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[This paper is part of the Focused Collection on Quantitative Methods in PER: A Critical Examination.]
A common goal in discipline-based education research (DBER) is to determine how to improve student
outcomes. Linear regression is a common technique used to test hypotheses about the effects of
interventions on continuous outcomes (such as exam score) as well as control for student nonequivalence
in quasirandom experimental designs. (In quasirandom designs, subjects are not randomly assigned to
treatments. For example, when treatment is assigned by classroom, and observations are made on students,
the design is quasirandom because treatment is assigned to classroom, not subject (students).) However,
many types of outcome data cannot be appropriately analyzed with linear regression. In these instances,
researchers must move beyond linear regression and implement alternative regression techniques. For
example, student outcomes can be measured on binary scales (e.g., pass or fail), tightly bound scales (e.g.,
strongly agree to strongly disagree), or nominal scales (i.e., different discrete choices for example multiple
tracks within a physics major), each necessitating alternative regression techniques. Here, we review
extensions of linear modeling—generalized linear models (glms)—and specifically compare five glms that
are useful for analyzing DBER data: logistic, binomial, proportional odds (also called ordinal; including
censored regression), multinomial, and Poisson (including negative binomial, hurdle, and zero-inflated)
regression. We introduce a diagnostic tool to facilitate a researcher’s identification of the most appropriate
glm for their own data. For each model type, we explain when, why, and how to implement the regression
approach. When: we provide examples of the types of research questions and outcome data that would
motivate this regression approach, including citations to articles in the DBER literature. Why: we name
which linear regression assumption is violated by the data type. How: we detail implementation and
interpretation of this modeling approach in R, including R syntax and code, and how to discuss the
regression output in research papers. Code accompanying each analysis can be found in the online github
repository that is associated with this paper (https://github.com/ejtheobald/BeyondLinearRegression). This
paper is not an exhaustive review of regression techniques, nor does it review nonregression-based
analyses. Rather, it aims to compile and summarize regression techniques useful for the most common
types of DBER data and provide examples, citations, and heavily annotated R code so that researchers can
easily implement the technique in their work.

DOI: 10.1103/PhysRevPhysEducRes.15.020110

I. INTRODUCTION

Undergraduate education is undergoing a transforma-
tion: traditional lecture-based teaching is being replaced
with active learning in which students engage with course

content, and each other, in class. This transformation is
progressing because active learning increases student
academic outcomes [1]. At the heart of this progress are
instructors who want to help students maximize their
learning, and discipline-based education researchers who
assess the success of instructional methods and course
innovations.
Linear regression has been established as a best practice

in testing hypotheses in discipline-based education research
[2]. Linear regression is a common statistical technique in
which a continuous outcome variable is modeled as a linear
function of one, or multiple, predictor variables. Physics
education researchers have used linear regression models to
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test many hypotheses related to educational outcomes
such as student performance, e.g., Refs. [3–8] and student
evaluation scores [9].
Linear regression, however, is not appropriate for all the

diverse types of data that education researchers collect. For
example, in addition to being interested in student perfor-
mance, researchers also may investigate student retention,
the number of times a student participates in class, student
affect (e.g., attitudes), or the roles students assume in group
work. These outcome variables, for example, are binary,
count, or categorical, rather than continuous (Fig. 1), and
violate assumptions of linear regression models (see below
for more details). Thus, researchers with these types of data
must move beyond linear regression models and employ
generalized linear models.

Generalized linear models are a group of regression
models that are often suitable alternatives to linear regres-
sion. These models mathematically convert noncontinuous
data into data that can be modeled linearly, thus the name
generalized linear models. Generalized linear models were
first formally introduced in the 1970s by statisticians Nelder
andWedderburn. At this time, statistical methods to analyze
binary and some forms of count data had been developed
[10,11].However, in their seminal paperGeneralized Linear
Models [12], Nelder and Wedderburn discussed a unified
framework for analyzing binomial and count data using
linear models, by incorporating a link function into the
analysis that transforms the relationship between predictor
and outcome variables into an additive, linear model. At
about the same time that generalized linear models were

FIG. 1. Diagnostic tool useful for determining which type of generalized linear model is appropriate for the data collected. This tool
is used in an analogous manner as a dichotomous key. The * indicates that there are special cases of these models that are discussed in
this paper.
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formalized, extensions of binary models for analyzing
categorical data were being developed, primarily in the
field of econometrics [13]. Since categorical data analysis
was based on binary models, the generalized linear model-
ing framework could also be applied to these data types.
Data analysis using generalized linear models grew in
popularity, partly owing to the development of computer
programs that conducted this type of analysis. In 1983, the

first book on generalized linear models was published by
McCullagh and Nelder [14].
Generalized linear models have been employed in the

fields of sociology, psychology, and biomedical science at
least since the 1990s. For example, an article in the journal
Psychological Bulletin in 1995 advocates for the use of a
generalized linear modeling method for count data [15], a
paper that has been cited over 1200 times. In 2001, Sage

TABLE I. Glossary of common terms.

Term Definition

[Model] Assumptions Criteria that have to be met for a model to produce valid results. If assumptions are violated, model
output could be misleading. Most assumptions for glms relate to the nature of the outcome variable,
the relationship between predictor variables and the outcome variable, and the distribution of error.
Linearity is the primary model assumption that generalized linear models overcome.

[Residual] Error The difference between the observed value of the outcome and the value of the outcome predicted from
the model. Each modeled data point has residual error. Residual error is visualized in a plot between
predicted values and actual values

Heteroscedastic (opposite:
homoscedastic)

Unequal residual error across the range of fitted values or across the range of predictor values. This
occurs when a model fits better for some values of a predictor than others. Diagnosed by visualizing
a plot of residuals versus fitted values, or residuals versus any predictor in the model; there should
not be a strong pattern in the residuals across the fitted (or predictor) values.

Interaction The multiplicative effect of two or more predictor variables on the outcome variable. This means that
the effect of one predictor on the outcome changes depending on the value of the second predictor.

Link or linking function A function that allows a non-linearly distributed outcome variable to vary linearly with predictor
variables. For example, the logit link (log odds) and log link are used in glms discussed in this paper.

Log odds (logit
transformation of
probabilities)

The logarithm of the odds. The output of most glm models is log odds; log odds can be back
transformed into odds using eðlog oddsÞ.

Main effects The direct effect of a predictor variable on the outcome variable. Main effects are outputted as “all else
equal”—at the average value of all centered predictor variables, or the 0 value (or reference) for any
noncentered predictor variable in the model.

Model selection A technique that allows users to identify a subset of predictor variables that best describe their outcome
variable. Methods can include stepwise decisions where one predictor is included or omitted from
subsequent models. It is often applied by comparing models using likelihood ratio tests or
Information Criterion (Akaike Information Criterion, AIC; Bayesian Information Criterion,
BIC, etc.).

Multicollinearity An occurrence wherein one predictor variable can be predicted from one or more predictor variables in
the model. This results in a high correlation between predictor variables. This should be avoided in
regression models. Synonym: correlated predictors.

Odds The number of successes relative to the number of failures. Note: Odds are different from a proportion,
which documents the number of successes out of the total number of trials. Odds can be converted to
probability with the formula: probability ¼ odds=ð1þ oddsÞ

Odds ratio The ratio of the odds for one group relative to another group. For example, if the odds for males is 0.2
and the odds for females is 0.3, the odds ratio is 0.2=0.3 ¼ 0.667.

Outcome variable The variable that is being predicted in a regression model. Also called a response variable or dependent
variable.

Predictor variable The variable(s) that are being used to predict the outcome variable. Also called an explanatory variable
or independent variable.

Reference level The value of a categorical predictor variable that all other values are compared to. In 0=1 variables,
defaults to 0; can be releveled in R (with function relevel).

Regression coefficient An estimation of the change in the outcome variable accompanying a one unit increase in the predictor
variable. Each predictor variable has a regression coefficient. Abbreviated β; also called estimate
(noun).

Variance The square of the standard deviation of a sample; describes how far each value in the data set is from
the mean of the data. Note: variation is a general term describing the amount of variability; it is
measured with various quantities, including variance.
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publishing house released a book on the use of generalized
linear models, in their series Quantitative Applications in
the Social Sciences [16], demonstrating the popularity and
utility of glms. Generalized linear models are now widely
implemented across statistical platforms including SPSS,
STATA, R, and SAS. The wide use, the ease of imple-
mentation, as well as the suitability of generalized linear
models for data commonly collected by DBER researchers,
suggest the utility of these models for our community.
In this paper, we identify when to move beyond linear

regression, and how to apply generalized linear models to
education data. We begin by reviewing the assumptions of
linear regression. We then detail five types of generalized
linear regression models: logistic, binomial, proportional
odds (also called ordinal), multinomial, and Poisson. We
also detail several special cases of these glms, including
censored regression, overdispersion, and excess zeros. For
each model type, we explain when, why, and how to
implement the regression approach.

