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Abstract 

Although wetlands are among the world’s most productive ecosystems, little is known of 

long-term CO2 exchange in tropical and subtropical wetlands.  The Everglades is a highly 

managed wetlands complex occupying >6000 km2 in south Florida.  This ecosystem is 

oligotrophic, but extremely high rates of productivity have been previously reported.  To 

evaluate CO2 exchange and its response to seasonality (dry vs. wet season) in the Everglades, an 

eddy covariance tower was established in a short-hydroperiod marl marsh.  Rates of net 

ecosystem exchange and ecosystem respiration were small year-round and declined in the wet 

season relative to the dry season.  Inundation reduced macrophyte CO2 uptake, substantially 

limiting gross ecosystem production.  While light and air temperature exerted the primary 

controls on net ecosystem exchange and ecosystem respiration in the dry season, inundation 

weakened these relationships.  The ecosystem shifted from a CO2 sink in the dry season to a CO2 

source in the wet season; however, the marsh was a small carbon sink on an annual basis.  Net 

ecosystem production, ecosystem respiration, and gross ecosystem production were -49.9, 446.1 

and 496.0 g C m-2 year-1, respectively.  Unexpectedly low CO2 flux rates and annual production 

distinguish the Everglades from many other wetlands.  Nonetheless, impending changes in water 

management are likely to alter the CO2 balance of this wetland and may increase the source 

strength of these extensive short-hydroperiod wetlands. 
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1. Introduction 

Wetlands occupy 5-8% of the earth’s land area and are among the most productive 

ecosystems in the world, accounting for ~6.3% of terrestrial net primary production (NPP) 

(Houghton and Skole, 1990; Neue et al., 1997; Keddy, 2000; Mitsch and Gosselink, 2007).  

These ecosystems are characterized by unique habitats and biodiversity and play central roles in 

water supply, flood control, and biogeochemical cycling (Zedler and Kercher, 2005).  The extent 

of natural wetlands has been greatly reduced through human activity, posing a threat to both 

ecosystem services and functions (MES, 2005).  As human pressure on wetlands increases and 

climate change proceeds, there is a growing need to increase our knowledge of wetland 

ecosystem function.  In particular, studies of long-term CO2 exchange could greatly improve our 

understanding of wetland ecosystem productivity. 

To date eddy covariance (EC) studies of CO2 exchange in wetlands have focused largely on 

peatlands and other temperate wetlands (e.g. Bonneville et al., 2008; Rocha and Goulden, 2008; 

Dusek et al., 2009).  These studies reinforce that wetlands are highly productive and important in 

global carbon cycling, but provide limited insight into wetland CO2 exchange dynamics at lower 

latitudes.  Wetlands of the tropics and subtropics often have year-round growing seasons and 

may respond differently to seasonality, typically characterized by wet and dry seasons, relative to 

temperate systems.  One such wetland, the Florida Everglades, is reported to have very high rates 

of NPP (Ewe et al., 2006), though nothing is known about the annual patterns of CO2 exchange 

or the role of environmental factors, including hydroperiod (i.e., the duration of inundation), in 

driving these patterns. 

The Everglades is an extensive complex of freshwater wetlands currently occupying >6,000 

km2 in south Florida (Davis et al., 1994).  Although the Everglades is an oligotrophic ecosystem 
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limited by phosphorus, high rates of aboveground NPP are reportedly maintained in marsh areas 

through periphyton and aquatic macrophyte growth.  Aboveground NPP has been found to reach 

>10,000 g C m-2 yr-1 in some Everglades marl (calcium carbonate soil) marshes, though rates of 

1000-2000 g C m-2 yr-1 are more common (Ewe et al., 2006).  Hydroperiod is of central 

importance in determining productivity in the Everglades and is the product of both active water 

management and climate (Busch et al., 1998; Childers et al., 2006). 

Humans have profoundly modified the Everglades for over a century, reducing the 

ecosystem’s spatial extent by nearly half (Light and Dineen, 1994).  Transformation of this 

landscape has shifted it from one that was characterized by unimpeded, slow sheet flow of water 

to one that is highly managed.  Much of the historical extent of the Everglades has been drained 

or impounded, and water flow now is controlled by a system that includes ~3000 km of canals 

and levees, as well as >150 flow control structures (USACE and SFWMD, 1999).  Everglades 

National Park (ENP) is the only remaining portion of the Everglades with unrestricted water 

flow. 

Water management activities have reduced water levels and hydroperiod throughout the 

Everglades (Light and Dineen, 1994).  These changes have had many ecological consequences, 

including alterations in nutrient concentration and distribution, plant community composition, 

aboveground net primary production, and periphyton dynamics (Newman et al., 1996; Ross et 

al., 2000; Armentano et al., 2006; Childers et al., 2006; Iwaniec et al., 2006).  In an effort to 

reverse these alterations, significant Everglades restoration activities began in the 1970s (Lodge, 

2005), and now fall under the Comprehensive Everglades Restoration Plan (CERP).  In 2000, 

nearly US$12 billion was designated by CERP for restoration, and the Plan’s goals include 

increased hydroperiods, deeper water, and increased water flows throughout the Everglades. 
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The potential effects of CERP are far-reaching and are likely to interact with the 

consequences of a changing climate.  In south Florida, temperature is projected to increase by 

~2°C over the next century, and summer months may become 5-10% drier (Christensen et al., 

2007).  This is significant given that south Florida’s wet season and maximum water levels in the 

Everglades occur in the summer.  As the Everglades face further modification and a changing 

climate, CO2 exchange in these wetlands will be affected.  Because this wetland has shown high 

potential for carbon storage, it is essential that we better understand CO2 exchange and its central 

environmental drivers so that ecosystem responses to future change can be better anticipated. 

Toward this end, we established an EC and meteorological tower in a short-hydroperiod 

Everglades marsh to continuously measure CO2 exchange.  We addressed four central research 

questions: (1) Is the ecosystem a net sink or source for CO2?  (2) Do the dynamics of CO2 

exchange vary seasonally?  (3) What environmental factors exert dominant controls on CO2 

exchange, and do these factors vary seasonally?  (4) How may the dynamics of CO2 exchange be 

altered with proposed modifications in water management and climate change? 

 

2. Methods 

2.1 Site description and climate 

An EC and meteorological tower is situated at 25° 26’ 16.5” N, 80° 35’ 40.68” W in ENP, 

Florida, USA (Fig. 1).  The tower is part of the AmeriFlux network and is co-located with a 

long-term monitoring site managed by the Florida Coastal Everglades Long Term Ecological 

Research (FCE-LTER) program.  This site is in the southern Everglades within Taylor Slough, 

one of the primary drainage basins in ENP.   
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  A short-hydroperiod marsh surrounds the tower and extends for several kilometers in all 

directions but east.  Approximately 450 m to the east is ENP’s boundary, comprised of a canal 

and levee road.  The tower site has shallow (~0.14 m), marl soils overlying limestone bedrock.  

The soil surface is gently undulating though there is little variation in canopy height, which 

averages 0.73 ± 0.01 m.  The sedge, sawgrass (Cladium jamaicense), and the C4 muhly grass 

(Muhlenbergia capillaris) are the dominant plant species.  Periphyton mats, composed of algae, 

fungi, and bacteria, are also present at the site. 

