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ABSTRACT OF THE DISSERTATION

RESOURCE MANAGEMENT AND OPTIMIZATION IN WIRELESS MESH

NETWORKS

by

Xiaowen Zhang

Florida International University, 2010

Miami, Florida

Professor Hao Zhu, Major Professor

A wireless mesh network is a mesh network implemented over a wireless network sys-

tem such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous

applications such as broadband home networking, enterprise networking, transportation

systems, health and medical systems, security surveillance systems, etc. Therefore, it has

received considerable attention from both industrial and academic researchers. This disser-

tation explores schemes for resource management and optimization in WMNs by means of

network routing and network coding.

In this dissertation, we propose three optimization schemes. (1) First, a triple-tier

optimization scheme is proposed for load balancing objective. The first tier mechanism

achieves long-term routing optimization, and the second tier mechanism, using the opti-

mization results obtained from the first tier mechanism, performs the short-term adaptation

to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation al-

gorithm is developed as the third tier optimization scheme to further reduce the congestion

level in the network. We conduct thorough theoretical analysis to show the correctness of

our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Cod-

ing scheme called RANC is proposed to improve the performance gain of network coding

by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous anal-

ysis to find the design principles and study the tradeoff in the performance gain of RANC.

vi



Based on the analytical results, we provide a practical solution by decomposing the original

design problem into two sub-problems, flow partition problem and scheduling problem. (3)

Lastly, a joint optimization scheme of the routing in the network layer and network coding-

aware scheduling in the MAC layer is introduced. We formulate the network optimization

problem and exploit the structure of the problem via dual decomposition. We find that

the original problem is composed of two problems, routing problem in the network layer

and scheduling problem in the MAC layer. These two sub-problems are coupled through

the link capacities. We solve the routing problem by two different adaptive routing algo-

rithms. We then provide a distributed coding-aware scheduling algorithm. According to

corresponding experiment results, the proposed schemes can significantly improve network

performance.
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CHAPTER 1

INTRODUCTION

1.1 General Statement of Problem Area

A wireless mesh network is a mesh network implemented over a wireless network system

such as wireless LANs. Mesh networks differ from other networks in that the component

parts can all connect to each other via multiple hops, and they are assumed to be station-

ary in this research work. Wireless Mesh Networks(WMNs) is promising for numerous

applications. For example, broadband home networking, community and neighborhood

networking, enterprise networking, metropolitan area networks, transportation systems,

health and medical systems, security surveillance systems, etc. Therefore, it has received

considerable attention from both industrial and academic researchers. Let’s take enterprise

networking for example. Currently, standard IEEE 802.11 wireless networks are widely

used in various offices. However, these wireless networks are still isolated islands. Con-

nections among them have to be achieved through wired Ethernet connections, which is

the key reason for the high cost of enterprise networks. If the access points are replaced

by mesh routers, as shown in Figure 1.1, Ethernet wires can be eliminated. WMNs can

grow easily as the size of enterprise expands. The service model of enterprise networking

can be applied to many other public and commercial service networking scenarios such as

airports, hotels, shopping malls, convention centers, sport centers, etc.

This dissertation explores two important research problems in wireless mesh networks.

(1) Load balancing. The goal of load balancing is congestion control. We use load bal-

ancing technique to minimize the congestion level given the available network resources.

The importance of load balancing lies in the fact it can maximize the utilization of wire-

less bandwidth and guarantee quality of service (QoS). A network that is not well balanced

is more likely to have delay variation, bad QoS and waste of bandwidth. For wireless

1



networks, it is challenging to provide a guaranteed performance due to the dynamic char-

acteristics of wireless channels. Therefore, it is very important to study how to achieve a

good load balancing in wireless mesh networks.

Figure 1.1: WMNs for enterprize networking[Aky05]

(2) Network coding. Communication networks today share the same fundamental prin-

ciple of operation, whether it is packets over the Internet, or signals in a phone network,

information is transported in the same way as cars share a highway or fluids share pipes.

That is, independent data streams may share network resources, but the information itself is

separate. Routing, data storage, error control, and generally all network functions are based

on this assumption. Network coding [KRH+06] is a recent field in information theory that

breaks with this assumption. Instead of simply forwarding data, nodes may recombine

several input packets into one or several output packets. Network coding has received con-

siderable attention as a mechanism to increase the performance of both wired and wireless

networks. The essence of network coding is to convey more information in each transmis-

sion by mixing information from different sources. In wireless networks, network coding

exploits the broadcast nature of wireless medium to improve system throughput. Since the

operation does not require any upgrade of hardware, network coding can be easily imple-

2



mented and deployed in wireless networks. Therefore, this dissertation focuses on how to

improve the performance gain of network coding for wireless mesh networks.

1.2 Research Questions and Hypotheses

Followings are the research questions and hypotheses.

Question 1: How to build a wireless mesh network cost-effectively?

Question 2: How to achieve the goal of load balancing given the dynamic condition

of wireless channels?

Question 3: How to improve the performance gain of network coding?

Question 4: How to combat the impact of poor channel conditions on the performance

of network coding?

Question 5: How to create more network coding opportunities?

Hypotheses 1: Load balancing may be achieved by proper routing mechanism.

Hypotheses 2: Throughput may be improved by using well-designed network coding

techniques.

Hypotheses 3: More network coding opportunities may be created by proper routing.

1.3 Contributions

This dissertation mainly make the following contributions:

1. We propose a triple-tier optimization scheme for load balancing in wireless mesh

networks with OSPF routers. The first tier mechanism achieves long-term routing opti-

mization, and the second tier mechanism, using the optimization results obtained from the

first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic

channel conditions. Based on the average traffic demands and average link capacity, we use

linear programming techniques to find the optimal routing policy for load balancing of each

3



source-destination traffic by setting an appropriate weight to each link. This enable us to

use current OSPF routers to build a wireless back-haul. Since current OSPF routers only

support discrete traffic splitting, we propose a greedy MIN-MAX Congestion algorithm

to find a shortest-path set in order to approximate the optimal routing policy within a cer-

tain bound. Due to the impact of dynamic channel conditions, we propose the second tier

adaption scheme which runs frequently enough to refine the routing policy to balance the

overall traffic according to the channel condition. To utilize the subchannels in orthogonal

frequency division multiple access (OFDMA) for the load balancing purpose, a greedy sub-

channel allocation algorithm is developed and used as the third tier optimization scheme to

further reduce the maximum congestion level in the network. We conduct thorough theo-

retical analysis to show the correctness of our design and give the properties of our scheme.

Our solution is also evaluated via simulations and the simulation results show that our work

can effectively lower maximum congestion level of the network to a near-optimal value.

2. We propose a Relay-Aided Network Coding (RANC) scheme to combat the impact

of poor channel condition on the performance of network coding by exploiting the PHY

layer multi-rate capability in wireless mesh networks. We investigate the design principles

via rigorous analysis and derive the coding structure for RANC. Based on the analyti-

cal results, we design the RANC protocol by decomposing the original problem into two

sub-problems: the flow partition problem and the scheduling problem. We evaluate our de-

sign via simulations. The simulation results show that RANC can significantly outperform

COPE [KRH+06] in terms of the throughput of network coding.

3. We propose a method for exploiting the network coding gain via a joint design of

both the routing at the network layer and the network coding-aware scheduling at the MAC

layer to improve the overall networking performance. We formulate the design problem by

nonlinear programming and decompose the original problem into two sub-problems: the

routing problem and the scheduling problem. These two subproblems are linked through

4



the performance factor related to the queuing delay at each node. We propose distributed

solutions for both the routing problem and the scheduling problem. We evaluate the per-

formance of the proposed scheme through simulations and the simulation results show that

our scheme can significantly improve network throughput.

1.4 Outline of Dissertation

The rest of this dissertation is organized as follows: Chapter 2 presents the related work for

topics covered by this dissertation. Chapter 3 proposes a triple-tier load balancing scheme.

In Chapter 4, a network coding scheme called RANC is provided and analyzed in detail,

while Chapter 5 introduces a joint optimization mechanism of routing and network coding

aware scheduling. The performance evaluation of the schemes proposed from chapter 3 to

5 is provided in each chapter. Chapter 6 draws the conclusion and future work is given out.

5



CHAPTER 2

RELATED WORK

2.1 Load Balancing

With efforts made in improving data rates and reducing cost, wireless access technologies

have paved the way for the high-speed broadband wireless data service. Using wired links

(such as T1, DSL, T3, etc.) to connect access points or base stations to the Internet has

many difficulties due to relatively lower speed of wired links and high deployment cost.

Consequently, considerable research and commercial efforts are paid to develop wireless

back-hauls as an alternative to costly wired infrastructure via wirelessly multi-hopping to a

high-speed and low-cost wired Internet entry point such as a metropolitan network opera-

tions center or an institute [GSK04] [Inc].

As broadband wireless data services are expected to have significant growth over the

next decade, current and evolving standards for broadband wireless system, such as WiMAX

(IEEE 802.16) [STS04] and 3GPP LTE [EFK+06] have adopted or are considering the Or-

thogonal Frequency Division Multiple Access (OFDMA) as the multiple access technol-

ogy for the wireless network interface. OFDMA has been demonstrated to be a superior

wireless access technology for broadband wireless data network compared with traditional

access technologies such as TDMA and CDMA. The main advantages of OFDMA over

TDMA/CDMA come from its resiliency to frequency selectivity, low implementation com-

plexity, subchannel orthogonality and flexibility of deployment.

Even though it is technically and economically attractive to deploy wireless back-hauls,

it is challenging to provide a guaranteed performance (e.g., throughput and delay) due to

the dynamic characteristics of wireless links. For example, the unexpected changes in

network topology due to link or router failures would significantly worsen the network

performance. Thus, the optimization of bandwidth usage in wireless back-hauls becomes
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very important. Some works [Wan01] [For00] in traffic engineering for Internet studied

how to find optimal path set that minimizes the congestion level given the available net-

work resources. Wang et al. gave an optimization framework in which the load balancing

problem is transformed to the shortest path routing problem with the careful selection of

the weight of each link. Fortz and Thorup [For00] considered the restriction from OSPF

routers and proposed a local search heuristic algorithm to approximate the optimal solution.

Chim et al. [CYL05] proposed a traffic splitting algorithm based on the load sharing statis-

tics collected. However, these schemes do not work well for wireless back-hauls since

they did not take into account the impact of dynamic channel conditions. Other works

[PSL08] [ZDA06] [JCL05] studied dynamic routing to achieve load balancing, however

these schemes are primarily designed for overlay networks. Xie et. al. [Xie03] proposed

a self-adaptive routing scheme to dynamically adjust routing policy according to network

condition. In [NBTD07], a tabu-search heuristic is proposed for choosing link weights to

compute routing path. However, these schemes mainly focus on the routing problem in

wired networks and require that each router is able to arbitrarily split traffic, which is not

the case for OSPF routers.

In this dissertation, we explore the problem of load balancing in wireless back-hauls

with OSPF routers. Our objective is to increase the available bandwidth without upgrading

existing equipments by minimizing the congestion level. We propose a triple-tier opti-

mization scheme in this dissertation. The first tier mechanism achieves long-term routing

optimization, and the second tier mechanism, using the optimization results obtained from

the first tier mechanism, performs the short-term adaptation to deal with the impact of dy-

namic channel conditions. A greedy sub-channel allocation algorithm is developed as the

third tier optimization scheme to further reduce the congestion level in the network. In

particular, We make following contributions:

First, at the first tier, we apply a prime-dual algorithm to convert the problem of opti-

mal routing with the constraints of traffic demands and link capacity, to the shortest path
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routing problem by carefully setting link weights. Compared to [Wan01], our prime-dual

algorithm has the strong duality property. As a result, routing optimization can be applied

to current OSPF routers which execute the Dijkstra algorithm according to the weight of

each link. Due to the limited traffic splitting ability of current OSPF routers (say, splitting

traffic in a round robin or weighted round robin way), each router may not be able to per-

form the optimal multi-path routing by splitting the traffic demands with an arbitrary ratio.

Thus, according to the shortest-path set derived from the first tier mechanism, we present

a Greedy MIN-MAX Congestion (GMC) algorithm which can approximate the optimal

congestion level within a sub-linear factor. The GMC algorithm runs at each ingress router

and distributes each source-destination traffic demand over a subset of the shortest path set

obtained from the first tier module.

Second, due to the dynamic wireless links, the static routing policy derived from the

first tier is not sufficient to balance traffic well. Therefore, we present the second tier adap-

tation algorithm which adjusts routing decisions with the help of the first tier optimization

information as well as the real-time path congestion information. As a result, the traffic dis-

tribution in the network is well adapted according to channel conditions so that the network

congestion level can be reduced. The second tier adaptation algorithm independently runs

at each source node, and distributively achieves an equilibrium between different flows in

the network. Third, since the discrete traffic splitting may cause unbalanced subchannel

usage on each link, we design the dynamic subchannel allocation scheme as the third tier

optimization mechanism to allocate the available subchannels to the links according to the

traffic volume over the links. As a result, the maximum congestion level can be further

reduced. We formally present the problem and propose the Greedy Subchannel Alloca-

tion (GSA) algorithm with bounded optimality. The third tier module runs independently

at each intermediate router which allocates subchannels according to the real-time traffic

volume of each link.
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2.2 Network Coding

The concept of network coding was first proposed by Ahlswede et. al. [ACLY00] for

multi-cast in wired networks. Since then a number of works have studied how to construct

efficient network coding [CWJ03] [DFZ05] [KM03] [LYC03] [MEHK03]. Some recent

works have studied network coding in wireless networks [KRH+06] [LGT07] [LRK+05b]

[SRB07] [FWB06] [YP07]. Lun et. al. [LRK05a] [LRK+05b] studied the problem of min-

imum cost single-session multi-cast. Ramamoorthy [RSW03] derived results for maximum

flow achievable in random wireless networks for the same application. Li et. al. [LL05]

showed that the throughput gain is unbounded in directed networks and the gain becomes

marginal in some scenarios in wireless multi-hop networks. Liu et. al. [LGT07] studied

the upper bound of the throughput gain of network coding in 1-D and 2-D random wireless

networks.

Figure 2.1: Illustration of network coding [Fra06]

While most of the previous works are from information-theoretic perspective and have

few consideration on practical situations, Katti et. al. [KRH+06] proposed a scheme,

called COPE, using XOR-based coding and demonstrated the performance gain with real

experimental results. COPE inserts a coding shim between the IP and MAC layers, which

identifies coding opportunities and benefits from them by forwarding multiple packets in

a single transmission. In wireless networks, network coding exploits the broadcast nature
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of wireless medium to improve the bandwidth utilization via a simple operation such as

bitwise XOR [KRH+06]. In COPE, the performance gain comes from the opportunistic

coding and listening which are defined as follows.

Opportunistic Listening: Wireless is a broadcast medium, creating many opportunities

for nodes to overhear packets when they are equipped with omni-directional antennae.

COPE sets the nodes in promiscuous mode, makes them snoop on all communications over

the wireless medium and store the overheard packets for a limited period T(ex,0.5s)

Opportunistic Coding: The key question is what packets to code together to maximize

throughput. A node may have multiple options, but it should aim to maximize the num-

ber of native packets delivered in a single transmission, while ensuring that each intended

nexthop has enough information to decode its native packet.

COPE also defined some terms to help analyze itąŕs performance gain, such as coding

gain, coding+MAC gain. Coding Gain is the ratio of the number of transmissions required

by the current non-coding approach, to the number of transmissions used by COPE to

deliver the same set of packets. Coding+MAC Gain is the expected throughput gain with

COPE when an 802.11 MAC is used and all the nodes are backlogged.

We explain the basic idea of COPE through a simple example shown in Figure 2.1.

Nodes A and B want to exchange packets but they are not within the transmission range of

each other. They have to communicate via an intermediate node S. Without network coding,

the number of transmissions needed for node A and node B to successfully exchange a

packet is 4. The steps are shown in the left part of Figure 2.1. Node A and node B send

their packets to node S first. Then node S can either broadcast(shown in Figure 2.1) or

just transmit the packet to its destination. While with network coding, after node S has the

information of both packet a and b, it broadcasts a XOR b instead of a and b in sequence.

Both A and B can recover the packet of interest, while the number of transmissions is

reduced. In this case, Coding Gain=4/3 and Coding+MAC Gain=2. Since the operation
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needed by network coding (i.e. XOR) does not require any upgrade of hardware, network

coding can be easily implemented and deployed in wireless networks.

In COPE, the performance gain (in terms of throughput and bandwidth efficiency)

comes from the opportunistic coding and listening, and is an increasing function of the

number of flows that benefit from network coding. In order to maximize the performance

gain of a given network coding opportunity consisting of a group of nodes that will par-

ticipate in network coding, in COPE it is necessary that a packet sent by a source node

should be successfully overheard by all other nodes except for the destination. It turns out

that a poor channel condition from the sender to an overhearing node might be the bot-

tleneck of COPE’s performance. Since most of wireless networks have the physical layer

multi-rate capability1, it is possible to combat the impact of poor channel condition on the

performance of network coding by exploiting the PHY layer multi-rate capability.

Our approach is inspired by the observation that each node only needs a combination

of the native (or original) packets from a set of other nodes to decode the packet of interest.

This indicates the possibility that a native packet can be combined with other native packets

and then be relayed to intended recipients. Following this idea, we propose the Relay-Aided

Network Coding (RANC) scheme in multi-hop wireless networks. In RANC, some nodes

can transmit their native packets to their neighbors at high date rate. Then the receiving

nodes XOR these packets with their own native packets, and transmit the coded packet to

other nodes with a suitable rate. On one hand, compared to COPE, RANC can improve the

performance of network coding in that the node that has poor channel condition can trans-

mit its native packet over a short-range (i.e. sending the packet only to its near neighbors),

so that the impact of poor channel condition on the performance of network coding can be

significantly alleviated. On the other hand, RANC has the same message complexity as

1For example, IEEE 802.11b PHY layer supports a number of transmission rates (say

1, 2, 5.5 and 11 Mbps) such that the transmission rate can be adapted according to the

channel condition.
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that in COPE since we require each node to transmit once during each round of network

coding.