• When: we provide examples of the types of research
questions and outcome data that would motivate this
regression approach.

• Why: we explain which linear regression assumptions
are violated by the data type.

• How: we detail implementation and interpretation of
this modeling approach in R, including R syntax and
annotated code, and how to discuss the regression
output in research papers. All code associated with
analyses can be found in the online github repository
associated with this paper [17].

We ground our explanations in a diagnostic tool (Fig. 1)
that allows researchers to identify the most appropriate
model type for their own data. A glossary of common terms
can be found in Table I.
We intend for this paper to be used as a reference, not

necessarily read from start to finish. For this reason, each
section can stand alone and readers may notice repetition
throughout. We hope this allows researchers to easily imple-
ment each of these glm techniques in their work. This paper is
not an exhaustive review of regression techniques, nor does it
review nonregression-based analyses. There are many ways
to test hypotheses in DBER—regression analysis, discussed
here, is one. In contrast, hypotheses regarding social inter-
actions betweengroupsof students canbe testedwith network
analysis [18]; hypotheses about how items on assessments
relate to each other, differentiate respondents, and show bias
can be tested with factor analysis [19], Rasch analysis [20],
and differential item functioning [21], and some hypotheses
are best developed and tested with mixed-methods research
[22]. All of these methods are beyond the scope of this paper
but are not to be overlooked when considering the best
method to analytically test hypotheses in DBER.
Finally, there are several steps a researcher must take

before fitting regression models including, but not limited
to, data cleaning, checking for outliers, and checking for

multicollinearity. These topics are intentionally avoided in
this paper. We refer readers to two reference books, Gelman
and Hill [23] and Fox and Weisberg [24], for more informa-
tion on preparing data for use in regression analyses.
Additionally, we have found these books to have particularly
clear explanations, examples, andR code for implementation
of regression models. Throughout this paper we have relied
heavily on these books, as well as online tutorials (e.g.,
Introduction to R. UCLA: Statistical Consulting Group [25])
and the primary literature.

II. THE LIMITS OF LINEAR REGRESSION

This paper assumes a basic familiarity with linear
regression. For readers who are new to statistical modeling
and linear regression, we recommend the following
sources: Moore and Notz [26] is a nicely written intro-
ductory text for developing understanding about why and
how researchers should (and should not) use statistical
models. Theobald and Freeman [2] extend this discussion
by demonstrating the fallacy of applying nonregression
based techniques to DBER data. Finally, Gelman and Hill
[23] culminate with 25 chapters dedicated to applying all
types of regression in social science research. The latter
uses R to analyze the data in all of their examples.
Researchers new to R may turn to helpful resources
learning how to code, including online tutorials such as
Try R [27] or STAT 545 [28], and the Field, Miles, and
Field book Discovering Statistics Using R [29].

A. Linear regression assumptions

To understand why generalized linear models are most
appropriate for the data types discussed above, it is helpful
to understand the assumptions of linear regression that
limit its broader applicability. In order of importance
(according to Gelman and Hill [23]), the six assumptions
of linear regression are (i) validity of the model, (ii) lin-
earity, (iii) additivity, (iv) independence of errors, (v) equal
variance of errors, and (vi) normality of errors. The
majority of this paper focuses on the assumption of
linearity, as it is mathematically the most important
assumption to avoid violating [23]. However, before dis-
cussing linearity and how to remedy violations, we will
briefly describe the other five assumptions which are worth
considering.
Validity of the model.—All modeling rests on the

assumption that the model being fit is a valid model. By
validity, we mean that three conditions are met: (i) the
outcome that is being modeled represents the phenomenon
that is being predicted (i.e., that a researcher can answer
their question with the data being collected), (ii) the
appropriate predictors are included in the model, and
(iii) the population from which the data is collected
represents the population that predictions are being made
about [23]. For example, a researcher interested in
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understanding the factors that influence first-generation
college student persistence in the physics major would need
to (i) appropriately measure persistence in the physics
major (e.g., by longitudinally tracking declaration of
physics and nonphysics majors), (ii) choose a set of
predictors they hypothesize influence persistence in the
major based on theory or empirical studies (e.g., gender,
grades in introductory courses, attitudes toward physics,
etc.), and (iii) collect data from first-generation physics
majors to make predictions about this specific population.
It is primarily up to the researcher to assess the violation of
this assumption based on their knowledge and the con-
sensus in the primary literature. However, readers and
reviewers are also responsible for assessing the validity of
the regression models used in any paper before drawing
conclusions from that paper. Validity is arguably the most
important assumption to avoid violating [23] (even though
it is not a mathematical assumption). Succinctly put,
statistics cannot help you if your data do not match to
your research question.
Additivity.—Additivity assumes that the relationship

between the outcome and predictors is additive; in other
words that

y ¼ x1 þ x2 þ x3þ ∈;

where y is the outcome, x1−3 are predictors, and ∈ is the
error. If the relationship is not additive, but is actually
multiplicative, such that

y ¼ x1 þ x2 � x3þ ∈

then the researcher can either add interactions (for example,
x2 � x3), or transform the predictors (for example,
log x2 þ log x3) to make the relationship additive. The
assumption of additivity is tested by plotting the outcome
variable with each predictor variable to check for a linear
relationship and also testing models that include inter-
actions or transformed predictors [23].
Independence of errors.—This assumption states that

observations [and the error (∈), or uncertainty, associated
with these observations] are independent. Nonindependence
can arise from nested, or clustered, designs or in repeated
measures designs. For example, observations made on stu-
dents within sections are nestedwithin the section. Students in
the same section may have outcomes that are more highly
correlated to each other than to students in different sections
due to their shared environment. Alternatively if a study is
conducted across several years, the observations within year
not independent. Similarly, in repeated measures designs, the
sameoutcome ismeasuredon the same subjectsmultiple times
(e.g., over time) and those observations are not independent.
Insufficiently correcting nonindependence (i.e., violations of
the assumption of independence of errors) can lead to spurious
conclusions. This nonindependence can be accounted forwith
a statistical method called multilevel modeling, as detailed in

Gelman and Hill [23] and applied to DBER in Theobald [30].
Adding a random effect term of section, year, or student
(respectively, from the examples above) accounts for the
nonindependent nature of the observations. Nonindependence
is a relatively common problem in education studies because
of the frequent use of quasirandom study designs. Multilevel
modeling can accommodate many types of the glms we
discuss in this paper [23,30].
Equal variance of errors.—Also known as homoscedas-

ticity (as opposed to heteroscedasticity), equal variance of
errors assumes that the deviation of the modeled value of the
outcome versus the actual value of the outcome is the same
for all the modeled values. One well-known example of
heteroscedasticity in educational data is in the relationship
between SAT scores and college grades [31]. The relation-
ship between these two variables tends to be stronger for
students with high SAT scores and weaker for students with
low SAT scores. This means that college grades for students
with low SAT scores will not be predicted as well by the
model as college grades for students with high SAT scores.
The assumption of equal variance of errors is tested by
visually examining plots of residuals versus fitted values.
Ideally, there should be no strong pattern observed in these
plots. If the assumption is grossly violated, Gelman and Hill
[23] recommend using weighted least squares, where each
point is weighted inversely proportional to its variance.
Alternatively, one can use robust standard errors when data
are heteroscedastic [23]. Heteroscedasticity has to be quite
strong before it violates the model assumptions, so in most
cases in DBER, including the example described above, it
does not have to be corrected.
Normality of errors.—The errors of a linear regression

model are assumed to have a normal distribution. This
assumption is generally the least important, and according
to Gelman and Hill [23], it is not necessary (or even
recommended) to diagnose the normality of errors, par-
ticularly if the goal of the model is to test a hypothesis, as
opposed to make predictions.
Linearity.—For the rest of the paper, we focus almost

exclusively on this final assumption of linearity. Linearity
means that the relationship between the outcome and each
of the predictors is a straight line. In other words, a one unit
change in the predictor translates to a specific amount of
change in the outcome. The exact amount of change in the
outcome is the same for every unit change in the predictor;
this change in the outcome is the regression coefficient in
the regression model. This assumption is violated when the
outcome is not linear—generalized linear models were
developed to overcome violations of linearity [12].