Since 2000, managed water flows in Taylor Slough have been regulated by a pumping station 

(S332D) located ~6 km northeast of the tower.  This station was brought online as part of a plan 

to restore sheet flow and increase water levels in the northern portion of Taylor Slough where the 

tower is located (Armentano et al., 2006).  Pumped water flows through a canal and into the 

slough primarily by canal overflow.  Modeling efforts indicate that both rainfall and the volume 

of water pumped through the S332D station are important in determining water levels within 

Taylor Slough (Armentano et al., 2006; J.P. Sah, unpublished manuscript).  The portion of 

Taylor Slough that includes the tower site is usually inundated for 4-5 months per year, and 

water releases are timed to coincide with historical hydroperiod and rainfall events (Light and 

Dineen, 1994; Abtew et al., 2009). 

Although located in subtropical latitudes, the climate of the Everglades is classified as 

tropical (Beck et al., 2006; Kottek et al., 2006) with wet summers and dry winters.  Long-term 

data indicate a mean annual temperature of 23.9°C in the southern Everglades, with an average 

minimum of 18.1°C and an average maximum of 29.4°C (NCDC, 2009).  Precipitation in south 

Florida is dominated by the passage of cold fronts associated with polar air masses in the dry 

season and by tropical air masses that produce frequent localized thunderstorms, as well as 
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tropical storms and hurricanes, in the wet season.  Mean annual precipitation is 1.43 m (NCDC, 

2009) with ~60% of rainfall occurring at the height of the wet season (June to September) and 

~25% in the dry season (November to April) (Duever et al., 1994). 

2.2 Eddy covariance and meteorological measurements 

Continuous measurements of EC and meteorological data reported here began in January 

2008 and continued through the end of the wet season in February 2009.  EC data were collected 

at 10 Hz on a CR1000 datalogger (Campbell Scientific, Logan, UT) and stored on 2 GB 

CompactFlash cards.  CO2 concentration was measured with an open-path infrared gas analyzer 

(IRGA) (LI-7500, LI-COR Inc., Lincoln, NE).  Three-dimensional wind speed data and sonic 

temperature were measured with a sonic anemometer (CSAT3, Campbell Scientific, Logan, UT).  

The IRGA was mounted 0.09 m from the sonic anemometer head and the center of both sensors 

was 3.30 m above the ground.  The IRGA was calibrated monthly per the manufacturer’s 

instructions using N2 gas scrubbed with soda lime and Drierite, CO2 calibration gas (±1% at 450 

ppm), and a dewpoint generator (LI-610, LI-COR Inc., Lincoln, NE). 

Barometric pressure was measured and recorded by the CR1000 (PTB110, Vaisala, Helsinki, 

Finland), as were air temperature (Tair) and relative humidity (HMP45C, Vaisala, Helsinki, 

Finland).  The temperature and relative humidity sensor was housed in an aspirated shield 

(43502, R.M. Young, Traverse City, MI) mounted 2.5 m above the ground. 

A CR10X datalogger and AM16/32A Relay Multiplexer (Campbell Scientific, Logan, UT) 

were used to collect meteorological data.  Variables measured every 15 s and averaged every 30 

min included photosynthetically active radiation (PAR) (PAR Lite, Kipp and Zonen, Delft, 

Netherlands), horizontal wind speed and direction (05103, R.M. Young, Traverse City, MI), and 

soil temperature at 10 cm depth (n = 2, Type-T thermocouples, Omega Engineering, Inc., 
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Stamford, CT).  Measurements of precipitation (TE525, Texas Electronics, Dallas, TX) and soil 

volumetric water content (VWC) in the top 20 cm of soil (n = 2, CS616, Campbell Scientific, 

Logan, UT) were also recorded.  A site-specific equation for marl soils was generated to 

calculate VWC from sensor period (Veldkamp and O’Brien, 2000).  Water level at the site was 

recorded with a water level data logger (HOBO U20-001-01, Onset, Bourne, MA) installed in a 

solution-hole well. 

2.3 Eddy covariance data processing and gap-filling 

Raw EC data were processed with EdiRe (v.1.4.3.1184, Clement, 1999) to determine net 

ecosystem exchange of CO2 (NEE, µmol CO2 m
-2 s-1) over 30 min time intervals.  Data 

processing followed standard methods and included despiking, coordinate rotation, and air 

density corrections (Webb et al., 1980; Baldocchi et al., 1988; Aubinet et al., 2000).  As an input 

variable, canopy height was adjusted with changing water level in the wet season.  A CO2 

storage term was estimated from half-hourly changes in CO2 concentration measured by the EC 

system IRGA and added to half-hourly NEE values (Hollinger et al., 1994). 

Processed data were corrected to ambient atmospheric pressure and the half-hourly data were 

then filtered to remove periods with (1) precipitation or condensation on the IRGA or sonic 

anemometer, (2) friction velocity (u*) < 0.15 m s-1, (3) wind vectors with SD > 4, (4) IRGA and 

sonic anemometer flags, and (5) biologically impossible values of NEE (> or < 30 µmol m-2 s-1).  

To determine the u* threshold, half-hourly nighttime NEE data were sorted into u* bins of 0.05 

m s-1.  Raw NEE was positively correlated with u* when u* was ≤ 0.15 m s-1, suggesting an 

under-measurement of CO2 exchange, so all half-hourly NEE data with u* ≤ 0.15 m s-1 were 

excluded from the dataset.   
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Gap-filling of filtered half-hourly data was performed separately for daytime and nighttime 

data.  Of the daytime data, 26% of the half-hourly data were gap-filled, while this was true for 

79% of the nighttime data.  Coefficients for the following equation were generated monthly, with 

one exception, using filtered half-hourly NEE data (Appendix A).  At the onset of the wet season 

in August 2008, two sets of coefficients were generated to treat data from the dry and wet 

seasons separately.  This division was found to be unnecessary at the end of the wet season in 

January 2009.  When PAR was ≥5 µmol m-2 s-1, daytime NEE data were gap-filled with the 

function, 

 

                        (1) 

 

where the coefficient α is apparent quantum yield, NEEmax is light-saturated net CO2 exchange, 

and ER is ecosystem respiration determined as NEE when photosynthetic photon flux density 

(PPFD) equals 0 µmol m-2 s-1 (Ruimy et al., 1995).  PPFD was approximated from half-hourly 

PAR data.  

When PAR was <5 umol m-2 s-1, nighttime NEE (i.e., ecosystem respiration, ER) data were 

gap filled with the exponential function, 

                        (2) 

where a and b are coefficients determined bi-monthly and Tair is air temperature determined from 

half-hourly data (Appendix B, Lloyd and Taylor, 1994).  Bi-monthly timeframes encompassed 

periods with similar climatic conditions and provided sufficiently large datasets upon which to fit 

eq. 2.  Months during which seasonal transitions occurred (August 2008, January 2009) were 

divided by season and ER data from early in each month were grouped with the preceding bi-

               - α PPFD NEEmax 
NEE =                                     + ER 
               α PPFD + NEEmax 
 

ER = a exp (b Tair) 



 10 

monthly period.   Tair was chosen as a predictor variable over soil temperature because it was not 

directly affected by the large volume of water at the site during the wet season.  A robust 

predictive relationship between ER and Tair did not exist for the July-August transition period 

when water levels increased toward wet season conditions.  During this time period, water level 

was more important than Tair in predicting ER, so a linear function relating ER to water level was 

used to gap-fill these data (Appendix B).  Daytime ER was determined using the predictive 

relationships developed for nighttime periods under the assumption that daytime ER was of 

similar magnitude and responsiveness as nighttime ER.  

In keeping with micrometeorological conventions, negative fluxes represent CO2 uptake by 

the ecosystem and a loss of CO2 from the atmosphere, while positive fluxes represent CO2 efflux 

from the ecosystem and into the atmosphere. 

