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Predicting Symptom Severity and 

Contagiousness of  Respiratory Viral Infections

Infections due to respiratory viruses affect millions of people all

over the world and have a huge economic impact. While the proc

ess of immune clearance allows most people to combat these

infections, for many others viral exposure causes a variety of

symptoms including runny nose, stuffed nose, cough, sore throat,

headache, fever, myalgia and general malaise. These symptoms can

vary in severity and have different onset and recovery times. To

make matters worse, the viruses reproduce and “shedding” ensues,

whereby the viral progeny are expelled making the host contagious.

The goal of this work is to build predictive models for both severity

of symptoms and contagiousness, given gene expression time

series data recorded over a multi-day period starting prior to

exposure, and measured at different intervals following exposure.

Our predictive models resulting from data from prior to exposure

performed nearly as well as reported models with data from 29

hours post infection. Performance rose to 100% when using later

time points. We have identified several biomarkers, which emerged

as being significant from models for multiple time points.

The potential biomarkers obtained with the proposed approach

need to be investigated further as vaccine and therapy targets.

INTRODUCTION    APPROACH

RESULTS

Feature Selection
• Partial Least Squares Discriminant Analysis (PLS-DA) is an extension of the multiple

linear regression models and is a supervised method to filter relevant genes as

biomarkers for estimating the symptom score and viral shedding.

• PLS-DA sharpens the separation between groups of labeled observations by

rotating the frame of reference to a direction that maximizes the separation between

the groups. It also provides information on the class separating variables.

• In this work, PLS-DA was used to score the genes that contribute to the best separation

between groups of subjects, in our case symptomatic vs asymptomatic and shedding vs

non-shedding. A threshold was used to filter relevant genes to be used by the classifier.

DATA

• Data represents 4 different respiratory viruses, including

Respiratpry Syncytial Virus (RSV), H3N2, H1N1 and Rhinovirus.

• Healthy volunteers were followed for seven to nine days following

controlled nasal exposure to one respiratory virus. Subjects

enrolled into these viral challenge experiments had to meet

several inclusion and exclusion criteria.

• Nasal lavage samples and symptom data and were collected from

each patient on a repeated basis over the course of 7-9 days.

Viral infection was quantified by measuring release of viral

particles from nasal passages ("viral shedding") as assessed

from nasal lavage samples via qualitative viral culture and/or

quantitative influenza RT-PCR.

• Symptomatic data was collected through self-report on a

repeated basis. Symptoms were assessed via modified Jackson

score which assessed the severity of 8 upper respiratory

symptoms (runny nose, cough, headache, malaise, myalgia,

sneeze, sore throat and stuffy nose) and integrates daily scores

over 5-day windows.

• Blood was collected and gene expression of peripheral whole

blood was performed 1 day (24 to 30 hours) prior to exposure,

immediately prior to exposure, and at regular intervals following

exposure. All patients challenged with influenza (H1N1 or H3N2)

received oseltamivir 5 days post-exposure. Rhinovirus

additionally includes 7 volunteers who were exposed to sham

rather than active virus. Below is a summary of the number of

subjects for each catgory along with the number who showed

viral shedding and were symptomatic or asymptomatic.

• The above data was provided by the DREAM Respiratory Virus

Challenge [http://dreamchallenge.org]

Virus Subjects Symptomatic Viral Shedding

RSV 20 10 13

H1N1 36 19 21

H3N2 30 16 18

Rhinovirus 38 25 22

Table 1. Clinical data summary

CONCLUSIONS
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0 Hours 10 Hours 36 Hours Best Time

Virus Accuracy # Genes Accuracy # Genes Accuracy # Genes 
Time 

Point
Accuracy # Genes 

V
ir

a
l 

S
h

e
d

d
in

g Rhinovirus 85.2 138 90.2 9 78.3 397 84 94.7 1000

H1N1 81.5 1000 78.7 1000 78.9 1000 94 99.9 834

H3N2 89.0 216 77.8 1000 95.0 98 34 100.0 3

DEE1 RSV 86.8 592 87.8 58 90.3 1000 53 95.3 149

S
y
m

p
to

m Rhinovirus 74.3 875 84.1 26 78.8 4 108 95 912

H1N1 86.3 166 80.4 1000 82.2 82 132 100 10

H3N2 87.9 393 88.9 146 95.3 18 69.5 100 70

DEE1 RSV 87.0 79 94.5 1000 95.0 234 69.5 99 149

Classification
• In this work, a random forest classifier was used whose input was the gene list obtained after the filtering in feature selection. It is an

ensemble method that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the

predictive accuracy and to control over-fitting.

• 10-Fold Cross validation was used.

