savarino (1986), James and Stein 

(1961), Ledoit and Wolf (2004), Ledoit (1994), and Stein (1955). Ledoit and Olivier 

(2004) used a covariance matrix that is composed from a constant correlation matrix and 

a CAPM. Their results indicate that using the Shrinkage covariance matrix provides more 

superior results than the sample covariance matrix. 

Theoretically, the Shrinkage estimators are superior to the sample estimators, 

especially when the estimation error is high. But from an application point of view, 

Disatnik and Benninga, using historical data of NYSE stocks, showed that the optimal 

portfolios produced using the Shrinkage estimators are not significantly better than those 

produced using the traditional sample covariance matrix, see Disatnik and Benninga 

(2007). 
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3.5.4. Covariance matrix discounting 

 A major problem with volatility and co-volatility is the non-stationarity. Both 

volatility and co-volatility vary over time. One of the early models that attempted to deal 

with time varying co-volatility was introduced by Quintana and West (1987). They 

named their model the Covariance Matrix Discounting (CMD). They estimated the 

covariance matrix as a weighted average of past covariance matrices. They used weights 

that decay exponentially. The decay rate is estimated using maximum likelihood 

estimation. Like the Stein estimators, the covariance matrix discounting is theoretically 

better than the sample covariance matrix, but does not add significant predictive power 

(Li (1997)). Thus, it is not expected to have a superior investment value. A more viable 

improvement could be achieved by using dynamic (Bayesian) factors that reflects 

changes in the market conditions (Aguilar and West (2000)). 

3.5.5. Implied co-volatility 

As discussed before, implied parameters are forward-looking parameters implied 

by the stock option market. One way to calculate a forward looking covariance matrix is 

the use of implied volatility. The covariance matrix can be calculated as the matrix 

product of the static correlation matrix and the implied volatility diagonal matrix 

(Fabozzi, Kolm and Pachamanova (2007)). Formally, the implied co-volatility ( ) can be 

defined as: 
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where  is the static correlation matrix calculated using the securities historical returns, 

and  is the diagonal matrix of the implied volatility of the securities used. Using this 

methodology gives the advantage of both using the simple historical correlation matrix 

and adding a forward-looking component using the implied volatility. However, the 

question about whether the implied volatility adds any investment value remains 

unanswered.  

3.5.6. Incorporating outliers 

Another way to account for the time-varying covariance matrix is a simple 

methodology introduced by Chow et al. (1999). The contribution of this model is to 

account for outliers or co-volatility during high volatility periods. They estimated two 

covariance matrices during two different time periods. One time period is characterized 

by low volatility and the other by high volatility. The full sample covariance matrix is 

then calculated as a weighted average of the two matrices. The full sample covariance 

matrix can be formally defined as: 

 

An improvement to this methodology was developed by Kritzman, Lowry and 

VAN Royen (2001). Their contribution was the use of a two-stage Markov Chain regime 

switching model to determine the weights. Thus, instead of having only one full 

covariance matrix, the result will be a time-varying covariance matrix. The time-varying 

full sample covariance matrix can be formally defined as: 
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3.5.7. Decomposition of co-volatility 

Several studies have researched the decomposition of variance into stationary and 

transitory components, but not many have attempted to decompose the co-volatility, 

especially under a multivariate setting. The apparent reason is the notorious complication 

of the multivariate co-volatility models, see, Campbell et al. (2001). Returns can be 

perceived as being driven by both stationary and transitory components. During stable 

periods, the stationary component is the main driver, and during the unstable periods the 

asset returns drift away from the stationary components, which are the transitory 

components.  

The return distribution is assumed to be normal with constant mean and variance. 

Consequently, the return volatility over the long run would not have a positive trend. 

However, in the transitory periods, returns are assumed to be produced by distribution 

with a constant daily variance, but whose expected return is mean-reverting. Thus, 

volatility over longer periods would depend on the parameters of the mean reverting 

process. 
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Chapter 4 

Empirical Results 

The merits of investment diversification and portfolio construction are more 

evident now than in the past. Using daily data for the period of 1962-1997, Campbell et 

al. (2001) constructed monthly realized volatility measures and showed that, unlike 

market volatility and industrial volatility, firm-level volatility increased over time for the 

period of their study. Thus, the number of securities needed to reach optimality increased 

due to the lower correlation coefficient. Morck, Yeung and Yu (2000) reached similar 

results using emerging market data. Their research explained the existence of positive 

volatility trend over time by the continuous increase in the number of publicly traded 

firms, the serial correlation non-stationarity in the daily data, and/or the increased trading 

volume.  

Wei and Zhang (2006) investigated the same fact and found similar results. Using 

daily data for the period of 1976-2000, they showed that the increase in the corporate 

earnings’ volatility and the general decrease in the corporate earnings as measured by 

ROE have led to the increase in securities’ return volatility. Their relation was more 

evident for the newly listed securities, which could be due to the reason documented by 

PAstor and Pietro (2003) who analyzed the firm specific characteristics in a rational asset 

pricing model structure. They found that profitability induces an age effect that, in turn, 

increases confinement and thus reduces volatility. New firms lack this history of 

profitability; therefore they suffer from higher idiosyncratic volatility. There is now more 
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evidence that the diversifiable risk is increasing over time. Thus, regardless of what 

drives the positive trend of the firm-specific-volatility, its existence increases the 

importance of portfolio construction.  

In this chapter optimal portfolios are created using a multistage optimization. 

First, the Monte Carlo simulation algorithm is used to generate multiple scenarios, and 

then an iterative variant of the greedy algorithm is used to create optimal portfolios. This 

chapter is organized as follows. The first section provides a description of the data set 

used. The second section describes in detail the multistage optimization methodology. 

The third section presents the results. The conclusion is discussed separately in the 

following chapter. 

