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Marine reserves can effectively restore harvested populations, and ‘mega-

reserves’ increasingly protect large tracts of ocean. However, no method

exists of monitoring ecological responses at this large scale. Herbivory is a

key mechanism structuring ecosystems, and this consumer–resource inter-

action’s strength on coral reefs can indicate ecosystem health. We screened

1372, and measured features of 214, reefs throughout Australia’s Great

Barrier Reef using high-resolution satellite imagery, combined with remote

underwater videography and assays on a subset, to quantify the prevalence,

size and potential causes of ‘grazing halos’. Halos are known to be seascape-

scale footprints of herbivory and other ecological interactions. Here we show

that these halo-like footprints are more prevalent in reserves, particularly

older ones (approx. 40 years old), resulting in predictable changes to reef

habitat at scales visible from space. While the direct mechanisms for this pat-

tern are relatively clear, the indirect mechanisms remain untested. By

combining remote sensing and behavioural ecology, our findings demon-

strate that reserves can shape large-scale habitat structure by altering

herbivores’ functional importance, suggesting that reserves may have greater

value in restoring ecosystems than previously appreciated. Additionally, our

results show that we can now detect macro-patterns in reef species inter-

actions using freely available satellite imagery. Low-cost, ecosystem-level

observation tools will be critical as reserves increase in number and scope;

further investigation into whether halos may help seems warranted. Signifi-
cance statement: Marine reserves are a widely used tool to mitigate fishing

impacts on marine ecosystems. Predicting reserves’ large-scale effects on

habitat structure and ecosystem functioning is a major challenge, however,

because these effects unfold over longer and larger scales than most ecologi-

cal studies. We use a unique approach merging remote sensing and

behavioural ecology to detect ecosystem change within reserves in

Australia’s vast Great Barrier Reef. We find evidence of changes in reefs’

algal habitat structure occurring over large spatial (thousands of kilometres)

and temporal (40þ years) scales, demonstrating that reserves can alter her-

bivory and habitat structure in predictable ways. This approach

demonstrates that we can now detect aspects of reefs’ ecological responses

to protection even in remote and inaccessible reefs globally.

& 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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1. Introduction
As a globally pervasive conservation and ecosystem-based

management tool, no-take marine reserves (hereafter

‘reserves’) are increasing in both number and area, with 19

record-breaking ‘mega-reserves’ (more than 100 000 km2)

established since 2009 [1]. In these reserves, as well as in

smaller and less remote reserves, no method currently exists

for remotely observing and monitoring effects that reserves

have on species interactions over scales of entire seascapes,

despite the need for such methods due to the increasing

number and scope or reserves worldwide [2]. It therefore

remains largely unknown if and how reserves can predicta-

bly alter habitat structure over large scales, nor how to

track such changes over increasingly large areas.

Many examples of large-scale regular pattern formation in

natural ecosystems exist, and the mechanisms behind these

patterns are known for some, but relatively few such examples

come from marine systems [3]. The well-known phenomenon

of ‘grazing halos’ [4,5], which occur on coral reefs worldwide

in a variety of primary producer habitats (e.g. benthic macro-

algae; seagrass), are landscape-scale vegetation patterns

consisting of a halo of heavily grazed, vegetation-free substrate

(often ‘sandy white’) surrounding spatially isolated coral patch

reefs (figure 1a). Grazing halos (hereafter halos) are ecologi-

cally significant because they represent a clear, visible

indicator of both reefs’ ecological functioning (i.e. herbivory

and species’ behavioural interactions [9]) and habitat structure

(vegetation patterns). Furthermore, halos can affect a key

ecosystem service: carbon sequestration [6].

The key direct mechanism behind the creation of grazing

halos is herbivory. Results from different ocean basins and

reef ecosystems have shown that removal of herbivores

from a patch reef surrounded by a halo results in the disap-

pearance of the halo [4], that net herbivory declines with

increasing distance from reefs [10], and that patterns of

herbivory directly match the spatial pattern of algae created

in halos across multiple biogeographic regions (figure 1b)

[7,11,12]. The occurrence of halos therefore demonstrates

that reef ecosystems have functional herbivore populations

and resultant herbivory, indicating the presence of this

critical ecosystem function.

In addition to herbivory, several additional hypotheses

have been proposed in the literature or could conceivably

account for the direct mechanism(s) behind the formation

of halos around patch reefs. These hypotheses include

nutrient availability [13], volatile inhibitors of primary pro-

ducer growth [4–6], bioturbation [13], and physical factors

such as sediment particle size [4–7], slope of the benthos

[4,5], wave energy [4,7] and shading [7]. These mechanisms

are not mutually exclusive with one another, nor with her-

bivory. For example, in our in situ study system of Heron

Island lagoon, there is some evidence that bioturbation

may contributing to halo formation along with the recog-

nized key direct mechanism of herbivory [8]. Similarly,

surface sediment particle size does vary significantly with

distance from patch reefs [14] within Heron Island lagoon

but was not found to have an effect on algal canopy

height over the halo gradient [6]. Each of the hypotheses

above been considered in previous studies in this or other

study systems and deemed unable, through testing or

logic, to account in isolation for the halo patterns observed

[4–7,14,15].