III. GENERALIZED LINEAR MODELS

The assumption of linearity is violated when the outcome
variable is categorical, tightly bounded (such as a Likert-scale
items with few response options), or expressed as counts.
To illustrate this, let us consider a simple case of a count
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outcome: how many times students raise their hand to
volunteer in class. If an intervention is designed to increase
the number of times each student raises their hand, a
researcher might compare the number of times each student
raises their hand in an intervention class to the number of
times each student raises their hand in a non-intervention
class. As all teachers know, getting a student who never raises
her hand to raise her hand once is much harder than getting a
studentwho raises her hand five times to raise her hand a sixth
time. Thus, the outcome from 0 to 6 is not linear because the
“distance” between 0 and 1 ismuch larger than the “distance”
between 5 and 6. In a Poisson regression (discussed at length
below), the outcome is log-transformed to become linearized.
The other common transformation that glms utilize is the

logit transformation. Logit transformations are used when
outcome data are categorical, and the probability of being
in one category versus other categories is the outcome of
interest. Specifically, a logit transformation is computed as

logit ¼ log

�
x

1 − x

�
:

When x is a probability (e.g., the probability of passing
or failing a class, or the probability of majoring in one of
several fields, etc.), ( probability

1−probability) represents the odds of the
event. Thus, the logit transformation when x is a probability
is the logarithm of the odds, or the log odds. In these ways,
generalized linear models move beyond the assumption of
linearity that is a central tenet of linear regression. In fact,
this is why these models are called generalized linear
models: instead of modeling the outcome itself, these
models relate predictor variables to outcomes using a link
function, like the log or logit link in the examples above.

A. Interpreting log odds: Challenges and solutions

The output of glm models (i.e., the regression coeffi-
cients) that use a logit transformation are on the log odds
scale, and log odds are difficult to interpret. By exponen-
tiating the coefficient [eβ; expðβÞ in R], the log odds are
converted to odds ratios. Odds ratios are relative, meaning
one group is always being compared to another group (i.e.,
odds ratio: odds for category 1=odds for category 2).
Despite being easier to interpret than log odds [32], odds
ratios are also notoriously challenging to interpret [33]
because of the tendency to conflate the interpretation of
odds with the interpretation of proportions [32,33].
Odds are a measure of the number of successes relative

to the number of failures (successes versus failures) rather
than the number of successes out of the number of trials
(successes versus trials; i.e., proportions). For example, say
we have a class of 200 students. Sixty-five (65) of the men
pass the class and 35 fail; 90 women pass the class and
10 fail. The odds of a man passing the class are 65=35
or 1.8. The proportion of men who pass the class are
65=100 or 0.65. (The odds of a woman passing the class are

90=10 or 9.) The odds ratio for men versus women passing
the class is the odds of men passing the class divided by the
odds for women or 1.8=9 ¼ 0.2: the odds for men passing
the class are 0.2 that of the odds for women. From this odds
ratio we can get a sense of the direction and magnitude of
the effect: an odds ratio of 1 indicates that there are equal
odds for each group, an odds ratio greater than 1 indicates
there are greater odds for the nonreference group, and an
odds ratio less than 1 indicates there are greater odds for the
reference group. Thus, here, women have better odds of
passing than men, but the exact impact of gender on passing
is still unclear because odds are not intuitive. Unfortunately,
we cannot simply say something straightforward such as
“men are 0.2 times as likely to pass the class as women”—
this is not representing odds accurately. Instead, because
the odds ratio is relative, it is actually saying something
more convoluted and harder to understand: for every man
not passing, 0.2 times as many men will pass than the
number of women passing for every woman not passing.
An additional complication (for reasons nicely explained

by Osborne [32]) of interpreting odds ratios occurs when
the odds ratio is less than one. In these cases, it is preferable
to take the reciprocal of the odds ratio and either reverse the
relationship or the reference category. For example, when
the odds ratio for men compared to women is 0.2, it is best
to describe this relationship as the odds for women are
5 times (1=0.2) that of the odds of men.
An even more natural way to present these relationships

is by describing changes in the probability of the outcome
for each group. The conversion of odds to probabilities is
relatively easy: probability is equal to the odds divided by
the odds plus one. The function plogis does this in R. So
here, the probability that a man will pass is 1.8=ð1þ 1.8Þ ¼
64% and the probability that a woman will pass is
9=ð1þ 9Þ ¼ 90%. However, converting odds ratios (the
back-transformed glm regression coefficients) to probabil-
ities is not as straightforward, particularly with continuous
predictor variables. The effects package in R [34] or the
sjPlot package in R [35], on the other hand, does this
seamlessly. The effects package can model the predicted
probability of being in a particular outcome category, given
changes in the predictor variables, using the log odds
generated from a glm model [36,37]. Specifically, it isolates
the influence of each predictor individually in an “all else
equal” context: for example, it calculates the probability
of each outcome as the predictor of interest varies, while
setting all other predictors in the model equal to their
average value. These effects can be tabulated or plotted,
making them easy to visualize.

IV. GENERALIZED LINEAR MODEL TYPES

A. Choosing between generalized linear model types

In the following sections we describe five common
generalized linear regression models that are appropriate
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to use with different types of outcome variables and how to
interpret the results. Knowing which generalized linear
model type to implement can be a daunting task, but Fig. 1
can help. Specifically, Fig. 1 is to be used as a decision tree:
it is a guide to choosing the most appropriate generalized
linear model based on the outcome data being analyzed.

B. Logistic regression

1. When to use logistic regression

Logistic regression is appropriate when the outcome
variable is categorical with only two possible categories
(Fig. 1). There are many examples of outcome data of this
nature in DBER. For example, researchers have tested
whether student characteristics influence: passing or failing
a test [38] or a course [39], majoring or not majoring in
physics [40], matriculating or not matriculating into medi-
cal or graduate school [41], or completing or not complet-
ing a science, technology, engineering, and math (STEM)
Ph.D. [42].
In logistic regression, the binary outcome data are

represented as 0 and 1, where 1 represents the outcome
that the researcher is interested in modeling (i.e., “success”
as defined by the researcher) and 0 is the reference level
(i.e., the “failure” as defined by the researcher). The model
estimates the probability that the outcome equals 1, given a
set of predictor variables. For example, Kost and colleagues
[38] examined how gender influenced passing the Force
and Motion Concept Evaluation as a post-test. Since
passing the test was the outcome of interest, each student
in the sample was assigned a 1 if they passed the post-test
and a 0 if they failed the post-test. Kost and colleagues [38]
then used logistic regression to determine whether gender
influenced the probability of passing the post-test.

2. Why use logistic regression

Because binary outcome data are categorical, the prob-
ability of being in a particular category is typically the
outcome of interest. However, probability values are
bounded between 0 and 1, resulting in a nonlinear relation-
ship with predictor variables, and thus violating the linear
regression assumption of linearity [43,44]. Logistic regres-
sion models estimate binary outcome data by using the
logarithm of odds, also called logit transformation, to
transform the outcome probability values into continuous,
unbounded log odds that can be predicted with a linear
function [45].

3. How to implement logistic regression in R

Logistic regression can be implemented in R using the
glm function in the base package [46]. With logistic
regression, family=binomial and link=“logit”
must be specified within the glm function (Table II;
Appendix 1 [47]). If the binary outcome data are coded
as 0 and 1 in the data set, then R may interpret these as

integer data, when in fact they are categorical. Thus, it is
important to change this data structure in R to be factor
data, and set the reference level to 0. If the binary response
data are coded as text in the data set (e.g., coded as “pass”
or “fail”), then R should recognize it as a factor (always
double check to be sure), but it is important to set the group
that represents “0” as the reference level.
Here, we use modified data from a study that sought to

understand life science majors’ task values for using
mathematics in the context of biology [63]. Specifically,
we examine how several characteristics predict whether
students report being likely to take an elective mathematical
modeling biology course. In this model, the outcome is
either “unlikely” to take the course (outcome ¼ 0) or
“likely” to take the course (outcome ¼ 1). The predictor
variables include: interest in using mathematics to under-
stand biology (abbreviated: interest), perceptions of the
usefulness of mathematics for their life science career
(abbreviated: utility value), perceptions of the cost of
incorporating mathematics into biology courses (abbrevi-
ated: cost), as well as students’ gender, year in school, and
highest mathematics course taken in high school.
Annotated R code to conduct this analysis is provided in
the logistic example in the github repository in Ref. [17].