Half-hourly NEE and ER data were each summed to determine daily net ecosystem 

production (NEP, g C m-2 day-1) and daily ecosystem respiration (ER, g C m-2 day-1), 

respectively.  Daily gross ecosystem production (GEP, g C m-2 day-1) was calculated as the sum 

of -NEP and ER and is expressed as a positive value.  Daily NEP, ER, and GEP values were 

summed to generate monthly, seasonal, and annual values.   

Error estimation for NEP, ER, and GEP was performed with Monte Carlo simulations.  The 

standard errors of monthly parameter estimates (Appendix A, B) were used to generate uniform 

distributions for each of the model parameters used in gap-filling.  Each distribution was 

randomly sampled 100 times and resulting parameter values were used to calculate NEP, ER, 

and GEP.  Monthly, seasonal, and annual “sampling uncertainty” (cf. Stoy et al., 2006) for NEP, 

ER, and GEP was determined as the standard error of the 100 model simulations.  These 

estimates of sampling uncertainty reflect only the error associated with gap-filling. 
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2.4 Tower footprint 

The tower footprint area was estimated with a parameterized backward Lagrangian stochastic 

particle dispersion model (Kljun et al., 2002, 2004) with site-specific inputs including sensor 

measurement height, roughness length, surface friction velocity (u*), and the standard deviation 

of vertical wind velocity (σw).  Lagrangian models are among the most widely used footprint 

models (Vesala et al., 2008) and the model by Kljun et al. (2002, 2004) provides a footprint 

estimate for homogenous terrain that varies with the ratio of σw to u*. 

The model indicated that 90% of measured fluxes occurred within 125 m of the tower, given 

mean raw (filtered) u* and σw values (0.36 m s-1 and 0.41 m s-1, respectively).  Under rarely 

observed wind conditions at the site (e.g. u* = 0.52 m s-1 and σw = 0.33 m s-1), 90% of the 

footprint fell within 200 m of the tower.  These model outputs indicate that flux measurements 

provide an accurate representation of the short-hydroperiod marsh immediately surrounding the 

tower, with minimal influence from the canal and disturbed marsh area located ≥450 m to the 

east, beyond the ENP boundary. 

2.5 Leaf area index and aboveground biomass 

Indirect measurements of leaf area index (LAI) were made with a LAI-2000 (LI-COR, Inc., 

Lincoln, NE) at 20 cm intervals from the soil surface to the top of the canopy during the 2009 

dry season.  A total of 64 measurements were made at 10 m intervals along a transect located 

east of the tower.  For comparison, a set of five indirect LAI measurements and an 

accompanying set of direct LAI measurements were made in the wet season.  Wet season 

indirect measurements were made at 10 cm intervals from the water surface to the top of the 

canopy beginning at 20 cm to avoid standing water.  Each measurement location was used as the 

midpoint for a complete leaf area harvest.  A 58 × 58 cm plot frame was placed at each location 
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and all biomass was harvested at intervals of 10 cm beginning at the top of the canopy (90-100 

cm above the soil surface) and ending at 20 cm.  Harvested tissue was returned to the lab, 

divided into living and dead tissue, and cleaned of all attached periphyton.  Leaf area within each 

height interval was determined separately for living and dead tissue with an image analysis 

system (AgVision, Decagon Devices, Inc., Pullman, WA). 

Aboveground biomass of Cladium, the most abundant macrophyte at the site, was determined 

bimonthly by FCE-LTER personnel.  Measurements began in January 2000 and continued 

through January 2009.  Biomass was estimated with an allometric relationship developed for 

Everglades Cladium that relates leaf basal diameter and length to biomass (Daoust and Childers, 

1998).  Cladium aboveground carbon content was estimated from these data and Cladium leaf 

carbon content at the site (0.49 g C g biomass-1) (Childers, 2008). 

2.6 Data analyses 

SigmaPlot (v.11.0, Systat Software, Inc.) was used for all analyses described below.  The 

vertical distribution of LAI was modeled with the two-parameter exponential decay model, 

                        (3) 

where a and b are coefficients and z is height above the soil surface.  This model was fit 

separately to dry and wet season indirect LAI measurement data, as well as direct LAI 

measurement data.  The dry season model derived from indirect LAI measurements was used in 

conjunction with water depth data to estimate above-water LAI during periods of inundation. 

Raw flux data (i.e., non-gap-filled data, referred to as NEEraw and ERraw) were used to 

examine the relationships between daytime NEEraw and PAR (eq. 1) and nighttime ERraw and Tair 

(eq. 2) during both the dry and wet seasons.  95% confidence intervals were computed for fitted 

LAI = a exp (-b z) 
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curves to determine whether these relationships varied seasonally.  The Q10 of ER in each season 

was calculated as, 

                        (4) 

where b is the coefficient determined in eq. 2 above. 

Residuals from the NEEraw vs. PAR and ERraw vs. Tair relationships were examined for 

correlations with other environmental and meteorological variables.  NEE residuals for each 

season were compared against half-hourly wind velocity, wind direction, Tair, VPD, and water 

depth.  ER residuals were compared with wind velocity, wind direction, and water depth. 

Daily NEP and ER values were examined in relation to daily GEP during both the dry and 

wet seasons with linear regression.  The influence of water level on daily GEP values was also 

examined using linear regression. 

 

3. Results  

3.1 Climate and seasonality 

Total annual precipitation for 2008 was 1206 mm, slightly lower than the long-term mean.  

Most rain fell between June and October 2008 during south Florida’s wet season (Fig. 1a).  

There were a few significant rainfall events in the 2008 dry season, but very little rain after mid-

October 2008. 

Seasonality (i.e., dry and wet seasons) at the Taylor Slough site did not closely coincide with 

climatic seasonality in south Florida, given the role of active water management in the 

Everglades.  For the analyses presented here, seasonality was determined with water level data 

where water levels were <10 cm above the soil surface during the dry season and ≥10 cm above 

the soil surface during the wet season.  A threshold of 10 cm was chosen because, given the 

Q10 = exp (b 10) 
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undulating nature of the soil surface, the site was not fully inundated until water reached this 

level.  Dry season conditions occurred from January 1, 2008 to August 17, 2008 and from 

January 15, 2009 to the end of the study period, while wet season conditions occurred from 

August 18, 2008 to January 14, 2009 (Fig. 1b).  The site was partially inundated for 22 days of 

the 14 month period, with water levels above the soil surface but <10 cm deep.  Nineteen of 

these days occurred intermittently before onset of wet season and the remaining three days were 

at end of wet season when water levels dropped rapidly (Fig. 1b). 

The dry season of 2008 was characterized by four abrupt increases in water level before 

water reached the soil surface (Fig. 1b).  These spikes in water level coincided with precipitation 

events of 64, 94, 71, and 91 mm (Fig. 1a).  Half-hourly data indicate that on the first two of these 

occasions, water levels increased by 50 cm over two hour periods.  The onset of the 2008 wet 

season was later than in the past and coincided with the passage of a tropical storm over Florida.  

The 2008 wet season (148 days) was longer than the average over the last decade (121 days) and 

greater water depths were maintained throughout the season (Fig. 1b, NPS 2009).   

Daily changes in VWC mirrored changes in water level at the site (Fig. 1b, c) except during 

inundation, during which soils were saturated with a VWC of 0.75 m3 m-3.  VWC reached its 

lowest point toward the end of the 2008 dry season (mid-May to mid-June) with levels 

approaching a minimum of 0.4 m3 m-3. 