The indirect mechanisms governing the spatial patterns

of herbivory behind halos are less well understood. Both

competition for food resources among herbivores and preda-

tion risk imposed on herbivores by their predators could lead

to the spatial patterns of grazing that create halos, and these

mechanisms are not mutually exclusive. In the first case, her-

bivore density on isolated patch reefs, and thus competition

by both conspecifics and heterospecifics for food resources

beyond the reef’s edge, should affect the distance that

animals need to travel from the reef to obtain sufficient

nutrition. Indeed, evidence that herbivore density affects

halo width in another system exists [12], though in this case

patch reef size covaried with herbivore density, rendering it

difficult to disentangle the effects of herbivore density and

habitat area on halo width. In the latter case of predation

risk shaping herbivory, grazing halos have long been

assumed to be the collective result of many small herbivores’

(e.g. fishes’ and urchins’) reluctance to travel far from coral

reefs’ shelter for fear of consumption by predators in the

riskier, unsheltered areas beyond [4,5]—even though these

pioneering studies occurred in systems known to have

previously experienced significant fishing pressure, predator

loss, and presumably reduced predation risk. Foraging

theory likewise predicts that areas with greater predation

risk, such as those farther from shelter, should experience

less resource harvest by mobile animals than areas less

exposed to predators [16]. Atwood et al. [6] recently con-

firmed the occurrence of this mechanism in their Heron

Island lagoon study location by showing that that predators

consistently suppressed foraging by herbivores within halos

via risk effects. These effects were manifest specifically

through herbivores’ grazing rates and time budgets.

We thus hypothesized that, through spatially constrained

herbivory due to one or both of these indirect mechanisms,

marine reserves could affect halo prevalence and/or size by

altering herbivore and/or predator populations. Specifically,

if reserves result in greater herbivore density relative to

fished reefs, halos would be expected to be more prevalent

(if fished areas experienced functional loss of herbivores)

and/or larger in reserves. On herbivore-poor reefs in which

the complete functional loss of herbivores has occurred,

herbivores would not be expected to exert sufficient grazing

pressure to create halos [4]. Conversely, on predator-rich

reefs, as expected within reserves, herbivorous prey should

face substantial predation risk and preferably forage near shel-

ter, with their collective grazing patterns leading to more

intense grazing around reefs. In this sense, reserves should

lead to more prevalent and/or smaller grazing halos than in

areas with fewer predators. On predator-poor reefs, roving

herbivores without such constraints might range more

widely [17], dispersing their grazing effort more evenly over

the seascape [18] and resulting in a widening or loss (the

latter due to merging or lack of creation) of halos.

To test these predictions, we combined high-resolution

satellite imagery surveys, remote underwater videography,

and in situ manipulations to assess the spatial extent and

potential causes of these large-scale vegetation patterns

surrounding coral patch reefs (i.e. spatially isolated, metres-

scale reefs). Our objective was to determine if and how

marine reserves affect halo prevalence and size in order to

further our understanding of the potential for halos to

be used as an indicator of aspects of coral reef ‘health’ and

ecological functioning.
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Figure 1. (a) Geographical scope and location of study. Along Australia’s NE coast, the Great Barrier Reef Marine Park stretches for approximately 2300 km (left square
panel) and includes a mosaic of fished areas (blue zones, or ‘General Use Zones’ in which most types of fishing are allowed) and protected, unfished marine reserve areas
(green zones, or ‘Marine National Park Zones’ in which fishing is not allowed). Satellite images were used to screen 1372 individual whole reefs (red dots) which span this
entire region, including Heron Island (middle panel), where detailed ecological studies of 22 of the lagoon’s grazing halos surrounding patch reefs (right panel; dark brown
areas are patch reefs, light blue contours around reefs are grazing halos and green zones between halos are algal ‘meadows’) were conducted. Heron Island lagoon is zoned
as both no-take (green zone) and limited fishing allowed (yellow zone), but in practice it is essentially unfished (see electronic supplementary material for details). Heron
Island lagoon’s reserve is considered mature, having been established in 1974 as one of the first two no-take reserves on the Great Barrier Reef. (b) Schematic of interaction
pathway through which grazing halos are generally believed to occur and evidence from Heron Island lagoon for the role of species interactions in grazing halo formation.
Daytime remote video surveys demonstrate that herbivorous fishes spend dramatically more time closer to the shelter and relative safety of the patch reef than in the
adjacent sand flat habitat that is devoid of physical structure and thus shelter (dark blue bars). Predators spend more time on and around the reef, but are found
throughout the grazing halo and beyond (red bars). Grazing intensity by herbivores is highest close to the reef and drops off precipitously with increasing distance
from the reef (light blue bars). By 15 m from the reef, we recorded no grazing by herbivores. Grazing assays conducted over a period of approximately 3 days demonstrate
that the per cent of algae consumed by herbivores is functionally absent by 9 m from the reef and beyond (light green bars). The density of algae, measured as canopy
height, rises significantly with increasing distance from the reef (dark green bars). All values are normalized for simplicity; y-axis maximum values are: 0.42 for herbivore
and piscivore time spent ( proportion); 0.8 for herbivore grazing rate (bites/min); 100 for algal canopy height (mm) and algae consumed (%). Remote video surveys were
conducted in both fished and unfished zones of Heron Island lagoon, however fishing pressure within the lagoon is negligible. Herbivore and piscivore icons are not to scale
nor comprehensive, though graphical distributions are qualitatively representative of observed patterns. Herbivore bite rate and time spent data redrawn from Atwood
et al. [6]; algal canopy height and consumption data are reproduced from Madin et al. [7]. Video footage analysis follows protocols outlined in detail in [8].
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2. Methods
(a) In situ surveys
To confirm the role of the direct mechanism of herbivory and