4. How to interpret the output from logistic regression

Standard output from logistic regression models include
coefficients for the intercept and each predictor variable,
along with standard errors and p values, based on a z
statistic (Wald test statistic), for each coefficient to assess
whether the coefficient is significantly different from 0
(Appendix 1 [47]). An AIC value is also included in the
output and can be used in model selection [64]. Because
the logit transformation converts the outcome variable
into the log odds of the outcome variable equaling 1, the
regression coefficients indicate an increase or decrease in
the log odds of the outcome variable equaling 1 for a one-
unit increase in a continuous variable. Or they indicate an
increase or decrease in the log odds of the outcome variable
equaling 1 for a group in comparison to a reference group
in a categorical variable. The intercept represents the log
odds of the outcome variable equaling 1 when all continu-
ous predictor variables equal 0 and when all categorical
predictor variables are at their reference level.
Again, it is not intuitive to consider changes in log odds

due to a predictor variable, so each regression coefficient
should be back-transformed into an odds ratio by using the
equation eβ, where β is the regression coefficient (as
explained above and as is implemented in the R code).
Interpreting the logistic regression in our example data,
increased interest in using mathematics to understand
biology significantly increased the log odds of reporting
being likely to take a modeling course (β ¼ 0.71, p <
0.0001; Appendix 1 [47]). The odds of reporting being
likely to take a modeling course compared to reporting
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(a) Logistic 

 

(b) Binomial 
 

(c) Proportional odds logistic regression 
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FIG. 2. Examples of publication-style figures for each type of generalized linear model. These figures were made from the data
presented in each extended example. (a) Logistic: increasing interest in using mathematics to understand biology is related to an increase
in the probability of reporting being likely to take a mathematical modeling in biology course. (b) Binomial: female students were more
likely to complete optional practice exams than male students. (c) Proportional odds logistic regression: students were less likely to
agree that someone dominated their group after they completed the Interactive Activity. (d) Multinomial: GPA moderates the influence
of gender on the roles students prefer during group work. (e) Poisson: Physics majors (red line) are predicted to raise their hands more
than nonphysics majors (blue line) across all values of exam point totals (dots are data points, not estimates).
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being unlikely to take a modeling course increases by a
factor of 2 for every unit increase in students’ interest in
using mathematics to understand biology (odds ratio ¼
eβ ¼ e0.71 ¼ 2.04; Appendix 1 [47]).
It is important to remember that odds ratios are different

than probabilities [32]. In the example here, an odds ratio of
2 does not mean that students with a one unit increase in
interest are twice as likely to report being likely to take a
modeling course. Rather, it means that for a one unit
increase in interest, for every student that reports not being
likely to take a modeling course, twice as many students
will report being likely to take a modeling course. Odds
ratios can be converted into probabilities for each category
of the predictor, which are the most intuitive way to
understand the effects of a predictor on an outcome.
The effects package does this easily and can be used to
tabulate or plot how each predictor, holding all others at
their average values, affects the probability of reporting
being likely to take a mathematical modeling course [e.g.,
Fig. 2(a)].
When odds ratios are less than one, they become more

difficult to intuitively interpret [65]. Again, in our example,
we found a significantly lower log odds of a fourth-year
student reporting being likely to take a modeling course
than a first-year student (β ¼ −0.52, p ¼ 0.03), corre-
sponding to an odds ratio of 0.60. This can be interpreted
as the odds of a fourth-year student reporting being likely to
take a modeling course is 0.60 that of the odds of a first-
year student reporting being likely to take a modeling
course. Although clearly this is lower than the odds of a
first-year student, it is difficult to conceptualize the mag-
nitude of this difference. Again, the best approach is to
calculate the odds ratio of the opposite comparison, by
taking the reciprocal of the odds ratio (1=odds ratio), so that
an odds ratio greater than 1 can be interpreted. For example,
instead of calculating an odds ratio for fourth-year students
compared to first-year students, the odds ratio of first-year
students compared to fourth-year students can be calcu-
lated: 1=0.60 ¼ 1.67. This would be interpreted as the odds
of a first-year student reporting being likely to take a
modeling course is 1.67 times that of the odds of a fourth-
year student reporting being likely to take a modeling
course.
Thus far, we have focused on interpreting the coefficients

for predictor variables, but the coefficient for the intercept
can also be useful for interpreting the results. The intercept
is particularly useful when the researcher is interested in
visualizing the odds or the probability of an outcome for
each level of a categorical predictor. As a reminder, the
intercept represents the log odds of the outcome at the
reference level, and the regression coefficients show change
in the log odds as the parameters change (i.e., away from
the reference). Therefore, the intercept and regression
coefficient for a categorical variable can be added together
to obtain the log odds of the outcome for each categorical

level. For example, we could compute the odds of a student
in each year of school (first through fourth year) reporting
being likely to take a mathematical modeling course,
holding all other variables constant at the reference level
(if categorical) or at 0 (if continuous). In our model, the
intercept of −2.02 represents the log odds of male, first-
year students with a calculus background and scores of 0 on
interest, utility value, and cost reporting being likely to take
a mathematical modeling course (Appendix 1 [47]). To
compare this to second-year students of the same gender,
background, and task values, we would add the regression
coefficient for second year (−0.16) to the intercept (−2.02),
obtaining a log odds value of −2.18. Similarly, we would
obtain values for third-year students (−2.21) and fourth-
year students (−2.54). Exponentiating these values will
give you the odds of students in each year of school (again,
holding all other variables constant at the reference level or
at 0) reporting being likely to take a mathematical modeling
course (0.13, 0.11, 0.11, 0.08). More intuitively, these
numbers can be converted to probabilities using the
equation: odds=ð1þ oddsÞ, or the plogis function in
R, leading to probabilities of 0.12, 0.10, 0.10, and 0.07,
which can be easily graphed and interpreted.
An important consideration when doing this is whether

the reference values represented by the intercept make
sense. In our example, the continuous variables of interest,
utility value, and cost take a range of values from 1–7, so it
does not make sense to compare students at a value of 0
for these variables. An alternative is to compare different
levels of a categorical predictor at the mean value of each
continuous predictor in the model. This can be done by
centering the continuous variables before running the
regression (i.e., subtract mean from each value). A different
example: if SAT score were included in a model as a
predictor, the intercept would indicate the expected value
of the outcome when the SAT score is 0. This value is
nonsensical, so centering SAT score by taking each
student’s score and subtracting the class mean centers
SAT. In this case, the intercept is interpreted as average
SAT score. The effects package can also be used to
determine the odds or probability of an outcome for each
level of a categorical variable (though the effects package
will also hold categorical variables constant at the mean
rather than a reference level; see Ref. [36] for an explan-
ation of this).

5. Assumptions and how to test the assumptions
of logistic regression

After a logistic model has been fit to the data, it is
important to check the assumptions of the model. Logistic
regression assumes that (i) the outcome variable is binary,
(ii) the observations are independent, and (iii) the continu-
ous predictor variables are linearly related to the log odds
(logit) of the outcome variable. The first two assumptions
are based on knowledge of the data and experimental
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design. The third assumption can be tested graphically by
creating a smooth scatterplot of the log odds of the
predicted probabilities (also called fitted values) as a
function of each continuous predictor in the model [44].
A smooth scatterplot does not assume a linear relationship
between variables, but rather uses a smoothed curve to
depict the relationship between variables. A linear relation-
ship would indicate the assumption is met, whereas a
nonlinear relationship would suggest either a transforma-
tion of the predictor variable is necessary or the logistic
regression model is not an appropriate model for the data.
For example, instead of the log odds (logit) transformation,
a probit or complementary log-log model might be more
appropriate for the data. We refer the reader to other
authorities on the topic of when to use alternative trans-
formations [13,23,24,45]. In our example data, the scatter-
plot of the log odds of the predicted probabilities as a
function of interest looks linear. However, the scatterplots
of the log odds of the predicted probabilities as a function
of utility value and cost appear to have some curvature.
Therefore, exploring probit and complementary log-log
models would be worthwhile with this data set. All of these
options are shown in the extended example in the code in
the online repository [17].

C. Binomial regression

1. When to use binomial regression

Binomial regression, also called binomial logistic regres-
sion, is a more general form of logistic regression in which
the outcome data are proportions. These proportions come
from counts of the number of successful outcomes out of a
given number of trials (Fig. 1). For example, a researcher
interested in the probability of persistence in a STEMmajor
may count the number of students that remain in a STEM
major (“success” outcome) out of the total number of
students who enroll in an introductory STEM class. The
outcome is represented as the proportion of the total
number of students that remain in a STEM major. This
proportion, when measured across multiple introductory
classes, could be used as an outcome variable. An example
of the use of binomial data in education research can be
found in Desjardins [49]: researchers calculated the pro-
portion of students with at least one day of suspension to
determine the effects of gender, ethnicity, poverty status,
and whether the student was in a special education program
on the probability of being suspended. Binomial data may
also be generated by counting the number of “successes” in
n independent trials (if each trial has a binary outcome), and
representing that as a proportion. For example, a researcher
may count the number of times a student turned in a
homework assignment throughout the semester to calculate
the proportion of homework assignments turned in by each
student. Thus, logistic regression (as described above) is
actually a special case of binomial logistic regression in
which the number of trials equals one.