Seasonality, as defined by water levels, did not closely correspond with other meteorological 

variables.  These tracked more closely with the climatically-driven seasonality of south Florida.  

Mean daily PAR varied predictably with time of year, and maximum light availability coincided 

with the end of south Florida’s dry season and the early wet season (Fig. 2a).  Mean monthly Tair 

ranged from 17.4 to 27.8°C, with the lowest temperatures in January and February of 2008 and 
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2009, and the highest temperatures from June to September 2008 (Fig. 2b).  Daily variation in 

Tair was low from May to September 2008, coinciding with the core of the south Florida wet 

season.  Mean annual Tair for 2008 was 23.7°C, marginally lower than the long-term regional 

mean.  Mean daytime vapor pressure deficit (VPD) varied from 0.90 to 1.64 kPa, reaching a 

maximum in May 2008 (Fig. 2c).  This peak coincided with a period of little rainfall, rising Tair, 

and low water levels (Fig. 1a,b, 2b,c).  VPD was most variable and highest in the dry season, 

while variation and mean VPD largely declined once there was standing water at the site. 

3.2 Environmental drivers of CO2 exchange 

Light response curves used to describe daytime NEEraw as a function of PAR indicate distinct 

differences in dry and wet season CO2 uptake by the marsh (Fig. 3a-c).  Higher rates of CO2 

uptake were observed in the dry season.  Dry season NEEmax was -5.54 µmol m-2 s-1 and was -

1.75 µmol m-2 s-1 in the wet season.  Dry season dark respiration was also higher than in the wet 

season (1.44 and 0.80 µmol m-2 s-1, respectively).  However, apparent quantum yield was higher 

in the wet season than the dry season (0.0114 and 0.0107, respectively).  Both the dry and wet 

season models relating NEEraw to PAR were significant (p < 0.0001), but greater variance was 

described by the dry season model relative to the wet season model (R2
adj = 0.53, 0.16, 

respectively). 

Nighttime ERraw examined as a function of Tair also showed that rates of CO2 efflux were 

higher during dry season than the wet season (Fig. 3d-f), though the Q10 was slightly higher in 

the wet season (2.2) than in the dry season (1.8).  Models for both seasons were significant (p < 

0.0001), but little variation in ER was explained by Tair in either season.  A greater temperature 

range during the dry season likely contributed to the higher explanatory power of the dry season 

model, relative to that of the wet season (R2
adj = 0.24, 0.09, respectively). 
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Residuals analysis (data not shown) indicated that dry season NEEraw residuals were 

significantly correlated with wind velocity, wind direction, Tair, and VPD (p < 0.001), though 

these relationships were weak (R2
adj from 0.0093 to 0.0294).  Wet season NEEraw residuals were 

significantly correlated with wind velocity, Tair, VPD, and water depth (p < 0.001), though only 

water depth had a notable influence (R2
adj = 0.19) on NEEraw.  Dry season ERraw residuals were 

significantly correlated with wind direction (p = 0.002) and water depth (p = 0.002), but with low 

predictive power (R2
adj = 0.0074, 0.0075, respectively).  Wet season ERraw residuals were not 

significantly correlated with any environmental or meteorological variables. 

3.3 Annual and seasonal patterns of CO2 exchange 

An annual CO2 budget, determined for 2008, showed that net CO2 uptake by the ecosystem, 

NEP, was -49.9 g C m-2 y-1, while ER and GEP were 446.1 and 496.0 g C m-2 y-1, respectively.  

Although the ecosystem was a net CO2 sink over the course of the year, only cumulative dry 

season measurements showed net ecosystem CO2 sequestration (Table 1).  In the wet season, the 

cumulative seasonal NEP indicated that the ecosystem was a CO2 source to the atmosphere 

(Table 1).  The dynamics of ecosystem CO2 exchange clearly varied between seasons.  ER 

accounted for 85% of GEP in the dry season and 120% of GEP in the wet season (Table 1).  

Examination of daily values show that in the dry season, 43% of variation in daily ER was 

explained by GEP (p < 0.0001), while only 12% was explained in the wet season (p < 0.0001, 

data not shown).  A similar seasonal change in the relationship between NEP and GEP was 

found, where 55% and 28% of daily NEP was explained by GEP in the dry and wet seasons, 

respectively (p < 0.0001).  Sampling uncertainty associated with NEP, ER, and GEP ranged from 

±1.0 to ±3.6 g C m-2 over these seasonal and annual time scales (Table 2). 
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The changes in seasonal relationships among NEP, ER, and GEP in the Taylor Slough marsh 

were most apparent when examined on a monthly basis (Fig. 4).  Monthly GEP peaked in the 

mid to late dry season, between March and June 2008.  From August to October 2008, monthly 

GEP fell substantially as the water level rose above the soil surface, and GEP remained low 

throughout the wet season.  This pattern was driven by a coinciding decrease in ER and increase 

in NEP (Fig. 4).  The wet season decrease in GEP was significantly related to water level (p < 

0.0001, R2
adj = 0.3308), a factor that was less important in determining GEP during the dry 

season (p = 0.0004, R2
adj = 0.0409) (Fig. 5a,b).  As the wet season ended, GEP began to increase, 

a pattern that was dominated by increased ER (Fig. 4).  Sampling uncertainty associated with 

monthly values of NEP, ER, and GEP was typically small (≤ 0.5 g C m-2 mo-2), but was slightly 

higher (0.5-1.4 g C m-2 mo-2) in May and June 2008 (Table 2).  NEP and ER sampling 

uncertainty values were also somewhat elevated in February, September, and October 2008 (≤ 

0.7 g C m-2 mo-2).  Higher sampling uncertainty tended to coincide with low predictive power in 

the NEE or ER gap-filling equations (Appendix A, B). 

The seasonal influence of water level on GEP changed NEP substantially.  Throughout the 

2008 dry season, the ecosystem was predominantly a CO2 sink (Fig. 6), but once water levels 

rose permanently above the soil surface, the ecosystem became a CO2 source to the atmosphere.  

Maximum wet season losses of CO2 occurred in October, with daily NEP reaching >0.60 g C m-2 

day-1 in the first half of the month.  By the middle of the wet season net CO2 loss to the 

atmosphere began to decline, and by December the ecosystem was again a CO2 sink.  The 

ecosystem persisted as a sink through the end of the wet season, at which time another shift from 

CO2 sink to source occurred.  Early dry season losses of CO2 reached 0.66 g C m-2 day-1, but 
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declined steadily through the end of February 2009 as subsurface water level rapidly fell (Fig. 

1b, 6). 

During the 2008 dry season, days when the ecosystem was a notable CO2 source to the 

atmosphere (>0.4 g C m-2, n = 4) always coincided with one or both of the following: a rainfall 

event and/or low light availability (Fig. 1a, 6).  At the beginning of the 2009 dry season there 

were 10 days in which the ecosystem was a notable CO2 source, coinciding with a four week 

period during which VWC dropped from saturation to a point close to the 2008 dry season 

minimum (Fig. 1c, 6).  The magnitude of these 2009 early dry season CO2 losses to the 

atmosphere slightly exceeded the maximum wet season rates of NEP. 

3.4 Leaf area index and aboveground biomass 

Dry season indirect measurements of LAI averaged 1.74 ± 0.10, though this value also 

included standing dead leaves.  LAI, modeled with dry season indirect measurements made at 20 

cm intervals above the soil surface, yielded a significant predictive relationship between LAI and 

height (Fig. 7a, R2
adj = 0.7439, p < 0.0001).  Wet season indirect measurements of LAI, though 

more limited in scope, also resulted in a significant predictive relationship between LAI and 

height (Fig. 7a, R2
adj = 0.6611, p < 0.0001).  Equation parameters for both the dry and wet 

seasons were similar, yielding comparable estimates of total LAI (1.76 and 1.75, respectively).  