explore the hypothesized indirect mechanism of predation risk

in forming halos within the Great Barrier Reef (GBR), we used

remote underwater video (camera trap) surveys conducted at a

suite of 22 individual patch reefs within the predator-rich

marine reserve and adjacent fished zone within Heron Island

lagoon encompassing a mature reserve in the southern GBR

(see electronic supplementary material for details). Although

part of Heron Island lagoon can legally be fished, the geomor-

phology of the lagoon means that its access points are difficult

to navigate and are strongly tidally dependent. As a result, the

lagoon experiences negligible fishing pressure, which is primar-

ily on predators, and both fished and unfished parts of the

lagoon show similar patterns in predator and herbivore abun-

dance and behaviour relative to patch reefs (electronic

supplementary material, figure S1).

Camera trap surveys (via continuous video) were conducted

at 22 patch reefs/halos during daytime hours over three weeks

in May 2013 and consisted of placing arrays of GoPro high-

resolution video cameras on patch reefs and within the grazing

halos. At each reef, one camera was placed atop the reef and

four cameras were placed along a linear transect radiating

outwards (into and beyond the halo) at distances of 2.5, 7.5, 15

and 22 m from the reef’s edge. Post-processing of video data

involved classifying all individual non-cryptic fish and invert-

ebrate species recorded to species level (which was possible in

most cases) or, where not possible, to genus or family level.

The duration of time the organism was within the observation

area was also recorded. Plant-eating fishes were classified as

‘herbivores’ and fish-eating predatory fishes were classified as

‘piscivores’. All species known to fall under these categories

were included in analyses unless otherwise noted. Further details

can be found in the electronic supplementary material.

(b) Remote sensing surveys
To test our predictions regarding halo presence and size, we used

high-resolution satellite imagery available in the Google Earth

Pro platform (see electronic supplementary material for details)

to screen for halos surrounding patch reefs (i.e. small, spatially-

separated reefs with diameters of metres to tens of metres)

located within 1372 whole reefs. Whole reefs are kilometre-

scale reef ecosystems that are separated from one another by

deeper water, within which tens to thousands of individual

coral patch reefs can be found. We systematically screened

the approximately 2300 km latitudinal gradient of Australia’s

Great Barrier Reef Marine Park (figure 1a) containing thousands

of whole reefs, of which approximately 33% are reserves and

approximately 67% are fished. To collect these data, cross-

continental shelf transects from the Australian coastline to the

seaward extent of the GBR were scanned at every 0.058 of lati-

tude from 210.78 to 224.58. When a whole reef was

encountered along a transect, its name, latitude, longitude,

areas, fishing status, image quality and image date were

recorded. If an individual whole reef was encountered on mul-

tiple transects (e.g. as was the case with many north–south

oriented ribbon reefs) it was only surveyed once. Only imagery

that was of less than or equal to 3 m spatial resolution was

used in this study because the spatial scale of halos dictates

that only at this resolution can they be reliably identified and

measured. Our screening resulted in 214 focal whole reefs with

both suitable habitat for halos and adequate image quality

with which to visually detect them (72 in reserves and 142 in

fished areas; figure 1a; see electronic supplementary material).

Each of our 214 focal whole reefs contains hundreds to thou-

sands of individual patch reefs (separated from one another by

expanses of shallow, flat habitat) around which halos can form.