As in binary logistic regression, in binomial logistic
regression, the researcher is modeling the probability of
an outcome of interest, designated as a “1” or a “success.”
Even though there are multiple trials represented in the
binomial data, the binomial regression still models the
probability of success in one trial as a function of a set of
predictor variables, and assumes that this probability is
the same for all trials. For example, if the outcome data
are the proportion of homework assignments turned in by
each student, binomial regression will model the proba-
bility of a student turning in a homework assignment
based on a set of predictors and assume that probability is
the same for turning in each of the rest of the homework
assignments.
There are two additional considerations for binomial

regression. First, in binomial regression, the total number of
trials can differ among variables or individuals in the data
set. In these cases, it is important to input the total number
of trials into the analysis (described below). When the total
number of trials is not known, beta regression is an
alternative technique that may be useful [66]. Second,
binomial outcome data can resemble Poisson outcome data
as they are both counts. If the count is tightly bounded, a
binomial regression is more appropriate; on the other hand,
as n becomes larger and the probability of success becomes
smaller, the Poisson is a good approximation and thus
Poisson regression can be used [67].

2. Why use binomial regression

Using proportional count data in a linear regression
model is problematic for the same reasons as using binary
data in a linear model. Primarily, because the data are
proportions, they are bounded between 0 and 1, which
results in a nonlinear relationship with predictor variables.
(Particularly in the case of modeling “rare events,” i.e., if
probability of success or failure is small [68].) Furthermore,
with proportional count data, the distribution of residuals is
not always normally distributed or of equal variance [23].
As in logistic regression, a log odds transformation (also
called logit transformation because the outcome is a
probability) is applied to transform the bounded outcome
into a continuous outcome that can be modeled as a linear
function of predictor variables.

3. How to use binomial regression in R

To demonstrate how to implement and interpret the
output of a binomial regression, we will use a data set
we modified from Jackson and colleagues [69]. Here,
students were given the opportunity to complete nine
practice exams over the course of the semester, but
completing practice exams was optional. In order to
get a better sense of which students complete these
optional practice exams, we examined whether gender,
first-generation status (i.e., if they were the first in their
family to attend college), and GPA influenced the

BEYOND LINEAR REGRESSION: A REFERENCE … PHYS. REV. PHYS. EDUC. RES. 15, 020110 (2019)

020110-11



probability of completing a practice exam. The data and
the R code can be found in the binomial regression
example in the online repository [17].
Because binomial regression is a form of logistic

regression, it is also implemented using glm and specifying
family=binomial (link=“logit”), as shown in
Table II. However, instead of inputting a single column
as the binary outcome of the model, a two-column matrix
containing the number of “successes” and the number of
“failures” is inputted as the outcome (Table II, Appendix 2
[47]). Alternatively, a column containing the proportion of
successes (bounded between 0 and 1) can be input as the
outcome, but “weight” must be set to a column containing
the total number of trials from which each proportion of
successes was calculated.

4. How to interpret the output
from binomial regression

As in binary logistic regression, the output from bino-
mial regression reports the regression coefficients as log
odds, and their associated standard errors, z-values, and
p-values. Exponentiating the regression coefficients (eβ)
will yield odds ratios that describe the odds of success to
failure for the reference and non-reference group. Here,
both GPA and gender significantly predict the probability a
student completed a practice exam. Exponentiating the
regression coefficient for gender (e0.17) gives an odds ratio
of 1.19: the odds that a female completed a practice exam
are 1.19 times the odds of a male student completing a
practice exam.We can use the effects package to get a better
understanding of the impact of gender on completing
practice exams: a female student with the average score
across all other variables is predicted (by the model) to have
a 63% chance of completing a practice exam and an
equivalent male student a 59% chance [Fig. 2(b)].
When the odds ratio is less than one, as is the case

for GPA (Appendix 2 [47]), we take the reciprocal of the
odds ratio: for each 1-unit increase in GPA the odds of
completing a practice exam decreases by a factor of 4.1.
Using the effects package, we see that all else equal, a
student with a 2.4 GPA (for example) has an 85% chance of
completing a practice exam, and a student with a GPA of
3.5 has a 55% chance (Appendix 2 [47]).

5. Assumptions and how to test the assumptions
of binomial regression

Binomial data are proportions based on counts (or
frequencies) of successes from independent trials, each with
the same probability of success. Thus, binomial regression
has two critical assumptions: (i) that the trials are indepen-
dent, and (ii) that there is the same probability of success for
each trial [24]. Thus, binomial regression is not appropriate
for all proportion data, notably proportion data from trials
that are not independent, or trials that do not have the same

probability of success. For example, considering the sample
data on practice exams, if students had a higher probability
of completing the first practice exam than a later practice
exam, perhaps because students were too busy to complete
optional practice exams later in the semester, the probability
of success (completing a practice exam) would differ
between some of the trials (each instance of completing a
practice exam), violating the assumptions of binomial
regression. Furthermore, proportions should not be con-
fused with ratios, which are quotients often used with the
purpose of relativizing numbers (e.g., surface area to volume
ratio). Ratios are not appropriately modeled with binomial
regression, rather beta regressionmay be a more appropriate
regression method. Cribari-Neto and Zeileis [66] provide
more information on beta regression, including implement-
ing it in R through the betareg package [70].
One final note about the binomial distribution: when

there are a large number of trials, the proportion may be
better estimated with a linear regression because as n trials
increases, the binomial distribution approaches a normal
distribution [67]. For example, if a researcher were inter-
ested in the number of days a student attended class, a
binomial regression would be best if there were few class
sessions—for example, a seminar class that met once per
week ðoutcome ¼ n attended=n weeksÞ. On the other
hand, in K-12, most school districts require a 180-day
school calendar. With this many days (i.e., trials), a linear
regression is more appropriate as it will closely approxi-
mate a binomial regression. In these cases, a linear
regression is preferred because the output of a linear
regression (days) is easier to interpret than the output from
a binomial regression (log odds), and may be more
meaningful.
Similar to binary logistic regression, binomial regression

also assumes that the predictor variables are linearly related
to the log odds of the binomial outcome variable. This
assumption can be tested by examining a smooth scatter-
plot of the log odds of the proportion data or the predicted
probabilities as a function of each continuous predictor
variable [45]. In our example, a scatterplot shows that GPA,
the only continuous variable in the data set, is linearly
related to the log odds of the proportion data.
Overdispersion, in which the observed variance is

greater than that expected for a binomial distribution,
occurs frequently in binomial regression [23]. Although
there are multiple ways to test for overdispersion in a data
set, in our example we examine the sum of the squared
Pearson residuals divided by the residual degrees of free-
dom. This value should approximate 1 [71], and it can be
used in a more formal test of overdispersion by comparing
it to a χ2 distribution [23]. To do this in R, we direct the
readers to an overdispersion function presented for gener-
alized linear mixed models [72]. For conducting and
interpreting this test, see the R code for binomial regression
found in the github repository [17].
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D. Proportional odds logistic regression

1. When to use proportional odds logistic regression

Proportional odds logistic regression models (also called
proportional odds models, ordered logistic regression
models, ordinal logistic regression models, ordered logit
regression models, or cumulative link models) are a type of
glm that models categorical ordinal outcome data [73]. The
outcome for this model can have any number of categories
(greater than two), but the categories must be ordered
(Fig. 1). For example, Likert-scale data from a survey
where respondents report agreement on a scale from
“strongly agree” to “strongly disagree” are categorical
ordinal; the levels (i.e., “agree”) are categories, and the
categories are ordered in that strongly disagree is “lower”
than disagree, which is “lower” than agree, etc. Categorical
ordinal data are distinguished from binary data by having
more than two categories and are distinguished from
multinomial data in that multinomial data are not ordered
(see below for more details about multinomial regression).
Categorical ordinal data are commonly generated via

surveys. Surveys are a convenient way to quantitatively
assess student attitudes, affect, or experience in a class. One
common example used in physics DBER is the Colorado
Learning Attitudes about Science Survey (CLASS), which
measures students’ beliefs about physics and attitudes
about learning physics [74]. Proportional odds logistic
regression would be ideal for analyzing results from this
and other surveys with Likert-scale responses. For exam-
ple, Theobald and colleagues [75] assessed whether stu-
dents’ affect changes after studying local or global
examples of the biological impacts of climate change.
Through an identical pre- and post-test, they asked three
affect questions: (i) How likely is it that climate change will
impact your life? (ii) How willing are you to change your
behavior to reduce the impacts of climate change? And
(iii) How much do you support government action to
reduce greenhouse-gas emissions? Students answered
these questions on a 5-point scale, where 1 ¼ relatively
little, 3 ¼ a moderate amount, and 5 ¼ a great deal. The
researchers fit three proportional odds logistic regression
models, one for each question, to test the hypothesis that
the intervention is correlated with how students answered
these questions. A thorough explanation of their methods
details can be found in their paper [75].
Another common type of categorical ordinal data come

from quizzes, concept inventories, or tests that have few
questions (for few possible points). For example, Wiggins,
Eddy, Grunspan, and Crowe [76] tested whether an
intervention improved student learning on an 8-item
post-test. The distribution of test scores was both highly
skewed and tightly bounded, so treating them as linear and
analyzing them with a linear regression would violate the
assumption of linearity. Instead, the authors considered
the outcome, measured as the number of questions correct,
from 0-8, as categorical ordinal with each additional

question answered correct as a “higher” category, and
analyzed the data with a proportional odds model.

