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ABSTRACT OF THE DISSERTATION 

PRINCIPAL COMPONENT ANALYSIS AND ASSESSMENT OF 

LANGUAGE NETWORK ACTIVATION PATTERNS IN PEDIATRIC EPILEPSY 

by 

Xiaozhen You 

Florida International University, 2010 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

This dissertation establishes a novel data-driven method to identify language 

network activation patterns in pediatric epilepsy through the use of the Principal 

Component Analysis (PCA) on functional magnetic resonance imaging (fMRI). A total of 

122 subjects’ data sets from five different hospitals were included in the study through a 

web-based repository site designed here at FIU. Research was conducted to evaluate 

different classification and clustering techniques in identifying hidden activation patterns 

and their associations with meaningful clinical variables. The results were assessed 

through agreement analysis with the conventional methods of lateralization index (LI) 

and visual rating. What is unique in this approach is the new mechanism designed for 

projecting language network patterns in the PCA-based decisional space.  

Synthetic activation maps were randomly generated from real data sets to 

uniquely establish nonlinear decision functions (NDF) which are then used to classify any 

new fMRI activation map into typical or atypical. The best nonlinear classifier was 

obtained on a 4D space with a complexity (nonlinearity) degree of 7. Based on the 

significant association of language dominance and intensities with the top eigenvectors of 
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the PCA decisional space, a new algorithm was deployed to delineate primary cluster 

members without intensity normalization. In this case, three distinct activations patterns 

(groups) were identified (averaged kappa with rating 0.65, with LI 0.76) and were 

characterized by the regions of: 1) the left inferior frontal Gyrus (IFG) and left superior 

temporal gyrus (STG), considered typical for the language task; 2) the IFG, left mesial 

frontal lobe, right cerebellum regions, representing a variant left dominant pattern by 

higher activation; and 3) the right homologues of the first pattern in Broca's and 

Wernicke's language areas. Interestingly, group 2 was found to reflect a different 

language compensation mechanism than reorganization. Its high intensity activation 

suggests a possible remote effect on the right hemisphere focus on traditionally left-

lateralized functions.  

In retrospect, this data-driven method provides new insights into mechanisms for 

brain compensation/reorganization and neural plasticity in pediatric epilepsy. 
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CHAPTER I 

Introduction 

 

1.1 Motivation 

This chapter introduces first all the relevant practical issues that motivated the 

research foundation of this dissertation.  Relevant factors for each of these issues are 

contextually summarized.   The structure of the research and the scope of each of the 

chapters are then described to highlight the continuity of the tasks that have been 

undertaken toward a practical solution in the classification of Functional Magnetic 

Resonance Imaging (fMRI)-based language brain activity patterns in pediatric epilepsy. 

1.1.1  Importance of fMRI in Presurgical Evaluation for Epilepsy Population 

Research indicates that 25% of children with epilepsy do not respond to standard 

medications and may benefit from neurosurgery (Liegeois et al., 2006). Doctors make 

pre-surgery evaluations of pediatric epilepsy patients using data from MRI and EEG 

scans, as well as neuropsychological, neuropsychiatric, and clinical assessments. The 

purpose of neurosurgery in pediatric epilepsy patients is to significantly reduce the 

frequency of future seizures.  

fMRI allows the observation of the spatio-temporal behavior of the brain 

activation during a given task based on the Blood-Oxygen-Level Dependent (BOLD) 

principle (Ogawa et al., 1990; Kwong et al., 1992; Turner et al., 1997).  Through fMRI 

technology, it is now possible to observe brain activity patterns that reveal specific brain 

networks involved in the execution of a given task, related to either physical or mental 
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activities (Gaillard, 2004). Precisely, noninvasive fMRI has played an important role in 

neurosurgical treatment for pediatric epilepsy population, since it helps identifying brain 

areas related to ictal or inter-ictal activity (Medina et al., 2005). In other words,  fMRI 

has become a  valuable tool for surgical planning in terms of (a) identifying functional 

areas for language, speech, and motor that need to be preserved, and in (b) understanding 

the reorganization of brain functions (e.g. language) due to tumors, structural lesions or 

serious brain dysfunctions such as seizures (Holloway et al., 2000). Therefore, the fMRI 

modality has been used extensively for brain mapping and it has become a powerful non-

invasive resource for studying brain plasticity and to delimit critical brain areas to keep 

during resection (Binder et al., 1996; Yetkin et al., 1998).  

1.1.2  Brain Plasticity in Terms of Language Networks 

Brain plasticity is the ability of the brain to compensate for functional loss by 

recruiting new brain areas and reorganizing neuronal networks.  Brain language networks 

are perhaps the most critical parts of the brain for their potential at eliciting new insight 

into brain plasticity.  

One of the most important factors in pre-surgery evaluations is the assessment of 

whether language skills can be preserved after surgery. Brain language networks are 

known to involve the communication between canonical Brodmann Areas called Broca’s 

and Wernicke areas (Gaillard et al., 2003). Though most left localized seizure foci and 

tumors affect the language behavior, it is observed that language reorganization exists 

during the language network’s developmental stage (Liegeois et al., 2004; Szaflarski et 

al., 2006). It is especially interesting that, for children with left hemisphere focal brain 
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injury, they rarely show speech and language impairment, which reveals the plasticity of 

the developing brain.  Thus, pediatric epileptic patients constitute an adequate population 

for examining plasticity of language organization.  This population will also be the one 

that will benefit the most once the activation patterns of language network reorganization 

are better understood. 

1.1.3  fMRI’s Role for Language  Reorganizations 

It is commonly known that language dominance is generally left hemisphere 

specialized. Several investigators have described reorganization of language networks 

from canonical areas to distinct locations, either in the same or the contra-lateral 

hemisphere due to the effect of structural lesions (e.g. stroke) or functional processes 

(e.g. epilepsy) (Liegeois et al.,2004; Szaflarski et al., 2006; Gaillard, 2004). The factors 

associated with the brain plasticity in terms of language networks include location of the 

lesion, its size, etiology, and age at seizure onset. Language lateralization for the pediatric 

epilepsy population cannot be reliably predicted based only on structural imaging and 

clinical data. However, fMRI has been recognized not only as a noninvasive, child-

friendly method, but also a reliable modality to visualize the effects of lesions and seizure 

on language distribution in typical developing children.  Therefore, it is now possible to 

rely on fMRI to identify patterns of language reorganizations, such as intra-hemisphere 

compensation, which is reorganization within the damaged hemisphere, and inter-

hemisphere compensation, which is by recruiting atypical brain regions, or reorganize to 

homologous regions of the other hemisphere. 

The fMRI-based approaches have been used with different paradigms to assess 
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the language network behavior in terms of location and intensity of activation. The 

Auditory Description Decision Task (ADDT) has especially been found to reveal the 

subject's language area in a well-defined manner (Gaillard et al., 2004). The ADDT also 

serves as a good probe for receptive language areas specifically located in the middle and 

superior temporal gyrus, and in the inferior and middle frontal gyrus of the dominant 

hemisphere (Gaillard et al., 2004; Reale et al., 2007). 

1.1.4  Challenge for fMRI’s General Processing Software 

The fMRIB software library (FSL) is a type of general processing software for 

language fMRI. It’s used to perform data processing and statistical analysis to obtain the 

intra-subject fMRI brain activation maps.  FSL often uses general linear methods (GLM) 

(Smith et al., 2004; Penny et al., 2007) to identify active or inactive brain regions.  

Moreover, on post-processing fMRI data sets, some statistical indicators are calculated, 

such as the Z-value.  This indicator is a statistical value which defines the brain activation 

strength at a given voxel.  For visualization purposes, a Z threshold value is applied to the 

activation map obtaining a “Z activation map” at a given p value, where p is the 

confidence probability to reject the hypothesis that the voxel inside the Z activation map 

is not activated. The activation map obtained is thus affected by the threshold parameters 

selected (such as the Z and p values), the coefficients chosen in the software itself, and 

the selected paradigm model.  

The activation pattern is obtained based on statistical relationship, and there is no 

golden rule in deciding whether it is related to the language network. Additionally, it 

takes up to 40 minutes to process one set of fMRI data.  Furthermore, FSL has the 
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options to process group analysis, which is called second level analysis but it requires the 

use of standard paradigms and acquisition parameters. This requirement is not practical 

when dealing with various sources of subject data. Due to these requirements, as well as 

to the algorithm complexity, the computational time and the memory requirements of 

FSL are quite demanding for processing groups of 4D fMRI data sets. 

1.1.5  Limitations of Statistical Methods and Models in fMRI 

In the last decade, there have been three major non-inferential statistical methods 

used for functional imaging: principal component analysis (PCA), independent 

component analysis (ICA) and scaled subprofile modeling (SSM) (Petersson et al., 1999). 

Every strategy for data analysis starts with data exploration and model selection. Model 

selection is a very complex process. It is impossible to cover all possible explanatory 

variable selection, and at the same time, make the best statistical inference for a dynamic 

growing population.  

PCA is a non-inferential method, which means that it does not depend on a 

particular model selection. The PCA has been thoroughly explored in this dissertation 

focusing on the language activation pattern detection in a mixed growing population at 

the fMRI multisite at Florida International University (FIU) (http://mri-

cate.fiu.edu/MAIN/).   

Before statistical inference, PCA can point out the source of variability that might 

have been ignored at the beginning; it can also serve to validate that the model selected 

can adequately account for the systematic variability in the data after inference(Petersson 

et al., 1999). A voxel-by-voxel approach of PCA is proposed as an alternative to the 
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region of interest (ROI) based methods, which has regionally specific hypotheses and can 

potentially lead to undetected effects. Our investigation also reveals that the PCA is a 

good mechanism for post-processing fMRI data using a large mixed population. 

In contrast to PCA, the ICA spatial component (patterns) has to be not only 

orthogonal, but also statistically independent with few large value voxels in each 

component. However, the temporal component in ICA is not constrained to be orthogonal 

which is different from PCA’s component scores (E matrix) as explained in Chapters 3. 

Therefore, ICA was not used as a second level analysis mechanism in this dissertation.  

Moreover, ICA was not used in our study, since in order to perform temporal ICA, the 

spatial dimensions need to be reduced so they are smaller than the time dimension. In 

other words, the length of the 3D activation map, aligned in one column, has to be 

reduced to less than the number of subjects that are included in the analysis process. 

The SSM is designed for ROI-based analysis as a non-inferential multivariate 

method (Moeller et al., 1987).  It requires the input data to be log-transformed, and then 

the variability of the data is decomposed into three components: global scale factor, 

group mean profile, and subprofile scaling factor. These component scores are similar to 

the ones used in PCA. SSM stands out for estimating the global effects. However, SSM 

was suggested to be less susceptible to artefactual decreases than other methods. No 

statistical model can back SSM for theoretical comparisons (Petersson et al., 1999). On 

the other hand, PCA may be valuable for the subspace transformation (Huber, 1985), and 

the investigation of the unexplained structure in the normalized residual image. 

1.1.6  Statement of Research Motives and Foundation 
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Most group statistical analyses of fMRI data sets look for “commonality,” under 

the assumption of homogeneity of the sample. However, inter-subject variance may be 

expected to increase in large “normal”, or otherwise heterogeneous groups. In such cases, 

certain deviant patterns may share a common feature forming small categorical sub-

groups otherwise hidden within the main pooling statistical procedure. These deviant 

patterns may be of importance, both in normal and patient groups. The fMRI deviant 

language patterns may be separated by expert inspection. During this inspection, a 

clinical expert writes comments and rates brain activity lateralization after reviewing the 

activation map shown on the computer. These patterns may also be separated by means 

of the laterality index (LI), which is a numerical coefficient that reflects the asymmetry of 

distribution of activated voxels with respect to the brain midline (Wilke and Lidzba, 

2007). However, the LI lacks spatial and graphical information. Expert rating may not be 

the optimal choice for interpreting such complex paradigms, since it’s inable to scale as 

the number of data sets increases. 

For the reasons aforementioned, there is a need for a mathematical analysis 

method and subsequent assessment tool for discriminating deviant spatial patterns of 

fMRI activation in a mixed population of control and epileptic patients. This dissertation 

has accomplished the design and implementation of a method as means to explore new 

research avenues pertaining to language network evolution on patients with epilepsy or 

brain lesions. This accomplishment was due to the support of a pediatric multisite 

consortium and a web application that provides hospitals the ability to electronically 

submit data consistent of 4D fMRI data sets along with clinical information on the 

subjects. This multisite is now increasing in the number of participants, currently 
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involving 15 health institutions across America.  Now as an enhancement for the 

multisite, a data-driven mechanism is provided to identify variant activation patterns 

among the uploaded population as well as statistical inference. 

 

1.2 Research Problem 

This dissertation focuses on developing an integrated method combining PCA, LI, 

clinical rating and nonlinear classifiers in order to find valid language network activation 

patterns in the fMRI data sets at the inter-subject level. Specific aims include: developing 

an easily implemented algorithm for performing standardization on the 4D fMRI data set 

for each subject, describing PCA-based procedures to identify sub-groups of distinct 

activation patterns in control and epileptic subjects, and comparing sub-groups with 

common clusters of activation based on the PCA algorithm results to different LI and 

expert clinical categorization. Additionally, the research aims at automating clinical 

assessment forms for fMRI language network activation patterns, in order to save human 

rating time and increase rating confidence. Based on the clinical info forms, statistical 

analysis can then be easily performed to extract population features and to examine 

factors that affect the language reorganization ability and to examine the correlation 

between certain atypical activation patterns and key factors such as seizure onset, age, 

and gender.  The ultimate objective is to elicit new understanding of the language 

networks in epileptic populations by providing evidence for the language reorganization 

and brain plasticity in order to help doctors gauge the risk of excising a seizure focus. 
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1.3 Significance of the Study  

According to the Epilepsy Foundation, epilepsy affects more than 3 million 

individuals in the population of the United States alone. Epilepsy is considered the third 

most common neurological disorder after Alzheimer and stroke; it is as prevalent as 

cerebral palsy, sclerosis and Parkinson’s disease, combined (Epilepsy fact Sheet: 

Epilepsy Foundation - http://www.epilepsyfoundation.org/about/factsfigures.cfm). 

Among the epileptic patients, 30% have a poor response to medications, and up to 10% 

are potential candidates for epilepsy surgery. With this population in mind, this study is 

therefore designed to investigate language networks and how they can be affected by 

epileptic seizures.  

An automated data driven method is consequently proposed to objectively 

identify activation patterns and perform group analysis that will overcome the 

subjectivity and potential human errors by relying solely on expert rating. Once the 

different patterns of language organization are identified in a statistically significant 

population, it will be more meaningful to then assess risk for language deficits when 

planning for epilepsy surgery.  

Furthermore, the design of the proposed method can be extended to identify 

variant brain activation patterns to deal with other brain abnormalities, such as 

Alzheimer, dementia and autism. This extension is possible because the PCA is 

implemented using non-normalized inter-subject intensity, as well as the way 

classification is performed using a unique decisional space that can manage a different 

number of dimensions. 
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1.4 Structure of the Research  

In structuring this dissertation, a description of the methodology used during the 

research process is introduced in Chapter 2. This chapter discusses the importance of the 

multisite repository to collect the language fMRI data of children with epilepsy, as well 

as normal controls from several institutions across North America. An overview of the 

software used to process and analyze the fMRI data sets is provided. This includes the 

general aspects explored in using (a) FSL  for generating activation maps; (b) MATLAB 

for encoding certain standard correction scripts and for implementing different 

clustering/classification algorithms such as the PCA, nonlinear decision functions (NDF), 

and support vector machines (SVM); (c) STATA statistic software for carrying out post-

statistical analysis. Finally, the challenges of the study, such as the limitations imposed 

by the conventional methods, data acquisition, data presentation, and the difficulty of 

making statistical inferences on clinical forms will also be addressed in this chapter. 

Chapter 3 presents the results of the different experimental stages when the PCA 

eigensystem was explored and associated with the characteristics of fMRI language 

dominance considering intensities, as well as their spatial relationship.  Conventional 

methods (LI and visual rating) are also visited. These initial developments are what lead 

to the new algorithms that were developed and are presented later in Chapters 4 through 

6. 

Chapter 4 looks into general classification techniques, introducing synthetic 

activation maps based on the real fMRI data pool. This chapter discusses the results of 

utilizing general nonlinear classifiers to classify any new fMRI activation map into two 

categories, typical or atypical, which is the common notion of analyzing language 
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patterns. The nonlinear classifiers used in this chapter are based on a new implementation 

of nonlinear decision functions. The results obtained are contrasted to the well-

established SVM for performance comparison purposes. 

Chapter 5 describes the algorithm that leads to defining the initial three primary 

clusters found using the PCA-based decisional space and ultimately the three groups 

found through the inclusion of the modified Euclidean distance method. Fleiss kappa and 

general kappa coefficients analysis were used to assess the agreement levels between the 

classification of the three groups and the conventional methods (LI and visual rating).  

Chapter 6 focuses on the language activation patterns that were found through the 

PCA-based method in Chapter 5 and their clinical relevance. It also describes the 

calculation of the group significance maps. It introduces the results of the patients’ 

clinical variables analyses through STATA software. Then, clinical interpretations of the 

atypical language groups are made in this chapter based on the associations of the clinical 

variables and activation patterns in order to understand the language compensation 

mechanism among the epilepsy population. 

Finally, Chapter 7 concludes the dissertation by providing a retrospective 

assessment of the merits of the proposed data-driven method within the context of a large 

heterogeneous population of pediatric epilepsy population, a population that is made 

possible through a multisite pediatric network in childhood epilepsy. 
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CHAPTER II 

Methodology 

 

2.1  Introduction 

This chapter provides a general description of the methods and essential elements 

that were useful for this study. It also explains the different impacts of conventional 

methods such as ROI-based LI and Visual Rating. 

Language networks can reorganize and move from their canonical locations to 

distinct ones, either in the same or contra-lateral hemisphere, as a consequence of 

structural or functional lesions due to damaged or resected tissue. With BOLD fMRI, it 

becomes possible to observe brain activity patterns and seek precise anatomical 

localization of brain activity that represents the execution of a given task. Therefore, the 

first step is to project all fMRI slices onto a standard brain to achieve theoretical 

uniformity in analysis and assessment. This will result in viable classification measures 

and decision metrics. PCA is an objective and efficient multivariate analysis tool for the 

statistical investigation of our multidimensional data sets. As a data driven method, it 

creates a decisional space which is robust in clustering data sets, assessing the relevance 

of each dimension, and determining prime activation patterns in large multidimensional 

data sets. Different classification techniques, NDF and SVM were used to assess the data 

from different perspectives. 