From the illustration of wireless network coding in Figure 2.1, we can also see that the

performance gain of network coding depends on following factors: first, the coding op-

portunities are related to the network topology and the traffic flowing on each link. These

factors determine how often the network coding can be performed. Second, the coding

gain depends on the per-link quality and the scheduling policy of the network. Because

the coded packets are broadcasted to all the recipients, the transmission rate might be

reduced due to bad channel condition at one recipient. The decreased transmission rate

may significantly affect the overall networking performance. Following these considera-

tions, several works have been proposed to find new routing and scheduling algorithms that

leverage the network coding gain to improve the overall networking performance. Gupta

et. al. [SRB07] explored schemes to increase the number of network coding opportunities

through network coding-aware routing. Le et. al [LLC08] proposed a distributed routing

discovery mechanism for finding the end-to-end paths that have potential network coding

opportunities. In [ZCM08], the protocol called BEND was designed to create more net-

work coding opportunities via locally bending last-2-hop sub-routes. Yomo and Popovskic

[Pop06] studied the impact of fading channel on the performance of network coding and

proposed an opportunistic scheduling algorithm which carefully selects which packets to

be coded based on the instantaneous channel conditions. Zhang et. al [ZZ09] exploited the

power of cooperative communication to alleviate the impact of channel fading on the per-

formance bottleneck of the network coding (i.e. low-rate broadcasting of coded packets)

for both Alice-Bob and X-structure topologies in the network. Chaporkar and Proutiere

[Cha07] proposed an centralized optimal scheduling algorithm for network coding. Li and

Wang gave a theoretical framework in [LW08], which gives a centralized algorithm for net-

work coding-aware routing, code construction and MAC layer scheduling. However, most
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of the previous works either focus on the network coding-aware routing and scheduling

problems separately, or study the joint design of them under quite strong assumption (e.g.

global topology and traffic information or perfect MAC layer functionality).

1

2

4

3

2 2

22
Path 1

Path 2

d(1,3)=0.5 d(3,1)=0.5

Figure 2.2: The Motivational Example

To practically exploit the network coding gain to improve the overall network perfor-

mance in wireless mesh network, it is desirable to consider the interaction between the

routing and scheduling mechanisms to leverage the network coding gain. We explain the

importance in the following motivational example. As shown in Figure 2.2, two symmetric

flows between nodes 1 and 3 have the traffic demand of 1/2. Suppose all the links have the

rate of 2 and the MAC layer scheduling is fair and capture every network coding opportu-

nities, if node 2 does not perform network coding while node 4 supports network coding

and symmetric traffic flows on each path, then the capacities of path 1 and path 2 are 3/4

and 1, respectively. Assuming the average end-to-end delay of path i follows 1/(ci − xi),

where ci and xi are path capacity and aggregated traffic over path i, respectively. Suppose

both flows assign x1 and x2 of the traffic over path 1 and path 2 respectively, the problem

of minimizing the average end-to-end latency can be modeled to minimize the objective

function x1/(3/4 − x1) + x2/(1 − x2) subject to the constraint x1 + x2 = 1. The minimal

average delay is 1.48 when x1 = 0.68(x2 = 0.32). It is easy to see that under dynamic

traffic pattern and scheduling decision, the minimal average delay would be different. For
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example the routing decision (x1, x2) = (0.68, 0.32) is not optimal if node 4 cannot realize

all network coding opportunities.

In this dissertation, we also propose a joint design of distributed routing at the network

layer and distributed coding-aware scheduling at the MAC layer. The design problem is

modeled as a network utility optimization problem. Different from previous works in cross-

layer optimization in computer networks [Haj88] and [Tas92], we focus on how to exploit

the network coding gain to improve the overall end-to-end transmission performance in

network coding-aware wireless mesh network. We first formalize the design problem and

decompose it into two sub-problems: the routing problem and the scheduling problem. The

cross-layer design is achieved with a simple but crucial linkage between these subproblems.

The routing mechanism decides how to distributed the traffic demands over the end-to-end

paths in the network. The scheduling mechanism is used to maximize the overall weighted

link capacity with network coding awareness. With the joint design, the network coding

gain is realized by the scheduling module. The link level gain is further signaled to the

routing module which utilizes the information to carefully distribute the traffic to maxi-

mize the overall end-to-end networking performance. As a result, more traffic is routed on

the path to create more network coding opportunities until the network reaches the equi-

librium point where no better routing decisions can be found. In addition to the theoretical

framework, we propose mechanisms to implement the framework in an efficient and dis-

tributed way by considering the factors of time synchronization, protocol scalability, and

the MAC layer coordination. We evaluate our design through extensive simulations and the

simulation results show that the joint design of routing and scheduling can greatly increase

the capacity of the network by exploiting the network coding-awareness.
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CHAPTER 3

TRIPLE-TIER LOAD BALANCING SCHEME

This chapter mainly presents a triple-tier routing optimization scheme for load balanc-

ing in wireless back-hauls with OSPF routers. Our objective is to increase the available

bandwidth without upgrading existing equipments by minimizing the maximum conges-

tion level. We propose a triple-tier optimization framework (Figure 3.1) in this chapter. The

first tier mechanism achieves long-term routing optimization, and the second tier mecha-

nism, using the optimization results obtained from the first tier mechanism, performs the

short-term adaptation to deal with the impact of dynamic channel conditions. The third tier

mechanism makes a balanced use of orthogonal subchannels in OFDMA and temporarily

allocates the subchannels to congested links to further reduce the congestion level in the

network. In particular, We make the following contributions:Second tier
First tier Third tierLink capacityLink capacityShortest path sets for all traffic demands

Figure 3.1: System Diagram

First, at the first tier, we design a primal-dual algorithm to convert the problem of op-

timal routing with the constraints of traffic demands and link capacity, to the shortest path

routing problem by carefully setting link weights. Compared to [Wan01], our primal-dual

algorithm has the strong duality property. As a result, routing optimization can be applied

to current OSPF routers which execute the Dijkstra algorithm [and98] according to the

weight of each link. Due to the limited traffic splitting ability of current OSPF routers (say,

splitting traffic in a round robin or weighted round robin way), each router may not be able
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to perform the optimal multi-path routing by splitting the traffic demands with an arbitrary

ratio. Thus, according to the shortest-path set derived from the first tier mechanism, we

present a Greedy MIN-MAX Congestion (GMC) algorithm which can approximate the op-

timal congestion level within a sub-linear factor. The GMC algorithm runs at each ingress

router and distributes each source-destination traffic demand over a subset of the shortest

path set obtained from the first tier module.

Second, due to the dynamic wireless links, the static routing policy derived from the

first tier is not sufficient to balance traffic well. Therefore, we present the second tier adap-

tation algorithm which adjusts routing decisions with the help of the first tier optimization

information as well as the real-time path congestion information. As a result, the traffic dis-

tribution in the network is well adapted according to channel conditions so that the network

congestion level can be reduced. The second tier adaptation algorithm independently runs

at each source node, and distributively achieves an equilibrium between different flows in

the network.

Third, since the discrete traffic splitting may cause unbalanced subchannel usage on

each link, we design the dynamic subchannel allocation scheme as the third tier optimiza-

tion mechanism to allocate the available subchannels to the links according to the traffic

volume over the links. As a result, the maximum congestion level can be further reduced.

We formally present the problem and propose the Greedy Subchannel Allocation (GSA)

algorithm with bounded optimality. The third tier module runs independently at each in-

termediate router which allocates subchannels according to the real-time traffic volume of

each link.

We give rigorous analysis to prove the correctness of our design. We also use extensive

simulations to evaluate the performance of the two-tier load balancing scheme. Simulation

results show that, our scheme is able to promptly react to the change of channel conditions

and effectively minimize the maximum congestion level in the network accordingly.
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This chapter first provides our system model and notations. Then the algorithms used

in the first and second tier modules are introduced respectively. Performance evaluation is

given out at the end of this chapter.

3.1 System Model and Notations

We study an all-IP wireless back-haul network consisted by a number of access points

which are wirelessly connected. With WiMAX technology and OSPF routers, the wireless

back-haul delivers each packet from an ingress access point to an egress access point. The

topology of the whole network is known and each access point is fixed. We mainly consider

the aggregated traffic from an ingress node (source) to an egress node (destination). Since

each access point is stationary, the main factor that affects the capacity of each link is slow

shadowing, whose coherence time interval is on the order of seconds [KqL99]. Similar to

cellular networks, such wireless back-haul network is assumed to have a certain signalling

mechanism with which the channel condition of each link can be sampled at a sufficiently

higher frequency than that of the shadowing. Therefore, we can get the long-term average

capacity of each link.

We aggregate the traffic from a source to a destination as the traffic demand between

these two nodes, and the average aggregated source-destination traffic is assumed to be

Poisson and, at least, quasi-stationary. According to the channel allocation policy and the

actually coding and modulation scheme, the time-average link capacity can be estimated

with measurements. All the access points function as OSPF routers, and are able to find

multiple shortest paths with Dijkstra algorithm. Based on the subnet mask of the destina-

tion’s IP address, if there are multiple paths for a flow, each intermediate access point is

able to evenly distribute traffic among the paths. This capability can be easily implemented

as follows: If m paths use the same link(i, j), the access point i only needs to add the same

entry in form of < submaskdst, link(i, j) > m times in its forwarding table and splits the
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traffic for the destination in a weighted round robin way. Similarly, the access point can

tear down one of these m paths by removing an entry < submaskdst, link(i, j) > from its

forwarding table. < submaskdst, link(i, j) > in the forwarding table means that flow goes

to destination submaskdst should be forwarded to link(i, j).

We let a digraph G = (V, E) represent a wireless back-haul network, where V is the

set of nodes and E is the set of links. α denotes the maximal link utilization of the entire

network and cij is the measured time-average capacity of link (i, j). Let K be the set of

traffic flows in the network and dk be the traffic demand of the kth flow. Demand k, dk, can

also be denoted as dsd assuming the source-destination pair of the kth flow is (s, d). Let

Xk
ij (0 ≤ Xk

ij ≤ 1) represent the percentage of demand k routed over link (i, j). Given the

traffic between source s and destination d, N(s, d) is the set of shortest paths from s to d

and Nsd is the norm of N(s, d).

Node i has a set of outgoing links (i, j) ((i, j) ∈ E) connecting to its one-hop neigh-

bors. Given the traffic demand of each outgoing link (i, j), the link may have a number of

subchannels that are spare in the sense that these subchannels are surplus with the respect

of the traffic demand of the link. We assume that each node only controls the subchannel

allocation of all the spare links originating from itself and the subchannel allocation is re-

stricted to the node that is the owner of the subchannels, which means we do not consider

the inter-node subchannel borrowing in this work.

3.2 Long-term Near-optimal Routing

Although the capacity of wireless links is dynamic, we can perform a long-term optimal

routing based on the time-average capacity of each link as well as the aggregate traffic de-

mands. As a result, when the variance of link capacity is small, we can achieve a good load

balancing. Since this optimization is performed on large time scale (say, tens of minutes)
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or can be triggered when the network has significant changes (e.g., link failure), we call it

the long term optimal routing and treat it as the first tier optimization module.

3.2.1 The Primal Algorithm

The problem that the primal-dual algorithm trying to solve is that: given a set of traffic

demands, how to set the link weights in order to minimize the congestion level of whole

network. The traffic demands here are average aggregate source-destination traffic. In

[Wan01], it has been proven that, for a given objective, the optimal routing can be repro-

duced through the shortest path routing based on certain positive link weights, which can

be derived through solving the dual problem of the optimal routing problem. According to

the theorem, we first model the primal problem with objective to minimize the maximum

congestion level over the network. The optimal primal solution gives us the optimal routes.

Based on the primal problem, we can derive the dual problem of it. Then, link weights

can be easily calculated from the dual problem. This enables us to use OSPF-based access

points to build a wireless back-haul network.

We assume that the traffic demands between source-destination pairs are given. Let sk,

tk be the source node, and the destination node of the kth flow respectively. Then the primal

formula for our load balancing problem is as follows:

Primal

min α + r
∑

k∈K

∑

(i,j)∈E
Xk

ij (3.1)

s.t.

∑

j:(i,j)∈E
Xk

ij −
∑

j:(j,i)∈E
Xk

ji = 0, i 6= sk, tk (3.2)

∑

j:(i,j)∈E
Xk

ij −
∑

j:(j,i)∈E
Xk

ji = 1, i = sk (3.3)

∑

j:(i,j)∈E
Xk

ij −
∑

j:(j,i)∈E
Xk

ji = −1, i = tk (3.4)
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∑

k∈K
dkX

k
ij ≤ cijα, (i, j) ∈ E (3.5)

0 ≤ Xk
ij ≤ 1 (3.6)

Function (3.1) is the objective function. The second term r
∑

k∈K

∑

(i,j)∈E Xk
ij ensures

that the optimization not only minimizes α, but also avoids unnecessarily long paths. The

length of a path,
∑

k∈K

∑

(i,j)∈E Xk
ij , depends on the number of hops. r is a small positive

number which ensures that the minimization of α takes higher priority. Constraints (3.2),

(4.10), (3.4) indicate the flow balance equations [Wan01]. Constraint (3.5) requires that the

congestion level on any link should not exceed that of the most congested link.

a

ts

b

e1

e2

e3

e4

e5

Figure 3.2: Network topology

Since the primal problem is linear programming with continuous real variables, it can

be solved in polynomial time. The optimal solution of primal gives a route or a set of routes

for each demand. It also gives out the proportions of each demand on different routes if that

demand has to be split. Let {X̄k
ij} and ᾱ be the optimal solution of primal. If the routers

are capable of arbitrary splitting, which is not the case for OSPF routers, then we can easily

reach the optimal congestion level of the network by assigning the percentage of demand

to each link according to {X̄k
ij}.
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3.2.2 The Dual Problem

Since it is expensive to modify current OSPF routers to make them support arbitrary split-

ting [Vil99], the result of primal is hard to be fully utilized. Fortunately, since these optimal

routes of primal can be reproduced as shortest paths by setting appropriate link weights

which are obtained from the optimal solution of the dual problem, we can rely on the linear

programming duality theory [Chv83] to get the following dual of the primal problem.

Dual

max
∑

k∈K
Uk

tk
(3.7)

s.t.

Uk
j − Uk

i ≤ dkVij + r, k ∈ K, (i, j) ∈ E (3.8)

∑

(i,j)∈E
cijVij = 1, (i, j) ∈ E (3.9)

Vij ≥ 0, Uk
sk

= 0 (3.10)

Now Let us discuss the details of the derivation of Dual problem

Suppose a network has m nodes and n links. Define the (node-arc) incidence matrix

A(m × n matrix) similar to [and98]. For example, if there’s a network with the topology

as shown in Figure(3.2.1). Then the incidence matrix of the network is

A =

s

t

a

b

e1 e2 e3 e4 e5


















+1 +1 0 0 0

0 0 0 −1 −1

−1 0 +1 +1 0

0 −1 −1 0 +1
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We denote the routing probability vector of demand k as Xk, which is a n dimensional

column vector. Now, we rewrite the Primal as follows:

minα + r
∑

k∈K

∑

(i,j)∈E
Xk

ij (3.11)

s.t.

AXk = Bk, k ∈ K (3.12)

∑

k∈K
dkX

k
ij ≤ cijα, (i, j) ∈ E (3.13)

0 ≤ Xk
ij ≤ 1

We use Lagrange Multipliers Uk(m dimensional row vector) and W (n dimensional row

vector) to get the dual. G is a n dimensional row unit vector.

inf α + r
∑

K

∑

E

Xk
ij +

∑

K

Uk(Bk − AXk)

+
∑

(i,j)∈E

Wij(
∑

K

dkX
k
ij − cijα)

= inf
∑

K

UkBk + α(1 −
∑

(i,j)∈E

cijWij) +

(r
∑

K

GXk +
∑

K

∑

(i,j)∈E

dkWijX
k
ij −

∑

K

UkAXk)

= inf
∑

K

UkBk + α(1 −
∑

(i,j)∈E

cijWij)

+
∑

K

(rG + dkW − UkA)Xk

So, we have
∑

(i,j)∈E

cijWij = 1

rG + dkW − UkA ≥ 0, k ∈ K

UkA ≤ rG + dkW,k ∈ K

Uk
j − Uk

i ≤ r + dkWij, k ∈ K, (i, j) ∈ E
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max
∑

k∈K
UkBk

s.t.

Uk
j − Uk

i ≤ dkWij + r, k ∈ K, (i, j) ∈ E

∑

(i,j)∈E
cijWij = 1, (i, j) ∈ E

Wij ≥ 0, Uk
sk

= 0

Therefore, we get above dual. Note that UkBk = Uk
tk
− Uk

sk
and Uk

sk
= 0, so UkBk =

Uk
tk

, tk is the destination node of demand k, then we get the dual (3.7) as described before.

Theorem (Strong LP Duality): Whenever both the primal and the dual LP are feasible,

they have optimal solutions with equal value of their objective function.

This theorem holds for our primal and dual problems. Let {Ūk
i } and {W̄ij} be the

optimal solution of the dual. Any path from sk to tk determined by the primal optimal

solution is a shortest path with respect to link weights w̄ij = dkW̄ij + r. Different from the

formulation in [Wan01], we found that weight w̄ij = dkW̄ij + r actually depends on each

demand. This requires the routers to be able to set the network link weights on per-flow

basis.

[Wan01] modified the constraint (3.8) as follows:

Uk
j − Uk

i ≤ dkWij + dkr, k ∈ K, (i, j) ∈ E

then define Uk = Uk/dk, we have

Uk
j − Uk

i ≤ Wij + r, k ∈ K, (i, j) ∈ E

Therefore, weight wij = Wij +r. This avoids the requirement of refreshing the network

link weights on per-flow basis, but the strong duality does not hold for the dual in [Wan01]
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due to above relaxation. For example, given the network topology shown as in Figure

3.2.2, suppose there are two source-destination pairs (1,11) and (2,12), the traffic demands

are 5Mb and 4Mb respectively. The value of r is set to 0.005. The objective function of

primal problem is 0.204788 which is the same as the objective function of dual problem

we derived. The objective function of dual problem in [Wan01] is 0.316635.
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Figure 3.3: Network topology and long-term average link capacity

If the router is powerful enough to set the link weights on per-demand basis, it is pos-

sible for us to achieve the optimal routing policy obtained from optimal primal solution.