Grazing halo presence at the whole reef level was scored as

‘halos present’ if any patch reefs within a whole reef were

surrounded by halos. Grazing halo size was measured as

width, via five replicate linear, equidistant, spoke-like measure-

ments from the outer edge of the patch reef to the edge of the

halo, which were then averaged to generate a halo width value

for each individual grazing halo. At each whole reef where

halos were visible, ten replicate patch reefs/halos were measured

(except in cases where halos were visible but fewer than ten

could be measured, in which case all halos were measured).

Ten was chosen as our number of replicates because (i) this

sample size balanced the trade-off between time constraints

and sample size, and (ii) variation in halo width appeared

visually to be minimal within locations, suggesting to us

that more than 10 replicates would not appreciably decrease

within-location variability. All halos were measured manually

by a single observer (AH). Of the 214 focal reefs, 68 contained

halos, and the remaining reefs were scored as halos being absent.

GBR spatial data layers (i.e. zoning, whole reef names/

numbers, and other metadata; available from the Great Barrier

Reef Marine Park Authority upon request) were imported into

GEP. These layers were used to identify whole reef area and pro-

tection status (i.e. fished versus protected). Reefs were classified

as ‘no-take reserves’ (hereafter reserves) if they were in any of

the Great Barrier Reef Marine Park zones in which no commer-

cial or recreational fishing is allowed. These zones are Marine

National Park Zone (green zone), Preservation Zone (pink

zone) and Scientific Research Zone (orange zone). All other

zones (Buffer Zone; Conservation Park Zone; Habitat Protection

Zone; General Use Zone) allow some degree of commercial and/

or recreational fishing and were therefore classified as ‘fished’.

For the reserve age analysis, fished reefs were assigned a reserve

age of 0, thereby equating them with a newly-established reserve

that had received no prior protection from fishing. Reserve ages

did not systematically vary with latitude because reserve desig-

nations initially occurred sequentially by region (between 1979

and 1987), but the order of regions designated with reserves

did not follow a geographical gradient. Subsequent re-zonation

of reserves (in 2004) occurred simultaneously over the entire

GBR.

(c) Variable selection and statistical analyses
We gathered GBR-wide data from existing datasets for all

hypothesized factors expected to influence grazing halo occur-

rence and/or width. We then examined pair-wise interactions

between all variables that could plausibly covary. In the absence

of available in situ herbivore or piscivore density data for

any substantial portion of the 214 whole reefs from our

satellite imagery dataset that were used in analyses, we included

the best-available potential proxies over this large spatial scale

(i.e. marine reserve age and distance from mainland, a proxy

for human visitation and thus presumed fishing pressure).

Other variables included in or considered for the initial model

were those hypothesized to affect grazing halo presence and/or

width in another way and included: sea surface temperature

(SST; a proxy for metabolic rates of herbivores); latitude (both a

presumed proxy for metabolic rates of herbivores (via tempera-

ture) and a proxy for the biogeographic gradient over which the

GBR occurs); chlorophyll a concentration (Chl a; a proxy for

primary productivity); image season (i.e. the time of year in

which the satellite image was captured, to account for seasonal

differences in algal standing stock and thus halo visibility);

and patch reef area (hypothesized for either geometric and/or

biological reasons to potentially influence grazing halo size).
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A generalized linear model (function glm from R package

stats) was used to quantify relationships between grazing halo

presence and the suite of explanatory variables remaining after

the above filtering for suitability (see electronic supplementary

material) was completed. As described above, only whole reefs

that contained suitable habitat and for which clear satellite ima-

gery was available were included in presence/absence analyses.

This ensured that only whole reefs that had the potential to have

grazing halos, but did not, were compared with whole reefs that

did exhibit halos. Based on the procedures for model selection

criteria and identifying interactions among explanatory variables

described in Zuur et al. [19], the variables that remained in

the final model were: marine reserve age, temperature and Chl

a concentration (electronic supplementary material, table S1).

A linear mixed-effects model fit by maximum likelihood

(function lme from R package nlme) was used to quantify

relationships between grazing halo width and the same suite of

variables above plus grazing halos’ interior patch reef area.

Because grazing halo and patch reef size data are at the within-

whole-reef spatial scale, patch reef area and whole reef ID were

included as nested random factors within the model. All other

factors, as well as patch reef area, were included as fixed factors.

Based on model selection criteria and pair-wise variable inter-

actions [19], the variables that remained in the final model

were: marine reserve age, SST, Chl a concentration and patch

reef area (electronic supplementary material, table S2). All

analyses were conducted using the statistical programming

package R (R Development Core Team, 2015).