The multi-site fMRI repository established at Center for Advanced Techonlogy 

and Education (CATE) provides the source of data for pediatric epilepsy language 
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network study. This consortium involves more than 15 institutions across North America.  

Different paradigms were stored in the consortium.  Over 120 subjects who performed 

ADDT were processed as the population pool from this site. Each fMRI dataset was 

standardized with same voxel size, orientation, and dimensions. Standard MNI brain was 

preferred as a standard space for language activation analysis across subjects. 

The PCA is performed on activation maps generated by FSL to carry out group 

analysis using standard MNI brain tempaltes that would delineate specific language 

regions. The activation map of each subject is overlaid on the standard MNI brain, 

thresholded for visualization purposes, and then submitted for specialists’ assessment to 

rate the laterality in language network related areas. Furthermore, the LI is calculated for 

the Broca’s area and the Wernicke’s area separately on each subject, and a correlation 

between LI statistics and PCA grouping result are evaluated. The PCA group analysis 

results are thus validated by both the clinical rating and the LI correlations. The 

programming code to support preprocessing tasks was written in MATLAB. 

A user-friendly GUI was created for data preprocessing to standardize each fMRI 

dataset, andto analyze inter-subject activation patterns.  Statistical analysis was 

performed through STATA software. For instance, the kappa agreement test was applied 

to different grouping sources, either from PCA-based methods or from human rating, or 

LI. The Fisher exact test was also used to test the effect of different sites and scanners. 

ANOVA was applied to analyze the significance of age, gender, and seizure onset on 

atypical language activation patterns and on the ability for language reorganization. 
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2.2  General Analysis Method 

2.2.1   PCA 

PCA as a non-inferential method has been the fundamental method for the 

language activation pattern detection in a mixed growing population from our fMRI 

multisite. Though PCA is commonly used as a dimensional reduction process, it plays an 

important role in multivariate statistical analysis. It can also be used as an exploratory 

tool to identify patterns and build models for a given multivariate population. Since PCA 

can identify spatio-temporal patterns, its results could potentially reveal the functional 

connectivity among different brain areas over time (Friston et al., 1993). 

2.2.1.1 General Theories and Applications of PCA 

PCA can be used in 4D fMRI at a single subject level to detect activations. Each 

volume is placed in a row vector, as a single multivariate observation, each column 

represents a voxel.  Then all the rows (scans) are stacked into a data matrix X.  The 

covariance matrix of X, which is proportional to XX’, X’ being the transpose of X, 

reveals the first order relationship between each pair of voxels. In order to get the PCA of 

XX’, the step by step approach considered in this dissertation is similar to the singular 

value decomposition (SVD) of X, which generates three objects: eigenvalues (singular 

values) that express the power or importance each eigenvector holds; component score 

(subject loading or small eigenvectors E in our 3D activation maps in second level group 

analysis) which shows the temporal pattern (inter subjects’ variance pattern in our second 

level analysis); principal components (PCs), which represents the spatial patterns  (eigen 

image or big eigenvectors U in this dissertation). These three components are sorted 
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according to their respective eigenvalues, such that the first component is to express the 

most variability across all images.  XX’ is proportional to the sample voxel-by-voxel 

covariance matrix while XX’ is proportional to scan-by-scan (in terms of 4D fMRI PCA) 

or subject-by-subjects (in terms of 2nd level inter-subjects’ 3D activation map analysis) 

covariance matrix. Correspondingly, the PCs are voxel-by-voxel eigenvectors while 

component scores (subject loadings) are scan-by-scan (or inter-subject) eigenvectors. 

They are correlated by X with the same eigenvalues.  So the PCs and component scores 

should be interpreted concurrently.  Empirical observations also suggest that clever use of 

key eigenvectors could be used to detect patterns that otherwise would have been 

unaccounted for in the data sets. 

2.1.1.2 Limitations of PCA 

PCA’s results are sensitive to outliers and the type of preprocessing that was done 

on the data sets. The PCs can change from accounting for the covariance to correlation if 

the image data is normalized on dividing by the standard deviation image (Joliffe and 

Morgan, 1992). This is also the reason why in this dissertation, normalization of intensity 

is later generally avoided so we can look into the effect of the original features embedded 

in the data sets to account for inter subject variability. 

2.2.2   Nonlinear Decision Functions 

NDF in their generalized formulation optimized with the gradient descent 

algorithm, as adopted in this dissertation, allows the user to select any degree of 

complexity or nonlinearity (r) and any number of dimensions (n) in seeking that optimal 

decision function with the highest accuracy in classification. The data-driven mechanism 
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using NDF was found to be effective at classifying typical from atypical language 

networks activation patterns, even from a heterogeneous population often acquired with 

different acquisition parameters. The integration of PCA with the NDF classification 

paradigm results in a data-driven method that is both accurate and computationally 

appealing (within few seconds in processing time after the weights of the decision 

function are initially generated in the training phase). This approach could promote 

objective assessments of large data sets and can serve to interrogate data for a multitude 

of clinical variables. The main caveat is that these functions may not converge to a 

minimum-error stopping condition (Tou and Gonzalez, 1974; Jain et al., 2000; Duda et 

al., 2001) and care should be taken to avoid such pitfalls. 

2.2.3  Support Vector Machines 

The well known SVM approach maps input vectors to a higher dimensional space 

and seek an optimal separating hyper-plane to identify two different classes (Burges, 

1998; Cristianini and Shawe-Taylor, 2000; Boser et al., 1992). SVM relies on a limited 

amount of kernels, such as Radial Basis Function (RBF), polynomial, etc, which don’t 

perform well for certain problems of complex mapping, but often tend to minimize the 

classification risk by maximizing the inter-class marginal distances.  Such an approach is 

used as a comparative measure to gauge the merits of the aforementioned NDFs. 

 

2.3  Data and Subjects 

The primary barrier to identifying factors that modulate developmental plasticity of 

brain networks in relation to surgical outcome lies in the difficulty of studying a sufficient 
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number of patients with atypical brain activations to guide prognostic indicators of 

outcome (Gaillard et al., 2002, 2007; Yuan et al., 2006).  The only realistic solution is 

to thus build a multisite in support of a research platform for the cohesive study of the 

human brain, bringing in synergy several hospitals and academic institutions that share the 

same objectives. Consequently, FIU, in partnership with hospitals with renown pediatric 

epilepsy programs, built a multisite repository for pediatric epilepsy data (http://mri-

cate.fiu.edu) in order to investigate the effects of epilepsy on the brain functionality 

(Lahou et al., 2006). The ultimate aim is to collect data from a large population in order 

to identify types and subtypes of the heterogeneous expression of language networks 

and relate them to clinical variables such as age of brain injury, age of epilepsy onset, 

underlying etiology, and location of seizure focus.  

Each dataset is de-identified to guarantee patient confidentiality. Procedures 

were followed in accordance with local institutional review board requirements; all 

parents gave written informed consent and children assent. Typically developing control 

subjects were required to be right handed and free of any current or past neurological or 

psychiatric disease. All patients used in this research satisfy the inclusion criteria: 1. 

Patients undergoing epilepsy evaluation; 2. Patients’ age between 3 and 18 years old.  

Subjects are excluded due to the refusal of consent or if a parent or patient requests for 

study termination.  

This research evaluates subjects regardless of race or gender since epilepsy 

affects all genders and races across nations.  As pointed out in Chapter 1, since epilepsy 

is more prevalent in children, this research focuses on pediatric patients. 
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2.3.1  Data collection  

The data collection involved a total of 133 fMRI data sets with their corresponding 

anatomical T1 MRIs. Null activation was observed in 11 data sets, even under modified 

p=0.1 uncorrected condition, and as such, these data sets were excluded from further 

consideration.  This lack of activation could be due to the subjects that were not 

following the instructions required in performing the given language task. Therefore, 122 

data sets were considered valid for this study, and were distributed as follows: sixty 

four control and fifty eight children with LRE (see Table 2.1). 

 

Table 2. 1 Patient and subject distribution by Institution and scanner type (*) 

Subjects Institution Scanner TR Voxel Size 
(mm) 

Num 

HSC 
Hospital for Sick Children, 

Toronto , Ca 
GE 

1.5 T 
2 3.44x3.44x5 19 

MCH 
Miami Children's Hospital, 

Miami,FL, USA 
Phillips Intera 

1.5 T 
2 3.75x3.75x8 10 

CNMC 
Children's National Medical 

Center, Washington,DC 
Siemens Trio 

3T 
2 3.44x3.44x4 14 

BCCH 
BC Children's Hospital, 

Vancouver, Ca 
Siemens 

Avanto 1.5 T 
3 3.44x3.44x3.5 4 

 
 

LRE 

CHOP 
Children's Hospital of 
Philadelphia, PA, USA 

Siemens Trio 
3T 

3 3.0x3.0x3.0 11 

Control CNMC 
Children's National Medical 

Center, Washington,DC 
Siemens Trio 

3T 
3 3.0x3.0x3.0 64 

 

2.3.2  Image acquisition and Paradigm 

For all the participating institutions, each subject was asked to perform an 

auditory description decision task (a word definition task) which was designed to activate 

both temporal (Wernicke’s area) and inferior frontal (Broca’s area) cortex (Gaillard et 

al., 2007). The task required comprehension of a phrase, semantic recall, and a semantic 
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decision. Each institution had unique acquisition parameters that were subsequently 

corrected and standardized. The block design paradigm consisted of 100 (TR=3 sec) or 

150 (TR=2 sec) time-points, with experimental and baseline periods alternating every 30 

seconds for five cycles, totaling five minutes.  

During the “on” period, the participant listened to a definition of an object 

followed by a noun. Participants were instructed to press a button each time they judged 

that the description matched the noun. For instance, “a long yellow fruit is a banana” (true 

response) or “something you sit on is spaghetti” (Not true). Definitions occurred every 

three seconds.  Matching pairs were pseudo-randomly distributed (70% true responses, 

and 30% foils).  During baseline, the subject listened to the task definitions presented in 

reverse speech. The participant was instructed to press a button each time he/she heard a 

tone that followed the auditory string (70% true responses, 30% foils). The baseline was 

designed to control for first and second order auditory processing, attention, and motor 

response, while engaging the broad language processing network on an individual basis 

necessary for effective pre-surgical evaluation (Gaillard et al., 2007; Mbwana et al., 

2009). Four age appropriate levels of difficulty were available (4-6, 7-9, 10-12, >12). 

The difficulty level was achieved by manipulating the task vocabulary based on word 

frequency normative data derived from reading materials (Carroll et al., 1971). 

2.3.3  Data Preprocessing 

The participating institutions provided the anatomical and fMRI data sets using 

distinct file formats and use different magnets. Orientation and field of view were thus 

corrected and standardized.  Data sets were also matched into Neuroimaging Informatics 
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Technology Initiative (NIFTI) format using the transversal view and radiology 

convention, and were finally mapped into the standard Montreal Neurological Institute 

(MNI) brain with 3x3x3 (mm3) voxel size and resolution of 61 x 73 x 61 (axial x coronal 

x sagittal). 

A set of scripts in MATLAB (The MathWorks, Inc.) was developed to perform 

the needed correction and standardization for group analysis. FSL was used to perform 

the pre- and post-processing required for obtaining the 3D activation maps (Jenkinson 

et al., 2002; Jenkinson and Smith, 2001; Rowe and Hoffmann, 2006; Woolrich et al., 

2001). The data pre-processing was performed using MCFLIRT (Jenkinson et al., 2002); 

brain extraction using BET (Smith 2002); spatial smoothing using Gaussian kernel of 

FWHM 8 mm; intra-subject mean-based intensity normalization of all volumes by the 

same factor; high pass temporal filtering (Gaussian- weighted least square fitting (LSF) 

straight line fitting, with sigma = 120.0 sec). Time- series statistical analysis was carried 

out using fMRIB improved linear model (FILM) with local autocorrelation correction 

(Woolrich et al., 2001).  Post-processing was per- formed using fMRI Expert Analysis 

tool (FEAT) generating Z (Gaussianized T/F) statistic images thresholded using clusters 

determined by Z > 2.3 and a (corrected) cluster significance threshold of p = 0.05 

(Forman et al., 1995; Friston et al., 1994; Worsley et al., 1992). Registration to high-

resolution and standard images was carried out using FLIRT (Jenkinson et al., 2002). 

 

2.4  Software Tools 

We used a wide variety of software tools to support this research work.  This 

section describes the software applications and packages that were used as fundamental 
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pieces of software for data analysis, in two major steps: fMRI activation map generation 

and standardization; and in algorithm development. 

2.4.1      FSL 

The FSL version 4.0, developed by University of Oxford, UK, is the major 

software used to pre- and post- process the 4D fMRI data sets. FSL is an open source 

library which provided the necessary tools for analyzing fMRI data in this dissertation. 

These tools were used on the fMRI raw data sets to generate the activation maps for the 

ADDT paradigms emphasized in this dissertation. Specifically, the fMRI Expert Analysis 

Tool (FEAT) inside FSL was used in order to generate 3D activation maps from the 4D 

volumes, including the process of motion correction, alignment, filtering, model design, 

brain activation map results, and anatomical co-registration results (Jenkinson and Smith, 

2001; Jenkinson et al., 2002; Woolrich et al., 2001). FSL was installed in LINUX 

environment. The procedures for processing the 4D fMRI dataset were straightforward. 

Moreover, the final report of operations was presented in HTML format. Therefore, FSL 

is user friendly for us to access the image post-processing results just by clicking on the 

file named: report-poststats.html. After clicking on the activation map images a new page 

is open to show the localization of the calculated activation clusters. 

2.4.1.1 Implementation Procedures 

Each dataset undergoes three processing stages in FSL: (1) Spatial processing 

consisting of alignment, smoothing, standardization of the 4D fMRI data sets, and 

temporal filtering; (2) Statistical analysis for identifying the location of the activated 

voxels and associated voxel clusters within the probability of confidence (p-value);  (3) 
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Brain co-registration for co-registering the activation map to the subject anatomical brain 

(native space) and also with the standard brain MNI152 (standard space).  The 

rendered/overlaid images can be found in renderedzstat1.png. 

In our second level analysis, we need to extract the folder which contains the 

threshold image for each individual, and correct their rotation in the case where the plane 

of exam is not in the standard view.  The main components used in this dissertation are 

stats/zstat1 which contains the Z statistic image (Z = Gaussianised T/F), and reg/example 

func2standard that are related to the registration of the low resolution fMRI data to the 

standard image. 

 2.4.1.2 Algorithms and Models Used 

Different methodologies can be used in order to identify the voxels which are 

activated for the given task.  One methodology is based on the pre- known homodynamic 

response function observed to define the model. This dissertation utilizes GLM which has 

been used by FSL to generate brain activation maps (Penny et al., 2007) .In general, the 

GLM algorithm is based on modeling the data as a sum of certain factors. For fMRI raw 

data we can observe how each voxel’s intensity varies independently for each factor in 

the presence of additive independent and equally distributed noise.  The whole process 

consists in performing an analysis of variance separately for each voxel (univariate) in 

the time series fMRI dataset.  Another approach is a model free method with no previous 

known condition, such as Probabilistic Independent Component Analysis (PICA) 

(Beckmann and Smith, 2004) and Bayesian network (Marrelecet al., 2004).  However, 

ICA is more prone to focus more on the spatial aspects of the fMRI data and it is difficult 

to interpret the results, since each independent component does not have a clearly defined 
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physical or physiological process as origin (Petersson et al., 1999; Guillen, et al., 2008). 

In contrast to PCA, the ICA spatial component (patterns) has to be orthogonal as well as 

statistically independent with few large value voxels in each component.  However, the 

temporal component in ICA is not constrained to be orthogonal which differs from 

PCA’s component scores (E matrix) as described in latter chapters. Therefore ICA has 

not been used for second level analysis in this dissertation. 

2.4.2   MATLAB 

MATLAB (http://www.mathworks.com/) has been used in a wide range of fields, 

and its easy-to-implement GUI has become a ubiquitous tool in the experimental 

research stage of many scientists and engineers.   MATLAB is also being used to 

develop different tools to analyze functional Neuroimaging (Nielsen and Hansen, 2000; 

Yoo et al., 2004), EEG/MRI (Weber et al., 2004), especially with the advent of the 

enriched image processing toolbox available in MathWorks Version 6.0 or higher. Besides 

the script for implementations of PCA algorithms, SVM, Nonlinear Decision Functions, 

MATLAB scripts were also written to solve the challenges imposed by the fact that 

anatomical MRI data are often acquired with different views and different orientations. 

In this case, the motion correction and alignment algorithms from FSL will not be able 

to perform correctly. Therefore, MATLAB scripts for these corrections were developed 

before the processing with FSL is accomplished. 

2.4.3  Misc Software 

There are some software packages that were used to aid certain functions, such as 

format changes, Standard MNI brain template matrix, etc. 
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2.4.3.1 MRIcro 

The MRIcro (www.mricro.com) is a free public application with the following 

functions modules: view medical images, create 3D ROIs, provide Brodmann areas and 

anatomical templates, rendering and creating animations, overlay statistical maps or 

images, converting medical images formats (Rorden, 2004). It has also been used to 

analyze MRI and fMRI images, identifying ROIs and overlaying functional maps to 

anatomical MRI images. In this dissertation, due to the fact that different institutions may 

use different scanner and settings, fMRI scans can be converted to Analyze format from 

raw DICOM and MOSAIC DICOM format. Moreover, in order to generate different ROI 

mask for ROI-based analysis, such as LI calculation and synthetic maps generation, the 

Brodmann areas (BA) were extracted from the MRIcro provided BA templates (Rorden 

and Brett, 2000). The templates can also be used to reduce the dimensional size of the 

fMRI data sets as input for PCA. 

2.4.3.2 Xmedcon 

Xmedcon is another public neuroimaging application for format conversion and 

visualization of medical images (Nolf et al., 2003). This tool can read and write most 

common medical image formats and 3D raw image data.  Xmedcon can interface directly 

with AMIDE to support importing Analyze (SPM), DICOM 3.0 file formats, etc 

(Loening and Gambhir, 2001). It was used in this dissertation for the conversion between 

NIFTI and ANALYZE fMRI files. 