Direct harvest data indicated that indirect measurements slightly overestimated true LAI at all 

canopy heights (Fig. 7a).  Further, these data showed that only 54 ± 3% of the leaf area was 

comprised of living tissue at a height of 20 cm above the soil surface.  The proportion of living 

tissue increased with height (data not shown). 

The dry season predictive relationship between LAI and height above the soil surface was 

selected to estimate LAI when there was standing water at the site.  This model was chosen 
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because it had the largest sample size and was very similar to the wet season indirect 

measurement model.  Estimated above-water LAI decreased rapidly with the onset of the wet 

season and was <0.4 for most of the wet season (Fig. 7b).  However, this is likely an 

overestimate of wet season above-water LAI, given the large amount of standing dead leaf area 

and tendency for indirect measurements to underestimate true LAI in this ecosystem (Fig. 7a). 

Cladium aboveground biomass did not vary significantly among months over the nine year 

period from January 2000 to January 2009 (Table 3).  Variation in biomass among years was 

relatively high and during the study period bi-monthly variation was also high.  Mean annual 

aboveground biomass was slightly higher during the study period than in the preceding eight 

years (206.63 ± 16.02 vs. 171.35 ± 7.19 g m-2).  The long-term mean for total Cladium 

aboveground carbon content was 83.58 ± 3.51 g C m-2 and was 100.80 ± 7.82 g C m-2 during our 

study period. 

 

4. Discussion 

4.1 Environmental drivers of CO2 exchange 

Significant seasonal differences were found in light and temperature responses for daytime 

NEEraw and nighttime ERraw, respectively (Fig. 3c,f).  Both NEEraw and ERraw were depressed in 

the wet season relative to the dry season, and this pattern is opposite that found in other wetlands 

characterized by dry and wet seasons (Morison et al., 2000; Jones and Humphries, 2002).  

NEEraw and ERraw were well correlated with PAR and Tair, respectively, during the dry season, 

but these relationships were weaker in the wet season. 

Residuals analysis indicated that water level was of central importance in determining 

NEEraw in the wet season, but not the dry season.  The increased influence of water level on 
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NEEraw explains the poor wet season relationship between NEEraw and PAR.  Other 

environmental variables related to NEEraw, including wind velocity and direction, explained little 

variation (0.1 to 3%) in the data.  Water level was marginally related to ERraw in the dry season 

and unrelated in the wet season.  Beyond Tair, ERraw was only weakly influenced by the 

environmental variables measured in both the dry and wet seasons, likely due to the low within-

season variance of ERraw (Fig. 3d,e). 

  A decrease in the predictive power of the NEP – GEP relationship from 55% to 28% between 

the dry and wet seasons highlights the moderating influence of inundation on relationships that 

are usually highly predictable.  Similar declines in predictive power were found for the light and 

temperature response curves described above and for the ER – GEP relationship.  The onset of 

the wet season in this short-hydroperiod marsh clearly influences the relationships among NEP, 

ER, and GEP.  Of particular note, are the seasonal changes in the ER – GEP relationship. 

Dry season daily ER was significantly positively related to GEP, indicating that 

photosynthetic activity was as important as Tair in determining ER.  The dry season ratio of ER to 

GEP (0.85) was similar to the annual average (0.83) reported by Law et al. (2002) across a wide 

range of terrestrial ecosystems.  Although the magnitude of annual ER and GEP in the 

Everglades was far lower than that reported in many other ecosystems, the ratio of ER to GEP 

was preserved.  However, with the onset of the wet season this ratio increased to 1.20, a value 

more consistent with that observed in high-latitude forests (Law et al., 2002).  The unexpected 

nature of wet-season ecosystem CO2 exchange dynamics can be best understood by examining 

the roles of various short-hydroperiod marsh ecosystem components. 

4.2 The role of water in ecosystem CO2 exchange 
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Water level clearly had a significant effect on the dynamics of CO2 exchange, as the 

ecosystem shifted from CO2 sink to source when water rose above the soil surface (Table 1, Fig. 

1b, 4).  This shift, highlighted by the strong negative relationship between GEP and water level 

in the wet season (Fig. 5b), has been reported in few wetland ecosystems (e.g. Dusek et al., 

2009).  Wet seasons in most temperate wetlands coincide with the growing season, thus periods 

of maximum CO2 uptake (Roulet et al., 2007; Bonneville et al., 2008; Rocha and Goulden, 

2008).  In the Everglades, aboveground NPP in the dominant macrophyte, Cladium, is relatively 

aseasonal (Table 3, Childers et al., 2006) and only minor changes in LAI were found between 

seasons (Fig. 7), so it is unlikely that seasonal variation in CO2 exchange is related to vegetative 

growth cycles. 

Instead, the relatively short stature of the plant canopy and plant physiological flooding 

responses in this Everglades marsh play important roles in the ecosystem’s response to rising 

water levels.  During the wet season, much of the site’s leaf area was submerged, and above-

water LAI was less than 0.4 (Fig. 7).  Reduced above-water leaf area clearly limited wet season 

gas exchange and, though carbon uptake is possible in submerged aquatic plant leaves, these 

tissues are often shaded or surrounded by periphyton.  Additional photosynthetic and respiratory 

limitations on the site’s dominant macrophytes were imposed by flooding.  Cladium and 

Muhlenbergia are flood-tolerant species that contain aereynchyma cells, but soil hypoxia or 

anoxia can decrease overall plant metabolic activity and force stomatal closure (Chabbi et al., 

2000; Jackson 2002).  Wet season gas exchange measurements made on Cladium and 

Muhlenbergia showed a significant reduction (p ≤ 0.02) in the stomatal conductance and 

photosynthetic rates of submerged plants relative to those growing on adjacent dry ground (S.F. 
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Oberbauer, unpublished data).  This indicates that flooding decreased the capacity for CO2 

uptake in these species. 

In addition to the role of vegetation in determining CO2 exchange at this site, periphyton was 

also important during the wet season.  Periphyton in short-hydroperiod Everglades marshes is 

known to lie dormant for months during the dry season, but exhibits an immediate metabolic 

response to rewetting (Thomas et al., 2006a).  However, a ~2-3 month period of inundation is 

necessary before substantial periphyton growth is initiated in short-hydroperiod marl marshes 

(Thomas et al., 2006b; J.L. Schedlbauer, personal observation).  This time lag coincides with the 

pattern observed in daily NEP during the wet season (Fig. 6).  Following the ecosystem’s shift 

from CO2 sink to source with the onset of the wet season, NEP was predominantly positive for 

the first 2.5 months of the season.  After this time, daily NEP declined, and the ecosystem 

became a CO2 sink for the final six weeks of the wet season.  These negative NEP values at the 

end of the wet season were likely linked to increased periphyton growth and CO2 uptake activity.  

Seasonal peaks in periphyton GPP and photosynthesis have been observed ~2 months into the 

wet season in short-hydroperiod Everglades marshes (Thomas et al., 2006b).  However, the late 

wet season increase in marsh CO2 uptake was not large enough to shift cumulative wet season 

NEP from CO2 source conditions. 