4.1. Data 

USA securities markets include approximately 10,000 different securities of 

10,000 corporations. A significant large percentage of these securities are not actively 

traded, so, their prices are generally stale.  Attempting to feed a portfolio optimizer with 

this large number of securities will either decrease the efficiency of the optimizer or lead 

to computational failure. An approach to reduce the number of securities is the use of 

“securities screeners” which was discussed in chapter two. A security screener specifies 

selection criteria and eliminates securities that do not meet these criteria. Some securities 

screeners work better than others; thus, using a security screener may affect our results. If 

superior results are reached using a specific optimization technique in combination with a 

good securities screener, the superior results could be linked to either the securities 
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screener or the optimization technique. To avoid this problem, no security screeners were 

used in this dissertation.  

The initial attempt to reduce the total number of securities used in this dissertation 

was made by considering only the large securities as measured by their market 

capitalization. The 3000 securities prices of the corporations included in the Russell 3000 

are used. These 3000 securities represent 98 percent of the investable US securities. After 

making a number of runs, it was found that the prices of a significant number of these 

3000 securities are stale. Consequently, the securities’ pool is narrowed down to the 

securities included in the Russell 1000, and then narrowed down further to the securities 

included in the S&P500. Fifty securities were repeatedly selected randomly from the 

S&P500 securities. The monthly adjusted closing prices for these 50 securities were 

acquired from Bloomberg. The closing prices were adjusted for both dividends and 

security splits. The data set used ranged from January 2001 until July 2008, a period 

characterized by its high volatility (see figure 5). The adjusted closing prices of the 

S&P500 index are used as a benchmark for the same period. 

Figure 5: S&P500 Price movement over the period 1988 - 2008 
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Securities prices are not normally distributed and are not I(0).  Thus, the initial 

step in data preparation was to convert the closing prices ( ) to returns: 

 

The resulting returns, especially for the period chosen, included many negative 

returns. Negative returns cannot be fitted to a number of probability distribution, 

including the lognormal distribution as will be explained in the methodology section. To 

avoid the problems associated with the negative returns, return relatives are calculated by 

adding one to the natural log returns. The natural log return of the S&P500 index is then 

subtracted from each return relative to calculate the residual return relative. The benefits 

of the use of the residual return measurement have been documented in the literature 

(Michaud (1998)). One of the main benefits is to partially account for non-stationarity. 

The residual return subtracts a benchmark return figure – both being affected by the same 

market and economic conditions – from the return figures used. A different variation of 

the MV optimization was created using the residual returns, known as benchmark 

optimization (Michaud (1998); Roll (1992)).  

To improve the accuracy of the results, simulated data sets are used in addition to 

of the original data set. Using the residual-return relative time series of the 50 securities, 

as a base, 2000 simulated data sets were created using the Monte Carlo simulation. The 

methodology used to create the simulated data sets is similar to the methodology used in 

the portfolio resampling techniques (Scherer (2002)). The reason for choosing 2000 

simulations is to reduce the estimated standard error (see figure 6). After 2000 



60 

 

simulations, the incremental benefits are not justified. The first 2000 simulations 

approximately reduce the standard error from ten to two, but the following 8000 

simulations only reduce the standard error from two to one.  

Figure 6: The Standard Error Value as the Number of Simulations Increase 

 

4.2. Methodology 

In this section the methodology used to construct the optimal portfolios is 

discussed. Using the simulated data, we start by estimating the parameters of the 50 

securities: volatility, co-volatility, and expected return. Four different estimation 

techniques are applied to estimate the volatility and the co-volatility. Initially, the 

traditional – unconditional – variance and covariance estimation using the historical 

returns is used. The traditional variance-covariances matrix is calculated to enable the 

comparison with the traditional mean-variance portfolio optimization. The conditional 

variance and covariance is then calculated using three different types of GARCH models:  

CCC-GARCH, IDCC-GARCH, and the O-GARCH.  

The expected return for the 50 securities is then calculated by fitting the return 

historical time series to a probability distribution, using the Anderson-Darling goodness-

of-fit methodology (Anderson and Darling (1952)). Kolmogorov-Smirnov and Chi-
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square were also calculated, but not reported as they gave very close results to the 

Anderson and Darling methodology (Massey (1951)). After calculating the securities 

parameters, portfolios are created using the greedy algorithm. 

4.2.1. Estimating volatility and co-volatility 

Evidence in the academic literature indicates that the MV efficiency is highly 

error-prone and unstable. The most important limitation is its high sensitivity to changes 

in the covariance matrix.  A minor change in the covariance matrix will lead to a 

significant change in the portfolio’s optimal weights. In other words, the MV efficiency 

cannot afford any minor estimation error, especially when it comes to the covariance 

matrix. In this sub-section, four different estimation techniques are used to estimate the 

covariance matrix. 

4.2.1.1. Traditional covariance matrix 

As discussed in chapter three, the covariance matrix is a summary of the 

estimated volatility (matrix diagonal) and co-volatility (off-diagonal) of the assets used in 

a portfolio. In the N securities case, the sample covariance matrix ( ) can be defined 

using matrix form as: 

 

where  is the N by T matrix of the time-series of the deviation of the N securities over 

their historical mean ( ).  
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In this dissertation N is 50 securities, T is the monthly observations, and  is the 

time-series of the residual return relatives. The first criticism on the tradition covariance 

matrix is its stationarity. Markets and economic conditions change over time, and firms 

react differently towards these changes. Thus, assuming that the past is a good estimate 

for the future leads to biased estimators.  

The use of the residual return improves the estimation process, but the traditional 

covariance matrix still produces poor estimates (see chapter three for more details and a 

literature review.) To fully account for the parameters’ non-stationarity and to improve 

the estimation results, three conditional variants of volatility and co-volatility are used. 