2.4.3.2 ImageJ 

The ImageJ is a Java source code-based tool that can be freely downloaded in the 

public domain. It is an image processing program developed at National Institute of 
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Mental Health (http://rsbweb.nih.gov/ij/features.html). It supports standard image 

processing functions, like display, edit, analyze, process, save and print 8-bit, 16-bit and 

32-bit images, contrast, sharpening, smoothing, edge detection, filtering, etc (Abramoff et 

al., 2004). It was used in the early stage of this study to read and write DICOM and 

ANALYZE files, to evaluate the effect of reslicing the 3D activation maps into the 

standard 3mm MNI brain dimensions. 

 

2.5  Conventional Methods  

Investigation about language activation patterns has been mostly focused on 

lateralization/dominance, either through calculation of LI or clinical expert’s visual rating 

on the 3D activation maps.  In this dissertation, different LI calculation algorithms were 

tested and compared with the PCA methods; a MS-Access based visual rating system was 

developed to allow clinicians to rate the activation maps in a faster and easier manner. 

2.5.1  Laterality Index  

The LI is a coefficient used to indicate the asymmetry of activation patterns on the 

brain corresponding to a certain language task. Most previous studies of group separation 

by language dominance have been performed using ROI-based LI. In contrast to visual 

rating, the ROI measures provide absolute criteria for laterality: LI ≥ 0.2 is left; LI ≤ −0.2 

is right; |LI | < 0.2 is bilateral. These criteria correspond to visual Left, Right, and 

Bilateral dominance. The regions employed can be hemispheric (Springer et al., 1999; 

Binder et al., 1996), which was the traditional notion of laterality. ROI can also be sub 
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regions in the frontal and temporal lobes or any specific small region, such as specific 

functional Brodmann area (Ramsey et al., 2001; Gaillard et al., 2002; Spreer et al., 2002).  

There are several variants of these methods: one is to count the number of voxels 

which exceed a set threshold in each region, another is to determine the mean t score of 

voxels within a region, and a third is to multiply the number of activated voxels by their t 

score. However, voxel counting neglects important information of the activation 

intensity.  In addition, voxel summation method is sensitive to statistical outliers (Price et 

al., 2005; Wilke and Schmithorst, 2006; Wilke and Lidzba, 2007). Recent development 

of LI technique is the Bootstrap method (Wilke and Schmithorst, 2006), through which 

the LI tends to be Gaussian distributed. First, on both hemispheres a mask is created and 

applied to get an activation population, and then an activation subset is defined by 

multiplying a fraction to the activation population. The fraction size used is chosen 

randomly, then the LI is calculated through predefined number of cycles and the average 

LI is obtained. In this dissertation, different ways of calculating LI for the same subjects 

were tried and compared.  LI calculated through Bootstrap was used as additional 

information to compare results after dataset clustering using the PCA method (Wilke and 

Schmithorst, 2006). 

Therefore, each LI was calculated using Eq.2.1 using a bootstrap method for each 

subject, where V denotes the activation magnitude or voxel count. 

Left Right

Left Right

V V
LI

V V






 

 
                                                                                                                                                                                                                                                                                   (2.1) 
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For the sake of this work we have defined as strong right dominant for those cases 

in which both frontal and temporal language areas are right, left dominance if both 

regions are left, or one left and the other NA or bilateral, and uni-bilateral if only one area 

is bilateral (Fernandez et al., 2001; Gaillard et al., 2002, 2004). The specific regions were 

determined by Broca’s area (BA 44,45,47) and Wernicke’s area (BA 21,22,39), which 

were extracted from BA templates provided by MRIcro (Rorden and Brett, 2000).  

2.5.2  Visual Rating 

Another common way of determining language dominance is by submitting each 

subject’s activation map to clinical experts who are blinded to subject identity and who 

would then score the laterality of activation in language network related areas. Each 

subject’s activation map will be first thresholded for visualization clarity and then 

overlaid on top of the brain template. We developed this Access-based rating tool where 

all images are scored to one of a predetermined set of language network patterns 

representing differing combinations of activations in canonical frontal and temporal 

regions as given in Figure 2.1 (Gaillard et al., 2004).  

 

Figure 2. 1: Language fMRI: Possible patterns of activation.  Anterior and lateral dots represent 
approximate frontal language areas (Broca); posterior and lateral dots represent approximate temporal 
language areas (Wernicke); parasagittal small dots represent left, right or bilateral non-canonical 
activations. In addition, no-activation and noise (pseudo activation) are considered. 
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In addition, cases of no-activation and noise (pseudo activation) are considered as 

a special category. Figure 2.2 shows the rating system where there are more systematical 

entries with detailed regions of interest categorizations on the activation maps (Guillen, 

2008).  Each subject’s activation map, consisting of an arrangement of 61 axial slices, 

was thresholded by Z > 2.3 and overlaid on top of the brain template classified with 

regard to overall hemispheric lateralization, language frontal lateralization (inferior 

frontal gyrus -IFG, Brodmann area [BA] 44,45,47, plus mid frontal gyrus -MFG, [BA] 

9,46), and temporal language lateralization (primarily middle and superior temporal gyrus 

and supramarginal gyrus, BA 21,22,39). All images were scored to one of a 

predetermined set of language network patterns representing differing combinations of 

activation in canonical frontal and temporal regions. Then the identified rater provides 

the level of confidence in the rating. Raters can also type relevant comments on their 

observations. Pressing on the “done” button will save the reviewed studies. 

 

2.6  Statistical Analysis 

STATA is statistical data analysis software used for our statistical analysis 

section. Fisher exact test was applied to assess the site/scanner independence as well as 

the significance of association of other factors. The association of clinical factors with the 

group distribution was analyzed using either Fisher exact test for categorical data or 

ANOVA and t-test for continuous data.  In our study we found more than two subgroups 

of activation patterns, thus pair wise comparisons of groups were performed. The Holm’s 

sequential Bonferroni procedure was then applied to correct for the probability of a Type 

I error (alpha =0.05). 
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Figure 2. 2: GUI Snapshots of the Image Rating Components. 

 

2.7  Challenges of the Study 

2.7.1  Acquisition Parameters Formats 

Since this is a multisite study, it’s difficult to constrain all the data sets uploaded 

into the consortium to be of the same format and with same acquisition parameters. 

Different hospitals collect the anatomical and fMRI data sets using distinct file formats, 

plane of exam, view orientation, slicing, voxel size, repetition time (TR), and number of 

time points.  In addition, data were obtained from either 1.5 or 3.0 Tesla magnets. Thus 

the orientation, slice number, voxel size and field of view have to be corrected, which is a 
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time-consuming task. These issues also need inspection control over the individual data 

sets before we included them into the study. 

2.7.2  Clinical Information Collection and Interpretation 

Each participating institution submits the required forms in terms of three distinct 

types of information: (1) Medical Information, (2) Neuropsychological information, and 

(3) Imaging information.  The Appendices in Guillen’s dissertation provides the Medical 

Information forms suggested by the medical specialists which are important for our 

clinical variable analysis (Guillen, 2008). As we can be observed from the complexity of 

these clinical forms, it’s not only time consuming but also difficult to perform data 

mining and interpret the correlations between the different entries. Thus we propose the 

multimedia Access rating tool to assess fMRI brain activation maps in a systematic way, 

making it more computationally efficient 

2.7.3  Limitations of the Conventional Methods 

The limitation of LI is that the actual value is affected by the defined ROI 

activation, threshold used, intensity range, and noise outliers (Wilke and Schmithorst, 

2006; Wilke and Lidzba, 2007).  For visual rating, the subjectivity is the major 

disadvantage since the same activation map can be categorized into different pattern or 

rating certainty when viewed at different time by different rater. Moreover, the 

processing time is another constraining factor for using this method, as the data size of 

the consortium keeps growing ( exceeding currently  more than 100 subjects), and with 

the different paradigms contemplated,  visual rating becomes impractical  for our 

purposes. 
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CHAPTER III 

Practical Merits of the PCA in Language FMRI Analysis 

 
 

3.1  Introduction 

FMRI is capable of describing brain activity at a subject level for clinical 

purposes (first level analysis), such as when it’s utilized for pre-surgical mapping. 

However, the majority of research is conducted at group level (second level analysis). 

Subjects are normalized using a standard anatomic atlas to ascertain the inter-subject 

commonality utilizing complex statistical methods. Atypical language activation pattern 

analysis is of significant clinical relevance in neuroscience research, especially when 

surgical interventions are deemed necessary. Epilepsy patient populations provide a 

means for validating these methods because of known heterogeneity of language 

dominance. 

PCA is a valuable mathematical method used for the exploration and analysis of 

multidimensional data sets. It is further accepted that the principal components, which are 

orthogonal, are the linear combinations that maximize the variability of data sets (Jollife, 

2002). These characteristics of PCA are incorporated in our method to transform the 

fMRI activation map from spatial space into eigenvector feature space.  

Here, we propose a new configuration and application of the PCA for fMRI 

language activation pattern recognition among a heterogeneous population. The top 

eigenvectors are proposed to objectively automate the recognition of ROI among fMRI 

data sets. The potential for using eigenvectors to separate and classify fMRI language 
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activation patterns is examined in this chapter. 122 subjects’ fMRI activation maps from 

the multisite were processed. Different numbers of top eigenvectors were examined in 

comparison to their spatial distributions of LI and their respective visual ratings.  

 

3.2      Method 

The 3D activation maps generated through FSL were Z (Gaussianised T /F) 

statistic images with the resolution of 61x73x61. As indicated earlier, there were 122 

valid 3D data sets included in the PCA process.  

Previous publications have reported PCA as the core analysis method for Scale 

Sub- profile Model (SSM), which was presented as a PCA approach for modeling regional 

patterns of brain function (Moeller et al., 1987; Smith et al., 2006; Alexander and 

Moeller, 1994). The relationship between the so-called subject loading and regional 

covariance pattern (eigen-image) has been widely proved (Turk and Pentland, 1991). 

According to the concept and merit of subject loading, we performed PCA on our 122 

fMRI activation maps without masking and without intensity normalization. The following 

are the detailed steps in our proposed algorithm: 

Step 1.  Each individual’s 3D dataset was transformed into a 1D dataset with n 

voxels, where n is defined by M × N × L , where M , N and L are the resolutions of the 

activation map image in the x , y and z axes, respectively. The whole population of 

subjects was organized on a 2D matrix X, where each subject contributes a specific 

column in the matrix. The mean value for each voxel across all subjects, which composes 

the mean vector (m), was computed. 
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Step 2. Each activation map was centered by subtracting the mean vector for all 

subjects. The covariance matrix C x was then calculated from Eq.3.1. 

C x = ΨT Ψ

Where  Ψ = [Φ1Φ2..Φn ] and each Φ is defined as Φ = xi − mi , i = 1, 2...k with xi 

being  the vector containing the activation of a given subject. 

 Step 3. MATLAB’s eigen-function was used to compute the eigenvector matrix 

(E) of the covariance matrix (Cx). Then the eigenvectors were sorted by the corresponding 

eigenvalues. Each subject was represented by a row vector e.i = [e1i ..eji ] where j 

corresponded to the eigenvector being used. Notice that the E matrix here is equivalent to 

the subject loading matrix as in SSM and the  U matrix calculated in Eq.3.2 is equivalent 

to the regional covariance pattern, but instead of “regional”, our U is the covariance 

patterns  of the whole 3D brain region such that | ui |= 1. 

U = ΨE                                                              (3.2) 

 

3.3     Findings 

The findings revealed in this chapter provide solid evidence of the merits of PCA 

in this research. Moreover, they also pave the foundation of the data-driven algorithm 

newly proposed in this dissertation, where a PCA-based decisional space is designed to 

identify subgroups of the mixed population in the consortium. 

3.3.1  Eigenvalues 

The process of choosing the top two eigenvectors is based on the cumulated 

eigenvalues of the PCA as shown in Figure 3.1.  In other words, the first two 
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eigenvectors carry significant information about intensity differences and overall 

lateralization of the activation (note that the sum of the first two most significant 

eigenvalues is around 80% of the total sum as seen in Figure 3.1, which means that the 

mean square error is 20%). 

 

 

Figure 3. 1: Cumulative eigenvalues of the PCA among the 122 subjects. Note the top two eigenvectors 
provide 80% of the eigenvalues. 

 

 

3.3.2  Leading Eigenvectors Identifying ROI 

From the actual data of 122 subjects, scaled fMRI activation maps were aligned 

into 2D columns to perform PCA. As illustrated in Figure 3.2, the first 2 eigenvectors are 

adequate to reveal the regions of interest. Notice the strong bipolar value of anterior 
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(Broca) and posterior (Wernicke) clusters. As a result, fMRI activation maps can later be 

masked with language areas (Broca’s and Wernicke’s) to reduce the image dimensions as 

will be demonstrated in Chapter 4. 

3.3.3  Merit of Second Eigenvector with General Language Dominance 

With all the 122 subjects considered, it was determined that the second eigenvector 

as the x axis tends to separate typical from atypical when the overall LI is used as the y 

axis (as in Figure 3.3). As we can see from this figure, the zero line in the second 

eigenvector axis provides intuitively a rough decision line between typical (> 0) and 

atypical groups (< 0). Note that every data point that is on the right side of this decision 

line is actually left dominant (LI> 0.2). Since the mean of the second eigenvector values 

for those globally atypical (LI< 0.2) is -0.0814, and since the mean of the second 

eigenvector values for those globally right dominant (LI<-0.2) is -0.1051, the -0.1 value (an 

approximate in between these two means) was chosen as a threshold criteria for primary 

cluster 3. These experimental evaluations will be detailed in Chapter 5. 

3.3.4  Merit of First Eigenvector to Dominance and Intensity 

It was determined that when considering any two groups in the population, either 

higher intensity typical vs. atypical, or lower intensity typical vs. atypical, or even higher 

intensity typical vs. lower intensity typical, the zero line of the first eigenvector is 

sufficient to separate them as given in Figures 3.4 through 3.6. Higher activation intensity 

is defined as higher than the mid-point of the analyzed population’s mean intensity range. 

On the other hand, lower activation intensity is defined as lower than the mean of the 

analyzed population’s intensity. 
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3.3.5  Relationship of Top Eigenvectors  with Visual Rating 

The visual rating distribution uses the first three eigenvectors as the axes as 

depicted in Figure 3.7. The figure shows a degree of disparity between the PCA and the 

visual rating and that the four categories are potentially separable based on their 

distribution using the PCA. 

 

3.3.6  Relationship of  Top Eigenvectors with LI 

 

The correlation between the PCA and the LI suggest a potential for using 

eigenvectors to separate and classify fMRI language activation patterns as depicted in 

Figure 3.8 which has a smaller degree of disparity between the PCA and LI and where 

the 3 patterns are separable based on their distribution using the PCA. 

 

 

Figure 3. 2: The 3D representation of top two big eigenvectors u1 and u2 (a) Gray scale coded 2D array 
representation of the first eigenvector u1.  Slices are oriented in radiological convention: left hemisphere on 
the right side.  (b) Representation of the second eigenvector u2. 

 

 

 

36 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 3: The zero line in the second eigenvector axis provides intuitively a rough decision line between 
typical (> 0) and atypical groups (< 0). Note that every data point that is on the right side of this decision 
line are actually left dominant (LI > 0.2). 

 

 

Figure 3. 4: The zero line in the first eigenvector axis is determined to provide a consistent decision line 
between higher intensity typical group (< 0) and atypical group (> 0). 
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Figure 3. 5: The zero line in the first eigenvector axis is determined to provide a consistent decision line 
between lower intensity typical group (< 0) and atypical group (> 0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 6 The zero line in the first eigenvector axis is determined to provide a consistent decision line 
between higher intensity group (>  0) and lower intensity groups (<  0) within all the subjects that are 
typical. 
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Figure 3. 7: Visual rating distribution vs.  PCA’s top three eigenvectors. Black circle is rated as left 
dominant; red square is rated as bilateral; green star is rated as right dominant; blue diamond is rated as 
other (null activation or noise). 
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Figure 3. 8: LI distribution vs. PCA’s top three eigenvectors. Black circle is left dominant as LI value 
indicates; red square is bilateral; green star is right dominant. 
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CHAPTER IV 

Integrating Nonliear Classifiers with PCA 

 

4.1  Introduction 

This Chapter introduces a pattern classification paradigm using nonlinear 

classifiers as means to automatically categorize language related fMRI activation maps 

into typical and atypical groups. As we have explored the merits of the top eigenvectors 

of PCA’s decisional space in chapter 3, they can be used here as means to reduce the 

dimensionality of the fMRI activation maps from a classifier’s perspective. The only 

issue is the need to train data sets for any classifier to determine the appropriate weights 

of the optimal decision function. There are two general obstacles/limitations of using our 

existing data as training data pool: (1) The sample size of existing subjects, although 

large, is still not adequate to have all the possible activation patterns that are suggested by 

the clinicians; (2) There is no golden standard to classify the existing real fMRI activation 

map into a category that all methods will agree. Thus in this chapter synthetic activation 

maps will be introduced to implement nonlinear classifiers through which the automatic 

process of classifying any existing and future activation maps in the consortium can be 

achieved. 

In order to extend the practicality of these approaches, there is a need to design an 

automated data driven method for determining language dominance that ultimately will 

overcome the subjective methods that rely on visual rating and the ROI-based analysis 

with their inherent a priori assumptions. In a general sense, language activation patterns 
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are classified into either typical or atypical categories. Atypical fMRI activation patterns 

were defined as those cases in which brain activation found in one or two regions is right 

or bilateral. Based on expert criteria, left dominance is considered typical if both regions 

are left, or one left and the other bilateral or non-canonical (Fernandez et al., 2001; 

Gaillard et al., 2002, 2004). 

The essential characteristics of the PCA are thus incorporated in our method to 

transform the fMRI activation map from its spatial space into the eigenvector feature 

space.  PCA is often used combining other classification techniques such as k-means 

(Mbwana et al., 2009), or neural networks (Samanwoy and Hojjat, 2008), to name a few. 