Geochemical fixation of CO2 as calcium carbonate is another key component of wet season 

CO2 exchange in this Everglades marsh.  As CO2 diffuses into the water column it reacts with 

water to form carbonic acid, which then dissociates to form bicarbonate.  These reactions are 

reversible and vary diurnally with dissolved CO2 concentration.  The production and 

consumption of hydrogen ions in these reactions causes pH to vary with the predominant form of 

inorganic carbon in the water column.  CO2 predominates at low pH (< 6.5) while bicarbonate 
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predominates at higher pH (6.5-10.5) (Vymazal, 1994).  As periphyton and macrophyte 

photosynthesis proceeds during daylight hours, the concentration of CO2 in the water column 

declines and pH increases.  This daytime shift in water chemistry toward bicarbonate leads to the 

precipitation of calcium carbonate in the calcium-rich waters of short-hydroperiod Everglades 

marshes.  These reactions are reversed at night as respiration increases the dissolved CO2 

concentration and forces calcium carbonate back into solution.  The balance between calcium 

carbonate precipitation and dissolution will affect the overall carbon balance of these marshes. 

Gleason and Spackman (1974) found that water pH in a short-hydroperiod Everglades marsh 

varied diurnally from a low of 7.59 before sunrise to a maximum of 8.22 in the late afternoon.  

Over the same time period, the partial pressure of CO2 in the water column declined from 3981 

to 692 ppm (Gleason and Spackman, 1974).  These patterns suggest considerable diurnal shifts in 

the carbonate equilibrium reactions influencing calcium carbonate precipitation and dissolution.  

Given evidence of continuous CO2 supersaturation in the water column, changes in carbonate 

equilibrium reactions may not be immediately captured by eddy covariance methods.  The 

degree of equilibration between atmospheric and dissolved CO2 will be influenced by CO2 

concentrations, as well as wind speed.  Future studies of CO2 exchange dynamics in short-

hydroperiod Everglades marshes should include measurements of pH and dissolved CO2 to 

clarify the degree of coupling existing between atmospheric and aquatic CO2 exchange. 

The current magnitude of geochemical CO2 fixation in short-hydroperiod marshes is 

unknown, though historical marl accretion rates of 0.8 mm year-1 have been reported in 

Everglades wetlands close to the Atlantic coast (Gaiser et al., 2006).  These accretion rates are 

from the period prior to extensive water management in the Everglades and equate to a 

deposition of 70 g C m-2 yr-1, given mean bulk density and soil carbon content at the Taylor 
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Slough study site (Childers, 2005; J.L. Schedlbauer, unpublished data).  The data presented here 

suggest that current annual rates of marl accretion are lower than in the past, a finding that may 

be related to water management activities that have decreased hydroperiods in Everglades marl 

marshes (Davis et al., 2005). 

The slow flow of water through the Taylor Slough marsh introduces potential non-

atmospheric sources of carbon to the ecosystem in the forms of dissolved inorganic carbon 

(DIC), dissolved organic carbon (DOC), and particulate organic matter (POM).  During the wet 

season, DIC, DOC, and POM may have moved through the footprint area.  However, it is 

unlikely that lateral movement of carbon in the water column affected the overall CO2 balance of 

this marsh.  The area surrounding the tower footprint is a continuous marl marsh and surface 

water flow rates in these marshes are ~0.5 to 0.8 cm s-1 (Schaffranek and Ball, 2001).  Therefore, 

inflows and outflows of DIC, DOC, and POM in the footprint area were likely equal. 

4.3 CO2 exchange during seasonal transitions 

Seasonal transitions in NEP were notably different at the beginning and end of the wet 

season (Fig. 6).  At the onset of the wet season, water level gradually rose to fully inundated 

conditions over the course of two months (Fig. 1b), and the marsh fluctuated between CO2 

source and sink conditions as the water level rose and fell from the soil surface.  At the end of 

the wet season when the marsh was a CO2 sink, the rapid drop in water level below the soil 

surface coincided with an immediate shift from CO2 sink to source conditions (Fig. 1b, 6).  

Source conditions persisted for over a month at the end of the wet season.  It is probable that a 

flooding response by macrophytes dominated changes in daily NEP at the outset of the wet 

season, while respiring periphyton and respiration from the re-aerated soil dominated NEP at the 

end of the wet season.  Once periphyton was mostly desiccated and decomposition of highly 
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labile carbon produced during the wet season declined, CO2 uptake by macrophytes again 

dominated NEP. 

 Although dry season conditions (i.e., water level < 10 cm above the soil surface) 

predominated after mid-January 2009, the ecosystem was a strong CO2 source (NEP > 0.4 g C m-

2 day-1) to the atmosphere.  This period was characterized by rapidly declining VWC (Fig. 1c), in 

contrast to days during the 2008 dry season when the marsh was a strong source of CO2 to the 

atmosphere.  In the dry season there were trigger events, principally low light conditions, that 

coincided with the net loss of CO2 from the ecosystem.  These short-lived, dry season CO2 

source events were of similar magnitude to those observed during seasonal source-sink 

transitions (Fig. 6), but the mechanisms involved in the induction of these events were different.  

Daily rates of NEP in this short-hydroperiod Everglades marsh appear to be highly sensitive to 

environmental changes, and long-term EC data will help to further elucidate these relationships. 

4.4 Annual ecosystem CO2 exchange 

Meaningful annual comparisons of Everglades ecosystem CO2 exchange with other tropical 

and subtropical wetlands are difficult because most EC studies have been confined to short time 

periods (weeks) spanning seasonal extremes in water level (e.g. Morison et al., 2000; Jones and 

Humphries, 2002).  However, short-term data from these studies show NEE that is more than 

four times greater than the maximum values observed in this Everglades marsh (Fig. 3a,b).  For 

example, maximum NEE of 30-35 µmol m-2 s-1 was recorded in Amazonian floodplains 

(Morison et al., 2000), while maximum NEE of 24 µmol m-2 s-1 was found in African papyrus 

(Cyperus papyrus) wetlands (Jones and Humphries, 2002).  Further, the highest rates of CO2 

uptake in these tropical wetlands were found during periods with the highest water levels. 
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In relation to temperate wetlands where year-round measurements of EC are more common, 

annual values of ecosystem CO2 exchange in this short-hydroperiod marsh were quite low 

(Bonneville et al., 2008; Rocha and Goulden, 2008; Dusek et al., 2009).  Of particular note was 

the low GEP (496 g C m-2 year-1) in the Everglades, a value that was constrained by the 

limitation of CO2 uptake during the wet season (Table 1, Fig. 5b).  Recent EC studies of 

temperate wetlands show GEP values ranging from 831 to 1639 g C m-2 year-1 at sites in 

southern California and Ottawa, Ontario (Bonneville et al., 2008; Rocha and Goulden, 2008).  

GEP in both of these regions was limited by the growing season, yet it was much higher than in 

the Everglades.  Although wetlands are among the most productive ecosystems on earth, short-

hydroperiod Everglades marshes appear to be an exception. 

An additional factor in the overall carbon balance of the Everglades is methane (CH4) flux, a 

component beyond the scope of this study.  As a wetland that is saturated for 4-5 months per 

year, CH4 emission will contribute to wet season carbon losses from the ecosystem.  Chamber 

measurements show that wet season CH4 fluxes from short-hydroperiod Everglades marshes 

average 45 mg m-2 day-1 (Bartlett et al., 1989).  Future ecosystem carbon balance research should 

account for CH4 fluxes, particularly because seasonal changes have not yet been quantified. 