However, if it is not the case, we propose to use the link weights determined by the max-

imum traffic demand of the demand set. Specifically, we define the network link weights

as:

wij = dk̄V̄ij + r (3.14)

where dk̄ is the maximum demand among the demand set. The reason of using the max-

imum traffic demand is that the link weights of maximum demand is an upper bound of

Uk
j − Uk

i for all the demands in constraint (3.8). It can be shown in the following inequal-

ity:

Uk
j − Uk

i ≤ dk̄Vij + r, k ∈ K, (i, j) ∈ E (3.15)
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Therefore, for this relaxed dual, it has the same optimal solution as the dual problem

(3.7) when all the demands are the same. Unlike the relaxed dual in [Wan01], the value of

r will not affect the gap between our relaxed dual problem and the original dual problem

(3.7). As we mentioned before, when r = 0, the relaxed dual in [Wan01] has the same

optimal solution as the dual problem (3.7). As r increases, the the gap between the relaxed

dual in [Wan01] and the original dual (3.7) will be larger. When r > 0, if all the sources

have similar traffic demands, our relaxed dual has a smaller gap than that of the dual in

[Wan01]. In our study, we assume the difference between the source-destination traffic de-

mands is usually small, and moreover, we prefer shorter path length by setting a reasonable

large value of r. Thus, we adopt the relaxed dual specified by equations (3.14) and (3.15).

3.2.3 Greedy MIN-MAX Congestion Algorithm

A shortest-path set is generated under the link weights obtained from the dual problem

described in the previous subsection. This set is used to approximate the optimal conges-

tion level obtained by arbitrary traffic splitting. Since current OSPF routers only support

discrete splitting (i.e., it can only be slitted in the portion of 1
n

, where n is the possible

cardinality of the path set), it has been shown in [Sri03] that finding the optimal splitting

can be reduced to the 3-D Matching problem [and79], which is NP-hard. Thus, we propose

a polynomial-time approximation algorithm called Greedy Min-max congestion algorithm

(GMC). Different from [Sri03], instead of equally splitting the traffic at every router on the

way to the destination, our algorithm tries to find a near-optimal traffic splitting in the view

of all the shortest paths between the source and destination.

First of all, we need to spit each common link by the number of different paths in a

shortest-path set that share the link. For example, given the network topology shown in Fig-

ure 1, based on the link weights by solving the dual problem, for flow 1 → 11, the shortest-

path set is path(1)=(1-3-8-11), path(2)=(1-2-4-8-11), path(3)=(1-2-4-9-11), path(4)=(1-5-
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9-11), and path(5)=(1-6-10-9-11). As can be seen, path(1) and path(2) share link(8, 11). As

we discussed in Section 3.1, node 8 adds the entry < 11, link(8, 11) > twice in its routing

able. By distributing the traffic of flow 1 → 11 according to the routing table, node 8 can

equally split the traffic to both path (1) and path (2). This rule applies to all the other shared

link.

In our approach, the source nodes are sorted in the sequence of decreasing order of the

demand of incoming traffic in the network. Then the GMC executes at each source node in

this order. Formally, GMC algorithm tries to choose a subset of N(s, d), denoted by M , to

achieve

min max
(i,j)∈E

(
lij + dsd

‖M‖

lij + dsdX̄sd
ij

) (3.16)

where, X̄sd
ij denote the optimal primal solution for each source-destination pair (s, d). lij

denotes the current load of link (i, j) before making actual assignment.

The GMC algorithm runs in two steps:

Step 1: For each index t = 1, 2, ..., Nsd, we perform a virtual assignment to a set of t paths

to achieve the objective in equation (3.16). This can be achieved as follows:

1. By setting ‖M‖ = t, find the link of each path n = 1, 2, ..., Nsd with the maximum

value of equation (3.16). We denote the link index of such link of path n under index

t as n(t). Thus the load of link n(t) is ln(t).

2. With the virtually assigned demand, sort each path in N(s, d) in an increasing order

according to

ln(t) + dsd

t

ln(t) + dsdX̄sd
n(t)

, n ∈ N(s, d) (3.17)

Then re-index them and virtually assign dsd only to the first t paths.

Step 2: From Nsd possible assignments, choose the one with the smallest value of object

function (3.16).

Suppose there are two flows 1 → 11 and 2 → 12, the traffic demands are 5Mb and 4Mb

respectively. With GMC algorithm, the final path set for flow 1 → 11 is path(1), path(2),
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Figure 3.4: System Diagram of First Tier

path(3), path(4) and path(5). For flow 2 → 12, the shortest path set is path(1)=(2-6-10-

12), path(2)=(2-7-10-12), path(3)=(2-4-9-12) while the final path set of GMC is path(1)

and path(2). The optimal congestion level of Primal ᾱ is 0.173. The maximum congestion

level of the GMC algorithm under the max-demand link weights obtained from the Dual

is 0.222 and the maximum congestion level under the link weights obtained from dual in

[Wan01] is 0.400. The system diagram of first tier is shown in Figure 3.4.

3.3 The Short-term Adaptive Routing

3.3.1 The Self-adaptive Routing Algorithm

Unlike the wired links, the condition of wireless links is dynamic in nature, which makes

it insufficient to select the routing path set for each flow based on long-term average of

channel capacity. Therefore, we propose a short-term adaptation scheme which runs fre-

quently enough to refine the routing policy to balance the overall traffic according to the

channel condition. Our adaptation algorithm is motivated by stochastic control theory

[Gal77, Ber84, Kae96], and runs only at each source node. Our algorithm is asynchronous,

so there’s no requirement for synchronization between the source nodes. The channel con-

dition of every link consisting a path is feeded back in a reverse direction, namely, from the

destination node to the source node. Each node updates to it’s previous node in the labelled

shortest paths once each update period. The feedback information is used by the source

node to get the maximum link congesting level along each shortest path. For the source

node, it also maintains the following parameters.
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• Internal probability qsd
i from source s to destination d through path i. Later we will

show this set of probability converges to Cesaro-Wardrop equilibrium [J.N86] in the

path set.

• Internal routing probability psd
i from source s to destination d through path i. It is

this set of probability that the actual routing adaptation approximates to.

• The most recently reported maximum link utilization δsd
i of the shortest path i from

source s to destination d.

• The link load li of the most congested link through path i.

• The actual routing decision rsd
i from source s to destination d through path i.

Each source node runs the adaptation algorithm once during a certain time interval,

which is called updating period. When source receives an update of path i, it updates δsd
i

and li. Then it computes the updated congestion level for path i according to the following

equation:

αsd
i (n + 1) = (1 − a(n))αsd

i (n) + a(n)δsd
i (3.18)

where a(n) ∈ [0, 1] is the learning factor of congestion level. If it is large, it means αsd
i is

sensitive to the noise. If it is small, αsd
i depends mainly on the previous sample. However,

in wireless network, a(n) can not be too small because if it is too small, it can not be

responsive enough to the dynamic wireless channel condition.

Then, the source node computes its overall congestion level according to

αsd(n + 1) =
∑

i∈N(s,d)

psd
i (n)αsd

i (n + 1) (3.19)

where N(s, d) is the labelled shortest-path set from the source node s to the destination

node d. After the source node gets the overall congestion level, it updates the internal

probability for each path in N(s, d) according to following equation:

qsd
i = qsd

i (n) + b(n)[qsd
i (αsd(n + 1) − αsd

i (n + 1)) + ξsd
i ] (3.20)
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Where b(n) > 0 is routing learning factor and it is used to smooth out the noise. ξsd
i is i.i.d

random vector distributed uniformly on the unit ball of dimension N(s, d). It is used to add

disturbance to avoid non-Wardrop solutions.

Then, source node projects qsd
i to [0, 1]N(s,d) to ensure that the internal probability is a

valid set. It get the new internal probability by solving the optimum problem below:

min
∑

i∈N(s,d)

(xi − qsd
i )2 (3.21)

s.t.
∑

i∈N(s,d)

xi = 1

0 ≤ xi ≤ 1, i ∈ N(s, d)

The above projection can be solved following

xi = qsd
i +

1 −
∑

i∈N(s,d)

qsd
i

Nsd

(3.22)

Then, we update the new internal routing probability p based on q:

psd
i (n + 1) = (1 − ǫ)qsd

i (n + 1) +
ǫ

Nsd

(3.23)

where ǫ is a small constant number.

Finally, since each router supports equal splitting in the path set, we propose an algo-

rithm to compute real routing probability rsd
i according to the internal routing probability

psd
i . The principle is to approximate the congestion level under the actual routing probabil-

ity rsd
i to the congestion level under the internal routing probability psd

i . We can compute

the actual routing probability in every updating period or compute it every several updating

periods, which depends on the requirement of responsiveness.

The algorithm for calculating the actual routing probability rsd
i is as follows:

Step 1: Calculate lri on the most congested link of each path according to following equa-

tion, where li and rsd
i are the current link load and current actual routing probability respec-

tively.

lri = li − dsdrsd
i (3.24)
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Figure 3.5: System Diagram of Second Tier

Step 2: Sort load ratio

lri + dsd

t

lri + dsdpsd
i

, (t = 1, 2, , Nsd)

in increasing order, virtually assign dsd only to the first t paths. The denominator is the

load determined by internal routing probability psd
i . The numerator is load determined by

equal splitting.

Step 3: From all Nsd possible assignments, choose the one with the smallest maximum for

an actual assignment.

Step 4: After running the above algorithm, we may get a new paths set. However, due to

equal splitting, the granularity of the change of traffic on corresponding links is greater or

equal to 1/Nsd, the newly calculated actual routing probability is not necessarily able to

reduce the congestion level. Therefore, our last step of the short-term adaptation algorithm

is to find the best decision by comparing the congestion level under the previous actual

routing probability, the newly generated paths set, and the routing policy obtained from the

first tier module. Note that the routing policy of the first tier is useful to prevent divergence

of adaptation due to lack of accurate prediction of the channel condition1. Suppose the final

path set as M , the actual routing probability rsd
i is updated as follows:

rsd
i =







1

‖M‖ , i ∈ M (3.25a)

0, i 6∈ M (3.25b)

The system diagram of second tier is shown in Figure 3.5.

1Through our study, we found that the divergence might last for several updating periods

until the estimation of link utilization converges under stationary routing probability.
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3.4 The Dynamic Subchannel Assignment

3.4.1 Problem Formation

Suppose the link (i, j)’s bandwidth Cij is composed of two parts: Wij and Bij , where Wij

is the bandwidth of the traffic demand of link (i, j) and Bij is the spare bandwidth with

the respect of the traffic demand. Let Oi denote the set of outgoing links of node i, where

Oi = {(i, j) ∈ E} and |Oi| is the cardinality of Oi. Suppose Ai represents the set of

spare subchannels at node i and the bandwidth of the kth spare subchannel is denoted as

Dk
i , i ∈ Ai. Let Dmax and Dmin be the maximum and minimum bandwidth among all the

spare subchannels respectively. We denote xk
ij((i, j) ∈ E, k ∈ Ai) the indicator that shows

if subchannel k is assigned to link (i, j) or not. Thus, we have xk
ij = {0, 1}. Our objective

is to minimize the maximal congestion level among all the outgoing links at node i by

reassigning the spare subchannels Ai to Oi. Let Ĉij denote the new bandwidth of link (i, j)

after subchannel assignment. Let βi be the maximum link utilization among the outgoing

links of node i after subchannel assignment, that is βi = max{Wij/Ĉij, (i, j) ∈ Oi}. Then,

we formalize the problem as follows: For every node i in the network, we have

min βi (3.26)

s.t.

Wij +
∑

(i,j)∈Oi,k∈Ai

xk
ijD

k
i = Ĉij, (i, j) ∈ Oi (3.27)

∑

(i,j)∈Oi

Cij =
∑

(i,j)∈Oi

Ĉij (3.28)

Wij ≤ βiĈij, (i, j) ∈ Oi (3.29)
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∑

(i,j)∈Oi

xk
ij = 1, k ∈ Ai (3.30)

xk
ij = 0 or 1, (i, j) ∈ Oi, k ∈ Ai (3.31)

(3.26) is the objective. Equation (3.27) is the definition of Ĉij , which is the total band-

width of link (i, j) after subchannel assignment. Equation (3.28) ensures the total band-

width at node i remains the same before and after subchannel assignment.Constraint (3.29)

gives the definition of βi. Equation (3.30) requires that each spare subchannel is allocated

to only one outgoing link of node i. Equation (3.31) says the variables xk
ij are the integer

of either 0 or 1.

The optimization problem is in the form of mixed-integer non-linear programming

problem, which is NP-hard in general [and79]. Therefore, it is of practical importance

to design an approximation algorithm to find the sub-optimal solution of the formulated

problem. Our approach to solve this problem is as follows. We first explore a lower bound

for the objective, which can be obtained by relaxing the integer value of xk
ij, (i, j) ∈ Oi, k ∈

Ai. Using this lower bound as a performance benchmark, we then develop a greedy sub-

channel allocation algorithm to find the sub-optimal solutions.

3.4.2 A Lower Bound For The Objective

By relaxing the integer requirement on xk
ij = {0, 1} with 0 ≤ xk

ij ≤ 1, the aforementioned

optimization problem can be rewritten as the following model: For each node i,

min max
(i,j)∈Oi

Wij

Wij +
∑

k∈Ai

xk
ijD

k
i

(3.32)

s.t.
∑

(i,j)∈Oi

xk
ij = 1, k ∈ Ai (3.33)
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xk
ij ∈ [0, 1], (i, j) ∈ Oi, k ∈ Ai (3.34)

Based on the relaxed model, we can compute the lower bound of the original integer

optimization problem. In particular, the optimal value of objective function (3.32) can be

obtained by:

βopt
i =

∑

(i,j)∈Oi
Wij

∑

(i,j)∈Oi
Wij +

∑

k∈Ai
Dk

i

(3.35)

Therefore, the optimal spare bandwidth of link (i, j), denoted by Bopt
ij , can be calculated

by:

Bopt
ij =

Wij

βopt
i

− Wij (3.36)

3.4.3 The Greedy Subchannel Allocation Algorithm

Using the derived lower bound of the maximal congestion level of node i as the perfor-

mance benchmark, we develop a greedy subchannel allocation (GSA) algorithm. This

algorithm is executed at each node i once every specified time period (say 200 ms). The

details of the algorithm are as follows:

Step 1: Determine the set Ai. For each link (i, j) ((i, j) ∈ Oi and Wij > 0), set the initial

value of Bij to Bopt
ij . Initialize xk

ij = 0 ((i, j) ∈ Oi,Wij > 0, k ∈ Ai) and set the state of

link (i, j) to active .

Step 2: If there is only one active link left, go to step 5. Else, for each active link (i, j),

calculate
Bij

Dk
i

for all the spare subchannels Dk
i (k ∈ Ai) and sort the sequence of {Bij

Dk
i

} in an

increasing order, in which ties can be broken arbitrarily. Compare the first element of the

sequence of each active link and pick the one with the largest value. Suppose the resulting

link and subchannel are (i, j′) and k′, respectively.

Step 3: If the element is greater than or equal to 1, go to step 4. Else compare

∣

∣

∣

Bij′

Dk′

i

− 1
∣

∣

∣
and

∣

∣

∣

B∗

ij′

D∗

i
− 1

∣

∣

∣
, where D∗

i is the bandwidth of the previous subchannel assigned to link (i, j′)
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and B∗
ij′ = Bij′ + D∗

i . If the former is smaller than the latter, go to step 4. Else, deactivate

link (i, j′), go to step 2.

Step 4: Assign the subchannel k′ to link (i, j′) and set xk′

ij′ = 1. Update Bij′ = Bij′ − Dk′

i .

Remove subchannel k′ from Ai. If the element in step 3 is equal to 1, deactivate link (i, j′).

Go to step 2.

Step 5: Assign the active subchannel to the link and terminate the algorithm.

We further explain the algorithm with an example under a simple scenario. Suppose

there are two outgoing links from node 1, link (1,1) and link (1,2). Suppose W11 =

10Kbps, W12 = 40Kbps. Both link (1,1) and link (1,2) have one spare subchannel with

the bandwidth of 40Kbps and 10Kbps, respectively. Therefore, A1 = {10Kbps, 40Kbps}.

We can calculate current link congestion level following α11 = W11

W11+B11
= 10

10+40
= 0.2.

α12 = W12

W12+B12
= 40

40+10
= 0.8. Therefore, β1 = 0.8. Based on the definition of βopt

i and

Bopt
ij , we have βopt

1 = 10+40
10+40+40+10

= 0.5, Bopt
11 = 10Kbps and Bopt

12 = 40Kbps.

Now we apply our greedy subchannel allocation algorithm: First, initialize Bopt
11 =

10Kbps and Bopt
12 = 40Kbps. Set xk

1j = 0 (j, k = 1, 2). Activate all the links, link(1,1)

and link(1,2) . Then calculate and sort the sequence {B1j

Dk
1
} (j, k = 1, 2) in an increasing

order. The sequence of link (1, 1) is (0.25,1) and that of link (1, 2) is (1,4). Comparing

the first element of the two sequences, we pick the larger one. Following steps 3 and

4, we assign the corresponding subchannel D2
1 = 40Kbps to the link (1,2) and update

B12 = 40 − 40 = 0. Since B12 = 0, link (1,2) is deactivated. In the next round, the other

sub-band D1
1 = 10Kbps is assigned to link (1,1).

3.5 Performance Analysis

In this section, we give theoretical analysis of the proposed algorithms and show their

properties in terms of convergence and optimality bound. We make following assumptions
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in our analysis, which are widely used in two time-scale stochastic iterative algorithms

[Bor97, Bor00, Tad03].

1. The Feller property holds which means the update is frequent enough compared with

the network changing rate.