3. Results
Our observations within the Heron Island reef system

revealed that, as expected based on central place foraging

[20] theory, herbivorous fishes throughout the lagoon

concentrated their activity within and immediately around

reefs, with no herbivores observed beyond 7.5 m from the

reef and algal canopy height increasing concomitantly

(figure 1b, dark blue and green bars, respectively). Specifi-

cally, the proportion of time spent by herbivores was

concentrated most heavily on the reef itself, where feeding

opportunities for mobile browsers (e.g. surgeonfishes;

rabbitfishes; some parrotfishes) are limited but spatial refuges

from predators exist. Beyond the reef edge, these fishes

reduced the amount of time they spent as they moved farther

from the reef (figure 1b, dark blue bars). This pattern, which

is counter to herbivores’ expected distribution based on food

availability, indicates the existence of a behavioural constraint

that spatially restricts their foraging patterns. The maximum

distance that by halo-feeding herbivores ventured from

the reef was unrelated to their relative abundance (z ¼ 1.66,

p ¼ 0.096; fig. 2A in Madin et al. [8]). We found that piscivores

likewise concentrated their time on and immediately around

the reef, but, unlike herbivores, were also found throughout

the halo zone and beyond its boundary into the algal

meadows (figure 1b; red bars). A list of all fishes and macro-

invertebrates observed in our video surveys, and delineation

of where species occurred (i.e. on reefs and/or within the

halo/meadow zones), is given in electronic supplementary

material, table S3.

Our satellite imagery survey demonstrated that grazing

halos are significantly more common within mature (�8

years old) reserves than on fished reefs (x2(1, 190) ¼ 3.92,

p ¼ 0.048; figure 2a). Reserves were deemed ‘mature’ when

they had passed the threshold at which fisheries-targeted

species recovery generally occurs, as shown by Babcock

et al.’s [21] cross-ecosystem study of marine reserves which

found that the upper limit of time to initial detection of

direct effects on harvested species was 7.12 (mean 5.13+
1.9) years. From the ten predictor variables initially hypoth-

esized to influence grazing halo prevalence, we used model

selection techniques to isolate the most important variables,

which were subsequently included in analyses. These

variables were reserve age, sea surface temperature (SST;

a proxy for metabolic rates), and chlorophyll a concentration

(Chl a; a proxy for primary productivity; see electronic

supplementary material).

A generalized linear model (GLM) showed that reserve

age was a significant predictor of halo occurrence across the

GBR (table 1; electronic supplementary material, table S1;

R2¼ 0.072). Specifically, as reserves age, halo occurrence

probability increases significantly, with the likelihood of

pr
ob

ab
ili

ty
 o

f 
ha

lo
 o

cc
ur

re
nc

e

fi
sh

ed

yo
un

g
re

se
rv

e

m
at

ur
e

re
se

rv
e

0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
 o

f 
ha

lo
 o

cc
ur

en
ce

reserve age (years)

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

(a) (b)

Figure 2. Probability of grazing halo occurrence as a function of (a) reserve status and (b) no-take marine reserve age. In (a), points represent means (+s.e.) of the
probability of halo occurrence within whole reefs across the three reserve status categories. ‘Mature’ reserves are those that had passed the threshold at which
fisheries-targeted species recovery generally occurs, as shown by Babcock et al.’s [21] cross-ecosystem study of marine reserves which found that the upper
limit of time to initial detection of direct effects on targeted species was 7.12 (mean 5.13+ 1.9) years. ‘Young’ reserves are 7 or fewer years old. In (b),
solid line is model fit; shaded area is standard error. Open points represent whole reefs where grazing halos were observed (value ¼ 1) or not observed
(value ¼ 0) as a function of reserve age. Points are jittered to improve visibility. Each whole reef contains hundreds to thousands of individual patch reefs
around which grazing halos can potentially form.
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grazing halo occurrence increasing by approximately 250%

from a newly established reserve to a 40-year-old reserve

(figure 2b). The remaining two variables, SST and Chl a,

were not significant predictors of grazing halo occurrence.

We tested for significant pairwise and three-way interactions

among the predictor variables and found none.

Contrary to our initial hypothesis, halo size (average

width) across the GBR was not significantly related to

marine reserve status (fished versus reserve) nor reserve

age, but rather was best explained by two environmental

factors: patch reef area (i.e. area of reef around which halos

form; figure 3) and sea surface temperature (SST). By far

the greatest predictor of these two significant predictors

of halo width was patch reef area (tables 1 and 2; electronic

supplementary material, table S2; marginal R2¼ 0.482; con-

ditional R2 ¼ 0.617), which explained approximately 71% of

the total predictor variation.

To test whether the slope of the halo width–patch reef

area relationship deviated from what would be expected

based purely on geometrically based processes, we con-

sidered two null models (figure 3, dashed lines) based on

the simplifying assumptions that per capita herbivore density

and energetic needs are constant, and that reefs are a given

and simple shape (circles). An example of a perimeter-

based process is herbivory that occurs only by herbivores

living at the perimeter of the patch reef, whereas an example

of an area-based process is herbivory by herbivores living

throughout the full area of the patch reef. The lower dashed

line in figure 3 represents the expected relationship between

halo width and patch reef area based solely on increased reef

perimeter size, such that as reef area increases, halo width

remains constant as a function of perimeter (slope ¼ 0).