These models are: the Orthogonal (o) GARCH, the Constant Conditional Correlation 

(CCC) GARCH model, and the Integrated Dynamic Conditional Correlation (IDCC) 

GARCH. The three models are discussed in the following three sub-sections. Following 

the standard ARCH/GARCH notations, the notations are defined as follows: 

 ( ) A vector of stochastic process of dimension N x 1,  

( ) The information available at time t-1, 

  The conditional mean vector,  

 The N x N positive definite matrix, 
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  An N x 1 random vector with mean of zero and standard deviation 

of one 

 

 

 

 

 

 

 is the conditional covariance matrix of . Both the  and the  are 

dependent on the unknown parameter vector . The specification of  differs from one 

GARCH model to the other.  

The multivariate GARCH models could roughly be categorized into the following 

classes (see Bauwens, Laurent and Rombouts (2006)): (1) direct generalization of the 

univariate GARCH, which includes the VECH, MGARCH, and the BEKK, (2) linear 

combinations of the univariate GARCH, which includes the OGARCH, and (3) nonlinear 

combinations of univariate GARCH, which includes the constant and dynamic 

conditional correlation GARCH, general dynamic covariance, and copula-GARCH. In 

this dissertation, only the GARCH (1, 1) is used, so the p and the q are always 1. Only the 
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second and third categories of the multivariate GARCH are used for estimating the 

covariance matrix. More specifically, the Orthogonal GARCH, Constant Conditional 

Correlation GARCH, and the Integrated Dynamic Conditional Correlation GARCH are 

used. The first category of the multivariate GARCH – VECH and BEKK – is not used 

due to the fact that the resulting conditional covariance matrix is not positive semi-

definite. 

4.2.1.2. Orthogonal GARCH model 

The OGARCH is a linear combination of univariate models. These models could 

be ARCH, GARCH, EGARCH, etc. The data are generated by an orthogonal 

transformation of N univariate GARCH. The matrix generated is the orthogonal matrix of 

eigenvectors of the unconditional covariance matrix population. The original OGARCH 

was introduced by Alexander and Chibumba (1997). In the initial model, the N x N 

conditional covariance matrix is generated by  univariate GARCH model. The 

OGARCH (1,1,m) is formally defined as follows: 

 

where ,  , and  is the population variance of 

, and is a matrix of dimension N x m. The parameters of the model are V, and 

the parameters of the GARCH. The number of parameters is N(N+5)/2, if m = N. “m” is 

chosen by principal component analysis applied to the standardized residuals . 
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4.2.1.3. Constant Conditional Correlation GARCH model 

The multivariate GARCH models started with the VECH model proposed by 

Bollerslev, Engle and Wooldridge (1988) but the model suffered from the fact that the 

resulting covariance matrix is not positive definite or semi-definite, thus affecting the 

optimality condition of any optimization. Furthermore, its covariance matrix needs to be 

re-calculated for every time period. Bollerslev (1990) proposed the Constant Conditional 

Correlation (CCC) GARCH model. The CCC-GARCH can be used in a multivariate 

setting to produce a time varying conditional variance and covariance and a constant 

correlation matrix. Bollerslev (1990) stated that the maximum likelihood estimate of the 

correlation matrix is equal to the sample correlation matrix, and as the sample correlation 

matrix is positive semi-definite, the positive semi-definiteness of the conditional 

covariance matrix can be ensured. The CCC-GARCH can be formally defined as follows; 

 

 

where  is the conditional variance calculated using a GARCH model, and R is the 

constant symmetric positive definite conditional correlation matrix. The CCC-GARCH 

model contains N(N+5)/2 parameters, and the unconditional covariances are difficult to 

calculate due to the model nonlinearity. The CCC-GARCH is computationally intensive 

and the assumption that the conditional correlations are constant is unrealistic for many 

empirical applications.  
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4.2.1.4. Integrated Dynamic Conditionally Correlated GARCH  

Engle and Kroner proposed an improved model, BEKK, which ensures the 

positive semi-definiteness of the covariance matrix (Engle and Kroner (1995)). The 

problem with the BEKK is that it is computationally intensive. Several authors propose a 

generalization to the CCC-GARCH by making the constant conditional correlation time-

dependent; their model is called the Dynamic Conditional Correlation (DCC) GARCH 

(Christodoulakis and Satchell (2002); Engle (2002); Tse and Tsui (2002)). Unlike the 

BEKK, the resulting conditional covariance matrix is guaranteed to be positive semi-

defenite. The models proposed by Engle (2002) and Tse and Tsui (2002) are multivariate 

models, whereas the model proposed by Christodoulakis and Satchell (2002) is only 

bivariate. The DCC-GARCH can be defined as follows: 

 

Unlike the CCC-GARCH, the conditional correlation matrix is not constant any 

more. The conditional correlation matrix is time-varying in the DCC-GARCH, as 

follows: 

 

where the N X N symmetric positive definite matrix  is given by: 
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where  and  is the N x N unconditional variance matrix of  , and  

and  are non-negative scalar parameters that satisfy . If , then  is 

mean reverting. The Integrated DCC-GARCH is a special case of the DCC when the 

. 

4.2.2. Expected return and stochastic programming 

While portfolio optimization algorithms and sophisticated software allow 

investors to handle large number of securities, the optimal solution reached can still be 

very sensitive to small fluctuations in the input. Furthermore, regardless of the accuracy, 

most estimation processes produce results that are deterministic. Thus, to add to the 

viability of a model, the stochastic nature of the input must be accounted for. One of the 

ways to account for the stochastic nature of the input is the use of sensitivity analysis. 

However, the sensitivity analysis deals with uncertainty after the optimal solution is 

reached. It shows the input ranges over which the current optimal result stays optimal. 