2. The learning factor of congestion level a(n) satisfies:

∀n : a(n) ≥ a(n + 1) > 0

∑

n

a(n) = ∞,
∑

n

a(n)2 < ∞

∑

n

(
a(n) − a(n + 1)

a(n)
)r < ∞

for some r ≥ 1.

3. Assume b(n) factors used in internal probability update satisfies:

∀n : b(n) ≥ b(n + 1) > 0

∑

n

b(n) = ∞,
∑

n

b(n)2 < ∞

∑

n

(
b(n)

a(n)
)s < ∞

for some s ≥ 1.

Assumptions 2 and 3 are essential to guarantee the convergence of stochastic iterative

algorithms [D.P96]. Learning factor a(n) is the step size of updating congestion level while

b(n) is that of updating routing probability. The sum of them should be unbounded in order

to reach equilibrium.
∑

n

a(n)2 < ∞ and
∑

n

b(n)2 < ∞ ensure that the variance of esti-

mation of congestion level and routing probability are bounded. Thus, the decreasing step

sizes in the assumptions guarantee that the adaptation algorithm converges to the solution

almost surely. We give the properties of our scheme through the following theorems:
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Theorem 1 The GMC algorithm achieves a load that is no more than (1 + ln Nsd) times

the load determined by optimal solution {X̄sd
ij } of primal.

Theorem 2 The GMC algorithm achieves a maximum congestion level that is no more

than (1 + ln Nsd) times the optimal congestion level ᾱ of primal.

Theorem 3 The short-term adaptation algorithm achieves a load that is no more than

(1 + ln Nsd) times the optimal load with the adaptation algorithm determined by internal

routing probability p.

Theorem 4 The short-term adaptation algorithm achieves a maximum congestion level

that is no more than (1 + ln Nsd) times the congestion level determined by internal routing

probability p.

Theorem 5 With the short-term adaptation algorithm, the routing probability of each flow

converges, the estimation of maximum link utilization converges under stationary routing

probability, and the internal routing probabilities converge in Hs almost surely, where Hs

is the set {y : ysd
i > 0 ⇒ αsd

i = minj αsd
j }.

The following theorem gives the approximation analysis of the GSA algorithm.

Theorem 6 For node i, suppose the maximum congestion level achieved by the GSA algo-

rithm is βi, then we have:

∣

∣

∣

∣

1

βi

− 1

βopt
i

∣

∣

∣

∣

≤ (|Oi| − 1)
max(1, Bopt

max

Dmin
− 1)Dmax

Wmin

(3.37)

where Bopt
max is the maximum value of Bopt

ij ((i, j) ∈ E)and Wmin is the minimum value of

Wij(Wij > 0, (i, j) ∈ E).

3.6 Performance Evaluation

We evaluate the performance of our scheme through simulations by using ns-2 [Pro]. The

simulation topology and average link capacity is the same as those in Figure 1. Even
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though the setting of link capacity may not match some real networks, since we focus on

load balancing, such setting does not affect the way to prove the effectiveness of the pro-

posed scheme. The simulation duration is 200 seconds. There are two traffic sources and

the source-destination pairs are still (1,11) and (2,12). Both traffic sources are exponen-

tially distributed. The update period of the adaptive routing is 1 second. The parameter

of the noise generator, denoted by std, controls the extent of variance of link capacity.

The coherence time of shadowing is exponentially distributed with mean of 5 seconds. We

compare the maximum congestion level of the routing scheme that only applies the first tier

adaptation mechanism (denoted by Nonadapt), the routing scheme that uses both the first

and second tier adaptation mechanisms (denoted by Adapt) and the routing scheme that

employs all three tiers adaptation mechanisms (denoted by Adapt+DSA). The dynamic

subchannel assignment is run once every 200 ms. We can set this period to different values

as far as it is smaller or equal to the updating period of the short term adaptive routing,

which is 1 second in our simulation. In addition, we give out the optimal congestion level

(denoted by OPT) as the benchmark of the performance evaluation.

Let us first compare the congestion level between the Adapt routing and the Nonadapt

routing. The simulation results using adaptation and without using adaptation when d1,11 =

5, d2,12 = 4 and std = 1 are shown in Figure 3.6 (a). The congestion level under Nonadapt

is obtained by equally splitting among paths under long term average channel condition

while the congestion level under Adapt is achieved by the adaptation algorithm based on the

short term channel condition in the provided path set. We can see that when the std is small,

which means the channel condition is relatively stable, the congestion level of Nonadapt is

close to the congestion level of Adapt. This is because the link capacity used to compute

the long term routing decision is the average link capacity, when channel is stable, the long

term average link capacity is relatively closer to the short term link capacity. Therefore,

with relatively stable channel condition, the benefit of short term adaptive mechanism is not
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(a) (d1,11, d1,12) = (5, 4),std=1
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(b) (d1,11, d1,12) = (1.5, 1), std=2.5
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(c) (d1,11, d1,12) = (1, 1), std=3.0

Figure 3.6: Performance of Our Scheme with different stds

38



quite significant. However, comparing the simulation results shown in Figures 3.6 (b) and

2(c), where d1,11 = 1.5, d2,12 = 1, std = 2.5 and d1,11 = 1, d2,12 = 1, std = 3, respectively,

we can see that even the traffic demands are smaller than those in Figure 3.6 (a), due to a

large variance of link capacity, the maximum congestion level with Nonadapt is very high

(i.e., close to 1). In these cases, we observe that when the short term adaptive routing is

applied, which is the case of Adapt, the maximum congestion level is reduced significantly.

This is because the short term adaptive routing will monitor the congestion levels among

the multipath set and adjust traffic volume on each path to reduce the congestion level on

the most congested path.
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(a) (d1,11, d1,12) = (3, 2), std=2.0
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(b) (d1,11, d1,12) = (2, 2), std=2.0

Figure 3.7: Performance of our scheme with std=2.0
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The simulation results for d1,11 = 3, d2,12 = 3, std=2 and d1,11 = 2, d2,12 = 2, std=2

are shown in Figures 3.7 (a) and (b). First, look at the maximum congestion level with

Nonadapt. It is obvious and easy to understand that when the std is the same, the larger

the traffic demands are, the higher the congestion level is. Therefore, as shown in Figure

3.7 (a), with Nonadapt, the network is more congested than that in Figure 3.7 (b). For the

maximum congestion level with Adapt, we can observe that it is significantly reduced from

the case of Nonadapt. In summary, from all the simulation results, we can see that the

Adapt routing scheme can lower the maximum congestion level significantly, especially

when channel is more dynamic (i.e., the std is large). We also notice that there are bursts

when Adapt routing scheme is used. The reasons is that sometimes the updating process is

not frequent enough to feedback the change of channel conditions. However, we can see

that as the adaptation refines the routing policy quickly, and the bursts last very short time.

Next, we evaluate the effectiveness of the Adapt.+DSA routing scheme. Since the spare

subchannels on each links as the consequence of the short-term adaptive routing have been

carefully exploited, the maximum congestion level is greatly reduced. We can see from

all the figures that the maximum congestion level under Adapt.+DSA is further reduced

compared to those with Nonadapt and Adapt. In many cases especially when the channel

condition is relatively stable, it is very close to the optimal congestion level (OPT), which

is obtained by solving the primal linear programming problem in section 3.2. This OPT

is the realtime optimal solution under given network topology, realtime link capacity and

traffic needs. Please note that it is impractical to implement OPT since it requires a lot

of communication resource to transfer the channel condition of each link to the central

controller to calculate the optimal congestion level. The gap between Adapt.+DSA and

OPT is caused by following reasons. (1) Optimal scheme explore all possible routes in the

network and fully utilize the capacity. The routes of optimal scheme are always changing

due to the dynamic wireless channel conditions. As we mentioned before, they are updated
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every 200 ms. The path set as the input of the adaptation algorithm is, however, fixed. It

is obtained based on averaged link capacity and GMC algorithm as we introduced before.

(2) The optimal congestion level is achieved through arbitrary splitting. Adaptive routing

is based on equal splitting and the granularity of the change of traffic on corresponding

links is greater or equal to 1/Nsd. Even though the dynamic bandwidth allocation is used

to improve adaptive routing, this is still a great factor for the gap of the two curves. (3) For

the dual problem in section 3.2, we mentioned if the router is powerful enough to set the link

weights on per-demand basis, we propose to use the link weights defined in equation (3.14),

which is adopted in our simulation. This is also a reason for the gap between Adapt.+DSA

and OPT since OPT is obtained directly from the optimal solution of the Primal.
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CHAPTER 4

A NETWORK CODING SCHEME-RANC

In this chapter, we propose the Relay-Aided Network Coding (RANC) scheme in multi-

hop wireless networks. In RANC, some nodes can transmit their native packets to their

neighbors at high date rate. Then the receiving nodes XOR these packets with their own

native packets, and transmit the coded packet to other nodes with a suitable rate. We

investigate the design principles via rigorous analysis and derive the coding structure for

RANC. We also analyze the tradeoff in the performance gain of RANC. Based on the

analytical results, we design the RANC protocol by decomposing the original problem into

two sub-problems: the flow partition problem and the scheduling problem. As a result,

the set of flows in the network is partitioned into a number of subsets in the way that the

overall cost is minimized. For each subset of flows, the scheduling algorithm is applied to

determine the sequence of packet transmission, the corresponding transmission rate, and

the information of each packet. We evaluate our design via simulations.

4.1 System Model and Motivation

4.1.1 System Model

An example of multi-hop wireless networks is shown in Figure 4.1. From the figure, it can

be found that: for applications incurring symmetric traffic (e.g. P2P file sharing, multi-

person online game), there may be a large number of flows which can benefit from network

coding in the area where the node density is high. With appropriate routing algorithms

(e.g. [SRB07]), such rich network coding opportunity can be exploited. By studying the

topology closely, it can be seen that many network coding scenarios can be abstracted as a

wheel topology depicted in Figure 4.1.
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Graphic abstract

of network coding opportunity

Figure 4.1: The topology of Berlin wireless mesh network [Fre] and the illustration of

potential network coding opportunity

For simplicity, we focus on network coding under a wheel topology. We assume there

are n/2 symmetric uni-cast flow pairs, where n is an even number and equal to the to-

tal number of participant nodes excluding the hub node. The node IDs are indexed by

0, 1, 2, ..., n − 1. D(i) is denoted as the ID of the destination node of node i. There is a

hub node at which all symmetric flows intersect and the packets of each flow need to be

forwarded by the hub node. Similar to COPE, at an approximate time instance, the hub

node performs XOR-based network coding for all the flows. We assume all nodes are static

and the location of source and destination nodes is assumed to be known a priori. Since the

network topology is abstracted as a circle, we use polar coordinate system to locate node i

by the distance to the center (i.e. the hub node) and the polar angle, which are denoted by

di and θi, respectively. We also denote dij as the distance between nodes i and j.

We denote Pi and Ci as the native packet from node i and the packet sent by node i,

respectively. The XOR-ed packet generated by the hub node is denoted by P . Although

network coding does not require the length of each packet to be same, to simplify the
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analysis, we assume all native packets in the network have the same packet length. As each

node is able to adapt the transmission rate to the channel condition, ri is the transmission

rate used by node i and d(ri) is the distance threshold of ri. In addition, we assume a

fair medium access control (MAC) protocol which provides each node equal transmission

opportunity is adopted in the network.

We use Xj
i (j 6= i) to indicate if node i overhears packet Cj . Thus node i has a vector

~Xi = (X0
i , X2

i , ..., Xn−1
i ), where X i

i ≡ 1. By the definition, all the packets node i received

or overheard can be obtained by the inner product ~Xi · ~CT , where ~C = (C0, ..., Cn−1). The

module-2 linear combination algorithm L(~P ), where ~P is a vector of packets, is used to

decode P . For each transmitted packet Ci, we define the coding length of Ci, denoted by

l(Ci), to be the number of native packets XOR-ed in Ci. For example, if C1 = P1⊕P2⊕P3,

then l(C1) = 3, and if C1 = P1, then l(C1) = 1.

4.1.2 Motivation

The performance gain of network coding comes from few aspects. In the example shown

in Figure 2.1, one packet transmission can be saved with network coding, which indicates

that the throughput gain can be obtained by network coding. Furthermore, assume that all

nodes continuously have some traffic to send (i.e., backlogged), but are limited by their

MAC allocated bandwidth. Then the hub-node becomes the bottleneck since its bandwidth

allocation is shared by its own traffic and the traffic to be forwarded. The Coding+MAC

gain is the ratio of the bottleneck’s draining rate with network coding to its draining rate

without network coding. In the example shown in Figure 2.1, the Coding+MAC gain of

the hub-node is equal to the coding length of P , which is equal to 2. In general, given

n participant nodes that create a network coding opportunity, the Coding+MAC gain is

maximized when the hub-node has the opportunity to XOR all n packets at a proper time
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and broadcast it to all the nodes. In order to ensure that each node i can decode the XOR-ed

packet P sent from the hub-node, COPE [KRH+06] defines the coding rule as follows.

COPE’s coding rule: to transmit n packets, P1, ..., Pn to nodes 0, ..., n − 1, the hub

node can XOR the n packets together only if each node i has all n− 1 packets Pj for j 6= i.

To meet this coding rule, it is necessary to let node i have all n−1 packets Pj for j 6= i.

In fact, COPE simply asks node i to transmit its native packet Pi and Other nodes except for

node D(i) to operate in the promiscuous mode and overhear Pi. In the end, the hub node

generates P by XOR-ing all overheard native packets, and transmits the coded packet to all

nodes. If node i has successfully overheard all n − 1 packets Pj(j 6= i), it can decode the

XOR-ed packet from the hub node. Otherwise, at least one extra transmission is needed to

let node i get the desired packet. As a result, if there always exists a node j(j 6= i,D(i)) and

the channel condition between nodes i and j is poor, in order to maximize the performance

gain (especially the Coding+MAC gain when fair MAC is used), in COPE, node i has to

transmit its native packet with a low speed, at which node j can successfully overhear the

packet.

The observation above shows that, given network coding opportunities, maximizing

performance gain of COPE is quite sensitive to the channel condition between node i and

all other nodes except for node D(i). However, such sensitivity can be alleviated according

to the following observation. As node i only needs to know the XOR-ed information of n−1

packets Pj (j 6= i) to decode P , it is not necessary for node i to overhear all individual

native packets Pj (j 6= i). For example, if the coding rule requires that P2 ⊕ P3 ⊕ P4

should be present for node 4 to decode P1 ⊕ P2 ⊕ P3 ⊕ P4 to get P1, node 4 does not

have to successfully overhear P2 and P3 one by one. Instead, if node 4 can successfully

overhear P2 ⊕ P3, it can still have P2 ⊕ P3 ⊕ P4 by XOR-ing P2 ⊕ P3 and P4, and decode

P1 ⊕ P2 ⊕ P3 ⊕ P4. RANC is inspired by the above thought that forming the a number of

coded packets, whose coding length may not necessarily be equal to 1, to satisfy that the
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Figure 4.2: An illustration of how RANC works

linear combination of these packets is sufficient for decoding P . As a result, node i does

not have to successfully overhear all native packet Pj (j 6= i) in order to decode P . In

RANC, the nodes are allowed to transmit at different rates based on the channel condition.

The packet that each node sends may not necessarily be the native packet. In stead, a packet

could be a XOR-ed information of some packets overheard by the node. During each round

of network coding, our design requires that each node only transmit once and thus it does

not increase message complexity of network coding.

We give an example to illustrate how RANC works: As shown in Figure 4.2, suppose

nodes 0 and 3, nodes 1 and 4, nodes 2 and 5 communicate with each other, respectively.

Let node 1, 3 and 5 send their native packets P1, P3 and P5, one by one at rate r1. The

transmission range under rate r1 is marked as S1, S2 and S3, respectively. As shown in

Figure 4.2, only the one-hop neighbors of nodes 1, 3 and 5 can successfully overhear the

packet transmitted from these nodes. After nodes 1, 3 and 5 finish transmitting, node 0 has

P1 and P5, node 2 has P1 and P3, and node 4 has P3 and P5. Then nodes 0, 2 and 4 will

act as relay nodes and start to transmit coded packets one by one at rate r2, where r2 < r1.
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Node The overheard packets

0 P1, P5, P1 ⊕ P2 ⊕ P3, P3 ⊕ P4 ⊕ P5

1 P1 ⊕ P2 ⊕ P3, P5 ⊕ P0 ⊕ P1

2 P1, P3, P3 ⊕ P4 ⊕ P5, P5 ⊕ P0 ⊕ P1

3 P1 ⊕ P2 ⊕ P3, P3 ⊕ P4 ⊕ P5

4 P3, P5, P1 ⊕ P2 ⊕ P3, P5 ⊕ P0 ⊕ P1

5 P5 ⊕ P0 ⊕ P1, P3 ⊕ P4 ⊕ P5

Table 1: The overheard packets at each node

Node The available packets

0 P1, P5, P1 ⊕ P2 ⊕ P3, P3 ⊕ P4 ⊕ P5, P5 ⊕ P0 ⊕ P1

1 P1 ⊕ P2 ⊕ P3, P5 ⊕ P0 ⊕ P1, P1

2 P1, P3, P3 ⊕ P4 ⊕ P5, P5 ⊕ P0 ⊕ P1, P1 ⊕ P2 ⊕ P3

3 P1 ⊕ P2 ⊕ P3, P3 ⊕ P4 ⊕ P5, P3

4 P3, P5, P1 ⊕ P2 ⊕ P3, P5 ⊕ P0 ⊕ P1, P3 ⊕ P4 ⊕ P5

5 P5 ⊕ P0 ⊕ P1, P3 ⊕ P4 ⊕ P5, P5

Table 2: The available packets at each node

In particular, the packet that node 0, 2 and 4 transmit are P5 ⊕ P0 ⊕ P1, P1 ⊕ P2 ⊕ P3 and

P3 ⊕ P4 ⊕ P5, respectively. The transmission region of node 0, 2 and 4 under r2 is S0, S2,

S4, respectively. As a result, after each of these nodes (0, 1, ..., 5) transmits once, all the

overheard packets at each node are listed in Table 1.