The main advantage of the PCA is the fact that it is a data-driven method as opposed to 

the traditional ROI-based methods that make use of different a priori empirical 

assumptions, and to the visual rating methods that are prone to bias. On the other hand, 

SVM maps input vectors to a higher dimensional space and seek an optimal separating 

hyperplane to identify separable classes (Boser et al., 1992; Burges, 1998; Cristianini and 

Shawe-Taylor, 2000). 

In comparison to the generalized NDF method where the user is free to select any 

number of dimensions and any degree of complexity, the SVM method, although 

powerful in its own right, relies on a limited number of kernels.  Therefore, SVM might 

not perform well for certain data classification problems of complex mappings, but does 

nonetheless attempt to minimize the misclassification risk by maximizing the inter-class 

marginal distances. Thus, compared to SVM, NDF used in conjunction with the gradient 

descent algorithm can accommodate any number of dimensions and any degree of 

nonlinearity (or degree of complexity), while seeking a decision space with the best 
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possible accuracy in the training data sets. The main caveat is that these NDF functions 

may not necessarily converge to a minimum-error stopping condition (Duda et al., 2001; 

Jain et al., 2000), a caution that is taken into consideration in this implementation. 

This chapter also presents a comparative pattern recognition study as means to 

automatically classify language fMRI brain activation maps from a large population into 

typical and atypical categories. With the multitude and diversity of the data collected 

came also the necessity to overcome site and scanner dependencies. To meet this need, 

standard data formats and processing uniformity were enforced without imposing any 

constraints on the hospitals providing the data. Although 122 real data sets are used, 

which in itself is a significant number; additional synthetic fMRI data sets are randomly 

generated to reinforce the classification merits of the proposed method. 

 

4.2  Method 

4.2.1  Data Source - Real data sets 

The research reported in this chapter made use of the population that performed 

ADDT as reported in Chapter 2. Recall there are 64 control and 58 children with LRE 

(patient population) included in this study; each subject was asked to perform an auditory 

description decision task (a word definition task) which was designed to activate both 

temporal (Wernicke’s area) and inferior frontal (Broca’s area) cortex (Gaillard et al., 

2007). All the 4D fMRI data sets go through the same standard preprocessing using FSL 

for obtaining the resulting 3D (axial x coronal x sagittal) activation maps, which are with 

the resolution of 61x73x61.   
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4.2.2  Data Source - Synthetic data sets 

Synthetic activation patterns were generated according to the standard 15 patterns 

shown in Figure 4.1. These 15 patterns and their respective ROIs were suggested by 

clinical experts through extensive empirical evaluations. In accordance with the 

definition of typical and atypical activations, the top 5 patterns were regarded as typical 

(left dominant), and the rest were considered atypical (bilateral or right dominant). Based 

on the 122 fMRI activation maps that were considered in this study, activation in the 

Broca’s and Wernicke’s areas were extracted and saved as regional activation samples 

when the activated voxel number exceeded a threshold value of 400 voxels per region. 

For a given hemisphere, this threshold represents about 20 % of the Wernicke’s area, and 

about 15 % of the Broca’s area. This empirical threshold of 400 is estimated through 

experimental trials in order to minimize the error TYPE I, consisting in erroneously 

declaring presence of bilateral activation pattern on the basis of the LI when there is not, 

and to maximize the regional activation sample size so as to include all 15 established 

standard activation patterns. 

With this threshold selection, the 122 fMRI activation maps yielded the following 

compounded distributions: 92 with left Broca’s activation, 85 with left Wernicke’s 

activation, 60 with right Broca’s activation, and 26 with right Wernicke’s activation. 

Then these samples were randomly select and combined to generate each one of the 15 

patterns as shown in Figure 4. 1. For typical category, 40 samples were created for each 

pattern; for atypical category, 20 patterns were created for each pattern. Total 400 

synthetic data sets were generated. 
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Figure 4. 1: fMRI language activation patterns in typical and atypical (Bilateral and Right) categories: 
Anterior and lateral dots represent expressive language areas (Broca); posterior and lateral dots represent 
receptive language areas (Wernicke). Note, null-activation and noise (pseudo activation) are not considered. 

 

4.2.3  Training and Testing Basis Generation on PCA Feature Space 

Eigen-image and projection basis in the feature space have been studied 

extensively with different applications in medical imaging, as well as object recognition 

and pattern classifications problems (Joliffe and Morgan, 1992; Turk and Pentland, 

1991). With the due consideration to the concept and merit of subject loading (Alexander 

and Moeller, 1994), we performed the PCA on the 200 synthetic activation maps to create 

the feature space, and then project the rest of the synthetic maps and real subjects’ data 

into the feature space to generate the training and testing basis.  Details of the 

implementation steps of the PCA are provided as following after following the steps 1 

through 3 as presented in Chapter 3. 
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1.     Project  into U space to generate the basis as training input as in Eq.4.1. 

B = ΨU                                       (4.1) 

2.  Project any new subject new , which is the new centered  

( ), onto the feature space defined by the training data sets to generate 

the testing basis using Eq.4.2. 

newx

newnewnew mx 

Ub newnew                                  (4.2) 

where the length or dimension of  is determined by j which represents how many 

leading eigenvectors were chosen.  

newb

Therefore, these bases generated on the PCA leading eigenvector feature space 

are served as the inputs for the nonlinear classifiers implemented in this chapter. 

4.2.4  NDF Classifier Implementation 

In order to obtain a classifier able to achieve optimal generalization, 50% of the 

data sets were reserved for training and the remaining 50% were used for testing. 

Training was performed with cross-validation to avoid memorization and increase the 

generalization ability of the classifiers (Tito et al., 2009). 

After generating the basis for each activation map in the form of a matrix (B), the 

NDF were then trained as classifiers on the B matrix. General formulation for the NDF as 

introduced in (Tou and Gonzalez 1974) takes the form shown in Eq. (4.3). 
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where d0(B) =  0 , with r being the complexity degree (or nonlinearity of the function) and 

with n defining the number of dimensions in the decisional space. 
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 NDF classification rules for separability of two classes (C1 and C2) are defined as 

follows: 
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In the proposed implementation, the B matrix represents the basis vectors for each 

fMRI activation map on the PCA feature space. MATLAB code was developed to train 

the weight vector using the gradient descent algorithm. In this case, the stopping 

condition is reached when an optimal accuracy is obtained in the training phase, which 

sets the final update of the weight (w) vector used in the decision function of Eq.4.3. 

4.2.5  SVM Classifier Implementation 

In this case, MATLAB’s bioinformatics toolbox (2007) was used to train the 

projected basis, and generate the support vectors as classifiers. Different SVM kernels 

with different parameters were tried from 1D to 5D feature spaces for performance 

comparisons with the NDF-based method.  The following standard kernels were 

considered: polynomial, Gaussian Radial Basis, linear, and Multilayer Perceptron (MLP). 

4.2.6 Classifier Results agreement analysis 

In order to corroborate the automatic PCA grouping results, each subject’s 

activation map was visually rated by three experts blinded to subject identity in order to 

score the laterality of activation in language network related areas. 

In order to show the relationship between the LI as given in Eq.2.1 of Chapter 2, 

this chapter will explore three different way of calculating LI. Each LI was calculated 

based on magnitude of activation (Z score) as well as voxel count using a bootstrap 
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method for each subject (Wilke and Schmithorst, 2006). The averaged LI is determined 

by Eq.4.5 in order to take both activation magnitude and extent (voxel count) into 

consideration. 

_ _(avg exent magnitudeLI LI LI ) / 2 
    (4.5) 

In order to show the correlation between on one hand the experts’ grouping and 

the PCA clustering results, and on the other hand between the LI measurements and the 

PCA clustering results, the members of the resulting clusters were statistically analyzed 

using quantity inter-rater agreement with Kappa coefficient  (Viera and Garrett, 2005). 

 

4.3  Results 

4.3.1  Classification Inputs 

The PCA process drastically reduced the input dimensions for the classifier. It 

was found that the eigenvalues of 5 leading eigenvectors represented 90 % of the entire 

processed information for the 200 synthetic data sets used in the training phase.  The 

projected training basis on the 3 leading eigenvectors is presented in Figure 4.2 for 

visualization purposes.  This figure also shows that it’s not optimal to train the classifier 

with bases projected just on these 3 leading dimensions.  

4.3.2  NDF Classifier performance 

Different complexity orders with different dimensions were trained and tested. 

Figure 4.3 and Table 4.1 provide the performance results with benchmarks to evaluate the 

complexity degree effect on the 1D to 5D feature space. A decision function with four 
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dimensions (n=4) and with a complexity (nonlinearity) degree of r =7 was found to yield 

the best performance on the synthetic testing data with an accuracy of 96.00 %, a 

sensitivity of 97.00 %, a specificity of 95.00 %, and a precision of 95.10 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2:  Normalized projected training basis on the 3 leading eigenvectors feature space, depicting 
the relationships of 200 synthetic activation maps (100 typical and 100 atypical) on the 3D-feature space. 
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Figure 4. 3: NDF Classifier performance for different combinations of complexity degree and the number of 
dimensions considered. 
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Table 4. 1: NDF performance evaluation in percentage values 
 

Dim. 
Best Complexity 

Degree (r) 
Acc. Sens. Spec. Prec. 

1D 8th order 72.00 91.00 53.00 65.94 

2D 7th order 75.50 94.00 57.00 68.61 

3D 4,5,6, or 7th order 86.00 92.00 80.00 82.14 

4D 7th order 96.00 97.00 95.00 95.10 

5D 5,6, or 7th order 95.00 95.00 95.00 95.00 

(Acc.: Accuracy, Sens.: Sensitivity, Spec.: Specificity, Prec.: Precision) 
 

4.3.3  SVM Classifier performance 

In the implementation of SVM, just like with the NDF method, different kernels 

were tested under different dimensional spaces. For comparative purposes, the best 

performance for each dimension is given in Table 4.2. Polynomial kernels of SVM were 

found to experience more difficulties when handling higher degrees of complexity in 4D 

space. 

Table 4. 2 : SVM performance evaluation in percentage values 

Dim. Best Kernel Acc. Sens. Spec. Prec. 

1D 
Polynomial 
3rd order 78.00 76.92 80.00 76.00 

2D 
Polynomial 
4th order 

82.00 81.00 83.00 82.65 

3D 
Polynomial 
5th order 

90.00 91.00 83.00 84.26 

4D 
Polynomial 
3rd order 

93.50 94.00 93.00 93.07 

5D RBF 91.00 93.00 89.00 89.42 

 (Dim.: Dimension, RBF: Radial Basis Function, Acc.: Accuracy, Sens.: Sensitivity, Spec.: Specificity, 
Prec.: Precision) 
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4.3.4  LRE language  fMRI classification 

After applying the optimal 4D NDF classifier with complexity degree of 7 on the 

actual language-area-masked data sets, the 122 real data sets were separated into 2 

groups. The distinct activation patterns of these 2 groups are as depicted in Figure 4.4 

using selected axial cuts. According to the classification results, 34% of the LRE 

population shows atypical activation. For comparative purposes, the classification results 

obtained on applying the optimal SVM classifier are shown in Figure 4.5. These results 

were achieved utilizing polynomial kernel of third order on the 4D feature space. Note the 

differences in the activation patterns, especially in the atypical cases. Although both NDF 

and SVM recognize the atypical right dominant activations in right Broca’s area, they 

differ in the right Wernicke’s area. 

4.3.5  PCA-NDF vs. LI classification Results 

The cluster distribution plots associated with the LI of Broca’s and Wernicke’s 

areas are shown in Figures 4.6 through 4.8. Each figure depicts different aspects of LI 

calculation depending on the activation feature used. These figures illustrate that in the 

atypical group, LRE subjects were more associated with atypical right-brain dominant 

activation. Though LI will not strictly agree with the specific classification results of the 

PCA-NDF, LI agree well with PCA-NDF in finding the most atypical activation pattern 

(which is right dominant in the cases considered). In addition, the extent of classification 

mismatches of the combined PCA-NDF versus the LI of Broca’s and Wernicke’s areas 

in terms of false positives and false negatives are illustrated in these aforementioned 

three figures. 
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Classification of the 122 subjects according to both methods: PCA-NDF and LI 

are provided in Table 4.3. This categorization assumes a classification into typical and 

atypical activation. The strength of agreement for voxel count LI is considered 

“moderate” (Kappa =0. 559; confidence interval (CI): [0.397, 0.721]), while for 

magnitude is “good” (Kappa =0. 614; CI: [0.459, 0.769]). 

Figure 4.9 shows the activation patterns of the case where LI classified the 

pattern as typical (through magnitude, extent and averaged value) and the PCA-NDF 

classified the same pattern as atypical. We believe that this false positive classification is 

largely due to the non-canonical activations and the presence of some activation on the 

right hemisphere, so it is still a deviant from the typical group.  However the strong 

maxima activation on the left hemisphere tends to force the LI into the range as typical. 

Therefore, this needs further examination for a more appropriate investigation through 

invasive means, such as intracarotid amobarbital test (IAT). 

 

 

 

Figure 4. 4: Select axial cuts for illustrating mean activation patterns  using NDF classifier. Brain oriented in 
radiological convention: left hemisphere on the right side. (a) Typical group: notice the strong left 
lateralization of anterior (Broca) and posterior (Wernicke) clusters. (b) Atypical group: notice the strong 
activation in right Broca’s area 
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Figure 4. 5:Selected axial cuts for mean activation patterns by SVM classifier. (a) Typical group. (b) Atypical 
group. Note the small difference in the patterns with respect to those shown in Figure 4.4, especially with the 
atypical group. 
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Figure 4. 6:  Distribution of PCA-NDF classification results in LI of Broca’s and Wernicke’s areas (in 
intensity value). Lateralization agreement was found in 102 of 122 subjects between PCA-NDF and the LI 
method. 
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Figure 4. 7:  Distribution of PCA-NDF classification results in LI of Broca’s and Wernicke’s areas (in 
voxel count or activation 
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Figure 4. 8: Distribution of PCA-NDF classification results in LI of Broca’s and Wernicke’s areas 
(averaged magnitude and extent).  Lateralization agreement was found in 101 of 122 subjects bet
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Table 4. 3: PCA-NDF classification vs. LI results* 
 

        LI_mag 
PCA-NDF 

Typical Atypical Total 

Typical 75 6 81 

Atypical 14 27 41 

Total 89 33 122 

        LI_ext Typical Atypical Total 
PCA-NDF 

Typical 73 8 81 

Atypical 15 26 41 

Total 88 34 122 

        LI_avg 
PCA-NDF 

Typical Atypical Total 

Typical 74 7 81 

Atypical 14 27 41 

Total 88 34 122 
 

*Class
three different variants of LI calculation methods: activation intensity (magnitude), activation extent (voxel 

 

 

 

ification of typical and atypical activation comparing the PCA-NDF and the LI categorization by 

count), and their averaged value. Lateralization agreement was found from 99 to 102 out of 122 subjects. 
The strength of the agreements ranged ‘moderate’ to ‘good’. (Kappa coefficient (κ) =0.559 to 0.614; p = 

0.05). 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 9:  Selected axial cuts for one false positive case of pattern activations where a mismatch is 
found between the results of the LI (magnitude) versus the results of the PCA-NDF. 
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4.3.6  PCA-NDF vs. Visual Rating Categorization Results 

The visual rating results are shown in Table 4.4, in this table each subject was 

assigned to one of the general patterns (Figure 4.1) by the three raters.  The inter-rater 

agreement among the three raters was very high (Fleiss Kappa:  0.8132, p=0.05) with 

their distribution shown in table 4.4, though we can still see some discrepancies among 

raters. Their agreement with PCA-NDF results vs. raters’ language dominance 

categorization is provided in Table 4.5. Note that the non-canonical activation was 

depicted here as no activation. The agreements were found significant when comparing 

each rater’s result to PCA-NDF’s (Kappa ranged from 0.52 to 0.67). Note that there are a 

few patterns shown in Figure 4.1 which were not included in table 4.4, since those 

activation patterns were not found. 

Table 4.5 shows a concordance of 80% to 86% between the visual rating and the 

automatic group separation obtained by the PCA-NDF method. The strength of the 

agreement for classification of typical and atypical activation comparing the PCA and the 

visual rating categorization (80 % to 86%) is considered “moderate” to “good” (Kappa 

0.52 to 0.67; p = 0.05). 

Figure 4.10 shows one activation pattern that was classified as typical using 

visual rating while the PCA-NDF classified that same pattern as atypical. We believe 

this disagreement is largely due to some activation at both Broca’s and Wernicke’s 

areas on the right hemisphere, therefore it is still a deviant from the typical group. This 

o  

results.  Again,  t he reader should be aware that none of these methods can be 

considered as a standard golden rule, but the only ultimate confirmation is one that 

would be given either by invasive means such as the IAT or through electrical cortical 

stimulation (ECS). 

pens the possibilities of a type II error on the visual rating method, and PCA-NDF can

serve as an alternative method to corroborate existing LI and visual rating classification 
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Table 4. 4: Resulting Pattern Distribution by Raters 
 

Typical Control LRE Total Control LRE Total Control LRE Total

37 67 3 69 9 33 72

1 3 4 6 4 5

5 3 8 9 3 7

6 5 11 4 5 9 4 4 8

1 1 2 2 0 1 1

Atypical

3 1 4 4 1 6

0 0 0 0 0 0 0 0 0

1 2 3 1 1 0 1

1 0 1 0 0 0

0 1 1 0 1 1 1 1 2
0 2 2 1 2 3 0 2 2

0 5 5 0 5 5 1 4 5
Other

0 0 0 0 0 0 1 0 1

6 3 9 6 2 8 6 2 8

Rater 3

30 38 1 3

2 4 1

Rater 1 Rater 2

7 2 4

1 1

3 1 5

0 1

0 0 0

2 0 2 1 1 2 1 0 1

0 0 0 0 0 0 0 1 1

1 2 3 1 2 3 0 2 2

 
 

First, the individual patterns are arranged under Typical (left dominant), Atypical (bilateral or right 
dominant), or other category based on the spatial distribution of their activation centroids. The table also 

ws the LRE and control subject distribution.  The “Other” category includes noise, null activation (also 
non –canonical activations). 

sho
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Table 4. 5: PCA Classification vs. Visual Rating Results of Three Raters 
 

     Rater1 
PCA-NDF 

Typical Atypical Total 

Typical 78 3 81 

Atypical 14 27 41 

Total 92 30 122 
 

PCA-NDF 
     Rater2 Typical Atypical Total 

Typical 76 5 81 

Atypical 19 22 41 

Total 95 27 122 
 

    Rater3 
PCA-NDF 

Typical Atypical Total 

Typical 75 6 81 

Atypical 18 23 41 

Total 93 29 122 
 

A 

the nonlinear classifiers, the “Other” category in visual rating is considered “atypical”. 