Furthermore, it can only show changes in one input at a time. 

In this dissertation the stochastic nature of the expected return is integrated using 

stochastic programming and Monte Carlo simulation. Stochastic programming is a class 

of methods that incorporate the stochastic nature of variables into traditional 

mathematical programming framework (Ruszczyriski and Shapiro (2006)). Instead of 

representing the expected returns as deterministic values, they are assigned scenarios 

generated in advance, based on their historical values. The time-series of the return of the 
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securities used in our model are fitted into a probability distribution that matches the 

time-series characteristics using the Anderson-Darling goodness-of-fit criterion.  

After each of the time-series is represented by a probability distribution, the 

Monte Carlo simulation uses the probability distribution to generate different expected 

returns. For example, if a time-series was fitted to a normal distribution, the mean of the 

distribution is the most likely value, so it has a better chance of being generated as an 

input, but that does not prevent other values – with lower probability – from appearing in 

the simulations.  

The main contribution of this dissertation is the use of the greedy algorithm in 

portfolio optimization. Finding an accurate expected return measure is highly desirable, 

but is not the major objective of this dissertation. Therefore, large numbers of possible 

inputs are chosen to feed the proposed optimizer  In the following section, the greedy 

algorithm proposed in this dissertation is discussed. 

4.2.3. Greedy algorithm application  

Optimization algorithms are of an iterative nature, i.e., the optimization 

algorithms go through a sequence of steps with a set of choices at each step that take it 

closer and closer to the optimal solution. The greedy algorithm is a powerful algorithm 

that is applicable to a wide range of problems. It follows a problem-solving 

metaheuristic, in which it makes the best choice at the moment without considering the 

future consequences. In each iteration the greedy algorithm chooses the optimal solution 

for that stage, so that with more iterations the global optimal solution is reached. In other 
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words, the greedy algorithm reaches the optimal solution by making a sequence of 

choices. In every iteration the choice that seems best at the moment is chosen.  

This dissertation proposes the use of the greedy algorithm to optimize the 

portfolio weights. The greedy algorithm is expected to add value to the portfolio 

construction for a number of reasons. First, the greedy algorithm is very efficient; it does 

not reconsider any previous selections but moves to a newer iterations. The efficiency of 

an algorithm is a significant factor especially with today’s computationally complex 

mathematical models. Second, the greedy algorithm selection process is similar to many 

investors’ selection process, not only due to the rational – greedy – nature of investors, 

but also due to the fact that investors seek the investment that looks better for them in the 

short term. Third, the greedy algorithm offeres the ability to work with a large number of 

variables, which addresses the scalability problems.  

A greedy algorithm generally consists of five stages (see figure 7). First, it creates 

a candidate set. Second, a selection procedure is created to choose the optimal value from 

that candidate set. Third, after an optimal value is selected, the optimal value goes 

through a screening process to see whether it is feasible or not. Generally this stage is 

performed using a set of constraints. Fourth, the objective function determines the quality 

of the current set of choices. Fifth, the solution function determines when the algorithm 

should be stopped. 

The portfolio optimization – using greedy algorithm – proposed in this 

dissertation follows the same five steps of the general greedy algorithm. The following 

five sub-sections explain these five steps. 
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Figure 7: The Greedy Algorithm five stages 

 

4.2.3.1. Candidate set 

The candidate set is the input – from which a solution will be chosen – that will 

be fed to the optimizer. In this dissertation the candidate set is a set of securities for 

which the covariance matrix is provided. The covariance matrix is a summary of the 

volatility and the co-volatility of the securities’ time-series. As with any model, the 

quality of the output depends on the quality of the input, other things being equal. The 

main critique to the MV optimization was its sensitivity to the inputs used. The main 

input to a portfolio optimization model is the variance-covariance matrix and the 

expected return. In the model proposed, much attention is paid to the input estimation, so 

that the model is fed with reliable inputs. 

Four different covariance matrices are used. They correspond to the four 

estimation techniques used. The first covariance matrix is the traditional covariance 
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matrix, created using the residual return relative time-series. Even though using the 

residual return improves the traditional covariance matrix, it is still not a robust matrix. 

The main reason for using the traditional covariance matrix is to compare the results to 

other models that are built with the traditional covariance matrix, like MV optimization. 

The remaining three candidate sets use the GARCH model. The Constant 

Conditional Correlation (CCC) GARCH model, the Orthogonal GARCH, and the 

Integrated Dynamic Conditional Correlation (IDCC) GARCH are used. The CCC-

GARCH uses a conditional covariance matrix along with the constant correlation. Its 

major problem was the very long processing time needed. The OGARCH is used to 

ensure that the covariance matrix is positive semi-definite. All 50 securities are used to 

force the principle factor component analysis to maintain the identity of each security. 

The IDCC-GARCH has a number of very appealing qualities. First, it is computationally 

less intensive than the other multivariate GARCH models. Second, it uses a conditional 

correlation matrix rather than constant correlation. Third, it guarantees that the 

conditional covariance matrix is positive semi-definite. 

4.2.3.2. Selection function 

The steps in the greedy algorithm are as follows.  First, two securities are selected 

using a selection function to be discussed later. Then these two securities are merged into 

a portfolio with weights determined using the objective function which will be described 

in this section. Using the optimal weights the two time-series of the two securities are 

merged into a single time-series. Thus, the total number of securities left to be considered 

is reduced by one. Then, the process repeats till only one time-series –reflecting the 
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optimal portfolio’s time series – remains. All the optimal weights reached from the 

different iterations are saved in a log file and then are used to determine the optimal 

weights to be invested on each security. In other words, the greedy algorithm’s iterations 

repeatedly shrink the number of time-series, and thus the covariance matrix, until only 

one time series remains, at which point the process stops. 