2. Why use proportional odds logistic regression

Categorical ordinal data violate the assumption of
linearity because the linear distance between each level
is not necessarily equivalent. For example, on a ruler, the
distance between 1 and 2 in. is equivalent to the distance
between 4 and 5 in. In Likert-scale survey data, however,
the difference between strongly agree and agree may be
smaller than the distance between disagree and neutral.
Additionally, categorical ordinal data may approach a
ceiling, or a floor, wherein students would have answered
higher (or lower) if the outcome had allowed. For these
reasons, modeling categorical ordinal data as continuous
does not accurately reflect the structure of the data and thus
can lead to inaccurate conclusions. Furthermore, when
Likert-scale responses are reduced to percent agreement, or
groups of respondents are compared simply using t tests, as
is common with many surveys, a tremendous amount of
information is lost. For example, averages can be the same
but the variance much different, and it is impossible to
account for differences between group compositions that
might drive those differences in responses. Rather, the
outcome should be modeled using proportional odds
logistic regression: Instead of treating the outcome as
linear, the outcome is translated to log odds (see logistic
regression) and a logistic regression is fit for each level (i.e.,
category) compared to the others.

3. How to fit proportional odds logistic regression in R

Proportional odds logistic regression models can be fit in
R with the polr function in the MASS package [59], as
shown in Table II. If it is necessary (see proportional odds
assumptions below) to have more advanced control of
the linking function, thresholds or cutoffs (reported as
Intercepts in the R output; Appendix 3 [47]), or to fit
multilevel proportional odds models, the ordinal package
[77] can help.
Theobald and colleagues [50] fit proportional odds

models to test hypotheses about how students experience
group work. They used both an eight-item pre-post-test as
well as a single survey question (that was answered on a
Likert-scale) to better understand the impact of a “domi-
nator” in group work. Here, we will work through one of
their examples in detail. For illustrative purposes, we have
truncated their data to avoid the need to fit multilevel
models, and will use the polr function in the MASS
package [59]. The truncated data as well as the R code to
analyze it can be found in the proportional odds logistic
regression section in the online repository [17].
Theobald and colleagues [50] hypothesized that different

kinds of group work would be more (or less) conducive to a
single student dominating a group. To assess this question,
they implemented two activities that required different
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types of group work; they called these activities “interactive
group work” and “constructive group work.” After each
activity, they asked students a series of questions, including
to what extent each student thought a single student
dominated their group. Students answered this “dominator”
question on a 6-point Likert scale, from strongly disagree to
strongly agree. For analysis, this scale was converted to 1 to
6 with higher numbers indicating higher agreement that
there was a dominator in their group.

4. How to interpret the output of proportional
odds logistic regression

Proportional odds models fit successive logistic regres-
sions, comparing one level of the outcome to any level
higher. The output is presented as a single coefficient and it
represents the log odds of responding one or more levels
higher on the outcome scale for every unit change in the
predictor. For example, if GPA describes a survey score, the
regression coefficient for GPA quantifies the log odds of a
student agreeing one or more additional levels on the
survey for each unit increase in GPA. Only one coefficient
is reported because it is assumed that the transition between
each level of the outcome is equivalent for all levels of the
outcome (see below).
The output from proportional odds models does not

include p values so classical hypothesis testing with p
values is not straightforward. While there are ways to
calculate a p value, these p values become increasingly
biased as the sample size decreases [13,59]. Thus, it is
instead recommended that model selection is used to test
hypotheses [64]. The complete details of model selection
are too extensive to cover here, but Burnham and Anderson
[64] are considered an authority on the topic. Instead, we
will provide a brief overview of backward selection using
AIC. The key difference between hypothesis testing with
model selection and hypothesis testing with p values is that
when conducting model selection, each model is consid-
ered a distinct hypothesis. Thus, the relative fit of the
models (as measured by AIC in this case) is how each
hypothesis is tested.
When employing backward selection, the researcher fits

a complex model and singularly removes parameters in
subsequent models [30,64]. Models are compared using
AIC and the model with the lowest AIC is selected as best
fit, with the important caveat that models within 2 AIC are
considered to have equivalent fit [64]. In these cases, rules
of parsimony dictate that the simplest model is preferred
[64]. Once the best fitting model is selected, it should be
compared to a null model, without any predictor variables.
The model with the fewest number of parameters with the
lowest AIC is selected as best fitting and interpreted.
After employing backward selection, Theobald and col-

leagues [50] found that the best fitting model controlled for
course grade and ethnicity and included activity type; indeed,
activity type impacted the extent towhich students agreed that

a single student dominated their group [Fig. 2(c)]. The output
of the model includes the regression coefficients (“values”
Appendix 3 [47]) for each predictor variable, the standard
errors, and t values for the regression coefficients. The
coefficients are reported on the log odds scale, so similar
to logistic and binomial regression, the coefficients should be
translated to odds ratios or probabilities for interpretation and
publication [Fig. 2(c); Appendix 3 [47]].
Replicating the conclusions from Theobald et al. [50],

we see that controlling for course grade and ethnicity,
students are less likely to report that one person dominated
their group after completing an interactive group activity
(odds ratio for the interactive activity compared to the
constructivist activity ¼ 0.56). The odds ratio is less than
one, thus the reciprocal and the opposite relationship is
reported (1=0.56 ¼ 1.79): the odds that a student who
worked on the constructivist activity more strongly
endorsed that one person dominated their group were
1.79 that of students who worked on an interactive activity.
By “more strongly endorse,” we specifically mean reported
one level or more higher on the question asking them if
there was a dominator in their group. (Note that the size of
the effect reported here differs slightly from that reported in
Theobald et al. [50], but that is because the data were
truncated here for illustrative purposes.) From the figure
created with the effects package [Fig. 2(c)] we see that there
is a higher probability that students disagree (and lower
probability that they agree) that there was a dominator
when they worked on the interactive activity than on the
constructivist activity.

5. Assumptions and how to test the assumptions
of proportional odds models

There are two key assumptions to proportional odds
models: first, that the levels of the categorical outcome are
ordered, and second that the relationship between each pair
of levels is the same (hence the name proportional). To test
whether the outcome is best modeled as ordinal, compare
the model fit of the proportional odds model to the model
fit of the same model that is fit as a multinomial model.
A multinomial regression model models a categorical
outcome that has more than two categories which are
not ordered (see below for extensive details on how to fit
multinomial models). This is easily done with the function
multinom in the nnet package in R [62]. Once both the
proportional odds and multinomial models are fit, compar-
ing the AIC of the models will determine if the outcome is
ordered (i.e., if the AIC of the polr model is lower) or not
(i.e., if the AIC of the multinom model is lower).
Second, the assumption that the relationship between

each pair of outcome groups is the same is an underlying
assumption of proportional odds logistic regression. In
other words, the model assumes that the relationship
between the lowest versus all higher categories is the same
as the relationship between the second lowest versus all
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higher categories: the odds of choosing one level over
another is proportional for each level. (Two side notes:
1) this assumption is where the name proportional odds
models comes from; 2) it is because of this assumption that
there is only one set of coefficients that gets reported when
the model is fit. Otherwise, there would be a coefficient for
each level of the outcome variable.) This assumption is not
straightforward to test in R, although an online example
[78] has been modified in the supplemental R code for
proportional odds logistic regression found at github [17].
The assumption is tested by first fitting separate logistic
models for each level compared to all higher levels. For
example, model one would predict level one compared to
all higher levels, model two would predict level two
compared to all higher levels, and so forth. Then, compare
the output from each logistic model to the output of the
proportional odds model. The difference between the
coefficients for one higher level of the outcome should
be the same (i.e., roughly the same) for each level of the
outcome.
Special cases.—Proportional odds logistic regression

models are useful for understanding student responses to
single Likert-scale questions. However, surveys often have
multiple items that comprise a construct. The mean or the
sum of the items in the construct is used to determine a
construct score that is on a continuous scale. Using linear
regression to model these scores is intuitive, but has a
critical flaw. Typically with Likert-scale data, student
responses approach a ceiling (or floor, although this is
much less common in survey data). A ceiling effect occurs
when some respondents who responded the highest value
(e.g., of agreement) would have responded even higher if
the scale had permitted. Conversely, a floor effect occurs
when responses are bounded at the lower end of a scale.
Ceiling and floor effects result from censoring: the true
value is unknown because it occurs outside the range of the
measurement instrument. Ceiling and floor effects (i.e., the
effects of censoring) can be diagnosed by visually inspect-
ing the residuals of a linear regression model; data
appearing artificially bounded indicate a ceiling or floor
effect. (See the supplement of Ref. [51] for an example.)
When a ceiling or floor effect is suspected, a censored

regression should be fit [79]. A censored regression is not
unique to proportional odds logistic regression, however it
is particularly useful when modeling responses to survey
constructs, as these types of data often experience a strong
ceiling or floor [79]. A censored regression accounts for the
ceiling or floor effect by actually modeling an uncensored
latent outcome instead of the censored observed outcome.
In this way, the estimates as well as the standard error of the
estimates are more accurate. In their analysis of survey data
that grouped into constructs, Wiggins and colleagues [51]
fit a censored regression to confirm that their results did not
qualitatively differ from the results of their linear regres-
sion. That paper, including the Supplemental Material,

provide details of how and why to fit a censored regression.
Censored regression models can be fit using the censReg
package in R [61].