 

 

 

 

classified it as atypical. 

classification of typical and atypical activation comparing the PCA-NDF and the visual rating 
categorization by three raters respectively. The strength of the agreements ranged from 80% to 86%, are 
considered significant (Kappa coefficient (κ) =0.52 to 0.67; p = 0.05).  Note for comparison purpose with 

 

 

 

 

 

 

 

 

 

 

Figure 4. 10: Selected axial cuts for a mismatch case where visual rating categorized as pattern 1 (strong 
left lateralized both in Broca’s and Wernicke’s areas), which is classified as typical while the PCA-NDF 
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4.3.7  Clinical variables 

In our study, 79 subjects were found to be in agreement by all the methods (PCA-

NDF, LI magnitude, LI extent, LI average, three raters). Among these agreed subjects, 

33 controls (mean age 9.1 yrs, 18 male) and 33 patients (mean age 13.9 yrs, 18 male, 2 

Ambidextrous handed, 30 right handed, seizure onset 8 yrs) are typical, while 3 control 

(mean 

The main contribution of this chapter consists in proposing the integration of 

nonlinear pattern classifiers into a modified PCA feature space in order to optimize the 

classification of fMRI language related activation brain patterns.  Since we are using real 

data sets for generating the synthetic data to conform in the best way possible to actual 

activations, the resulting bias is significantly reduced in contrast to using purely 

synthetic data sets. For training purposes, the language type label of each synthetic 

dataset was ascertained through random visual inspection which reduces the bias as well. 

This yields an effective way of assessing the performance of nonlinear classifiers (NDF, 

SVM) under different dimensional spaces, while assessing the merits of different kernels 

and different degrees of complexity. The proposed PCA-NDF method showed good 

agreement with both the subjective visual categorizations and the ROI-based LI 

distribution. Corollary contributions can be derived from the fact that such nonlinear 

age 7.64 yr, 1 male,) and 10 patients (mean age 14.2 yrs, 7 male, 6 left handed, 

seizure onset 9.1 yrs) are atypical.  Left handed patients tend to have atypical activation 

patterns (Fisher exact test, p < 0.001). 

 

4.4  Discussion 
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classification methods are also known to be robust even when the data is acquired from 

different scanners and different sites.  Consequently, the standardization of the fMRI 

data brain activation patterns and the algorithm used to seek uniformity in the various 

data fo

t have complete agreement between these methods, 

PCA-N

rmat considered in this study were proven effective, making our adaptation of the 

PCA-NDF classifier method entirely data-driven. 

Taking these caveats into account, we achieved an automatic grouping algorithm 

whose results agreed well with commonly used language asymmetry statistics. 

Heterogeneity increases in the mixed population since both control and patient subjects 

will each have a given proportion with an atypical activation pattern, introducing both 

normal variants and pathological variants. Through the PCA-NDF method, we found that 

typical group, shared by 66% of the entire population, presented high activation in the 

left canonical language areas. The atypical group was characterized by strong activation 

on Broca’s area in the right hemisphere dominant response for language, mirroring the 

responses of the other cluster in the homologous left areas of the brain. 

Some mismatches were observed between the PCA-NDF and the visual rating or 

LI. Compared with visual rating and LI categorization, the typical group included certain 

bilateral activation patterns and the atypical group included certain uni-bilateral but left 

dominant patterns. Though we did no

DF properly identified the atypical right dominant group and was supported by 

visual rating and ROI-based LI. We did not have ultimate confirmation by either 

invasive means such as the IAT or ECS, or surgical outcome; however, invasive 

measures also have their limitations, and it may be difficult to establish which method is 

ultimately correct. Moreover, our main aim was to provide an automated method to 
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perform

LRE subjects using 

the int

 age of normal 

population compared to adult populations. Left handedness was found associated with 

atypical language activation pattern. 

Disagreements occurred among the raters and the different methods of 

calculating the LI. The sensitivity and objectivity of the PCA-NDF for group separation 

would help to overcome human rating errors as well as the limitation of prior 

assumptions. Furthermore, instead of a blind clustering of presented population, the idea 

of using synthetic activation patterns helps the method to be language patterns -oriented.  

 classification of brain activation patterns as a support tool to assist the more 

subjective visual rating methods or LI-based methods, but with no intent to substitute 

them. 

The distribution of language patterns observed in this dissertation is similar to 

prior studies on language dominance within normal volunteers employing either 

transcranial-Doppler or transcranial magnetic stimulation, and within 

ra-carotid amobarbital (Khedr et al.,2002; Knecht et al. ,2000; Kurthen et al. 

,1994; Rasmussen and Milner ,1977; Risse et al. ,1997; Woods et al. ,1988; Wyllie et al. 

,1991). Atypical language activation identified with fMRI is estimated to occur in 20-

30% of patients with chronic epilepsy (Berl et al., 2005; Gaillard et al., 2007; Woermann 

et al., 2003; Yuan et al., 2006) comparable to the result of 21% found in our study 

according to clinical rating, 31% according to ROI-based LI, and 28% according to all 

the methods (rating, LI, PCA-NDF). Atypical language activation has also been found in 

the normal right handed population, 12 % on clinical rating, 18% on LI, , and 8% 

according to all the methods (rating, LI, PCA-NDF), which is higher than previous 

findings (Pujol et al., 1999). This difference might be due to the young
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The data-driven mechanism nd to be effective at classifying 

typical and atypical language netw  a heterogeneous 

sition parameters. The integration of PCA 

with the NDF classification paradigm results in a data-driven method that is both 

accurate and computationally appealing (within few seconds in processing time after the 

weights of the decision function are 

 using NDF was fou

orks activation patterns, even from

population often acquired with different acqui

generated in the training phase). 

This proposed approach could promote objective assessments of large data sets 

and can serve to interrogate data for a multitude of clinical variables.  Again, as a single 

site is unlikely to evaluate a sufficient number of patients to identify variant activation 

patterns, the consortium of imaging epilepsy satisfied the needed collaborative efforts.  

Thus a large sample, inter-subject variance can be more reliably characterized for control 

populations as well as heterogeneous patient groups.  With the growing data source from 

the consortium, more meaningful synthetic data can be generated, thus a multi-class 

nonlinear decision function will be more practical as the next step, to break down the 

two classes into more specific categories, since 15 patterns, at least in theory, are needed 

to describe the lateralization of brain activation related to language tasks. 
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CHAPTER V 

Distance Method on PCA-Based Decisional Space  

Earlier findings have demonstrated that language activation is typically left 

dominant, but there are known variants (bilateral or right dominance) present in both 

right handed (5%) and left handed (22%) populations (Pujol et al., 1999; Rasmussen and 

Milner, 1977; Springer et al., 1999; Szaflarski et al., 2002; Woods et al., 1988).  

Moreover, patients with Localization Related Epilepsy (LRE - the medical term used to 

refer to subjects with a localized seizure focus) reveal greater occurrence of atypical 

language (20-30%) based on quantitative ROI analysis (Frost et al., 1999; Gaillard et al., 

2007; Woermann et al., 2003) at hemispheric or regional levels (Binder et al., 1996; 

Gaillard et al., 2002; Ram

 

5.1  Introduction 

sey et al., 2001; Spreer et al., 2002) or simply through visual 

rating (Fernandez et al., 2001; Gaillard et 

findings m

eans. 

al., 2002, 2004).  Elaborating on such early 

otivated the need to design new methods to identify deviant language patterns 

not constrained by simple left-right language dominance as determined by ROI with a 

priori assumption or by visual rating through subjective m

The focus of this chapter is thus placed on a new strategy of using a PCA-based 

decisional space and how the clustering characteristics play out in terms of both the 

chosen eigenvectors and the intensity of the activation patterns. It also reveals a unique 

decisional space that combines the LI with the clustering characteristics, all as a mean to 

segregate fMRI language patterns. The group-analysis method presented here may help to 
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study brain changes that may reflect brain plasticity. Furthermore, the epilepsy patient 

population provides a means for validating these methods because of their known 

heterog

., 2009) or neural networks (Samanwoy and Hojjat, 2008), and used the 

Scale S

empts, the shared belief is 

that PCA remains a powerful data-driven method applicable to data sets with good 

bility. The PCA can also overcome the need for prior assumptions and the 

subjectivity associated with visual rating methods that are known to be bias, tedious and 

eneity of language dominance (Berl et al., 2005; Price et al., 2006, 2005). Such an 

approach could augment the knowledge gained through different PCA-based approaches 

reported in the literature that have either attempted to maximize variability, integrated 

fMRI and DTI studies, (Caprihan et al., 2008; Suma and Murali, 2007), used 4D fMRI 

data sets (Andersen et al., 1999; Viviani et al., 2005), applied the k-means method 

(Mbwana et al

ubprofile Model (SSM) normalization transformation (Alexander and Moeller, 

1994; Moeller et al., 1987; Smith et al., 2006). In all of these att

scala

prone to human error. 

The specific aims of this chapter are: 

- To develop a new PCA-based procedure that provides a decisional space from 

which sub-groups of distinct fMRI activation patterns are identified in a mixed 

population of control and patient subjects. 

- To compare resulting sub-groups obtained based on the PCA algorithm to the 

results obtained through the LI method and by the visual rater’s clinical categorization. 

As a measure of caution, we are neither trying to categorize each subject into simple left-

right dominance to replace the conventional clinical methods, nor striving to separate 

normal subjects from patients, but to find deviant activation patterns  and to identify 
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distinct language patterns  that might be associated with the normal variant and 

pathological variant conditions. 

 in combination with any of the relevant eigenvectors as the other 

dimens

5.2  

5.2.1  PCA-based Decisional Space on Activation  Maps 

As indicated earlier, PCA has been reported as the core analysis of SSM after the 

initial normalization transformation in the context of modeling regional patterns of brain 

function (Moeller et al., 1987; Smith et al., 2006; Alexander and Moeller, 1994).  Based 

on the concept of subject loading, we performed the PCA on the given 122 fMRI 

activation maps with the particularity of forgoi lto

sity norma T

distance method, associate the remaining subjects to the primary groups that were already 

determined. After the top eigenvectors were generated following steps 1-3 of section 3.2 

- To determine decisional spaces that are most suited for optimal clustering 

trends, and from which we will ultimately define the decision boundaries that delineate 

such clusters. These decisional spaces include (a) the use of only the most relevant 

eigenvectors as the axes of the decisional space, and (b) introducing the LI as one axis of 

this decisional space

ion(s). 

- To assess the merit of introducing the intensity of the activation patterns without 

normalization as an important element of the clustering trends. 

 

Method 

ng a gether regional masking and 

inten lization. hen, we utilized the top two components (subject loadings) to 

separate three primary activation patterns groups and later, through the Euclidean 
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of Chapter 3, detailed implementation steps of the modified Euclidean distance method 

are as follows: 

ist

bjec n from the three primary 

clusters, and the PCs of these clusters were calculated, generating the new matrix Unew  

bject. Thus the distance method is used to determine which 

cluster 

1.  Based on the ei d ribution in the matrix E, three primary clusters with far 

distances from each other were first determined linearly. Then the new mean ( mnew ) 

vector of these clusters was generated with su ts only chose

following Eq.3.2. 

2. Group the subjects’ activation maps not falling in any of the primary clusters 

(undecided regions) using the distance method. Vector xnew will now represent the 

activation map of the su

is the closest to the undecided subjects. The following sub-steps are undertaken: 

a). Project new  , which is the new centered xnew ( newnewnew mx  ), onto the 

primary clusters defined eigenspace using Eq.5.1. 





j

l
newnew ll

uu
1

ˆ

  

T

   (5.1)  

here each  representing a column vector of the  matrix. 

ate the Euclidean distance feature using Eq.5.2 below: 

 lu newUw

b). Calcul

inewiD 
 

̂
                                                (5.2) 

for q....,,2,1 , where q is the number of primary cluster members, with newii mxi    

and where j ( kj ) is the number of eigenvectors selected. In this approach, j  was tried 

from 3 to 7, and the separation results were found to be the same, which clearly 
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demonstrates that the top eigenvectors already include enough information of the 

population. 

c).The new subject i  was assigned to the cluster whose member had the 

minimum distance as calculated in Eq.5.2. In other words, the new subject is assigned to 

the cluster where the clos tified subject  est iden i  was located. 

5.2.5  Analysis of Segregation  Results 

Fisher exact test was applied to assess the site independence as well as the 

nal intensity grouping vs. either magnet strength or 

control

significance of association for sig

/patient grouping. 

In order to corroborate the PCA clustering results, each subject’s activation map 

was visual rated by three investigators blinded to subject identity, in order to score the 

laterality of activation in the language network related areas. The rating tool and 

procedures were described in chapter 2. Moreover, LI was calculated using Eq.2.1 

provided earlier with V being the activation magnitude.  

 

5.3  Results 

5.3.1  Blind source data clustering 

(Stanberry et al., 2003; Mbwana et al., 2009). Along with the observations made on the 

 

After obtaining the PCA eigensystem, the dendrogram of the E matrix suggests 

indeed that there are three major groups within these 122 subjects as shown in Figure 5.1 

merits of the second eigenvector in section 3.3.3, the first eigenvector is also found to 

67 
 



separate higher intensity from lower intensity when considering only the typical subjects 

that satisfied the condition e2  > 0 as seen in Figure 5.2. This plot reflects the subjects’ 

distribution based on intensity and the -0.1 value for e1 was chosen as the primary cluster 

threshold for the higher intensity group and 0 for lower intensity group. Therefore, e1i  <-

0.1 ∩ e2i  > 0 were chosen as the boundary for primary cluster 2 (the higher intensity 

typical group), while e > 0 ∩ e > 0 were chosen as the boundary for primary cluster 1 1i  2i  

(the lower 

Then each of these 75 subjects was assigned to their clos

misphere dominant response. Most of the 

intensity typical group). 

Later, the subjects located in the indeterminate region (n=75) (subjects not 

belonging to any of the three primary clusters) were projected onto the new eigenspace 

that was generated by the PCA on the three primary clusters following Eqs. 5.1 and 5.2. 

est cluster using the distance 

method. Figures 5.3 and 5.4 depict the clustering results achieved by utilizing the top 2 

eigenvectors as criteria to select primary clusters, and the distance to the top 3 eigenfaces 

to assign undecided subjects. It is worthy to note that the separation results obtained by 

using 3 up to 7 eigenfaces were found to be identical. 

5.3.2  Identified  Activation  Patterns  

The final clusters’ mean activation patterns are shown in Figure 5.5.  The 

strongly activated areas found in these three types of activation patterns (in relation to 

the three clusters) broadly encompass Broca’s and Wernicke’s areas. As anticipated, group 

1 (Figure 5.5a) was the typical language response on the left hemisphere while group 3 

(Figure 5.5c) had an atypical strong right he
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subject

e that groups 2 and 3 are variants compared to major group 1, and group 3 is 

closer to current notion of atypical language activation pattern which is atypical bilateral or 

right dominant. 

To examine the correlation between LRE patients and group 2, we presented 

the LRE-control distribution inside group 1 and group 2 in Table 5.1. LRE patients (group 

2) were found to show greater activation than subjects in group 1 (although the former 

present with typical language localization as well) (Fisher exact test: p=0.0004). 

To ascertain whether magnetic strength plays a role in group segregation, Table 

5.2 was created to contrast groups 1 and 2 with group 3 on the basis of magnetic 

strength (group 1 and 2 are considered both typical language in PCA). We found no 

difference in the effect of scanner magnetic strength in group segregation of laterality 

category (Fisher exact test, p=0.7). Since no control subjects scanned by 1.5T and group 

1-group 2 correlated with control-LRE, it is natural that 3T-1.5T correlated with group 1-

ontrol and patients (Fisher exact test, p=0.0005). This correlation found here is a natural 

onsequence due to the imbalance of subject population. It was confirmed that the 

agnet difference did not relate to the group within LRE subjects when only patients are 

ken into account (Fisher exact test, p=0.2).  

s from groups 2 and 3 were patients, 15 patients out of 18 for group 2, and 8 

out 9 for group 3, while control subjects are dominant in group 1 (60/95) (Figure 5.4). 

Group 2 (Figure 5.5b) consisted of a group of cases that shared the same areas as group 1. 

However, the procedure was able to distinguish group 2 from group 1 because group 

2’s activation intensities were much higher than those of group 1, especially in Broca’s 

area. Not

group 2. Hence there is a magnet strength vs. group 1-2 correlation considering both 

c

c

m

ta
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To ascertain whether group segregation is independent of data collection sites, 

able 5.3 was created to contrast groups 1 and 2 with group 3 on the basis of sites.  

he concatenation of group 1 and 2 is because control subjects were scanned at only one 

ite and group 1-2 difference was found correlated with control-LRE difference. We 

und no difference between the effect of sites in group segregation (A Good Fit Test, 

=0.58). 

T

T

s

fo

p

 

Figure 5. 1: The dendrogram of the Euclidian distance matrix of the PCA suggesting there are at least three 
subgroups within the subjects.  
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igure 5. 2: Considering only the typical subjects that satisfied the condition e2>0, this plot reflects the 

 

 

 

 

 

 

 

 

F
subjects’ distribution based on intensity. The red squares are those subjects whose intensities are higher 
than the mid-point of the intensity range of the analyzed population’s means; green diamonds are the ones 
that are lower than the mean activation intensity of these typical subjects. 
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Figure 5. 3: Primary clusters using the two dominant eigenvectors of the PCA. These two dominant 
eigenvectors are used to select three primary clusters based on the following      decision rules: cluster 1: 
the most condensed cluster region with 32 data points; cluster 2: with ten data points; cluster 3: with five 
data points.  The undecided region, with 75 data points, is the remaining region outside these three clusters. 

71 
 



72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 4: Clusters distribution achieved using two eigenvectors. Note, data points corresponding to 
former undecided subjects are now assigned to one of the primary clusters based on the distance method. 