The selection function determines the criteria for selecting the best candidates to 

merge from the candidate set. In this dissertation, five different selection functions are 

used, corresponding to five different models. Given the four candidate sets and the five 

selection functions, 20 different variants are used. The first selection function was 

designed to select the two securities with the lowest covariance, the least two correlated 

securities. If the data set contains both positively and negatively correlated securities, 

then this procedure selects, for merging, a pair of securities with the most negative 

correlation. This selection function’s objective is to bundle or merge the assets with the 

least correlation to maximize the diversification benefits. However, it was found that the 

securities that got bundled earlier in the process are more susceptible to be diluted from 

further and further bundling, and thus end up with a small percentage in the final 

portfolio.  

The second selection function, as opposed to the first, selects the two securities 

with the highest correlation. This is to preserve the securities with low correlation from 

being diluted and to bundle the securities that behave similarly.  When the securities with 

the high correlation get bundled repeatedly, they have a better chance of being 

eliminated. The third selection function selects the two securities with the lowest absolute 
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correlation. The securities with the least absolute correlation are perceived not to be 

correlated. Their security price movement can be said to be independent, so early in the 

process the third selection function bundles the securities that seem to be unrelated. The 

fourth selection function selects the securities with the highest absolute correlation. The 

fifth selection function selects the securities randomly. The fifth function is used to see 

whether the selection process matters at all. 

4.2.3.3. Feasibility function 

As the name indicates, the feasibility function is used to determine if the optimal 

weight is a feasible weight or not. The feasibility function is a set of constraints that the 

optimal weight needs to satisfy before moving to the next stage. A list of possible 

constraints is described in details in chapter two of this dissertation. In the model 

proposed, only two constraints are applied; budget constraint and long-only constraint. 

The budget constraint is used to ensure that the total weights are not more than 100 

percent of the investment money available. The long-only constraint prevents the weights 

from having any negative values, which reflects short positions. 

4.2.3.4. Objective function 

The objective function is not the function to be maximized or minimized; rather, it 

is the procedure used to determine the optimal weight for each iteration. As explained in 

the previous section, the portfolio selection problem is reduced to two-security portfolio. 

Thus, only the optimal weight between two securities that will minimize the portfolio’s 

risk is needed. It is well known that the risk as measured by variance of a two-security-
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portfolio ( ) can be calculated using the following equation, where is the 

unconditional covariance between the two securities and wi is the weight to be optimized: 

 

Taking the first derivative of this equation, equating the result to zero, and solving 

for the desired weight, leads to the optimal weight that will minimize this two-security 

portfolio’s risk. Differentiating the two-security portfolio’s standard deviation with 

respect to w1 gives the following equation: 

 

When the GARCH model is used, the conditional covariance  is used instead 

of the unconditional covariance . 

4.2.3.5. Solution function 

The solution function determines when the solution is reached. As mentioned 

earlier, the greedy algorithm has an iterative nature: a sequence of solutions is generated 

that gets closer and closer to the optimal weight. However, since the optimal weight is 

not known in advance and the optimization should not continue running indefinitely, the 

process must be terminated using some criteria. Different criteria can be used. One of the 

common criteria is to stop when no progress has been made; other criteria are based on a 

time interval. The greedy algorithm proposed in this dissertation is an exact optimizer, 

which means that, using the same inputs, each time the optimizer is used,  it will give the 
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exact same results. The optimization will be terminated when the number of time-series 

in the initial data set used reaches one time-series. 

4.3. Results  

Before the optimization is started, the data sets used are fitted to probability 

distributions using the Anderson-Darling goodness-of-fit criteria to integrate the 

stochastic nature of the input. The probability distributions were restricted to the normal 

and the lognormal distributions. Given that different securities are affected to varying 

degrees by the same market and economic factors, the correlation between the time-series 

was taken into consideration when the simulations were generated. Spearman rank 

correlation coefficient, a non-parametric estimator of the correlation coefficient 

calculated from the ranks of the observations, is used instead of the Pearson product-

moment correlation coefficient because the Pearson correlation does not generalize to all 

the distributions.  

Using the possible expected values based on the fitted probability distribution, 

Monte Carlo simulation generates 2000 different scenarios of the expected return for each 

security. These expected returns are fed to the optimizer to locate the optimal weights. 

After calculating the expected return scenarios, the covariance matrix is estimated. Using 

the 50 time-series, a 50 by 50 covariance matrix is estimated, and then the selection 

function picks two securities and merges them using the weights determined by the 

objective function. Now the total number of time-series remaining is 49 time-series. The 

remaining 49 time-series are then used to estimate a new 49 by 49 covariance matrix. The 

process continues until only one time-series remains. 
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As explained in the methodology section, the covariance matrices are estimated 

using different techniques: traditional unconditional, OGRARCH, CCC-GARCH, and 

IDCC-GARCH covariance matrices. Each estimating technique is used with five 

different selection criteria: absolute maximum, absolute minimum, maximum, minimum, 

and random. Therefore, 20 variants of the model are created. Each model generates a set 

of optimal weights. These weights are used to calculate the portfolio’s risk and return, 

which are then used to calculate the Sharpe ratio and the VaR for the portfolio.  

The first attempt of the proposed model used 50 securities randomly selected from 

the S&P500.  Table 1 shows the Sharpe’s ratio for the different models. The CCC-

GARCH model was found to be very inefficient in the portfolio setting proposed. Each 

run took approximately 27 hours and 18 minutes to generate the results. All the other 

variants of the model used much less time, ranging from a couple of seconds to 14 

minutes. It does not make sense to use a model that cannot produce the optimal values in 

a reasonable time. Thus, the results of the CCC-GARCH were not investigated further. 