4.5 Productivity in short-hydroperiod Everglades marshes 

Previous work in Everglades marshes suggesting high rates of productivity was not 

substantiated by the EC data collected during the 14 months of the present study.  Monthly 

chamber measurements of NEE and ER at the tower site corroborate the EC data presented here 

and further call into question prior estimates of productivity (J. Munyon, unpublished 

manuscript).  Though there is undoubtedly annual variation in marsh productivity, important 

climatic drivers including temperature and precipitation were within historical bounds during 
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2008.  In general, daily rates of CO2 exchange and maximum NEE values were small in both the 

dry and wet seasons.  While interannual variation in ecosystem CO2 exchange is yet to be 

documented in this ecosystem, existing EC data suggest that this marsh is at the extreme low end 

of wetland productivity.  The classification of the Everglades as an oligotrophic ecosystem is 

supported by the findings presented here, but is in contrast to previously reported NPP data. 

Mean periphyton production in the marsh surrounding the tower site was calculated to be 

1276 g C m-2 year-1 between 2001 and 2004 (Ewe et al., 2006), while total NEP in 2008 was 50 g 

C m-2 year-1.  Climatic variation between these time periods is unlikely to have been great 

enough to account for such a large discrepancy in productivity.  Instead, scaling errors associated 

with the earlier dataset, based on infrequent (1-3 times during the wet season) biological oxygen 

demand measurements of periphyton, may be the primary source of this difference.  NPP 

estimates for Cladium, the dominant macrophyte at the site, can more easily be reconciled with 

the EC data.  From 2001-2004, Cladium aboveground NPP averaged 124 g C year-1 (Ewe et al., 

2006).  While this number is relatively large, productivity in this species is dominated by leaf 

turnover rather than biomass accrual (Childers et al., 2006).  Therefore, Cladium does not play a 

major role in carbon accumulation in this ecosystem. 

In addition to nutrient limitation in the Everglades, the accumulation of standing dead leaves 

may be related to low productivity.  Evidence of NEE limitation by standing litter has been 

found in a temperate wetland (Rocha et al., 2008), and could be important at this site during the 

dry season given the large quantity of standing dead leaves.  Approximately 23% of the total 

canopy height in this marsh is shaded by standing litter.  A disturbance event, such as the large 

fires that occasionally occur in Everglades marl marshes, would be necessary to substantially 

alter the amount of litter in short-hydroperiod marshes. 
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5. Conclusions 

These findings distinguish the Everglades from most other wetlands where maximum CO2 

uptake occurs in the wet season and annual values of GEP are high.  No evidence was found to 

support prior research indicating extremely high rates of NPP in the Everglades.  Although 

wetlands are among the most productive ecosystems in the world, the short-hydroperiod 

oligotrophic Everglades prove to be an exception. 

During the period of study this Everglades short-hydroperiod marsh was a small CO2 sink.  

CO2 fluxes were of small magnitude throughout the year, but were substantially reduced in the 

wet season.  This led to a seasonal ecosystem shift from CO2 sink to source with the beginning of 

the wet season.  While light and temperature were key factors in determining ecosystem CO2 

exchange in the dry season, inundation led to a deterioration of these relationships.  Water level 

was of central importance in determining GEP during the wet season, and high water levels 

substantially reduced macrophyte photosynthetic activity.  Future research should focus on 

quantifying interannual variability in ecosystem CO2 exchange and on the physiological 

responses of macrophytes and periphyton to seasonality.  These data would improve knowledge 

of CO2 exchange dynamics and aid in the prediction of future ecosystem responses to water 

management and climate change. 

As water management in the Everglades is altered by the implementation of CERP, it is 

expected that hydroperiod will increase and water levels will be deeper.  These changes in 

management may have unintended consequences for short-hydroperiod marshes by decreasing 

the capacity of these ecosystems to sequester CO2.  A reduction in the length of the dry season, 

during which the ecosystem is a CO2 sink, will directly affect the annual balance of NEP.  As 
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climate change proceeds, anticipated reductions in south Florida’s wet season rainfall could 

partly counteract the management changes imposed by CERP.  Nonetheless, this ecosystem is a 

small CO2 sink and CO2 source-sink dynamics in this marsh are sensitive to environmental 

changes.  Alterations in water management activities should be carefully considered if the CO2 

sequestration capacity of this ecosystem is to be maintained, particularly in light of the large 

spatial extent of short-hydroperiod Everglades marshes. 
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Table 1. Ecosystem carbon exchange at Taylor Slough, with total net ecosystem production 

(NEP, g C m-2), ecosystem respiration (ER, g C m-2), and gross ecosystem production (GEP, g C 

m-2) summed for dry and wet periods of 2008 and annually. 

 

 NEP ER GEP 

 (g C m-2) (g C m-2) (g C m-2) 

2008 Dry Season -64.9 355.1 420.0 

2008 Wet Season 15.0 91.0 76.0 

2008 Total -49.9 446.1 496.0 

 



 38 

Table 2. Estimates of sampling uncertainty (g C m-2) for NEP, ER, and GEP at monthly, 

seasonal, and annual time scales.  Uncertainty estimates are the standard error of 100 Monte 

Carlo simulations and represent the error introduced by gap-filling procedures. 

Month 

NEP sampling 

uncertainty 

ER sampling 

uncertainty 

GEP sampling 

uncertainty 

  (g C m-2) (g C m-2) (g C m-2) 

Jan '08 0.3 0.5 0.3 
Feb '08 0.3 0.6 0.4 
Mar '08 0.4 0.5 0.5 

Apr '08 0.3 0.5 0.5 
May '08 0.5 1.4 1.0 
June '08 0.7 1.4 0.9 
July '08 0.5 0.4 0.5 

Aug '08 0.5 0.4 0.5 
Sept '08 0.4 0.7 0.5 
Oct '08 0.6 0.6 0.5 
Nov '08 0.2 0.4 0.2 

Dec '08 0.3 0.4 0.2 
Jan '09 0.3 0.3 0.3 
Feb '09 0.3 0.4 0.4 

    

2008 Dry Season 1.5 3.2 2.2 
2008 Wet Season 1.0 1.7 1.1 

2008 Total 1.7 3.6 2.6 
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Table 3. Mean ±1 SE sawgrass aboveground biomass (g m-2) at the Taylor Slough site from January 2000 to January 2009 and the 

study period.  No significant seasonal differences in aboveground biomass were found over the nine year period. 

 Mean sawgrass aboveground biomass (g m
-2

) 

Time period January March May July September November 

2000 – 2009 181.27 ± 22.92 158.29 ± 13.71 160.81 ± 13.27 201.81 ± 10.66 174.69 ± 13.32 177.58 ± 20.25 

2008 263.72 168.43 154.47 237.69 246.39 194.65 

2009 181.06      
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Figure Legends 

Figure 1. Total daily precipitation (a), mean daily water level and mean historical water level 

(b), and soil volumetric water content (VWC) (c) data for the Taylor Slough site.  Water level 

data are shown for the study period, January 2008 to February 2009, (solid black line) and as 

a daily mean ±1 SE calculated for the period from January 2000 to May 2009 (NPS 2009).  

Historical data are from the current water management period only, when flows into Taylor 

Slough were regulated by the S332D structure.  A horizontal bar on the water level figure 

marks the 2008 wet season, as determined by water level at the site. 

Figure 2. Monthly mean, minimum, and maximum values of photosynthetically active radiation 

(PAR) (a), air temperature (Tair) (b), and daytime vapor pressure deficit (VPD) (c) during the 

study period.  PAR values were calculated from daily sums, Tair data were calculated from 

daily means, and VPD was calculated from daily means during daylight hours only. 