E. Multinomial regression

1. When to use multinomial regression

Multinomial regression is employed when the outcome
variable has more than two categories that cannot be
meaningfully ordered (Fig. 1). To illustrate this, consider
an example from the education literature where the out-
come variable is the students’ choice of major [80,81].
College majors are categorical and there are more than two
options, so simple logistic regression cannot be applied. In
addition, majors cannot be meaningfully ranked to create
levels, because one major is not necessarily better than
another, thus proportional odds logistic regression is not
supported. Multinomial regression was developed to
address these types of outcome variables.
Multinomial regression is most commonly used in

education to take a more nuanced look at student persist-
ence (for example, beyond the simplistic binary of graduate
to dropout) and other student decisions, e.g., Refs. [43–45,
82]. For example, Jones-White and colleagues [83] recog-
nized that many students leave their home institution, but
go on to graduate from a different institution. These
students are in fact college graduates, even though from
the lens of the home institution, they appear to have
dropped out. Thus, Jones-White and colleagues [83] chose
to expand the classic binary outcome for graduation success
to a four level outcome variable to understand what
predictors impacted a student’s trajectory: (i) graduating
with a Bachelor’s degree at a student’s initial institution,
(ii) graduating with a Bachelor’s degree from another
institution, (iii) graduating with an associate’s degree, or
(iv) not graduating in six years.
Multinomial regression is also useful in other contexts.

For example, Eddy and colleagues [53] used multinomial
regression to explore the factors related to the role students
preferred to assume during groupwork—i.e., whether
students prefer to be a listener, talker, collaborator, or
recorder. Similarly, Weerts and Cabrera [84] documented
factors that influenced the type of civic engagement college
students engaged in (superengager, apolitical-engager,
social-cultural engager, and nonengager). Finally, Prevost
and colleagues [85] used multinomial regression to analyze
student understanding of biology concepts by moving
beyond simply categorizing student responses as right or
wrong and allowing for different types of incomplete
understanding.

2. Why use multinomial regression

Multinomial regression is used when the outcome
variable is categorical, not continuous, but when the
categories cannot be ordered. Multinomial regression is
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similar to logistic regression in process and interpretation:
in fact, it involves the simultaneous calculation of multiple
sets of logistic regression models. The simultaneous
calculation of these logistic regressions has the advantage
that it produces smaller standard errors around the esti-
mates than when each model is run separately [13].
The number of logistic regressions fit in a multinomial
regression depends on the number of categories in the
outcome variable; specifically, the number of models is
“1 − the number of categories” due to one category being
selected as the reference level and each of the other levels
being modeled in comparison to that reference.

3. How to fit multinomial regression in R

To illustrate how to fit a multinomial regression in R we
will replicate the results in Eddy et al. [53]. In their paper,
Eddy and colleagues [53] asked students to describe the
role they preferred to assume when completing in-class
groupwork. Student responses were categorized into five
mutually exclusive bins: listener, talker, collaborator,
recorder, and other. Here, we use a subset of their data
to explore the relationship between gender, class standing,
and college GPA on the roles students assume during group
work. Note that college GPA is centered so that the mean
GPA in the sample is 0. Code to run this analysis in R as
well as the data set are provided in the multinomial
regression section in the online repository [17].
The first step of multinomial regression is selecting the

reference level for the outcome variable. The regression
coefficients from a multinomial regression are always
relative: specifically, the coefficient describes the log odds
of being in each other category relative to a reference
category. The reference outcome category will be the same
across all the individual logistic regression models. The
choice of reference level is up to the researcher, but it is best
to set the reference level to something that creates “clin-
ically meaningful” odds ratios [44]. If there is one category
that is the most important to the research to understand why
participants are in or out of it, then set that as the reference
level. In the case of group work, theory from cognitive
science suggests that the collaborator role is the ideal role
for students to assume during group work, because groups
where all participants listen and speak are most likely to
reach interactive engagement which can lead to the deepest
learning [86]. Thus, all comparisons to the collaborator role
will be clinically meaningful, so this is designated as the
reference.
Next, we specify the model and run a multinomial

regression. In R, multinomial regression can be imple-
mented with the multinom function in the nnet package
[62], as shown in Table II. In this example, the multinomial
regression involves simultaneously running four logistic
regressions with the following contrasts of outcome cat-
egories: Leader versus collaborator, listener versus col-
laborator, recorder versus collaborator, other versus

collaborator. The initial model includes interactions
between gender and class standing and gender and college
GPA to test whether the influence of these two variables on
the role students assume in groups is different for students
of different genders.
Once the initial model is identified, we can evaluate

which predictor variables contribute to a better prediction
of the outcome. Like logistic regression and proportional
odds logistic regression, multinomial regression models the
log odds of being in a particular category of the outcome
variable relative to being in the reference category. What
complicates interpretation of predictors is that for each
predictor variable, R reports a different regression coef-
ficient, standard error, and p-value based on the z statistic
from the Wald test for each comparison (i.e., for each
logistic regression model). In this way, the researcher
models a full picture of the relationship between the
predictors and the possible categories, but it can be
challenging to interpret. To evaluate the contribution of
the predictors across all the simultaneous logistic regres-
sions, Hosmer and colleagues [44] recommend comparing
multinomial models with and without each predictor
variable using a likelihood ratio test (as opposed to the
Wald tests). This approach is necessary for two big reasons:
First, the p values derived from the Wald test statistic are
specific to each logistic regression, and the Wald statistic
varies in significance depending on the outcome contrast
being modeled by the logistic regression (collaborator
versus talker or collaborator versus listener)—together,
this makes the p values unuseful as a global measure of
the importance of a predictor [44]. For example, college
GPA might be a significant predictor for the odds of
preferring to be a leader relative to a collaborator, but
not a listener relative to a collaborator, making it difficult to
assess how important college GPA is in predicting which
role a student assumes. In contrast, a likelihood ratio test is
calculated for the predictor as a whole and across all the
individual logistic regressions, thus globally assesses each
predictor. Second, the Wald statistic is generally less
reliable than the likelihood ratio test with small sample
sizes [13].
To conduct a likelihood ratio test to evaluate the

contribution of each predictor variable on the role a student
assumes, we test the contribution of each term to the model
by comparing models with and without that term, using
backwards selection. In this example we have five possible
predictors: gender, college GPA at the start of the course,
class standing, gender×GPA, and class standing×GPA. As
is standard practice with backward selection [30,64], we
start by testing the inclusion of each interaction by
comparing models, using likelihood ratio tests, with and
without the interaction. Next, we test the main effects of
gender, college GPA, and class standing. Appendix 4 [47],
documents the outcomes of the likelihood ratio tests. We do
not see substantial change in the fit of the model by
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including an interaction term for gender and class standing
(p ¼ 0.195) or class standing as a main effect (p ¼ 0.736).
There is a loss of fit when gender×college GPA is removed
(p ¼ 0.048). Thus, model selection via likelihood ratio
tests suggests the critical variables to consider when
describing the role students prefer (from among the initial
variables listed) are gender, college GPA, and a
gender×college GPA interaction.