Table 1 

Average Sharpe Ratios using return relative 

Covariance matrix Traditional OGARCH IDCC-GARCH CCC-GARCH 

Abs. Maximum 0.52 0.79* 0.66 --- 

Abs. Minimum 0.12 0.29 0.40 --- 

Maximum 0.27 0.27 0.52 0.82* 

Min 0.27 0.76 0.78* 0.16 

Random 0.62* 0.72 0.73 --- 

*The largest average Sharpe ratios within each estimation method. 



77 

 

A commercially used stochastic portfolio optimizer is used as a benchmark to 

compare the results. The commercial optimizer is allowed 15 minutes to run the 

optimization. Using the same input, the average Sharpe ratio calculated for the 

benchmark is 0.56. This value is better than most of the values calculated using the 

traditional covariance except with the random selection. Using the OGARCH and the 

IDCC-GARCH models, six out of the ten trials performed better than the benchmark.  

Table 2 

Average Sharpe Ratios using residual return relative 

Covariance matrix Traditional OGARCH IDCC-GARCH 

Abs. Maximum 0.65 0.91 0.58* 

Abs. Minimum 0.25 0.56 0.40 

Maximum 0.58 0.56 0.57 

Min 0.20 0.88 0.37 

Random 0.67* 0.94* 0.52 

*The largest average Sharpe ratios within each estimation method. 

When the residual return relative is used instead of the return relative time-series, 

the commercial optimizer’s Sharpe ratio became 0.52. Table 2 shows that three out of the 

five selection criteria performed better using the traditional and the IDCC-GARCH 

model. Using the OGARCH model, all the selection criteria performed better. Tables 1 

and 2 summarize the initial tests performed to assess the performance of the proposed 

model.  

To generalize the results, a larger data set – 850 securities included in the Russell 

1000 – was used to test the model. 150 securities were not used due to data availability. 

50 portfolios were created from the 850 securities pool. Each portfolio was composed of 

50 securities selected randomly from the pool. The 50 portfolios were fed – one at a time 

– to the optimizer to determine the optimal weight. The optimal weights were then used 
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to calculate the portfolio’s risk and return, which were then used to calculate the 

portfolio’s VaR. Table 3 shows the descriptive statistics of the VaR calculated for the 50 

portfolios using the different selection criteria and the different covariance estimation 

techniques. 

Table 3a 

Descriptive statistics for the VaR values using the traditional covariance matrix 

 Tmax Tmin Tran Tabsmax Tabsmin 

Mean $61.24 $321.40 $68.02 $58.53 $360.46 

Variance 319.30 6496.09 871.29 364.12 7121.20 

Std. Dev. $17.87 $80.60 $29.52 $19.08 $84.39 

Skewness 1.5193 0.1551 3.1758 1.3416 -0.4287 

Kurtosis 6.5468 2.6424 14.9286 3.8185 2.5896 

Mean Abs. Dev. $12.93 $66.12 $17.73 $14.66 $69.25 

 

Table 3b 

Descriptive statistics for the VaR values using the OGARCH covariance matrix 

 Omax Omin Oran Oabsmax Oabsmin 

Mean $50.78 $210.84 $58.77 $47.24 $180.39 

Variance 216.22 14682.38 126.85 108.19 21340.75 

Std. Dev. $14.70 $121.17 $11.26 $10.40 $146.08 

Skewness 2.6263 -0.0563 1.9077 1.7287 0.4466 

Kurtosis 12.4636 1.9983 7.3597 6.3184 1.6849 

Mean Abs. Dev. $10.11 $99.55 $7.68 $7.66 $131.72 

 

Table 3c 

Descriptive statistics for the VaR values using the IDCC-GARCH covariance matrix 

 Imax Imin Iran Iabsmax Iabsmin 

Mean $57.91 $219.34 $68.69 $59.96 $232.26 

Variance 164.51 21522.10 127.56 325.08 7409.96 

Std. Dev. $12.83 $146.70 $11.29 $18.03 $86.08 

Skewness 1.5161 0.1345 0.7224 1.2450 0.6211 

Kurtosis 6.2388 1.5222 4.3332 4.3079 2.8720 

Mean Abs. Dev. $8.30 $128.72 $8.72 $13.70 $67.94 
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Figure 8 shows the VaR of the 50 optimized portfolios using the traditional 

covariance matrix assuming an initial investment of $1000. The best results are reached 

when the selection function selects the max value in the covariance matrix. The max 

selection function merges the securities with the maximum correlation – securities that 

behave similarly. When these securities merge again their weight in the optimal portfolio 

gets smaller and smaller. Ultimately the securities with low correlation will have a higher 

weight in the optimal portfolio. The results reached are consistent with the literature, 

where a portfolio composed of securities with low correlation is expected to have low 

risk.  

Figure 8 

Assuming an initial investment of $1000, the 1%-VaR for 50 portfolios created using the 

five different selection criteria are calculated, using the traditional covariance matrix. 

 

The use of the conditional covariance matrix improved the results reached. By 

comparing figure 8, which uses the traditional covariance matrix, and figure 9, which 

uses the IDCC-GARCH covariance matrix, the improvement can be seen clearly. Further 

improvements are reached by using the OGARCH, as can be seen in figure 10. 
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Figure 9 

Assuming a $1000 initial investment, the 1%-VaR for 50 portfolios created using the five 

different selection criteria are calculated, using the IDCC-GARCH covariance matrix. 

 

Figure 10 

Assuming an initial investment of $1000, the 1%-VaR for 50 portfolios created using the 

five different selection criteria are calculated, using the OGARCH covariance matrix. 