 

 

 

Figure 5. 5: Mean activation maps for each final cluster/group. 2D array of selected axial cuts color coded 
r activation intensities.  Higher activations are in red color.  Brain oriented in radiological convention: 
ft hemisphere on the right side. The number below the image is the slice number.  (a) Mean activation 

map for group 1.  (b) Mean activation map for group 2.The z value range is higher than (a).  This 
explains the better definition of Supplementary Motor Area (SMA). (c) Mean activation map for group 3 with 
an atypical right hemisphere dominant response. 
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Table 5. 1: Distribution of LRE vs. control subjects in typical groups 

   Number of Subjects

Group LRE Control Total

2 15 3 18

1 35 60 95

    Total 50 63 113  

evident.  A value of 0.0004 was found when applying Fisher exact test, indicating strong correlation 

 

Group 1 and 2 are left lateralized, but group 2 consists of higher intensities. As a result, SMA is more 

between LRE subjects and group 2. 

 
 

Table 5. 2 : Magnet scanner vs. group category 

Magnetic Strength

LRE Control LRE Control LRE Control
Group

1 17 60 18 0 35 60

3 4 1 4 0 8 1

2 4 3 11 0 15 3

Total 21 64 33 0 58 64

3 T 1.5T Total

 

strength vs. laterality category (group 1+2 to group 3) Fisher exact test: p = 0.7). No significant effect of 

 

 

 

T= Tesla. No effect of magnetic strength on laterality clustering results was demonstrated (Magnetic 

magnetic strength on separating patients in group 1 and group 2 (intensity) (Fisher exact test: p= 0.2) 

Table 5. 3: Sites vs. Group Category 

Sites
Group Total

Group 3 2 2 0 2 6

DA B C
Group 1+2 9 12 10 17 48

Total 11 14 10 19  

Compared sites with 10 or more patients.  No effect of sites on clustering results was demonstrated (A 
Good Fit Test, p = 0.58). 
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5.3.3  I vs. PCA Clustering Results 

In order to show the relationship between the LI and the PCA result, a 2D plane 

as used to describe the distribution of clustering results considering individually the LI 

btained based on the activation of the Broca’s and Wernicke’s areas. The x axis 

dicates the LI obtained on the Broca’s area while the y axis indicates the LI obtained 

rom activations on the Wernicke’s area. 

Figure 5.6 plots the distribution of cluster s associated with the LI of Broca’s and 

shows that clusters 1 and 2 are associated with positive LI 

alues (left lateralization) and that cluster 3 is associated with high negative values. The 

ata also demonstrate that from the nine subjects in cluster 3, eight LRE subjects are 

ssociated with strong right-brain dominant activation while only one healthy control 

rend of PCA in finding the most 

atypical activation pattern (which is right dominant in our case).  

Table 5.4 presents th ing to both 

methods: PCA and LI. This categorization assu a classifi  of non-right and 

atypical right activation. In order to compare PCA and LI in a reasonable fashion, since 

CA is looking at deviant patterns while LI is looking at dominance and will not be able 

to  

are both non-right dominant in LI’s point of view, and we adapted LI’s classification 

ategory into right dominant vs. non-right dominant also. The strength of the agreement, 

96.7%, is considered “substantial” (Kappa =0. 76; p= 0.05; CI: [0.5288, 0.9913]). 

L

w

o

in

f

Wernicke’s areas.  This figure 

v

d

a

presents atypical bilateral activation.  In conclusion, the results reveal that the LI value 

calculated using the bootstrap method will not strictly agree with the cluster results when 

using the PCA, but LI will concur with the major t

e classification of the 122 subjects accord

mes cation

P

 tell the intensity differences, so we concatenated group 1 and group 2 of PCA which

c
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ng 
right lateralized” is determined when both the LI of Broca’s and Wernicke’s areas are lower than -0.2. 

 9 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 6: Distribution of PCA clustering results in LI of frontal and temporal language areas.  “Stro

“Strong left lateralized” is determined when both the LI of Broca’s and Wernicke’s areas are higher than 
0.2. The gray area is an atypical region including strong right lateralized and atypical bilateral. 7 out of
members of cluster 3 are inside the strong right dominant region. 

Table 5. 4: PCA Segregation vs. LI Categorization Results 

         PCA 
LI 

Non-Right 
(G1+G2) 

Right Total 
G3 

Non-Right 111 2 113 
Right 2 
Total 113 

7 9 
9 122 

 
G1, G2,

as non-right dominant language responses, while group 3 was right dominant.  Lateralization agreement 
 and G3 = Group 1, 2 and 3 respectively. Group 1 and group 2 in the PCA results were categorized 

was found in 118 of 122 subjects (Kappa =0. 76;  p= 0.05;CI:  [0.5288,0.9913]). 
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5.3.4  Visual rating Results vs. PCA cluster Results 

The inter-rater agreement among the three raters was found almost perfect 

(Fleiss Kappa: 0.8132, p=0.05) with their distribution shown in Table 5.5. Their 

agreem

5.3.5  Other methods vs. Euclidean 

this 

ent with PCA results under the right vs. non-right dominant categorization is 

provided in Table 5.6. Note that the non-canonical activation was depicted here as no 

activation. The agreements were found significant when comparing each rater’s result 

to PCA’s (Kappa ranged from 0.54 to 0.70, p=0.05). 

There is a partial disparity among visual rating itself, which suggests its 

subjectivity from Table 5.5. Partial disparities were also found from the comparison 

between visual rating and the PCA, and also between the PCA and the LI, as seen in 

Table 5.6 and Table 5.4. The explanation for this disagreement is that, in contrast to 

visual rating which is a clearly anticipated pattern-oriented process, PCA applied 

here only tries to separate the three groups based on their activation pattern 

differences. Therefore, this method does not guarantee that the three groups will be 

precisely left dominant, right dominant or bilateral. Same comparison was done 

between LI and visual rating, the agreements were similar to the one previously found 

between PCA and visual rating. 

It is worthy to look into these other methods, as a way to support that the three 

clusters that we found through our modified Euclidean Distance method indeed provide a 

good separation as further evidence of the dendrogram given in Figure 5.1.  In this 

section we describe the implementation of the discriminant analysis. In 
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imple entation, we fom und that the linear discriminant function performed the best in 

delinea

cation results of SVM are not 

better correlated to clinical measures compared to our modified Euclidean method. 

ting our final clustering results (using the MATLAB statistic toolbox).  Figure 5.7 

depicts the linear discriminant function that fit our PCA separation results. 

Then we tried the discriminant analysis method for the modified Euclidean distance 

step to classify the undecided subjects into the three primary clusters.  Just to compare the 

two methods, after defining the primary clusters using the PCA system, we used the primary 

clusters as training data sets, and the rest (75) data sets as samples to feed in the classifiers.  

Table 5.7 shows the results obtained using discriminant analysis on the remaining 75 data 

sets.  As seen in this table, the modified Euclidean distance method is stable from 3 through 

7 input eigenvectors, while discriminant analysis slightly changes with the linear 

discriminant function chosen. The classification results of both methods are however 

comparable. We can observe that cluster 2 members remained the same. We identified six 

mismatch cases: two assigned to cluster 1(expected to be left dominant) and four assigned to 

cluster 3 (expected to be right dominant) in the final classification of the undecided subjects. 

The former 2 cases were initially categorized as right dominant (cluster 3) which was 

supported with both visual rating and LI, three out of four cases were initially categorized as 

left dominant which was also supported by visual rating/LI. The remaining mismatch case 

was previously categorized as left dominant by our method and declared bilateral activation 

by visual rating/LI. Therefore, it shows that our method performs closer to the actual 

characteristics of the activation patterns. Figures 5.7 and 5.8 allow us to compare the final 

classification results using both methods. Similar procedures were tried through SVM 

instead of discriminant analysis; we found that the classifi
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5.4  

 

ophrenia, and 

mild tra

Discussion  

Different PCA-based methods have been utilized to identify fMRI activation 

patterns (Andersen et al., 1999; Viviani et al., 2005) but only at an intra-subject level. 

fMRI activation analysis at the inter-subject level has been utilized by Werder et al.  

(2006) in a study of a few subjects in which they aimed at separating epilepsy patients 

from control subjects (Weder et al., 2006).  Seghier et al.  (2007 and 2008) also used an 

inter-subject approach by applying a fuzzy clustering algorithm to detect subject-specific 

activations to an fMRI lexical reading test in 38 normal subjects; using different variance 

analysis, they found sub-patterns of activations that were related to different skill sets or 

cognitive strategies. Mbwana et al.  (2009) identified four patterns  of activation among 

45 patients with left hemisphere seizure foci based on PCA clustering following 

difference maps to see how individuals deviated on a voxel-wise basis from a normal 

control group. They found evidence for intra-hemispheric compensation and inter-

hemispheric reorganization in three patient subgroups. However, their results were 

obtained after necessarily excluding the controls with atypical activation; only 

heterogeneity of the patient population was considered. Ford et al. (2003) also attempted 

to classify patients’ fMRI activation maps but with a different method and in different 

areas, using the Fisher Linear Discriminant for Alzheimer’s disease, schiz

umatic brain injury(Ford et al., 2003). Suma et al.  (2007) have also demonstrated 

that PCA can be used for the classification of fMRI activation maps; however, PCA was 

not directly applied to activation maps, but rather to area and centroid values obtained 

from post-processing the activation maps on a slice basis. 
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In this chapter we use a PCA-based decisional space to recognize sub-groups of 

distinct language activation patterns in control and LRE patients from different sites.  All 

subjects performed the same ADDT fMRI task.  Based on the results obtained, three sub-

groups were identified: 1) the typical distributed network expected for task in left inferior 

frontal gyrus (Broca’s) and left superior temporal gyrus (Wernicke’s) (60 controls, 35 

patients); 2) a variant left dominant pattern with greater activation in IFG, mesial left 

frontal 

I studies, both in a 

confirm

lobe, right cerebellum (3 controls, 15 patients); and 3) Activation in the right 

homologues of the first pattern in Broca’s and Wernicke’s territories (1 control, 8 

patients). Normal controls were predominantly in group 1; Patients fell into the three 

groups but distribution was different than controls, and were over represented in groups 2 

and 3 (P < 0.0004). The two left dominant groups differed on the intensity level of 

regional activations. The typically developing control children primarily were in group 1 

while mostly patients belonged to group 2. These findings may represent an effect of 

epilepsy, its underlying substrate on language network expression or may represent 

different strategies in performing the task (Berl, et al. 2005). The proposed method 

showed good agreement with both the subjective visual categorization and the ROI-based 

LI distribution in identifying the strong right dominant group, when sub-groups, which 

shared localization but had intensity differences, were joined as one group. 

The merit of PCA eigenvectors has been explored in few fMR

atory and a classifier manner, which are different from our study.  Sugiura et al. 

successfully used the loadings of PCA for separating fMRI activation regions into three 

groups from 19 normal subjects on memory-guided saccade tasks (Sugiura et al., 2004).  

Their analysis was based on the assumption of the homogeneity of the normal population 
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and required a priori knowledge of predefined ROIs as well as each region’s relationship 

to the three main lobes. In another study, PCA with reference (PCA-R) combined with 

coefficient-constrained independent component analysis (CC- ICA) were used as 

classifi

formed without a priori 

assump

ts most resemble. The advantage is that the final 

clusteri

ers to distinguish 28 schizophrenia patients from 25 healthy controls based on 

results of sensorimotor tasks (Sui et al., 2009). Thus, their study presumed foundamental 

differences between patient and control populations. 

Though the PCA we used is a standard feature extraction approach, our 

implementation differs from other methods in several ways.  For each subject in our 

method, the entire activation map was fed into the algorithm, without intensity 

normalization. Potential differences in language patterns based on extent and intensity 

may thus be identified. Furthermore, data segmentation was per

tions or subject classification: we combined typically developing and patient 

populations to allow the algorithm to associate statistical features based on the data and 

therefore overcoming subjectivity imposed by using selected normal subject as reference. 

Within the mechanisms of this data driven method, mathematical thresholds were 

uniquely derived to delineate regions for three primary clusters based on the first two 

eigenvectors of the PCA; while the modified-Euclidean distance method is used to 

classify the undecided subjects into one of the three primary clusters initially determined, 

by projecting them into the new eigenspace of these primary clusters.  

The motivation here is to determine to which primary cluster the activation 

patterns of the undecided subjec

ng results are not grouped randomly, but taking into consideration both the most 

significant feature difference (top eigenvectors for primary clusters) as well as the voxel-
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to-voxel statistical difference in 3D images. With the increasing number of fMRI data 

sets made available through the consortium, the PCA-based data driven method is well 

positioned to reliably identify sub-patterns of language processing from the pooled data. 

stigate patient populations that require substantial 

number

 dominant response for language, mirroring the responses of the other two 

groups 

The differences in scanner manufacturer, magnetic strength and acquisition 

parameters are often perceived as limitations that hinder group analysis on the data sets 

collected from a variety of sites.  Standard post-processing group analysis discourages the 

utilization of different scanners, different settings, and different resolutions; however, the 

methods used for this study provide standardization for different formats and our analysis 

showed that there was no scanner or site effects in our clustering results.  These findings 

support collaborative efforts to inve

 of subjects to gain more insights from the heterogeneity. 

Taking these caveats into account, we achieved a grouping algorithm whose 

results agreed well with commonly used language asymmetry statistics in finding the 

right dominant group and identifying a group with higher intensity that the general LI and 

visual rating methods neglect. Logically, the chances of getting heterogeneity will 

increase with the size of the mixed population used since both control and patient 

subjects will have a given proportion with an atypical activation pattern, introducing both 

normal variants and pathological variants.  Group 3 was characterized by a right 

hemisphere

in the homologous left areas of the brain, which is the most extreme version of 

atypical language representation.  

The distribution of language patterns obtained is consistent with prior studies on 

language dominance in normal volunteers using either transcranial-Doppler, or 
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transcranial magnetic stimulation, or in LRE patients using the IAT (Khedr et al., 2002; 

Knecht et al., 2000; Kurthen et al., 1994; Rasmussen and Milner, 1977; Risse et al., 1997; 

Woods et al., 1988; Wyllie et al., 1991). 

The intensity-based separation given by the PCA method of the same localized 

groups (1 and 2) may be considered another advantage for the implementation of this 

proposed method (Knecht et al., 2000). Group 2 remains left hemisphere dominant, but 

the areas distribution and intensity of activation are different than Group 1. There is 

greater activation in cerebellum inferior in mid frontal gyrus which means that group 2 is 

a variant pattern for task. Indeed, our method will discriminate two identical activation 

maps based on intensity differences. 

The chosen p value used in generating the activation maps in the data pre-

processing section might also affect the grouping result, especially the visual rating. 

Therefore, the ultimate validity of the interpretation of the clustering results depends on 

the algorithm that will generate the individual activation map representing the language 

network of each subject, before performing a group analysis.  A p value of 0.05 cluster 

corrected with Z=2.3 thresholding is normally acceptable. However, to obtain viewable 

activation results, which matters for the visual rater (Binder et al., 1996; Gaillard et al., 

2004, 2002), some data sets require rating at less rigorous thresholds than p < 0.05 

corrected. 

Some mismatches were observed between the PCA and the visual rating or LI as 

shown in Table 5.6 and Figure 5.6. Some of these subjects were rated with a low 

certainty level (5 or 4). The other case may be explained by differences in thresholding: 

PCA uses only raw intensity values while the visual rating is based on post-processed 
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thresholded images. For example, a weak activator’s thresholded image may be 

dominated by the peaks (maxima) while the raw data utilized by the PCA method account 

for all the activated voxels (extent). This difference could explain cases in which higher 

values are localized to the right (as rated visually), but sub-thresholded raw values are 

more n

d the hemispheric 

domina

umerous in the left as PCA indicates. Furthermore, PCA is sensitive to intensity 

difference and does not cluster based on lateralization, rather the eigenvectors which we 

have presumed relate primarily to this feature; hence, some cases may segregate 

differently. It is noted there are also disagreements among the three raters, as well as their 

categorizations with LI. Though we did not have complete agreement between these 

methods, PCA properly identified the right dominant group and was supported by visual 

rating and ROI-based LI.  

There are some limitations to our study. The segregation process for the 

intermediary value may be imperfect, since the boundaries of the primary clusters were 

defined based on the relationship between the top eigenvectors an

nce as well as between the top eigenvectors and intensity. The decision in terms 

of number and threshold criteria for primary cluster is based on the characteristics of our 

analyzed population. Thus, the boundary calculated to identify primary clusters is valid 

only for a mixed population with high variability of activation intensity and broad 

distinction of left and right hemisphere dominance. This limitation was somewhat 

attenuated given that the dendrogram identified three major groups present in our mixed 

population. It is also possible that some, less common, variant sub-patterns were not 

identified. Based on a supervised process, we identified 39% of the population into 

primary clusters. These primary clusters were used as references for a second round 
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classification to sort the undecided data sets and associate them to the closest cluster. 

These undecided subjects did include variant activation patterns, such as bilateral 

activation, not represented in a straight forward manner in the primary clusters but 

scattered in the 

The PCA-based method presented here becomes a cluster tool that may help the 

assessment of very large data sets where visual or ROI rating may be unpractical or 

difficult. The method would be cost-effective and could be used as a means to interrogate 

data for clinical variables. Future research may also take advantage of the PCA-

decisional space characteristics for group separation in order to overcome human rating 

errors or rigid paradigms of interpretation that perhaps too narrowly limit brain language 

activation into simple patterns of left, bilateral or right lateralization. As a note of 

caution, PCA space depends on the sampled population. If the PCA were applied only in 

the control group or the LRE group, different decisional space would be found. 

Therefore, the current results are valid only for the mixed population. 

Furthermore, future studies should evaluate either the convenience of merging 

similar groups based on clinical need of simple lateralization categorization, for example 

groups of similar spatial distribution but segregated on grounds of intensity, or the merit 

of increasing even further the number of groups for research purposes. It might be worthy 

to break down the three clusters into more specific clusters within the PCA-decisional 

space, since, at least in theory, 20 patterns  are needed to describe the lateralization of 

brain activation related to language tasks, although, it is neither practical nor necessary to 

 

determ  

decisional space. 

consider all 20 clusters. Therefore, the next challenges are 1) to automate the process to

ine a reasonable number of clusters and to decide the correct threshold for
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segregation crit ns of atypical 

language activation such as those localized in the neighboring non-canonical areas, and 

2) to investigate the effects in extent d peak difference within the me hemisphere. 