Time in hours -24 0 5 12 21.5 29 36 45.5 53 60 69.5 77 84 93.5 101 108 117.5 125 132 141.5 165.5 Gene Annotation

TUBB2A 2 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 4 1 2 Cell division

1 2 2 3 2 4 2 2 1 2 2 1 2 7 2 2 10 12 22 5 9 Antigen Processing

HLA-DQB1 3 3 21 7 4 2 31 28 33 6 73 41 6 2 11 63 13 2 14 10 15 Antigen Processing

HLA-DQA1 4 4 49 6 21 3 NA 14 97 5 NA NA 9 3 82 46 28 4 19 13 88 Antigen Processing

MYOM2 22 6 10 21 9 7 11 9 40 10 5 8 14 4 8 13 80 10 16 30 7 Muscle System Process

AMFR 8 5 8 2 3 5 3 3 30 13 10 10 5 10 26 27 21 17 44 7 20 Motility Factor Receptor

CD177 13 7 27 11 10 21 6 10 31 11 7 24 8 9 15 7 4 8 6 4 6 Membrane protein

BTNL8 21 14 6 9 39 18 5 13 4 14 11 12 7 27 NA 96 NA NA NA 49 NA Membrane protein

PCNX 11 89 36 NA 7 64 64 65 17 15 24 NA 45 68 NA 91 NA NA NA 34 NA Membrane protein

IGF1R 12 26 40 12 31 NA 56 12 16 36 19 27 33 25 NA NA NA NA NA NA NA Cell factor; Cell Morphogenesis

PRL 5 8 3 NA 17 24 4 7 5 18 3 11 53 6 40 65 NA NA NA 58 NA Protein import into nucleus

FOLR3 9 11 12 4 13 9 17 15 24 12 27 4 10 5 NA 32 NA 88 NA NA NA Amino Acid transport and metabolism

ERAP2 10 50 14 50 NA 29 10 96 27 60 NA 3 17 12 45 10 NA 68 NA 36 69 Amino Acid transport and metabolism

RPS26P6 61 47 16 10 16 NA 12 29 7 16 14 9 12 8 33 17 NA 38 55 50 41 Translation

HLA-DQB1 14 10 NA 52 58 8 NA NA NA 24 NA NA 70 67 NA NA NA 85 90 67 NA Antigen Processing

HLA-DOB 81 41 25 41 38 NA 21 79 10 67 53 44 55 89 NA 48 NA NA NA 73 75 Antigen Processing

98 30 23 31 NA 85 7 8 23 17 23 6 22 73 NA 42 NA NA NA NA NA Antigen Processing

TUBB2A 41 12 15 5 15 10 9 24 12 8 36 38 25 13 75 68 45 82 NA 46 NA Cell division

HERC5 NA NA NA NA NA NA NA NA NA NA NA NA 63 33 22 14 15 15 8 29 18 Cell division

IFI44L 94 18 NA 83 NA NA 61 31 92 NA NA NA NA 17 10 11 11 6 3 3 4 Cell division

IFI44 NA NA NA NA NA NA NA NA NA NA NA NA NA 64 16 12 7 9 7 9 11 Response to Virus

IFI44 NA NA NA 100 NA NA NA 48 NA NA NA NA NA 28 18 9 8 7 11 11 14 Response to Virus

RSAD2 NA 20 83 90 60 84 NA 23 NA NA NA NA NA 16 7 4 3 5 1 2 3 Immune Response

SERPING1 NA NA NA NA NA NA NA NA NA NA NA NA 15 11 3 3 2 3 2 6 1 Immune Response

FCGR1A NA NA NA NA NA NA NA NA NA NA NA NA 20 26 13 40 9 16 12 18 13 Immune Response

FCGR1A NA NA NA NA NA NA NA NA NA NA NA NA 21 30 9 49 18 25 10 31 24 Immune Response

OAS3 NA NA NA NA NA NA NA NA NA NA NA NA 60 29 19 24 5 14 15 16 12 Immune Response

IFI6 NA NA NA NA NA NA NA NA NA NA NA NA 58 48 5 6 6 98 42 NA NA Immune Response

• Table on the left shows genes that

act as biomarkers at different time

points during infection by the RSV

virus, as identified by PLS-DA.

• Rows correspond to important

genes and columns correspond to

time points.

• Each entry in the table is the rank of

that gene in the list of importance

scores. Brighter colors indicate

higher ranks. “NA”s indicate that the

gene did not receive a sufficiently

high importance score.

• Some genes act as biomarkers 

across the entire time range of  

study. Others are either early or late 

biomarkers. 

• The first column gives the name of  

the gene in question. 

• The last column represents the 

functional annotations of  the genes.

• Related annotations are given the 

same color. 

• Table on the right shows

accuracies of the

random forest

classifiers constructed

for different time points.

• Accuracy and the

number of genes used

to build the model are

shown for three sample

time points and for the

time point at which the

most accurate model

was constructed.
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RSV

H1N1 H3N2

Rhinovirus

The table on the left shows

Enrichment Analysis for a functional

term of interest for all four viruses.

The scores represent the Benjamini

Hochberg Corrected P-values.

Enrichment Analysis for GO:0006952~defense response

RSV

Day 3 PI

H1N1

Day 4 PI

H3N2 

Day 2-3 PI

Rhinovirus 

Day 4 PI

Symptoms 1.3E-05 3.7E-4 9.2E-7 1.5E-7

Shedding 2.0E-3 3.7E-4 5.0E-4 1.4E-10

Acknowledgments

https://david.ncifcrf.gov/
http://biit.cs.ut.ee/gprofiler/

	Predicting symptom severity and contagiousness of respiratory viral infections
	Recommended Citation
	Authors

	/var/tmp/StampPDF/Fi8dEK82xe/tmp.1588348772.pdf.9l9Um