 

The Lilliefors test is used to measure the VaR values’ normality or departure from 

normality. The following three graphs show the cumulative distribution functions (cdfs) 

of the VaR values calculated using the different selection criteria and different covariance 

estimation techniques. The Lilliefors test measures the maximum vertical distance 

between the normal cdf and the empirical cdf, and compares this maximum to tabulated 

values.  No significant departure from normality was found (see Figure 11). 
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Figure 11a 

VaR Normal and Empirical Cumulative Distributions (Using traditional Covariance) 

 

Figure 11b 

VaR Normal and Empirical Cumulative Distributions (Using OGARCH Covariance) 

 

Figure 11c 

VaR Normal and Empirical Cumulative Distributions (Using IDCC-GARCH 

Covariance) 
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To validate the results shown in the previous three figures, the t-values and the z-

values are calculated. The alternative hypothesis states that the mean of the max-selection 

is lower than the mean of the other selection methods. The t-values (see table 4-4) and the 

z-values (see table 4-5) show that the max-selection significantly outperforms the min, 

ran, and abs-min selection techniques in risk reduction.  

Table 4 

T-tests for Max-Selection Criteria Superiority over other Selection Methods 

The table shows t-values for a one-tail hypothesis test. The alternative hypothesis is that the 

mean of the max-selection is lower than the mean of other selection methods listed. 

Covariance Traditional Orthogonal IDCC 

Min 22.28* 9.27* 7.75* 

Ran 1.389* 3.05* 4.46* 

Abs-Max -0.73 -1.39 0.65 

Abs-Min 24.528* 6.24* 14.17* 

*Null hypothesis is rejected at a 1% Significant. 

Now that the results show that the max selection is outperforming the other 

selection methods, the VaR of the max selection, using the traditional covariance matrix, 

is compared to the VaR of the Russell 1000 index, S&P500 index, and to the VaR values 

of 50 portfolios constructed using Crystal Ball. The Crystal Ball (CB) is one of the well 

known commercial portfolio construction package, currently available in the market.  

Table 5 

Z-tests for Max-Selection Criteria Superiority over other Selection Methods 

The table shows the z-values for a one-tail hypothesis test. The alternative hypothesis is 

the mean of the max-selection is lower than the mean of other selection methods listed. 

Covariance Traditional OGARCH IDCC 

Min 6.15* 5.44* 5.21* 

Ran 1.03 3.7* 4.21* 

Abs-Max -1.31 -1.22 0.27 

Abs-Min 6.15* 3.93* 6.15* 

*Null hypothesis is rejected at a 1% Significant. 
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Figure 12 shows that the model proposed consistently outperform the Crystal 

Ball. The mean of the VaR values produced by the proposed model were found to be 

significantly lower than the VaR values produced by the CB at a 1% level. The t-value 

was 12.73 and the z-value was 6.15.  The 50 portfolios used in this experiment were 

created using the traditional matrix to make a fair comparison with the CB which uses the 

traditional covariance for the most part. 

Figure 12 

VaR time-series of the Proposed Model vs. Crystal Ball 

Assuming an initial investment of $1000, VaR for 50 portfolios constructed using the 

max selection compared to the VaR for 50 portfolios constructed using Crystal Ball. 

Covariance matrix is estimated using the traditional covariance matrix. 

 

The model proposed outperformed the Russell 100o and the S&P500 indices, the 

VaR for the Russell 1000 index calculated for the same time period is 66.1, and the VaR 

for the S&P500 is 66.2. The VaR for all the 50 portfolios constructed using the model 

proposed are significantly lower than both values. 

The question that needs to be answered now is whether the proposed model 

performs well when applied to a new data set – out-of-sample data. To answer this 

question the Russell 1000 data set, 850 securities for that period from January 2001 to 

July 2008, was divided into two parts. The first part, from January 2001 to April 2005, 
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was used for estimating the weights of the assets to be included in the optimal portfolios. 

The second part, from May 2005 to July 2008, was used to test the performance of these 

optimal portfolios over time. Figure 13 shows the VaR values for the proposed model as 

compared to the VaR values for the Crystal Ball. The mean of the VaR values produced 

by the proposed model are significantly lower than the VaR values produced by the CB at 

a 1% level with a z-value of 3.12. Using the t-test the mean of the proposed model’s VaR 

is significantly lower at a 10% level with a t-value of 1.42. 

Figure 13 

Out-of-Sample VaR time-series of the Proposed Model vs. Crystal Ball 

Assuming an initial investment of $1000, VaR for 50 portfolios constructed using the 

max selection compared to the VaR for 50 portfolios constructed using Crystal Ball. 

Covariance matrix is estimated using the traditional covariance matrix. 

 

Now that the model proposed outperforms the CB, the effect of the covariance 

estimation techniques within the proposed model can be addressed. Table 6 compares the 

max-selection model using the three different covariance estimation techniques. The 

max-selection using the OGARCH is found to significantly outperform the IDCC-

GARCH and the traditional covariance, which shows that the usage of a conditional 

covariance matrix added further value to the portfolio construction. 
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Table 6 

OGARCH Superiority over the other two Estimation Techniques 

The table shows the t-values and the z-values for a one-tail hypothesis test. 

 Omax-Imax Omax-Tmax Imax-Tmax 

T-test 2.59* 3.20* 1.07 

Z-text 3.06* 3.35* 0.62 

*Null hypothesis is rejected at a 1% Significant. 
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Chapter 5 

Conclusions 

Prior research has established that idiosyncratic volatility of securities prices 

exhibits a positive trend. This trend and other factors have made the merits of investment 

diversification and portfolio construction more appealing. This dissertation proposes the 

use of a greedy algorithm in portfolio optimization to: a) increase the efficiency of the 

portfolio optimization process, b) implement large-scale optimizations, and c) improve 

the resulting optimal weights. This chapter starts with a summary of the results followed 

by their limitations. The potential future work is then discussed, followed by some 

concluding remarks. 