Since all the packets that a node transmitted is also available to the node, we add the

packets that each node transmits to the overheard packets and list all the available packets

at each node in Table 2. Then each node simply XORs all the available packets shown in

the second column of Table 2, the linear combination of these packets is shown in Table 3.

From the results listed in Table 3, it can be easily found that each node meets the coding rule

to decode P , which is equal to P0⊕P1⊕P2⊕P3⊕P4⊕P5 in this example. Because three of

the total seven transmissions are at high speed in RANC while all the seven transmissions

are at low speed in COPE, RANC has a better performance than COPE.
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Node The linear combination of the available packets

0 P0 ⊕ P1 ⊕ P2 ⊕ P4 ⊕ P5

1 P0 ⊕ P1 ⊕ P2 ⊕ P3 ⊕ P5

2 P0 ⊕ P1 ⊕ P2 ⊕ P3 ⊕ P4

3 P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ P5

4 P0 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ P5

5 P0 ⊕ P1 ⊕ P3 ⊕ P4 ⊕ P5

Table 3: XOR-based linear combination of the available packets at each node

4.2 The Design Principles of RANC

Overall, RANC tries to solve the problem that: given a network coding opportunity, how

to maximize the objective performance gain of network coding? Specifically, the solution

that RANC provides should answer following questions:

1. What’s the transmission rate for each node?

2. What’s the information of the packet that each node transmits?

3. What’s the transmission schedule for all the nodes?

Also, RANC should meet the constraint that each node in the network should transmit once

in each round of network coding1. We start from deriving the design principles that are the

foundation for the RANC protocol design.

There are two types of nodes in RANC:

• Native nodes: They transmit native packets.

• Relay nodes: They transmit coded packets (XOR-ed information of native packets).

1A round of network coding is the time period that one packet of all flows is successfully

delivered from the source node to the destination node.
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4.2.1 Principle 1: Low speed transmission for relay nodes

For the relay node i that carries XOR-ed information of native packets transmitted from

other nodes, if there always exists a node j (j 6= i,D(i)), and the channel condition between

nodes i and j cannot support high speed transmission, then node i should transmit its coded

packet Ci at low speed. This principle is the same as that of COPE since the coded packet

Ci should be overheard by all other nodes except for node D(i).
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Figure 4.3: Illustration of overlapping with only one neighboring coded packet

4.2.2 Principle 2: The overlap of neighboring coded packets

Suppose node i is a relay node and its coded packet is Ci and l(Ci) > 1. We can find two

neighboring coded packets of Ci whose coding length is greater than 1.

Lemma 1 Each coded packet (l(C) > 1) should have an overlap with both of its neigh-

boring coded packets (l(C) > 1).

proof Suppose the coding length is 3, without loss of generality, let’s take the coded

packet P1⊕P2⊕P3 for example. We enumerate two cases for the coded packet as follows.

Case 1: As shown in Figure 4.3, the coded packet overlaps with only one of its neighboring

coded packets. Without loss of generality, suppose node 2 is relay node, then according to

the Principle 1, D(3) will overhear the coded packet P1 ⊕ P2 ⊕ P3. Since the information

of ... ⊕ P3 is only transmitted once (by node 2), the coding rule is violated at node D(3)

since L( ~XD(3)
~CT ) 6= P ⊕ P3.

Case 2: As shown in Figure 4.4, the coded packet does not have overlap with any of the two

neighboring coded packets. Without loss of generality, suppose node 1 is relay node, then
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according to Principle 1, nodes D(2) and D(3) will overhear the coded packet P1⊕P2⊕P3

which is only transmitted once by node 1. This violate the coding rule at both node D(2)

and node D(3) since L( ~XD(2)
~CT ) 6= P ⊕ P2 and L( ~XD(3)

~CT ) 6= P ⊕ P3, respectively.

The proof is similar when the coding length is other than 3. Therefore, by excluding

Case 1 and Case 2, we conclude that each coded packet should overlap with both of its

neighboring coded packets.
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Figure 4.4: Illustration of overlapping with none of the neighboring coded packets

4.2.3 Principle 3: The coding length

Lemma 2 For a coded packet C, its coding length must satisfy l(C) ≤ 3

proof Given any coding length l(C)(l(C) ≥ 4), if we can prove that any one of the

following two conditions is satisfied, then it implies that l(C) ≤ 3.

1. Condition 1: With same efficiency in terms of message complexity, the coded packet

with the coding length l(C) can be divided into at least two coded packets which

have the coding length less than 4.

2. Condition 2: There do not exist a coding scheme for coding length l(C) ≥ 4.

First, Let’s look at the case when l(C) = 4. Without loss of generality, we study the

coded packet P1 ⊕ P2 ⊕ P3 ⊕ P4 which has the coding length of 4.

We enumerate three cases as follows.

Case 1: As shown in Figure 4.5, the overlap of two neighboring coded packets is 1.

If node 2 transmits the coded packet P1⊕P2⊕P3⊕P4, then the coded packets that node

D(2) receives include ...⊕P0 ⊕P1, P4 ⊕P5 ⊕P6 ⊕P7, ..., and then the linear combination
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of these packets does not include the packet P3. Therefore, the coding rule is violated at

node D(2) unless node 3 transmits P3, which requires an extra packet transmission. In this

case, the message complexity of the coded packet P1⊕P2⊕P3⊕P4 is equivalent to that of

the packets P1 ⊕P2 ⊕P4 and P3, whose coding length are 3 and 1, respectively. Therefore,

Condition 1 applies. Similar proof can be applied to the case when node 3 transmits the

code P1 ⊕ P2 ⊕ P3 ⊕ P4.
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Figure 4.5: Illustration of the overlap of two neighboring coded packets is 1
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Figure 4.6: Illustration of the overlap of two neighboring coded packet is 2

If node 1 transmits the coded packet P1⊕P2⊕P3⊕P4, then node D(1) cannot overhear

P1 ⊕P2 ⊕P3 ⊕P4. However, node D(1) can overhear ...⊕P0 ⊕P1. Therefore, the coding

rule is violated at node D(1) since L( ~XD(1)
~CT ) 6= P ⊕P1. The proof is similar to the case

that node 4 transmits the coded packet P1 ⊕ P2 ⊕ P3 ⊕ P4.

Case 2: As shown in Figure 4.6, the overlap of two neighboring coded packets with coding

length of 4 is 2.
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Let’s take node D(3) for example. By Principle 1, node D(3) can receive at least one of

the coded packet: P1⊕P2⊕P3⊕P4 and P3⊕P4⊕P5⊕P6. If node D(3) receives only one

coded packet, node D(3) has the the information of packet P3, which violates the coding

rule since L( ~XD(3)
~CT ) 6= P ⊕ P3. If node D(3) receives both of the coded packets, then

node D(3) does not have the information of packet P4, which is canceled due to XORing,

unless node 4 transmits P4 again. Therefore, the message complexity of the coded packet

P1 ⊕ P2 ⊕ P3 ⊕ P4 is the same as that of P1 ⊕ P2 ⊕ P3 and P4. Thus, Condition 1 applies.
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Figure 4.7: Illustration of the overlap of two neighboring coded packet is 3

Case 3: As shown in Figure 4.7, the overlap of two neighboring coded packets is 3.

In this case, the number of coded packets with coding length of 4 is the same as the total

number of nodes in the network. Since each node only transmits once. For the first node

that transmits in the network, the coding length is 1, which means it transmits its native

packet. Therefore, it is impossible for it to transmit a code with length equal to 4. Thus,

Condition 2 applies.

Similarly, we can prove that either Condition 1 or Condition 2 applies to any coding

length greater than 4. Therefore, the lemma holds.

Based on the derived design principles, we can define the coding structure of RANC

that is depicted in Figure 4.8. According to Principle 1 and Principle 2, we know that the

coding length of RANC should be 3 and the native and coded packets should interleave

with each other.
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4.3 The Tradeoff in RANC’s Performance Gain

In this section, we analyze the performance gain of RANC. For simplicity, we study the

gain under the ideal wheel topology, in which the hub node resides in the center and all

other nodes are evenly distributed on the circle. In the end of this section, we discuss how

to evaluate the gain under irregular topologies.

4.3.1 Calculating the Minimum Transmission Range of Native Nodes

under Ideal Wheel Topology

The transmission range of relay nodes are determined and they transmit at low speed. For

example, suppose node 3 is relay node and its transmission range is shown in Figure 4.9.

Now we need to find the minimum transmission range of native nodes in order to make

RANC work.
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Figure 4.8: The structure of coded packets in RANC

As shown in Figure 4.9, suppose node 1, 3, 5 are relay nodes and node 0, 2, 4 are native

nodes. Without loss of generality, we calculate the minimum transmission range of node 2.

The coded packets of relay node 1, 3 and 5 are C1 = P0 ⊕P1 ⊕P2, C3 = P2 ⊕P3 ⊕P4

and C5 = P4 ⊕ P5 ⊕ .... Based on Principle 1, node D(4) can overhear C1, C3, C5. Since

information of P2 is XOR-ed in C1 and C3, both of which are necessary for node D(4)

to decode P . Since XORing C1 and C3 will eliminate P2 at node D(4), node D(4) has

to overhear P2. As node D(3) can hear C1 and C5 and the information of P2 is XORed

only in C1, which is sufficient for node D(3) to decode P2 from P . Thus, node D(3)
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does not need to have more information of P2. Therefore, packet transmitted from node 2

should be overheard by all the nodes except for node D(2) and its one-hop neighbors on

the circle (i.e., nodes D(1) and D(3) in this example). Since node 2 is a native node and

node D(4) is one of the furthermost nodes from node 2 (the other node is D(0)) that P2

should be overheard, the minimum transmission range of node 2 should be d(2, D(4)). As

the topology is an ideal wheel, similar argument can be applied to all other native nodes.
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Figure 4.9: Calculate the transmission range of native nodes

4.3.2 The Tradeoff in RANC’s Performance Gain

With the coding length of 3, we can analyze the throughput of network coding. We assume

the two-ray ground propagation model is used so that the signal-to-noise ratio is determined

by the distance between the sender and the receiver. By the Shannon’s Theorem [?], in high

signal-to-noise ratio (SNR) region, the transmission rate r follows:

r = B log2(1 + SNR)≈B log2 SNR (4.1)
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where SNR ∝ 1
dγ and γ is the path loss exponent which is normally in the range of 2 to 4.

Thus, we have

r ∝ log2(d
−γ) (4.2)

α, β and radius R are defined in Figure 4.9. According to the result from Section 4.3.1,

the minimum transmission range of node 2(native node) and node 3(relay node) should be

d(2, D(4)) and d(3, D(4)), respectively. Denote the minimum transmission range of native

node and relay node as dn and dr, respectively. Let’s calculate dn and dr. By the law of

cosines, we have:

dn = d(2, D(4)) = R
√

2[1 − cos α] = R

√

2[1 + cos
4π

n
] (4.3)

dr = d(3, D(4)) = R
√

2[1 − cos β] = R

√

2[1 + cos
2π

n
] (4.4)

Denote the transmission rate of native node and relay node as rn and rr respectively.

From equation (4.2), we have

rn ∝ log2(d
−γ
n ) (4.5)

rr ∝ log2(d
−γ
r ) (4.6)

The throughput of network coding, denoted by Tnc, is defined by:

Tnc =
The number of packets serviced in each round

The delay of each round
(4.7)

Let Tnc,RANC and Tnc,COPE represent the throughput of RANC and COPE respectively.

In RANC, half of participating node n are native nodes and half are relay nodes, therefore

the throughput of RANC under ideal wheel topology can be calculated as follows.

Tnc,RANC(n) =
n

n
2

1
rn

+ n
2

1
rr

+ 1
r(broadcast)
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∝ n
n
2

1
log2

1

d
γ
n

+ n
2

1
log2

1

d
γ
r

+ 1
log2

1
Rγ

∝ n
n
2

1
log2

1

(R

√
2[1+cos 4π

n ])γ

+ n
2

1
log2

1

(R

√
2[1+cos 2π

n ])γ

+ 1
log2

1
Rγ

For COPE, all participating nodes n transmit at the same rate of the relay nodes in

RANC. Therefore, the throughput of COPE can be calculated as follows.

Tnc,COPE(n) =
n

n 1
rr

+ 1
r(broadcast)

∝ n

n 1
log2

1

d
γ
r

+ 1
log2

1
Rγ

From the analysis, we have the following two findings:

First, the throughput of RANC is always better than that of COPE due to high speed

transmissions. We define g(n) =
Tnc,RANC(n)

Thnc,COPE(n)
as the throughput gain of RANC over COPE

when the number of participating nodes in the network is n. As n increases, the throughput

gain g(n) becomes smaller. When n → ∞, g(n) → 1. Based on the structure of RANC, in

order to benefit from RANC, n should be at least 6. When n is 2 or 4, there is no need to

have relay-aided network coding. Therefore, we compare throughput of RANC with COPE

in cases when n ≥ 6. When SNR= 20, for the path loss exponent γ = 2 and γ = 4, the

numerical results of g(n) are shown in Figure 4.10(a) and (b), respectively. As can be seen,

the g(n) increases as γ increases.

Second, the throughput of RANC is maximized when there are three pairs of symmetric

flows in the network, which, in other words, means 6 participant nodes consisting the net-

work coding opportunity. This is a very important result for the protocol design of RANC

(see the next Section). It implies that when the number of participating nodes is larger than

6, we can partition them into groups, each of which has at most 6 members. For instance,

if the number of participating nodes is n, we can partition them into ⌈n
6
⌉ groups so that

g(n) ≈ Tnc,RANC(6)

Tnc,COPE(n)
. One thing deserves attention is that any two nodes forms a symmetric
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flow are always partitioned in the same group. In other words, the basic element in partition

set is a symmetric flow.

Remark: For an irregular wheel topology, RANC can be applied to a set of nodes as long

as the packet transmitted from node i at low speed can be overheard by any other nodes

except for the destination of node i. Given the SNR of each link associated with the set of

nodes, the performance gain of RANC can be computed in a similar way.
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Figure 4.10: Numerical results of the throughput gain of RANC

4.4 The RANC Protocol Design

Based on the analysis of design principles and the performance gain of RANC, we design

the protocol and algorithm of RANC via decomposing the original RANC problem into two

sub-problems: the flow partition problem and the scheduling problem. On the one hand,

g(n) is a non-increasing function of n. If we want to obtain the maximum throughput gain

of RANC, we should partition the flow set into subsets each of which has no more than

3 pairs of symmetric flows(6 participating nodes). On the other hand, if we want to the

obtain maximum network Coding+Mac gain (especially for the network using IEEE 802.11
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MAC), then we should include as many flows as possible to perform network coding in

each round. Therefore, there exists a tradeoff between the throughput gain and the network

Coding+Mac gain in RANC. The first sub-problem is to partition the flow set according

to the cost function that can be used to balance the tradeoff between the throughput and

Coding+Mac gain. The output will be a flow partition decision that minimizes the total

cost. As the partition problem is NP-hard, we provide a lnn
2
-approximation algorithm to

achieve an approximate solution. After the first sub-problem is solved, we need to solve the

second sub-problem, which is to decide the transmission schedule of nodes in each subset.

4.4.1 The Flow Partition Problem

The flow partition problem falls into the category of the weighted set cover problem. Sup-

pose U is the universe of n
2

flows, U = 1...n
2
, S is the total subsets of U , |S| = 2

n
2 − 1.

si is a partition set and |si| is the cardinality of si. The cost function for each subset si is

c(si).

The objective of the flow partition problem is to find a set I ⊆ S that minimizes

∑

i∈I

c(si), subject to
⋃

i∈I

si = U, si ∩ sj = φ. The members of I are mutually disjoint.

We use a binary variable xsi
to indicate whether set si is selected. Formally, the problem

is:

min
∑

i∈S

xsi
c(si) (4.8)

s.t.

∑

j∈S|xsj
=1,i∈sj

xsj
= 1, i ∈ U (4.9)

xsi
= 0 or 1, i ∈ S (4.10)
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Equation (4.9) means that each flow i belongs to one and only one set. We define the

utility function is as follows:

c(si) = −(α · Tnc,RANC(si) + (1 − α) · Gnc+mac(si)) (4.11)

where Gnc+mac(si) is the Coding+Mac gain for the flow set si and α ∈ [0, 1] is a tuning

parameter used to balance the tradeoff the throughput gain and the Coding+Mac gain. As

the weighted set partition problem is NP-hard [and79], it will be costly to compute the exact

optimal solution. Therefore, after having the cost for each subset, we use the following

approximation algorithm to find the solution for flow partition.

Algorithm

Step 1: I ← φ,
−

U ← U

Step 2: While
−

U 6= φ

(a) s ← argmax
X∈S

c(X)

(b) I ← I ∪ s, S ← S\{s, p |p ∩ s 6= φ}, and
−

U ←
−

U \s, repeat step 2.

Lemma 3 The algorithm is a lnN -approximation algorithm for the flow partition problem.

proof We first order the flow pairs in the order that they were picked, breaking ties

arbitrarily. At the time that the i-th flow pair was picked,
−

U contains at least n
2
− i +

1 elements (flow pairs). Let OPT denote the optimal objective function value of flow

partition problem(equation (4.8). At that point, the "per-element" cost of OPT is at most

OPT/(n
2
− i + 1). Thus, for at least one of the sets in OPT , we have

c(s) ≤ OPT
n
2 − i + 1

(4.12)

Since the algorithm is greedy, the set s picked by the algorithm satisfies the above inequal-

ity. Thus, sum over all the elements in
−

U , we have

∑

i∈
−

U

c(si) ≤
n
2

∑

i=1

OPT
n
2 − i + 1

≤ OPT ln
n

2
(4.13)
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4.4.2 The Scheduling Problem

Let dr(i, j) represent the maximum transmission radius of node i when it transmits a packet

to node j at the rate of r subject to the bit error rate should be kept below a pre-defined

threshold. According to the analysis in Section 4.3.1, we denote dj,min as the minimum

transmission radius of native node j.

This scheduling problem is performed for each subset we get from the solution of the

flow partition problem. In particular, the scheduling decision is made on per subset basis

until all the flows are serviced. We denote the current subset, the subset of relay nodes and

the subset of native nodes as Sc, Sr, and Sn, respectively. Assuming that node IDs in Sc are

0, ..., |Sc| − 1, the scheduling algorithm is formalized as follows.

max
∑

j∈Sc

rj (4.14)

s.t.