Tabl t ution as ed by the th rs. 

eria of each eigenvector in order to define other patter

 an  sa

e 5. 5: The pat ern of distrib identifi ree rate

Non-R. Control LRE l Control E Total Con LRE Total

30 38 69 3 33 72

3 2 6 4 5

3 7 9 3 7

5 9 4 8

6

0 0 0 0 0 0 0 0

1 2 3 0 1 1 1 0 1

1 0 1 0 0 0 0 0 0

2 0 2 1 1 2 1 0 1

0 0 0 0 0 0 0 1 1

1 2 3 1 2 3 0 2 2

Strong R. Control LRE Total Control LRE Total Control LRE Total

0 1 1 0 1 1 1 1 2

0 2 2 1 2 3 0 2 2

0 5 5 0 5 5 1 4 5

Other

0 0 0 0 0 0 1 0 1

6 3 9 6 2 8 6 2 8

Rater 1 Rater 2 ater 3

T tao LR t l

R

ro

37 67 31 9

1 4 4 1

5 8 2 4

6 11 4 5 4

1 1 2 1 1 2 0 1 1

3 1 4 3 1 4 5 1

0

 

category based on the spatial distribution of their vation centroids.  The table also shows the LRE 
and control subject distribution.  The “Other” catego y includes noise, null activation, and non -canonical 

activations. The inter-rater agreement among t three raters (Fleiss Kappa: 0.8132, p=0.05) 

First, the individual patterns are arranged under Non-Right (Non-R.), Strong Right (Strong R.), or other 
acti
r

he 
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Table 5. 6: PCA Separation vs. Visual Rating results of Three Raters 
 

         PCA 
Rater 1 

Non-Right 
(G1+G2) 

Right Total 
G3 

Non-Right 113 4 11  7 
Right 0 5 5
Total 113 9 122 

    

 

         PCA 
Rater 2 

Non-Right 
(G1+G2) 

Right Total 
G3 

Non-Right 113 4 117 
Right 0 5 5 
Total 113 9 122 

    
         PCA 

Rater 3 
Non-Right 
(G1+G2) 

Right Total 
G3 

Non-Right 111 2 113 
Right 2 7 9 
Total 113 9 122 

 
A classification of Non-right and right activation comparing the PCA and the visual rating categorization. 
G1, G2, and G3 = Group 1, 2 and 3 respectively. The strength of the agreements ranged from 95.08% to 

96.72%, are considered substantial (Kappa  =0.54 to 0.70; p = 0.05). 
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Figure 5. 7: The linear discriminant function of PCA separation results using Euclidean Distance method. 
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Table 5. 7: Comparative results of seco g the modified Euclidean method and 
di . 

Members method 
(

Analysis 
Linear 

(Dim:2,3) 

Analysis Linear 
(Dim:4,5) 

nd round classification usin
scriminant analysis method

 Primary 
Cluster 

Rest Euclidean 
Distance 

Dim:3-7) 

Rest 
Discriminant 

Rest 
Discriminant 

Cluster 1 32 63 61 62 

Cluster 2 10 8 8 8 

Cluster 3 5 4 6 5 

 

 

Figure 5. 8:   Classification results of undecided subjects using discriminant analysis method. Note 
that we circled the 6 mismatch cases between discriminant Analysis Method and our PCA-Based 
method. 
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CHAPTER VI 

Sub-Patterns of Language network Reorganization in Pediatric Localization Related 

Epilespy  

This chapter focuses on the clinical relevance of the language sub-patterns found 

in the pediatric Localization Related Epilepsy population. Epilepsy populations provide 

an important window into capacity for neural plasticity as the location of essential brain 

functions needs to be identified for epilepsy surgery. It is known from long experience 

that several essential domains are perturbed by epilepsy or its underlying causes. While 

there are studies that have examined motor control (Muller et al., 1998a), declarative 

 

6.1  Introduction 

memory, and working memory networks (Dupont et al., 2000; Rabin et al., 2004; 

Richardson et al., 2004).  Most interest has focused on language systems. Notably there is 

a higher incidence of atypical language dominance in epilepsy populations (Gaillard et 

al., 2007; Rasmussen and Milner, 1977; Thivard et al., 2005; Woermann et al., 2003). 

The functional anatomy of language processing networks has been extensively studied 

through IAT (Rasmussen and Milner, 1977), 15O-water-PET (Blank et al., 2002; Muller 

et al., 1998b; Petersen et al., 1988; Wise et al., 1991) and fMRI (Binder et al., 1995; 

Bookheimer, 2002; Cabeza and Nyberg, 2000; Just et al., 1996).  

Language is typically left hemisphere dominant, but there are recognized variants 

(bilateral or right dominance) in normal right-handed (prevalence =5%) and left-handed 

populations (=22%) (Pujol et al., 1999; Rasmussen and Milner, 1977; Szaflarski et al., 
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2002; Woods et al., 1988).  Furthermore, patients with localization related epilepsy 

(LRE) exhibit a higher prevalence of atypical language dominance (20-30%). Most fMRI 

studies are based on visual (Fernandez et al., 2001; Gaillard et al., 2002, 2004) or ROI 

asymmetry indices (Binder et al.,1996; Frost et al., 1999; Gaillard et al., 2002, 2007; 

Ramsey et al., 2001; Spreer et al., 2002;Woermann et al., 2003) and only examine inter-

hemispheric “reorganization.” Other studies examine regional differences but also rely 

either on ROI asymmetry indices or regression analysis on clinical variables (Berl et al., 

2006; Billingsley et al., 2001; Gaillard et al., 2007; Voets et al., 2006; Weber et al., 2006) 

all depe

ocessing has moved; or, (2) “compensation”, where 

additio

nding on presumptions of where language “activation” is “known” to occur based 

on understanding of normative data. There are ECS studies that purport to examine intra-

hemispheric differences (Hamberger et al., 2007; Ojemann et al., 2008), but these do not 

have control data and can not examine language processing outside the surgical field. 

Atypical language patterns may represent: (1) “reorganization”, where the 

primary region of language pr

nal areas are recruited to assist in language processing.  Most commonly, studies 

have identified inter-hemispheric shifts to the right homologues of Broca’s and 

Wernicke’s areas Gaillard et al. (2002, 2004, 2007); Staudt et al. (2001) (Staudt et al., 

2002)). Intra-hemisphere re- organization studies are less common. Using comparison of 

activation maxima, there is modest evidence for greater variance in temporal regions and 

a shift in temporal activation posteriorly and superiorly in left hemisphere seizure focus 

patients who remain left dominant, but they found little evidence for intra-hemispheric 

reorganization/compensation in patients (Rosenberger et al., 2009). Employing a PCA of 

difference maps between a group of normal left hemisphere dominant controls and 
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individual patients with LRE, a subgroup of patients with recruitment of posterior 

temporal areas was also found; atypical language appeared restricted to the distributed 

language network homologues and margins.   These findings serve as evidence for intra 

and inter-hemispheric language reorganization, but they couldn’t distinguish between 

reorganization and compensation (Mbwana et al., 2009). Moreover, their results were 

based on the assumption of homogeneity of the analyzed population, where they were 

comparing epilepsy group with control group in which they pre-select the control as 

normal

ptions that study 

populat

 data. 

However, another form of compensation, based on intensity level differences 

instead of location, may not be identified by current methods. This is because intensity 

normalization is traditionally used as a pre-processing step to scale a group of fMRI 

activation maps to the same intensity range. For example, sub-profile modeling (SSM) 

uses the natural- log transformation as the first step to standardize the raw image matrix 

(Alexander and Moeller, 1994). 

One of the limitations of functional imaging studies is the assum

ions are homogeneous and that a given paradigm will recognize single unvarying 

network identified by the experimental task.  Clinical practice with patient populations, 

particularly involving language, suggests those assumptions are false. Patient populations 

of developmental and other disorders are also flawed by their assumption that patient 

populations are distinct form control populations in a uniform way. Some recent studies 

in executive functions in attention deficit hyperactivity disorder (ADHD) populations use 

regression analysis to show that there is a spectrum and that those with disease states who 

do better on given measures may more closely resemble controls (Vaidya et al., 2005).  
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However, these studies are only able to interrogate their data where they find activation 

derived from limited data sets. Normal or pathological variants are lost in such 

approaches (Berl et al., 2006). To overcome such limitations it is necessary to examine 

large populations with controls and patients by a data driven means to identify variant sub 

patterns. This approach does not assume controls and patients are different, rather it 

allows that both patients and controls may be distributed across subgroups and allows for 

the ability to analyze subgroups based on clinical or other experimental features. 

Limitations of standard approaches motivate the need to design objective methods 

for identifying language activation patterns. Previous methods are often constrained in 

their analyses either for the straightforward left-right differences, subjectivity associated 

with the use of visual rating and/or selection of ROI, or the use of data that lacks 

heterog

et al., 

006). Moreover, other PCA studies have not included a large group of normal controls 

a ical language representation (Mbwana et al., 2009). 

We aimed to develop a PCA-based method to identify common and variant 

groups independent of 

a prior

eneity. In general, most group analyses of fMRI data sets look for “commonality” 

under the assumption of the homogeneity of the sample (Berl et al., 2005; Price 

2

who m y have atyp

language activation patterns  (shared) among control and epilepsy 

i assumptions and biases inherent to ROI and visual analysis (Gaillard, 2004; 

Liegeois et al., 2004; Szaflarski et al., 2006). Important for our purposes, PCA provides a 

data driven group separation by the dynamic selection of the primary cluster members 

within any given population. Furthermore, the proposed PCA method does not require 

group normalization of the activation intensity as the first step to data classification thus 

avoiding the loss of a potentially important source of variance. Other segmentation 
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methods, such as support vector machine and discriminant analysis, are classifier 

methods that are based on supervised training; previous knowledge of the data sets has to 

be known, and the training data sets have to be defined and labeled from the beginning.  

The proposed method takes a different approach in the clustering process on the basis of 

the PCA eigenspace. We are neither trying to categorize each subject into simple left-

right dominance to replace the conventional clinical methods, nor striving to separate 

normal subjects from patients. Based on the distinct activation patterns identified by our 

data driven method, we then sought to gain insights into brain plasticity and 

compensation by examining the subjects in each language activation pattern by 

distinguishing features including control/patient designation, handedness, seizure focus 

location, and age of epilepsy onset. 

We aimed to ve  establish data driven 

methods to reliably identify sub-patterns of language processing from pooled data. 

 

6.2  

6.2.1 he Sub ts 

er 2, the fM ata and relevant clinical measures were 

stored in the data repository for central standardized processing. The distributions of 

dren with LRE (patient population) 

were in

rify similarity of findings across sites, and

Method 

  The Clinical Aspect of t jec

As mentioned in Chapt RI d

scanner and institutions of these 64 control and 58 chil

cluded in this chapter were explained in Table 2.1 in Chapter 2. The basic 

demographic data is included in Table 6.1. The mean age of patients was 13.86 years 

(range from 4.5-19 years), with mean age seizure onset 8.23 years (range 1-18 years). 
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There are 26 left localized patients, from which seventeen (65%) had temporal focus and 

the rest with extra-temporal focus. There are 18 right localized patients, from which 

seven (39%) had temporal focus and the rest had an extra-temporal focus. Three patients 

had bilateral seizure focus. Twenty two patients had abnormal MRI: seven tumor; five 

mesial temporal sclerosis; four focal cortical dysplasia; one vascular malfunction, three 

focal gliosis, and two atrophy. Of the 45 patients with seizure etiology information, 21 

had remote symptomatic seizure etiology, 21 cryptogenic and 3 acute symptomatic. 

Eleven patients (out of the 54 available) had atypical handedness (left or ambidextrous) 

as determined by clinical assessment or handedness inventories such as the Harris tests of 

lateral dominance or the modified Edinburgh inventory (Harris, 1974; Oldfield, 1971). 

 

Table 6. 1: Distribution of basic demographic data 

 Patients Controls 
Number 58 64 

Male (%) 63.79 54.69 

ndedness (%) 19 0 

Mean Age (years) 13.86(4.5-19) 8.65(4.2-12.9) 

Mean ag  seizure onset 8.23(1–18) - 

Tempor cus o eft localized (%) 65 - 

Te

Mean duration of seizures (min) 2.88 - 

As mentioned in Chapter 5, according to the concept and merit of subject loading, 

and the relationship among the top eigenvectors, general lateralization, and intensity 

drogram of the Euclidian distance matrix of the PCA, 

Atypical ha

e of

al fo f L

mporal focus of Right localized (%) 39 - 

 

6.2.2  PCA-based decisional space separation 

difference, as well as the den
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criteria

6.2.3  Group map and Significance map 

In order to verify and understand the separation results of PCA, the range and 

ember variability were assessed with the mean group map. A 

p is different than the collective 

penetrance m  

    

 were decided for the top two eigenvectors of the PCA-based decisional space 

which identified three primary clusters (the first  as major group left dominant, the 

second featured higher intensity levels, and the third with right dominant activation). 

Three sub-groups are identified (You et al., 2009). 

location of group m

significance map for each group was generated. This ma

aps used by others (Mbwana et al., 2009; Seghier et al., 2008), as we sought

the commonality contribution of each subject to the mean map.  Based on the histogram 

of each mean group map, a mask containing 90 % of the activation energy was defined.  

The group significance map is then computed by first masking each individual activation 

map (within each group), then calculating the commonality significance value as defined 

in Eq.6.1. 

22

)(

SD

MeanValuevoxel 

The Commonality significance (Cs) value is calculated for each voxel within the 

masked area, and then the total group significance map is generated by averaging the Cs 

values across the subjects within a given group. This provides a visual representation of 

the areas that have a significant percentage of subjects sharing the same location of 

activation. 

2

eCs                                         (6.1) 

6.2.4  Statistical Analysis 

94 
 



The association of clinical factors with the group distribution was analyzed using 

either Fisher exact test for categorical data or ANOVA and t-test for continuous data. If 

the ov

6.3.1  Activation patterns and significance maps 

The PCA analysis identified three distinct groups of subjects after the self-

separation process utilizing the top subject loadings and distance method. The activated 

areas of the three group activation patterns broadly encompass Broca’s and Wernicke’s 

was 

ronger than those of group 1, especially in Broca’s area, as shown in Figure 6.1.b and 

Table 6.2, and additional activation was evident in left MFG (BA 46, 9), left SMA (BA 

6), and right cerebellum. Group 3 had activation in right hemisphere homologues (Figure 

6.1.c and Table 6.2). The distribution of patients and controls differed among the three 

groups (p < 0.0004). Group 1 consisted of nearly all the healthy controls and a majority 

of patients; groups 2 and 3 were composed principally of patients but included a few

erall Fisher exact test was significant, pairwise comparisons of groups were 

performed. The Holm’s sequential Bonferroni procedure was then applied to correct for 

the probability of a Type I error (alpha =0.05). 

 

6.3  Results 

areas. Group 1 exhibited activation in the left hemisphere (Figure 6.1.a and Table 6.2). 

Group 2 (Figure 6.1.b) consisted of a cluster of subjects that shared the same general 

activation areas as group 1; however, the magnitude of activation for group 2 

st

 

typically developing controls. In terms of typical language activation, LRE patients had 
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greater

embers with the 

roup map. The maximum commonality significance value for the three groups are 

ig n  h riance and group 3 has the most v

 magnitude of activation than controls based on the subjects distribution in groups 

1 and 2 (Fisher exact test; p = 0.0005). 

In order to appraise the subjects’ contribution for each group map, a group 

significance map was generated for each group as shown in Figure 6.2. This figure helps 

to visualize the variance of the separation results comparing the group m

g

h her tha 0.8; group 1 as the least va ariance. 

 

Figure 6 NI 

he r 
(  
ra  
acti or 
(B

. 1: 2D array of selected axial cuts of the mean activation maps for each group overlaid on the M
standard brain.  Higher activations are in yellow color.  Brain is oriented in radiological convention: right 

misphere on the left side. (a) Mean activation map for group 1 with strong left lateralization of anterio
Broca) and posterior (Wernicke) clusters.  (b) Mean activation map for group 2 with higher mean intensity
nge than (a), which explains the better definition of Supplementary Motor Area (SMA). (c) Mean

vation map for group 3 with an atypical right hemisphere dominant response, particularly the anteri
roca) cluster. Different intensity threshold (90% of the energy) was used for visualization purpose. 

 

 

Figure 6. 2:  Commonality significance map of each group.  All three groups have the highest significance 
value higher than 0.8 and group 1 (a) has the least variance among the group members in the activated area, 
while group 3 (c) has the largest variance. 
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Table 6.2 provides the mean map’s activation maxima of each small cluster 

within each group and their coordinates, cluster size, the peak value of each cluster, and 

corresponding commonality significance value, and corresponding Brodmann Area. 

Moreover, a second level t-test was performed comparing the mean map of group 1 to 

group 2; Figure 6.3 depicts the areas that remain significantly different. 

 
Table 6. 2: Activation location, size, peak values and commonality significance value for each group map* 
 

Group Cluster size Mean-Z (peak) Cs of the peak x, y, z Region (BA) 
(Voxel Space+) 

1 319 1.91 0.74 48     47  31  LIFG (44) 
248 
10 

2.3 
1.42 

0.74 
0.76 

   48    29   24 
   32    47    41 

LMTG (21) 
RIFG (32) 

2 1014 
416 

147 

5.88 
5.2 

4.26 

0.80 
0.68 

0.72 

48    47 32 
49    29 23 

32    46 42 

LIFG (44/45) 
LMTG (21) 

RMFG (46) 
338 5.24 0.73 26    15 12 R cerebellum 

3 500 3.89 0.66 12    50 28 RIFG (45/48) 
61 
35 

2.51 
2.78 

0.71 
0.46 

29    52 40 
11    27 22 

RMTG (8) 
RMFG (37/20) 

* The cluster size here reflects the number of thresholded voxels within the cluster of the m
activation map. Threshold values are 1.2 for group 1, 3.3 for group 2, 1.8 for group 3, same as the th

ean 
reshold 

used f
group 2
space, using coordinates as: x-axis as the right-left direction (moving in the left direction increases the x 

increases the y voxel index, range 1-73); z-axis as the inferior-superior direction (moving in the superior 

or visualization purpose in Fig.1, containing 90% of the activation energy. The largest cluster in 
 has a maxima in IFG but extends into left MFG. + The Voxel Space we use here is the FSL MNI 

voxel index, range 1-61); y-axis as the posterior-anterior direction (moving in the anterior direction 

direction increases the z voxel index, range 1-61). 
 