4.3. Summary of the results 

In this dissertation, a new methodology for optimizing the weights of equity 

portfolios using a greedy algorithm was proposed and implemented. Twenty variants 

were created using the same greedy algorithm; these variants included five different 

selection methods and four different estimation techniques. The selection methods 

selected the securities to be merged based on five criteria (on the pair-wise covariance 

values): the minimum, the maximum, the absolute minimum, the absolute maximum, and 

on a random basis. The estimation techniques were used to estimate the variance 

covariance matrices. These included: the traditional unconditional covariance matrix, the 

CCC-GARCH covariance matrix, the IDCC-GARCH covariance matrix, and the 

OGARCH covariance matrix. The first five variants used the traditional covariance to 
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estimate the variance and the covariance. The second five variants used the IDCC-

GARCH. The third five variants used the OGARCH, and the last five variants used the 

CCC-GARCH estimation technique. 

The empirical part of this dissertation was divided into two major stages. The first 

stage had the objective of determining whether the proposed twenty variants of the model 

were efficient and stable. The second stage compared the results to three different 

benchmarks to assess the performance. Two different sets of data were used in this 

process. In the first set of experiments, fifty securities were randomly selected from the 

S&P500 securities. These fifty securities were used to create simulated data sets which 

were then fed into the proposed optimizer, as well as into the benchmark optimizer to 

determine the optimal weights. A second set of experiments were performed with 

synthetically created data sets as explained below. 

After the algorithms computed their best solutions, Sharpe ratio and VaR were 

calculated as criteria to compare the model’s performance. Both criteria gave similar 

results, thus, only the average Sharpe ratios were reported. The objective of this run was 

to assess the efficiency and the stability of the proposed models. The five variants of the 

model using the CCC-GARCH were found to be inefficient, and thus were not 

investigated further. All the other fifteen variants, using the three other estimation 

techniques, were found to be efficient and stable, so they were investigated further. 

In the second set of experiments, a different data set was used. Fifty portfolios 

were created, each composed of fifty different securities selected randomly from the 

Russell 1000 securities. Securities were drawn using a uniform distribution to make the 



88 

 

selection of securities equally likely. No duplicate securities were allowed within each 

portfolio. These fifty portfolios were fed one at a time into the fifteen variants of the 

model as well as into the benchmark to determine the optimal weights. The optimal 

weights were then used to calculate the VaR, which was used as a criterion to assess 

performance. For each variant of the greedy algorithm, fifty VaR values were calculated, 

one for each optimal portfolio. The VaR calculated for the three variants using the max 

selection dominated all the other four variants in their corresponding estimation 

technique. Thus, only these three variants were investigated further.  

The simple VaR of the Russell 1000 and the S&P500 indices, and the VaR values 

of 50 portfolios constructed using Crystal Ball were calculated as benchmarks for 

comparison. Given that the Crystal Ball uses the traditional covariance matrix in its 

calculations, only the variant using the traditional covariance matrix was used for 

comparison. The proposed model significantly outperforms these three benchmarks at a 

1% significance level. The use of the conditional covariance matrix, especially the 

OGARCH, showed further improvement over the variant of the model using the 

traditional covariance. 

4.4. Limitations 

Although the results of the proposed model have shown significant improvement 

over the benchmarks used, more tests are needed to generalize the conclusions. The first 

limitation is the data period: only one time period, January 2001 – July 2008, was used, 

and to generalize the conclusions, different time periods need to be investigated. The 

second limitation is the data frequency, only monthly data were used. Different data 
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frequencies have their own pros and cons, but for the sake of validating our model, 

different frequencies need to be tested. The third limitation is the length of the data 

period: only an eight-year period was used in this dissertation, and the effect of the data 

period length was not tested. In addition to these three limitations, different lead-lag 

structure of the GARCH models could be investigated: only the GARCH (1, 1) was used. 

Experiments of other lead-lag structures could be useful.  

4.5. Future work 

The first stage in the future work is to validate the model using different data 

periods, different data frequencies, different data length, and different lead-lag structures. 

After these tests, different potential improvements need to be considered. These potential 

improvements include the following:  

a) Using the time-varying covariance matrix to construct a time-varying 

portfolio. The time-varying portfolio can then be used to determine the 

portfolio turnover rate.  

b) Integrating and testing more constraints. In the current variant, only the 

long-only and the full-investment constraints were included. Other 

constraints, as discussed in section 2.3, are still to be integrated and 

tested. 

c) Using the CVaR instead of the VaR to account for the three drawbacks of 

the VaR, as discussed in section 3.4.2.2. 
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d) Using a more advanced model for the return expectations, like the implied 

return calculations proposed by Black-Litterman or the Wavelet for 

multiple data filtering and trend extrapolation.  

e) Using parallel computing to improve the speed of processing by using 

parallel for-loops and parallel-numeric algorithms. 

f) Integrating a data acquisition module to the model to import and 

manipulate the data needed to run the model. 

4.6. Concluding remarks 

Using fifty different data sets, fifty portfolios were constructed using the proposed 

model. The VaR of these portfolios significantly outperformed the VaR of the S&P500 

and the Russell 1000 indices, and the VaR of the portfolios constructed using Crystal Ball 

at a 1% significance level.  

The proposed model’s superior performance, particularly the max variant, is 

consistent with modern portfolio literature, where the securities with lower correlation 

coefficients add more diversification benefits. Even though more testing is necessary to 

validate and generalize the results, the results show that the portfolios constructed using 

the model proposed are superior to the three benchmarks that were computed.  

Even though this dissertation has some limitations that should be addressed, the 

model proposed provides an improved platform that could be perceived as a starting point 

for a new approach for portfolio construction, an approach characterized by its simplicity, 

efficiency, and effectiveness.  
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