Ci = Pi, i ∈ Sn (4.15)

Ci = Pi−1+|Sc| mod |Sc| ⊕ Pi mod |Sc| ⊕ Pi+1 mod |Sc|, i ∈ Sr (4.16)

ti < tj , i ∈ Sn, j ∈ Sr (4.17)

rj = argmaxrdr(j, k) ≥ max(dj,min, d(j, k)), j ∈ Sn

k = j + 1 mod |Sc| or j − 1 + |Sc| mod |Sc| (4.18)

ri = argmaxrdr(i, j) ≥ max(d(i, j)), i ∈ Sr, j ∈ Sc, j 6= i,D(i) (4.19)
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Equation (4.15) means that the native nodes send their own packet first. Equation (4.16)

gives out the packet that the relay nodes transmit. Constraint (4.17) says the native nodes

transmit before the relay nodes. Equation (4.18) and (4.19) define the transmission rate of

native nodes and relay nodes, respectively. Given a subset of nodes, since the role of each

node is either native node or relay node, the scheduling decision is to divide the nodes into

two groups so that the aggregate transmission rate that can be achievable under the con-

straints (4.15-4.19). Thus, the scheduling decision can be found with polynomial complex-

ity. Regarding the efficient implementation of scheduling, it should be carefully designed

if the transmission collision and interference from neighboring nodes of the participant

nodes are taken into account. In this paper, we assume a collision free MAC mechanism

is adopted for each round of network coding. One example of the MAC mechanism is to

reserve a dedicated network coding channel and the participant nodes can switch to the

channel and access the channel in a time-division multiple access (TDMA) manner. How

to implement the scheduling for RANC in a network under single channel with a random

access MAC protocol (e.g. IEEE 802.11 based WLAN [?]) will be part of our future work.

Since the hub-node can hear the transmission from any other nodes, it has the best

position to perform flow partitioning and packet scheduling. Therefore, we let the hub-

node execute the RANC protocol, which is summarized in Table 4. RANC is performed

round by round. Similar to COPE [KRH+06], the information regarding channel condition

and the status of network coding in the previous round can be piggybacked in each data

packet.

4.5 Performance Evaulation

We evaluate the performance of RANC via extensive simulations. Our simulation is based

on ns-2 [Pro]. The distance threshold for 11Mbps, 5.5Mbps, and 2Mbps are 100m, 200m,

and 250m respectively. The data packet length is set to be 1000 bytes and the simulation
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The process of RANC for each round of network coding

Input: the union of flow pairs U ;

the channel condition of all the links in the network;

Calculate the cost function for each subset of U ;

Run approximation algorithm to compute flow partition I;

for each subset s ∈ I do

Compute the transmission schedule of s;

for each node ∈ s do

Send out corresponding packet according to the sched-

ule;

end for

end for

if any node failed in decoding P in the previous round

Request the hub-node to re-transmit the native packet

destined to the node;

end if

Table 4: The pseudo-code of the RANC protocol

time is set to be 100 seconds. We compare RANC with COPE in terms of the throughput

of network coding and the Coding+MAC gain2of the hub-node. The control overhead is

counted in the performance measurement.

We first evaluate the scenario in which there are 3 flow pairs in an ideal wheel topology,

which is same as that in Figure 4.2, with the radius of 130m. In this case, the rate of each

transmission in COPE is 2Mbps. For RANC, the transmission rates of native nodes and

relay nodes are 5.5Mbps and 2Mbps, respectively, in this case. The simulation results are

shown in Figure 4.12. As can be seen, due to the existence of high speed transmission,

RANC improves the throughput by approximately 50%. As we explained previously, there

is no need to do flow partition when n
2
≤ 3. Therefore, in this case, both RANC and COPE

require the hub-node to transmit once in each round. While there is no network coding,

hub-node has to transmit 6 times each round under current topology, therefore, the draining

rates of hub-node under both RANC and COPE are 6 times faster than that without using

2To take channel condition into account, we define the draining rate as the transmission

time spent by the hub-node to forward all the packets.
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network coding. In other words, the Coding+MAC gain is at most 6. It can be observed

that the Coding+MAC gain of RANC and COPE are close to each other and both are below

6.

Then, we evaluate the performance of RANC in more complicated scenarios(Figure

4.11(a)). The participating nodes are all located on the circle and the radius is 130m. The

cost function follows equation (4.11). As the tuning parameter α is used to balance the

tradeoff between the throughput gain and the Coding+MAC gain, different value of α leads

to different flow partition I . Basically, a large α favors the Coding+MAC gain and a small

α favors the throughput gain. For example, given the topology shown in Figure 4.11(a), we

have flow partition I1 = {s1 = {(0, 4), (1, 5), (3, 7)}, s2 = {(2, 6)}} for α = 0.9, and flow

partition I2 = U = {(0, 4), (1, 5), (2, 6), (3, 7)} for α = 0.8. We evaluate the throughput

and Coding+MAC gain of RANC with both I1 and I2 as well as those of COPE. First, let us

analyze the performance of RANC-I1 and COPE. The rate of each transmission for COPE

is still 2Mbps. For RANC-I1, there are two subsets in it and each subset has high speed

transmission(r > 2Mbps). The simulation results are shown in Figure 4.13. As can be

seen, due to the existence of high speed transmission achieved by flow partition, RANC

greatly improves the throughput. However, this is at the expense of less Coding+MAC

gain of hub-node. Hub-node has to participate transmission for each subset. In the case

of I1, hub-node has to broadcast in both s1 and s2. Therefore, RANC-I1 requires the

hub-node to transmit twice in each round. For COPE, hub-node always transmit once in

each round. When n = 8, hub-node has to transmit 8 times in each round if there is no

network coding. Therefore, the Coding+MAC gain of RANC-I1 and COPE are 4 and 8,

respectively and they are the upper bound. Similarly, we compare the results of RANC-I2

and COPE in Figure 4.14. Since the flow partition I2 = U , hub-node transmit once in

each round, which is same as COPE. It can be observed that the Coding+MAC gain of the

two are close to each other. In the terms of throughput, since there still exist high speed
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Figure 4.11: The network topologies with different n

transmission(r > 2Mbps), the throughput of RANC-I2 is greater than COPE. Compare

Figure 4.13 and 4.14, we can observe the throughput of RANC-I1 is higher than that of

RANC-I2 at the expense of less Coding+MAC gain.

We also study the scenario whose topology is shown in Figure 4.11(b). The partic-

ipating nodes are all located on the circle with radius equal to 150m. In this case, we

have flow partition I1 = {s1 = {(0, 5), (2, 7), (4, 9)}, s2 = {(1, 6)}, s3 = {(3, 8)}}

for α = 0.95, I2 = {s1 = {(0, 5), (1, 6), (3, 8), (4, 9)}, s2 = {(2, 7)}} for α = 0.9,

I3 = U = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)} for α = 0.8. The throughput and Cod-

ing+MAC gain of RANC under I1, I2, I3 and COPE are shown in Figure 4.15, 4.16 and

4.17, respectively.

As shown in Figure 4.15, let us first analyze the simulation results of RANC-I1 and

COPE. The rate of each transmission for COPE is 2Mbps under this topology. For RANC-

I1, there are three subsets in it and each subset has high speed transmission(r > 2Mbps)

compared to COPE. As can be seen, due to the existence of high speed transmission

achieved by flow partition, RANC greatly improves the throughput. However, hub-node

has to transmit once in each subset which add up to a total of three times in each round.
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Figure 4.12: n=6
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Figure 4.13: n=8, flow partition is I1
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Figure 4.14: n=8, flow partition is I2
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Figure 4.15: n=10, flow partition is I1
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Figure 4.16: n=10, flow partition is I2
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Figure 4.17: n=10, flow partition is I3
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While in COPE, hub-node always transmit once in each round. When n = 10, hub-

node has to transmit 10 times in each round if there is no network coding. Therefore,

the Coding+MAC gain of RANC-I1 and COPE are 3.3 and 10, respectively and they

are the upper bound. For RANC-I2, there are two subsets and it has less high speed

transmissions(r > 2Mbps) compared to RANC-I1. Therefore, from simulation results

shown in Figure 4.16, we can see that the throughput of RANC-I2 is lower than that of

RANC-I1. The Coding+MAC gain of RANC-I2, however, is higher than that of RANC-I1.

Because there are two subsets in RANC-I2, hub-node has to transmit twice each round.

Thus, the Coding+MAC gain is 5 in this case. Similarly, we compare the results of RANC-

I3 and COPE in Figure 4.17. Since the flow partition I3 = U , hub-node transmit once in

both RANC and COPE. It can be observed that the Coding+MAC gain of the two are close

to each other and the upper limit is 10. In the terms of throughput, since all the transmis-

sions of RANC are at 2Mbps for this flow partition, the throughput of RANC-I3 is close

to that of COPE. Compare Figure 4.15, 4.16 and 4.17, we can easily observe the tradeoff

between throughput and Coding+MAC gain of RANC. As can be seen, the throughput of

RANC-I3(I3 = U ) has the same throughput as COPE. This is different from the case of

RANC-I2(I2 = U ) when n = 8 (see Figure 4.14, 4.17). The reason is that the requirement

of the minimum transmission range of native nodes (see Section 4.3.1) forces the native

nodes to transmit at low speed(2Mbps). It indicates that when the node density is high, it

is more beneficial for RANC to set α close to 1.0 in order to achieve higher throughput.

However, partition with higher throughput has less Coding+MAC gain.
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CHAPTER 5

JOINT ROUTING AND SCHEDULING OPTIMIZATION SCHEME

In this chapter, we introduce a joint design of distributed routing at the network layer

and distributed coding-aware scheduling at the MAC layer. The design problem is mod-

eled as a network utility optimization problem. Different from previous works in cross-

layer optimization in computer networks [Haj88] and [Tas92], we focus on how to exploit

the network coding gain to improve the overall end-to-end transmission performance in

network coding-aware wireless mesh network. We first formalize the design problem and

decompose it into two sub-problems: the routing problem and the scheduling problem. The

cross-layer design is achieved with a simple but crucial linkage between these subproblems.

The routing mechanism decides how to distributed the traffic demands over the end-to-end

paths in the network. The scheduling mechanism is used to maximize the overall weighted

link capacity with network coding awareness. With the joint design, the network coding

gain is realized by the scheduling module. The link level gain is further signaled to the

routing module which utilizes the information to carefully distribute the traffic to maxi-

mize the overall end-to-end networking performance. As a result, more traffic is routed on

the path to create more network coding opportunities until the network reaches the equi-

librium point where no better routing decisions can be found. In addition to the theoretical

framework, we propose mechanisms to implement the framework in an efficient and dis-

tributed way by considering the factors of time synchronization, protocol scalability, and

the MAC layer coordination. We evaluate our design through extensive simulations and the

simulation results show that the joint design of routing and scheduling can greatly increase

the capacity of the network by exploiting the network coding-awareness.

The chapter is organized as follows. In Chapter 5.1, first, we present the system model

and notations, then we formulate the network optimization problem and exploit the struc-

ture of the problem via decomposition. In Chapter 5.2, two different asynchronous routing
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algorithms are proposed to solve the routing problem. Chapter 5.3 gives the solution for

the network coding-aware scheduling problem and presents a low-complexity distributed

coding-aware scheduling algorithm. In Chapter 5.4, we evaluate the performance of joint

routing and coding-aware scheduling using simulations.

5.1 System Model and Problem Formulation

We represent the network with a directed graph H = (N,E), where N is the set of nodes

and E is the set of links. Every link (i, j) ∈ E interferes with a set of other links with

the following interference model: Let Ii denote the one-hop neighboring nodes of node

i, link (k, l) interferes with link (i, j) if k ∈ Ii ∪ Ij or l ∈ Ii ∪ Ij . Therefore, to avoid

collision, when link (i, j) is active, all nodes in Ii ∪ Ij should be idle. In the network, there

are multiple uni-cast connections from the source nodes to the destination nodes. The set

of source nodes is denoted as S and the set of destination nodes is denoted as T . For each

source-destination flow pair, we denote it as f . Let S(f), T (f) and df be the source node,

destination node and traffic demand of flow f , respectively. Let P f represent the path set

of flow f and |P f | is the cardinality of P f . Denote xf,p the traffic of flow f which is routed

through path p. The vector xf consists of the elements xf,p, p ∈ P f . xf
ij then represent the

traffic of flow f routed on link (i, j). Clearly, xf
ij =

∑

p∈P f (i,j)∈E

xf,p. Let F denote the set of

all the source destination flow pairs f in the network.

At the MAC layer, we assume the following time division MAC protocol is used: in the

network, time is divided into slots of equal length. Each time slot is divided into two parts:

a channel contention slot and a data transmission slot. The links that are to be scheduled

are chosen in the contention slot and the chosen links transmit their packets in the data

transmission slot. More detailed protocol description will be introduced in Chapter 5.3.

cij , (i, j) ∈ E is used to represent the capacity of link (i, j). Due to restriction from the

interference model, vector c is determined by the scheduling algorithm and lies within a

capacity region Π, which is actually the convex hull of c.
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From the Little’s Theorem [Asm03], given the average number of packets in the sta-

ble network, a smaller end-to-end delay implies a higher average traffic arrival rate at the

source node. Therefore, our design goal is to minimize the average end-to-end delay of

the network. We associate with the network a delay function which reflects the average

latency that maps valid routing matrix to real numbers that we seek to minimize. With

M/M/1 queuing model, link (i, j)’s delay function can be 1
cij−xij

where xij is the aggregate

traffic traversing link (i, j). It follows that
xij

cij−xij
is a non-negative, differentiable and non-

decreasing convex function with respect to xij . However, in multi-hop network settings, it

is difficult to find a closed-form and tractable delay function. By using the measured link

delay, we do not need explicit definition of link delay and only assume the load-latency

product function is convex. Thus, for the analysis purpose, we suppose a convex function

U(xij) which reflects the average link delay experienced by all flows. Consequently, the

network optimization problem can be formalized as following:

min
∑

(i,j)∈E

U(
∑

f∈F

xf
ij) (5.1)

s.t.
∑

f∈F

xf
ij ≤ cij,∀(i, j) ∈ E (5.2)

c ∈ Π (5.3)

(
∑

{j|(i,j)∈E}

xf
ij −

∑

{j|(j,i)∈E}

xf
ji) = σf

i ,∀i ∈ N, f ∈ F (5.4)

σf
i =























df , if i ∈ S

−df , if i ∈ T

0 otherwise.

(5.5)

The objective is to minimize the delay function over the network. Equations (5.2) and (5.3)

are capacity and capacity region constraints. Equations (5.4) and (5.5) are flow conserva-

tion constraints. We form the dual problem by introducing Lagrange multipliers λij only

for the coupling constraints
∑

f∈F

xf
ij ≤ cij . This results in the Lagrangian dual function:
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L(x, c, λ) =
∑

f∈F,(i,j)∈E

U(xf
ij) +

∑

(i,j)∈E

λij(
∑

f∈F

xf
ij − cij)

= (
∑

f∈F,(i,j)∈E

U(xf
ij) +

∑

(i,j)∈E

λij

∑

f∈F

xf
ij)

− ∑

(i,j)∈E

λijcij

(5.6)

We observe that the dual function can be separated into two sub-problems: the routing

problem and the scheduling problem. In the dual objective function (5.6), the first part

∑

f∈F,(i,j)∈E

U(xf
ij) −

∑

(i,j)∈E

λij

∑

f∈F

xf
ij is the objective function of a routing problem. The

second part
∑

(i,j)∈E

λijcij is the objective function of a scheduling problem. For constraints

(5.4) and (5.5) are the constraints of routing problem and constraint (5.3) is associated the

scheduling problem. Therefore, we can rewrite the dual problem in the following way:

V (λ) = Vrt(λ) + Vsch(λ) (5.7)

where Vrt(λ) is defined as

Vrt(λ) = min{ ∑

f∈F,(i,j)∈E

U(xf
ij) −

∑

(i,j)∈E

λij

∑

f∈F

xf
ij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(
∑

{j|(i,j)∈E}

xf
ij −

∑

{j|(j,i)∈E}

xf
ji) = σf

i ,∀i ∈ N, f ∈ F

σf
i =























df , i = s

−df , i = t

0, otherwise







































(5.8)

and Vsch(λ) is defined as:

Vsch(λ) = max{
∑

(i,j)∈E

λijcij|cij ∈ Π}. (5.9)

Given Vrt(λ) and Vsch(λ) that are parameterized by the dual variable λ, the dual problem

can be solved using the sub-gradient method by updating the dual variable λ as following:

λij(t + 1) =

[

λij(t) +
α

cij

(
∑

f∈F

xf
ij(n) − cij)

]+

(5.10)
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Since the term
∑

f∈F

xf
ij(n) is the aggregate traffic routed over link (i, j) and cij is the capacity

of link (i, j), the buffer occupancy bij(t) evolves according to:

bij(t + 1) =

[

bij(t) +
∑

f∈F

xf
ij(n)df − cij(t)

]+

(5.11)

Dividing both sides by cij(t) and multiplying both sides by α and identifying λij = α
bij

cij
,

we see that λij can be understood as the weighted queuing delay of link (i, j) and is an

approximate of the subgradient of the dual problem. The small stepsize α is used to ensure

convergence. Thus, each link periodically measures the average queuing delay and update

its λ. As a result, a more congested link has a larger value of λ.

5.2 Solving the Routing Problem

In this section, we focus on designing distributed and asynchronous routing algorithms to

find the optimal solution of the routing problem stated in (5.8). We first introduce the algo-

rithm based on the one proposed in [J.N86]. The algorithm is a gradient based method with

the proven property of convergence. However, as we will see, the algorithm is difficult to

implement with good robustness. To overcome the difficulty, we introduce another routing

algorithm which is not only much easier to implement but also has proven convergence.