4. How to interpret the output
of multinomial regression

The regression coefficients in log odds of the final model
are represented in Appendix 4 [47]. For each comparison of
outcome level to collaborator (i.e., each row in the table)
there is a different regression coefficient for each predictor
variable. The p value in each cell is from aWald test, which
tests whether the coefficient is significantly different from
zero. We can see from the third column in the table that the
coefficient for gender is significant in the comparison of the
talker versus collaborator role, but does not significantly
influence the log odds of not being a collaborator in any of
the other comparisons.
To develop a sense of the magnitude of the gender

impact we convert the log odds to an odds ratio by
exponentiating the coefficient for gender (e1.4). Here, the
significant main effect of gender indicates that the odds of
males with the average university GPA preferring the role
of talker over collaborator are 4.1 times that of a similar
female preferring the role of talker over collaborator. But,
this is not the whole story: there is also a significant
interaction between gender and GPA. Understanding the
impact of this interaction is substantially easier using the
predicted probabilities of the effects package. The prob-
abilities from the effects package are global, meaning that
they incorporate the results from all the comparisons. In
this example, as GPA increases above the mean, men
become less likely to prefer being collaborators and more
likely to prefer being a leader. Women with the same GPA,
on the other hand, become more likely to be collaborators
[Fig. 2(d), Appendix 4 [47] ].
The only other regression coefficient that the Wald

test indicates is significantly different than zero, is college
GPA on the odds ratio of being in the category of other
versus collaborator. With a one-point increase in GPA, the
odds that a student prefers being a collaborator are 7.6
times (1=e−2) that of a student preferring assuming an
“other” role.
Odds ratios can still be confusing because the interpre-

tation is always relative to the reference level. The effects
package can provide additional clarity by converting the
odds ratios produced by multinomial regression into
probability (percent chance) of being in each outcome
category. This measure is not relative and is much easier to
compare. Figure 2(d) and Appendix 4 [47] represent one
way to summarize these relationships for a publication.

5. Assumptions and how to test the assumptions
of multinomial regression

Multinomial regression relies on several assumptions.
First, the data have to be case specific; i.e., each individual
can only be in one outcome category not several. Thismeans
that this type of analysis may work better with forced choice
type questions versus questions where students are allowed
to check as many categories as they want. Alternatively, the
researchers have to look at student choices and bin them into
single categories. The second assumption is the independ-
ence of irrelevant alternatives. This assumption states that
adding other outcome categories to the analysis will not
change the relationship between the other outcomevariables
[83]. In our example this would mean that if we added a 6th
possible group role, there would be no impact on the log
odds of being a leader versus collaborator. If a new outcome
could impact the relationships between the existing outcome
categories, then this assumption is violated and coefficients
may be miscalculated [87]. When researchers perceive this
assumption could be violated, it is recommended to use
the probit linking function in the multinomial regression,
although, this has not been emphasized. Multinomial probit
models can be run in R using the MNP package [88].
Multinomial regression is a useful tool when an outcome

variable is categorical with more than two levels, but it has
several limitations. First, because so many tests are being
calculated and these tests require the use of maximum
likelihood estimates, multinomial requires a larger sample
size than ordinal or logistic regression [44]. Second, even
though there is no limit to how many categories the
outcome variable can have, interpretations become increas-
ingly difficult with more outcomes. Thus, it is wise to try to
keep the number of possible outcomes small.

F. Poisson regression

1. When to use Poisson regression

As with binomial regression, the outcome of Poisson
regression models are count data. However, it differs in that
the count data must be unbounded, i.e., not a proportion of
some specified number of occurrences (Fig. 1; Ref. [67]).
In discipline-based education research, Poisson regression
might be used to determine how student, classroom, or
program characteristics influence the number of students
from a particular program who persist in a discipline [89] or
the number of undergraduates completing research projects
within a department [90]. Auerbach and colleagues [54]
used Poisson regression to model the number of times an
instructional practice, such as promoting metacognition,
was noticed by experts compared to novices as they
analyzed videos of active-learning classrooms. Andrews
and colleagues [55] examined how faculty gender, aca-
demic rank, DBER or not DBER academic position, and
participation in teaching professional development influ-
enced change of teaching practices. They measured change
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by counting the number of times a faculty member was
reported in a survey as the cause of a change, thus
necessitating a Poisson model of their count data.

2. Why use Poisson regression

Linear regression is not appropriate for count data for two
reasons. First, a linear regression model may predict values
that are negative, which is beyond the range of possible
values for count data. Second, count data are generally not
normally distributed, but rather are right-skewed, and thus
better modeled with a Poisson distribution. It is especially
important to use a Poisson regression model when the mean
of the outcome variable is low (below 10) as the differences
in the Poisson and normal distributions typically become
distinct within this range [91]. Poisson regression accounts
for these violations by log-transforming the outcome
variable, which no longer bounds the data at 0 [13].

3. How to fit Poisson regression in R

Poisson regression is fit in R using the glm function
(family=Poisson) in the base package [46], as shown in
Table II. To illustrate the implementation of Poisson regres-
sion, we created a sample data set loosely based on ecological
data that had count outcomes [92]. We use this toy data set to
“test” the hypotheses that (i) students’major (physics or not)
and (ii) course examperformance affect the number of times a
student raises their hand in the classroom (outcome variable).
The data and R code can be found in the Poisson example in
the github repository [17].

4. How to interpret the output of Poisson regression

Similar to the output from the logistic and binomial
regression models, the output from a Poisson regression
includes regression coefficients, their standard errors, and
p values, based on a z statistic, for each of the coefficients
to determine if each is significantly different than zero
(Appendix 5 [47]). However, unlike the output on a log
odds scale, the output of a Poisson regression is on the log
scale. Exponentiating the coefficients transforms the output
to be a multiplicative effect as we demonstrate below. For
more details, see Gelman and Hill [23].
In our hand-raising example, the number of times a

student raises their hand can be predicted by whether or
not a student is a physics major (β ¼ −0.872, p < 0.0001;
Appendix 5 [47]), as well as their total exam points (β ¼
0.004, p < 0.01; Appendix 5 [47]). To facilitate inter-
pretation of these coefficients, we exponentiate them (eβ;
where β is the coefficient) and interpret them as multi-
plicative effects. For example, controlling for the total
exam points received by a student, the expected number of
hand raises for a nonphysics major is eð−0.87Þ ¼ 0.42 times
the expected number of hand-raises for a physics major
[Fig. 2(e)]. In other words, the expected number of hand
raises in class is reduced by 58% for nonphysics majors

compared to physics majors. Furthermore, when control-
ling for major status, every 1-point increase in exam points
translates into a 0.4% increase in the expected number of
hand raises in class for physics majors [eð0.004Þ ¼ 1.004;
Fig. 2(e)].
In addition to the standard regression output, the AIC

value of the model is also reported. AIC can be helpful in
model selection and can be used to determine if a special
case of Poisson regression (as described below) better
explains the data.

5. Assumptions and testing the assumptions
of Poisson regression

Poisson regression models rely on several assumptions.
The first, and most fundamental assumption, is that the
variance in the outcome is equal to the mean of the outcome.
The easiest way to test this assumption is by summarizing
the data [i.e., summary(data$outcome)]. With count
data it is common for the variance to be greater than the
mean, a phenomenon known as overdispersion. In the code
online [17], we detail how to determine whether over-
dispersion is occurring in a data set. We first fit a negative
binomial model (not to be confused with a binomial
regression) with the MASS package [59]. These models
are commonly used to account for overdispersed count data.
Second, we test for overdispersion with odTest in the pscl
package [60]. With both of these tests, we find that our data
are highly overdispersed.
Another assumption of Poisson regression that is

commonly violated includes having an overabundance
of zeros in the data set (i.e., the case when many subjects
never display the behavior you are recording). In this case,
the data can be fit with either a zero-inflated Poisson or
Hurdle model, both of which can be run in R using the
pscl package [56,60]. The zero-inflated model is most
appropriate for our hand-raising example as it is used
when there is more than one reason we might expect a
value of zero to be observed. In our case, students may
choose not to raise their hand, or instead, they may be
absent from class thus unable to raise their hand. More
details describing these special cases can be found in
Appendix 6 [47].

V. CONCLUSIONS

Regression models are essential in discipline-based
education research [2] in that they both allow for rigorously
testing hypotheses and control for differences among
students in quasirandom experimental designs. However,
linear regression models have several assumptions that are
violated with various types of outcome data in education.
Thus, researchers must move beyond linear regression and
consider generalized linear models, or glms, for appropri-
ately analyzing their data.
In this paper we provide a diagnostic tool for identifying

the most appropriate regression model (Fig. 1) and describe
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how to fit and interpret five glm types in R. For readers who
want more details, there are many great resources on how to
analyze data in a regression framework and an equal number
of resources on how to implement regression in R. We have
cited Fox and Weisberg [24] and Gelman and Hill [23]
extensively throughout this paper. Additionally, there are
other resources which may be helpful for specific kinds of
analyses, including: Hosmer et al. [44] for logistic, ordinal,
and multinomial regressions; Agresti [13] for logistic,
ordinal, and multinomial regressions; and Faraway [67]
for logistic, binomial, and Poisson regressions.
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