The upper dashed line in figure 3 represents the expected

relationship between halo width and patch reef area based

solely on increased reef area, such that as reef area increases,

halo width increases as a function of that area (slope ¼ 0.5).

4. Discussion
Our findings collectively demonstrate that reserves have the

capacity to predictably alter the functional importance of her-

bivores [9], shaping algal habitat structure over large scales as

a result. Specifically, in agreement with previous theoretical

work [18] and empirical studies from the Caribbean Sea

[4,5,22] and Indian Ocean [11], our in situ studies show that

herbivorous fishes graze benthic macroalgae in a spatially

constrained manner (figure 1b, blue bars) that forms grazing

halos (figure 1b, green bars). In addition, our data show that

this constrained foraging pattern occurs within a landscape

at Heron Island lagoon in which risk of predation increases

with distance from reef refugia, given piscivores’ presence

throughout the reef, halo and algal meadow zones

(figure 1b, red bars). It has been shown at the same study

sites that herbivores’ spatial foraging pattern is not likely

due to within-guild competition (fig. 2A in Madin et al.

Table 1. AIC values used in model selection process. Best-fit model was selected by using the drop1 function with chi-square test in R; analogous results were
obtained by using a stepwise model selection procedure with R function step. For grazing halo presence analyses, a generalized linear model was used
(R function glm); for grazing halo size model, a linear mixed effects model was used (R function lme). Patch reef area could not be included in the ‘Halo
presence’ model because halo presence was measured at the whole-reef scale, whereas patch reef area was measured at the within-whole-reef scale. Italics
indicate significance at p , 0.05.

model/variable

halo presence halo size

model AIC when dropped p-value model AIC when dropped p-value

null 95.510 n.a. 2149.46 n.a.

reserve age 97.919 0.036 2150.31 0.285

sea surface temperature 94.450 0.332 2146.27 0.023

chlorophyll a concentration 96.856 0.067 2151.45 0.988

patch reef area n.a. n.a. 2134.88 4.66 � 1025

log10 (patch reef area), m2
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Figure 3. Halo width as a function of patch reef area. Points are individual
patch reefs/halos from across the GBR; solid line is linear model fit; shaded
area is 95% confidence interval. Dashed lines are null model slopes for
expected relationships arising from a perimeter-based (lower line of
slope ¼ 0) or area-based (upper line of slope ¼ 0.5) effect of patch reef
area on halo width.

Table 2. Hierarchical partitioning of variance explained by final model
parameters for response variable halo size. Values obtained from R function
hier.part.

variable % of total variance explained

patch reef area 71.09

sea surface temperature 20.22
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[8]). Our satellite image surveys provide large spatial and

temporal scale evidence that as reserves age, reef ecosystems

are increasingly likely to exhibit halo-like patterns (figure 2).

Furthermore, individual grazing halos, of which we estimate

there to be millions within the GBR alone, occur over a spatial

scale large enough (i.e. hundreds to thousands of m2 per

halo) to be easily viewed from space by anyone via Google

Earth’s freely available satellite imagery. Halos are also

known to affect carbon sequestration because sedimentary

carbon accumulation scales with long-term surface macro-

algal biomass [6], highlighting halos’ potential importance

in regulating ecosystem-scale processes. These seascape-

scale patterns are repeated throughout the approximately

2300 km of the GBR, and indeed the world (E. Madin 2018,

unpublished data; C. Roelfsema 2018, personal communi-

cation), demonstrating the geographically widespread

extent of a key ecological function (i.e. herbivory) that

reserves encompass—as well as its resulting footprint on

reef ecosystems.

Our unexpected finding that halo width across the GBR

was driven primarily by patch reef area (figure 3) and was

not significantly related to marine reserve status (fished

versus reserve) nor reserve age can be explained by two poss-

ible factors. These explanations differ based on the limiting

factors of herbivore population size. First, if space (e.g. for

shelter or territories) is the limiting factor for herbivores,

larger patch reefs may support higher herbivore densities by

virtue of being more structurally complex with greater inhabita-

ble volume, and thus supporting higher densities of herbivores

per unit horizontal area, than smaller-area reefs. Conversely, if

food is the limiting factor for herbivores, smaller patch reefs

should have narrower halos by virtue of geometry. As patch

reefs increase in size, their area:perimeter ratio increases. More

interior area dictates that more fishes must forage in function-

ally less perimeter space as patch reef size increases, resulting

in wider halos due to the increased impact of more fishes on

a smaller perimeter space. These two explanations are not

mutually exclusive; both may be at play.