5.2.1 The Gradient-based Routing Algorithm

From the analysis in previous section, we observe that the objective function of routing

problem can be rewritten in following form,
∑

(i,j)∈E

U(xij) −
∑

(i,j)∈E

xijd(xij), where d(.)

is the delay function and xij is the amount of traffic over link (i, j). Denote the routing

problem as Vrt(x). By the definition of xij , we are actually studying the allocation of

xf,p(p ∈ P (f)) for each flow f , which is the multi-path traffic routing problem. Assume
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each source node of flow f ∈ F makes the routing decisions and each source node can

update the value xf,p by performing the gradient projection update as follows:

xf,p(n + 1) = [xf,p(n) + γµf ∂Vrt(x
f,p(n))

∂xf,p
]+
Gf . (5.12)

Here, [a]+
Gf is the projection of a on the closed set W ⊂ Rn, with respect to the inner

product 〈·, ·〉Gf , where Gf is a symmetric positive matrix. W is the projection plane. The

computation of the projection [·]+ on W will be addressed shortly. The above projection

update requires perfect synchronization of the all source nodes, which is difficult to im-

plement due to the asynchronous feedback of queuing delay information. Therefore, it is

necessary to find an asynchronous gradient projection mechanism for the routing adapta-

tion. In particular, each source node runs the adaptation algorithm once during a certain

time interval, which is called updating period. Let x̄ represent the vector of desired flows

percentage. Each source node makes the routing decision according to the following equa-

tion.

xf,p(n) = af,p(n)x̄f,p(n) + (1 − af,p(n))xf,p(n − 1). (5.13)

We assume

af,p(n) ≥ ξ, ∀f ∈ F,∀p ∈ P (f),∀n (5.14)

where ξ > 0 and af,p is the solution of the following equation

∑

p

af,p(n)(x̄f,p(n) − xf,p(n − 1)) = 0. (5.15)

The desired flow percentage is calculated as follows

x̄f (n + 1) = [x̄f (n) − γµfβf (n)]+
Gf (5.16)

βf (n) is a vector consisting βf,p(n), p ∈ P (f) where

βf,p(n) =
∑

(i,j)∈p

∂V̄rt,ij

∂lij
(l̂kij(n)) (5.17)
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∂Vrt,ij

∂xf,p
(x(n)) =











∂V̄rt,ij

∂lij
(lij(n)), if(i, j) ∈ p

0, otherwise.
(5.18)

where lij is the total traffic on link (i, j). Practically, node i estimates from time to time

the amount of traffic through the link (i, j). These estimates are an average of a set of

measurements obtained over some period of time T . Therefore, at each time n, node i has

an estimate

l̂ij(n) =
n

∑

m=n−T

eij(m)lij(m). (5.19)

Where
n
∑

m=n−T

eij(m) = 1.

The computation of the projection [·]+ on W falls into following problem

‖x − x0‖2
2 (5.20)

s.t.

Ax ≤ b. (5.21)

In our case the projection plane W = {x|Ax = b} which is the flow conservation

constraint. The solution of above problem, namely the projection of x0 on plane W is

P (x0) = x0 + (b − aT x0)a/ ‖a‖2
2 . (5.22)

The convergence properties of the algorithm are shown in the following theorems.

Since their proofs are similar to those in [J.N86], we do not give the proofs.

Theorem 7 Given all the assumptions and step-size γ is small enough, Vrt(x(n)) of the

algorithm converges to minx∈W Vrt(x) and any limit point of {x(n)} is a minimizing point.

Moreover, xf (n) − x̄f (n) converges to zero for all the flow f ∈ F .

Theorem 8 Given all the assumptions and step-size γ is small enough, if each V̄rt,ij is

strictly convex, then the vector of link flows lij(n) converges to the unique minimizing

vector of the objective function Vrt(x).
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Although the algorithm has nice theoretical features, throughout our simulation studies

(see more details in Chapter 5.4), it can be shown that the algorithm is very difficult to

implement with good robustness so that many routing adaptations not only cannot help the

network to minimize the average delay but also create more fluctuations. The main cause of

the poor robustness comes from the difficulty in accurate evaluation of the marginal delay

of each link
∂Vrt(x)

∂xij
.

5.2.2 The Proposed Routing Algorithm

Since it is difficult to implement the asynchronous gradient-based approach to solving the

original routing problem, we seek to find an approximate but simpler method to solve the

routing problem. The ideal is that we allow each source node selfishly optimize its own

routing policy to minimize the average end-to-end delay of its own flows. Under such self-

ish routing, it is know that the selfish behavior can reach a Wardrop equilibrium in which,

for any demand, all paths that have positive flow will have the same path delay [J.N86].

With such relaxation, compared to the gradient-based algorithm, the selfish routing proto-

col does not need to evaluate the marginal delay of each link, which is exactly the partial

derivative of Vrt(x) with respect to lij . Instead, only the information of path delay is need

and the computation and communication complexities for measuring and signaling the de-

lay information are much lower. In theory, there exists performance gap between selfish

routing and optimal routing (called Price of Anarchy [RT02]), existing work [QYZS03]

[Xie03] shows that such performance gap is usually quite small in data networks.

The proposed adaptive routing algorithm is motivated by stochastic control theory

[Gal77] [Ber84] [Kae96], and runs at each source node every updating period. This al-

gorithm is asynchronous, so there’s no requirement for synchronization between the source

nodes. The end-to-end delay of each path is fed back in a reverse direction, namely, from

the destination node to the source node. Each node updates the information Vrt(x
f
ij) to it’s
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previous node in the path once every updating period. The feedback information is used

by the source node to get the sum
∑

(i,j)∈p

Vrt(x
f
ij), which is denoted as vf,p

rt . For the source

node, it also maintains the following parameters

• x̄f,p, the desired routing probability of flow f on path p. Later we will show this set

of probability converges to Cesaro-Wardrop equilibrium [J.N86] in the path set.

• xf,p, the actual routing probability.

When source node gets a new value of vf,p
rt from path p, it updates V f,p

rt (n+1) according

to the following equation:

V f,p
rt (n + 1) = (1 − a(n))V f,p

rt (n) + a(n)vf,p
rt (5.23)

where a(n) ∈ [0, 1] is the learning factor of V f,p
rt . If it is large, it means V f,p

rt is sensitive to

the noise. If it is small, V f,p
rt depends mainly on the previous sample. However, in wireless

network, a(n) can not be too small because if it is too small, it can not be responsive enough

to the dynamic wireless channel condition.

Then, based on the information of V f,p
rt from all the paths of flow f , the source node

computes an overall V f
rt according to

V f
rt(n + 1) =

∑

p∈P f

xf,p(n)V f,p
rt (n + 1) (5.24)

After the source node gets the overall value, it updates the desired routing probability for

each path in P f according to following equation:

x̄f,p = x̄f,p(n) + b(n)[x̄f,p(V f
rt(n + 1) − V f,p

rt (n + 1)) + ξsd
i ] (5.25)

Where b(n) > 0 is routing learning factor and it is used to smooth out the noise. ξsd
i is

i.i.d random vector distributed uniformly on the unit ball of dimension P f . It is used to add

disturbance to avoid non-Wardrop solutions.
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Then, source node projects x̄f,p to [0, 1]P
f

to ensure that the desired routing probability

is a valid set. The new desired routing probability is obtained by solving the optimization

problem below:

min
∑

p∈P f

(yf,p − x̄f,p)2 (5.26)

s.t.
∑

p∈P f

yf,p = 1

0 ≤ yf,p ≤ 1, p ∈ P f

The solution of above projection can easily be obtained from following

yf,p = x̄f,p +

1 − ∑

p∈P f

x̄f,p

|P f | (5.27)

and yf,p becomes the new desired routing probability x̄f,p(n + 1).

Then, we update the new routing probability xf,p based on x̄f,p:

xf,p(n + 1) = (1 − ǫ)yf,p(n + 1) +
ǫ

|P f | (5.28)

where ǫ is a small constant number.

The convergence property of the algorithm is shown in the theorem below and its proof

is similar to that in [J.N86] [Xie03].

Theorem 9 With the proposed selfish routing algorithm, the routing probability of each

flow converges, the estimation of minimum link delay converges under stationary routing

probability, and the internal routing probabilities converge in Hs almost surely, where Hs

is the set {x : xf,p > 0 ⇒ V f,p
rt = minj V f,j

rt }.

5.3 Solving The Scheduling Problem

The scheduling problem (Vsch(.)) derived from the original optimization problem is the

classical weighted maximal link scheduling problem where the link weight is proportional
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to the average link delay. However, in the objective function, cij represents the average link

capacity that is determined by both the link scheduling and the link transmission rate. As

the MAC protocol decides the link schedule in each time slot, we need to transform the

original scheduling problem to a MAC layer per time slot scheduling decision problem.

Since λij reflects the average queuing delay of packets, at the beginning of each time slot,

λij is expected to be proportional to the queue length of link (i, j). Note the both the

queuing delay and the queue length can be used to evaluate the congestion level of the link.

Furthermore, cij is proportional to the link transmission rate which depends on the channel

quality of the link. Let hij denote the channel gain of link (i, j) and follow the gradient

scheduling, the original scheduling algorithm can be transformed to the following problem:

at the beginning of each time slot t, find a link schedule S such that:

max
S

∑

(i,j)∈E

bij(t)hij(t)I{(i, j) ∈ S}

s.t S ∈ S̄ (5.29)

where I(x) is equal to 1 if x is true, and 0 otherwise. S̄ is the scheduling constraint that

no interference links can be active simultaneously. Thus, the scheduling problem becomes

the classical throughput optimal scheduling problem. However, the problem formulation

does not consider how to realize the network coding gain for given coding opportunities.

Thus, we introduce how to add network coding awareness into the scheduling decision

process. Following the opportunistic listening and coding principle in COPE, we assume

each node that behaves as a forwarding node to forward packets to different downstream

nodes has the knowledge of if the situation where the network coding is applicable to a

group of receiving nodes. Such group is called a network coding group N and satisfies the

following three conditions: First, all the N nodes are within the transmission range of the

forwarding node for a broadcast; second, the relay node has packets to be forwarded to all

N receiving nodes; third, each receiving node has the packets sent by the forwarding node

to the other N-1 receiving nodes.
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Given a network coding group N , we form a super link, denoted by lN , consists of all

links in N and include the super link into the link set to be scheduled. The queue length

and the channel gain of the link are defined as:

blN = max
(i,j)∈N

bij

hlN = |N | min
(i,j)∈N

{hij} (5.30)

From the definitions above, we can see that the weight of link lN increase proportionally

to |N | but may be significantly decreased due to a link with poor channel condition in the

group. Given similar channel gains, the network coding group will have a higher priority

to be scheduled and the network coding gain can be realized as well.

5.3.1 The Link-initiated Greedy Scheduling Algorithm

Under the two-hop interference model, the scheduling problem has been proven to be NP-

hard to approximate within arbitrary constant factor (i.e. APX-hard) in general networks.

Therefore, it is not practical to find exactly optimal link schedule in each time slot. Recent

research [JLS08] [LNS09] has shown that the greedy maximal scheduling method can de-

rive an approximate solution within a constant factor (e.g., between 1/6 and 1/3 in [JLS08])

under the two-hop interference model. The main idea of the greedy maximal scheduling is

to pick up the links in a decreasing order of their weights until no link can be scheduled.

Once a link is selected, its interference links should be excluded from the link schedule.

Although the original scheduling method is a centralized algorithm, it has been relaxed to

be implemented in a distributed way with the same optimality as the centralized version.

Current implementation of the distributed greedy maximal scheduling requires each link

knows the weight of its interference links. This is usually implemented by explicit mes-

sage exchange between interference links. However, since it is not appropriate to make the

size of each time slot too large, the scheduling decisions should be made in a small time
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scale. Thus, the protocol that requires message passing between the interference links may

cause high communication overhead as the per-link message complexity is 2N if unicast is

used, where N is the number of interference links.

n1 n3 n4 n5n2

link 1 link 2 link 3 link 4

Figure 5.1: A linear network with 4 links

Without the weight information of interferenc links, the greedy maximal scheduling is

inherently sequential and it appears almost as unlikely as P=NP [MR95] to implement it

fast in a distributed way. To efficiently implement the distributed greedy maximal schedul-

ing, we design a new channel contention mechanism used in each contention slot. The

principle of the contention mechanism is to let the link with a larger weight have a shorter

backoff period than the link with a smaller weight. As a result, a larger weight link can

win the competition of the following data slot by signaling its activation information ear-

lier than a smaller weight link. At the first glance, it is easy to design and implement such

contention mechanism. However, a careless design of the mechanism may have significant

performance gap compared to that of the sequential implementation of the greedy maxi-

mal scheduling. For example, as shown in Figure 5.1, a linear network consists of 5 links.

Suppose their weights follow w1 > w3 > w2 > w4 > w5. According to the principle of

the contention mechanism, link 1’s backoff timer expires first. However, since n3 is out

of the transmission range of n1, n3 cannot receive the signal sent from n1 until n2 trans-

mits signal to acknowledge n1. Thus, n3’s timer may expire before n2 sends the signal, in

which case the signal from n3 will collide with the signal from n1 at n2 and the backoff

timer of n4 will be stopped once n4 hears the signal from n3. Consequently, only link 1

will transmit data in the data slot. In contrast, with perfect greedy maximal scheduling, the

link 3 should stop competing the channel if link 1 is activated, in which case links 1 and 4
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can use the data slot. Thus, it can be seen that the performance loss under the backoff timer

based contention mechanism could be quite large (e.g., 50% in this example).

To overcome the problems of high communication overhead due to frequent message

passing and the potential large performance loss due to possible collision caused by poorly

coordinated backoff processes, we find a new link-based channel contention mechanism to

implement distributed greedy maximal scheduling. The contention mechanism is designed

as follows: Suppose the weight of link (i, j) is wij , we have wij = bijhij , and the sender

and receiver of link (i, j) are node i and node j, respectively. Since the information of bij

and hij is available at node i, at the beginning of each contention slot, node i determines a

short backoff period ∆ij following:

∆ij =
σ

wij

(5.31)

where σ is a pre-specified system parameter. Node i periodically updates node j on the

evolution of bij . Meanwhile, node j also notifies node i about hij . With the synchronized

information of bij and hij , both node i and node j can calculate the weight of link (i, j)

at the beginning of each contention slot, and set the same backoff period of their timer.

If a node (say node i) senses channel idle when its backoff timer expires, it broadcasts a

small busy packet to all its one-hop neighbors. A busy packet simply contains a few bits

and has a very small transmission time. If both end nodes of link (i, j) broadcast the busy

packet, their two-hop neighboring nodes will hear the packet. After broadcasting the busy

packet, node i sends channel reservation packet resv to node j. The resv packet contains

the ID of the receiver node (say j). If node j successfully receives the resv packet, it

immediately replies the clear message to node i. When node i successfully receives the

clear packet, node i knows link (i, j) wins the channel contention and starts to transmit

data in the following data slot. Any node i hears a busy packet before its backoff timers

expires, it simply aborts the contention for the data slot and resumes the contention at the

beginning of the next contention slot. When a node has a collision happens or it decides to
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abort the contention, the node does not reply clear packet even if it can successfully decode

the resv packet. Then, the sender of the resv packet will infer the failure of contention from

the absence of the clear packet.

The link-initiated channel contention mechanism requires the link weight synchroniza-

tion between the end nodes of each link, it is only feasible for unicast data transmissions.

However, all network coding packets (i.e. XORed packets) are transmitted in a multicast

way. How to efficiently support reliable one-hop multicast for network coding packets re-

mains a problem. Since each node opportunistically constructs the packet set for network

coding, it is very difficult to synchronize the weight of transmitting each network coding

packet among the sender and the receivers. Thus, we give another signaling mechanism

for the transmission of network coding packets: Similar to the case of unicast, the sender

broadcasts a multicast reservation packet m − busy to its two-hop neighbors by using a

narrow band to transmit the packet. Note that, given the same transmission power, the

transmission range can be increased if the transmission uses less bandwidth. Then the

sender broadcasts a multicast reservation m − resv packet using the normal band to its

receivers. The m− resv packet contains the IDs of the receivers of the XORed packet. For

each intended receivers, if it successfully receive the m − resv packet and does not abort

the channel contention, it immediately transmits a multicast clear packet (m− clear) to the

sender.

The sender infers the success of the channel contention by checking the received signal

strength, which is denoted by RSS. If RSS =
∑

(i,j)∈N hij , where N is the set of links

between the sender and the receivers, the sender knows every intended receiver replied and

is ready to receive the network coding packet. Otherwise, the channel contention fails due

to the collision caused by some interference link(s). When detecting channel contention

failure, the senders of the competing links will start the collision resolution phase. In this

phase, the channel is divided into mini-slots (e.g. 10 µs per slot). Each sender competes
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the channel at the beginning of the next mini-slot with a fixed probability of 0.5 until the

collision is resolved or the delay of collision resolution is longer than a threshold value.

In the next Chapter, we will analyze the performance and overhead of the link-initiated

channel contention mechanism and how to strike the balance between the performance and

overhead.

5.3.2 Protocol Analysis

In this section, we analyze the performance of the proposed distributed scheduling scheme

in terms of expected contention period and the scheduling performance compared to the

ideal greedy maximal scheduling. First, we analyze the expected delay of the contention

process. For simplicity, we assume the channel conditions are homogeneous and their gains

are i.i.d. Therefore, the cumulative distribution function and probability density function

of ∆ij are related to the respective distributions of hij according to:

F (t) = cdf∆ij
(t) = 1 − cdfhij

(
cij

t
) (5.32)

f(t) = pdf∆ij
(t) =

d

dt
cdf∆ij

(t) =
cij

t2
pdfhij

(
cij

t
) (5.33)

where cij = σ
bij

.

Lemma 4 Given a set of M > 2 competing links, which have the same average queue

length b and the same channel condition following the pdf f(x) and the cdf F (x), the

expected idle time due to backoff, denoted by Ib, follows:

E(Ib(M)) =
c

∫ ∞

0
M [1 − F (t)]M−1f(t)tdt

(5.34)

where c = σ
b
.

Proof. The backoff period lasts until the link with the largest weight triggers its presence.