Figure 3. Daytime raw net ecosystem exchange (NEEraw, µmol CO2 m
-2 s-1) in relation to 

photosynthetically active radiation (PAR) and nighttime raw ecosystem respiration (ERraw, 

µmol CO2 m
-2 s-1) in relation to air temperature (Tair).  NEEraw vs. PAR data are shown for 

the dry (a) and wet (b) seasons.  The fitted models describing these relationships and 95% 

confidence intervals are also shown (c).  The dry season model was NEEraw = ((-0.0107 × 

PAR × 5.54)/(0.0107 × PAR + 5.54)) + 1.44 (R2
adj = 0.53, p < 0.0001) and the wet season 

model was NEEraw =  ((-0.0114 × PAR × 1.75)/(0.0114 × PAR + 1.75)) + 0.80 (R2
adj = 0.16, 

p < 0.0001).  ERraw vs. Tair data are shown for the dry (d) and wet (e) seasons in relation to 

air temperature (Tair).  The fitted modes describing these relationships and 95% confidence 

intervals are also shown (f).  The dry season model was ERraw = 0.4211 exp (0.0560 × Tair) 
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(R2
adj = 0.24, p < 0.0001) and the wet season model was ERraw = 0.0967 exp (0.0783 × Tair) 

(R2
adj = 0.09, p < 0.0001). 

Figure 4. Monthly sums of carbon exchange, broken down into net ecosystem production (NEP, 

g C m-2 month-1), ecosystem respiration (ER, g C m-2 month-1), and gross ecosystem 

production (GEP, g C m-2 month-1). 

Figure 5. Daily gross ecosystem production (GEP, g C m-2 day-1) in relation to water level 

during the dry (a) and wet (b) seasons.  GEP and water level were weakly related in the dry 

season (GEP = -0.3196 x + 1.5548, where x is water level, p = 0.0004, R2
adj = 0.0409) and 

more strongly related in the wet season (GEP = -1.4663 x + 1.0239, p < 0.0001, R2
adj = 

0.3308). 

Figure 6. Daily sums of net ecosystem production (NEP, g C m-2 day-1) during the study period.  

The 2008 wet season is depicted with a horizontal bar. 

Figure 7. Exponential decay functions relating leaf area index (LAI, m2 m-2) to height above the 

soil surface (a) and modeled LAI during the 2008 wet season (b).  Plotted curves (a) reflect 

data from direct leaf area harvests in the wet season (solid line, LAI = 1.1890 exp (-0.0547 

z), where z is height above the soil surface, p < 0.0001, R2
adj = 0.8472) as well as indirect 

measurements made with a LAI-2000 in both the wet (dotted line, LAI = 1.7456 exp (-0.0469 

z), p < 0.0001, R2
adj = 0.6611) and dry (dashed line, LAI = 1.7611 exp (-0.0596 z), p < 

0.0001, R2
adj = 0.7439) seasons.  The dry season indirect measurement decay function was 

used to model above-water LAI (b) during the 2008 wet season using water depth data. 
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Appendix A. Model parameters (fitted value ± one SE) and statistics for the nonlinear regressions (Eq. 1) used to gap-fill daytime net 

ecosystem exchange (NEE) data.  August was divided into two periods reflecting dry (early August) and wet (late August) season 

conditions.  Such a division was not found to be necessary for January 2009, the other month spanning dry and wet season conditions.  

All regressions were significant (p < 0.0001). 

 Model parameters  Statistics 

Month α NEEmax ER   R
2

adj n Residual mean Residual SD 

Jan '08 0.009 ± 0.001 5.68 ± 0.25 1.17 ± 0.14  0.68 535 -3.00 × 10-10 0.78 

Feb '08 0.010 ± 0.001 5.86 ± 0.22 1.18 ± 0.15  0.69 521 8.64 × 10-10 0.75 

Mar '08 0.021 ± 0.005 5.44 ± 0.26 1.76 ± 0.30  0.53 453 1.48 × 10-9 0.98 

Apr '08 0.013 ± 0.002 5.50 ± 0.17 1.64 ± 0.18  0.61 651 4.00 × 10-10 0.90 

May '08 0.010 ± 0.001 6.05 ± 0.18 1.63 ± 0.17  0.65 683 2.72 × 10-10 0.84 

June '08 0.015 ± 0.003 6.83 ± 0.25 2.00 ± 0.33  0.57 561 -1.39 × 10-10 1.10 

July '08 0.018 ± 0.004 6.10 ± 0.30 2.10 ± 0.36  0.46 554 6.69 × 10-9 1.24 

Early Aug '08 0.018 ± 0.006 5.90 ± 0.46 1.93  ± 0.57  0.43 264 1.23 × 10-9 1.20 

Late Aug '08 0.012 ± 0.009 1.99 ± 0.34 0.85 ± 0.38  0.18 209 1.08 × 10-8 0.88 

Sept '08 0.018 ± 0.007 2.42 ± 0.22 1.36 ± 0.25  0.27 520 2.51 × 10-9 0.78 

Oct '08 0.009 ± 0.009 1.02 ± 0.27 0.77 ± 0.30  0.06 528 4.26 × 10-9 0.70 

Nov '08 0.004 ± 0.002 0.87 ± 0.10 0.21 ± 0.12  0.14 538 -7.29 × 10-10 0.43 

Dec '08 0.005 ± 0.001 2.22 ± 0.16 0.35 ± 0.13  0.37 437 2.07 × 10-10 0.55 

Jan '09 0.015 ± 0.004 3.19 ± 0.21 1.50 ± 0.25  0.33 559 1.15 × 10-9 0.85 

Feb '09 0.007 ± 0.002 4.13 ± 0.23 1.08 ± 0.17  0.47 536 1.94 × 10-10 0.85 
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Appendix B. Model parameters (fitted value ± one SE) and statistics for the regressions used to gap-fill ecosystem respiration (ER) 

data.  Models were fit to bi-monthly datasets, given the limited number of raw half-hourly ER data points.  An exponential function 

relating ER to air temperature (Tair) ER = a exp (b Tair) was fit to data for all months except for July-August 2008 (*).  A significant 

predictive relationship between ER and Tair did not exist for the July-August 2008 data, so the linear regression, ER = a water level + 

b, relating ER to water level was used for this period.  Breaks in bi-monthly periods were allowed to vary to accommodate shifts 

between the dry and wet seasons at the site.  Specifically, late August 2008 data was included with the September-October 2008 bi-

monthly period and early January 2009 data were included with the November-December 2008 bi-monthly period.  All regressions 

were significant (p ≤ 0.05). 

 Model parameters  Statistics 

Month a b   R
2

adj n Residual mean Residual SD 

Jan-Feb '08 0.31 ± 0.04 0.07 ± 0.01  0.27 364 -1.85 × 10-4 0.54 

Mar-Apr '08 0.28 ± 0.03 0.08 ± 0.01  0.54 250 -2.57 × 10-3 0.38 

May-June '08 0.88 ± 0.27 0.02 ± 0.01  0.02 130 -1.62 × 10-4 0.50 

*July-Aug '08 -4.46 ± 1.86 1.09  ± 0.20  0.10 46 -1.22 × 10-10 0.96 

Sept-Oct '08 0.15 ± 0.05 0.06 ± 0.01  0.05 587 1.89 × 10-4 0.52 

Nov-Dec '08 0.18 ± 0.06 0.04 ± 0.01  0.02 462 -2.52 × 10-4 0.39 

Jan-Feb '09 0.42 ± 0.05 0.06 ± 0.01  0.15 308 -9.43 × 10-4 0.61 
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