Regardless of the limiting factor (space or food) of herbi-

vore population size, figure 3 offers insight into the type of

process (i.e. area- or perimeter-based) that governs the

observed relationship between patch reef area and halo

width. The slope of this relationship (slope ¼ 0.268) lies

between the slopes expected for these two types of processes,

specifically that that as reef area increases, halo width

remains constant as a function of perimeter (slope ¼ 0) and

that as reef area increases, halo width increases as a function

of that area (slope ¼ 0.5). Figure 3 therefore demonstrates

that halo width is likely to be dictated by a mixture of both

perimeter-based and area-based processes.

The other significant predictor variable of grazing halo

width was SST. SST had a positive effect on halo width (i.e.

areas of higher SST have larger halos). Our post hoc interpret-

ation of the SST–halo width relationship is that it is largely a

function of the variation in patch reef size over latitude,

which is positively correlated with temperature. Specifically,

larger patch reefs are on average found in the northern GBR

(i.e. at lower latitudes), where temperatures are higher than

the more southerly GBR reefs. Thus, larger halos are found

in areas with higher temperatures. We tested the relationship

between patch reef size and SST a priori during the model

selection process to determine if the relationship was strong

enough such that both variables should not be included

in the model, but it was not (Pearson’s product-moment

coefficient r ¼ 0.380, d.f. ¼ 673, p-value , 2.2 � 10216). It is

also plausible that the increased metabolic rates, and thus

energy intake requirements, expected of herbivores under

higher temperatures could lead to higher net grazing rates,

and thus halo widths, as temperature increases, though a

recent meta-analysis of global herbivore impacts on resources

casts doubt on this explanation [23]. However, we have not

ruled out other alternative explanations for the SST–halo

width relationship, and these explanations remain speculat-

ive. Of the remaining non-significant predictors, reserve age

and Chl a both explained less than 5% of the variation in

the final model. However, the effect of reserve age on halo

width was in the direction predicted by our original hypoth-

eses (i.e. that whole reefs within older reserves should have

smaller halos). Whatever effect that reserve age has on halo

width was overwhelmed by the large portion of variation

explained by the environmental factors in the model. Collec-

tively, our results suggest that halo size results in large part

from the interaction between herbivore abundance and

behaviour and habitat size and configuration (i.e. patch reef

area and shape). Collectively, these results (figures 1 and 3;

table 2) demonstrate that although grazing halo occurrence

is driven by spatially constrained herbivory, halo size is

driven in part by other factors that include reef ecosystems’

environmental characteristics.

We did not attempt to distinguish between the relative

importance of the indirect (secondary) mechanisms govern-

ing herbivory over the scale of the GBR because the data

required to do so at this very large scale do not exist.

Rather, we focus here on the role of marine reserves in

shaping patterns of vegetation through herbivory over large

spatial scales. Nonetheless, our in situ data from Heron

Island lagoon, combined with previous and emerging results

from other studies, may offer some insight from individual

locations into the likelihood of these mechanisms’ roles in

generating the GBR-wide patterns we describe.

Specifically, these data collectively allow exploration of the

two potentially viable indirect mechanisms (i.e. herbivore

competition and predation risk) behind the spatially con-

strained patterns in herbivory observed within Heron Island

lagoon. Herbivore density data from the same suite of reefs

(fig. 2A in Madin et al. [8]) demonstrates that within-guild den-

sity had no clear effect on the maximum distance that

herbivorous fishes ventured beyond the patch reefs. It is

impractical to remove predators to isolate the role of risk at

the relevant ecological scale to determine if predation risk

could alternatively impose the observed spatial constraint on

herbivory. Instead, our risk titrations (figure 1b, light green

bars; reproduced from Madin et al. [7]) instead allow us to

gauge fishes’ perception of where the risk of predation out-

weighs the energetic reward of the food patch over the

spatial gradient of the halo [24]. Our results show that as dis-

tance from reef shelter and thus predation risk due to large,

mobile reef predators increase (figure 1b, red bars), net grazing

rate declines (figure 1b, light green bars). This phenomenon is

well documented; large sand gaps between reefs, such as those

in our study system, are known to impede fish movements [25]

and hence preclude grazing between reefs. In agreement with

Atwood et al. [6], these results collectively suggest that, at least

within Heron Island lagoon, predation risk is a more parsimo-

nious explanation for the observed patterns of herbivory than

is herbivore competition.
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Whether these patterns extend to other reefs within the

wider GBR region and can explain the disparity in halo

occurrence in fished versus mature reserve areas (figure 2)

is unclear. One way to explore the likely role(s) of the two

plausible indirect mechanisms (i.e. herbivore competition

and predation risk) in generating the GBR-wide patterns we

describe (figure 2) is by considering whether herbivores

and/or piscivores are likely to differ in abundance between

GBR management zones. Mobile herbivores have been

occasionally seen to be greater in biomass or density within

individual no-take reserves in the GBR [26,27], though only

one of these studies found this to be the case across more

than one herbivore species [27], and this was the case in

only one of the two regions studied. More often, herbivores

have been observed to be less abundant or not significantly

different in GBR no-take reserves relative to fished reefs

[28,29]. These studies demonstrate that while consistent

differences in mobile herbivore assemblages are not seen

within or among studies of GBR reserve effects, one cannot

eliminate the possibility that individual GBR reserves may

harbour higher densities of mobile herbivores than adjacent

fished areas. It is also important to recognize that herbivores

are not generally targeted by fishers in the GBR [29,30] as they

are in many other locations around the world. In terms of pis-

civores, reserve age and shark density are positively correlated

across the approximately 2300 km length of the GBR [31].