During a stable network, the average queue size is assumed to the constant b. Thus, the fac-

tor that affects the average idle period is the probability distribution of the highest channel
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gain among the n competing links. Thus, we denote the maximum channel gain by hmax

and have its cumulative distribution function following:

cdfhmax
(t) = Pr {hij < t,∀(i, j) ∈ A} = (1 − F (t))n (5.35)

and the probability density function is:

pdfhmax
(t) =

d

dt
cdfhmax

= n(1 − F (t))n−1f(t) (5.36)

Thus

E(hmax) =

∫ ∞

0

n(1 − F (t))n−1f(t)tdt (5.37)

Since σ
b

is constant, we have

E(Ib) = E(
c

hmax

) =
c

E(hmax)
(5.38)

By plugging equation (5.37) into equation (5.38), we complete the proof.

Lemma 5 Let Xk be the random variable denoting the number of steps required to resolve

a collision with k links involved. Then its expectation satisfies

E(Xk) ≤ 2ln(k) (5.39)

for all k.

Proof. After each step, a fraction of k links will abort the contention when these links do

not trigger at the beginning of the previous step and sense the presence of some other links.

If the current number of contending links is k, its proceeds that at the next step, there will

be k − X contending links left, where X is a random variable ranging over the integers

1, ..., k − 1. By our collision resolution mechanism, we have E(X) = k
2
. Let g(x) = x

2

and f(m) =
∫ m

1
dx

g(x)
for m ≥ 1 and assume E(Xm) ≤ f(m) for values of m smaller than
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k, consider the first step during which the number of contending links is reduced from k to

k − X . We have:

E(Xk) = 1 + E(f(k − X)) (by induction)

= 1 + f(k) − E(

∫ n

k−X

dy

g(y)
)

≤ 1 + f(k) − E(

∫ n

k−X

dy

g(k)
)) (g(x) is nondecreasing)

= 1 + f(k) − E(X)

g(k)

= f(k)

= 2ln(k)

(5.40)

By induction, the inequality holds for all k and we complete the proof.

A collision of two or more competing links happens in the vulnerable period when the

link with the smallest backoff period triggers its presence but the signal is not sensed by

other competing links. Denoting the length of the vulnerable period by v, with the results

of Lemma 1 and Theorem 1 in [BKRL06] in which detailed proof can be found, we have:

Lemma 6 Given M ≥ 2 i.i.d positive random variables ∆i, i ∈ [1,M ], each with pdf

f(x) and cdf F (x). Without loss of generality, these variables are ordered as ∆1 < ∆2 <

... < ∆M . Then the corresponding collision probability, denoted by Pc(M), is given by the

following equations:

Pc(M) = 1 − Ic (5.41)

where

Ic = M(M − 1)

∫ ∞

v

f(y) [1 − F (y)]M−2 F (y − v)dy (5.42)

Theorem 10 Given a set of M > 2 competing links, which have the same average queue

length b and the channel condition following the pdf f(x) and the cdf F (x), the expected

contention time, denoted by E(Tc(M)), follows:
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E(Tc(M)) = E(Ib(M)) + D(1 + Pc(M)E(XM)) (5.43)

where D is the time needed for the completion of each link-initiated contention process and

is defined by:

D = Tbusy + Tresv + Tclear (5.44)

Proof. The contention time consists of the idle time due to link backoff and the actual

contention delay. The expected idle time is given in Lemma 1. The expected contention

delay is equal to D +PcDE(XM). Simply combining these two components, we complete

the proof.

Theorem 11 Given a network consisting of M > 2 links, each of which has the same queue

length distribution and channel condition distribution. Suppose the per-slot aggregated

throughput obtained from the sequential greedy maximal scheduling is SG, the link-initiated

scheduling has its throughput of SL. Then, we have:

(1 − pc(M))
M

∆∗+1 E(SG) ≤ E(SL) ≤ E(SG) (5.45)

where ∆∗ is the average node degree in the link conflict graph of the network.

Proof. Comparing the sequential greedy maximal scheduling and the link-initiated dis-

tributed scheduling, the throughput loss of the link-initiated scheduling happens when a

link which should have been scheduled to be idle starts to trigger its presence due to the

incomplete channel contention information. The case is the same as that when a collision

among the contending links happens. As a result, the throughput loss is related to the col-

lision probability during the channel contention slot. To calculate the lower bound of the

throughput of the link-initiated distributed channel contention, we order all the links in a

non-decreasing list. We first make the pessimistic assumption that the adjacent links in the

list are also adjacent in the link conflict graph of the network. Then we follow the greedy
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maximal scheduling to select the links should be scheduled and remove the neighboring

links in the conflict graph from the list. With the link-initiated distributed contention, its

expected performance follows:

E(SL) =
k

∏

i=1

(1 − pc(Mk))E(SG) + BB is some nonnegative constant

≥
k

∏

i=1

(1 − pc(Mk))E(SG)

≥ (1 − pc(M))
M

∆∗+1 E(SG)

(5.46)

The last inequality is derived from the fact that pc(M) is monotonically decreasing with

M and the average number to links being selected is equal to M
∆∗+1

. In addition, since the

link-initiated channel contention cannot achieve a better performance than the sequential

greedy link scheduling, we complete the proof.

From the theorem, we can see that the performance of the link-initiated contention

mechanism can be very close to that of the sequential greedy maximal scheduling algo-

rithm if the collision probability pc(M) satisfies pc(M) M
∆∗+1

≪ 1. With the proposed

link-initiated channel contention mechanism. Here, we face a trade-off between the band-

width efficiency and the optimality of link scheduling. The balance of the trade-off can be

achieved by tuning the system parameter σ. We show an example as follows. Assuming

each link has an i.i.d. Rayleigh fading channel. For link (i, j), we define hij = |aij|2,

where |aij| is the channel gain. Since |aij| is a Rayleigh random variable, it can be proven

that hij are i.i.d. exponential random variables with parameter β, and the analytical hij’s

distributions are:

F (t) = e−βc/t (5.47)

f(t) =
cβ

t2
e−βc/t (5.48)
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Figure 5.2: The tradeoff between the collision probability and the expected contention

delay when M=3
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Figure 5.3: The tradeoff between the collision probability and the expected contention

delay when M=6

Since the transmission distance is short (e.g. at most several hundreds of meters), the

vulnerable period v is dominated by the receive-to-transmit switching time of network in-

terfaces. Assuming the switching time is 2µs, β = 1 and plugging the distribution functions

in the equations (5.47) and (5.48), we calculate the numerical results of the collision prob-

ability and the channel contention delay under different values of c/v and M in Figure 5.2,

5.3 and 5.4. From the figures, we can see that there is a trade-off between the collision

probability and the expected contention delay. In addition, the numerical results give the

guide for deciding the length of each data slot such that the overhead of the control slot can

be controlled below a certain threshold (e.g. 10%).
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Figure 5.4: The tradeoff between the collision probability and the expected contention

delay when M=10
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Figure 5.5: Simulation topology 1

5.4 Performance Evaluation

We evaluate the performance of the proposed routing and scheduling algorithms through

simulations by using ns-2 [Pro]. For each link, the utility function is defined as Uij =

−dij , where dij is average delay of traffic experienced at link (i, j). For simplicity, for

each link, we fix its data rate in the simulations and use the protocol interference model

introduced in Chapter 5.3. Similar to COPE, we perform the simulations in the context

of an opportunistic network coding scheme in which each node uses only packets in its

local queues for coding. This allows benefits of network coding through local decisions

without requiring any form of global coordination between different nodes. In addition,

opportunistic listening is used to exploit the broadcast nature of the wireless medium. In

particular, each node operates its network interface in the promiscuous mode in order to
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Figure 5.6: Throughput of our schemes compared to NR-NS under topology 1
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(a) GR-NS vs AR-NS (b) GR-GS vs AR-GS

Figure 5.7: Throughput comparison of GR and AR under topology 1
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Figure 5.8: Delay of our schemes compared to NR-NS under topology 1
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Figure 5.9: Delay comparison of GR and AR under topology 1
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Figure 5.11: Throughput of our schemes compared to NR-NS under topology 2
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Figure 5.12: Throughput comparison of GR and AR under topology 2
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Figure 5.13: Delay of our schemes compared to NR-NS under topology 2
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Figure 5.14: Delay comparison of GR and AR under topology 2
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snoop on all packets communicated by its neighbors. The snooped packets then can be used

for making coding decisions. The simulation duration is 100 seconds for both scenarios.

The updating period of routing algorithms are 1 second in our simulation. We evaluate the

network performance under two topologies shown in Figures 5.5 and 5.10.

We compare the network performance under following schemes denoted by:

• NR-NS: each node uses non-adaptive routing and the distributed greedy scheduling

without the network coding awareness. With the non-adaptive routing, each node

equally splits traffic along the available path set.

• AR-NS: each node uses adaptive selfish routing mechanism and the distributed greedy

scheduling without the network coding awareness.

• GR-NS:each node uses the gradient-based adaptive routing and the distributed greedy

scheduling without the network coding awareness.

• NR-GS: each node uses non-adaptive routing (i.e. equal splitting) and the network

coding-aware distributed greedy scheduling mechanisms.

• GR-GS: each node uses the gradient-based adaptive routing and the network coding-

aware distributed greedy scheduling mechanisms.

• AR-GS: each node uses the adaptive selfish routing and the network coding-aware

distributed greedy scheduling.

We first study network topology 1 shown in Figure 5.5. The data rate of each link is

3 Mbps and all the links are bidirectional. There are two traffic sources and the source-

destination pairs are (0, 4) and (4, 0), whose paths are shown in the figure. Both traf-

fic sources are exponentially distributed. Let P1, P2, P3 and P4 represent path (0, 1, 4),

(0, 1, 2, 4), (4, 1, 0) and (4, 1, 3, 0), respectively. The throughput of our schemes compared

to NR-NS is shown in Figure 5.6. The initial flow percentage for path P1 and P2 is 0.5,

0.5, same in the case of P3 and P4, which means that the network is initialized with equal
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splitting among paths. We can see that compared to the throughput of NR-NS, AR-NS im-

proved the throughput by 15% − 30% under this scenario. This is contributed by adaptive

selfish routing mechanism alone. From throughput of NR-GS, we can see the benefit of

network coding-aware distributed greedy scheduling mechanism. When the traffic in the

network is low, the beneficial is trivial, however, as the network becomes more loaded,

the contribution of this mechanism is obvious compared to NR-NS. Last but not least, the

throughput for AR-GS, where each node uses the adaptive selfish routing and the network

coding-aware distributed greedy scheduling, improves significantly. We observe that the

coexistence of flows over P1 and P3 boost throughput due to network coding. In turn, due

to the existence of adaptive selfish routing, source node 0 will assign the flow on P1 a

larger percentage over flow on P2 if this improves the overall throughput of traffic demand

(0, 4). Similarly, node 4 will assign the flow on P3 a larger percentage over flow on P4

if this improves the overall throughput of traffic demand (0, 4). In sum, network coding

will boost throughput and the adaptive selfish routing algorithm will reflect to this change

of flow throughput and adjust the percentage of flows among the path set to maximize the

network throughput. The routing decisions will facilitate more coding opportunities.

We also observe that the performance of gradient-based adaptive routing and adaptive

selfish routing is close(see Figure 5.7). However, adaptive selfish routing is more robust and

easier to implement compared to gradient-based adaptive routing since it avoids calculation

of derivatives in (5.18) and the solutions of equation (5.14) (5.15) as well. In our simulation,

the derivatives are implemented as following:

∂V̄rt,ij

∂lij
(lij(n)) =

V̄rt,ij(lij(n)) − V̄rt,ij(lij(n − 1))

lij(n) − lij(n − 1)
(5.49)

This approximation of derivatives may worsen the performance of gradient-based adaptive

routing, but this indicates gradient-based adaptive routing may incur some practical issue

when implemented in real world. Moreover, the setting for parameters γ and µf is also

very challenging.
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Figure 5.8 and 5.9 shows the end-to-end network delay. In Figure 5.8, we observe that

our scheme reduced the delay significantly. We notice that there are bursts when adaptive

selfish routing scheme is used. The reasons is that sometimes the updating process is not

frequent enough to feedback the change of channel conditions. However, we can see that

as the adaptation refines the routing policy quickly, and the bursts last very short time. Net-

work delay under gradient-based adaptive routing and adaptive selfish routing are shown

in Figure 5.9. We can see that adaptive selfish routing is much better than gradient-based

adaptive routing in this case since it is more stable.

Similarly, We study network topology 2 shown in Figure 5.10. The data rate of each link

is 4 Mbps and all the links are bidirectional. There are four traffic sources and the source-

destination pairs are (0, 9), (3, 4), (4, 3) and (7, 0), whose paths are shown in the figure.

Both traffic sources are exponentially distributed. s-d pairs (3, 4) and (7, 0) have multi-

ple paths. Let P1=path(0, 2, 6, 9), P2=path(3, 2, 4), P3=path(3, 5, 6, 4), P4=path(4, 2, 3),

P5=path(7, 6, 2, 0) and P6=path(7, 4, 1, 0). The network is still initialized with equal split-

ting among multiple paths, so the initial flow percentage for path P2 and P3 is 0.5, 0.5, same

in the case of P5 and P6. The throughput of our schemes compared to NR-NS is shown

in Figure 5.11. We can see that compared to the throughput of NR-NS, AR-NS improved

the throughput by 5% − 17% in this case. Since there are more traffic in this topology and

some of them have only a single path, therefore the contribution of adaptive selfish routing

mechanism is less significant compared to that of topology 1. Similarly, when the traffic in

the network is low, we observe that the throughput of NR-GS is close to NR-NS, but when

network is more loaded, we can see that the coding-aware distributed greedy scheduling

improves throughput a lot. When both adaptive routing and the coding-aware scheduling

are implemented, it is obvious that AR-GS improves network throughput significantly. We

observe that the coexistence of flows over P2 and P4, P1 and P5 boost throughput due

to network coding. In turn, adaptive routing algorithm will reflect to this change of flow
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throughput and assign more traffic on path that has larger throughput. Similarly to topol-

ogy 1, the throughput of GR-NS vs AR-NS and GR-GS vs AR-GS are shown in Figure

5.12(a)(b), respectively and the network delays are shown in Figure 5.13 and 5.14. We can

see that adaptive selfish routing achieves better performance than gradient-based adaptive

routing in our simulation.
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CHAPTER 6

CONCLUSIONS

This dissertation presents solutions to the problem of resource management and opti-

mization in wireless mesh networks. There are three major solutions. They are triple-tier

load balancing scheme, network coding scheme RANC, and joint optimization scheme of

routing and network coding aware scheduling.

6.1 Triple-tier Load Balancing Scheme

We presented a triple-tier load balancing scheme for wireless back-hauls with OSPF routers.

The proposed scheme has following features: First, based on the long-term average traffic

demand and average link capacity, the first tier optimization algorithm successfully solves

the problem of finding the optimal routing policy to minimize the congestion level by prop-

erly setting link weights. As a result, traffic can be distributed among a subset of shortest

paths and, theoretically, the congestion level of the network can be minimized to the opti-

mal level. With this approach, we do not need to upgrade the hardware of each router. With

the constraint of equal traffic splitting of current OSPF routers, a greedy algorithm, called

GMC, is proposed to approximate the optimal routing policy. Second, due to the dynamic

wireless channels, the second tier adaptation algorithm is proposed to dynamically adjust

the routing policy according to the channel condition. As a result, the congestion level of

the network is well adapted. Third, the use of OFDMA communication technology enables

us to design the dynamic subchannel assignment scheme as the third tier adaptation mecha-

nism to further reduce the congestion level of the network. We conduct theoretical analysis

to prove the properties of our scheme (e.g. approximation ratio, convergence). The perfor-

mance of our scheme is evaluated through simulations and the simulation results show that

our scheme is effective and can achieve near optimal load balance.
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6.2 RANC

We studied a relay-aided network coding scheme, called RANC, to improve the perfor-

mance of network coding in wireless ad hoc networks by exploiting the physical layer

multi-rate capability. In RANC, nodes are divided into two categories: relay nodes and

native nodes. Native nodes transmit their native packets at high speed to their one-hop

neighboring relay nodes. Then relay nodes simply XOR both the received and their own

native packets and broadcast the coded packet. Since some packet transmissions are at

high speed, the overall throughput of network coding can be significantly improved. We

formalize the problem of RANC via integer linear programming and analyze some design

principles of RANC. Based on the analytical results, the RANC protocol was design by

decomposing the original problem into two sub-problems. We evaluated the performance

of RANC through simulations. The simulation results show that RANC can achieve much

high throughput of network coding than COPE. In the future work, we will study RANC

in irregular topologies and consider how to deal with interference from other node other

than the nodes involved in network coding. We will also relax the constraint that each node

should transmit only once in each round of network coding and incorporate some MAC

layer relay mechanism [ZC06] [TWZA07] to boost the performance of opportunistic listen

and coding.

6.3 Joint Routing and Scheduling Optimization Scheme

We have presented a joint optimization of the routing problem and coding-aware scheduling

problem to maximize the total utility of wireless network. We formulated the optimization

problem in wireless network and showed that it can be decomposed into two elementary

problems: routing and scheduling, which are coupled through link performance factor re-

lated to queuing delay. To solve the routing problem, we proposed an adaptive selfish
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routing algorithm. It converges to the optimal routing even in asynchronization system. We

provided the properties of the routing algorithm and the proof of them as well. Then we pre-

sented a coding-aware distributed greedy scheduling algorithm and give out its properties.

We also analyzed the stability of scheduling algorithm. We conducted thorough theoretical

analysis and showed the correctness of our design. In simulation, we compared the net-

work performance under following schemes: NR-NS, AR-NS, GR-NS, NR-GS, GR-GS,

AR-GS. We observe that the joint optimization of adaptive selfish routing and coding-aware

distributed greedy scheduling improves network throughput due to the fact that appropriate

routing can create more network coding opportunities.

6.4 Future work

In the future work, we will study RANC in irregular topologies and consider how to deal

with interference from other node other than the nodes involved in network coding. We will

also relax the constraint that each node should transmit only once in each round of network

coding and incorporate some MAC layer relay mechanism to boost the performance of

opportunistic listening and coding.
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