 

Figure 6. 3: Second level t-test comparing the mean map of group 1 to group 2. Note the high t values 
(significant level p < 0.01) in the shared activated area, which is in the left IFG and MFG. 

 

The cluster size here reflects the number of thresholded voxels within the cluster 

of the mean activation map. Threshold values are 1.2 for group 1, 3.3 for group 2, 1.8 for 

group 3, same as the threshold used for visualization purpose in Figure 6.1, containing 
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90% of the activation energy. The largest cluster in group 2 has a maxima in IFG but 

extends into left MFG. Coordinates in voxel space: x-axis as the right-left direction 

(moving in the left direction increases the x voxel index, range 1-61); y-axis as the 

posterior-anterior direction (moving in the anterior direction increases the y voxel index, 

range 1-73); z-axis as the inferior-superior direction (moving in the superior direction 

increases the z voxel index, range 1-61). 

6.3.2  Demographic and clinical variables 

We found no difference in age at seizure onset, duration of epilepsy and gender 

between the three groups. However, there was an age difference among the three groups 

[ANOVA, F (2, n=118) =9.44, p=0.0002]; differe en groups 1 and 

2 (F =3.78, p=0.001, Bonferroni), as well as between group 1 and 3 (F =3.16, p=0.05, 

Bonferroni). Group 1 was younger than group 2 [t (108, n=110) = -3.91, p=0.002]. 

Table 6.3 and Figure 6.4 present the patient’s group profiles with related 

categorical variables and illu  factors distribution among these three 

groups. There were no differences based on gender seizure focus and etiology among the 

three groups. Data from groups 1 and 2 were co ared fi since b h groups were left 

lateralized but exhibited different intensities.  The distribution of seizure focus between 

groups 1 and 2 are different [ ( 50) = .731, p .03]; th atients of group 2 

had a higher percentage (50% to 34 %) in terms of right seizure focus.  In contrast, group 

3 with right activation was largely m le (6 out o ), left ded (5 t of 8), with a left 

se LRE (6). 

 3 had 

nces were found betwe

strate the clinical

mp rst, ot

X   2 = 13, n= 21 =0 e p

a f 8 han ou

izure focus (6 out of 8), and had a history of (poorly controlled) symptomatic 

Patients’ data were then compared between group 1 and group 3. Patients in group
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a higher percentage of left seizure focus than in group 1 (71.4 % vs.  53 %); the 

handedness distribution is also different from group 1 (Fisher exact test, p=0.007; Table 

6.4).  The other clinical variables – age, gender, age of onset, and seizure duration – were 

not different between these two groups. Data were then compared between the two broad 

groups, left lateralized (group 1+2) and right lateralized (group 3); the handedness 

difference was significant (Fisher exact test, p=0.003) and left handed patients tended to 

have right hemisphere activation (group 3, Fisher exact test, p=0.002; Table 6.4). No 

significant difference of seizure etiology or seizure focus was found between these two 

broad groups. 

Table 6. 3: Profile of clinical factors of three groups divided by PCA method 
 

PCA Groups 
Clinical factors 

 
1 2 3 

Ambidextrous 2 0 0 
Right 27 13 3 
Left 3 1 5 
N/A 3 1 0 

Handedness* 

Total 35 15  8 
Bilateral  3 0 0 
R  7 2ight 9  
Left 14 7 5 
N   1 /A 9 1 

Seizur s e focu

Total 35 15 8 
Acute 1 1 1 
C ptogenic  7 ry 11 3 
R oteem  
S pto tic 

 3 3 
ym ma

15

N/A 8 4 1

Etiology 

 
Total 35 15 8 
Male 23 8 6 

Female 12 7 2 Gender 

Total 35 15 8 
*Fisher exact test, comparison among group 1-3, p = 0.007 (p <  0.0167 Holm’s sequential 

Bonferroni correction). Holm’s sequential Bonferroni correction procedure: Since the overall 
difference among the three groups is significant in handedness (Fisher exact test, p = 0.0079), 
ow comparing the smallest p value first, which is between group 1-3 p = 0.007 <  0.05/3, so 

it’s significant; now compare the second smallest one between group 2-3, p = 0.02 < 0.05/2, 
still significant; but the third significant p value between group 1-2, 0.6 is not significant. 

n
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Figure 6. 4: Clinical Factor distribution among three groups. The percentage of patients in each group based 

groups, and between group 1 vs. group 3, and between group (1+2) vs. group 3. (p < 0.0167 Holm’s 
sequential Bonferroni correction). 

 

Table 6. 4 : Distribution of handedness across three groups with regard to se

on handedness, seizure focus and seizure etiology findings.  Handedness was different among the three 

 

izure focus * 
 

Left Right Bilateral Seizure Focus
Handedness 1 2 3 1 2 3 1 2 3 

1 1   2   0   

2  0   1   0  Left 

3   3   1   0 

1 12   7   3   

2  7   6   0  Right 

3   2   1   0 

1 1   0   0   

2  0   0   0  Ambidextrous

3   0   0   0 
 

few in some subgroups to make statistical comparisons meaningful. 

 

* Only 47 data sets combined the information on seizure focus and handedness. Notice the numbers are too 
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6.4  Discussion 

We used the new method of PCA-based decisional space as described in Chapter 

5 to identify distinct language activation patterns in control and LRE patients from 

different sites, who performed the same fMRI auditory description decision task. Three 

sub-groups were identified: two with predominantly left hemispheric activation but with 

different regional weighting of activity, and one with a predominantly right-sided 

activation pattern.  Normal controls and patients fell into each of the three groups but the 

distribution differed with a greater proportion of controls in the first and largest left 

activation group while patients were the majority in the other two groups.  Unlike ROI 

analysis employed to generate an asymmetry index, our method did not provide 

determination of language dominance, but aimed to identify distinct activation patterns . 

These findings provide insight into reorganization of language system functions and 

potential compensatory strategies in epilepsy and normal populations. 

Our findings suggest variants of language patterns which are not revealed in 

previous studies (group 2); secondary analysis suggests the variant patterns  are more 

common to epilepsy patients than to controls.  Our methods sorted subjects by imaging 

features independent of whether a child had epilepsy or was a control. The broad 

distinction of left and right hemisphere dominant patterns  identified in our study are 

similar to prior studies on language dominance in normal volunteers and in epilepsy 

populations employing transcranial-Doppler, transcranial magnetic stimulation, the IAT, 

and conventional fMRI analysis (Binder et al., 1996; Fernandez et al., 2001; Gaillard et 

al., 2002; Khedr et al., 2002; Knecht et al., 2000; Kurthen et al., 1994; Rasmussen and 

Milner, 1977; Risse et al., 1997; Woods et al., 1988; Wyllie et al., 1991). The right 
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language group (Group 3), contained 7% of the total population and 14% of the LRE 

population, which is comparable to previous typically developing and epilepsy patient 

studies.  The majority of patients in this group had left seizure focus, was left-handed, 

and had left structural lesions, all factors known to be associated with atypical language 

domina

e identified two groups with left hemisphere patterns of 

activati

nce (Gaillard et al., 2007; Woermann et al., 2003). While activation in this group 

occurred in the right hemisphere in areas that mirror activation seen in the left-

hemisphere patterns  (Gaillard et al., 2002; Mbwana et al., 2009; Rosenberger et al., 

2009; Staudt et al., 2001) – this group also showed the greatest variance. Some studies 

suggest that atypical language dominance in patient populations is tightly constrained to 

right homologues (Rosenberger et al., 2009; Staudt et al., 2001) but others suggest greater 

variability when language has shifted to the typically non-dominant hemisphere (Voets et 

al., 2006). These patterns are considered to represent “reorganization” from the left to the 

right hemisphere in response to epilepsy or its remote cause (Gaillard et al., 2007; 

Mbwana et al., 2009). Findings in this study suggest that transfer of language dominance 

across hemispheres may be imperfect in some patients. 

Intra-hemispheric variants, however, have been harder to identify by conventional 

analytic approaches. W

on. The larger group (group 1) is composed of nearly all typically developing 

children and the majority of patients. We also identified another group (group 2), 

composed of mostly patients and a minority of typically developing controls. This group 

had a different left hemisphere activation pattern than the first group that involved 

different activation intensity in the inferior frontal regions and recruitment of adjacent 

MFG (BA 46, 9), SMA (BA 6) and contralateral cerebellum. The regions observed are all 
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areas identified with the widely distributed left hemisphere language processing network 

but are also those thought to be engaged in verbal working memory (Baillieux et al., 

2008; S

nt of verbal working memory systems, possibly due to 

effort, 

orks in 

that reg

toodley and Schmahmann, 2009).  In addition, these subjects express the highest 

measure of commonality, that is, the least variance in the IFG (BA 44/45).   

This data suggests tighter homogeneity of activation in this group than in the 

others.  There are two possible explanations for these findings. Activation in these areas 

may reflect greater engageme

perceived difficulty, effect of medications, effect of epilepsy, or compensation for 

impaired hippocampal memory function (Berl et al., 2005; Dupont et al., 2000). 

Turkeltaub et al. (2003 & 2004) found reading-skill acquisition for young readers is 

associated with increasing activity in the left inferior frontal gyrus and middle temporal 

gyrus and decreasing activity in the right extrastriate cortex.  Moreover, they also found 

increased covert reading activity for the hyperlexic subject compared to control subjects 

in reading-related areas Turkeltaub et al. (2003, 2004).  These cases support the idea that 

intensity has a meaningful role in task processing; when intensity of a region is greater 

than what one would expect, it suggests a differential recruitment of neural netw

ion for that task.  

Group 2 also had a higher percentage of patients with a right seizure focus. A 

right seizure focus may compromise ancillary and non linguistic aspects of language 

processing that occurs in the right hemisphere, requiring compensation in the left 

hemisphere (Berl et al., 2005).  In this view, the group 2 left activation pattern represents 

compensation rather than reorganization (Berl et al., 2005; Mbwana et al., 2009) and 

suggests a possible remote effect on of a right hemisphere focus on traditionally left-
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lateralized functions. These patients may draw upon the distributed language network in a 

different way than most controls. 

Moreover, there also exists the possibility of modulation of the nodes of a bigger 

network in processing language via changes in functional connectivity, which might be 

examined with other methods such as connectivity analysis (Hampson et al., 2002). The 

functional connectivity may serve as a possible alternative mechanism to which our 

method is not tuned to detect. 

Some of the differences that characterize group 3 may represent an effect of 

handedness. None of our typically developing children were left handed or ambidextrous. 

Howev

eaningful 

interpretation of these patterns  based on clinical characteristics, such as seizure focus and 

pathological substrate, among others.  This information is necessary to improve care and 

outcomes. The PCA-decisional space presented here can be helpful in sorting an 

er, previous studies involving left handed controls (and it is not clear how many 

had acquired sinistrality) show that 76-78% are left dominant (Pujol et al., 1999; 

Szaflarski et al., 2002). Moreover, left handed patients are over represented in epilepsy 

populations; 56% or more of left handed patients may be expected to have atypical 

language dominance – more than left handed controls (Gaillard et al., 2007; Rasmussen 

and Milner, 1977). These data suggest that both atypical language dominance and 

atypical handedness are reflections of the underlying epilepsy or its remote cause. 

A substantial study population enhances the ability to identify variant patterns of 

language networks by data driven methods and gain insight into the neurobiology of 

complicated cognitive processes. Larger populations of cooperatively acquired data will 

allow for identification of additional, less common, variants and m
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individual patient into a partic subset without the bias and 

limitations inherent to the traditional fMRI ethod 

might also be useful for assessing large combined patient and control data sets in which 

visual or R

 the majority of patients. We also introduced a significance map 

derived from the subgroup and further analy

ular language pattern 

 patient care analysis.  The proposed m

OI rating may be impractical or difficult. This is especially applicable for 

those developmental disorders where population differences are not readily apparent and 

assumptions of patient population homogeneity are unrealistic. For epilepsy, future 

research may also take advantage of the PCA-decisional space characteristics for group 

separation in order to overcome conceptual limitations of language network organization 

that categorize into simple patterns of left, bilateral or right dominance. 

Not applying intensity normalization allowed us to consider simultaneously the 

location, extent, and magnitude of activation intensity; this method helped identify a sub- 

group with a left hemisphere activation pattern distinct form one more commonly found 

in normal controls and in

zed the segregation results by clinical 

variables. Our analysis supports the notion of pooled data from several institutions using 

the same paradigm and comparable acquisition parameters. We do not claim that our 

method is better than other segregation methods, rather we suggest that this or similar 

methods applied to substantial normal, developmental and patient populations may 

identify normal and pathological activation patterns  for cognitive systems that in turn 

provide insights into mechanisms for brain compensation and neural plasticity. 
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CHAPTER VII 

Conclusions 

A novel approach is thus 

proposed in which the PCA is seam

is on the activation maps granted the 

 

The main objective of this dissertation is to develop integrated methods to assess 

and automatically classify different language network activation patterns in a mixed 

fMRI population containing both control and LRE patients. 

lessly combined with generalized nonlinear classifiers 

and the Euclidean distance method. The LI and clinical rating are used as support 

mechanisms to the decisional space to gauge the accuracy of the automated decision 

making process. In the early phase of this research, a multisite image consortium was 

developed for pediatric epilepsy, which provided a fast, reliable, fault tolerant, secure 

environment that brought several hospitals with renowned pediatric epilepsy programs 

together.  

The heterogeneity in the patterns of typical versus atypical brain organization is 

such that no one center can identify a sufficient number of patients to investigate the 

contribution of the different factors that influence brain organization and underlying 

pathologies. For this singular reason, the consortium that was built here at FIU was 

structured to not only promote objective assessments of large data sets that can serve to 

interrogate data for a multitude of clinical variables,  but also to elicit a better 

understanding of the brain language network plasticity in a mixed pediatric epilepsy and 

control population. Thus, the conscientious decision not to perform intensity 

normalization during the second level analys
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opportu ng 

e subjects as 

s. The control and patients are unequally represented, raising 

research may also take advantage of the PCA-decisional space 

nity to discover activation intensity compensation for language networks amo

some of the subjects.  

Groups 1 and 2 were identified as left dominant subjects in reference to their 

language dominance, but they were segregated due to the intensity difference presented 

by their activation patterns. Group 3 was represented by right dominanc

expected; however, group 2 was an unexpected finding.  

 The further advantage is that one can work backwards along this process to 

identify clinical features that characterize these groups. One of the distinguishing factors 

is that patients and controls are found in all three groups. This is an important finding, 

one that we have emphasized from the outset for not focusing solely on segregating 

control from patient

questions about what the variants mean. There are very few studies that have done what 

we have accomplished with this large mixed population. 

The PCA-decisional space as designed is proactive for assessing large combined 

patient and control data sets in which visual rating or ROI-based LI may be impractical or 

difficult. The way of direct implementation on a mixed population is especially 

applicable for those developmental disorders where population differences are not readily 

apparent, and assumptions of patient population homogeneity are unrealistic. For 

epilepsy, future 

characteristics for group separation in order to overcome conceptual limitations of 

language network organization that categorize into simple patterns of left, bilateral or 

right dominance. 
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e space in order to optimize the classification of fMRI 

visual rating 

sing 

% 

language related activation brain patterns. This integration resulted in a data-

driven method that is both accurate and computationally appealing. 

2. Devised an automated method to perform objective classification of brain 

activation patterns as a support tool to assist the more subjective 

methods or ROI-based LI methods, but with no intent to substitute them.  The 

sensitivity and objectivity of the PCA-NDF for group separation helps in 

overcoming human rating error as well as the limitations imposed by prior 

assumptions. 

3. Introduced the idea of using synthetic activation patterns, derived randomly from 

real data, to help our method perform classification on language activation 

patterns into typical and atypical categories. The data-driven mechanism u

NDF was found to be effective at classifying typical and atypical language 

networks activation patterns from a heterogeneous population often acquired with 

different acquisition parameters. Recall that the optimal nonlinear classifier 

yielded results with 96% accuracy, 97% sensitivity, 95% specificity, and 95

precision. 

4. Established a PCA-based decisional space to recognize groups of distinct 

language activation patterns in a mixed population of control and LRE patients 

from different sites.  In this data driven method, mathematical thresholds were 

uniquely derived to delineate regions for three primary clusters based on the first 
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two eigenvectors of the PCA; while the modified-Euclidean distance method is 

used to classify any undecided subjects into one of the three primary clusters 

initially determined.  

5. Avoided intensity normalization to allow for the simultaneous consideration of 

the location, extent, and magnitude of activation intensity; this method helped 

identify a group with a left hemisphere activation pattern distinct form one more 

commonly found in normal controls and in the majority of patients.  

6. Introduced a significance map derived from the subgroup and further analyzed the 

segregation results by clinical variables.  The two left dominant subgroups 

differed on the intensity level of regional activations. Some of the findings may 

represent an effect of epilepsy, its underlying substrate on language network 

expression, or may represent different strategies in performing the task. The 

results showed good agreement with both the subjective visual categorization and 

the ROI-based LI distribution in identifying the strong right dominant group.  

7. Provided standardization procedures to account for different data formats and site 

differences such as scanner manufacturer, magnetic strength and acquisition 

parameters, which are perceived as limitations that hinder group analysis.  Our 

analysis showed that our clustering results were independent of scanner or site. 

It is worth re-emphasizing that the methods developed in this dissertation promote 

objective assessments of large data sets which can consequently allow doctors and 

clinicians to interrogate data for a multitude of clinical variables that otherwise would be 

too unyielding to manage.  Our analysis supports the notion of pooled data from several 

institutions using the same paradigm and comparable acquisition parameters. However, 
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we do not claim that the propose er segregation methods; rather 

and pathological activation patterns for cognitive systems. In the future, some efforts 

sho

adv

can

d method is better than oth

we suggest that these methods applied to developmental populations may identify normal 

uld be invested in extending our method into other paradigms that are available in our 

multisite consortium, such as the auditory category task and listening task, in order to 

ance our understanding of the language networks. Moreover, the method as designed 

provides insights into mechanisms for brain compensation and neural plasticity, which 

 be extended to study other brain abnormalities such as Schizophrenia, Alzheimer and 

autism. 
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