Similarly, other predatory fishes (both primary and secondary

fisheries target species) have been shown to consistently

increase in biomass or density in GBR reserves relative to

fished areas [28–30,32]. In another coral reef system, a

combination of theoretical and empirical work undertaken

throughout a gradient of piscivore density spanning hundreds

of kilometres revealed that predation risk was the key mechan-

ism leading to the same pattern of spatially constrained

foraging by coral reef fishes that form halos [17,18].

In summary, our local-scale empirical results from Heron

Island lagoon, in conjunction with past studies of halos

[4,5,7,10,11,25,33,34], past studies of GBR reserve predator

and herbivore abundances [28–32], and the fact that

herbivores are not heavily targeted by fisheries in the GBR

[29,30], suggest that predation risk is a more likely expla-

nation than herbivore competition as the dominant indirect

mechanism behind the pattern of halo prevalence across

GBR reserves that we describe. Therefore, while it is possible

that herbivore density plays a role in governing the size

of halos in the GBR as it does elsewhere [12], herbivore

density is a less likely explanation of the GBR-wide patterns

of marine reserve halo occurrence we describe. Given the

global prevalence of halos on reefs, further studies aimed

at disentangling the role(s) of predation risk and herbivore

competition in indirectly driving halo formation will help

elucidate how pervasive these mechanisms are in natural

ocean ecosystems. Understanding the extent to which these

mechanisms may structure reef ecosystems over large spatial

and temporal scales is important, particularly given that

fishing patterns—and therefore the indirect mechanisms

behind halo formation—may well differ among locations.

Remote observation of grazing halos may allow develop-

ment of a conservation and ecosystem-based management

tool, since halos provide information about if and how

reserves are affecting aspects of the functional importance

of herbivores, possibly predators, and at least one aspect of

reef habitat structure (i.e. vegetation coverage). Furthermore,

in fished areas, remotely observing grazing halo presence

may indicate if fishing is altering reef ecosystems, for example

where harvest intensity changes over time or space.

Importantly, grazing halos have been described from a

wide range of biogeographical regions [4,5,11,13,22,35–38],

demonstrating that this type of analysis may be informative

for marine reserve managers in many other locations glob-

ally. This method has many benefits: it is low-cost, requires

minimal technical expertise/training, covers large areas

and allows observers to look back in time where historical

imagery exists. Despite its clear benefits, our model of halo

occurrence has important limitations. Importantly, although

reserve age and halo presence are significantly correlated,

the model’s low R2 value (0.072) means that its predictions

must be interpreted with caution. For example, our data

(figure 2b) show that in many marine reserves, including

mature reserves, halos may not be apparent. Conversely,

many fished reefs may have halos. For this reason, halo pres-

ence cannot be considered a litmus test of marine reserve

effectiveness, nor of fisheries-induced loss of ecosystem

function. Further research into the full suite of mechanisms

driving halo formation, and any geographical differences

in these mechanisms, will probably increase halos’ utility

for ecosystem monitoring. Additionally, monitoring coral

reefs remotely is not a replacement for traditional in situ,

diver-based ecological surveys. The two methods must be

used in concert, with remote observation providing a

broad-brush picture of ecosystem habitat structure (and

aspects of ecosystem function), and in situ monitoring used

to ground-truth and calibrate remote assessments. Impor-

tantly, in situ scientific surveys are required to understand

the ecological details of reef ecosystems, from which we can

then make informed interpretations of data gathered from

remote surveys. Our work shows that the technology for

remotely observing reefs already exists. The main limitation

in applying this method universally is the lack of globally

comprehensive, high-frequency, very high-resolution satellite

imagery, for example to determine the temporal scale over

which halos appear/disappear and/or change in size. This

imagery could potentially be obtained for approximately

US$1 million [39] (see electronic supplementary material), a

cost that should fall rapidly as nano-satellites become more

abundant and their imagery more accessible [40]. For example,

near-daily imagery of much of the globe now exists at approxi-

mately 3 m spatial resolution. Though this resolution is too

coarse for quantifying changes in halo size, it does allow for

detection of halo presence and will probably improve in the

near future [41]. To quantify effectiveness of the world’s

marine reserves, we must look beyond current methods to

more scalable, cost-effective approaches [2]—of which

satellite-based observation of the world’s reefs may be one.
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